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Abstract V

Abstract

Urban energy systems will need to be completely transformed to meet climate protection goals
and be robust to changing external conditions, such as the 2022 energy crisis in Europe. These
systems are extremely complex and interconnected due to the highly decentralized energy supply,
the use of volatile renewable energies, energy storage systems, sector coupling, and the increasing
importance of new energy and demand sectors.

Multi-objective optimization approaches are well suited for the design of urban energy systems,
with financial costs and greenhouse gas emissions as optimization targets, with holistic consid-
eration of all relevant energy and demand sectors. An important aspect for the development of
modeling tools is the goal of making novel models broadly applicable through low entry points,
open and transparent methods, and data management.

When modeling and optimizing urban energy systems, challenges arise with respect to the (1)
model properties and features, (2) model complexity affecting the (2a) applicability and (2b)
required computing effort, (3) openness of models and input data, (4) quality and availability of
input data, (5) model uncertainties, as well as (6) communication of model insights. Challenges
regarding the selection of appropriate model properties and features, assuring data quality,
and enabling openness of applied modeling methods are straightforward to address and, in
some cases, allow for parallel improvement of other challenges. Challenges regarding models’
complexity are more difficult to solve and come along with the need for trade-offs.

All of these challenges have been addressed in this work. With the Spreadsheet Energy Sys-
tem Model Generator (SESMG), a tool was developed that enables the automated modeling
of urban energy systems. It is applicable without any programming knowledge, automatically
defines the model parameters and structure, processes and visualizes the model results, and
comes with a broad set of standard (but still customizable) technical, environmental, and eco-
nomic parameters. The SESMG also includes a standard procedure for model-based complexity
reduction, which enables the modeling of urban energy systems at high spatial resolution using
standard personal computers. Just like all other developed methods and applied input data, the
SESMG is published under an open-source license. All assumptions, uncertainties, and insights
are communicated transparently.

The developed methods were applied to a typical reference urban energy system. The results
obtained can be transferred to other urban energy systems, while the limitations of the trans-
ferability of the results to other real-world systems are well considered. Assuming energy prices
(electricity, natural gas and hydrogen) as they were before the 2022 energy crisis in Europe, in
the financially-optimized scenario the heat supply is primarily based on (centralized) natural gas
technologies, and the electricity supply is based on heat-driven natural gas combined heat and
power plants and photovoltaic systems. Large shares of produced electricity are exported. When
energy prices rise, the financially-optimized scenario of the analyzed reference system approaches
the least-greenhouse gas-emission scenario; in this emission-optimized scenario, the heat demand
is significantly reduced by building insulation. The remaining heat demand is provided by air
source heat pumps, ground coupled heat pumps and solar thermal systems. Photovoltaic sys-
tems and hydrogen operated combined heat and power plants are used for electricity supply and
battery storages for load shifting.

Several other scenarios allow a compromise between these two extremes. Starting from the
financial optimum, about 40 % of the possible greenhouse gas emission reduction can be saved
at low cost, while another 40 % can be achieved at mid-range expenses, and the remaining 20 %
requiring significant additional costs, mainly due to high investment costs of battery storage and
hydrogen technologies.
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Technologies and measures that are robust for use in optimized systems under expected trends
such as increasing energy prices, increasing greenhouse gas emission reduction requirements, and
decreasing greenhouse gas emissions from imported electricity are recommended. These include
photovoltaic systems, decentralized heat pumps, thermal storages, electricity exchange between
subsystems and with higher-level systems, and reducing energy demand through building in-
sulation, behavioral changes, or reduction of living space per inhabitant. On the other hand,
solar thermal systems, decentralized natural gas technologies, high capacity battery storages,
hydrogen for building energy supply, and natural gas-based district heating bear the risk of
not being viable under expected trends. It can be assumed that the maximum profitability of
natural gas technologies has already been reached with the current natural gas purchase prices
and that natural gas will be less and less considered in optimized urban energy systems.

The modeling approach developed and applied has some limitations, model uncertainties based
on assumptions about input parameters, or the non-inclusion of the mobility sector and re-
spective sector-coupling effects. However, as these gaps are transparently classified, both the
method and the resulting findings are highly relevant for practice. There are related issues which
will be addressed in future research. In particular, the integration of the mobility sector, the
stakeholder-specific cost optimization, the conceptualization of local energy markets, and ways
to enable the modeling of even more complex systems are important aspects for future research.
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1 Introduction

Traditional urban energy systems need to be completely restructured to meet modern require-
ments [1, 2]. National and international climate protection targets and changing external con-
ditions such as the 2022 energy crisis in Europe pose new challenges for modern, sustainable
energy systems [C]. Further requirements result from the ongoing urbanization, which leads to
increasing energy demands in cities [3].

Urban energy systems can be defined as “the ‘combined process of acquiring and using energy
in a given’ [4] spatial entity with a high density and differentiation of residents, buildings,
commercial sectors, infrastructure [5], and energy sectors (e.g., heat, electricity, fuels) [6]” [B].
They are also called mixed-use multi-energy systems [B].

Traditional Energy 
Systems

Modern Energy 
Systems

H2

Figure 1.1: Schematic representation of traditional (left) and modern (right) energy systems.
Adapted from [1].

Traditional urban energy systems are characterized by linear, sector-separated, area-wide homo-
geneous, and, in the electricity sector, centralized energy supply (Fig. 1.1) [C, 1]. Modern urban
energy systems in turn are increasingly complex and entangled due to a widely decentralized
energy supply, the use of volatile renewable energies, energy storage systems, sector coupling,
and increasing relevance of new sectors such as the e-mobility and hydrogen sectors [C, 1].

In the past, traditional urban energy system planning was usually driven by financial inter-
ests only, and individual system parts (individual buildings, consumption sectors, and energy
sectors) were planned independently of each other by comparing a limited number of possible
supply scenarios [D, 7]. In contrast, the planning of increasingly entangled modern energy sys-
tems requires a much more holistic approach [D, 1]. When all system components are planned
and optimized together, synergies can be exploited and conflicting objectives avoided. The use
of optimization algorithms allows the comparison of all theoretically possible scenarios [D]. In
addition to financial interests, it is recommended that other objectives such as the minimization
of greenhouse gas (GHG) emissions are addressed as well. Therefore, the planning and opti-
mization of urban energy systems and the respective models become more and more complex
[D].

There is a lack of research and planning practice for methods being able to meet these criteria.
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No modeling tool is available which is widely applicable for modeling and optimizing urban
energy systems that (1) generates spatially high resolution results, (2) works with multi-objective
optimization methods, (3) takes diverse energy and consumption sectors into account, (4) can be
applied on standard personal computers, and (5) can be used without programming knowledge.
To close this gap, a modeling tool for the optimization of sustainable urban energy systems is
developed and applied within this work. A special focus lies on the analysis of challenges that
arise during this process and how they can be handled. The developed modeling methods are
able to represent all relevant aspects of modern urban energy systems. Further, they can be
applied by a broad user community of planners and engineers. The tool is therefore published
under an open-source license, applicable without any programming knowledge, and executable
with standard personal computers.

Table 1.1: Publication overview of the cumulative thesis.

ID Publication

[A] Klemm, C. and Vennemann, P. “Modeling and optimization of multi-energy systems in
mixed-use districts: A review of existing methods and approaches”. Renewable and
Sustainable Energy Reviews, 135, 110206 (2021). doi: 10.1016/j.rser.2020.110206.

[B] Klemm, C. and Wiese, F. “Indicators for the Optimization of Sustainable Urban Energy
Systems Based on Energy System Modeling”. Energy, Sustainability and Society, 12, 3
(2022). doi: 10.1186/s13705-021-00323-3.

[C] Klemm, C., Wiese, F., and Vennemann, P. “Model-based run-time and memory reduction
for a mixed-use multi-energy system model with high spatial resolution”. Applied
Energy, 334, 120574 (2023). doi: 10.1016/j.apenergy.2022.120574.

[D] Klemm, C., Becker, G., Tockloth, J. N., Budde, J., and Vennemann, P. “The Spreadsheet
Energy System Model Generator (SESMG): A tool for the optimization of urban
energy systems”. Journal of Open Source Software, 8, 89 (2023). doi: 10.21105/joss.05519.

[E] Klemm, C., Vennemann, P., and Wiese, F. “Potential-Risk and No-Regret Options for
Urban Energy System Design - A Sensitivity Analysis”. Sustainable Cities and Society
(under review).

This work is a publication-based cumulative thesis and includes five peer-reviewed publications1

(Tab. 1.1). The individual publications build on each other (Fig. 1.2). In publication [A],
an extensive literature review was conducted to provide a detailed knowledge base for further
investigation. Previous studies in the field of modeling and optimization of urban energy systems
were evaluated, and approaches to build upon were identified. In publication [B], a greater basis
was created by reviewing and evaluating indicators, system boundaries, and more. Methods for
multi-objective optimization and emission balancing were selected, adapted and applied for a
simplified test case. Publication [C] is primarily concerned with model-based simplification with
the aim of reducing the computing resources (random-access memory (RAM) and run-time)
required for solving energy system models. Only with these methods was it possible to solve the
following models with sufficient spatial resolution to answer the research question.

Various versions of the Spreadsheet Energy System Model Generator (SESMG) were used in
publications [B], [C], and [E]. The SESMG itself is described in publication [D]. The develop-
ment of the SESMG took place in parallel and iterative to publications [B] and [C]. Finally,
in Publication [E], all developed methods were combined and applied within a case study. The

1Transparency disclose: A first version of publication [A] was written and submitted for publication as part of
Christian Klemm’s master’s thesis. The further publication process, including two extensive revisions, was
carried out as part of the presented work.

https://doi.org/10.1016/j.rser.2020.110206
https://doi.org/10.1186/s13705-021-00323-3
https://doi.org/10.1016/j.apenergy.2022.120574
https://doi.org/10.21105/joss.05519
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result is a list of measures and technologies that are particularly robust to optimization, as well
as those that are explicitly not. The studied system has a particularly transferable structure, so
that the findings can also be applied to other urban energy systems.
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Publication A:
Review

Publication E:
Sensitivity
Analysis

Publication C:
  Simplification

Publication B:
Indicators

Publication D: Modeling Tool

Figure 1.2: Structure of the individual publications listed in Tab. 1.1.

This work was conducted in conjunction with the research project Resource Planning for Ur-
ban Districts (R2Q) and the related interdisciplinary research network Resource-efficient Urban
Districts (RES:Z). While the main publications of this work are listed in Tab. 1.1, further
publications describing related side aspects and technical issues are listed in Tab. 1.2.

The content of this document is based on the publications listed in Tab. 1.1. Accordingly, content
and verbatim transcriptions have been adopted from these publications. This is indicated in each
case by letter references, as shown in Tab. 1.1. The publications are given in Appendices A–E in
their published format, or as a manuscript version for the submitted publication under review.
The following sections describe how the individual publications address various challenges of
modeling and optimizing urban energy systems (Sec. 2), the modeling workflow of the SESMG
(Sec. 3), and the results obtained from a case study (Sec. 4). Finally, both developed methods
and obtained results are critically evaluated and classified (Sec. 5 and 6).

Table 1.2: Overview of selected publications related to this work.

Type Publication Ref.

Software SESMG Developer Group. “Spreadsheet Energy System Model Gener-
ator (SESMG) - Software”. GitHub (2023). url: https://github.com/
SESMG/SESMG.

[8]

Documentation SESMG Developer Group. “Spreadsheet Energy System Model Gener-
ator (SESMG) - Documentation”. ReadTheDocs (2023). url: https:

//spreadsheet-energy-system-model-generator.readthedocs.io.

[9]

Documentation Klemm, C., Budde, J., Becker, G., Tockloth, J. N., and Vennemann, P.
“Energy system model parameters - Potential-Risk and No-Regret
Options for Urban Energy System Design - A Sensitivity Analysis”.
Zenodo (2023). doi: 10.5281/zenodo.7896185.

[10]

https://github.com/SESMG/SESMG
https://github.com/SESMG/SESMG
https://spreadsheet-energy-system-model-generator.readthedocs.io
https://spreadsheet-energy-system-model-generator.readthedocs.io
https://doi.org/10.5281/zenodo.7896185
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Table 1.2: continued.

Type Publication Ref.

Project Report Klemm, C., Budde, J., Becker, G., Arendt, R., Bach, V., Finkbeiner, M.,
and Vennemann, P. “Leitfaden RessourcenPlan – Teil 2.4: Ressourcen-
management Energie. Ergebnisse des Projekts R2Q RessourcenPlan
im Quartier”. Münster University of Applied Sciences (2023). doi: 10.

25974/FHMS-15756.

[11]

Conference Budde, J., Klemm, C., Tockloth, J. N., Becker, G., and Vennemann,
P. “Automatisierte Modellierung und Optimierung urbaner En-
ergiesysteme”. 6. Regenerative Energietechnik Konferenz in Nordhausen
(February 09-10, 2023), pp. 150–159. url: https://www.hs-nordhausen.

de/fileadmin/Dateien/Forschung/2021/Tagungsband_RETCon_2023_Web.

pdf.

[12]

Peer-Review Becker, G., Klemm, C., and Vennemann, P. “Open Source District Heat-
ing Modeling Tools—A Comparative Study”. Energies, 15, 8277 (2022).
issn: 1996-1073. doi: 10.3390/en15218277.

[13]

Documentation Klemm, C., Budde, J., Becker, G., Tockloth, J. N., and Vennemann, P.
“Energy system model parameters: Model-based run- time and
memory optimization for a mixed-use multi-energy system model
with high spatial resolution”. Zenodo (2022). doi: 10.5281/zenodo.

6997547.

[14]

Peer-Review Quest, G., Arendt, R., Klemm, C., Bach, V., Budde, J., Vennemann, P., and
Finkbeiner, M. “Integrated Life Cycle Assessment (LCA) of Power
and Heat Supply for a Neighborhood: A Case Study of Herne,
Germany”. Energies, 15, 5900 (2022). issn: 1996-1073. doi: 10.3390/

en15165900.

[15]

Peer-Review Hörnschemeyer, B., Söfker-Rieniets, A., Niesten, J., Arendt, R., Kleckers, J.,
Klemm, C., Stretz, C. J., Reicher, C., Grimsehl-Schmitz, W., Wirbals, D.,
Bach, V., Finkbeiner, M., Haberkamp, J., Budde, J., Vennemann, P., Walter,
G., Flamme, S., and Uhl, M. “The ResourcePlan—An Instrument for
Resource-Efficient Development of Urban Neighborhoods”. Sustain-
ability, 14, 1522 (2022). issn: 2071-1050. doi: 10.3390/su14031522.

[16]

Conference Klemm, C. and Vennemann, P. “Modellierung und Optimierung urbaner
Energiesysteme im Projekt R2Q”. 4. Regenerative Energietechnik Kon-
ferenz in Nordhausen (February 18-19, 2021), pp. 177 –188. url: https:

/ / www . hs - nordhausen . de / fileadmin / daten / fb _ ing / inret / PDFs /

tagungsband_retcon21_web_aa3__1_.pdf.

[17]

Conference Klemm, C., Vennemann, P., and Wiese, F. “Sustainability indicators for
the assessment of urban energy systems - A practical comparison”.
Energy Modelling Platform for Europe (October 06-10, 2020). url: https:

//www.youtube.com/watch?v=qXQkUUBgc7k.

[18]

Conference Klemm, C. and Vennemann, P. “Optimization of resource efficiency in
mixed-use quarters”. Oemof User Meeting in Oldenburg (March 15-19,
2019). doi: 10.25974/fhms-11036.

[19]

*SESMG Developer Group: Besides the four main developers Christian Klemm, Gregor Becker, Janik
Budde, and Jan N. Tockloth, eight other persons (as of September 2023) have contributed to the
development of the SESMG by writing smaller parts of the documentation or code segments.

https://doi.org/10.25974/FHMS-15756
https://doi.org/10.25974/FHMS-15756
https://www.hs-nordhausen.de/fileadmin/Dateien/Forschung/2021/Tagungsband_RETCon_2023_Web.pdf
https://www.hs-nordhausen.de/fileadmin/Dateien/Forschung/2021/Tagungsband_RETCon_2023_Web.pdf
https://www.hs-nordhausen.de/fileadmin/Dateien/Forschung/2021/Tagungsband_RETCon_2023_Web.pdf
https://doi.org/10.3390/en15218277
https://doi.org/10.5281/zenodo.6997547
https://doi.org/10.5281/zenodo.6997547
https://doi.org/10.3390/en15165900
https://doi.org/10.3390/en15165900
https://doi.org/10.3390/su14031522
https://www.hs-nordhausen.de/fileadmin/daten/fb_ing/inret/PDFs/tagungsband_retcon21_web_aa3__1_.pdf
https://www.hs-nordhausen.de/fileadmin/daten/fb_ing/inret/PDFs/tagungsband_retcon21_web_aa3__1_.pdf
https://www.hs-nordhausen.de/fileadmin/daten/fb_ing/inret/PDFs/tagungsband_retcon21_web_aa3__1_.pdf
https://www.youtube.com/watch?v=qXQkUUBgc7k
https://www.youtube.com/watch?v=qXQkUUBgc7k
https://doi.org/10.25974/fhms-11036
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2 Challenges and Solutions

When modeling and optimizing urban energy systems, a number of challenges arise. Some of
them are general problems of energy system modeling, while others occur for the specific case
of urban energy systems. The challenges described in the literature [2, 7, 20–38] were reviewed
and summed up into the categories of

• Model properties and features,

• Complexity,

• Openness,

• Data,

• Uncertainties, and

• Communication.

Since many of the challenges, as well as their sub-aspects, overlap or interact, other catego-
rizations can be reasonable as well. Each challenge category, how it interacts with the other
categories, how it can be solved theoretically, and how it has been solved practically within the
scope of this work are discussed in the following sub-sections.

2.1 Model Properties and Features

Challenge Energy system models may have a multitude of scopes to which a wide variety of
model properties and features can be applied [A]. Choosing inappropriate modeling approaches
or model parameters can lead to the amplification of problems in model complexity (Sec. 2.2)
and model uncertainty (Sec. 2.5).

Only a small proportion of commonly used modeling tools come with properties required for
modeling and optimizing urban energy systems [A]. Especially if further requirements apply,
such as being available under an open-source license (Sec. 2.3), or being applicable without any
programming knowledge (Sec. 2.2.1), it becomes more difficult to find appropriate tools [A].

Traditional tools for the planning of urban energy systems are typically focused on traditional
energy systems and rather simplified energy supply scenarios. They do not match the require-
ments of optimizing modern urban energy systems (Sec. 1) so that a development of new or
further development of existing tools is required.

Theoretical Solution It is recommended to define a clear research question and to choose model
properties and features based on that, rather than the other way around [20]. The objective
evaluation of the selected properties and features during the modeling process can help to correct
inappropriate choices [20]. To keep the complexity of a model within manageable limits (Sec.
2.2), modelers often have to choose between high resolution and great horizons, both temporal
and spatial. For urban energy systems, high resolution is particularly important [C].

Tab. 2.1 lists recommendations for the selection of model properties, features, and system bound-
aries for the optimization of urban energy systems. These were developed within the scope of
literature reviews and subsequent analyses of the two background publications of this work ([A]
and partly [B], see Fig. 1.2).

Practical Application With the SESMG a model generator based on the Open Energy Mod-
elling Framework (oemof) [39] was developed, which enables the modeling and optimization of
urban energy systems. It comes with all the features needed to model and optimize urban energy
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systems. At the same time, it provides the flexibility to customize model properties, features,
and system boundaries for the purpose of modeled energy systems (Sec. 3) [D].

Besides the theoretically developed recommendations, Tab. 2.1 shows practically applied model
parameters and system boundaries in the models of publications [B, C, E]. In addition, the
following specifications were applied in the models of this work:

• Linear programming was used for dispatch and investment optimization. It was supple-
mented by the use of mixed-integer programming for investment decisions for technologies
with high capacity-independent investment costs (e.g., district heating (DH) pipes) [B, C,
E].

• Holistic optimization was considered by consulting the multi-energy system approach [37],
several energy demands (residential, commercial, and industrial), as well as a multitude of
technologies, including demand-side management measures [B, C, E]. The mobility sector,
which is a complex system in itself, was excluded from the scope of the studies.

• For multi-objective optimization, the epsilon-constraint method [36] was applied, where
the model is optimized in several runs for a primary optimization criterion with steadily
tightening restrictions of a secondary criterion. The reduction of financial costs was used
as the primary optimization criterion, with GHG emissions as the secondary criterion [B,
E].

• The reduction of energy demands is a suitable third optimization criterion [B] which can
be applied with the SESMG. However, behavioral-based demand reduction “is an oppor-
tunity, which simultaneously provides a reduction in financial costs and GHG-emissions
[...] and therefore provides” [B] a quasi-automatic improvement of the other two indica-
tors, independently from their further optimization. Therefore it was not necessary to use
this third indicator.

• For the consideration of GHG emissions, “a global view is required to fully consider the
respective effects” [B]. Therefore, clear system boundaries were defined based on the
emission scopes of the World Resource Institute [B].

• The “energy balance boundary for the conversion processes to be considered in urban
energy systems” were limited to “all conversion processes up to final energy. Further
transformations from final energy into effective energy take place within subsystems of
buildings or plants. Although these subsystems are, strictly speaking, part of the urban
energy system, they are also complex systems in their own, the interrelationships of which
lie outside the scope of research on holistic urban energy systems [40]” [B]. Energy types
were considered according to definitions provided by VDI guideline 4600 [41].

• Further aspects, such as the coupling and integration of other sector and resource models
(“model integration” [21]), were not directly included in the modeling process but were
addressed separately as part of handling the communication challenge (Sec. 2.6).
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Table 2.1: Model properties, features, and system boundaries which are recommended and used in the presented studies. Abbreviations: air source
heat pump (ASHP), combined heat and power plant (CHPP), district heating (DH), ground coupled heat pump (GCHP), greenhouse
gas (GHG), photovoltaic (PV).

Model Property,
Feature, or System
Boundary

Recommendation Model used in [B] Model used in [C] Model used in [E]

Analytical Approach bottom-up or hybrid [A] bottom-up bottom-up bottom-up

Mathematical
Approach

(mixed-integer) linear or dy-
namic programming [A]

linear programming (mixed-integer) linear pro-
gramming

(mixed-integer) linear pro-
gramming

Methodology dispatch and investment
(multi-objective) optimization
[A, B]

single-/multi-objective op-
timization (investment and
dispatch)

single-objective optimization
(investment and dispatch)

multi-objective optimization
(epsilon-constraint method)
(investment and dispatch)

Assessment Criteria financial, environmental or en-
ergy efficiency criteria [A], par-
ticularly suitable indicators are
total GHG emissions, financial
costs and final energy demands
[B]

primary energy efficiency,
share of renewables, self-
sufficiency, GHG emissions,
energy demand

financial costs financial costs, GHG emissions

Sectoral Coverage various energy (e.g., electric-
ity, heating, fossil resources,
cooling, mobility) and demand
(e.g., residential, commercial,
industrial) sectors [A]

energy sectors: electricity,
heating, fossil fuels; demand
sectors: residential, commer-
cial

energy sectors: electricity,
heating, fossil fuels; demand
sectors: residential, commer-
cial

energy sectors: electricity,
heating, fossil fuels, hydrogen;
demand sectors: residential,
commercial

Temporal Resolution min. 1 hour [A] 1 hour 1 hour 1 hour

Spatial Resolution plant to city specific [A] district specific building specific building specific

Temporal Horizon min. 1 year [A] 1 year 1 year 1 year (temporally simplified,
Sec. 2.5)
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Table 2.1: continued.

Model Property,
Feature, or System
Boundary

Recommendation Model used in [B] Model used in [C] Model used in [E]

Technical Coverage all technologies relevant for the
purpose of investigation [A]

PV system, natural gas CHPP,
biogas CHPP, natural gas
heating, sub-system electricity
exchange

central natural gas heating
plant, natural gas CHPP,
natural gas heating, GCHP,
ASHP, PV system, battery
storage, solar thermal collec-
tor, thermal storage, roof insu-
lation, wall insulation, window
insulation, DH network, sub-
system electricity exchange

central natural gas heating
plant, natural gas CHPP,
natural gas heating, electric
heating, GCHP, ASHP, PV
system, battery storage, so-
lar thermal collector, thermal
storage, roof insulation, wall
insulation, window insulation,
DH network, electrolysis, hy-
drogen CHPP, methanation,
natural gas storage, hydrogen
storage, sub-system electricity
exchange

Geographical Coverage local or regional geographical
coverage [A], as narrow as pos-
sible [B].

500 buildings 9 buildings 20 buildings

Demand-Side
Management

can optionally be considered
[A]

– insulation insulation, bevioral demand
reduction

Change of Properties can optionally be considered
[A]

– – energy prices, GHG emissions,
energy demands

Energetic Boundaries all conversion processes up to
final energy [B].

all conversion processes up to
final energy

all conversion processes up to
final energy

all conversion processes up to
final energy

Balance Boundaries life-cycle accounting for ap-
plied target values (e.g., costs
and emissions), considering
Scope 1 to 3 emissions [B].

life-cylcle consideration life-cycle consideration life-cycle consideration
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2.2 Complexity

Rapidly increasing complexity and entanglement of energy system results in likewise increasing
complexity of energy system models, which is one of the most frequently mentioned challenges
of energy system modeling (see e.g., [2, 20–28]).

This challenge especially applies for models for the optimization of modern urban energy sys-
tems, as they include a particularly large number of interacting (renewable) technologies, energy
sectors, and consumption sectors [28]. Increasing complexity in turn results in increasing effort
(1) to create respective models or apply modeling tools, and (2) to meet increasing computing
requirements caused by increased mathematical complexity [A]. The complexity of models thus
represents a clear limitation on the applicable model size and model detail [2].

Both complexity challenges can be reduced by selecting the model properties and features during
model conceptualization in such a way that the model is as “simple as possible and as complex
as necessary” [20]. For this purpose, it is recommended to build up a model gradually, start
with a simple model and add spatial, temporal, and sectoral detail as required [20].

2.2.1 Applicability

Challenge The high level of system complexity requires a high degree of prior knowledge about
the structure of energy systems on the one hand, and great effort during the definition of the
model as well as during processing and interpretation the results, on the other hand [17]. High
system complexity requires high technical, spatial and temporal resolution of models (Sec. 2.1).
This in turn leads to high data requirements (Sec. 2.4) but also the necessity to enter the different
system structures into the model in a complex way [A].

In many cases, the requirements of programming skills for the application of modeling tools are
a further entry threshold [A]. The training time for modeling tools is typically a few weeks up
to several months [29]. Even for simpler models, the results are often difficult for non-experts
to understand, making it difficult to communicate (Sec. 2.6) insights transparently [22].

Theoretical Solution Intuitively applicable tools are required to lower entry thresholds. For
example, graphical user interfaces (GUIs) and spreadsheet or geographical information sys-
tem (GIS) based data inputs [A], which require as little as possible prior knowledge on energy
systems, are valuable in this context. By documenting all functions in detail and demonstrating
them using real-world examples, the training time for modelers can be further reduced [42].
Communication and understanding of model results can be eased, if they are processed auto-
matically in a descriptive form (Sec. 2.6).

Practical Application The developed SESMG comes with a low entry threshold. “Compared
to other tools for the modeling and optimization of urban energy systems [...] the SESMG
provides several advantages regarding user-friendliness due to [...]

• Applicability without any programming knowledge through a browser-based graphical user
interface (GUI),

• Automatically conceptualizing individual urban energy systems of any size,

• Automatic result processing and visualization of complex relationships in form of system
graphs, Pareto fronts, energy amount diagrams, and more, [...]

• A broad set of standard (but still customizable) technical and economic modeling param-
eters including description and references” [D], as well as

• “Detailed documentation, including step-by-step instructions, explanations of all modeling
methods and troubleshooting with known application errors” [D].



10 2 Challenges and Solutions

However, the SESMG is still an expert tool, which requires “certain basic knowledge of energy
systems and energy engineering” [D]. The target groups are “(urban) energy system planners
and researchers in the field of energy engineering” [D].

2.2.2 Computing Effort

Challenge Modern urban energy systems include (decentralized) renewable energies with hardly
predictable and volatile production, energy storage systems, and sector coupling [C]. In order
to model these accurately, particularly high temporal, technical and spatial resolutions are re-
quired (Sec. 2.1) [C]. High model resolution causes high mathematical complexity, leading “to
a rapid increase of required computing resources” [C] (run-time and RAM requirements) for en-
ergy system models. The run-time “increases quadratically with increasing model complexity”
[C]. The use of binary variables in the context of mixed-integer programming has a particularly
large influence. The RAM requirements “increases linearly with increasing model complexity”
[C]. In order to limit the model complexity to a handable extend, “modelers must compromise
between the computational effort on the one hand and the accuracy of the results on the other
hand by creating simplified models [43]” [C] (Sec. 2.5).

Theoretical Solution Computing requirements can be reduced “by solver-based or by model-
based methods [24]. Solver-based approaches deal with the mathematical optimization of the
solving algorithm” [C], while model-based approaches deal with the simplification of the real-
world representation of the model [C]. Solver-based optimization approaches are usually not
within the expertise of energy system modelers [C]; therefore, the focus is often on using solvers
optimized for respective models. Commercial solvers (e.g., gurobi [44]) often allow a significant
reduction of the required computing resources compared to open solvers (e.g., COIN-OR Branch-
and-Cut (CBC) [45]), but come with limitations in openness (Sec. 2.3).

Model-based approaches are more in the expertise of energy system modelers, with which mod-
elers “make use of their deep understanding of the structure of energy systems” [C] to reduce
the systems’ complexity to be solved by the solver. Model-based methods can be divided into
temporal model adaptions which aim to reduce the number of modeled time-steps [C], and into
techno-spatial methods, which aim to reduce “the number of possible combinations of investment
decisions” [C].

However, model-based adaptions may cause uncertainties (Sec. 2.5), for example, based on tem-
poral concurrency and continuity problems [30], incorrect balancing based on spatial clustering,
or miscalculation due to technical linearization [C]. Furthermore, some methods require deeper
knowledge of the system (Sec. 2.2.1). To achieve the best possible balance between reducing
model complexity and losses in model accuracy or resolution, it is recommended to apply model
simplifications in a structured manner [C].

Practical Application For the first modeling application, a model with low spatial resolution,
with a small number of linear investment decisions, and containing no binary investment deci-
sions was applied. For further models, the complexity was increased gradually (Tab. 2.2). This
procedure ensured that the complexity of the models was manageable at any time with the
available computing resources.

The significantly increased model complexity was successfully managed by implementing a five
step procedure for model-based simplification. The procedure enables a significant reduction
of computing requirements for high spatial-resolution multi-energy system models [C]. The
suggested steps are sequential. Only as many steps as absolutely necessary should be applied to
avoid model uncertainties [C]:
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Table 2.2: Comparison of applied model complexity.

Model
used in

Spatial
Resolution

Linear
Investment
Decisions

Binary
Investment
Decisions

[B] district sharp 4 0

[C] building sharp 79 20

[E] building sharp 373 47

increasing
complexity

model
development

1. Keeping the model as simple as possible: All system components that are not
relevant to “the purpose of the study should be removed from the model. This applies in
particular to (binary) investment decisions” [C].

2. Pre-modeling: “With the help of a time-simplified model (slicing/averaging of every
10th week is recommended), preliminary results can be obtained and incorporated into
the main-model” [C]:

a) Technological pre-selection: “Technologies not considered within [...] pre-modeling
should be removed from the main-model” [C].

b) Technological boundaries: “Investment limits can be reasonably limited based on
the pre-model results” [C]. Technological boundaries of 500 % of the pre-model result
investment values are recommended. “If the investment limits are fully used in the
main-model, the technological boundaries should be enlarged” [C].

3. Spatial sub-modeling: “The model can be decomposed and the results subsequently
aggregated. The boundaries of sub-models should be strategically aligned, for example
at network nodes. Especially for models without interaction between sub-systems (i.e.,
without local energy markets or bi-directional heat networks), only small model deviations
are to be expected” [C].

4. Temporal simplification: Temporal slicing is recommended, “using days as sample
periods. The degree of slicing should be as low as necessary, with a maximum of every
fifth day” [C].

5. Further simplifications: “If further model simplifications are necessary, [...] spatial
clustering of sub-systems” is recommended. “The clusters should be kept as small as
possible” [C].

For a reference case model, this procedure enabled a reduced run-time “by more than −99 %
and the memory usage by up to −88 %” [C]. At the same time, however, uncertainties occurred.
Sector coupling technologies, heat pumps, and battery storages were “undersized with decreasing
number of modeled time steps”, and central heat supply tended to be oversized with a decreasing
number of modeled time steps [C].

The SESMG comes with functions to implement all five steps of this procedure. While the first
step is covered by the automatic conceptualization of urban energy system models, the further
steps can be selected and adjusted in their level of intensity. Beyond that, other model-based
simplification methods can be applied with the SESMG, which may be better suited for other
types of energy system models [D, 9]. Finally, the SESMG is applicable with both open or
commercial solvers.
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2.3 Openness

Challenge Models and modeling tools can be divided into the categories “open” and “closed”,
depending on the “public accessibility of their source code, their underlying assumptions, and
the data they use [26]” [A]. While open models and modeling tools are partially or fully publicly
accessible, closed models are “subject to fees, or even completely confidential [26]” [A].

Whether models and modeling tools are open or closed is defined by the selected license. Open-
source licenses guarantee partial or complete public access to the source code, assumptions and
data used via the copyright. In addition, the copyleft can prescribe that changes and further
developments must also be made available openly [46]. Different license types are sometimes
incompatible with each other based on their copyright and copyleft terms. This can uninten-
tionally prevent the further development or linking of modeling approaches [32].

The majority of models and modeling tools are closed, which “generally hinders progress in
energy system modeling” [A]. However, there are four major reasons why energy system models
should be open [A, 31]:

• “The fundamental scientific principles of transparency, peer review, reproducibility and
traceability can only be guaranteed if data, methodology and results are openly accessible
[31, 33].

• Policymakers often have to fall back on models that are not quality-assured with academic
practice or that provide incorrect results. With increasing transparency in energy system
research, policymakers will gain access to more high-quality information [31].

• Research funding and researchers’ time are limited resources. A great deal of time and
money can be saved by avoiding duplication of work [31].

• The transparency of arguments based on scientific justifications are necessary in social and
political debates [47]. Furthermore, the full results of publicly funded research should be
available to the public” [A].

However, there are also a number of reasons why models often remain closed which have to be
overcome to enable open accessibility of models, their assumptions and results:

1. “The hesitation among individuals or institutions may [...] be a cause for failing to open
models and their results” [A].

2. There are not enough resources (working time or financial) available. Writing legible
and reusable code “as well as comprehensible documentation and bug reports is time-
consuming” [A]. In addition, open-access publication often requires the payment of an
article processing charge (APC).

3. Releasing code carries the risk “that other researchers could expose flawed code sections
or erroneous data and thus discredit the results” [A] and the authors.

4. Models “may contain sensitive commercial data or personal information, which is not
permitted for public disclosure” [A].

5. Licenses of used models and modeling tools may be incompatible with open publication
[32, 46].

Theoretical Solution It is recommended to define transparency as a goal of any modeling
project to ensure that the need for open research and modeling is met [20]. In particular, the
above-mentioned reasons, favoring closed models and their results, should be faced at an early
stage. Taking necessary steps from the beginning, such as documenting the model code, can
significantly reduce the overall effort. The use of an open-source guide such as presented by
Becker [46] may help to realize open modeling in a structured manner.
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Practical Application The individual partial hurdles of open modeling were handled in the
following way:

1. The commitment to open-source development and open-access publication was defined as
a goal in the exposé of this work and was followed in all steps.

2. Additional time and effort for open publication was scheduled from the beginning. APCs
for publications were financed by the German Federal Minsistry of Education and Research
(BMBF) and Münster University of Applied Sciences’ Institute of Energy and Process
Engineering (IEP).

3. The software was created according to current software open-source development standards
[46] and underwent a peer-review process [D] to ensure quality.

4. Within the developed data standard only open data was used (Sec. 2.4).

5. Only modeling approaches and programming libraries were used, which allow open distri-
bution. For the publication of the modeling approaches, licenses were selected (Tab. 2.3)
that exclude any incompatibilities with used programming libraries [D, 8, 46].

Applied input data, modeling methods and results are openly published, as shown in Tab. 2.3.

Table 2.3: Overview of accessibility of applied model code, input data and assumptions. Abbre-
viations: application programming interface (API), Creative Commons Attribution
4.0 (CC-BY 4.0), GNU General Public License Version 3 (GPLv3).

Modeling Element Reference License

Modeling Tool (SESMG) - Code [8] GPLv3

Modeling Tool (SESMG) - API Documentation [8, 9] GPLv3

Modeling Tool (SESMG) - User Documentation [9] GPLv3

Models - Structure, Parameters, and Assumptions [B, 10, 14] CC-BY 4.0

Models - Model Input Data [48–50] CC-BY 4.0

Insights - Peer-Review Publications [A, B, C, D, E] CC-BY 4.0*

*Publication [E] has not been published yet. However, it is submitted to a peer-review
journal, and as of now it will be published under a CC-BY 4.0 license.

2.4 Data

Challenge High temporal and spatial resolutions of urban energy system models (Sec. 2.1)
require data at correspondingly high resolution [A]. This applies to the data for the area to
be analyzed (e.g., building data, technology stock, energy consumption), technical parameters
(efficiencies and other plant-specific operating parameters), price structures (e.g., investment
and operating costs, fuel costs, sales prices, fees), GHG emissions (direct and indirect), and
other influences (e.g., weather data). The acquisition of appropriate data is associated with
considerable effort for the reasons of insufficient availability and data quality.

Data may not be publicly available because of a lack of openness (Sec. 2.3) [21], data protection
hurdles, or that data has not yet been collected. For high spatial resolution systems, privacy
issues are much more likely to arise than at coarse resolutions, as personal information can be
drawn from them.



14 2 Challenges and Solutions

Available data may have insufficient or inconsistent quality. Often, data has too low spatial
resolution (e.g., energy consumption), is subject to uncertainties, or was collected with diver-
gent (e.g., accruing GHG emissions) or flattering methods (e.g., measurement obtained under
laboratory conditions). Changes in data may occure based on behavior and social factors (e.g.,
individual consumption profiles) [22], future changes (e.g., weather data) [37], or geo-political
issues (e.g., wars or material shortages) [E].

A significant amount of time spent on modeling projects is needed for data collection. If this
process can be simplified, especially through widespread open availability of data, the time spent
could be used for other important tasks, [22], such as meeting model disclosure requirements
(see section 2.3).

Theoretical Solution Defining data standards to be implemented by regional and local gov-
ernments would ensure the availability of data of high and consistent quality and resolution.
If data is openly available under uniform data interfaces, it can be fetched by modelers in an
automated manner. However, publicly available data and its standards are usually not in the
hands of modelers, so they must take steps to obtain required data.

The development and application of quality assurance procedures can help to ensure that input
data is of sufficient quality [20]. Homogenizing data, for example by clarifying which system
boundaries are to be applied when considering life-cycle emissions [B], helps to objectively
compare different technologies.

Statistical or stochastic estimation procedures may be applied to substitute missing real-world
data. These include, for example, the annual energy demand of individual buildings and its
distribution over time at hourly resolution [10, 14]. Respective models will lead to parametric
uncertainties (Sec. 2.5) [E]. However, these limitation are necessary in order to guarantee the
basic operability of models for systems with limited availability of data [10, 14].

Data that cannot be accurately predicted is subject to aleatory uncertainty. It is recommended
to at least select this data on a transparent basis or ideally evaluate it through an uncertainty
assessment (Sec. 2.5) [E].

Practical Application The data collection process for the applied modeling projects [B, C, E]
and the developed modeling tool [D] was guided by the following data standards:

• Sources: Emphasis was placed on using data sources that are themselves quality-checked.
These include official data, peer-reviewed literature, recognized databases, and technical
standards that describe data collection methods. As far as possible, multiple data sources
were used to validate the values with each other.

• Uniformity: Particular emphasis was placed on the consistency of data with respect to
uniform data definitions and collection methods. For example, it was ensured that the
complete life-cycle was considered, including production, operation and disposal, when
collecting GHG emissions caused by technologies.

• Assumptions: Statistical and stochastic substitution methods were used for data that
was not available (e.g., estimation of annual energy demands based on building data and
temporal distribution with standard load profiles [51, 52] or stochastic methods [53]).
Whenever no statistical values were available, they were estimated on a reasoned basis
(for example, averaging from neighboring buildings). Future data was substituted by
choosing historical reference values (for example, particularly comparable weather data
sets were chosen).

• Uncertainties: All uncertainties known from estimation procedures or uncertain data
sources were described and communicated transparently. Parameters that are likely to
change in the future due to external system changes and that have a particularly large
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influence on system optimization were investigated and discussed in detail through a series
of sensitivity analyses [E].

All collected input data was made openly available (Sec. 2.3, Tab. 2.3) to simplify the collection
process for future modeling projects.

2.5 Uncertainties

Challenge Uncertainties arise based on the above described challenges of selecting appropriate
model properties and features (Sec. 2.1), reducing modeling complexity (Sec. 2.2), and collecting
high quality data (Sec. 2.4).

Applying incorrect model properties, such as too coarse spatial or temporal resolution, can lead
to structural model uncertainties. Simplifying a model, especially to reduce the computing
effort, introduces the risk of uncertainty (Sec. 2.2). Last, inaccurate or uncertain data can cause
parametric uncertainties.

Model uncertainties can be categorized into aleatory and epistemic uncertainties [E, 54]. While
epistemic uncertainties are caused by insufficiently defined data or model structure, aleatory
uncertainties have their origin in real-world uncertainty itself, for example by uncertain future
behavior. For further clarification of epistemic and aleatory uncertainties, the theoretical solu-
tion approaches have to be carefully described [54]:

Theoretical Solution “Epistemic uncertainties can be avoided by improving the model quality
through the use of additional data (parametric uncertainties) or by refining the model (struc-
tural uncertainties) [20]. Improving the model quality is the only way of quantifying epistemic
uncertainties [22]. Aleatory uncertainties cannot be reduced by improved model quality [54],
yet they can be quantified by deterministic or stochastic approaches [20]” [E]. When determin-
istic approaches are applied, model parameters are varied. Such approaches include methods
of (global) sensitivity analysis, near optimal solution approaches, and scenario analysis [20].
With stochastic approaches, uncertainties are incorporated directly into the model, including
approaches of stochastic optimization [20], robust optimization, and monte carlo analysis [34].

Presenting information on uncertainties transparently with any results is an essential part of the
principles of open research (Sec. 2.3) [31] and the communication of insights (Sec. 2.6) [20].

Practical Application Structural epistemic uncertainties were reduced to an unavoidable min-
imum by selecting appropriate model properties (Sec. 2.1) and model structures [10, 14]. To
reduce the necessary computational resources, model simplifications had to be made, which led
to uncertainties, especially in the context of sizing energy storages and sector coupling technolo-
gies [C]. These uncertainties were quantified by a detailed investigation [C].

Parametric epistemic uncertainties were reduced to a minimum by assuring data quality stan-
dards during data collection (Sec. 2.4). However, assumptions had to be made to cover partly
poor data availability (Sec. 2.4), which are associated with parametric epistemic uncertainties
(Sec. 2.4).

Aleatory uncertainties were investigated through a series of deterministic sensitivity analyses
[E]. The focus was on the impact of hardly predictable system changes due to varying energy
prices, GHG emission structures, and energy consumption on the model results. The results of
these sensitivity analyses were discussed and disclosed in detail.

All known epistemic and aleatory uncertainties are transparently communicated with the re-
spective publications and associated data documentation [B, C, E, 10, 14]. In addition, all
assumptions (data and structures) are openly communicated (Sec. 2.3), so that previously un-
known uncertainties can be uncovered at any time.
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2.6 Communication

Challenge: Insufficient communication can lead to a number of model-related problems, even
though communication is not a direct part of the actual modeling process. Tab. 2.4 lists commu-
nication issues that need to be avoided by modelers during model design and application. The
interaction with other modelers, interdisciplinary researchers, urban planners, policymakers, and
the public are important to be addressed at all stages of model development and application.
Tab. 2.4 also lists the solutions realized within the applications of this work.

Theoretical Solution It is recommended to strive for open and transparent communication
with all stakeholders before, during, and after the actual modeling.

Transparent communication of methods and insights consists of several “layers” [20]. The “outer
layer” includes general information which is appropriate for a public audience [20]. This layer
presents key results in simple language [20]. It includes clear policy recommendations, for
example by drawing a clear picture of how an ideal urban energy system could look like [21]. More
detail may be incorporated to the “inner layer” [20]. This layer also addresses and eliminates
possible misunderstandings, such as inconsistently defined wording [A, 35]. All layers should be
characterized by openness and transparency (Sec. 2.3) and unconditionally disclose all relevant
uncertainties (Sec. 2.5) and assumptions (Sec. 2.4).

Stakeholders have different interests with respect to the modeling results [A, 55]. Therefore,
discussions and feedback with stakeholders during the modeling process is important. However,
transparent communication includes disclosing which stakeholders had influence on assumptions
and modeling.

Practical Application Communication in a scientific context was a secondary aspect in all the
papers of this work [A, B, C, D, E]. Further publications (Tab. 1.2), as well as presentations
for the general public, policymakers, engineers and urban planners, interdisciplinary researchers,
and modelers covering both inner and outer layers of communication were accompanying actions
during the preparation of the presented work. Possible communication problems where handled
as shown in Tab. 2.4.
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Table 2.4: Problems of lacking communication with various stakeholder groups and how they
have been met. Abbreviations: life-cycle assessment (LCA), Open Energy Modelling
Framework (oemof), Open Energy Modelling Initiative (openmod), Resource Plan-
ning for Urban Districts (R2Q), Resource-efficient Urban Districts (RES:Z), Spread-
sheet Energy System Model Generator (SESMG).

Stakeholder Group Problem Practical Application

Modelers Insufficienct communication of model-
ing projects can lead to parallel devel-
opments and lack of bundling compe-
tencies with other modelers [56].

Suitable communities have been iden-
tified for exchange (oemof user com-
munity and openmod); modeling
project and tool development was an-
nounced in an early stage [19].

Insufficienctly communicated assump-
tions and uncertainties (Sec. 2.5), as
well as unclear or even contradictory
definitions of terms or methods [A,
35] can lead to misinterpretation and
follow-up errors.

All assumptions (Sec. 2.4) and uncer-
tainties (Sec. 2.5) were communicated
transparently. Modeling terms and
goals were clearly defined and poten-
tial contradictions clearly named [A,
B].

Interdisciplinary
Researchers

Failure to match energy system mod-
eling results with planning objectives
for other urban resources (e.g., water,
space, building materials [16]) and un-
addressed environmental impacts (e.g.,
through an LCA [15]) can lead to
planning conflicts and unused syner-
gies [21].

Regular interdisciplinary exchange was
attended within the R2Q [57] project
and RES:Z [58] network. Integra-
tion of the energy system modeling
results (model integration) via soft-
coupling was carried out. Interdisci-
plinary studies were carried out us-
ing coupled models, addressing inter-
actions with other resources and sus-
tainability aspects were co-authored
and published [15, 16, 59].

Engineers and
Urban Planners

If modeling tools are not presented in
a way that they can be used by engi-
neers and urban planners, a transfer of
practice will be hindered and the ac-
tual impact on the transformation of
energy systems is limited [20].

The SESMG and further developed
methods are openly available. The
methods were presented to numerous
planners and energy utilities at various
events and integrated into the teaching
activities at Münster University of Ap-
plied Sciences and Europa-Universität
Flensburg.

Policymakers If policy-relevant questions are not
coordinated with decision-makers at
early project stages or incorporated to
the model, gaps between theoretical
analysis and real-world policy debates
and conclusions [20] may arise.

In the context of the R2Q project [57],
there was regular exchange with vari-
ous stakeholders and political decision-
makers, which had a significant im-
pact on the orientation of the modeling
methodology.

Public Failure to adequately prepare methods
and findings for a non-specialist audi-
ence may cause that the results are not
accessible to the general public, even
though they often pay for the model-
ing (Sec. 2.3) [31].

The SESMG includes a browser-based
“demo tool” which can be used for
low-threshold training and information
events (Sec. 3). It has been used in
various public events to introduce en-
ergy system modeling of urban energy
systems to non-specialist audiences.
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3 Modeling Tool

In the energy system modeling landscape, a distinction is made between “models”, “model gen-
erators”, and “modeling frameworks” [A]. Models are simplified representations of real world
energy systems [A, 60], “model generators are tools that can create models with certain prede-
fined analytical and mathematical properties [26]”, and “modeling frameworks are structured
toolboxes that include several model generators and specific sub-models [26]” [A]. While the
use of modeling frameworks and especially model generators makes creating models much easier
and requires less knowledge than creating them from scratch, they also have limitations in terms
of their flexibility and adaptability [A].

The SESMG is a model generator based on the modeling framework oemof. The modeling
process shown in Fig. 3.1 enables the efficient modeling of (urban) energy systems with a low
entry threshold and applicability without programming knowledge. At the same time, the typical
inflexibility of model generators (e.g., fixed temporal and spatial resolution, optimization criteria,
or model structure) has been counteracted by the ability to adapt the modeling process and to
access intermediate results.

The modeling and optimization of energy systems using the SESMG consists of several process
steps and sub-process steps. Note that some process steps include several smaller (sub-)steps,
that are not shown for the sake of clarity.

Based on several user decisions, the modeling workflow may follow different pathways. These
decisions (blue circles in Fig. 3.1) are made at the beginning of the process via the browser-based
GUI.

During the modeling process, intermediate results and data are saved at several points. Mostly
xlsx and csv spreadsheet formats are used, in some cases log files and visually prepared results
(png and jpg). These commonly used file formats allow an intuitive handling and therefore do
not require any special (programming) knowledge for further processing the data. Furthermore,
these are open formats, which can be processed with various programs (e.g., LibreOffice, Excel,
Numbers). All intermediate results and data (Fig. 3.1) can be manually customized by the user
for the purpose of adapting standardized model structures.

Depending on the scope the SESMG is applied for, there are up to three entry points, which
require manual input from the user:

With the “urban district upscaling tool” ( 1 in Fig. 3.1), the user must provide locally specific
parameters for the investigated system through the “upscaling sheet”. This includes the defini-
tion of spatial boundaries, energy demands and their spatial distribution, and the availability
of energy and spatial potentials (e.g., geothermal potentials, space availability for PV and solar
thermal systems). Depending on the availability, data of different quality can be used. For
example, if exact energy demands and their load profiles of individual buildings are known, they
can be entered. If these are not available, building data (e.g., building area, year of construction,
type of use) can be entered as an alternative, which will then be the basis for an estimation of
the energy demands. Standardized model parameters that can be transferred between energy
systems are stored in the “standard parameters” file. These include technological (e.g., efficien-
cies), economic (e.g., periodic and variable costs), and environmental (e.g., direct and indirect
emissions) parameters. The SESMG comes with a complete set of such standard parameters,
which can be adapted to meet specific conditions. Based on the given values, the model structure
of an default urban energy system [10, 14] is automatically created and a “model definition”
(see below) is generated. This model definition can be adjusted if the model has to consider
specific aspects that are not included in the default urban district upscaling tool.
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The steps up to this point may be skipped when using the second entry point 2 . In that case,
the model definition is completely created by the user. This enables the modeling of energy
systems with structures different from default urban energy systems. However, this approach
requires more effort in model design and a deeper knowledge of the structure of energy systems.

The “demo tool” is the last possible entry point 3 . In contrast to the applications described
so far, the purpose of this demo tool is the demonstration and communication (Sec. 2.6) of the
methodology and capabilities of the SESMG. The user can select energy supply technologies
for a given urban energy system and observe their impact on the overall system. All decisions
described below are predefined in the demo tool.

The model definition contains a parametrization of all components of the energy system and how
they are connected to each other. According to the structure of oemof, this includes the defini-
tion of the optimization objective, a time system (start date, end date and temporal resolution
of the model) and components of buses, sinks, sources, transformers and storages. Furthermore,
custom components may be created, for example for the modeling of heat networks or building
insulation. For each component, all relevant technical, economical and environmental param-
eters are defined. In addition to existing components, possible investment decisions for new
components can be defined, which will be taken into account during the subsequent investment
optimization process (Sec. 2.1). Time series of weather data and components (e.g., energy con-
sumption or energy input) are either stored in the model definition, or calculated during later
steps of the modeling process.

Based on the model definition, various methods for temporal and techno-spatial model simpli-
fication can be applied (Sec. 2.2.2). These methods are used to adapt time series for temporal
simplifications, and model structure or parameters for techno-spatial simplifications. The re-
spective adaptations are stored in an “updated model definition”.

On the basis of the model definition, or the updated model definition, the energy system model
is created. This step consists of several sub-steps. The first step obtains data that is not
directly stored in the model definition. These include, for example, the (optional) automated
retrieval of weather data using the Python library open-FRED [61], the calculation of energy
supply or demand time series based on various oemof sub-packages (e.g., feedinlib [62]), the
stochastic distribution of electrical load profiles using the Python library richardsonpy [53], or
the calculation of grid connection points for a heating network. Based on the given inputs, an
oemof energy system model is created that is subsequently transformed into an mathematical
model using the Python library Pyomo [63].

The mathematical model is solved by an external solver. Either the open-source solver CBC or
the commercial gurobi solver can be used. Afterwards, the solver results are further converted
and processed. The processed results include both system-wide values (e.g., cumulative system
costs and GHG emissions) as well as results for each system component. These include optimized
system capacities for components with investment decisions, incurred variable and periodical
costs and GHG-emissions, energy inputs and outputs, and more. In addition, for each input,
output, and status (e.g., storage content) time series are provided for each component.

If the user has specified to use pre-modeling to reduce computing resources (Sec. 2.2.2) or the
epsilon-constraint method (Sec. 2.1) for multi-objective optimization, iteration loops are started
by adapting the model definition based on the results of the first model run.

The inner iteration loop implements the optional pre-modeling. In the first run, a highly tem-
poral simplified model is optimized, on the basis of which techno-spatial simplifications can
be adopted for a second model run with higher temporal resolution [C]. A maximum of one
iteration is performed for pre-modeling.

The outer iteration loop is used to perform the epsilon-constraint method. Here, a user-defined
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number of model runs with different weights of the optimization criteria are carried out (Sec.
2.1). An optimized energy supply scenario as described above is returned for every model run.
The results of the individual model runs are subsequently combined to comprehensive results.

After completing all scheduled model runs, the results are visualized. Among others, a Pareto
front, energy amount diagrams, system graphs, and time series plots are automatically generated.
Alternatively, the user can manually access all (partial) results and process them in any form.

To further visualize the user experience, screenshots of the SESMG’s interfaces (spreadsheets,
decisions via GUI, results) are shown in Appendix F. A detailed description of all inputs, decision
options, results as well as a detailed troubleshooting (description of known errors and how to
fix them) is available in the documentation of the SESMG [9].
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Figure 3.1: Modeling workflow of the SESMG. Decisions shown as circles are made via the
GUI. Data represented as trapezoids can be accessed. Partly adapted from [9, 64].
Abbreviations: upd. = updated, math. = mathematical.
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4 Case Study

The SESMG was applied in a case study to optimize a sustainable real-world urban energy
system. The system is “considered sustainable if its negative impact on the society, environment,
and economy is within the scope of the respective capacities [65]” [B]. Therefore a multi-objective
optimization was applied to minimize both GHG emissions and financial costs. Compliance
with legal regulations and technical security of energy supply were considered as unconditional
requirements.

Several sensitivity analyses were then performed to determine which technologies and measures
recommended for optimization are particularly robust or sensitive to changing system conditions.
Based on these results, conclusions could be drawn about differentiating no-regret planning
options from those with potential risk to future viability.

The system under study is a typical urban energy system and is highly transferable. It “consists
of several sub-systems, i.e. buildings of various usage types (residential, commercial, sports fa-
cilities, garages), different types of residential buildings with differing population densities, roof
orientations, and geothermal potentials” [E]. The results “are particularly applicable to urban
energy systems in European Union (EU) member states, especially for western and central Eu-
rope, based on the characteristics of market structures, transition goals [66], climate conditions,
consumption structures, and energetic potentials [67–69]” [E].

4.1 Multi-Objective Optimization

The optimization criteria were weighted differently for several scenarios by applying the epsilon-
constraint optimization method (Sec. 2.1). The Pareto front in Fig. 4.1 shows that there is a
clear conflict between minimizing financial costs and GHG emissions in the reference case. While
the purely financially-optimized scenario causes comparatively high GHG emissions (+1 340 %
as compared to the emission-optimized reference case), the emission-optimized scenario is way
more expensive (+160 % as compared to the financially-optimized reference case). Starting
from the financially-optimized system (uppermost point in Fig. 4.1), and moving towards the
emission-optimized system along the Pareto front, the system change can be roughly divided
into three phases. The phases differ in the magnitude (< 100 e/t, ≥ 100 e/t, and ≥ 500 e/t)
of the costs incurred to reduce GHG emissions (negative slope of the Pareto front). In the
following, they will be referred to as phases of low, medium, and high GHG reduction costs
(Fig. 4.1). For the reference case, the low GHG reduction cost phase includes the change from
the financially-optimized scenario to P4 (4–19 e/t), the medium GHG reduction cost phase
includes the change from P4 to P8 (160–274 e/t), and the high GHG reduction cost phase
includes the change from P8 to the emission-optimized scenario (812–2 424 e/t).

Scenarios to the left and below the Pareto front are not technically feasible [B]. Scenarios to
the right or above the curve are technically possible, but mean a violation of the optimization
goals. In related studies, the status quo, i.e. the non-optimized traditional energy system, was
located to the upper right of the financial optimum, which means that it is more expensive and
causes more emissions than the purely financially-optimized scenario [11, 12].

The optimized energy supply mixes are shown in Fig. 4.2 for each of the scenarios presented in
Fig. 4.1 with the financially-optimized scenario on the left of Fig. 4.2, the emission optimized
scenario on the right side, and the differently weighted scenarios P1 to P9 in between.

Assuming energy prices (electricity, natural gas and hydrogen) as they were before the 2022 en-
ergy crisis in Europe, “within the financially-optimized scenario, the heat supply is primarily
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Figure 4.1: Pareto front and distinctive sections of an optimized reference urban energy system,
considering financial costs and GHG emissions as optimization criteria. Adapted
from [E] and [B]. Abbreviation: greenhouse gas (GHG).

based on (centralized) natural gas technologies, and the electricity is supplied by a heat-driven
natural gas CHPP and PV systems. The net internal electricity production exceeds the electric-
ity demand; therefore, large shares are exported. However, electricity still needs to be imported
in small quantities at times when the internal production is insufficient” [E]. With increasing
relevance of the GHG minimization criterion, the heating demand is steadily “reduced due to
building insulation, and electricity demand increases due to electrification of the heat supply”
[E]. The phases of low (financially-optimized scenario to P4) to medium (P4 to P8) GHG re-
duction costs are characterized by a progressively decentralized heat supply and increasing use
of heat pumps.

In the phase of medium GHG reduction costs, internal electricity production due to reduced
natural gas CHPP usage is not sufficient to cover the increased electricity demand from heat
pumps. Therefore, the total costs increase due to (expensive) electricity imports [E]. The heat
production of heat pumps is adjusted to the load profiles of PV systems and “thermal storages are
utilized more frequently [...] to match heat supply with consumption” [E]. Increased financial
costs in the phase of high GHG reduction costs (P8 to emission-optimized scenario) are
mainly caused by high investment costs of hydrogen technologies and battery storages.

Finally, “in the emission-optimized scenario, the remaining heating demand of maximum
possible insulated buildings is provided by ASHPs, GCHPs and solar thermal systems” [E].
Decentralized ASHPs are preferred over centralized ones for this scenario, since the heat source
is available both centrally and decentrally, and the DH pipes must be newly installed. This
avoids heat losses and life-cycle emissions for the construction of DH pipes [E]. “PV systems
and hydrogen CHPP are used for electricity supply and battery storages for load shifting. The
PV potential is not fully utilized in any of the scenarios, especially with respect to PV modules
deviating more than 65° from the south axis. Solar thermal systems were only considered in the
emission-optimized scenario on surfaces without PV potential” [E].
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Figure 4.2: Heat (top) and electricity (bottom) supply in the optimized reference case scenario
in dependency of weighting the two optimization criteria (financial costs and GHG
emissions). The shown values represent aggregated energy amounts supplied in each
scenario. Technologies that were not designed during optimization are not shown.
Adapted from [E]. Abbreviations: air source heat pump (ASHP), combined heat and
power plant (CHPP), ground coupled heat pump (GCHP), greenhouse gas (GHG),
photovoltaic (PV).



4 Case Study 25

4.2 Sensitivity Analysis

A set of sensitivity analyses were applied to analyze the impact of changing conditions with
regard to GHG emissions (total GHG emissions, GHG emissions of imported electricity and
hydrogen), energy prices (natural gas, electricity, hydrogen, and a combination of all), and
effective energy demands (electricity, demand, heating demand, and population density) [E].
The variations of these parameters were each applied to the financially-optimized scenario and
the GHG emissions-optimized scenario of the multi-objective optimization [E].

Both steady and sudden changes in boundary conditions can have a significant impact on the op-
timization of urban energy systems. For example, the sharp increase of energy prices during the
2022 energy crisis in Europe (particularly natural gas) had significant impact on the optimized
design of urban energy systems. While pre-crisis values were assumed for the financial analysis
in Sec. 4.1, the sensitivity analyses of changing energy prices showed that the viability of natural
gas technologies significantly decreased with a respective price increase. In fact, the analyzed
reference systems financially-optimized scenarios approached the GHG-optimized scenario with
rising energy prices.

To ensure that optimized energy systems will be viable in the future, even under changing bound-
ary conditions, it is recommended that they are suitable for both financial and emissions-based
optimization, and that they are robust at least with expected trends of increasing GHG mitiga-
tion requirements, rising energy prices, and declining GHG emissions from imported electricity
[E]. Based on the sensitivity analyses, the following technologies and measures have proven to
be robust to the expected changing boundary conditions and are therefore particularly recom-
mended for the optimization of urban energy systems:

• Demand Reduction: Reducing relative and absolute energy demands positively im-
proves both financial costs and GHG emissions [E]. Demand reductions can be realized
by building insulation, behavioral changes, and reducing living space per inhabitant [E].
However, modeling and implementation of the latter two aspects are separate research
fields in their own right.

• Decentralized heat pumps: In optimized systems, “the usage of decentralized heat
pumps for heat supply [...] steadily increases or at least remains at the same level” [E],
under expected changing boundary conditions. “As far as heat potentials can be used
both central and decentral, decentralized heat pumps allow a more viable use compared to
centralized heat pumps due to less heat losses, investment costs, and life-cycle emissions
of DH pipes” [E].

• PV systems: “The optimum size of the PV systems varies, but a certain amount with
a region-specific maximum azimuth deviation from the south axis is highly robust. This
maximum azimuth deviation increases with additional restrictions on total GHG emissions
and increasing energy prices” [E].

• Thermal storages: Thermal storages are mostly more suitable for shifting volatile elec-
tricity supply than battery storages. This applies especially for systems with electrified
heat supply. “Depending on the type of heat supply, either centralized or decentralized
thermal” [E] storages are preferable.

• Electricity exchange: The exchange of electricity with higher-level energy systems (im-
port, export) “reduces the need for local electricity storage capacities and oversized plants
to meet peak loads. However, this approach may be limited due to transmission capaci-
ties and the ability of neighboring and higher-level systems to provide the necessary load
exchange. [...] Fewer restrictions apply to the local exchange of locally produced (renew-
able) electricity between sub-systems. It [...] reduces necessary storage capacities and, by
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avoiding electricity imports, financial costs and GHG emissions” [B].

On the other hand, some technologies and measures are particularly sensitive to changing bound-
ary conditions and are therefore less suitable for robust optimized urban energy systems:

• Solar thermal systems: Solar thermal systems and PV systems compete with each other
for suitable roof surfaces. PV systems are mostly preferred over solar thermal systems in
optimized energy systems. Therefore, it is recommended to consider solar thermal systems
only for surfaces where PV use is not viable [E].

• Decentralized natural gas technologies: “The use of decentralized natural gas tech-
nologies for heat supply is very sensitive to the analyzed system changes, and [...] their
usage is partially or even completely reduced in optimized scenarios” [E].

• Generalized implementation of DH networks: “The viability of implementing new
DH networks is very sensitive on total GHG emissions, energy prices, and heating de-
mands” [E]. Therefore it is recommended to analyze and plan the exact connectability of
buildings to DH networks in detail and with caution. “The generalized implementation of
DH networks for entire areas, for example, in the context of a connection obligation” [E],
is highly sensitive to changing boundary conditions.

• High capacities of battery storages: The usage of battery storages are preferably
used in the emission-optimized scenario. Their usage is “sensitive on GHG emissions of
imported energy (electricity and hydrogen) and the system’s energy demands (electricity
and heat)” [E]. Furthermore, battery storages with large capacities cause environmental
impacts in other categories than GHG emissions, such as terrestrial eco toxicity. This
causes, in some cases, an environmental damage according to the disability-adjusted life
years (DALY)-index which is greater than the benefit gained through saved GHG emissions
[15].

• Hydrogen for building energy supply: The usage of green hydrogen for building
energy supply “is not viable from a financial perspective. It is especially sensitive to
the system’s absolute energy demands, and its capability for emission reduction is only
viable if GHG emissions of imported electricity are higher than electricity supplied by the
hydrogen CHPP” [E]. The use of green hydrogen is therefore highly sensitive, and “the
use of non-green hydrogen is no option for system optimization at all” [E].

Note that all of the above recommendations apply to optimized energy systems. Compared to
non-optimized systems, even non-robust technologies can bring an improvement. For example,
it can be assumed that the use of solar thermal systems on a suitable roof surface is better than
not using the roof surface for energy supply at all. If an energy system to be optimized consists of
existing facilities or infrastructure not considered in the reference case, this can have a significant
impact on the optimization results. For example, if a system consists of an existing and possibly
depreciated DH network, centralized heat supply technologies may be more valuable, especially
if they can utilize heat sources that cannot be used decentrally (e.g., river water or industrial
waste heat).
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5 Discussion

5.1 Interactions of Challenges

All common challenges of modeling and optimization of urban energy systems have been ad-
dressed in this thesis and the related publications. Synergies and trade-offs between the overlap
of individual challenges have emerged, as well as aspects and gaps which should be addressed in
future modeling projects.

There are several challenges in modeling and optimizing urban energy systems. Because of
the interactions of these challenges, some solutions can address more than one challenge, while
others require trade-offs among multiple challenges.

Reducing model complexity is necessary to reduce computing effort, to lower the entry thresh-
old for applying energy system modeling tools, and to enable the communication of results to
a wide audience. Approaches to reduce the computing effort to a tolerable level poses many
conflicts with other challenges. The most straightforward way to reduce model complexity is
to utilize knowledge of energy systems in order to keep the model as simple as possible. The
required knowledge increases the entry threshold to energy system modeling and is therefore
a hurdle in terms of applicability for a wide range of potential users. On the other hand, any
automated application of model-based methods for complexity reduction, which are applicable
without in-depth knowledge of energy systems, will, in most cases, reduce the spatial and tem-
poral resolution and coverage of a model. This may lead to a reduction of the required effort
for data collection, but primarily increases the model uncertainties and subsequently the risk
of misinterpretation, especially with respect to the sizing of sector-coupling technologies and
energy storages.

There is a general trend in scientific research towards openness of methods and data. Only
open science is truly reproducible science and allows transparent communication of input data,
assumptions, uncertainties, and results. Open models will facilitate the selection of model
properties and features as well as the collection of data in subsequent projects. However, there
are limitations associated with this concept, mainly related to the choice of modeling tools
(including mathematical solvers) and the use of input data. For example, efficient mathematical
solvers used to reduce computing effort are often not available under open-source licenses. Also,
non-open input data is often of higher quality than open data. Therefore, a compromise must
be made where non-open tools or data may be used to a very limited extent.

Poorly chosen model properties or features lead to an amplification of other challenges. For
example, too low defined resolutions or system boundaries can lead to structural uncertainties.
On the other hand, overly ambitious resolutions or system boundaries of a model can lead to
a significant increase in computing effort, limited applicability of the model due to high input
effort, and excessive demands on data quality.

Great effort during data collection and quality assurance will largely reduce parametric uncer-
tainties.

The analysis of challenges and their interactions shows that the challenges of model properties
and features, input data, and openness are associated with the fewest trade-offs. They are
straightforward to address and, in some cases, allow for parallel improvement of other challenges.

The complexity challenge is much more difficult to address because it conflicts with several
other challenges. The reduction of complexity is particularly relevant for high spatial resolution
optimization of modern urban energy systems. The inevitable trade-off between complexity and
uncertainty is particularly difficult and, overall, poses the greatest challenge in modeling and
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optimizing urban energy systems. Therefore, it has received great attention in this work. Dur-
ing model development, the model complexity was increased step by step (Tab. 2.2), increasing
the need to simplify the model itself. With the model-based simplification methods developed
in publication [C], much larger and more complex systems could be modeled with the same
computing resources. Associated uncertainties, especially in the design of sector coupling tech-
nologies, storage technologies, and district heating (DH), have been quantified, classified, and
transparently communicated.

5.2 Model Limitations

The SESMG has significantly lowered the entry threshold for modeling urban energy systems.
However, users still “must have a certain basic knowledge of energy systems and energy engi-
neering” [D], and the “target groups of the SESMG [...] are (urban) energy system planners and
researchers in the field of energy engineering” [D]. By further automating the modeling process
through the definition of system boundaries with GIS interfaces, perhaps the entry threshold
could be lowered to a point where non-specialist users could benefit. However, necessary regional
specific data sets are not available in a uniform format and, furthermore, are often not openly
available. This hinders the implementation of such a feature.

The applied multi-objective optimization approach refers to the goals of global GHG emission
reduction and system-wide economic costs. For GHG emissions, in the sense of climate protec-
tion as a global phenomenon, this is the correct chosen optimization goal. However, system-wide
financial cost optimization involves minimizing the aggregated costs for all stakeholders. The
distribution of these savings amongst stakeholders is not considered. The actual distribution
may even result in additional costs for some stakeholders while others have dramatically reduced
costs. To avoid such bias, stakeholder-specific costs can be optimized separately to ensure that
costs are distributed fairly. However, this would introduce a new level of complexity.

Another limitation is the model uncertainty and its impact on the relevance and applicability
of the model results. The impact of known uncertainties, such as the use of standard load pro-
files or model-based temporal simplifications, can be well estimated and classified by modelers.
Unknown uncertainties, on the other hand, pose a much greater problem because it is not known
how they will affect the model results.

This work makes the greatest effort to follow open-science strategies in all aspects. However, for
some of the applied models, the commercial gurobi solver was used for solver-based reduction of
computing efforts. Theoretically, the models can be solved with open solvers such as CBC, but
with a significantly increased run-time. At this point, a compromise was made at the expense
of openness. However, in this way, the results obtained and the respective uncertainties and
assumptions could still be communicated transparently.

Various consumption sectors of building types in urban energy systems were considered in the
individual models of this work. The mobility sector, however, was excluded. This is justified
by the need to model social behavior patterns in order to generate consumption profiles and
utilization potentials. Due to the increasing relevance of sector-coupled electric mobility with
decentralized charging options in urban energy systems, this aspect is highly relevant for future
modeling. In this way, it will be possible to investigate whether and how the electricity demand
for mobility can be covered locally, and how the battery storage of electric vehicles can be used
during parking times for load balancing within urban energy systems.

Coupling the results of an urban energy system optimization model with models from other
urban resources [16] and a LCA model [15] has shown that there are relevant interactions and
feedback mechanisms. Automated model integration of all urban planning aspects and global
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environmental impacts that potentially intersect with urban energy systems would ensure that
all synergies and conflicting goals could be identified. However, this will, again, lead to increased
model complexity and associated increased data requirements.

To ensure the best possible impact of the modeling results, further communication is needed
even after the modeling project has ended. The development of concrete recommendations
for legislative adjustments together with policy experts, by also taking social aspects into
account, can enable nation-wide or even EU-wide impact.

5.3 Practical relevance

With the SESMG and the methods used in it, a modeling procedure is provided, that (1) pro-
duces outcomes with high-spatial resolution, (2) applies optimization methods involving multiple
criteria, (3) considers a wide range of energy and consumption sectors, (4) is applicable on stan-
dard personal computers, and (5) is applicable without any programming knowledge. Thus,
an important gap in the landscape of models for the optimization of sustainable mixed-use
multi-energy systems is closed.

The developed modeling methods are suited for investigations regarding feasibility of energy
supply concepts, for the recommendation of a technology mix, and for the identification of
savings potentials. The final planning and practical implementation follows such modeling and
is carried out by the respective planners. The SESMG and further methods developed are
regularly applied in research projects [57], privately and publicly funded planning projects (one
completed, two ongoing studies), as well as academic theses [46, 64, 70–75]. The theses included
(1) analyzes of modeling methods, such as the modeling of residential load profiles or DH systems,
(2) general investigations on the viability of certain technologies in urban energy systems, or
(3) concrete planning projects ranging from small groups of buildings to entire neighborhoods.
Both in research projects and in practical planning projects, the applied methods have proven to
be relevant and suitable for the optimization of urban energy systems. The SESMG will also be
used in planned and upcoming projects. Suggestions for future research strategies are presented
in Sec. 6.

The recommended technologies and measures for optimized urban energy systems (Sec. 4) are
widely transferable and can be an important decision-making support for the planning of urban
energy systems. If the recommendations are implemented on a widespread basis, the resulting
transformation can make a significant contribution to meeting national and international cli-
mate protection targets. However, there are some practical challenges. The need to invest, in
combination with a lack of willingness of individual stakeholders to adapt, can be an obstacle,
especially in existing systems. In addition, there are legal constraints on the implementation of
some of the recommendations. For example, the local exchange of electricity within local energy
markets is subject to a number of legal constraints. Removing these barriers through policy
action is important to maintain the necessary pace of transformation of urban energy systems.

5.4 Comparison with Recent Literature

The challenges of energy system modeling have been extensively listed in the literature (e.g., [2,
7, 20–38]. These publications deal with the general challenges of energy system modeling, with
challenges of specific types of energy system models, or with specific sub-challenges. This work
fills a gap by providing a complete categorization of all the challenges relevant to the modeling
and optimization of urban energy systems, and by providing concrete approaches to overcome
them.
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Studies with a focus on the design of (urban) energy systems have identified measures and
technologies which are suitable to help achieving climate protection targets and/or to reduce
financial costs. However, the model results provided by this work fill a gap by analyzing the
full range between the competing objectives of financial minimization and minimization of GHG
emissions, and further communicating the impact of changing external boundary conditions. The
focus lies on urban energy systems, and all local interactions synergies and trade-offs between
sub-systems and various energy sectors are considered [E]. This leads partly to similar results,
but partly also to contradictions with the existing literature.

Consistent findings are about (1) reducing energy demands by high levels of building ren-
ovation [76, 77] and adjusting consumption patterns [78], (2) (partial) phase-out of natural
gas technologies [76], (3) increasing electrification of the heat supply [77, 79], especially by
heat pumps [76, 79], (4) using thermal storages for electric load shifting [79, 80], and (5)
preferring the usage of PV systems over solar thermal systems on suitable surfaces [81].
Also, the findings that (6) the use of hydrogen technologies for buildings will only become
viable under significantly lowered prices [82], but that they could nevertheless enable a reduction
in GHG emissions under certain circumstances [77], are in consensus with recent literature.

Regarding the recommendation for more exchange of electricity between sub-systems and
higher-level systems, there is no clear consensus in the literature. While some studies call
for more autarky of sub-systems [83, 84], others call for an increase in the exchange between
individual systems [79, 85]. This work provides further arguments and insights for this discussion
by showing how relevant the exchange of electricity is both between sub-systems and with higher-
level systems.

Partially deviating recommendations exist in the literature with regard to the viability of DH
networks for optimized systems. This is generally due to two different assumptions concerning
the boundary conditions. (1) DH networks can have a more positive effect on optimized systems
if the building density is so high that decentralized heat pump usage is not possible, or if heat
sources are available that can only be used centrally, such as deep geothermal energy [86], waste
heat [87], or river and sea water [88]. (2) If DH networks are already installed in a system
and may be depreciated, neither investment costs nor emissions may be included in models.
However, new DH networks may also become more relevant in the future, when so-called “5th
generation DH and cooling systems” gain relevance in planning practice [89, 90]. These systems
can be used to exchange thermal energy between a number of sub-systems, similar to the local
exchange of electricity [91].

When residential building energy systems are considered in isolation, the use of battery stor-
ages is often recommended, usually focusing on increasing self-sufficiency or financial costs of
individual buildings [92–94]. Battery storages may in principle provide an improvement over
a non-optimized system. However, the ability of battery storages to robustly optimize urban
energy systems is very limited when competing with sector-coupled thermal storages and local
electricity exchange. This discussion could take new directions if bi-directional charging of elec-
tric vehicles becomes technical standard and if battery storage of electric vehicles can be used
for urban load shifting.
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6 Conclusion and Outlook

With the developed methods and the Spreadsheet Energy System Model Generator (SESMG),
a modeling procedure was created in this work that allows the modeling and optimization of
urban energy systems. The SESMG provides a low entry threshold for modelers and planners,
is very flexible, is applicable to existing and newly planned urban energy systems, and can be
operated on standard personal computers.

The findings of this work lead to the following recommendations for the modeling and optimiza-
tion of urban energy systems:

• Multi-objective optimization approaches should be applied, including at least financial
costs and greenhouse gas (GHG) emissions as optimization criteria, with holistic consid-
eration of all relevant energy and demand sectors. Appropriate model properties,
features and system boundaries should be selected.

• Model complexity should be reduced where possible to avoid issues with to high com-
puting efforts, as well as limited accessibility of methods and results for non-experts.

• Emphasis should be placed on the openness of the applied methods, input data, assump-
tions, and results.

• Data standards should be defined and uniformity of data sets should be guaranteed. If
assumptions are necessary, it is recommended that these are communicated transparently.

• Uncertainty assessments should be conducted. All known uncertainties are recommended
to be transparently communicated.

• Communication with modelers, interdisciplinary researchers, planners, policymakers and
the public should be carried out before, during and after a modeling project to ensure
relevance and feasibility of the results.

Individual modeling for the energy system of each investigated area helps to account for all rele-
vant system-specific effects. However, based on the model of a transferable reference case, there
are measures and technologies, which can be particularly recommended for the optimization of
urban energy systems. Assuming expected trends of increasing GHG mitigation requirements,
increasing energy prices, and decreasing GHG emissions from imported electricity, the following
ones are suggested:

• Relative and absolute energy demand reduction through building insulation, behavioral
changes, and reductions in living space per inhabitant

• Decentralized heat pumps for heat supply

• Photovoltaic (PV) systems on (roof) surfaces with suitable orientations

• Thermal storages for electrical load shifting

• Exchange of electricity between sub-systems as well as with higher-level energy systems

On the other hand, some technologies and measures carry the risk of being not suitable for
optimized urban energy systems under expected trends. These include:

• Solar thermal systems on (roof) surfaces that are suitable for PV usage

• Decentralized natural gas heating technologies

• Generalized and comprehensive implementation of new district heating (DH) networks

• Battery storages with high capacities

• Hydrogen technologies for building energy supply
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The limitations of the applied models provide a basis for further projects. In particular, the inte-
gration of the mobility sector, the integration of interdisciplinary model aspects, the stakeholder-
specific cost optimization and the conceptualization of local energy markets are highly relevant
for future research. A further reduction in the computational resources required to enable mod-
eling of even more complex energy systems and an even lower entry threshold for modeling and
optimization of urban energy systems are desirable.
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[92] Bertsch, V., Geldermann, J., and Lühn, T. “What drives the profitability of household PV
investments, self-consumption and self-sufficiency?” Applied Energy, 204 (2017), pp. 1–15.
doi: 10.1016/j.apenergy.2017.06.055 (cited on p. 30).

[93] Schopfer, S., Tiefenbeck, V., and Staake, T. “Economic assessment of photovoltaic battery
systems based on household load profiles”. Applied Energy, 223 (2018), pp. 229–248. doi:
10.1016/j.apenergy.2018.03.185 (cited on p. 30).

[94] Koskela, J., Rautiainen, A., and Järventausta, P. “Using electrical energy storage in res-
idential buildings – Sizing of battery and photovoltaic panels based on electricity cost
optimization”. Applied Energy, 239 (2019), pp. 1175–1189. doi: 10.1016/j.apenergy.
2019.02.021 (cited on p. 30).

https://doi.org/10.1016/j.rser.2022.112749
https://doi.org/10.1016/j.rser.2018.12.059
https://doi.org/10.3390/en16010147
https://doi.org/10.1016/j.apenergy.2017.06.055
https://doi.org/10.1016/j.apenergy.2018.03.185
https://doi.org/10.1016/j.apenergy.2019.02.021
https://doi.org/10.1016/j.apenergy.2019.02.021


42 Appendix

Appendix

A Publication: Modeling and optimization of multi-energy systems
in mixed-use districts: A review of existing methods and
approaches

Table A.1: Fact sheet publication [A]

Title:
Modeling and optimization of multi-energy systems in mixed-use districts: A review of existing meth-
ods and approaches

Authors:
Christian Klemm, Peter Vennemann

Journal:
Renewable and Sustainable Energy Reviews

Date:
01/2021

Digital Object Identifier (DOI):
https://doi.org/10.1016/j.rser.2020.110206

Authors contribution:
Christian Klemm: Conceptualization, Methodology, Investigation, Formal analysis, Software, Visu-
alization, Writing – original draft. Peter Vennemann: Funding acquisition, Supervision, Writing –
review & editing.

Abstract:
About 75 % of the world’s energy consumption takes place in cities. Although their large energy
consumption attracts a large number of research projects, only a small fraction of them deal with ap-
proaches to model energy systems of city districts. These are particularly complex due to the existence
of multiple energy sectors (multi- energy systems, MES), different consumption sectors (mixed-use),
and different stakeholders who have many different interests.
This contribution is a review of the characteristics of energy system models and existing modeling
tools. It evaluates current studies and identifies typical characteristics of models designed to optimize
MES in mixed-use districts. These models operate at a temporal resolution of at least 1 h, follow
either bottom-up or hybrid analytical approaches and make use of mixed-integer programming, linear
or dynamic.
These characteristics were then used to analyze minimum requirements for existing modeling tools.
Thirteen of 145 tools included in the study turned out to be suitable for optimizing MES in mixed-
use districts. Other tools where either created for other fields of application (12), do not include any
methodology of optimization (39), are not suitable to cover city districts as a geographical domain (44),
do not include enough energy or demand sectors (20), or operate at a too coarse temporal resolution
(17). If additional requirements are imposed, e.g. the applicability of non-financial assessment criteria
and open source availability, only two tools remain.
Overall it can be stated that there are very few modeling tools suitable for the optimization of MES
in mixed-use districts.

https://doi.org/10.1016/j.rser.2020.110206


Renewable and Sustainable Energy Reviews 135 (2021) 110206

Available online 1 October 2020
1364-0321/© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Modeling and optimization of multi-energy systems in mixed-use districts: 
A review of existing methods and approaches 

Christian Klemm *, Peter Vennemann 
Department of Energy, Building Services and Environmental Engineering, Münster University of Applied Sciences, Stegerwaldstraße 39, 48565, Steinfurt, Germany   

A R T I C L E  I N F O   

Keywords: 
Energy system 
Energy system modeling 
Optimization 
Multi-energy system (MES) 
Mixed-use districts 
Urban districts 
Modeling tools 

A B S T R A C T   

About 75% of the world’s energy consumption takes place in cities. Although their large energy consumption 
attracts a large number of research projects, only a small fraction of them deal with approaches to model energy 
systems of city districts. These are particularly complex due to the existence of multiple energy sectors (multi- 
energy systems, MES), different consumption sectors (mixed-use), and different stakeholders who have many 
different interests. 

This contribution is a review of the characteristics of energy system models and existing modeling tools. It 
evaluates current studies and identifies typical characteristics of models designed to optimize MES in mixed-use 
districts. These models operate at a temporal resolution of at least 1 h, follow either bottom-up or hybrid 
analytical approaches and make use of mixed-integer programming, linear or dynamic. 

These characteristics were then used to analyze minimum requirements for existing modeling tools. Thirteen 
of 145 tools included in the study turned out to be suitable for optimizing MES in mixed-use districts. Other tools 
where either created for other fields of application (12), do not include any methodology of optimization (39), 
are not suitable to cover city districts as a geographical domain (44), do not include enough energy or demand 
sectors (20), or operate at a too coarse temporal resolution (17). If additional requirements are imposed, e.g. the 
applicability of non-financial assessment criteria and open source availability, only two tools remain. 

Overall it can be stated that there are very few modeling tools suitable for the optimization of MES in mixed- 
use districts.   

1. Introduction 

About 75% of the world’s energy consumption takes place in cities, 
which in turn causes 70% of worldwide carbon dioxide emissions [1]. 
These numbers will likely increase with a projected doubling of the 
urban population by 2050 [2]. To reduce the energy consumption 
associated with this growth, it is mandatory to increase the energy ef-
ficiency of urban systems. While the field has attracted significant 
research on the potential of reduction of energy use [3], only 14% of the 
documented research projects have addressed the subject of energy ef-
ficiency at the district level [4]. This contribution provides an overview 
of the methods and tools used to model the optimization of energy 
systems at urban district levels as these are manageable urban planning 
units. 

An energy system is defined as a “combined process of acquiring and 
using energy in a given society or economy” [5]. The focus of this 
contribution lies on multi-energy systems (MES) of mixed-use districts, i. 

e. on the acquisition and consumption of various forms of secondary 
energy (e.g. electricity, heating, cooling) in urban districts characterized 
by diverse purposes (e.g. residential buildings alongside industry and/or 
agriculture). 

Models are an essential tool for planning and operating energy sys-
tems. In this context, a model may be understood as a simplified rep-
resentation of a real world’s energy system [6]. While models may be 
developed in many different ways, we focus on mathematical and coded 
models [3]. In addition to the term “model”, “model generator” and 
“modeling framework” are also frequently used in the modeling land-
scape. Although these terms seem to have similar meanings, it is 
important to make precise distinctions. Model generators are tools that 
can create models with certain predefined analytical and mathematical 
properties [7]. The use of model generators can save time. However, due 
to these predefined properties, there are also limitations with respect to 
the flexibility of the models they generate. Modeling frameworks are 
structured toolboxes that include several model generators and specific 
sub-models [7]. Due to the wider range of tools provided with them, 
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there are fewer limitations, but their use requires more coding effort 
than the use of a model generator. 

This is the first contribution addressing the question whether any 
existing tools of energy system modeling are suitable for the optimiza-
tion of MES in mixed-use city districts. For this purpose, existing 
modeling tools are identified, minimum requirements for these tools to 
be applicable are defined, and the tools are evaluated accordingly. The 
next phase of the review entails discussing general deficits and making 
recommendations for further research. 

2. Review method 

To answer the research question formulated in the introduction, it is 
first necessary to determine and examine the general features and 
properties of energy system models (Section 3). The first step thus meant 
researching review articles on energy system models using Google 
Scholar as well as FINDEX, Münster University of Applied Sciences’ li-
brary system. Search terms such as “energy system modeling review” 
were used. Additional articles were uncovered by looking at these arti-
cles’ citations as well as by using “cited by” functions. The next step was 
to search additional articles on the specific properties of energy system 
models by using the same search methods. A total of 33 review articles 
have been evaluated [8–41]. 

The following step required describing and elaborating on the spe-
cific characteristics of models for the optimization of MES in mixed-use 
city districts. This in turn meant identifying the relevant articles using 
the same methods as above, but including search terms such as “energy 
AND optimization AND (quarter OR district OR city OR neighborhood)”. 
The corpus included studies published between January 2014 and 
October 2019. In total, 30 studies have been included [42–72]. 

The second part of the paper (Section 4) presents and evaluates 
existing modeling tools. Different reviews [12,14,22,36–41] as well as 
complementary research with the above mentioned search engines were 
used as data sources. Only tools that were mentioned in peer-reviewed 
literature were included in the study. For the specification of specific 
model properties, “grey literature” (websites, documentations of tools, 
theses) was also used. 

Based on the characteristics of models for the optimization of MES in 
mixed-use districts (Section 3), we defined minimum requirements that 
the modeling tools had to have for this purpose. These requirements 
were then used to categorize and evaluate the various tools. 

3. Properties of energy system models 

Several reviews exist in the area of energy system modeling. They 
can be categorized into reviews discussing.  

• energy system models in general,  
• specific properties of energy system models,  
• energy system models for a specific scope of application, and  
• existing modeling tools. 

Reviews discussing energy system models in general provide a 
broad overview of existing modeling approaches and properties of en-
ergy system models. For example, Herbst et al. [8], Jebaraj and Iniyan 
[9] and Subramanian et al. [10] have presented overviews about 
existing modeling approaches in general. Foley et al. [11] have reviewed 
electric system models, while Hall and Buckley [12] evaluated and 
categorized energy system models in Great Britain. Pfenninger et al. 
[13] as well as Lopion et al. [14] have discussed current challenges in 
energy system modeling. 

Other reviews deal with specific properties of energy system 
models. For instance, Lund et al. [15] discussed differences between the 
methodologies of simulation and optimization; Weijermars et al. dis-
cussed the methodology of optimization [16] (see Section 3.1, “Meth-
odology”); Stein [17] summarized several assessment criteria of electricity 
production technologies; van Vuuren et al. [18] reviewed the differences 
between the analytical approaches of top-down and bottom-up ap-
proaches (see Section 3.4, “Analytical Approach”). Moreover, Kalogirou 
[19] and Zahraee et al. [20] dealt with the mathematical approach of 
artificial intelligence, and Pfenninger et al. [21] provided an overview of 
the importance of open data and software in energy research (see Sec-
tion 3.6, “Reusability”). 

There have also been various approaches to using energy system 
models for a specific scope of application. One widely discussed topic 
was the integration of renewables into existing energy systems (Ring-
kjøb et al. [22], Després et al. [23], Bhandari et al. [24], Olsthoorn et al. 
[25], Luna-Rubio et al. [26]). Gu et al. [27] and Fathima et al. [28] 
focused on the optimization of microgrids; Suganthi and Samuel [29] on 
energy demand forecasting; Mancarella [30] on models for multi-energy 
system (MES) concepts; and Hiremath et al. [31] on models for decen-
tralized energy planning. In the context of this paper, modeling ap-
proaches of the energy systems of buildings and residential areas are also 
of interest. Harish et al. [32] reviewed building energy system models in 
general, Nguyen et al. [33] looked at different approaches to increasing 

List of acronyms 

C capital costs 
CEA City Energy Analyst 
CED cumulated energy demand 
Cont continental 
Conv conventional generation 
D disposal 
DP dynamic programming 
E energy 
El electricity 
EE energy efficiency 
Em emissions 
EPT energy payback time 
F fossil resources 
Fi financial 
GIS geographical information system 
H heat 
Hyd hydrogen 

Int international 
LA level of autonomy 
LCE levelized costs of energy 
LESP loss of energy supply probability 
Loc local 
LP linear programming 
m mass 
MES multi-energy system 
MIP mixed-integer programming 
Nat national 
O operation 
P production 
p share of energy 
Reg regional 
Ren renewable generation 
S social 
Stor storages 
T time  
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the energy efficiency of buildings, and Ma et al. [34] reviewed methods 
of retrofitting buildings using models. Swan and Ugursal [35] analyzed 
techniques to model end-use energy consumption in the residential 
sector, while Keirstead et al. [3] provided a more general overview of 
the approaches, challenges and opportunities facing urban energy sys-
tem models. 

There are also reviews specifically focusing on existing modeling 
tools. Allegrini et al. [36] analyzed 24 existing modeling tools with a 
focus on the building sector. Ringkjøb et al. evaluated 75 modeling tools 
with regard to their suitability for modeling renewable energies [22]. 
Van Beuzekom et al. [37] discussed 13 optimization and planning tools 
on their suitability for sustainable urban development; Lopion et al. 
presented 24 currently used tools for energy system modeling [14]; Hall 
and Buckley classified 22 tools used in the UK [12]. Bhattacharyya and 
Timilsina [38] presented six tools with a wide scope of application; 
Connolly et al. [39] discussed 37 tools for analyzing the integration of 
renewable energies into various energy systems. Suresh and Meenaku-
mari [40] looked at 17 tools, while Sinha and Chandel [41] presented 19 
tools that modeled hybrid renewable energy systems. 

These articles show that energy system models could be categorized 
according to their purpose, methodology, assessment criteria, and 
structural and technological detail. They also take different analytical 
and mathematical approaches, and vary according to their reusability. 
These categories are shown in Fig. 1 together with additional 
characteristics. 

3.1. Methodology 

The methodology of energy system models can be classified into the 
three main categories of.  

• optimization,  
• forecasting, and  
• back-casting (Fig. 2). 

Optimization models are used for the purposes of investment or 
operational decision support. The model simulates all possible scenarios 
of a system, and rates them according to an objective function. Mini-
mizing or maximizing this function helps the researcher to then identify 
an “optimum” scenario [13,15]. The optimum scenario could, for 
instance, consist of a preferred mix of technologies [16] or of certain 
operation modes [73]. Optimization models are the most common type 
for district-level energy system modeling. Prieto et al. for instance, used 
models to analyze and optimize the district heating system of Vienna 
[42]. Fonseca et al. implemented “City Energy Analyst” (CEA), which is 
a model framework for the analysis and optimization of energy systems 
in neighborhoods and city districts [61]. Bakken et al. created a model 
generator for the quantification of the minimum total energy system 
costs to meet predefined energy demands of electricity, gas and heating 
[75]. 

Forecasting models are used for the purposes of system analysis and 
scenario analysis. They investigate the behavior of a system under given 
conditions and attempt to predict the system’s future behavior or spe-
cific parameters of the system [15], such as the future energy demand 
[29]. Forecasting is often referred to as “simulation”. However, since 
simulations are also components of optimization and back-casting 
models, this term is misleading. The term “forecasting” will therefore 
be used instead from here on. Forecasting models are not used very often 
in district-level applications. However, they are very useful when fore-
casting the demand for renewable energy. Powell et al. for instance, used 
forecasting models to predict the heating, cooling and electrical loads of 
a college campus up to 24 h in advance by using weather data as input 
variables [65]. 

Back-casting models are used for specific scenario analysis. The 
researchers lay out an envisaged future state or set of properties of a 
system, and the back-casting model develops realistic paths that would 

lead to these future conditions [12]. This kind of model comes into use 
during the planning or implementation of political goals [74]. The uti-
lization of back-casting models is even less relevant for applications at 
the district level. They are more often used for larger system scales, e.g. 
for nationwide or worldwide energy systems. The World Energy Council, 
for example, regularly identifies pathways that policymakers should 
select to achieve specific goals in the world energy system [76]. 

Several model types may be combined within a single model. Kam-
pelis et al. for instance, implemented a tool to predict the energy de-
mand at the levels of individual buildings as well as district (forecasting) 
and which would customize the operation of available micro power 
plants and storage facilities to minimize the energy purchased from 
external sources (optimization). When they applied their tool to an in-
dustrial district in Italy, they found cost savings of up to 15.39% [51]. 

3.2. Assessment criteria 

Identifying the “best” future scenario by optimizing MES in models of 
mixed-use districts means selecting and applying different assessment 
criteria. These may be categorized into.  

• Financial,  
• Energy efficiency,  
• Environmental,  
• Technical, and  
• Social/economic criteria. 

Financial criteria aim to identify the least expensive scenario. 
Useful criteria could include the annualized capital costs Ccapa , the 
annual system costs Ca, the payback time, the annual net profit, or the 
levelized costs of energy LCE. 

The annualized capital costs Ccapa may be calculated using an esti-
mated rate of interest i and an estimated service lifetime of the system 
components Y in years [28]: 

Ccapa =Ccap⋅
i(i + 1)Y

(i + 1)Y
− 1 

Next, the annual system costs can be calculated from the annual 
capital costs Ccapa plus additional costs for operation (including main-
tenance) COa [28]: 

Ca =Ccapa + COa 

The levelized costs of energy (LCE) are calculable from the annual-
ized system costs Ca and the energy delivered over the same period Ea 

[77]: 

LCE=
Ca

Ea 

Additional financial criteria could include total life cycle costs or 
total capital costs [17]. 

Energy efficiency criteria may measure energy balances such as 
primary energy use, secondary energy use or consumer (end-user) en-
ergy use [53]. Alternatively, criteria measuring the level of autonomy LA 
of the system or the loss of energy supply probability LESP [26,28] can 
aid in measuring the degree of self-sufficiency in a system. 

We can study energy balances by determining cumulated energy 
demand CED, which in turn can be calculated by looking at the total 
value chain of an energy system’s components. This means calculating 
the energy demands of production (P), of operation (O) (including 
maintenance), and of disposal (D) after the operational lifetime of the 
system [79]: 

CED=CEDP + CEDO + CEDD 

The energy payback period EPP describes how long it would take to 
break even on the cumulated energy demand CED [80]: 
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EPP=
CED
Ea 

The level of autonomy LA may be understood as the extent to which 
an energy system can be operated independently from external or up-
stream energy systems [26,81]. It can be calculated using the time in 
which loss of load occurs TLOL and the total operation time Ttot [81]: 

LA= 1 −
TLOL

Ttot 

The loss of energy supply probability LESP is the share of energy that 
cannot be provided by the energy system itself [26] and which has to be 
obtained from external energy systems. It can becalculated by dividing 
the sum of energy deficits Edef (t) by the total energy demands Edem(t) at 
any point in time t [26]: 

LESP=

∑
Edef (t)⋅Δt

∑
Edem(t)⋅Δt 

Possible environmental criteria could include the amount of 
greenhouse gases emitted, air pollutants such as NOx or SOx, the amount 
of freshwater used [22], land use, noise pollution, or human health 
impacts [17]. The amount of CO2 emitted, mCO2, for instance, may be 
calculated throughout the value chain of an energy system’s compo-
nents. Emissions issued by production (P), operation (O) (including 
maintenance) and disposal (D) after decommissioning all need to be 
included [82]: 

mCO2 =mCO2P + mCO2O + mCO2D 

Another useful environmental criterion would be the percentage of 
renewables. This is calculated using the percentages of energy supplied 
by renewable Eren and conventional energy systems Econv: 

pren =
Eren

Eren + Econv 

Other environmental criteria, such as health effects, are far less 
straightforward to quantify, and are thus less frequently applied in 
system analysis [17]. 

Technical criteria consider the safety, availability, reliability or 
overall technical feasibility in a system [17]. Since the processes and 
components entered to a model usually have to meet state-of-the-art 
standards of safety, availability and feasibility anyway, there is rarely 
any need to apply additional technical assessment criteria during the 

modeling process. 
Social and economic criteria might include regional employment 

rates or technology-specific job opportunities, the risk of accidents, the 
availability of resources, the impact on local development and living 
standards, or foreign trade balances [17]. 

Financial criteria are probably the most common assessment criteria 
used to optimize MES at the district level. Environmental and energy 
efficiency criteria are also often integrated into the modeling. This is 
especially true of the amount of CO2 emitted and the percentage of 
renewables. 

Multi-objective optimization approaches – taking more than one 
criterion into consideration – are frequently used for the modeling of 
MES at the district level. Orehounig et al. [64], for instance, used the 
amount of CO2 emissions (environmental criterion) and the end energy 
efficiency of buildings, as well as the degree of energy autonomy (energy 
efficiency criteria) to optimize the integration of decentralized energy 
systems into neighborhoods. One modeling framework, CEA, allows 
researchers to integrate financial criteria (levelized energy costs and 
total annual costs), energy efficiency criteria (amount of primary energy 
used), environmental criteria (greenhouse gas emissions) as well as 
social/economic criteria (percentage of renewables) [61]. 

3.3. Structure and technological details 

The structure and technological details of energy system models can 
be summed up by their.  

• Geographic coverage,  
• Spatial resolution,  
• Temporal resolution,  
• Time horizon,  
• Sectoral coverage,  
• Demand sectors,  
• Technical coverage,  
• Demand-side management, and  
• Change of properties, 

as well as other additional properties. 
Geographic coverage describes the spatial area that is included in 

the model. Coverage can range from the global to the continental, in-
ternational, national, regional and local or even down to a single power 
plant [22]. The analysis of city districts requires local coverage. A recent 
model by Spielmann et al. for instance, identified the optimal energy 
supply scenario of a university campus [53]. 

The spatial resolution of the models could vary as well. For 
instance, it is possible to map the energy demand of a city district for the 
whole district, for every building, or even for every consumer. The 
temporal resolution specifies the time steps of the model. This could 
range from milliseconds to years (Table 1 [11]). The actual temporal 
resolution is fixed in some models and variable in others, for example 
depending on the resolution of the input data [22]. Ringkjøb et al. 
stressed that energy models with broad geographic coverage tend to 
have lower temporal resolution [22]. Models at the district level 
generally use an hourly resolution, less often a 15-min resolution. 
One-minute resolutions are used as well, but very rarely. Depending on 
the specific research question, more detailed results may be modeled by 
applying higher spatial and temporal resolution. However, the 
computing resources required increases quickly as spatial and temporal 
resolution of the model increases. Moreover, input data is usually not 
available at such high levels of resolution, so a better resolution of the 
model itself may not lead to better results [13]. 

Examples of the time horizon might include a day, a year, a decade, 
or the lifespan of the components used in the energy system [12]. 
Optimization models at the district level typically cover at least one full 
year. 

Sectoral coverage describes which energy sectors are included in 

Fig. 2. Methodologies of optimization, forecasting and back-casting.  
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the model. These energy sectors typically include electricity, heating 
(district heating, low exergy networks, hot water), cooling, fossil re-
sources, and commodities. 

Possible demand sectors include the residential and commercial 
building sectors, industry, agriculture [22] and transport [12]. Models 
of mixed-use districts should incorporate at least two of these sectors. 

Technical coverage refers to the specific technologies applied. 
Optimization models at the district level generally take into consider-
ation solutions such as decentralized energy supply from combined heat 
and power plants (CHP), the renewable technologies of solar thermal 
plants, photovoltaics and heat pumps, and various types of heat and 
electricity storage methods, as well as boilers for heat supply. Occa-
sionally, other technologies such as small hydropower plants [64], wind 
turbines [55,66], biomass boilers [54] and diesel engines [28] are also 
incorporated into models. 

Demand side management comprises all measures on the con-
sumer side of an energy system. They are typically intended to increase 
the energy efficiency of the system [83]. Measures may range from 
renovation (e.g. the installation of well-insulated windows) to 
demand-response measures (such as shifting energy demands from pe-
riods with high demand to periods with energy surpluses) [22]. Such 
measures can be especially helpful to balance the volatile production 
rates of renewable energy systems. They may be supplemented by en-
ergy storage facilities [22]. Only a very few studies have incorporated 
renovation measures into optimization models at the district level. One 
exception was a study by Falke et al. which dealt with the question of 
whether renovation measures in buildings could be an alternative to 
investment in new generation units [59]. Demand response has also 
taken on new importance in recent years, especially with the emerging 
application of artificial intelligence (see the section on mathematical 
approaches below). Kampelis et al. [51], for instance, developed an 
optimization approach for buildings and districts using 
demand-response measures in connection with artificial intelligence, 
and came to the conclusion that such measures could lead to cost savings 

of up to 15%. 
Especially in long-term analyses, some of the properties of an energy 

system may change over the defined time horizon. In addition to 
changes in costs and components used, changes in behavior among 
residents could have profound effects on the demand side. Changes in 
system properties can be included in optimization models if the models 
include some kind of forecasting abilities. In current models, changes in 
system properties is only considered occasionally. 

Additional properties of a model may, for instance, provide infor-
mation about various cost aspects in the model [22] or how uncertainty 
and risk is treated [12]. 

3.4. Analytical Approaches 

We can classify the analytical approaches that models of energy 
systems can take into three categories:  

• Bottom-up models,  
• Top-down models, and  
• Hybrid models. 

The first two are depicted in Fig. 3. In a bottom-up approach, several 
subsystems are modeled, and then these are merged onto an overlying 
system. Assembling the whole system from the bottom to the top makes 
it possible to create a model with a high level of technological detail, 
which allows for the evaluation of a wide range of technical options 
[84]. However, investment and cost aspects are usually limited to the 
technologies specifically included in the model. This leads to a lack of 
attention to macroeconomic interactions between the energy sector and 
other economic sectors. For example, changes in consumer behavior due 
to cost changes are hard to estimate [18]. Bottom-up energy system 
models are mainly used to identify technologies suitable for certain 
applications [84]. They are traditionally employed in the field of engi-
neering [85], and are also known as techno-economic models [8]. 

The process of building a model with a top-down approach starts 
with a general overview of the entire system, and becomes more detailed 
by splitting the whole system into subsystems. Such models usually 
include the whole economy but take into account fewer technological 
details [18]. To compensate for this lack of detail, models often use 
historical parameters to estimate future system behaviors, which may 
cause imprecise results [84]. This approach is traditionally used for 
economic investigations (e.g. for the prediction of future energy de-
mands, or conditional on macroeconomic interactions [8,18]) and is 
also known as the macroeconomic approach [8]. 

Hybrid models are created by linking a top-down model with a 
bottom-up one, combining the advantages of both approaches [8,12]. 
Despite the additional effort needed to apply this approach, more and 
more energy system models are based on hybrid approaches [8,18]. 

For the technical optimization of the holistic MES of urban districts, a 
modeling with high technical detail is mandatory. Such technical detail 
can only be guaranteed if the technical properties of various components 
are mapped in detail and then combined into an overall system. 
Therefore, models usually employ bottom-up approaches, and less often 
hybrid approaches. Top-down models are normally not applied for this 
purpose. Petrovic and Karlsson [57], for instance, implemented a model 
with the TIMES model generator, using the bottom-up approach. They 
investigated the role of heat pumps in residential energy systems to 
achieve Denmark’s energy policy targets. They found that heat pumps in 
Denmark could supply 24–28% of total heat demand. On the other hand, 
they also determined that the energy targets could be met without using 
heat pumps at all. This would, however, increase total costs by 16%. 

3.5. Mathematical Approaches 

Different models take different mathematical or rather computa-
tional approaches as well. The most common include the following: 

Table 1 
Applications of different temporal resolutions.a.  

Temporal 
Resolution 

System Issues Applications 

ms → s  - Generator dynamics - Stability management  
- Motor load dynamics - Power-frequency 

regulation  
- Demand variation  

min → 1 h  - Power interchanges - Economic dispatch  
- Maintain economic 
operation 

- Generation control  

- Frequent control - Power flow  
- Hourly generation planning - Security analysis   

- Fault analysis   
- Voltage stability studies 

h → 1 week  - Weekly generation planning - Demand   
- Weather prediction   
- Unit commitment    

weeks → months  - Seasonal generation 
planning 

- Demand prediction   

- Maintenance planning   
- Hydro planning   
- Fuel planning 

Years - Demand growth - Generation expansion 
planning  

- Plant Retirement/ 
refurbishment 

- Reliability checks  

- Investment opportunities - Scenario analysis  
- Long-term hydrological 
cycles 

- Production cost modeling  

a Reprinted from Energy, 35/12, A.M. Foley, B⋅P.Ó. Gallachóir, J. Hur, R. 
Baldick, E.J. McKeogh, A strategic review of electricity systems models, pp. 
4522–30, Copyright (2010), with permission from Elsevier [11]. 
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• Linear programming,  
• Dynamic programming,  
• Mixed-integer programming,  
• Stochastic programming, and  
• Artificial intelligence approaches. 

With the use of linear programming (Fig. 4 a), system behavior is 
described by linear mathematical functions, which in turn are summa-
rized in an objective function. The model result is reached, for example, 
by finding and identifying the minimum or maximum of the objective 

function. Linear optimization models have a long history in energy 
system modeling [13,86], and are frequently used for the optimization 
of MES at the district level. Linear programming approaches are 
straightforward to apply. However, they are only appropriate in cases 
when all system relations can be thoroughly described with linear 
functions [87]. 

Non-linear relations either have to be linearized (Shao et al. for 
instance, transformed dynamic energy demands into piecewise-linear 
functions [88]) or instead treated with dynamic programming 
(Fig. 4 c). This is an algorithmic approach to solving problems by 

Fig. 3. Principle of bottom-up and top-down approaches.  

Fig. 4. Linear programming (a), linear mixed-integer programming (b), dynamic programming (c) and dynamic mixed-integer programming (d).  
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splitting them into sub-problems and systematically storing intermedi-
ate results. The subsequent combination of the intermediate results 
yields an overall solution [89]. 

Mixed-integer programming (MIP, Fig. 4 b, d) is a particular type 
of the three approaches mentioned above, but only allows outcomes 
with integer values [22,87]. These are useful in cases when it is helpful 
to identify an integer number, such as the ideal number of power plants, 
or storage facilities with predefined capacities. 

The differences between linear and dynamic programming, as well as 
the differences between MIP and non-MIP are illustrated with a 
simplified example in Fig. 4. For example, the target values could be the 
point of intersection of the functions, or the minimum or maximum of 
the sum of the functions. Depending on the type of programming, these 
points would be different. For MIP functions, there is a limited number 
of solutions (represented by blocks), while for non-MIP functions, an 
infinite number of solutions is theoretically possible. 

Stochastic programming approaches are linear and dynamic pro-
gramming approaches that are not limited to the use of fixed parameter 
sets. Imprecisions in parameters and functions are coded into probabi-
listic elements, which in turn allow the generation of uncertainty esti-
mates of the model output [11]. 

Artificial intelligence approaches are even further advanced and 
more complex approaches. Here, not only the imprecision of properties, 
but even a change of properties within a given time horizon is detected 
or predicted by the model itself. A decisive advantage of artificial in-
telligence is that it is fault-tolerant and can therefore also work with 
noisy or incomplete data. In addition, it is capable of working faster than 
conventional algorithms [19]. In addition, the results obtained from 
artificial intelligence can contribute to deeper understanding of the 
system. The implementation of artificial intelligence, however, is much 
more complicated than that of conventional optimization algorithms, 
and requires in-depth programming knowledge, especially as the num-
ber of parameters increases [20]. An additional challenge is that pre-
vious solved scenarios must be available and known to train the artificial 
intelligence [20,24]. Artificial intelligence approaches are based on 
fuzzy logic [12,24], agent-based programming [12], particle swarm 
optimization [20], genetic algorithms, or neural networks [24]. 

Mixed-integer programming is the approach most commonly used 
for the optimization of MES at the district level, while dynamic ap-
proaches are used less frequently. Artificial intelligence has only been 
used quite rarely so far, but has begun to receive more and more 
attention recently. Stochastic programming is used occasionally. Morvaj 
et al. [58], for instance, implemented a model using linear MIP to 
optimize district heating layouts. They identified measures to reduce the 
system’s CO2 emissions by 23% without any increase in costs. Stochastic 
models can also be used to determine how reliable an energy system 
would be under emergency conditions, as Najafi et al. [90] have done. 
Reynolds et al. [43] used artificial neural networks and genetic algo-
rithms to predict multiple variables and to optimize operating schedules 
of heat generation units, thermal storage units, and heating set points. 
The optimization would allow a 45% increase in profit compared to a 
rule-based, priority-order baseline strategy. Schwarz et al. [45] used a 
stochastic linear MIP approach to support investment decision-making 
for technologies with unstable energy generation (photovoltaics and 
heat pumps) in a residential area. They predicted the required capacities 
of generation and storage to ensure reliable power supply under various 
probability and risk scenarios. 

3.6. Reusability 

Depending on their availability and reusability, it can be differenti-
ated between models and modeling tools (model generators and 
frameworks) that are.  

• Open and  
• Closed [7]. 

Open models and modeling tools are characterized by the public 
accessibility of their source code, their underlying assumptions, and the 
data they use [7]. Closed models and modeling tools, on the other hand, 
do not publish their code or underlying assumptions [7]. Their use may 
be subject to fees, or even completely confidential [7]. The large ma-
jority of energy system models, model generators, and frameworks are 
closed. In light of calls for greater transparency and reusability of pub-
licly funded research in Europe [90], there has been an increasing 
number of open models and modeling tools over the past few years [21]. 

In addition to motivations based on market strategies and economic 
considerations to keep commercially developed models and modeling 
tools closed, Pfenninger et al. [21] mentioned four reasons why models 
and modeling tools often remain closed. (1) Models and modeling tools 
may contain sensitive commercial data or personal information, which 
is not permitted for public disclosure. (2) The release of a code carries a 
risk that other researchers could expose flawed code sections or erro-
neous data and thus discredit the results. (3) The writing of legible and 
reusable codes as well as comprehensible documentation and bug re-
ports is time-consuming. Not everyone is willing to invest this time. (4) 
The hesitation among individuals or institutions may also be a cause for 
failing to open models and their results. 

Pfenninger et al. [21] also put forth four reasons why models and 
modeling tools should be published openly. (1) The fundamental sci-
entific principles of transparency, peer review, reproducibility and 
traceability can only be guaranteed if data, methodology and results are 
openly accessible [21,92]. (2) Policymakers often have to fall back on 
models that are not quality-assured with academic practice or that 
provide incorrect results. With increasing transparency in energy system 
research, policymakers will gain access to more high-quality informa-
tion [21]. (3) Research funding and researchers’ time are limited re-
sources. A great deal of time and money can be saved by avoiding 
duplication of work [21]. (4) The transparency of arguments based on 
scientific justifications are necessary in social and political debates [93]. 
Furthermore, the full results of publicly funded research should be 
available to the public. 

3.7. Challenges 

There seem to be six major challenges in the field of energy system 
modeling at present:  

• Closed models and modeling tools,  
• Data quality and transparency,  
• Unreliable assumptions,  
• Complexity,  
• Conflicting interests, and  
• The need for coding. 

The high share of closed models and modeling tools generally 
hinders progress in energy system modeling. Data with high quality and 
with a sufficient temporal resolution are indispensable for the produc-
tion of high-quality model results. Often, data to feed the models is not 
available, and often, the quality of the data is poor. Even in cases when 
data meeting the requirements exists, a lack of transparency and 
accessibility (arising for various reasons) are real problems [13]. 
Moreover, models are often based on assumptions that turn out to be 
more or less uncertain. Dealing with this uncertainty can be a challenge. 
Barely predictable power production from renewable energy systems 
[14] as well as human behavior, especially feedback between consumer 
behavior and policy decisions, introduce significant uncertainty into 
model codes and results [13]. 

The complexity of energy system models is increasing due to 
increasing geographic coverage, temporal resolution, and time horizons, 
as well as increasing numbers of relevant economic sectors and tech-
nologies. This in turn results in a drastic increase in the effort as well as 
the computing resources required from the modeler. To limit the need 
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for those resources at acceptable levels, researchers need to strike 
compromises between the time and energy put into a model, the 
computing time necessary, and the informative value of the results [94]. 

Different stakeholders of energy system modeling may also have 
conflicting interests, which cannot be met within a single model. 
Therefore, models often represent tradeoffs, trying to combine various 
objectives, but yielding non-optimal results for any single stakeholder 
[16]. Policymakers could, for instance, aim to reduce costs (financial 
criteria), while local residents might instead focus on social or envi-
ronmental criteria. 

Energy system models are usually coded models, which means that 
even if researchers are working with model generators or frameworks, 
they can only take full advantage of energy system models if they have 
coding skills. To bring energy system models into widespread use among 
the public, it will be crucial to develop intuitive operable application 
surfaces (e.g. graphical user interfaces or spreadsheet/GIS (geographical 
information system) based applications). 

All of these problems and challenges are relevant for the optimiza-
tion of MES in mixed-use districts. Specific problems could, for instance, 
include a lack of high-quality load profiles, unreliable assumptions 
about future consumer behavior, increased complexity due to the in-
clusion of several economic sectors in the MES, or contradictory re-
quirements for assessment criteria from policymakers or residents. The 
need for coding is also an obstacle to getting public officials to use 
models or modeling tools. 

4. Existing modeling tools 

The analysis of several reviews that discussed existing modeling tools 
[12,14,22,36–41] as well as an additional online search revealed a total 
of 145 energy system modeling tools. Not all of them were suitable for 
the optimization of MES in mixed-use districts. Based on our hitherto 
analysis and applying careful evaluation, we applied a cascade of 
criteria, to filter out the relatively small number of suitable modeling 
tools (Fig. 5): 

1) In general, the area of application of a given tool has to be an en-
ergy system as it was defined at the beginning of this paper. 

Furthermore, the tool has to be useable for more than one such en-
ergy system.  

2) The applied methodology has to include some kind of optimization.  
3) A city district needs to be geographically coverable.  
4) For the analysis of MES, sectoral coverage should include at least 

the electricity and heat sectors. To take mixed use into account, at 
least two different demand sectors have to be included.  

5) The temporal resolution must generate at least hourly time steps. 

Fig. 5 shows how many tools were filtered out in each step. After 
applying all criteria, only 13 modeling tools were suitable for optimizing 
MES in mixed-use districts. These are listed in Table 2 with some of their 
properties. Table 3 lists the tools we filtered out, together with the 
criteria that lead to their exclusion. 

In total, 132 of the 145 modeling tools analyzed here were not 
suitable for the optimization of MES in mixed-use districts. A total of 12 
tools were designed for another area of application; 39 tools did not 
include any methodology of optimization; 44 tools were designed for 
either undersized or oversized geographic coverage (e.g. buildings, na-
tions), 20 tools did not allow the consideration of more than one energy 
sector or demand sector; and finally, 17 tools had insufficient temporal 
resolution. Depending on the specific requirements for the envisaged 
application of a modeling tool, even more optional exclusion criteria 
may be necessary. If, for instance, assessment criteria other than 
financial criteria should be incorporated, only four tools are suitable 
(EnergyPLAN, eTransport, oemof, urbs). Note that five of the 13 suitable 
models come with an open source license. Two additional models are 
freely accessible. Six models are commercial, but none of the suitable 
models are completely inaccessible. Two tools (oemof, urbs) are avail-
able with an open source license and, at the same time, integrate various 
assessment criteria – in addition to financial ones. Overall, there are 
suitable tools, but only a small number of them. There is an inherent risk 
in a small number of suitable tools: there are hardly any possibilities to 
compare model outputs with each other, and thus both errors and po-
tential for improvement are difficult to detect. 

The “Open Energy Modeling Framework” (oemof) is a community- 
operated open-source modeling framework for the analysis and opti-
mization of energy supply systems. It is designed as a modular python 
library consisting of a set of sub-libraries [123]. Examples of these 
sub-libraries include “oemof.solph”, which can be used to describe en-
ergy systems on the basis of mathematical graph theory, “oemof. 
demandlib”, which simulates consumers on the basis of standard load 
profiles, and “oemof.feedinlib”, which enables the modeling of renew-
able energy systems such as photovoltaic and wind power plants [123]. 
The community continuously develops new modules. The flexible 
modeling approach makes it possible to apply any geographical or 
temporal resolution and coverage; any energy or demand sector, and a 
variety of assessment criteria. 

The modeling tool “urbs” focuses on energy systems that have a high 
proportion of renewables [189]. It was originally developed for the 
optimization of urban energy systems, but researchers have also 
employed it for continent-wide energy systems [189]. The tool was also 
developed in python and has a modular structure [134]. However, un-
like oemof, the application does not require the use of a programming 
language. The model implementation takes place by entering spread-
sheet files [134]. Financial costs and CO2 emissions can be applied as 
assessment criteria. 

All in all, oemof offers more sub-modules, and its flexible modeling 
approach makes it more accurate and versatile. On the other hand, urbs 
has a lower entry hurdle because there is no need to apply programming 
skills. 

5. Conclusion 

Energy systems of urban district are mixed-use multi-energy systems 
(MES). They include several energy sectors, such as electricity and heat, 

Fig. 5. Filtering of energy system modeling tools by applying the requirement 
for their suitability of optimizing multi-energy systems in mixed-use districts. 
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and various consumption sectors, such as housing, industry and agri-
culture. Not least because of the structural change in the European en-
ergy system, the energy systems of city districts have become the focus 
of many planning activities. To meet the resulting challenges, tools for 
modeling and optimizing the energy systems of urban districts are 
needed. Although various studies have looked at increasing the energy 
efficiency of urban districts, or the development of general energy sys-
tem modeling approaches in general, there is a lack of studies dealing 
with modeling tools for exactly this purpose. 

To be suitable for the optimization of MES of mixed-use districts, 
modeling tools must be able to apply an optimization methodology. 
They have to address multiple energy and demand sectors, and operate 
with an at least hourly temporal resolution. Moreover, they have to 
follow a bottom-up or hybrid analytical approach. As the analysis pre-
sented in this article has shown, only 13 out of a total of 145 modeling 
tools meet these requirements. The other 132 tools where either created 
for another area of application (12 tools), used a different methodology 
(39 tools), were unable to consider the geographic coverage of city 
districts (44 tools), did not include enough energy and demand sectors 
(20 tools), or worked with overly low temporal resolution (17 tools). 

We are fully aware that a direct comparison of the modeling tools 
presented here using a representative MES from a mixed-use district 
would be interesting. All 13 modeling tools meeting the requirements 

should be compared to each other. However, Connolly et al. have shown 
in their review [39] that the individual training time for each modeling 
tool is usually several weeks or even months. Therefore, carrying out 
such a comparison is outside the scope of this contribution. If readers are 
familiar with one or more of these tools, we would welcome the op-
portunity for a forthright joint study. 

Going further and adding optional criteria such as the ability to use 
non-financial assessment criteria and open source availability, only two 
of the original 145 tools are suitable. Accordingly, oemof and urbs stand 
out from the crowd here. 

Challenges in the field of energy system modeling, and therefore 
presumable reasons why the availability of models and modeling tools 
for urban districts are lacking, include the limited accessibility of sup-
porting data as well as generally poor data quality. Another challenge is 
the need to find compromises between the preferably large system’s 
complexity on the one hand, and the resources needed for coding and 
computing on the other. Conflicting interests among various stake-
holders often produce difficulties as well. In our view, the lack of 
transparency is an avoidable problem. Existing databases and modeling 
approaches should be kept open. This would save time and effort, and 
eventually lead to a higher quality of energy system models. Fortu-
nately, a significant share of the models analyzed in this review are 
available with an open source license or are at least freely accessible. 

Table 3 
Modeling tools that were not suitable for the optimization of multi-energy systems of mixed-use districts.  

Exclusion Criterion Tools   

area of application BALMOREL [12,14,22,136–139] Neplan [36,140] ProdRisk [12,22]  
BESOM [14] NetSim [36,144] renpassG!S [21,22,141–143]  
Emcas [12,39] ORCED [12,39] SynCity [36,146]  
HYDROGEMS [12,39] PLEXOS [11,12,22,148–150] Termis [36,147] 

methodology AEOLIUS [12,39] GridLAB-D [22] Mesap PlaNet [12,39,151]  
ARES [40,41] H2RES [12,39,152,153] MEU [36,154]  
AURORAxmp [22] HYBRID 2 [40,41,155] OPENDSS [22]  
CASPOC [22] HYBRIDS [41] RAPSim [22]  
CIMS [14] HybSim [40,41,156] SAM [22]  
COMPOSE [12,22] HySys [41] SIMPOW [22]  
CYME [22] INFORSE [12,39] SIREN [22]  
DESSTinEE [22] INSEL [41,157] sivael [12,37,39]  
DIgSILENT/Power Factory [22] INVERT/EE-Lab [12,22] SOLSIM [40,41]  
Dymola/Modelica [41,94] IPSA 2 [22] TRNSYS [41]  
DynEMo [12,14] IPSYS [40,41] UKENVI [12]  
EMLab-Generation [22] LOADMATCH [22] UMI [36,158]  
ETM (2) [22] MDM-E3 [12] WEM [22] 

geographic coverage BCHP Screening Tool [39] IDA ICE [36] SCOPE [14,159,160] 
(too small) CitySim [36,161] KULeuven IDEAS lib [36] TRNSYS18 [22,36,162]  

EnergyPlus [36,163] LBNL District lib [36]   
ESP-r [36] Polysun [36,164]  

geographic coverage COMPETES [22] GEM-E3 [12,22] REMix [14,22,165–170] 
(too big) DIETER [22] GENESYS [22] REMod-D [14,171–174]  

DSIM [12] IMAKUS [22] SAGE [12,119]  
EMMA [22] LIBEMOD [22] SimRen [12,39]  
EMPIRE [22] LIMES-EU [22] stELMOD [22]  
EMPS [12,39] LUSYM [22] Stream [12,37,39]  
Eneertile [22] MiniCAM [12,39] WASP [12]  
ESME [12,14] NEMO [22] WeSIM [22]  
ETM [1,22] PERSEUS [12,39] WILMAR [12,39]  
ETSAP-TIAM [12,22] POLES [12,22] WITCH [22]  
EUCAD [22] RAMSES [12,39]   
EUPower-Dispatch [22] REMIND [22]  

sectoral coverage CEA [61,175] Hybrid Designer [40,41] PowerGAMA [22]  
DECC DDM [12] HYPERSIM [22] PyPSA [22,176–179]  
DIMOSIM [50] iGRHYSO [40,41] ReDS [22]  
EMPS [12,22,40,180] iHOGA [22,40,41,181–183] SOLSTOR [40,41]  
EnerGis [12,36,184] IRiE [22] SOMES [40,41]  
ENTIGRIS [22] NEMS [12] SWITCH [22]  
GTMax [12,39] OSEMoSYS [12,14,22]  

temporal resolution DECC 2050 calculator [12] IKARUS [12,14,185–188] REMIND-D [14]  
E3MG [12] LEAP [12,14,22] RETSCreen [12,22,36,40,41]  
E4cast [12,14] MESSAGE [12,14,22] SNOW [22]  
EMINENT [12,39] MESSAGE-III [12] TESOM [14]  
ENPEP-BALANCE [12,14] NEMS [14,22] UniSyD3 [12,39]  
GCAM [12,22] PRIMES [12,14,22]   
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One problem in the literature on the topic of energy system modeling 
is the occasional contradictory use of terminology. For instance, the 
terms of “model” and “model generator” are frequently mixed up. While 
a “model” in our context is a simplified representation of a real world’s 
energy system, a “model generator” is a tool that creates a model with 
predefined properties. Moreover, the term “simulation” is generally used 
for forecasting a model’s behavior in a future scenario. Since “simula-
tion” also takes place in optimization and back-casting operations, the 
use of the term is indeed misleading. To avoid misunderstandings, 
“forecasting” should be used instead when describing future scenarios. 

In sum, there is a lack of tools for the modeling and optimization of 
MES in mixed-use districts. This is especially the case when optional 
criteria such as non-financial optimization and open source availability 
are required. Such a small number of suitable tools carries the risk that 
modeling results cannot be compared with each other, and thus errors as 
well as potential ways to improve the model are difficult to detect. 
Nevertheless, the availability of at least two tools shows that there is 
research and development in the area under consideration, although a 
wider variety would be desirable. 
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[70] Hofer G, Leutgöb K, Amann S, Bormes Y, Eder M, Rainer E, et al. Smart Services 
für ressourcenoptimierte urbane Energiesysteme von Stadtteilen. Wien: E7 
Energy Markt Analyse GmbH; 2015. 

[71] Wouters C, Fraga ES, James AM. An energy integrated, multi-microgrid, MILP 
(mixed-integer linear programming) approach for residential distributed energy 
system planning – a south Australian case-study. Energy 2015;85:30–44. 

[72] Xu X, Jia H, Chiang H-D, Yu D, Wang D. Dynamic modeling and interaction of 
hybrid natural gas and electricity supply system in microgrid. IEEE Trans Power 
Syst 2014;30:1212–21. 

[73] Rahman H, Majid M, Jordehi A, Gan C, Hassan M, Fadhl S. Operation and control 
strategies of integrated distributed energy resources: a review. Renewable and 
Sustainable Energy Reviews. 2015. p. 1412–20. 

[74] Robinson J. Energy backcasting – a proposed method of policy analysis. Energy 
Pol 1982;10:337–44. 

[75] Bakken BH, Skjelbred HI, Wolfgang O. eTransport: investment planning in energy 
supply systems with multiple energy carriers. Energy 2007;32:1676–89. 

[76] (WEC) WEC. World energy insights brief – global energy scenarios comparison 
review. London: World Energy Council; 2019. 

[77] Diaf S, Notton G, Belhamel M, Haddadi M, Louche A. Design and techno- 
economical optimization for hybrid pv/wind system under various 
meteorological conditions. Appl Energy 2008;85:968–87. 

[79] Energetische Amortisationszeiten bei solarthermischen Großanlagen. 2004. 
http://fgnet.hs-offenburg.de/uploads/tx_mflitlist/energetische_amortisation_otti_01. 
pdf. [Accessed 8 June 2020]. 

[80] VDI-Gesellschaft Energie und Umwelt. VDI 4600 – Kumulierter Energieaufwand 
(KEA)– Begriffe, Berechnungsmethode. Verein Deutscher Ingenieure 2012. 

[81] Celik AN. Techno-economic analysis of autonomous PV-wind hybrid energy 
systems using different sizing methods. Energy Convers Manag 2003;44:1951–68. 

[82] Drake F-D. Kumulierte treibhausgasemissionen zukünftiger energiesysteme. 
Springer-Verlag; 2013. 

[83] Palensky P, Dietrich D. Demand side management: demand response, intelligent 
energy systems, and smart loads. IEEE Transactions on Industrial Informatics 
2011;7:381–8. 

[84] Jacobsen HK. Integrating the bottom-up and top-down approach of energy- 
economy modelling: the case of Denmark. Energy Econ 1998;20:443–61. 

[85] Scrieciu S, Rezai A, Mechler R. On the economic foundations of green growth 
discourses: the case of climate change mitigation and macroeconomic dynamics 
in economic modeling. WIREs Energy Environ 2013;2:251–68. 

[86] Dantzig G, Thapa M. Linear programming 1. New York: Springer-Verlag; 1997. 
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[186] Martinsen D, Krey V, Markewitz P, Vögele S. A new dynamical bottom-up energy 
model for Germany – model structure and model results. IAEE Proceedings 2004: 
1–3. 
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suboptimal or even unrealistic scenarios in practice. Therefore, multi-criteria approaches should be used to enable a 
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Conclusion: We recommend multi-criteria optimization approaches using the indicators of absolute greenhouse gas 
emissions, absolute energy costs, and absolute energy demand. For benchmarking and comparison purposes, specific 
indicators should be used and therefore related to the final energy demand, respectively, the number of inhabitants. 
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Background
Introduction
Urban energy systems are the “combined process of 
acquiring and using energy in a given” [1] spatial entity 
with a high density and differentiation of residents, 
buildings, commercial sectors, infrastructure [2], and 
energy sectors (e.g., heat, electricity, fuels) [3]. They are 
also called mixed-used multi-energy systems. It is often 
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challenging to clearly define spatial boundaries of urban 
energy systems. An often-used approach is to use legally 
defined city districts as balance entities.

The complexity of these systems, combined with the 
fact that urban energy systems are responsible for 75% of 
global energy consumption and 70% of worldwide green-
house gas (GHG) emissions [4], results in the need for a 
profound transformation of urban energy systems. Dif-
ferent goals and strategies are discussed with respect to 
various sustainability aspects.

The most prominent goal is the fulfillment of national 
and international climate neutrality goals and thus the 
mitigation of GHG emissions [5–7]. Further widespread 
goals with respect to urban energy systems are the mini-
mization of energy supply costs [5, 7], the non-use of fos-
sil fuels [7], and the increase in regional value added [8]. 
The objectives of network access and security of supply 
[5, 7] are regarded as basic requirements of well-func-
tioning urban energy systems.

Energy system models (ESM) are important tools for 
the design and optimization of existing or newly planned 
urban energy systems [9]. Various suitable indicators 
need to be identified in order to address a variety of sus-
tainability aspects. These indicators can be used as tar-
get variables in optimization models. By mathematically 
minimizing or maximizing them [10, 11], sustainable 
urban energy systems can be designed.

In addition to being used for optimization purposes, 
indicators can also be used for benchmarking and com-
parison purposes. The broad application of a set of uni-
form indicators to a large number of different urban 
energy systems allows to identify structural problems 
(e.g., widespread use due to subsidies for less sustainable 
technologies) that can be remedied by national and inter-
national regulations.

We are oriented towards the three energy sustainabil-
ity strategies of energy efficiency, energy sufficiency and 
energy consistency [12, 13], for the identification of suit-
able indicators to be applied in ESM. Particularly with 
the focus on climate neutrality objectives, it is advisable 
to thoroughly explore all existing options to mitigate 
climate change. This includes focusing not only on con-
sistency, but also to examine efficiency and sufficiency 
demand-side solutions and their potential contribution 
[14]. Efficiency aims at the provision of the same ser-
vice with lower input, thus a relative reduction of energy 
demands (final, secondary, primary), material goods, or 
financial values by technical means [15, 16]. Sufficiency 
aims at a reduction of energy service demand (e.g. lower 
room heat) which results in an absolute reduction of 
final energy demand and consequently lower resource 
demand [15, 17], and consistency describes the quality of 
the energy source [12]. These three strategies are no ends 

in themselves but different strategies to reach sustain-
ability objectives. Both demand-side strategies, efficiency 
and sufficiency aim at a reduction of energy demand, yet 
their approaches differ substantially from each other, and 
both have their own specific advantages and drawbacks 
[18, 19]. Overall, each of the three sustainability strate-
gies covers different aspects, and taking all of them into 
account leads to a broad and manifold picture of urban 
energy system optimization. We therefore use the cat-
egories of efficiency, sufficiency, and consistency, as 
orientation for the indicator search for a broad and com-
prehensive perspective.

While there are a number of different indicators for 
measuring and evaluating the efficiency of energy sys-
tems (e.g., [16, 20–22]), only few indicators for suffi-
ciency and consistency are described in the literature (see 
"Sustainability of urban energy systems").

The majority of energy system models for the optimi-
zation of urban energy systems work single-criterial [23], 
using either economic (e.g., least costs) or environmental 
(e.g., least GHG emissions) indicators as target variables 
[24]. In light of the multitude of goals and challenges with 
regard to the optimization of urban energy systems, it is 
questionable whether this single-indicator optimization 
leads to satisfactory or sustainable solutions. Indicators 
representing more than one goal or multi-criteria opti-
mization could support a more balanced optimization 
between different goals.

There are also multi-objective models, for instance, the 
studies by Rieder et. al [25], Sugihara et al. [26], Karmel-
los and Mavrotas [27], Fonseca et al. [28], and Jing et al. 
[29]. Usually, an indicator for minimizing system costs 
(cf. Eq. 5) and an indicator for reducing greenhouse gas 
emissions (cf. Eq. 4) are applied as optimization criteria. 
In some cases, third indicators, such as primary energy 
efficiency ([26], cf. Eq.  2), or degree of self-sufficiency 
([28], cf. Eq. 10) are complemented.

Mostly, the selected indicators are set but not further 
evaluated for their suitability, or whether there are bet-
ter suited indicators. Within this article, we will close 
this gap for the specific case of optimization of urban 
energy systems. Therefore, existing indicators for urban 
energy system optimization are evaluated, and new ones 
proposed (see "Sustainability of urban energy systems"). 
These indicators are then tested for their applicability in 
energy system modeling. Four different energy supply 
scenarios are modeled to evaluate the suitability of the 
new indicators in energy system models (see "Methods: 
single-criterion simulation" and "Results: single-criterion 
simulation"). The scenarios include the imports of energy 
(scenario 1), renewable energy technologies (scenario 2), 
sector-coupling technologies (scenario 3), and demand 
reduction (scenario 4). Subsequently, possibilities to 
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combine the most suitable indicators using multi-criteria 
optimization approaches are presented (see "Methods: 
multi-objective optimization"). Finally, indicator usage 
including shortcomings and advantages are discussed 
and conclusions are drawn.

Sustainability of urban energy systems
Definitions
Energy is a fundamental physical quantity. However, 
when talking about energy systems, we tend to mean 
the production of “desired energy services, rather than 
[energy] as an end in itself” [30]. It is important to dis-
tinguish between the different forms of energy (primary 
energy (PE), secondary energy (SE), final energy (FE), 
and effective energy (EE)), as well as between direct 
and cumulative energy demands (CED). The use of dif-
ferent terms of “energy” will lead to considerably vary-
ing results during the assessment process [31]. Within 
this contribution we refer to the definitions of energy 
terms from the VDI 4600 directive (“Cumulative energy 
demand  —  terms, definitions, methods of calculation”) 
[32].

We define the energy balance boundary for the conver-
sion processes to be considered in urban energy systems 
as all conversion processes up to final energy. Further 
transformations from final energy into effective energy 
take place within subsystems of buildings or plants. 
Although these subsystems are, strictly speaking, part of 
the urban energy system, they are also complex systems 
in their own, the interrelationships of which lie outside 
the scope of research on holistic urban energy systems 
[31]. When applying methods of energy system mod-
eling, such delimitations and simplifications of system 
complexity are necessary in order to minimize the input 
effort for the modeler as well as the computational effort 
[33].

Energy sustainability: An energy system is considered 
sustainable if its negative impact on the society, environ-
ment, and economy is within the scope of the respective 
capacities [34]. Energy sustainability can be achieved 
by the three strategies of energy efficiency, energy suffi-
ciency and energy consistency [12, 13].

Energy efficiency aims at improving the input–output 
ratio of an energy system. It can be increased either by 
the reduction of the resource or energy input while main-
taining the same energy service, or by the increase of the 
service with the same input [15].

Energy sufficiency aims at the absolute reduction of 
energy consumption through social innovations and 
behavioral changes [12]. An energy system is considered to 
be sufficient when just as much energy is consumed as is 
“enough for a particular purpose” [17]. Sufficiency therefore 

does not aim at reducing absolute energy consumption to 
zero, but at limiting or reducing it to a sustainable level 
[15]. Part of the literature also argue for not only upper, but 
also lower limits to reach a sustainable level of energy ser-
vice demand, referred to as “enoughness” [35, 36]. A level of 
“enoughness” avoids excess, especially regarding planetary 
boundaries but still ensures a good life [37].

In some cases, the term “energy conservation” is used 
synonymous with “energy sufficiency” [38]. However, since 
“energy conservation” is mostly used to refer to efficiency-
based measures [39], we will use the term “energy suffi-
ciency” in the following.

Energy consistency makes a qualitative assessment of 
production patterns of supplied energy [40]. Often, this 
is understood as the distinction between renewable and 
non-renewable primary energy sources [12]. However, also 
any aspects referring to the origin of supplied energy may 
be assessed. For example, where or with the help of which 
renewable technology energy is provided.

Sustainability aspects of urban energy system optimi-
zation in ESM: In order to limit the complexity of energy 
sustainability to a level which can be handled by ESM, 
this contribution will be limited to technical, economical 
and particular environmental aspects of an energy system, 
which have regional (e.g., regional value, energy supply 
costs) or global (e.g., climate neutrality, non-use of fossil 
fuels) impact. Regarding environmental aspects, GHG are 
the main aspect considered. As an aside, we will discuss to 
which extent other environmental aspects like local emis-
sions or resource usage could be directly or indirectly cov-
ered by indicators applicable in ESM. We consider security 
of supply as a basic prerequisite. Furthermore, the studies 
in this paper are limited to the energy sectors of electric-
ity and heat and the residential, commercial and industry 
demand sectors.

Efficiency indicators for urban energy systems
Patterson [16] proposed to categorize indicators for the 
measurement of energy efficiency into:

• Thermodynamic indicators,
• Physical indicators,
• Physical–thermodynamic indicators,
• Economic–thermodynamic indicators, and
• Economic indicators.

Thermodynamic indicators (also denoted as “technical 
indicators” [41]) “rely entirely on measurements derived 
from the science of thermodynamics” [16], and express the 
ratio of useful energy output to the energy input [16]:
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Purely physical indicators have physical input/output 
values [16], for example the required amount of fuel per 
distance traveled by car (l/km or conversely km/l). Physi-
cal–thermodynamic indicators are hybrid indicators 
measuring inputs in thermodynamic values and outputs 
in physical ones, or vice versa. An example is the energy 
content per liter of fuel (kWh/l). As they are given in 
physical quantities they can be easily compared [16]. Eco-
nomic–thermodynamic indicators are hybrid indicators 
as well, in this case using thermodynamic and financial 
quantities [16], e.g. the price per energy unit (EUR/kWh). 
For purely economic indicators, both input and output are 
measured with financial units [16], for instance, invest-
ments per revenue (EUR/EUR).

For the classification into these terms, it is debatable if 
the quantity of energy (in J or Wh) is a physical or a ther-
modynamic term. In the following, it will be considered 
as thermodynamic quantity.

The primary energy efficiency PEE is a thermodynamic 
indicator, which is the inverse value of the primary 
energy factor PEF and thus calculated as the ratio of the 
system’s final energy demand FE over the cumulative 
energy demand CED [42, 43]:

The secondary energy efficiency SEE is a thermodynamic 
indicator as well. It is the ratio of the final energy demand 
over the secondary energy SE required for covering this 
demand [42]:

In contrast to secondary energy efficiency, the primary 
energy efficiency takes into account upstream chains and 
their efficiency levels, which usually lie outside an urban 
energy system. For example, different production chains 
of purchased electricity with different primary energy 
factors (e.g., electricity from renewable sources vs. elec-
tricity from fossil-fuel power plants [32]) are considered, 
even though the processes lie outside the urban area. The 
outsourcing of an inefficient power plant to a location 
outside and the subsequent import of the energy would 
lead to an improvement of the balance sheet of second-
ary energy efficiency, while the primary energy efficiency 
would not be affected. We thus consider the primary 
energy efficiency to be better suited to assess energy effi-
ciency of urban energy systems because it is a more holis-
tic approach.

(1)energy efficiency =
useful energy output

energy input

(2)PEE = PEF−1
=

FE

CED

(3)SEE = SEF−1
=

FE

SE

The specific GHG emissions m′
GHG

 are a physical–ther-
modynamic indicator, which relates the energy demand 
of the urban area to the related GHG emissions. However, 
this indicator is not used to calculate an input/output 
ratio (see Eq. 1), but an output/output ratio. Since GHG 
emissions should be minimized in order to avoid nega-
tive environmental impacts, we regard this indicator as 
an efficiency indicator. It is calculated as the ratio of the 
total GHG emissions mGHG to the final energy demand 
FE (Eq. 4) [44]. We recommend life cycle assessments for 
the determination of the caused GHG emissions:

Considering Eq.  1, the specific GHG emissions indica-
tor is, strictly speaking, the inverse value of an efficiency 
indicator. We believe that the use of this indicator (g/
kWh instead of kWh/g) is the more intuitive indicator, 
while it provides the same information content. Such 
inverse values are also regarded as efficiency indicators 
here and in the following.

For the use in optimization models, it may be appro-
priate to use absolute GHG emissions of an energy sys-
tem mGHG,es , instead of referring to a reference value. 
This simplifies the model, making it easier to use in ESM 
that are designed to minimize or maximize absolute val-
ues. A disadvantage is that the change of the final energy 
demand FE, for example by sufficiency measures, can 
influence the indicator, so that the indicator is no longer 
a pure efficiency indicator. For benchmarking and com-
parative purposes, a reference value should therefore cer-
tainly be applied.

The specific energy costs C ′ is an economic–thermody-
namic indicator, calculated from the total system costs 
(including all costs for investment and operation) C and 
the final energy demand FE (Eq. 5). For optimization pur-
poses the absolute cost of an energy system Ces may be 
considered (see above):

The energy productivity EP is also an economic–ther-
modynamic indicator and is calculated from the gross 
domestic product GDP and the final energy demand FE 
[45]:

The energy productivity is usually used to assess national 
energy systems, and its significance decreases the smaller 
the energy system under consideration is. For example, 
the energy productivity of the small country of Luxem-
bourg is strongly distorted by the strongly developed 

(4)m
′
GHG,FE =

mGHG

FE

(5)C
′
FE =

C

FE

(6)EP =
GDP

FE
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steel industry [46] and a high number of commuters and 
the resulting influences on the GDP [47]. Following anal-
ogous considerations, the suitability of this indicator for 
cities is doubtful.

In addition to the indicators mentioned, any other 
parameter can be divided by the discussed reference val-
ues, and thus be used as an energy efficiency indicator. In 
this way, other local emissions and resource requirements 
can also be included in ESM. Vera and Langlois [21] as 
well as Wang et al. [22], for example, list each about 30 
indicators, divided into technical, social, economic and 
ecological aspects. In the context of energy system mod-
eling, however, it is necessary to keep the number of indi-
cators manageable and thus to choose a few meaningful 
and comparable indicators.

Sufficiency indicators for urban energy systems
The sufficiency strategy aims at limiting energy consump-
tion to a sustainable level. There is no consensus of any 
value at which urban energy systems reach a state of 
sufficiency. There are, however, attempts to define such 
a level and apply them as indicator. One example is the 
Swiss 2000-Watt-certification standard for city districts 
[48]. Here, the primary energy demand including energy 
bound in building materials is related to the number of 
inhabitants [49] with the goal of reducing this value to 
2 000 Watt per inhabitant.

Such absolute limits for energy consumption to a sus-
tainable level may provide helpful orientation for the 
design and planning of urban energy systems. Deter-
mining those is, however, not only a complex research 
task on its own, but also requires a fair and detailed pro-
cess that takes different city and district structures into 
account. The 2000-Watt-standard is applied to residential 
districts only [49], probably because urban areas with dif-
ferent sectoral structures (e.g., industrial, commercial or 
residential consumers) can hardly be compared with each 
other. We thus do not define absolute values for this indi-
cator, but consider a reduction of energy demand gener-
ally as a contribution to sustainability.

Instead of using the primary energy demand to calcu-
late the energy demand as done in the 2000-Watt-stand-
ard, we consider the use the final energy demand FE as 
more suitable. This excludes conversion processes from 
primary to final energy, and thus the efficiency of these 
processes, which are already represented by the efficiency 
indicators.

The specific energy demand per inhabitant ED′
inh

 is 
the ratio of the systems total final energy demand to the 
number of inhabitants ninh (Eq.  7). The absolute energy 
demand of an energy system EDes may be considered for 
optimization processes (see above):

The reduction of the final energy demand can provide a 
rough assessment of many sustainability aspects, since 
the reduction of the demand leads to a reduction of 
resource needs. Although this is vague and not expressed 
in numbers here, it is conceivable that any reduction 
of the final energy demand reduces the environmental 
impact better than a sheer switch to another primary 
energy source. Note that renewable forms of energy also 
have certain resource requirements [50].

This particularly applies for demand reductions 
through sufficiency measures. However, the (specific) 
energy demand is influenced both, by the system’s effi-
ciency and sufficiency. In order to measure pure suffi-
ciency effects with the help of this indicator, all efficiency 
parameters of the system must remain unchanged. For 
more precise statements regarding the system’s energy 
sufficiency, parameters and indicators like heated living 
space per person, average room temperatures, electri-
cal appliances per household or person, usage intensity 
of electrical appliances, volume of material production 
would have to be included. Those are beyond the scope 
of classic ESM, but could be included in sector models of 
the building or industry sectors.

Concluding, within the scope and possibilities of ESM, 
the indicator of (specific) energy demand (Eq. 7) provides 
a rough indication of sufficiency. When applying the indi-
cator for comparison of different cities or districts, the 
sectoral structure needs to be taken into account.

Consistency indicators for urban energy systems
Energy consistency is mostly understood as the shift from 
fossil to renewable sources. Thus, the share of renewables 
(SoR), can be regarded as an appropriate energy consist-
ency indicator [12, 51]:

In order to be considered sustainable, the utilization of 
an energy source should not exceed its regeneration rate 
[52, 53]. In this context, the consistency of an energy sys-
tem could be assessed by considering the useful life tuse of 
materials used within an energy system in relation to its 
regeneration time treg:

Basically, this indicator is closely related to the SoR indi-
cator, as both aim at the renewability (regeneration) of 
resources. However, this indicator goes into more detail 

(7)ED
′
inh =

FE

ninh

(8)SoR =
FErenewable

FEtotal

(9)t =

n∑

1

tuse,n

treg,n
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than the SoR indicator and can, for example, also com-
pare different renewable energy technologies (e.g. photo-
voltaic systems vs. biomass). However, in order to obtain 
a meaningful value, all materials used within an energy 
system, from the concrete in the foundation of a power 
plant up to the fuel, must be taken into account. Further-
more, emissions should also be considered as a “resource” 
and should be set in relation to the duration of mining. 
Such a balance would be extremely complex to compute 
and is a research field on its own.

Another aspect of consistency can be the locational 
origin of the energy source. A self-sufficient system can 
survive as a stand-alone unit, without any import of 
energy [54]. We use the location of energy supply as an 
evaluation of the energy origin and therefore the indica-
tor self-sufficiency SeS to assess the degree to which a city 
or district can supply its own energy needs:

Although the term sufficiency appears in the name of the 
indicator, it does not indicate a system’s sufficiency in our 
understanding of this term. The self-sufficiency indica-
tor is useful when considering the goals of strengthening 
the regional economy and reducing inter-regional grid 
capacities (e.g., from the wind-energy-intensive north to 
the south of Germany).

However, although local energy supply is indeed desir-
able [55], it must be questioned how an increase of self-
sufficiency contributes to the fulfillment of sustainability 
goals in urban energy systems per se, or if a linkage to 
regionally connected systems is preferable from a broader 
sustainability perspective. Therefore, the regional refer-
ence of FElocal should be defined case-by-case.

Methods: single‑criterion simulation
Based on the literature review and the arguments pre-
sented in the previous subsections, we consider

• Primary energy efficiency,
• (Specific) GHG emissions,
• (Specific) energy costs,
• Share of renewables,
• Self-sufficiency,
• (Specific) energy demand,

as basically suitable for the evaluation and optimization 
of urban energy systems. For the sufficiency indicator of 
specific energy demand, the restrictions discussed before 
need to be considered. We consider other indicators to 
be less suitable, due to their shortcomings of not includ-
ing upstream chains (secondary energy efficiency SEE), 
their limited capability to compare small energy systems 

(10)SeS =
FElocal

FEtotal

(energy productivity EP), or their excessive accounting 
expense (regeneration rate t). The chosen indicators will 
be further tested for use in energy system modeling.

The basically suitable indicators (see above) will be 
examined by applying them to an ESM. A real-world 
urban area will be simulated with different supply 
scenarios.

As long as the energy demand remains constant, there 
is a linear relationship between absolute emissions 
mGHG,es , costs Ces , and energy demand EDes to specific 
emissions m′

GHG,FE , specific costs C ′
FE , and specific energy 

demand per inhabitant ED′
inh . Since we do not compare 

different systems in this case study (see "Efficiency indi-
cators for urban energy systems"), we will use absolute 
values as long as the energy demand remains constant. 
When the energy demand changes (scenario 4), we will 
show both, absolute and specific values, in order to rep-
resent both efficiency and sufficiency effects.

The urban district “Strünkede” of the municipality of 
Herne (North Rhine-Westphalia, Germany) will be used 
as a real-world test area. This district has about 3  600 
inhabitants and consists of 500 buildings (residential and 
non-residential).

We simulate a total of four energy supply scenarios and 
analyze how the chosen sustainability indicators behave 
depending on the intensity of the implementation of cer-
tain measures. Each of the four scenarios focuses on a 
different type of measure, all of them aiming to improve 
the district’s energy sustainability. Namely, the share of 
renewable energy imports (scenario 1), the use of renew-
able energy technologies (scenario 2), the use of sector-
coupling technologies (scenario 3), and the reduction 
of energy demands (scenario 4). Although the mobility/
transport sector accounts for 30% of Germany’s energy 
consumption [56], it is not examined in these scenarios. 
Due to its different structure, other indicators and model 
functionalities would be required to adequately cover the 
transport sector. Grey energy — i.e. the CED of consumer 
goods — is also not investigated due to similar reasons.

We use the “Spreadsheet Energy System Model Gen-
erator” (SESMG) v0.0.4, respectively v.0.2.0 [57], a model 
generator based on the “Open Energy Modeling Frame-
work” (oemof) [58], for the simulation. The applied model 
uses a bottom-up analytical approach, methods of simula-
tion and optimization, and the mathematical approach of 
linear programming. A district-sharp spatial resolution, a 
1-hourly temporal resolution, and a 1-year time horizon 
is used. The operating modes of the plants in the model 
are dispatch-optimized with respect to the respective 
indicator under investigation. Investment optimization is 
not performed within this section. For detailed descrip-
tion of modeling methods, we refer to the documentation 
of oemof [59] and the SESMG [57]. The underlying Open 
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Energy Modelling Framework (oemof) and its sub-mod-
ules have undergone several validations [60].

Standard load profiles (SLP) are used to simulate the 
course of the electricity [61] and heat demand [62]. The 
annual electricity demand (11  000  MWh/a) and heat 
demand (32  000  MWh/a, see Table  2 in Appendix) are 
estimated on the basis of the type of building, building 
area, number of floors and number of residents. Photo-
voltaic systems (scenario 2 and 3) are simulated on the 
basis of weather data obtained from the German Weather 
Service [63]. The year 2012, an average solar year [64], 
was chosen as reference. We account for the GHG emis-
sion scopes listed in Table 1.

All other model parameters (plant efficiencies, costs, 
emissions) are estimated based on databases [63, 66, 67], 
legal bases [68], standards [32, 69], research articles [70], 
technical studies [71–73], comparison of market energy 
tariffs, data from the municipality of Herne and the Ger-
man federal state of North Rhine-Westphalia as well as 
expert estimates. The model parameters used are listed in 
Appendix.

Results: single‑criterion simulation
Scenario 1 — energy import
The first scenario (Fig. 1) reflects a typical current state 
of a German district energy system. It is assumed that 
the electricity demand is covered by electricity imports 
and the heat demand is covered by gas heating systems, 
operated with imported natural gas. The average German 
electricity mix (42% renewable energies [74]) is used.

We analyze the response of sustainability indicators 
to the share of renewable energies within the imported 
electricity (with an otherwise unchanged electricity mix) 
from zero (no renewable electricity) to one (100% renew-
able electricity) (Fig.  2). The indicators shown in Fig.  2 
refer to the total energy supply, i.e. electricity and heat.

The primary energy efficiency increases from 0.68 to 
0.88 due to the lower primary energy factor of renewa-
ble energies [32]. The share of renewables increases to a 
lesser extent than the share of imported electricity. The 
total share of renewables thus results from the share 

of renewables in the imported electricity, multiplied 
by the share of electricity in the total energy demand 
(about 2%). A further increase of this value is only pos-
sible if the heat supply (0% renewable) is substituted 
by renewable sources. The specific GHG emissions 
m

′
GHG decrease due to the lower carbon footprint of 

renewables compared to other technologies of the Ger-
man electricity mix. The required energy is still com-
pletely imported ( SeS = 0 ) and thus remains the same. 
The energy demand EDes remains constant because 
no changes have been made on the consumption side. 

Table 1 Considered GHG emission scopes. Terms based on definitions of the World Resource Institute [65] and adapted for the 
purpose of analyzing urban energy systems

Scope Definition

1 “Direct GHG emissions occur from sources that are” within the model domain, “for example, emissions from combustion in owned or controlled 
boilers, [...], etc.” [65].

2 “GHG emissions from the generation of [imported] electricity”, consumed within the model domain. “Scope 2 emissions physically occur at the 
facility where electricity is generated” [65]. For exported electricity a GHG emission credit is granted, accordingly.

3 GHG emissions of energy suply facilities which “occur from sources not owned or controlled” [65] within the model domain, e.g. for the produc-
tion of photovoltaic modules.
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With the change in the share of renewable energies in 
the German electricity mix, the price of imported elec-
tricity will change due to macro-economic correlations. 
These relationships cannot be described with the model 
used in this study. For this reason, no curve for the 
energy costs Ces is presented for this scenario.

Scenario 2 — local renewable generation
In the second scenario, photovoltaic systems for decen-
tralized provision of renewable electricity are added to 
the energy system. Energy required beyond that (electric-
ity and natural gas) is imported like scenario 1. Electricity 
produced in excess of demand can be exported (Fig. 3).

Most indicators show a saturation effect after an 
installed PV capacity of 5 MW (Fig.  4). This is because 
PV systems only supply electricity at certain times. At 
times when no electricity can be supplied (e.g., at night), 
electricity still needs to be imported, no matter what PV 
capacity is installed. If in turn the demand of the sys-
tem is exceeded (the maximum demand is 2.1 MW), 
electricity has to be exported. Exported electricity may 
have a positive influence on energy systems elsewhere. If 

the installed systems were thus to be related to a global 
energy system, no saturation behavior is expected.

The absolute energy cost curve does not show satura-
tion effects, since electricity that is produced within the 
system boundary but not used by internal consumers, 
can be sold at a fixed rate due to the German renew-
able energies act (EEG [68]), and can thus be sold with 
profit. Although a credit is also granted for emissions, 
this does not generate any “emission profit” (the credit 
granted for exports is exactly the same as the emis-
sions taken into account for production, see Table  1), 
which also leads to saturation behavior of the absolute 
emissions.

The decrease of the energy costs Ces is limited by the 
availability of space within the system area that can 
be used for installation. The exact cost values as well 
as the slope of the Ces-curve furthermore depend on 
the remuneration rate taken into account (changes for 
example, due to revised EEG frameworks). This remu-
neration is allocated to end-consumers in the form of 
the EEG compensation-fees. If the share of renewable 
energies in the electricity grid increases, this appor-
tionment may rise. A nationally uniform expansion in 
the same proportion to the district under consideration 
could thus lead to an increase in the price of purchased 
energy, which in turn would increase the specific 
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energy costs. A model with national balance limits is 
needed to investigate this relationship in more detail.

As in scenario 1, the (specific) energy demand 
remains constant and is for the sake of clarity not dis-
played here.

Scenario 3 — sector coupling
In the third scenario, a measure is considered which 
affects not only the electricity sector but also the heat 
sector. The entire energy supply is secured by combined 
heat and power plants (CHP) with an electric perfor-
mance of 16 MW (thermal performance of 25 MW) in 
combination with a district heating network (Fig. 5). The 
CHPs can be operated either with biogas or natural gas. 
For the supply of both gases (natural gas import, biogas 
production) the same costs are assumed.

Figure  6 shows the development of the indicators 
depending on the share of (electrical) capacity of biogas, 
respectively natural gas-fired CHPs. Again, the specific 
energy demand remains constant and is therefore not 
displayed.

The primary energy factor of biogas CHPs is lower 
than that of natural gas CHPs [66]. Therefore the primary 

energy efficiency decreases with increasing biogas input, 
showing a saturation behavior. This can be explained by 
the fact that the lower capacity ranges are needed more 
frequently during the year than the higher ones (fre-
quency quartiles of the CHP’s electricity output: Q1: 1.7 
MW, Q2: 3.6 MW, Q3: 6.0 MW, Q4: 16.0 MW). Thus 
higher biogas CHP capacities (especially above 6 MW) 
have less influence on the indicator.

In contrast to the scenarios discussed before, the 
increase of the share of renewables SoR and the self-
sufficiency SeS is no longer limited to the share of the 
electricity sector. If the CHP units are solely operated 
with biogas which has its origin within the system area, 
both SoR and SeS increase to the maximum of 1. Again, 
there is a saturation effect for the same reason as for 
the primary energy factor. It has to be noted that in the 
real-world system, the availability of space for biogas 
production is probably limited and thereby restricts the 
increase of self-sufficiency SeS and share of renewables 
SoR.

Due to the higher purchase costs for biogas com-
pared to natural gas, the energy costs Ces increase with 
increasing biogas usage. From approximately 8 MW elec-
tric biogas capacity on, the increase in costs becomes 
steeper. This can be explained by the above-mentioned 
frequency distribution of the CHP output and the dis-
patch optimization of the cost indicator (see "Methods: 
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single-criterion simulation"). The (low-cost) available 
natural gas CHP capacity is used first, followed by the 
biogas CHP capacity. If the biogas CHP is only used to 
cover infrequent load peaks, the influence on the total 
system costs is relatively small, but if it is needed for the 
frequent base load capacities — which is the case in Fig. 6 
above about 8 MW  —  the influence is correspondingly 
greater and causes the curve to rise more steeply.

Scenario 4 — demand Reduction
In the fourth scenario, the effect of changing energy 
demand on the district’s sustainability indicators is ana-
lyzed. On the basis of scenario 2 (including 1 MW of PV 
systems), it is assumed that the energy demand is reduced 
by up to 50% for each simulated hour, both in the heating 
and electricity sector (Fig. 7).

The reduction in demand  —  which can be a result of 
sufficiency and efficiency measures lowers the energy 
demand (absolute and specific). The reduction in con-
sumption ensures an absolute reduction in GHG emis-
sions mGHG,es (Fig. 7, B). The GHG emissions are not only 
reduced linearly with the demand reduction, but also the 
GHG emissions per final energy m′

GHG,FE (Fig. 7, C) are 

reduced, resulting in a exponential reduction of the total 
GHG emissions. This can be explained by the fact that 
a fixed capacity of PV systems (in this scenario we con-
sider a fix capacity of 1 MW) can provide a higher share 
of the electricity supply when energy demand decreases. 
The reduction in consumption thus ensures that sources 
with high GHG emissions are used to a lesser extent, 
which leads to a reduction in GHG emissions. This effect 
also ensures a slight improvement in all other indicators 
(except for specific costs per final energy demand C ′

FE).
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FE = specific 

energy costs per final energy demand
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With increasing PV capacity, the specific indicators 
(Fig.  7C) would change even more, and thus lead to an 
increasing de-linearization of the absolute indicators 
(Fig. 7B).

The reduction of the demand initially leads to a slight 
increase of the specific costs per final energy demand C ′

FE 
(Fig.  7C). This is because higher consumption leads to 
an increased use of PV-electricity, which allows a higher 
profitability of PV electricity (import costs minus PV 
electricity production costs) than its sale (export price 
of PV electricity, see Appendix). However, this is a very 
small effect and becomes negligible when considering the 
absolute energy costs Ces (Fig. 7B).

Evaluation of the indicators
Energy efficiency indicators: The modeling results show 
that the primary energy efficiency PEE rather reflects the 
share of renewable than efficiency. Its increase in sce-
narios 1 and 3 is mainly due to the low primary energy 
factors used for (imported) renewable energies due to the 
VDI 4600 directive [32, 66]. Thus, the observed increase 
of primary energy efficiency is less driven by an improve-
ment of the district’s technical efficiency than by the 
accounting method, which grants an advantage to renew-
able energies. With increasing shares of renewables, the 
primary energy efficiency loses its original meaning of 
displaying efficient use of energy. Another criticism is 
that the primary energy efficiency factors to be applied 
according to the VDI 4600 directive do not distinguish 
between different forms of renewable energy.

With respect to the compliance with national and inter-
national climate protection targets, it is more appropriate 
to use the physical–thermodynamic indicator of (spe-
cific) GHG emissions as optimization criterion in ESM. 
Furthermore, it is not only suitable for the assessment 
of fundamental trends, but also for the identification of 
either limits that improvement measures may meet (e.g. 
saturation effect in scenario 3) or of a decrease of system 
performance.

Economic aspects play a significant role in planning 
practice. Economic indicators thus have a decisive influ-
ence on whether and which measures and technologies 
are implemented in urban energy systems. The indicator 
of (specific) energy costs is well suited for this purpose 
and should be taken into account.

Energy sufficiency indicators: The identification of suit-
able sufficiency indicators for ESM is difficult, since suf-
ficiency targets at a reduction of energy service demand 
(e.g. heated living space per person), which is not directly 
considered in energy system models. However, the spe-
cific energy demand per inhabitant ED′

inh can give an 
impression of the contribution of demand-side meas-
ures. Although it cannot be distinguished between the 

contribution of efficiency or sufficiency, the indica-
tor provides indications of absolute demand reduction, 
which is the more decisive information in terms of sus-
tainability. Since this indicator is strongly dependent 
on external circumstances (sector structure, building 
efficiency, etc.), it should always be given together with 
structural information about the urban area under study. 
In addition, it is much less the fixed value of this indica-
tor than its change that should be rated.

The increase of sufficiency of an urban energy system 
has several advantages: In addition to the absolute reduc-
tion of consumption and the associated savings, the spe-
cific costs and emissions are reduced. Since these values 
(consumption and its specific emissions or specific costs) 
are multiplied with each other to calculate the total emis-
sions or total costs, the total savings through sufficiency 
measures not only exert a linear effect, but rather a quad-
ratic effect on the savings (see "Scenario 4").

Energy consistency indicators: The share of renewables 
SoR is a clear and straightforward indicator. Neverthe-
less, increasing renewable energy is not a sustainability 
goal per se, but rather a way to reduce greenhouse gas 
emissions and conserve fossil fuels. The indicator does 
not provide any information on the improvement of 
these sustainability goals. Furthermore, it does not dis-
tinguish between different types of renewable energy and 
their different impacts on the main sustainability goals. 
Therefore, the indicator share of renewables is only con-
ditionally suitable for measuring the energy sustainability 
of urban energy systems.

The indicator of self-sufficiency SeS is suitable for eval-
uating the increase of the local value. Nevertheless, it is 
questionable whether increasing self-sufficiency contrib-
utes to the sustainability of urban energy systems (see 
"Consistency indicators for urban energy systems"). The 
indicator is more suitable for evaluating entire regions, 
and less for individual urban areas or cities.

Methods: multi‑objective optimization
As shown, there are a number of indicators that can eval-
uate various sub-goals of energy sustainability of urban 
energy systems in ESM, or can be used for optimiza-
tion. But there is no single indicator for the evaluation of 
urban energy systems which combines various aspects 
and thus represents a broader perspective of different 
sustainability aspects. Therefore, multi-criteria optimiza-
tion approaches are required for enabling such a broader 
perspective.

In classical single-criterion optimization, the scenario 
is determined which allows the minimization or maxi-
mization of the target value, other boundary parameters 
are completely left out [75]. Multi-objective optimization 
approaches in turn consider several, usually competing 
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criteria for the optimization [75]. Therefore, the methods 
of combined indicators or adding constraints in single-
criterion models (hereafter referred as “constraint opti-
mization”) may be considered.

By using the combined indicator approach, individ-
ual indicators are combined to a single value [76]. Two 
common approaches are the weighted sum (Eq. 11), and 
weighted product method (Eq. 12) [76].

Indicators formed by the weighted sum approach 
(Eq. 11) can usually be used in single-criterion optimiza-
tion models. This is possible because the different indica-
tor values (e.g., costs or emissions) — even if they occur 
at different process points — are simply added up to an 
overall indicator value. The original multi-criteria prob-
lem is thus transformed into a single-criterion problem. 
However, the drawback of the weighted sum method 
is, that the single indicators must have the same unit in 
order for Eq. (11) to be mathematically solvable [77]:

F(�x) multi-criteria function , �x set of decision variables , 
k number of applied criteria , fi(�x) function of criterion i , 
wi weighting of criterion i.

The weighted product approach works similarly to the 
weighted sum approach [78], except that the individual 
indicators fi are multiplied and the weights wi are taken 
into account as potencies [76]:

The weighted product approach can possibly not easily 
be applied to single-criterion ESM tools, if the tool does 
not allow multiplying indicator values that apply at differ-
ent process points (e.g. costs for purchasing natural gas 
vs. emissions from burning the gas). It has to be individu-
ally checked whether the respective modeling tool per-
mits the use of such multi-indicators. Further note that 
multi-criteria functions could possibly complicate the 
system of equations to be solved by the model and thus 
increase the computing time. This may result in the need 
to simplify model structures in order to reduce the com-
puting time, which may in turn reduce model accuracy.

With constraint optimization (also known as ǫ-con-
straint method [79]), the classical approach of single-cri-
terion optimization is extended by restricting the possible 
solution space of the model. Therefore, for at least one 
additional criterion, limits (constraints) are defined by 
the modeler. A single-criterion solution algorithm can 

(11)F(�x) =

k∑

i=1

wifi(�x)

(12)F(�x) =

k∏

i=1

fi(�x)
wi

then determine the remaining solution space for the min-
imum of the primary optimization criterion.

In this way, a multi-criteria optimization can be per-
formed without using a multi-criteria indicator. Con-
straint optimization has the disadvantage that the 
modeling effort is greater, since each constraint limit 
must be set manually. In the case of an iterative reduction 
of this value, this can require a large number of model 
runs. Moreover, it should be noted that single-criterion 
energy system modeling tools sometimes can only apply 
constraints that are related to the main optimization cri-
terion, but not for further criteria.

The solution of a multi-criteria solution function F(�x) 
does not  —  as in the case of a single-criterion function 
fi(�x) — result in a single solution scenario �x , but in a set 
of (in the sense of the function) equivalent solution sce-
narios [80]. The function of these scenarios is known as 
Pareto front (Fig. 8, black) [81], which has one graphical 
dimension per selected sub-criterion.

By adjusting constraint optimization, several different 
scenarios, which lie on the Pareto front, can be deter-
mined. These are also often called “best-known Pareto 
points” [75]. By, for instance, successively moving the 
constraints shown in Fig. 8 (red) downwards, the scenar-
ios A, B, and C could be determined.

Multi-objective optimization approaches are of par-
ticular importance in the context of sustainable optimi-
zation of urban energy systems, especially because the 
previous overview has shown that there is no single indi-
cator for holistic quantification.
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Fig. 8 Exemplary two-criteria Pareto front. Solution space in light 
gray (infinite number of possible scenarios), not realizable space 
respectively scenarios in dark gray. Three exemplary best-known 
Pareto points (A, B, C) are shown
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Combined indicator
In compliance with the design goals for urban energy 
systems (see "Introduction") and the discussion within 
"Evaluation of the indicators" Section, we consider spe-
cific energy costs, specific GHG emissions, and specific 
energy demand as the most appropriate indicators to be 
combined within an multi-objective optimization. Due to 
their shortcomings, the indicators of primary energy effi-
ciency (unsuitable accounting method), share of renewa-
bles (not fulfilling climate protection goals per se and no 
differentiation of different types of renewables) and self-
sufficiency (questionable impact on the overall system 
sustainability) will not considered further for the multi-
criteria optimization approach.

Since the selected indicators have different units, 
they can only be combined using the weighted product 
method (Eq. 12):

A further simplification is possible, if wi = 1 applies for 
all weighting variables:

For the application of absolute values applies:

If nuclear power play a role in the energy system under 
study, it is recommended to additionally use either the 
share of renewables (Eq. 8) or the resources regeneration 
time (Eq. 9).

Constraint optimization model
For the optimization, the model used for the single-cri-
terion simulations is extended by investment decision 
variables. Specifically, the model has the possibility to 
design the capacities of decentralized gas heating systems 

(12)F(�x) =

k∏

i=1

fi(�x)
wi

(13)F(�x) =(C ′
FE)

wC · (m′
GHG,FE)

wm · (ED′
inh)

wED

(14)F(�x) =
C
wC

FEwC
·
m

wm
GHG

FEwm
·
FE

wED

n
wED
inh

(15)F(�x) =
C
wC ·m

wm
GHG · FEwED

FEwC · FEwm · n
wED
inh

(16)F(�x) =
C ·mGHG

FE · ninh

(17)F(�x) = C
wC ·m

wm
GHG,es · FE

wED

(scenario 1 and 2), photovoltaic systems (scenario 2, max. 
10 MW) and central natural gas or biogas CHPs (scenario 
3, max. 16 MW). As within the single-criterion model, 
dispatch optimization is performed as well.

As most of the optimization ESM [82], our modeling 
approach does not support the calculation of Pareto-
curve functions from multi-criteria functions like shown 
in Eq. 16 or 17. For this reason and the advantages out-
lined in sec. 9, in the following we will use the constraint 
optimization approach and will determine best-known 
Pareto point. Therefore, we will first perform a purely 
cost-optimized model run (no constraint, NC). Based on 
the resulting scenario, the permitted GHG emissions are 
reduced in 10% steps until the value is so low that no tar-
get scenario can be determined. In a further model run, 
the lower emission limit of the solution space is deter-
mined, by using the GHG emission as optimization crite-
rion. Subsequently, the energy demand is reduced, which 
is equivalent to a constraint of energy consumption, and 
optimized for the same GHG emission constraints as 
before.

Here, the demand reduction represents an opportunity, 
i.e., it is not a typical constraint limitation. However, this 
changes when the demand in systems is limited by plan-
ning regulations or individual target values. A demand 
constraint becomes particularly important if demand 
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Fig. 9 Best-known Pareto points of a constraint optimization using 
absolute energy costs Ces as primary optimization criterion and 
absolute GHG emissions m′

GHG,es
 as well as absolute energy demand 

ED as constraints. The scenarios without an emission constraint (NC 
and NC’) and the lower emission limits (EL and EL’) of the solution 
space are marked separately. The constraint values are to be 
understood as percentage reductions of the initial value NC

72 Appendix



Page 14 of 20Klemm and Wiese  Energy, Sustainability and Society            (2022) 12:3 

can be reduced by an investment, e.g. by investing in bet-
ter insulated windows/insulation or more efficient end-
appliances (dryers, refrigerators, etc.). Then, the goal of 
minimizing costs would possibly get into a conflict with 
a demand constraint. This is a typical context for multi-
criteria optimization.

Results: multi‑objective optimization
The solution scenarios of the individual constraint opti-
mization runs are best-known Pareto points. When 
the points are connected, the result is a typical Pareto 
front. In Fig.  9, slices of the actually three dimensional 
front (since three criteria are used) are shown. Without 
demand reduction, the model with 60% reduction of 
GHG emissions cannot be solved, because the set limits 
of emission free supply options are reached. Thus, such a 
scenario is outside the possible solution space. The lower 
emission limit (EL) of the solution space is below 5% of 
the emissions of the NC-scenario.

As the emissions constraint increases, the financial 
costs C ′ become higher. Thus, there is a conflict between 
cost and emission optimization in this system. The rela-
tionship is not linear.

However, the demand reduction is not counteracting for 
the other two optimization criteria, as no (investment) 
costs are incurred or GHG emissions are emitted for the 
demand reduction. Therefore, the demand reduction is 

an opportunity, which simultaneously provides a reduc-
tion in financial costs and GHG-emissions (dashed line in 
Fig. 7) and therefore provides a shift in the Pareto curve 
in Fig. 9 to the lower left. The demand reduction by 20% 
has the effect that even without emission constraint (NC’ 
in Fig. 9) the emissions are lower compared to the point 
NC  —  with simultaneous reduction of costs. With the 
demand reduction, the solution space is extended down-
wards, so that also a scenario with 64% (EL’) GHG emis-
sion reduction compared to NC can be enabled.

The change in the target scenarios can be attributed 
primarily to the cost/emission conflict in heat supply. 
The share of heat supply technologies available for opti-
mization is shown in Fig.  10. Accordingly, without an 
emissions constraint, the heat supply is predominantly 
designed with natural gas CHPs with small shares of 
decentralized natural gas heating systems. With increas-
ing emissions constraint, gas heating systems are not 
considered at all and biogas CHPs gain relevance com-
pared to natural gas CHPs. As in the Pareto curve in 
Fig. 9, the progression is not linear. In each of the calcu-
lated scenarios, the investment limit of PV plants is com-
pletely used.

Discussion
The selection of suitable indicators for use in energy 
system modeling is influenced by several aspects. These 
include the selected spatial and energy system bounda-
ries, the impact of individual indicators on the defined 
sustainability goals, whether indicators are used for opti-
mization or benchmarking purposes, and whether single-
criteria or multi-criteria modeling techniques are used.

System boundaries: The choice of system boundaries 
has decisive influence on sustainability indicators and 
have to be chosen carefully with respect to the effects 
the modeling should focus on. This applies to the used 
terms of energy, the applied geographical coverage, and 
the consideration of influences on resources other than 
energy. This can be used to direct the focus on certain 
aspects, but it can also lead to a “sham improvement” by 
outsourcing non-sustainable processes (see "Efficiency 
indicators for urban energy systems"). As outlined before, 
we consider upstream chains in the overall context of 
energy efficiency to be very important and therefore rec-
ommend the use of primary energy efficiency PEE over 
secondary efficiency SEE.

Awareness of the chosen system boundaries and 
respective effects are equally important for GHG emis-
sions. Often the technologies used in the district have an 
influence outside the system boundaries, which may be 
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considered to a given degree or neglected. This includes 
the emissions in the upstream chain of technologies used. 
Since climate change is not limited to the system bounda-
ries of an urban area, the upstream chains need to be 
considered for providing a more holistic picture of emis-
sion reduction options.

Spatial system boundaries also exert an impact on the 
result. For example, the choice of a boundary limited to 
an urban area neglects positive effects of the export of 
renewable electricity to neighboring energy systems, 
national market impacts of raising energy prices due to 
increasing renewable energy production (see "Scenario 
2 — local renewable generation"), or negative effects such 
as the indirect land use change effect (see below). In this 
case, the effect is outside the investigation area, but the 
cause is inside. Due to the limited space for energy gen-
eration, cities or districts can seldom fully meet their 
energy demands within their spatial boundaries. Thus, 
especially in the field of urban energy system modeling, 
system boundaries need to be carefully chosen to be able 
to assess sustainability of urban energy systems.

Another example of questionable sustainability con-
tribution is the biogas usage displayed in scenario 3. 
There are doubts of the sustainability of land-use systems 
whenever a large portion of the managed land is used for 
biogas fuel production. A wider definition of the sustain-
ability concept would lead to a different perspective since 
the choice of the balance limit neglects global impact of 
this scenario. In this case it can be assumed that consid-
erable areas of land would have to be used for the biogas 
to be provided, which in turn may have a negative impact 
on the global climate balance via the indirect land use 
change effect [83].

Other sustainability aspects than GHG emissions (e.g., 
space, water, different raw materials) are not directly con-
sidered in this analysis as well. A global view is required 
to fully consider the respective effects. However, the 
indicator of (specific) energy demand can provide a first 
indication. Energy demand reduction in absolute terms 
generally leads to lower requirement of other resources 
as well. This might, on the one hand, be questionable 
for those efficiency measures which require resource-
intensive technical measures and might therefore induce 
rebound effects, but is likely to be the case for sufficiency-
induced demand reduction on the other hand. The com-
bination of energy system modeling with complete life 
cycle assessment goes beyond the scope of most energy 
system analyses, but the various resource effects beyond 
GHG emissions should not be neglected in planning or 

political decision making. Thus, the indicator of specific 
energy demand and especially its change rate provides an 
important aspect of overall conservation of resources: the 
more the energy demand is reduced in absolute terms, 
the higher the likelihood that resource intensity and envi-
ronmental impact in various aspects reduced as well.

Sustainability strategies: As a categorization of the 
examined indicators, we have used the trisection of effi-
ciency, sufficiency, and consistency indicators. Thereby 
it became clear that there is no pure sufficiency indica-
tor, since the indicators always depend on other strate-
gies of energy sustainability. For example, efficiency (e.g. 
due to building insulation) has a significant influence on 
the specific energy demand ED′-sufficiency indicator. To 
actually measure energy sufficiency, all efficiency param-
eters must be kept constant, which is a quite unreason-
able approach. Sufficiency rather needs to be measured 
on energy service level like, e.g., heated living space per 
person or electrical appliances per person. This requires 
more detailed sector models which in turn could be cou-
pled with ESM.

Further difficulties arise when comparing different 
urban energy systems, as the structure (e.g. share of resi-
dential/commercial and industrial sectors) has a decisive 
influence on the total final energy demand of a system. 
A possible solution could therefore be to classify urban 
energy systems according to their structure so that 
homogeneous energy systems (e.g., purely residential 
areas) can be compared.

Reference values: Depending on the purpose of use, dif-
ferent reference values or absolute values may be used. 
We used final energy FE, the number of inhabitants ninh 
as reference values, as well as absolute values. Absolute 
values are favorable for use in optimization models, since 
the equation of the respective indicators is usually rather 
simple. When compared to the reference value num-
ber of inhabitants ninh (for the indicator specific energy 
demand ED′ ), absolute values are influenced by changes 
in the number of inhabitants. Thus, a decreasing number 
of inhabitants can improve this indicator value, although 
this does not provide a real sustainability benefit. Fur-
thermore, compared to the reference value FE (e.g. for 
the indicators specific costs C ′ and specific GHG emis-
sions m′

GHG ), decreasing final energy demand has an 
influence on this indicator  —  thus also on sufficiency 
effects, although it is an efficiency indicator. Thus, abso-
lute values ensure easy handling in optimization mod-
els, but for benchmarking and comparison purposes we 
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recommend the use of the reference values of final energy 
demand FE and number of inhabitants ninh.

Multi-criteria optimization: Energy sustainability of 
urban energy systems can be improved by various meas-
ures, e.g. by regenerative energy systems, sector coupling, 
demand reduction, demand-side management, energy 
storages and many more. Some of these measures have 
been exemplified within the modeling runs in this contri-
bution. Depending on the weighting of the applied indi-
cator, the combination of several measures and energy 
sustainability strategies in particular leads to the minimi-
zation of the applied optimization criterion.

If only a single target indicator is applied, the optimi-
zation of this value can simultaneously lead to a deterio-
ration of other important indicators (as for example the 
cost and emission indicators in Fig.  6). While this con-
flict does not always become evident when using too 
few indicators in ESM, the application of a multi-criteria 
approach enables a more holistic view and trade-offs are 
quantified.

By applying multi-criteria optimization models, several 
equivalent scenarios in the form of a Pareto front can be 
compared and the conditions under which technology 
change occurs can be analyze (as shown, for example, in 
Fig. 10). Such an approach provides valuable insights for 
specialist planners, which can decide on a case-by-case 
basis which goals are most important to follow to which 
degree for urban energy systems.

Nevertheless, the number of indicators applied should 
be limited to a tolerable level: If too many indicators are 
used, it will be difficult to understand the interdependen-
cies of the model and bears the potential of over-fitting. 
Furthermore, Pareto fronts with more than three indica-
tors have more than three graphical dimensions. This in 
turn is difficult or impossible to visualize and thus also 
complicates the interpretation of the results. Further 
research on result communication of multi-objective 
optimization of various differently weighted indicators 
for urban energy systems is required.

As outlined in "Introduction", today’s multi-criteria 
optimization models usually work with a cost and a 
greenhouse gas emission related indicator. In the context 
of urban energy system optimization, we recommend 
complementing them with the (specific) energy demand 
indicator. We further recommend that models that do 
not consider any measures of energy demand reduction, 
should be complemented. Due to the indirect effects of 
demand reduction (see "Sufficiency indicators for urban 
energy systems" and "Scenario 4 — demand reduction"), 

they will have decisive influence on the sustainability of 
urban energy systems.

Conclusion
Based on a theoretical evaluation and subsequent practi-
cal tests in an urban energy system model, various indi-
cators were analyzed for the purposes of optimization as 
well as benchmarking and comparison of different urban 
energy systems.

As a result, there are indicators that are well suited for 
various aspects of the energy sustainability, but none that 
is able to represent overall energy sustainability of urban 
energy systems. The use of only one sub-indicator in the 
optimization process increases the risk that other impor-
tant indicators will deteriorate significantly, leading to 
unrealistic scenarios in practice. To avoid this, multi-cri-
teria approaches should be used to enable a more holistic 
optimization and planning of sustainable urban energy 
systems.

The evaluation of an exemplary urban energy sys-
tem using the multi-objective ǫ-constraint optimiza-
tion approach shows that a typical Pareto optimization 
curve (Fig.  9) and a clearly visible technology shift 
(Fig. 10) emerge for the competing optimization criteria 
of cost and greenhouse gas emission minimization. The 
optimization criterion of minimizing energy demand 
does not conflict with the other criteria, but actually 
supports them. Thus, minimizing demand provides an 
opportunity to improve the other objectives, within the 
available energy demand reduction potential. However, 
in subsequent studies it has to be examined to which 
extent costs and emissions, which are necessary for the 
reduction of the energy demand (e.g., investment costs 
of building insulation or financial incentives for con-
sumption changes), impact the results of the multi-cri-
teria optimization.

In conclusion, we recommend the use of multi-crite-
ria models combining the indicators of absolute green-
house gas emissions, energy costs, and energy demand, 
for the optimization of urban energy systems. For 
benchmarking and comparison purposes, specific indi-
cators should be used and therefore related to the refer-
ence values of final energy (Eqs. 4 and 5), respectively, 
number of inhabitants (Eq. 7).
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Appendix
Model parameters
See Table 2.

Table 2 System parameters used for modeling

Parameters are estimated based on databases [63, 66, 67], legal bases [68], standards [32, 69], research articles [70], technical studies [71–73], comparison of market 
energy tariffs, data from the municipality of Herne and the German federal state of North Rhine-Westphalia as well as expert estimates. Annualized capital costs of 
investment are used
aAzimuth: 180◦ , tilt: 35◦ , albedo: 0.18, altitude: 60 m, latitude: 52.13◦ , longitude: 7.36◦ , module: Panasonic VBHN235SA06B
bCosts considered with the periodical costs of the CHP’s electric capacity
cCosts are considered with the purchase costs of the fuels
dThrough life cycle assessments, the periodic emissions are considered with the components variable costs
eDepending on the operating point
fTaken into account through life cycle analysis in the CHP
gConsidered with the variable costs of the biogas process

Components Periodical Variable PEF Periodical GHG Variable GHG Efficiency

costs costs emissions emissions

EUR/(kW·a) EUR/kWh g/(kW·a) g/kWh

Electricity import (residential, 0% renewables) 0 0.3106 2.3 – 624 –

Electricity import (commercial, 0% renewables) 0 0.2156 2.3 – 624 –

Electricity import (residential, 42% renewables) 0 0.3106 1.6 – 474 –

Electricity import (commercial, 42% renewables) 0 0.2156 1.6 – 474 –

Electricity import (residential, 100% renewables) 0 0.3106 1 – 28 –

Electricity import (commercial, 100% renewables) 0 0.2156 1 – 28 –

Electricity export (PV) 0 − 0.1293 − 1.2 – − 56 –

Electricity export (CHP, biogas) 0 − 0.0892 − 2.91 – − 125 –

Electricity export (CHP, natural gas) 0 − 0.0505 − 1.91 – − 414 –

Natural gas import (residential) 0 0.0644 – – 0 –

Natural gas import (commercial) 0 0.0455 – – 0 –

Photovoltaic systemsa 92 0 1.2 –d 56 e

Gas heating systems 30 –c 1.34 – 228 0.85

Natural gas CHP (electric output) 14 –c 1.91 –d 414 0.35

Natural gas CHP (thermal output) –b –c 0.76 –d 165 0.55

Biogas CHP (electric output) 14 –c 2.91 –d 125 0.35

Biogas CHP (thermal output) –b –c 1.42 –d 100 0.55

District heat network 30 0 – – 0 0.85

Biomass cultivation & biogas production –g 0.097 –f –f –f –f

Biogas production Taken into account through life cycle analysis in the CHP

Building heat networks Taken into account with the gas heating system respectively the district heating network

Electricity grid Considered as loss-free

Natural gas grid Considered as loss-free

Demands Annual Load
Demand Profile
kWh/a

Residential electricity demand 3600000.0 h0

Commercial electricity demand 7312390.1 g0

Residential heat demand 20810072.5 efh/mfh

Commercial heat demand 10927989.6 ghd
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Abbreviations
C: Energy costs; CED: Cumulative energy demands; CHP: Combined heat and 
power plant; ED: Energy demand; EE: Effective energy; EL: Emission limit; ESM: 
Energy system model(s); EP: Energy productivity; es: Energy system; F: Multi-
criteria function; fi: Function of criterion i; FE: Final energy; GDP: Gross domestic 
product; GHG: Greenhouse gas; inh: Inhabitant; k: Number of applied criteria; 
mGHG: Greenhouse gas emissions; NC: No constraint; PE: Primary energy; PEE: 
Primary energy demand; PEF: Primary energy factor; PV: Photovoltaic; SE: Sec-
ondary energy; SEE: Secondary energy demand; SEF: Secondary energy factor; 
SeS: Self-sufficiency; SLP: Standard load profile; SoR: Share of renewables; t: 
Regeneration rate; VDI: Verein Deutscher Ingenieure; wi: Weighting of criterion 
i; x: Decision variable.
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A B S T R A C T

Local and regional energy systems are becoming increasingly entangled. Therefore, models for optimizing
these energy systems are becoming more and more complex and the required computing resources (run-time
and random access memory usage) are increasing rapidly. The computational requirements can basically be
reduced solver-based (mathematical optimization of the solving process) or model-based (simplification of
the real-world problem in the model). This paper deals with identifying how the required computational
requirements for solving optimization models of multi-energy systems with high spatial resolution change
with increasing model complexity and which model-based approaches enable to reduce the requirements with
the lowest possible model deviations.

A total of 12 temporal model reductions (reduction of the number of modeled time steps), nine techno-
spatial model reductions (reduction of possible solutions), and five combined reduction schemes were
theoretically analyzed and practically applied to a test case. The improvement in reducing the usage of
computational resources and the impact on the quality of the results were quantified by comparing the results
with a non-simplified reference case.

The results show, that the run-time to solve a model increases quadratically and memory usage increases
linearly with increasing model complexity. The application of various model adaption methods have enabled
a reduction of the run-time by over 99% and the memory usage by up to 88%. At the same time, however,
some of the methods led to significant deviations of the model results. Other methods require a profound prior
knowledge and understanding of the investigated energy systems to be applied.

In order to reduce the run-time and memory requirements for investment optimization, while maintaining
good quality results, we recommend the application of (1) a pre-model that is used to (1a) perform
technological pre-selection and (1b) define reasonable technological boundaries, (2) spatial sub-modeling along
network nodes, and 3) temporal simplification by only modeling every 𝑛th day (temporal slicing), where at least
20% of the original time steps are modeled. Further simplifications such as spatial clustering or larger temporal
simplification can further reduce the computational effort, but also result in significant model deviations.

1. Introduction

A total restructuring of energy systems are required as response
to radical reduction of greenhouse gas emissions [1]. Thereby, local
and regional energy systems are becoming more complex due to the
introduction of renewable energies with hardly predictable and volatile
production, of energy storage systems, as well as due to sector coupling
and sectors with increasing relevance such as the e-mobility and the
hydrogen fuel sectors. Traditionally, individual parts of energy systems,
e.g., individual consumption sectors, energy sectors, or spatial regions,
are individually planned [2]. The increasing entanglement and com-
plexity of overall energy systems [3] make it necessary to carry out

∗ Corresponding author at: Department of Energy, Building Services and Environmental Engineering, Münster University of Applied Sciences, Steinfurt, Germany.
E-mail address: christian.klemm@fh-muenster.de (C. Klemm).

holistic planning [2]. This is the only way to fully exploit the potential
for achieving various transformation goals of integrated energy systems
[4]. Tools that utilize the multi-energy system (MES) approach [4] are
suitable instruments for investment and dispatch optimization [5,6],
as they take into account the complexity and interaction of different
energy sectors.

The increase in system complexity leads to a rapid increase of
required computing resources for energy system models. This applies
in particular to the run-time and the required random access memory
(RAM, hereafter referred to as memory) for solving the model. Conse-
quently, modelers must compromise between the computational effort
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on the one hand and the accuracy of the results on the other hand by
creating simplified models [7,8].

This paper deals with the challenge on reducing the computing
resources required to solve high-spatial-resolution models of mixed-use
MES without significant loss of quality of the results. Such reductions
can basically be achieved by solver-based or by model-based meth-
ods [9]. While solver-based approaches deal with the mathematical
optimization of the solving algorithm, model-based approaches are
concerned with simplifying the real-world problem in the model [9].

Improving solvers which are tailored to be applicable to a wide
variety of models from different domains is often out of the expertise
of modelers. Instead, modelers should make use of their deep under-
standing of the structure of energy systems when modeling a real-world
scenario. At this point, model-based adaptations can be incorporated in
order to minimize the run-time on a given computer. This contribution
investigates such model-based approaches.

Some research has been made on model-based run-time and mem-
ory reduction methods for energy system models. Several publications
provide an overview of existing approaches to model adaptation [9–12]
or focus on simplifying certain types of energy systems, e.g., power
systems [13]. Temporal model adaptions are addressed by some pub-
lications in general [14–16] or for specific use cases, e.g., storage
planning [17,18] or long time series of wind power and photovoltaic
(pv) systems [19]. Others deal with specific methods, such as temporal
clustering [7,20–22], heuristic selection [23–29], multiple time grids [30],
averaging [29], or variable time steps [31]. Similarly, some articles deal
with techno-spatial model adaptions more generally [32] and others are
related to specific methods, such as spatial clustering [33], or specific
use cases, such as urban energy systems [34].

However, most of the literature focuses on either temporal model
adaptions (e.g., [14,15]) or techno-spatial model adaptions (e.g., [32,
33]), but does not compare the two. Further, most studies either deal
with only one energy sector (electricity, e.g., [17,19,28], or heat, e.g.,
[24]) or with very large-scale spatial energy systems and correspond-
ingly low spatial and technological resolutions (e.g., [9,29]). Since
model results are affected by different effects depending on the energy
sectors considered and on the spatial and technological resolutions
(e.g., by the interaction of individual buildings), we suspect that model
reduction methods may also affect different types of energy system
models differently. For the case of spatially high-resolution multi-
energy system models, it is therefore necessary to find out which
parameters have a particularly large influence on the computing re-
quirements. These can be, for example, the number of simulated time
steps or the number of (binary) investment decisions. Furthermore,
suitable methods of model reduction must be identified and their
influence on the quality of results quantified. This paper aims to fill
this gap. Several approaches are evaluated and categorized in Section 2,
and new ones will be proposed. Subsequently, suitable approaches will
be implemented in practice and examined using a practical example.

2. Overview of run-time and memory reduction methods

Run-time and memory usage reduction methods may be grouped
in various categories as shown in Fig. 1. The categories of solver and
model-based approaches, as mentioned above, can be subdivided into
further categories.

Model-based methods aim at reducing the size of the system of
equations to be solved by the solver. They can be divided into temporal
model adaptions as well as technological and spatial model adaptions.
Technological and spatial measures cannot always be clearly separated
from each other and are combined in the category of techno-spatial
model adaptions. Within those sub-categories further distinctions be-
tween model reduction methods (systematic reduction of the model
complexity [10]) and decomposition methods (breaking up of the
model and subsequent solving and coupling of the sub-models’ results

[10]) can be made [9]. In model reduction, the overall model is re-
duced in size, which reduces run-time and memory requirements. With
decomposition, the overall size of the model can be retained, but the
sub-models may have lower individual memory requirements. Further
run-time improvements can be enabled by solving the individual sub-
models in parallel. However, parallelization techniques are not the
focus of this study.

Whether the individual model adaption methods can be transferred
to a model without coding effort depends strongly on the modeling
tool used. In some tools, e.g., downsampling can be applied by simply
adjusting the models temporal resolution, whereas in others it is not
possible. Also, clustering approaches (temporal or techno-spatial) can
be implemented by adjusting the input data; on the other hand, auto-
mated adjustment of the input data requires coding effort or the use of
external clustering tools.

2.1. Temporal model adaptions

Temporal model simplifications can be realized through model re-
ductions or through decomposition. Model reductions include sampling
(‘‘reducing number of time steps by aggregating consecutive steps or
by defining typical [periods]’’ [13]) and the adaption of the model
structure (e.g., temporal resolution or time horizon). When using sam-
pling methods, the applied modeling methodology must either be able
to model specific time slices or time periods. Alternatively, the sample
periods can be combined to a new shorter time series. In this case, as
with the use of averaging , the modeling methodology must allow the
use of a shorter time horizon.

Temporal model adaptions may lead to inaccuracies due to concur-
rency and continuity problems [19]. Concurrency arises when events
that meet or overlap in reality are not adequately represented by
the simplification in the model [19]. To avoid concurrency problems,
reduced time series should be self-consistent and include all important
events of the analyzed time series [19]. Continuity problems arise when
the temporal change (e.g., the state of charge of a storage) cannot be
adequately modeled because of the adapted time series [19]. This can
involve intra-day, intra-week, and seasonal balancing [18]. To avoid
continuity problems several consecutive days (e.g., weeks) rather than
single days should be used when selecting suitable sample periods
[19,25].

random sampling: In random sampling, a predetermined number of
random periods (e.g., days or weeks) are selected and used as repre-
sentative time periods [14].

averaging: In averaging, successive time periods (e.g., two consecutive
days) are averaged and combined into one segment [14].

slicing: In slicing, every 𝑛th period is selected (e.g., every second day
[14]) and subsequently recombined to a reduced time series.

k-clustering: The k-clustering algorithm divides a time series into a
given number of 𝑘 clusters so that the squared deviation of the cluster
centers of gravity is minimal. The procedure is well described by Green
et al. [7]. They also recommend using the time vector of a whole
day (e.g., the temperature trend) as cluster criterion. Representative
time periods can be extracted from the individual clusters by either
calculating the mean cluster-vector or by selecting the medians or
medoids of the cluster elements [20]. For energy system model time
series simplification, the k-clustering algorithm is mostly carried out
using mean values [18]. However, Helistö et al. rated k-medoids to be
more suitable than k-means [20].
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Fig. 1. Overview of model-based run-time and memory usage reduction methods discussed in this study.

hierarchical clustering: In hierarchical clustering, similar time periods
(e.g., days or weeks) are grouped into clusters as well. In compari-
son to k-clustering, the number of periods per cluster varies, so that
only similar periods are in a cluster. An appropriately representative
period is then selected and weighted according to the cluster size [25].
Thus, the application of this method requires a modeling methodology
allowing the weighting of single time steps or periods. Hierarchical
clustering is more precise than k-clustering, but also involves more
effort [7]. In addition, a weight must be assigned to the representative
time periods, which cannot be easily implemented in every modeling
approach. The exact procedure of hierarchical clustering is described
in detail by Nahmacher et al. [25].

heuristic selection: In heuristic selection, representative time periods
of a time series are selected from certain selection criteria [19]. For
example, Poncelet et al. [23] propose a scheme to select between
two and 24 reference periods from a year. The selection is based on
seasons as well as extreme and average values of electricity demand,
wind power feed-in and pv feed-in. Time periods which have not been
selected are removed [19].

time horizon reduction: Depending on the length of the modeled time
horizon, it should be examined whether a shorter model period would
produce similar results, e.g., by modeling a single year instead of
several years.

downsampling: The temporal resolution of an entire time series is
changed. For example, the resolution can be changed from a 1-hourly
to a 3-hourly temporal resolution [19]. For application, the modeling
methodology used must allow the temporal resolution to be adjusted.

variable time steps: The variable time steps method defines critical time
periods (as with heuristic selection) that are particularly important for
the design of the investigated energy system. For these critical periods
a high temporal resolution (e.g., hours) is used, for less important
ones a coarser [31]. This method can enable more realistic modeling,
especially with regard to energy storages [31]. For the application the

applied modeling methodology must be able to use varying time steps
within one model.

rolling horizon: Rolling horizon is a decomposition method in which
the time series is divided into shorter intervals. Thus, several reduced
sub-models are obtained, which are solved one after the other [9].
Rolling horizons come with the disadvantage that each sub-model is
updated and coupled by a previous sub-model, so that parallelization
of the process is not possible [9].

temporal zooming: To overcome the problem of the rolling horizon
method to be incompatible with parallel solving, Cao et al. propose the
method of temporal zooming [9], which is a decomposition method as
well. Thereby, a model run with a reduced time series using downsam-
pling is carried out. Afterwards, as with the rolling horizon method,
several time periods are defined. Time-linking information between
those periods are obtained from the first model run, so that the individ-
ual time periods can be modeled simultaneously. In contrast to rolling
horizon, an additional run is necessary, but run-time can be saved by
parallelizing the remaining runs [9].

multiple time grids: With the decomposition method of multiple time
grids, the temporal resolution is varied for different model compo-
nents and modeled in separate time systems [14]. Therefore, the ap-
plied modeling methodology must allow the application of varying
time steps. Kotzur et al. [18] propose, e.g., a two-layer system when
modeling seasonal storages. In the first layer, intra-day relationships
(e.g., volatile production) are considered, while in the second, intra-
season relationships (e.g., seasonal storage) are considered [14].

2.2 Techno-spatial model adaptions

Techno-spatial methods aim at reducing the number of possible
combinations of investment decisions. Technological and spatial resolu-
tion are strongly related and they are often reduced together. Although
the different methods described in the following usually have a tech-
nological or spatial focus (as the name often suggests), they may
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Fig. 2. Possible modeling error caused by spatial clustering. The fictional clustering of two sub-systems (A and B) with internal electricity production (e.g., by a pv system) and
demands (e.g., electricity) of different load profiles. By clustering the profiles, the sub-systems balance each other out, resulting in an incorrect balance of imports and exports.
With different system parameters (costs, emissions, …) for import and export, this leads to an overestimation of the share of own consumption and can lead to errors in investment
decisions.

also influence the other aspect in each case. For example, a coarser
sometimes unifies technologies with different technological parame-
ters (e.g., differently oriented pv systems or heating systems with
different efficiencies), while technological aggregation might combine
technologies with a location focus (e.g., pv systems with different
spatial references), in technological interactions between sub-systems
are neglected (e.g., exchange of energy between subsystems), and in
spatial parameters may be used for technological distinctions (e.g., spa-
tial location of heating networks). Therefore, the reduction of both is
combined in one category.

Techno-spatial model adaptions can be carried out by model reduc-
tion or decomposition (see Section 2). Model reduction can furthermore
be divided into the limitation of investment decisions (i.e., reduc-
tion of the decisions to be included within the solved model) and
adaptions of the model structure (e.g., coarsening of the spatial reso-
lution or adjustment of the mathematical approach by avoiding binary
decisions).

technological pre-selection: With the help of preliminary studies (e.g., so-
lar potential, geothermal cadastres, or pre-models) or with the modelers
deeper understanding of the investigated systems, non-profitable tech-
nologies can be identified with regard to the optimization criterion,
which will certainly not be considered in the optimized energy system
scenario. These technologies can be excluded from the model to reduce
the number of investment decisions. If technologies are removed from
the model due to of inaccurate or false assumptions, this automatically
leads to model errors.

technological aggregation: If there are model components that differ
only slightly from each other, they can be grouped together to reduce
the number of investment decisions. For example, pv systems that
supply for the same energy demand but have minor orientation (tilt
and azimuth angles) differences may be grouped together.

spatial clustering: If there are repetitive or highly similar functional
units in an energy system, the same investment and operational de-
cisions are being made multiple times by the model. Comparable units
(e.g., similar building types) may be clustered and aggregated into a
grouped unit. For urban energy systems, Zhang et al. [33] recommend
building clusters with a spatial diameter between 100 m and 1 km. If
sub-systems are clustered which have insufficiently similar load pro-
files, this can lead to significantly varying model outputs. Fig. 2 shows,
as an example, the fictional clustering of two sub-systems. To avoid this
error, only similar sub-systems should be aggregated. Suitable cluster
variables should be used [34], such as the year of construction, usage
type, renewable energy potential (e.g., solar power potential), energy
demand, and load characteristics [33,34].

linearization: As soon as an energy system model contains binary de-
cisions, it is a so-called non-convex model. Such systems are generally
harder to solve [35]. Therefore, modelers should aim to ‘‘stay convex
where possible’’ [10], by avoiding non-linearities [13]. This can be
done by ‘‘assuming linear relations or discrete steps’’ [13].

Linearizations can be applied to various aspects of the model, such
as cost structures and modes of operation. Fig. 3 shows an exemplary
linearization of binary investment decision between different pipe di-
ameters of a district heating output with non-linear cost progression
(black bars). Depending on which costs/pipe diameters are used as
reference points (dots), significantly different linearized cost functions
(red lines) may occur.

Fig. 3. Linearization of binary investment decisions: The choice of various reference
points for linearization can lead to significantly deviating results.

technological boundaries: In order to limit the solution space to be
investigated by the solver, boundaries (e.g., limits of possible plant
capacities) should be set as tightly as possible [36]. This includes, for
example, limiting the investment decision and not allowing any unre-
alistic investment decisions. This can improve the numerical behavior,
as well as the solving time [36]. Technological boundaries can be
defined based on preliminary studies, on pre-models or on the deeper
understanding of the investigated system. If investment boundaries are
defined to tight based on inaccurate or false assumptions, this may lead
to modeling errors or even non-solvability of a model.

spatial resolution: By adjusting the spatial resolution, the number of
sub-systems to be modeled can be reduced, just as with spatial clus-
tering . In contrast to spatial clustering, however, the approach is less
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structured and sub-systems are aggregated solely according to their spa-
tial location. Due to the spatial clustering error described above (Fig. 2),
the structured approach of spatial clustering is therefore preferable over
the simple adjustment of spatial resolution.

geographical coverage: Similar to the choice of the time horizon reduc-
tion, the geographical coverage of the model should be just as large as
necessary for the research question. For example, it is not necessary
to model an entire country for the design of a single building energy
system. Possibly, it can be useful to divide the spatial area into several
sub-models (see ).

spatial sub-modeling: If there are completely independent investment
decisions in the model, decomposition can be used to create spatial
sub-models that are easier to solve. This may be the case, for example,
if there is no technological connection between two spatial sub-areas.
Sub-models can be solved in parallel.

technological case distinction: If there are central binary decisions which
cannot be linearized, decomposition can be used to create technological
sub-models that are easier to solve. This can, for example, be applied for
the differentiation between centralized and decentralized heat supply.
Case distinctions can be particularly useful if the individual model runs
can be performed in a parallelized computing environment.

3 Materials and methods

3.1 Test case

The majority of the model simplifications described in Section 2
were applied to the test case area shown in Fig. 4. It is a real-
world system (except COM2, which was added so that at least two
non-residential are part of the system) which was selected to comply
with the structure of larger urban areas. It therefore contains different
buildings types (single-/two-family buildings, multi-family buildings,
commercial buildings, buildings without energy demand) and roof
orientations. Furthermore, the reference case of this system (model
without simplification methods) is solvable with the computing re-
sources available for this study with a run-time below 24 h and memory
usage below 64 GB.

This test case area has already been used in previous studies [37–40]
and has proven to be suitable for urban energy system modeling.

The modeled test case thus included a total of three semi-detached
buildings, two multi-family buildings, two commercial buildings, and
two garages. Only buildings that have an energy demand themselves
or have at least one roof surface with pv potential (regarding to [41])
are considered. The garages have pv system potential but no energy
demand of their own. All other buildings have both electricity and
heating demands. The goal of the applied model was to optimize the
financial costs of the systems’ energy supply. For this purpose, an
investment and dispatch optimization in different technologies of sector
coupled electricity and heat supply was performed.

3.2 Model description

The ‘‘Spreadsheet Energy System Model Generator’’ (SESMG) [42]
was utilized. The underlying ‘‘Open Energy Modeling Framework’’
(oemof) and its sub-modules have been widely validated [43,44]. The
gurobi solver [45] was used.

A bottom-up analytical approach and the mathematical approach of
(mixed-integer) linear programming ((MI)LP) were applied. Methods
of simulation as well as dispatch and investment optimization were
carried out. For the reference case, an hourly temporal resolution, a
temporal horizon of one year, and a building-sharp spatial resolution
were applied. A perfect foresight model is assumed, using weather data
from the nearest station (ID 1078) of the German Weather Service
(DWD) [46]. The year 2012 was considered, which was an average

Fig. 4. Test case area to which the model simplification methods were applied.

solar year [47]. The minimization of financial costs were applied
as optimization criterion. Therefore, the energy system configuration
which enables the lowest system costs, was to be identified for the test
case area.

The model included 79 linear and 20 binary investment decisions
(see Appendix A). As long as there was no technological limitation for
linear investment decisions, e.g., by available space, the model was
allowed to design energy-converting technologies (e.g., heat pumps and
gas heating systems) between 0 and 999 kW and storage technologies
between 0 and 9999 kWh. Binary decisions could either be made with
the predefined capacity or not at all.

There is area competition for the investment in pv and solar ther-
mal systems on building roofs. This was considered within the model
by using competition constraints. These allow investment in only pv
systems, only solar thermal systems, or proportionately, e.g., half and
half, yet no double investment for a specific area is allowed.

The investment costs for district heating pipes (−40%) and battery
storages (−65%) were artificially reduced. Otherwise their investments
would not have been considered in the reference case. This was neces-
sary in order to study the influence of the various model simplifications
on the use of these technologies in the model.

Furthermore, it is worth mentioning that the model included the
possibility to exchange electricity between the individual buildings in
exchange for grid fees and the like.

A complete description of the model, including the component
structure, as well as all used model parameters is given in Appendix B.
A Linux-operated computing cluster was used. The models were per-
formed on an isolated computing node with 24 physical cores (2.5 GHz)
and 64 GB of RAM. In this way, interactions with other processes on
the computer cluster were avoided.

3.3 Run-time reduction

First, a reference model-run without any adaptions was carried out
followed by several model simplifications. The results of these runs
were then compared with the reference case. The time required to
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solve the model, the required memory, the determined target value
(system costs) and the investment decisions made were compared as
benchmarks. For the run-time and the memory usage we focus on the
pure solving process, without pre-processing and post-processing, as the
processing part is usually the bottleneck of large energy system models
[9].

3.3.1 Temporal model adaptions
The methods described in Section 2.1 were applied to the test case.

For sampling methods, days (e.g., recommended by [26]) and weeks
(e.g., recommended by [27]) are tested for suitability as sampling
periods. The number of modeled time steps was reduced with each
method (as far as possible) reduced to 50%, 20%, 10%, 1.9% (only
for reference weeks, equals to one week), and 0.8% (only for reference
days, equals to one day) of the original time steps. The results were
evaluated in terms of which methods show a converging behavior to the
reference case with increasing number of time steps. For methods show-
ing converging behavior, more accurate results with increasing number
of modeled time steps can be expected. In contrast, for methods with
results varying around the reference case depending on the number
of time steps modeled, only certain configurations allow results with
certain quality.

random sampling: Random sampling was carried out using random
days, as well as weeks as reference periods. The‘‘random’’-library [48]
was utilized for that purpose. To ensure reproducibility, a ‘‘seed’’ was
defined, so that with each run the same random period is selected. A
random time series of, e.g., ten periods therefore automatically makes
up ten periods of a random time series of, e.g., 20 periods.

averaging: According to the above described degrees of reduction of
time steps numbers of consecutive days and weeks were averaged.

slicing: Slicing of several numbers of days and weeks was carried out
and applied. For the above described degrees of time step reduction,
every 𝑛th sample period (reduction of the time series by more than
50%) was included in the modeling. In addition, the number of time
steps modeled was reduced by only 25% by removing every fourth
sample period from the time series.

k-clustering: k-means-clustering as well as k-medoids-clustering were
carried out using the ‘‘scikit-learn’’ [49] and ‘‘scikit-learn-extra’’-libraries
[50]. Three different data types, for which the largest model influence
was assumed (1. temperature, 2. solar radiation, 3. electricity demand)
were applied as cluster criteria. The vectors of entire days, respectively
weeks, were applied as cluster-vectors. The air temperature impacts the
heat demand and investment decisions of the entire heat sector and thus
exerts a great impact on the overall system. The solar irradiation has
a strong impact on the performance of pv systems and the electricity
demand. By taking electricity demand into account, deviations in the
courses of the week and year can be mapped. Days and weeks were
tested as sample periods. The number of time steps was reduced in
each case by the degrees described above, with an exception for the k-
medoids algorithm. Since at least three sample periods were contained
in a cluster to form a medoid, the number was reduced by 67% instead
of 50%.

heuristic selection: Based on the approach of Poncelet et al. [23], a
heuristic selection scheme was carried out (see Table 1) considering
different numbers 𝑛 of reference periods. However, since they used
this approach for simplifying time series of renewable electric feed-
in, the selection criteria chosen there (1. total load, 2. wind load, 3.
pv load) were replaced by criteria more suitable for the context of
this study. Again, the criteria of 1. air temperature, 2. solar radiation
and 3. electricity demand were applied. Days and weeks were used as
reference periods. The number of time steps modeled differs from the
above mentioned degrees of reduction due to the chosen schemes.
time horizon reduction: The time horizon was shortened and several
time horizons (1/2 year, 1/4 year, 1/8 year) were applied.

Table 1
Heuristic selection scheme with up to three different selection criteria, based on
Poncelet et al. [23] (adapted).
𝑛 Season(s) Criterion 1 Criterion 2 Criterion 3

2 Year hp, lv – –
4 Year hp, lv ha, la –
8 Summer, winter hp, lv ha, la –
16 Winter, spring, summer, fall hp, lv ha, la –
24 Winter, spring, summer, fall hp, lv ha, la ha, la

Acronyms: hp = highest peak, lv = lowest valley, ha = highest average, la = lowest
average.

downsampling: Different multiples of the original 1-hour resolution
were applied and the number of modeled time steps reduced by the
degrees described above.

For the applied temporal model adaptions, the model needed to be
adjusted with respect to its temporal structure. To ensure the correct
relationship between variable and periodical (annual) costs in the case
of shortened time series, variable costs were multiplied by the variable
cost factor:

variable cost factor =
original number of time steps

new number of time steps (1)

Furthermore, the modeled time series was shortened under certain
conditions. For a time series’ adjustment, the simplification factor
should ideally be divisible by the length of the given time series without
remainder. For example, out of 365 days, every fifth day can be selected
via slicing without any problems (365∕5 = 73), but every tenth day
results in a remainder (365∕10 = 36.5). In order to simplify the time
series correctly in such cases, the given time series was shortened
to the end, so that the calculation became executable error-free. For
example, for slicing with every tenth day the time series would have
been shortened to 360 days (360/10 = 36). In sampling methods (see
Fig. 1), the selected periods were strung together and merged into a
new time series. The individual sample periods were partially assigned
new time stamps.

The methods of multiple time grids and variable time steps were not
tested, because the applied modeling methodology does not allow the
application of varying temporal resolutions within a single model run.
Furthermore, hierarchical clustering was not applied, because in the
model structure chosen, it is not possible to assign different weightings
to individual time steps.

Within the rolling horizon method, investments are carried out based
on only a part of the time horizon. Since we assume a perfect foresight
model (see Section 3.2) this leads to continuity and competition prob-
lems. For other model types such as dispatch optimization models (see,
e.g., [51–54]) and models that do not assume perfect foresight, rolling
horizon can be useful.

Within the temporal zooming method, investment decisions are made
on the basis of the first (downsampled) model-run and therefore offers
no advantage over conventional downsampling for investment deci-
sions. Due to this lack of suitability for investment optimization, rolling
horizon and temporal zooming were neglected in the following parts of
this study.

3.3.2 Techno-spatial model adaptions
The techno-spatial model adaptions described in Section 2.2 were

applied to the test case. A full list of the applied techno-spatial model
adaption schemes is listed in Appendix C.

technological pre-selection: Technologies for which no investment deci-
sion had been carried out within the reference case were removed from
the model to reduce the number of investment decisions.
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technological aggregation: Technological aggregation was used when a
building had several differently oriented roof surfaces suitable for pv
and solar thermal use. In this case, multiple investment decisions of
pv or solar thermal systems were merged. Different model parameters
(azimuth, tilt) were weight-averaged according to capacity fractions. In
the test case, this applied to SDB2 and COM1 (see. Fig. 4).

spatial clustering: Sub-systems (buildings) were clustered according to
their usage type. In different model tests, either similar building types
(semi-detached buildings, multi-family buildings, commercial buildings
and garages, as scheme C1), or similar usage types (residential build-
ings, commercial buildings, garages, C2), or all buildings of the system
were clustered. For the building clusters, component types (e.g., pv
systems, C2) and associated investment decisions were aggregated. An
exception were the insulation measures, which could not be aggregated
with the applied modeling methodology. Solar thermal and pv systems
were aggregated into 45◦ groups according to their azimuth angle.

linearization: Within the reference case, district heating pipes were
carried out as binary investment decisions. In total, the district heat-
ing network contained 20 possible pipe sections, each containing one
binary investment decision. In five test runs, only the house connection
pipes (as scheme D1), only the distribution pipes (D2), respectively
all pipes with different linearization reference pipes (D3 to D5) were
applied.

technological boundaries: The overwhelming share of linear investment
decisions were considered with high investment caps (see Appendix A).
In order to limit the resulting large solution space of the model, those
investment caps were tightened, based on the results of the reference
case. Unless there was a stricter restriction before (for pv systems and
solar thermal systems) the investment caps were set at 500% (as scheme
E1), 200% (E2), 150% (E3), and 100% (E4) of the value determined in
the reference case. Binary decisions remained in the model as within
the reference case.

spatial sub-modeling: The model was divided into two sub-models along
the heating network starting from the heat source. The first sub-model
(as scheme F1) included the three semi-detached buildings and garages.
The second sub-model (F2) included the multi-family buildings and
commercial buildings. The partial results were then combined. In the
aggregation of plant outputs, the two partial results were added up. The
central heat source is included in both sub-models. This was taken into
account in the final consolidation of the results.

technological case distinction: A distinction was made between a system
of centralized heat supply (G1) and a system of decentralized heat
supply (G2). The investment decisions were then taken from that model
run, for which the lower optimization value (system cost) had been
calculated.

No modification of the geographical coverage was tested. A reduction
of the spatial resolution was not reasonable due to the limited size of the
test case area.

3.4 Combined model adaptions

After individual tests, the methods with the best results, i.e., those
that allowed the best run-time/memory usage improvements with the
least result deviation, were combined. A total of five method combina-
tions were tested.

4 Results

4.1 Reference case

The reference case model with cost-based optimization resulted in
the investment decisions listed in Table 2. Solving the model took
22:12:15 h and required a maximum of 12.24 GB of memory. The

model results show, that only decentralized battery and thermal storage
systems were designed, but no centralized storage systems. While the
buildings connected to the district heating network (MFB1, MFB2,
COM1) were completely centrally supplied with heat, all other build-
ings were supplied with decentralized heat.

Table 2
Model results for investment decisions of the reference case and the resulting system
costs. Identical technologies in different sub-systems are aggregated in the presentation
of results.

Technology Model decision Unit

Photovoltaic systems 52.31 kW
Gas heating systems 72.79 kW
Ground coupled heat pumps 12.57 kW
Air source heat pumps 1.68 kW
Combined heat and power plant 29.63 kW
Central heating plant 66.73 kW
Battery storages 3.39 kWh
Thermal storages 413.80 kWh
District heating house connection pipes 3
District heating distribution pipes 5
Wall insulation 0 m2

Window insulation 0 m2

Roof insulation 0 m2

System costs 56 634 e/a

4.2 Temporal model adaptions

Fig. 5 shows the impact of the applied temporal model adaptions
on the model run-time (left) and memory requirements (right) as a
function of the number of time steps modeled. Note that only run-time
and memory usage of the solver is shown. For the entire modeling pro-
cess increased requirements may arise, depending on the computational
resource intensity of the pre-processing and post-processing.

run-time: The quadratic regression (𝑅2 = 0.80) of the individual model
runs shows that the run-time increased quadratically with an increas-
ing number of time steps. However, the correlation cannot be gen-
eralized, individual points clearly fall above (e.g., slicing) or below
(e.g., downsampling) the regression curve.

memory usage: The relationship between memory usage and modeled
time steps can be described by a linear regression (𝑅2 = 0.99).

For the sake of clarity, the detailed results of the individual runs
are only shown in the Appendix. In Appendix D all results are shown
in tabular form. In Appendix E, the deviations of the optimized system
costs and the aggregated investment decisions for different technologies
depending on the selected temporal model simplification are plotted for
the two most promising methods.

slicing: Investment decisions and system costs tended to converge well
to the reference case with increasing temporal resolution. The choice of
days as a sampling period is preferable, since the deviations are slightly
smaller compared to the reference case than for weeks, especially as
the number of modeled time steps increases (see Appendix D). On the
other hand, in case of a very high temporal simplification (e.g., every
10th day or week), technologies that were designed in the reference
case are taken into account more quickly when reference weeks are
selected (e.g., Appendix E-5’). Useful results, i.e., no complete technol-
ogy changes within individual sub-systems and more than half of all
investment decisions with a deviation of less than 15%, occurred if at
least 20% of the reference time steps were modeled. However, note
that also in this case there are bigger deviations for some investment
decisions, e.g., for battery storages (−67%, by slicing days).

averaging: The results tended to converge to the reference case with
increasing temporal resolution. Advantages in the sample period to
be averaged cannot be generalized. If days were chosen, the results
for system costs (Appendix E-1), gas heating systems (Appendix E-3)
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Fig. 5. Run-time and memory requirements depending on the number of time steps modeled. All values are also listed in Appendix D. The memory usage can be described by a
linear regression (𝑅2 = 0.99) depending on the modeled time steps. The run-time can be described by a quadratic regression (𝑅2 = 0.80). The lower coefficient of determination
shows that the run-time is also dependent on other parameters.

and central heating plant (Appendix E-7) converged faster or more
accurately to the reference case. Weeks were more suitable for pv sys-
tems (Appendix E-2’), air source heat pumps (Appendix E-5’), and the
combined heat and power (chp) plant (Appendix E-6). Useful results,
i.e., no complete technology changes within individual sub-systems and
more than half of all investment decisions with a deviation of less than
10%, occurred whenever at least 20% of the reference time steps were
used. Note, that, also in this case, there are larger deviations for some
investment decisions, e.g., battery storages (−84%, by averaging days).

downsampling: The downsampling result curves came closer to the
reference values with increasing temporal resolution. However, the
deviations from the reference case show significant deviations for the
design of pv systems (−100% to +49%), chp plants (−31% to +376%)
and district heating pipes (−20% to +133%) and for system costs (−1%
to +1102%) and battery storages (−100% to +57 331%) even the largest
deviations of all methods examined (see Appendix D).

random sampling: With random sampling, investment decisions for
some technologies converged to the results of the reference case with
increasing number of modeled time steps (e.g., thermal storages, dis-
trict heating pipes, see Appendix D). However, other investment de-
cisions deviated steadily from the reference results or even fluctuated
around the reference values, regardless of the modeled number of time
steps, e.g., for the chp plant (−100% to +64%), central heating plant
(−100% to +119%), battery storages (−91% to +2052%), and thermal
storages (−84% to +437%).

heuristic selection: Heuristic selection allows, depending on the applied
scheme, for some investment decisions results with comparably small
deviations to the reference case even with a small number of simulated
time steps, e.g., at 192 modeled time steps for system costs (−2 %) and
gas heating systems (−25%). For the same schemes, other investment
decisions, however, had large deviations, e.g., for the case of 192
modeled timesteps heat pumps (−100%), thermal storages (+306%)
and solar thermal systems (no investment in the reference case, see
Appendix D). Overall, there are many outliers (e.g., thermal storage
capacities oversized by up to +578%) and fluctuations in the results.

k-clustering: The results of k-clustering are, overall, noisy (see Ap-
pendix D). In the k-means-clustering (temperature criterion) of days,
the investment decision of pv systems converged to the reference
case; gas heating systems were about 80% under-designed and did
not converge to the reference case. In the k-medoids clustering (solar
radiation criterion) of days, some technologies that were relevant in
the reference case were not considered at all (battery storage and
ground coupled heat pumps (gchp)). In other schemes, decisions partly
fluctuated around the reference decisions instead of converging to
them. The clustering of weeks behaved somewhat more steady than
that of days. Overall, for k-clustering no clear trend is discernible and
it is unclear under which setting a consistently converging behavior can
be expected.

time horizon reduction: Shortening the time horizon, led to large model
deviations. In particular, if the time horizon was reduced by more
than half, the ratio of winter to summer days is significantly changed,
leading to undersizing of pv systems and related components, such
as battery storages and heat pumps (all −100% for a quarter of the
reference horizon). On the other hand other components are oversized,
such as gas heating systems (+200%), thermal storage (+102%) and
the chp plant (+308%). System costs were also greatly overestimated
whenever the time horizon was shortened.

4.3 Techno-spatial model adaptions

The results show that the run-time depends largely on the number
of binary investment decisions (Fig. 6, left) and that the memory
depends largely on the sum of all investment decisions (Fig. 6, right).
The memory requirement can be well described by a linear regression
(𝑅2 = 0.74). The attempt to form a quadratic regression for the run-
time is quite inaccurate (𝑅2 = 0.31), so that it can be stated that
other parameters than the number of (binary) investment decisions play
important roles as well.

For methods consisting of multiple model runs (spatial sub-
modeling and technological case distinction), the run-time of all runs
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Fig. 6. Dependence of run-time on the number of binary investment decisions (left), as well as of the memory requirement on the number of total investment decisions (right)
for the applied techno-spatial model adaptations. The run-time can roughly be described by a quadratic regression (𝑅2 = 0.31) depending on the number of binary decisions. The
memory usage can be described by a linear regression (𝑅2 = 0.74) depending on the total number of investment decisions.

was added up for the consideration as benchmark, and the highest
memory requirement of the individual model runs was taken into
account. When balancing the number of investment decisions, the
higher value of the two model runs is considered.

Detailed results for the investment decisions for all applied techno-
spatial model adaptions are shown in Appendix F.

technological pre-selection: By technological pre-selection the number
of linear investment decisions had been drastically reduced by −61%
and the number of binary decisions by −50%. This led to a run-time
reduction of −99% and lowered memory requirements of −29% without
having impact on the modeling results.

technological aggregation: By aggregating the pv systems of individual
sub-systems, investment decisions for higher capacities of pv systems
(+5%), battery storage (+3%) and gchps (+3%) compared to the ref-
erence case were carried out. This can be explained by the fact that
plants were aggregated according to their surface orientation (see
Section 3.3.2). Within these aggregations, uniform angles were used. As
a result of this change in the modeled orientation, certain pv systems for
which an investment was not profitable with the original orientation in
the reference case, probably moved above the break-even point. In turn,
battery storages and heat pumps were dimensioned larger due to higher
pv yields. However, technological aggregation led to a significant in-
crease in computing time (+68%) and only a marginal reduction in
memory requirements (−2%). Overall, technological aggregation thus
led to a deterioration in computing performance.

spatial clustering: System costs were significantly underestimated be-
tween −44% and -64% compared to the reference run, within all
clustering schemes. This is because plant capacities are shared by sub-
systems and the modeled district heating distribution pipe lengths are
shorter. Clustering of similar building types (C1) and similar usage
types resulted in a lower configuration of central heat supply. This can
be explained by the fact that buildings that were centrally supplied in
the reference case (e.g., COM1) were partially clustered with buildings
that were decentrally supplied in the reference case (e.g., COM2). In the
fully clustered case (C3) there was a strong centralization. This can also
be explained by the consideration of fewer district heating distribution

pipe lengths and thus fewer costs taken into account. Spatial clustering,
however, allowed a significant saving of run-time (up to −99%) and the
largest reduction of memory (up to −64%), of all tested techno-spatial
model adaptations.

linearization: All linearization schemes led to large model deviations
compared to the reference case. The linearization increased the prof-
itability of district heating networks by the option to partially (non-
binary) design district heating pipe capacities. This led to a significant
centralization of the heating supply and to an underestimation of
the system costs within all linearization schemes. If linearization was
applied to house connection pipes alone (D1), the underestimate was
less yet also the run-time improvement (−58%) was lower than that of
the other schemes (up to −99%). All linearizations had no effect on the
memory requirements of the model.

technological boundaries: The application of appropriate technological
boundaries allowed significant run-time improvements (up to −77%)
while maintaining the same quality of results of the reference case.
The memory was not significantly affected. Note, that the tightest
technological boundaries (E4) led to smallest run-time savings. This
may be explained by the fact that the model solution could only be
approximated from one site due to particularly tight bounds. This
resulted in fewer solution paths for the solver, which could have led
to a higher run-time. Between the results with less tight technological
boundaries (E1 and E2), there is no significant impact on the run-time.

spatial sub-modeling: The decomposition into two spatial sub-models
affected the investment decisions of the pv systems, geothermal heat
pumps, and battery storage. This can be explained by the fact that the
electricity produced in each sub-model could no longer be delivered
to all sub-systems, but only to sub-systems within the same sub-model.
As a result, more battery storage capacities were required to use the
produced electricity in an economically viable way, and gchps were less
profitable because more electricity had to be imported at a higher price
to operate them. However, this effect will probably lose significance, if
the sub-models contain more sub-systems, which can exchange energy.
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technological case distinction: Within the technological case distinction,
the case of decentralized heat supply was evaluated to be more suitable
than the case of centralized heat supply. Accordingly, central heat sup-
ply components (chp, central heating plant and district heating pipes)
were not considered at all and more decentralized system capacity
(gas heating, heat pumps, wall insulation) was designed. However, also
pv systems and battery storage were dimensioned larger than in the
reference case, probably due to the increased demand for electricity
from the heat pumps. Overall, technological aggregation thus led to
large model deviations and is therefore less suitable for the test case.
However, technological case distinction allows a reduction of both
total run-time (−99%) and memory requirements (−22%) despite the
necessity to perform two model runs.

4.4 Combined methods

A total of five schemes of combined model reduction methods were
applied (see Table 3). The following paragraphs refer to the results of
these combined runs shown in Fig. 7 and Appendix G.

The combination of technological pre-selection and technological
boundaries (X1) improved the run-time (−99.43%) and memory usage
(−29%) without causing any model deviations regarding investment
decisions and optimized system costs.

Building on scheme X1, temporal slicing of every second day (X2),
respectively spatial sub-modeling (X3) were added to the model re-
duction scheme. Compared to X1, both methods allowed significantly
greater memory usage savings (−62%, respectively −55%). X2 still
allowed a greater saving in computing time (−99.57%), X3 some-
what less (−99.31%) due to the additionally required model run of
the sub-modeling. Both schemes mainly influenced the design of heat
pumps and battery storages. The battery storages were partly under-
sized (−38%, X2) and partly oversized (+29%, X3).

By combining the previous schemes (X4), the incorrect battery
designs partially offset each other, but beyond that, similar model
deviations occur. However, the scheme allows greater run-time savings
(−99.70%) and memory usage (−77%) than before.

With the last scheme (X5) the temporal model reduction is increased
to temporal slicing of (every fourth day). This led to further run-time
(−99.89%) and memory savings (−88%), but also to significant model
deviations for the investment decisions of pv systems, heatpumps,
central heating plant and battery storages.

Table 3
Applied combined method schemes. For schemes consisting of several sub-models with
different values, both values are given.

Scheme Combined model adaptions inv. decisions Modeled

Linear Binary time steps

X1 Technological pre-selection 31 10 8 760
Technological boundaries (E2)

X2 Technological pre-selection 31 10 4 368
Technological boundaries (E2)
Temporal slicing (every second day)

X3 Technological pre-selection 16/15 0/10 8 760
Technological boundaries (E2)
Spatial sub-modeling

X4 Technological pre-selection 16/15 0/10 4 368
Technological boundaries (E2)
Temporal slicing (every second day)
Spatial sub-modeling

X5 Technological pre-selection 16/15 0/10 2 184
Technological boundaries (E2)
Temporal slicing (every fourth day)
Spatial sub-modeling

5 Discussion

Several temporal model adaptations and techno-spatial model adap-
tations, as well as five combined method schemes were applied to
a real-world test case. The evaluation of these methods showed that
model-based adaptations can significantly reduce run-time and random
access memory (RAM) requirements of mixed-used multi-energy system
models with high spatial resolution. At the same time, however, it
became clear that some of the methods led to significant deviations
of the model results. For the application of other methods, a pro-
found prior knowledge and understanding of the energy systems under
investigation is necessary.

The model reduction methods tested in this study were applied to
a mixed-use multi-energy system optimization model with the focus on
investment optimization. The test area with a total of nine buildings
was selected to correspond to the structure of larger urban areas (see
Section 3.1). We therefore assume that the results can also be applied
to larger urban energy systems with several hundreds of buildings and
similar multi-energy systems.

Interactions of the investigated methods to solver-based methods
(this includes, for example, the choice of a different solver) were
not investigated in this study. However, we assume that a similar

Fig. 7. Impact of the applied combined model reduction method schemes on the run-time (left) and the memory requirements (right).
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improvement will be enabled with solver-based methods applied in
parallel.

5.1 Temporal model adaptions

As expected in Section 1, the computing capacities required to solve
energy system optimization models increases rapidly with rising num-
ber of modeled time steps. The memory requirement increases linearly,
the run-time increases quadratically with a slightly lower coefficient
of determination of the regression (see Fig. 5). It can thus be stated
that the modeled number of time steps has a primary influence on
the computing resources. However, the application of temporal model
adaptations also causes model deviations in the investment decisions
with respect to these technologies:

• sector-coupling technologies: Particularly heat pumps are un-
dersized with decreasing number of modeled time steps.

• battery storages: The investments of battery storages are partic-
ularly vulnerable to (temporal) model simplifications. There is a
rising over- or undersizing of the battery storage capacities with
decreasing number of modeled time steps.

• (de)centralized heat supply: As the number of modeled time
steps decreases, technologies for decentralized heat supply (gas
heating systems, heat pumps) tend to be under-designed. Central
heat supply, conversely, increases.

Methods that do not sufficiently represent the load and weather
profiles of the entire year cause large model deviations, which do not
converge to the reference case even with an increasing number of
modeled time steps.

Further deviations may arise from the inappropriate ratio between
days below and above the heating limit temperature. If the heating day
ratio is too high, the model tends to consider investments into higher
thermal storage capacities and technologies with low variable but high
periodical costs. This must be taken into account, for example, in the
choice of heuristic selection schemes and the number of reference days
for slicing and averaging.

Overall, many deviations can thus be attributed largely to the
previously discussed problems (see Section 2.1) of continuity (such as
investment behavior for battery storages) and concurrency (e.g., shift
between (de)centralized heating supply). None of the tested methods of
temporal model reduction allowed a design without larger errors in the
investment decisions. In fact, there was always at least one technology
with major design errors of at least 10% compared to the reference
case (see Appendix D). All in all, slicing and averaging provide the
most reliable results of the tested temporal model adaptions. Slicing
and averaging converge most reliably to the reference case results as
the number of time steps modeled increases. Generally, useful results
can be expected from the consideration of every fifth day or the
averaging of a maximum of five days. Since slicing and averaging yield
different model deviations for different technologies, one of the two
methods should be selected depending on the application. Slicing is
more reliable in the heat sector and for the design of storage systems,
while averaging is more reliable for the design of sector-coupling
technologies. This is probably due to the fact that maximum values
(e.g., heat demand or pv production) are reduced in the course of
averaging. At the same time, however, averaging more reliably takes
into account combinations of energy consumption and supply that do
not occur regularly across sectors (e.g., pv production and heat demand
covered by heat pumps). In contrast to most of the other temporal
model adaptations tested, slicing also allows only a slight reduction of
the time steps (e.g., by one third). Overall, there are fewer deviations
from the reference case when applying slicing.

In some cases, the heuristic selection produces usable results even
with a very small number of days. The least useful results were obtained
by time horizon reduction and downsampling. The least useful results

with respect to investment decisions were obtained by time horizon
reduction and downsampling.

The choice of whether reference weeks or reference days should
be selected for temporal sampling also produces different results for
different investment decisions. Reference days, for example, tend to
provide a better cost estimate. Reference weeks, on the other hand,
better reflect the design of thermal storage facilities, and are therefore
more appropriate with respect to the continuity problem. However, in
the specific case of slicing, better convergence behavior occurs when
reference days are chosen, especially in the design of gchps, pv systems,
chp plants, central heating plant, and district heating networks.

The variable cost factor applied to all temporal model adaptions (see
Section 3.3.1) takes the ratio of periodical to variable costs well into
account. For most temporal model adaptions a larger deviation of the
modeled system costs is only recorded in the case of large temporal
simplification. Only in the cases of downsampling, k-clustering (solar
radiation and electricity demand criteria), and time horizon reduction
the deviations were greater than 10%, as long as a minimum of 20%
of the original number of time steps were modeled (see Appendix D).

5.2 Techno-spatial model adaptions

The tested techno-spatial model adaptions showed that the memory
requirement is linearly related to the number of investment decisions
(see Fig. 6). The run-time depends among other things on the number
of binary investment decisions even though, the regression of this
relationship has only a low coefficient of determination.

Some of the tested methods allow a significant reduction of the
required computing resources without causing model deviations at
all. This applies to technological pre-selection and the definition of
appropriate technological boundaries (run-time only). Technological
sub-modeling allows further improvements with, besides too high bat-
tery storage investments, negligible model deviations. Since the lack
of compensation possibilities between the sub-systems mainly causes
the undersizing of the battery storages, it can be assumed that this
effect will become less important with increasing sub-system size. It is
recommended to draw reasonable boundaries between the sub-models.
For example, locations of central heat generation or grid nodes are
particularly suitable for that purpose.

Spatial clustering, linearization and technological case distinction
lead to significant model deviations. The previously, theoretically as-
sumed problems with spatial clustering (Fig. 2) and linearization
(Fig. 3) are thus confirmed. In the reference case, technological ag-
gregation led only to minor model deviations, but to an increase of
the run-time. The increase in run-time can be explained by the fact
that systems with averaged parameters are closer to the profitability
limit. For example, in the modeled reference case, the pv systems
of building SDB1 were either fully designed (pv system 1 with 244◦

south-west orientation) or not designed at all (pv system 2 with 66◦

north-east orientation). This ‘‘all-or-nothing’’ decision indicates a clear
and easily identifiable solution for the model. In the aggregated case,
the parameters of the two plants are weighted averaged (aggregated pv
system with 159◦ south-east orientation) and the investment decision
is only partially sized. This partial design indicates that the investment
decision is close to the profitability limit and the optimal capacity is
harder to identify for the solution algorithm. Consequently, more run-
time is required to solve the model. We therefore recommend not to
use these methods.

Technological pre-selection, technological boundaries and spatial
sub-modeling are suitable techno-spatial model adaptation methods to
substantially improve the computing resources. However, these meth-
ods require either preliminary carried out studies or a profound knowl-
edge and understanding of the energy system under investigation (see
Section 2.2). If preliminary decisions are made on the basis of inaccu-
rate or false assumptions, this will automatically lead to an inaccuracy
in the main model as well.
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5.3 Combined model adaptions

Before applying all the methods tested in this study, the conceptual
design of energy system models should always avoid to include non-
relevant system components and investment decisions that are not
relevant to the research questions. Particular focus should be put on
the avoidance of binary decisions.

A way to address lack of prior knowledge on the application of
technological pre-selection and application of technological boundaries
is the execution of a pre-model with temporal simplifications. Based on
the results of this pre-model, investment decisions that were not used at
all can be removed from the main model (technological pre-selection).
In contrast to the temporal zooming approach, the investment decisions
are thereby only limited within the pre-model, but the final decisions
(dispatch and investment) are made entirely in the main-model. To
ensure that no relevant technologies are mistakenly removed from the
model, the method for temporal simplifying the pre-model should be
chosen with care. The results of the applied case show that the short-
ening of the original time series by averaging each of ten consecutive
weeks would be very suitable. More or less the same technologies
were considered for investment decisions as in the reference case (see
Section 4.2). Although the capacities of these investment decisions do
not match those of the reference results, the decisions can be used
for technological pre-selection. In addition, the pre-results can be used
to reasonably constrain the technological investment limits. The test
case results show that setting them to about 500% of the pre-results is
appropriate. If subsequently the investment limits are fully utilized in
the main model, the values should be increased and the main model
repeated.

The application of pre-modeling with subsequent technological pre-
selection and application of technological boundaries thus corresponds
to the tested combined methods scheme X1 (see Table 3), which
enabled a significant reduction of computing resources without causing
model deviations.

The technological pre-selection considered manually in the model
could have been made on the basis of a temporally simplified pre-model
with averaging every 10th week (see Appendix D). Adding the solving
time of such a pre-model of 840 s (see Appendix D) still a total run-
time improvement of about −98% and a reduced memory requirements
of −29% (see Appendix G) can be expected compared to the reference
case.

Further savings of computing resources, especially memory usage,
are possible through further method combinations. Based on the tested
schemes, we recommend, the additional application of spatial sub-
modeling, and temporal slicing. Temporal slicing should be applied
only as much as absolutely necessary, because the model results deviate
increasingly from the reference case with decreasing number of mod-
eled time steps. Useful results with respect to the investment decisions
made can be expected if at least 20% of the original time steps are
modeled.

5.4 Evaluation of results

Although this study focuses on the specific case of reducing the
computational requirements of mixed-use multi-energy systems with
high spatial resolution through temporal and techno-spatial model
adjustments, the results can be partially compared with other studies
on run-time and memory reduction of energy system models.

Kotzur et al. [10] also recommend ‘‘a systematic reduction of the
size of the model’’ and that ‘‘binary variables should be avoided and
equations linearized where possible’’. In addition, they also see poten-
tial in spatial clustering and draw attention to the risks of accounting
mismatches.

In line with our results, Hoffmann et al. [14] came to the conclusion
that ‘‘temporal aggregation methods are always based on the complex-
ity reduction of not perfectly redundant input data and thus introduce

deviations from fully resolved models" and that these should only be
used if absolutely necessary.

Alimou et al. [28] analyzed a combination of heuristic selection and
downsampling to select seven typical days, which are divided into six
hourly time steps afterwards. Consistent with our results for heuristic
selection and downsampling, they arrived at the conclusion that this
procedure ‘‘tends to reduce the high variability of [...] wind and solar’’,
as well as to overestimate ‘‘the maximum load that must be supplied
by [...] thermal power plants’’.

Cao et al. [9] as well as Shirizadeh and Quirion [29] came to
results regarding the downsampling method for the cases of nation scale
models, which strongly differ from our results. They both identified
downsampling to be the ‘‘most efficient speed-up approach’’ [9] of the
time series simplification methods tested for their cases. The differences
in the results can be attributed to the differences in the spatial scale and
the technological and spatial resolution. We analyzed a comparatively
small area with high spatial and technological resolution. In such
areas, small-scale interactions between individual components and sub-
systems as well as the volatility of individual renewable energy plants
are highly relevant. These points are not well represented by downsam-
pling. However, these effects are less relevant for large energy system
models with lower spatial and technological resolution (Shirizadeh
and Quirion used only a single node). Accordingly, the weaknesses of
the downsampling method have less influence on the results of such
models. However, the different results underline how important it is
to use appropriate methods of time series reduction depending on the
application.

The methods considered in this study were applied to a real-world
energy system with a total of nine buildings. However, we assume that
the results can also be applied to other energy system models. The test
area was selected to correspond to the structure of larger urban energy
systems. We therefore assume that the results are transferable to urban
areas with several hundred buildings.

We further assume that the results are particularly applicable to
energy system models with a high level of technological detail and
high spatial resolution. For spatially very large models (e.g., national
scale) with low technological and spatial resolution, the results are not
transferable without further ado.

The results for temporal model adaptations are particularly charac-
terized by model deviations in the design of sector-coupling technolo-
gies, battery storage and the decision of (de)centralized heat supply (see
Section 5.1). The results are therefore especially transferable to models
that include such kind of technologies and decisions. For mono-sectoral
models, the transferability has to be confirmed first. Furthermore,
mainly short-term storages were considered within the test case, so that
we cannot state the influence of the different temporal simplifications
on long-term storages, which, e.g., have been described by Kotzur et al.
[18].

The recommended techno-spatial methods of technological pre-
selection and technological boundaries are expected to be highly trans-
ferable to most other types of energy systems, especially models with
a high number of binary decisions. Rather, the uncertainties of these
methods depend on the quality of the underlying preliminary investi-
gations.

Lastly, the results are transferable for models where the solving
process is the bottleneck of the whole modeling process. For models,
where pre-processing or post-processing may be predominant, other ap-
proaches, which are not in the focus of this study, should be conducted.

6 Conclusion

The model runs performed in this study have shown that the com-
putational requirements of run-time and (random access) memory us-
age to solve a model are influenced differently by increasing model
complexity. The run-time increases quadratically with increasing
model complexity. A correlation of the relationship with the number
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of time steps modeled proved to be particularly clear for the models
used in this study, showing a coefficient of determination of 𝑅2 = 0.80.
Furthermore, in particularly the number of binary investment decisions
had quadratic influence on the run-time, although this relationship
showed up to be less clear (𝑅2 = 0.31). In turn, the memory re-
quirement increases linearly with increasing model complexity.
Again, the correlation to the number of modeled time steps was found
to be particularly clear (𝑅2 = 0.99). Furthermore, the number of all
investment decisions also had linear impact (𝑅2 = 0.74) on the memory
requirement.

The application of model adaption methods can therefore signifi-
cantly reduce computing resources. In the investigated test case, the
run-time could be reduced by more than −99 % and the memory usage
by up to −88 %, by using a combination of technological pre-selection,
technological boundaries, temporal slicing (every fourth day), and
spatial sub-modeling (scheme X5, see Table 3).

Based on our analysis, we recommend the following general proce-
dure for the reduction of computing resources for multi-energy system
investment optimizations models. The proposed steps are sequential. To
avoid model inaccuracies, only as many steps as absolutely necessary
should be applied:

1. keeping the model as simple as possible: All system compo-
nents that are not relevant for the purpose of the study should be
removed from the model. This applies in particular to (binary)
investment decisions.

2. pre-modeling: With the help of a time-simplified model (slic-
ing/averaging of every 10th week is recommended), preliminary
results can be obtained and incorporated into the main-model
(scheme X1, see Table 3):

(a) technological pre-selection: Technologies not consid-
ered within in the pre-modeling should be removed from
the main-model.

(b) technological boundaries: Investment limits can be rea-
sonably limited based on the pre-model results. We rec-
ommend technological boundaries of 500% of the pre-
model result investment values. If the investment lim-
its are fully used in the main-model, the technological
boundaries should be enlarged.

3. spatial sub-modeling: The model can be decomposed and the
results subsequently aggregated. The boundaries of sub-models
should be strategically aligned, for example at network nodes.
Especially for models without interaction between sub-systems
(i.e., without local energy markets or bi-directional heat net-
works), only small model deviations are to be expected (scheme
X3, see Table 3).

4. temporal simplification: We recommend temporal slicing, us-
ing days as sample periods. The degree of slicing should be as
low as necessary, with a maximum of every fifth day (scheme
X4 and X5, see Table 3).

5. further simplifications: If further model simplifications are
necessary, we recommend spatial clustering of sub-systems. The
clusters should be kept as small as possible.

Note that none of the tested methods of temporal model reduction
allowed simplifications without model deviations. In fact, there was
always at least one technology with major design errors of at least
10% compared to the reference case (see Appendix D). Due to large
model deviations, we especially recommend avoiding the use of tem-
poral downsampling, time horizon reduction, linearization and holistic
spatial clustering, if possible.

The proposed procedure was tested for an urban area with a total of
nine buildings. The test area was chosen to correspond to the structure
of larger urban areas. Therefore, we presume that the procedure is
also applicable to larger multi-energy systems, for example, of urban
districts with several hundreds of buildings. However, the transferabil-
ity still has to be finally confirmed in future research. In addition, we
recommend the development of concrete instructions for solver-based
methods and parallelization. In this way, the required computational
resources can be further reduced or the possible model complexity can
be increased while maintaining the same run-time and memory usage
requirements.
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Appendix A. Methods: Investment decision

A list of the investment decisions carried out in the test case is shown in Table 4.

Table 4
Investment decisions within the test case area. Unless otherwise indicated, the decisions are linear and the value to be determined can be between zero and the listed value.

Unit cent. SDB1 SDB2 SDB3 MFB1 MFB2 COM1 COM2 GAR1 GAR2

Central heating plant kW 999 – – – – – – – – –
Gas heating systems kW – 999 999 999 999 999 999 999 – –
Chp plant kW 999 – – – – – – – – –
gchp – 27.8 18.4 21.6 21.5 30.1 – – – –
Ashp kW 999 999 999 999 999 999 999 999 – –
Pv systems kW – 6.75 13.50a 7.02 14.04 7.29 14.96a 9.32 2.70 2.16
Battery storage kWh 9 999 9 999 9 999 9 999 9 999 9 999 9 999 9 999 – –
solar th. collectors kW – 27.71 55.42a 28.82 57.64 29.93 61.41a 38.27 – –
Thermal storage kWh 9 999 9 999 9 999 9 999 9 999 9 999 9 999 9 999 – –
Roof insulation m2 – 163 162 125 297 138 527 323 – –
Wall insulation m2 – 364 365 338 402 194 340 523 – –
Window insulation m2 – 60 59 47 103 48 211 131 – –

Dh network 20 pipe sections, each with a binary decisions of DN25 (max. 87 kW) for house connection pipes and DN35 (max. 165 kW) for
distribution network pipes.

Acronyms: ashp = air source heat pump, cent. = central, chp = combined heat and power, dh = district heat, gchp = ground coupled heat pump, ng = natural gas, pv =
photovoltaic, th. = thermal.
aAggregated capacity of two partial plants.

Appendix B. Methods: Model parameters

All parameters used for the modeling including sources and derivations are stored in the following directories:

• SESMG scenario-files: https://doi.org/10.5281/zenodo.6997372
• Model and parameter documentation: https://doi.org/10.5281/zenodo.6997547

Appendix C. Methods: Techno-spatial model adaptions

A list of the applied techno-spatial model adaptions is shown in Table 5.

Table 5
Applied techno-spatial adaptions.
ID Method Specification Investment decisions

Linear Binary

Ref. Reference case 79 20

A1 Technological pre-selection 31 10

B1 Technological aggregation 75 20

C1 Spatial clustering Similar building types (4 clusters) 50 14
C2 Spatial clustering Similar usage types (3 clusters) 43 12
C3 Spatial clustering All buildings of the system (1 cluster) 37 8

D1 Linearization House connection pipes, reference value: DN25 86 13
D2 Linearization Distribution pipes, reference value: DN32 92 7
D3 Linearization All pipes, reference value: DN25 99 0
D4 Linearization All pipes, reference value: DN32 99 0
D5 Linearization All pipes, reference value: DN25 & DN32 99 0

E1 Technological boundaries 500% reference investments 79 20
E2 Technological boundaries 200% of reference investments 79 20
E3 Technological boundaries 150% of reference investments 79 20
E4 Technological boundaries 100% of reference investments 79 20

F1 Sub-modeling Sub-model 1 (SDB1-3, GAR1-2) 39 8
F2 Sub-modeling Sub-model 2 (MFB1-2, COM 1-2) 45 13

G1 Technological case distinction Centralized heat supply 43 20
G2 Technological case distinction Decentralized heat supply 75 0
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Appendix E. Results: Temporal model adaptions (Plots)

Deviations of investment decisions of slicing and averaging from the reference case are shown in Figs. 8–10. Investment decisions that did not
prove suitable for system optimization neither in the reference case nor in the simplified model runs for system optimization (wall, window and
roof insulation) are not shown.

Fig. 8. Investment decision deviations of temporal simplified models from the reference case. Methods with sample days are shown on the left, sample weeks on the right. Modeled
values are shown as full symbols.
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Fig. 9. Investment decision deviations of temporal simplified models from the reference case. Methods with sample days are shown on the left, sample weeks on the right. Modeled
values are shown as full symbols.
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Fig. 10. Investment decision deviations of temporal simplified models from the reference case. Methods with sample days are shown on the left, sample weeks on the right.
Modeled values are shown as full symbols.
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Appendix F. Results: Techno-spatial model adaptions

Deviations of techno-spatial simplified models from the reference case are shown in Table 7.

Table 7
Deviations of techno-spatial simplified models from the reference case. Green cells indicate a model improvement, respectively low model errors, red cells indicate negative
deviations from the reference case, blue positive deviations.
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A1: technological pre-selection 31 10 −99.38% −29% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
B1: technological aggregation 75 20 +68.27% −2% 0% +5% −1% +3% 0% 0% 0% +3% 0% 0% 0% 0% 0% 0% 0%

C1: spatial clustering 50 14 −80.97% −44% −4% +9% +2% −2% +120% −35% −38% +5% −16% −67% −60% 0% a 0% 0%
C2: spatial clustering 43 12 −94.51% −54% −10% −7% −7% −100% +121% −10% −15% −26% −15% −67% −60% 0% a 0% 0%
C3: spatial clustering 37 8 −99.26% −64% −20% −15% −11% −100% −100% +39% −41% −78% −26% −67% −60% 0% a 0% 0%

D1: linearization 86 13 −57.58% 0% −4% −16% −68% −100% 0% +54% +57% +62% −3% +100% +60% 0% a 0% 0%
D2: linearization 92 7 −87.13% 0% −9% −18% −40% −100% −100% +55% −9% +62% −17% +133% +160% 0% a 0% 0%
D3: linearization 99 0 −98.49% 0% −13% −18% +18% −100% −100% +37% −70% +62% −17% +500% −100% 0% a 0% 0%
D4: linearization 99 0 −98.99% 0% −14% −18% −28% −100% −100% +59% −22% +62% −17% −100% +300% 0% a 0% 0%
D5: linearization 99 0 −99.01% 0% −14% −18% −19% −100% −100% +55% −31% +62% −17% +133% +160% 0% a 0% 0%

E1: technological boundaries 79 20 −76.79% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
E2: technological boundaries 79 20 −75.96% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
E3: technological boundaries 79 20 −59.71% +1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
E4: technological boundaries 79 20 −49.47% +1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

F: sub-modeling 39/45 8/13 −67.84% −39% +1% 0% +1% −6% 0% 0% 0% +54% 0% 0% 0% 0% 0% 0% 0%
G: case-distinction 43/75 20/0 −98.56% −22% +1% +13% +81% +33% +122% −100% −100% +55% −16% −100% −100% 0% a 0% 0%

aIn the simplified model, an investment has taken place which was not taken into account in the reference case.

Appendix G. Results: Combined methods

Deviations of simplified models using combined methods from the reference case are shown in Table 8 and Fig. 11.

Table 8
Deviations of models with combined methods from the reference case. Green cells indicate a model improvement, respectively low model errors, red cells indicate
negative deviations from the reference case, blue positive deviations.
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X1 31 10 −99.43% −29% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
X2 31 10 −99.57% −62% 0% −4% −2% 0% +20% +2% −3% −38% −1% 0% 0% 0% 0% 0% 0%
X3 16/15 0/10 −99.31% −55% +1% 0% +1% −5% 0% 0% 0% +29% 0% 0% 0% 0% 0% 0% 0%
X4 16/15 0/10 −99.70% −77% +1% −2% −1% −4% +20% +2% −3% +9% −1% 0% 0% 0% 0% 0% 0%
X5 16/15 0/10 −99.89% −88% −1% −21% −2% −29% −54% 0% −10% −32% −4% 0% 0% 0% 0% 0% 0%

In the simplified model, an investment has taken place which was not taken into account in the reference case.
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Fig. 11. Investment decision deviations of the applied combined model reduction method schemes from the reference case results.
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Summary
The Spreadsheet Energy System Model Generator (SESMG) is a tool for modeling and
optimizing energy systems with a focus on urban systems. The SESMG is easily accessible as
it comes with a browser-based graphical user interface, spreadsheets to provide data entry, and
detailed documentation on how to use it. Programming skills are not required for the installation
or application of the tool. The SESMG includes advanced modeling features such as the
application of the multi-energy system (MES) approach, multi-objective optimization, model-
based methods for reducing computational requirements, and automated conceptualization and
result processing of urban energy systems with high spatial resolution. Due to its accessibility
and the applied modeling methods, urban energy systems can be modeled and optimized with
comparatively low effort.

Statement of need
The Spreadsheet Energy System Model Generator (SESMG) meets various challenges of
modeling urban energy systems. Planning and optimizing the design of urban energy systems
is becoming increasingly complex (Zhang et al., 2018) due to sector coupling, the use of
decentralized renewable energy sources with volatile production, the use of diverse energy
storage systems, the growing importance of new energy sectors such as hydrogen, as well
as the increasing relevance of multiple planning objectives. In this context, urban energy
systems are defined as “the combined process of acquiring and using energy in a given spatial
entity with a high density and differentiation of residents, buildings, commercial sectors,
infrastructure, and energy sectors (e.g., heat, electricity, fuels)” (Klemm & Wiese, 2022).
Traditionally, such systems are designed by simulating and comparing a limited number of
pre-defined energy supply scenarios without using optimization methods. Individual buildings,
consumption sectors, or energy sectors are rarely planned and designed holistically, but rather
separately from each other (Lukszo et al., 2018). Finally, planning processes are often only
driven by financial interests, rather than considering additional planning objectives such as
minimizing green house gas (ghg) emissions, or final energy demand. To fully exploit all
synergies and to avoid conflicting interests due to interdependencies of increasingly entangled
energy systems (Pfenninger, 2014), it is necessary to carry out holistic planning (Lukszo et al.,
2018). Therefore, all energy sectors, planning objectives, as well as an entire spatial entity
should be considered within a holistic analysis (United Nations Environment Programme, 2015).
Not only certain, but all theoretically possible supply scenarios should be compared by using
optimization algorithms (DeCarolis et al., 2017) in order to ensure that scenarios that allow
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the minimization of the planning objectives by a given ratio are identified (Klemm & Wiese,
2022). All these requirements for planning and optimization methods result in increasingly high
computing requirements, especially in run-time and random access memory (RAM) (Klemm
et al., 2023). To limit the necessary computing capacities to an acceptable extend, modelers
may make decisions regarding the temporal and spatial resolution of the system. Alternatively,
model-based or solver-based methods can be used to reduce the computational requirements
(Cao et al., 2019), with only slight differences in the quality of the results.

Combining functions of the underlying Open Energy Modeling Framework (oemof) (Krien et
al., n.d.) as well as its own functionalities, the SESMG overcomes these typical problems of
modeling urban energy systems by

• considering the multi-energy system (MES) approach (Mancarella et al., 2016),

• carrying out multi-objective optimization by using the epsilon-constraint-method (Mavro-
tas, 2009), and by

• enabling high spatial resolution results through the applicability of model-based methods
for the reduction of computational effort (Klemm et al., 2023).

The SESMG enables the optimization of multi-sectoral and spatial synergies of entire urban
energy systems with an adaptable number of buildings. Due to the multi-criteria results in the
form of a Pareto front, transformation processes between status quo, financial cost minimized
and ghg emission minimized target scenarios can be identified.

The target groups of the SESMG are (urban) energy system planners and researchers in
the field of energy engineering. As it is required for the application of the SESMG and the
interpretation of the results, users must have a certain basic knowledge of energy systems
and energy engineering. Compared to other tools for the modeling and optimization of urban
energy systems, as they have been listed by Klemm and Vennemann (Klemm & Vennemann,
2021), the SESMG provides several advantages regarding user-friendliness due to

• being available under an open-source license,

• applicability without any programming knowledge through a browser-based graphical
user interface (GUI),

• automatically conceptualizing individual urban energy systems of any size,

• automatic result processing and visualization of complex relationships in form of system
graphs, Pareto fronts, energy amount diagrams, and more, as well as

• a broad set of standard (but still customizable) technical and economic modeling
parameters including description and references.

The SESMG comes with a detailed documentation, including step-by-step instructions, ex-
planations of all modeling methods, and troubleshooting with known application errors. In
addition, the documentation includes an ongoing list of peer review publications, conference
proceedings, study works, research projects, and other publications related to the SESMG.
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Abstract

The optimization of urban energy systems considering the competing objectives of minimiz-

ing financial cost and greenhouse gas (GHG) emissions includes decisions that are sensitive

to changes in energy prices, GHG emissions, and final energy demands. A high resolution

sensitivity analysis of critical system parameters revealed several no-regret options that are

robust to external conditions, as well as possible-risk options that are particularly sensitive to

external conditions. No-regret options include photovoltaic systems, decentralized heat pumps,

thermal storages, electricity exchange between sub-systems and with higher-level systems, and

the reduction of energy demands through building insulation, behavioral changes, or reduction

of living space per inhabitant. Potential-risk options include the use of solar thermal systems,

decentralized natural gas technologies, high capacity battery storages, hydrogen for building

energy supply, and natural gas-based district heating. When energy prices (electricity, natural

gas and hydrogen) rise, financially-optimized systems approach the least-emission solution of

system design.
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1. Introduction

The 2022 energy crisis in Europe [1] has shown how quickly some of the most relevant parameters

for the design of energy systems may change. Compared to the pre-crisis year of 2021, the

average wholesale price of electricity in the European Union (EU) has increased by an average

of +220 % [2], and the wholesale price of natural gas by +300 % [3], while the natural gas

consumption decreased by −10 % [3]. Such changes in system parameters are expected to have

a strong effect on energy systems, their design, and their optimization [4].

This study analyzes the impact of aleatory uncertainties [5] on optimized urban energy sup-

ply systems. A multi-criteria approach was conducted, optimizing the energy supply of an

reference urban energy system for both financial costs and greenhouse gas (GHG) emissions.

Subsequently, sensitivity analyses were conducted by re-running the optimization with varying

system parameters and examining the changes in investment and dispatch decisions. The focus

of the sensitivity analyses lays on uncertainties of energy prices (natural gas, electricity, hydro-

gen, combined), GHG emissions (total GHG emissions, GHG emissions of imported electricity

and hydrogen), various energy demands (electricity, heating), and population density on urban

energy systems. The application of a reference case with representative structure with respect

to different consumption and energy sectors, as well as investment and dispatch decisions, en-

sures transferability of the results to other urban energy systems. This especially applies to

countries of the European Union which share similar challenges and strategies for energy supply

and market structures for energy pricing, driven by decisions of the European Commission [6].

Parameter changes which exert a major impact on urban energy system design will be identi-

fied. Specifically, we will analyze which technologies and measures are particularly robust to

parameter changes (no-regret options) and which are particularly sensitive (potential-risk

options) in terms of both financial costs and climate protection targets.

Several studies identify no-regret options in terms of financial costs and the achievement of

EU climate protection targets. For example, no-regret options for the heating sector include

high levels of building renovation [7, 8], (partial) phase-out of natural gas technologies [7] and

replacement by electrification technologies [8] such as heat pumps [7], and the use of biofuels

[8]. Another no-regret measure is the reduction of heating demand by adjusting consumption

patterns, providing absolute savings potential, and enabling both financial and GHG savings
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[9]. However, the achievement of full climate neutrality requires the use of technologies such

as synthetic hydrocarbons or hydrogen, which are considered to be associated with a higher

financial risk [8]. The economic viability of hydrogen technologies in the building sector is only

expected at very low prices [10].

This study fills a gap by analyzing not only financial minimization and net-zero boundary condi-

tions, but also the full range in between these competing interests. Furthermore, dependencies

on changing external conditions are communicated. The focus is on small-scale urban energy

systems, taking into account all local interactions, synergies, and trade-offs of sub-systems and

energy sectors. The findings provide a scientific foundation for urban energy system planning,

specifically with respect to potential-risk and no-regret measures and technologies.

2. Material and Methods

2.1. Reference Case

Urban energy systems differ strongly from each other with regard to their building structure

(e.g., building density or construction year), usage types (e.g., residential, commercial, or indus-

trial), existence of energetic potentials (e.g., geothermal potentials), and many more. Therefore,

it is not feasible to define a generally valid reference system. To ensure the highest possible

degree of transferability, a real-world energy system (Fig. 1) was chosen as the reference case

for this study. It meets numerous pre-defined requirements; it consists of several sub-systems,

i.e. buildings of various usage types (residential, commercial, sports facilities, garages), dif-

ferent types of residential buildings with differing population densities, roof orientations, and

geothermal potentials. It is assumed that up to three identical adjacent buildings share the

same energy supply technologies. These buildings are therefore clustered in the model. The

geographical coverage was chosen so that each optimization run could be solved in under 24

hours using the chosen methodology.

The aim of the model is to optimize the energy supply regarding both financial costs and GHG

emissions. Various investment and dispatch decisions for several kinds of technologies can be

carried out by the model. In the course of this optimization, it is assumed for simplicity that

all buildings are in an unrenovated state and that investment costs apply for every technology
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Buildings
Multi-Family Building (MFB)

Semi-Detached Building (SDB)

Commercial Building (COM)

Sports Facility (SPO)

Garage (GAR)

District Heating Pipes
House Connection Pipe

Distribution Pipe

Central Heating Unit

Figure 1: Reference case area to which the sensitivity analyses were applied. The shown
district heating (DH) pipes corresponds to the position of pipes for which investment deci-
sions could be carried out during the optimization process.

considered. Tab. 1 provides an overview of which technologies and measures can be consid-

ered. Electricity, natural gas and hydrogen imports can be carried out as dispatch decision.

Financial costs and upstream GHG emissions occuring for the imported energy are taken into

account. Electricity produced in individual sub-systems, i.e. buildings or central energy supply

units, can either be used internally, transferred to other sub-systems in return for grid fees, or

sold/exported to outside the system.
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Table 1: Technologies and measures which were considered for the optimization of the test
cases energy supply. *If photovoltaic (PV) and solar thermal systems may potentially be
installed on the same surface, only one of the two technologies will be considered during the
optimization.

Technology Centr. Decentr. Technology Centr. Decentr.

natural gas heating x x DH network x
ashp x x natural gas chpp x
gchp x electrolysis x
electric heating x hydrogen chpp (fuel cell) x
PV system* x methanation x
solar thermal system* x natural gas storage x
battery storage x hydrogen storage x
wall insulation x battery storage x x
roof insulation x thermal storage x x
window insulation x sub-system electricity exchange x
DH connection x

Acronyms: ashp = air source heat pump, centr. = centralized, chpp = combined heat and power
plant, decentr. = decentralized, gchp = ground coupled heat pump.

2.2. Model Description

The Spreadsheet Energy System Model Generator (SESMG) [15], a modeling tool based on

the Open Energy Modelling Framework (oemof) [16], was used. The Gurobi solver [17] was

employed.

Model properties: The applied perfect foresight model used a bottom-up analytical approach

and mathematical approaches of linear programming and mixed-integer programming (for DH

only) for investment and dispatch optimization. Several energy sectors (electricity, heat, natural

gas, hydrogen) and demand sectors (residential, commercial, sports facilities) were covered. A

house sharp spatial resolution, a hourly temporal resolution, and a time horizon of one year

were applied.

Multi-criteria optimization: The epsilon-constraint method [18] is applied for multi-criteria

optimization. Therefore, a primary optimization criterion (financial costs in e) is minimized by

the models’ solving algorithm. In a second model run, a secondary optimization criterion, GHG

emissions in g CO2-equivalents (in the following just referred to as g), is minimized. To combine

both optimization criteria, the secondary optimization criterion is used as a constraint, which

is tightened in several model runs until the minimum of the secondary criterion is reached.

In consideration of this constraint, the model runs are minimized with respect to the primary
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criterion. The calculated semi-optimal scenarios act as “best-known Pareto points” and are

combined to a “Pareto front” [19]. A reasonable third optimization criterion would be to

minimize the effective energy demand [20]. However, demand reductions based on sufficiency

measures do not counteract any of the other two optimization criteria and are usually very

likely to improve them. Therefore, the reduction of the effective energy demand has not been

used as a tertiary optimization criterion, but was separately treated in the sensitivity analysis.

Emissions approach: For the consideration of GHG emissions, the adapted territorial based

emissions approach by Klemm and Wiese [20] was considered. All emissions that are caused

for the provision of the energy consumed in the system were taken into account, but not for

energy exported to neighboring systems.

Model simplification: The applied model is spatially and temporally highly resolved and

contains a large number of linear and binary investment decisions. In order to solve this

model with the available random-access memory (RAM) and run-time, it was necessary to

make some model simplifications. By carrying out temporal simplified pre-models using weekly

time-averaging (averaging and merging of ten weeks each), preliminary results were created

for each model run (“pre-modeling” [21]). These preliminary results were used to identify

technologies that are not profitable at all. Based on this, these technologies were removed from

the main-model (“technical pre-selection” [21]). Within the main-model, temporal-slicing [21]

considering every fourth day was used.

Data: Weather data from the German Weather Service for the year of 2012 [22], which was

an average solar year [23], was used. A detailed description of all system parameters as well as

how the individual components in the system are connected to each other is given in Appendix

A. Due to the European energy crisis, energy prices were subject to strong fluctuations at the

time this study was carried out. Pre-crisis values were therefore used for the entire model to

take account of a settled market situation with regular ratios and proportions.

2.3. Sensitivity Analysis

Emerging uncertainties can be categorized into aleatory and epistemic uncertainties [5]. Epis-

temic uncertainties can be avoided by improving the model quality through the use of addi-

tional data (parametric uncertainties) or by refining the model (structural uncertainties) [24].
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Improving the model quality is the only way of quantifying epistemic uncertainties [4]. Aleatory

uncertainties cannot be reduced by improved model quality [5], yet they can be quantified by

deterministic or stochastic approaches [24]. Within this study, the deterministic approach of

sensitivity analysis was applied. This approach enables the identification of “critical model

features that lead to important changes” [24] in system design and furthermore to “extract

insights that are robust to” [24] changing system conditions. These insights can be used to

better define system design with regard to changing key system parameters.

The financially-optimized energy supply scenario and the GHG emission-optimized supply sce-

nario were calculated and used as reference scenarios for the sensitivity analyses. Several

gradations were applied for each sensitivity parameter. For each of these gradations, a new

optimization run was performed and thus an adjusted energy supply scenario was calculated.

A total of 10 sensitvitiy analyses were applied, which can be divided into three categories:

• GHG emissions

– total GHG emissions

– GHG emissions of imported electricity

– GHG emissions of imported hydrogen

• financial costs

– natural gas price

– electricity price

– hydrogen price

– combined energy price

• effective energy demands

– electricity demand

– heating demand

– population density

For the variation of restrictions regarding the total GHG emissions, the epsilon-constraint

method (see above) was applied to calculate a financially-optimized scenario (0 % GHG re-

duction), an emission-optimized scenario (100 % GHG reduction), and nine further scenarios
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in 10 % GHG reduction steps in-between. The financially-optimized and emission-optimized

scenarios form the reference cases for the further sensitivity analyses

The average GHG emissions of the German electricity mix, considered as the GHG emissions

of imported electricity, were initially varied in six gradations (0, 50, 75, 125, 150 and 200 %)

and supplemented by a further gradation (25 %) for a more precise resolution.

Typical GHG emissions of green hydrogen were considered in the reference case for the GHG

emissions of imported hydrogen. This value was initially varied in six gradations (0, 50,

75, 200, 500, and 1 000 %) and supplemented by two further gradation (300 and 400 %) for a

more precise resolution.

The individual energy prices of natural gas, electricity and hydrogen were varied in six

gradations (0, 50, 75, 200, 500, and 1 000 %) deviating from the respective reference value. As

the interactions between the prices of individual energy forms are particularly strong [25], the

prices have been varied together (combined energy prices). Therefore, it was assumed that the

costs for the import of all energy carriers vary linearly with the same gradations as above.

The individual electricity demand as well as the heating demand for every individual

building based on consumption behavior was varied in six gradations (0, 50, 75, 125, 150 and

200 %) deviating from the respective reference values.

The population density was varied by the number of inhabitants per housing unit in six

gradations (0, 50, 75, 125, 150 and 200 %) deviating from the reference case. The number of

inhabitants was rounded to integer numbers or zero for each housing unit.

3. Results

3.1. Reference Case and Impact of GHG Reduction Goals

The Pareto front in Fig. 2 includes the financially-optimized scenario, the GHG emission-

optimized scenario, and nine further Pareto scenarios in between. A reduction of GHG emissions

by −93 % may be realized compared to the financially-optimized case, but a reduction to zero

is not possible due to life-cycle emissions of technical facilities.

Within the financially-optimized scenario, the heat supply is primarily based on (central-

ized) natural gas technologies, and the electricity is supplied by a heat-driven natural gas
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Figure 1: Pareto front composed of optimized energy systems for an urban district with differ-
ent weighting of primary (financial costs) and secondary (GHG emissions) optimization
criteria. The financially-optimized scenario causes financial costs of 160 ke/a and annual GHG
emissions of 641 t/a. Starting from there, up to the P4 scenario a significant reduction in emissions
(−37 %) with only a slight increase in financial costs (+2 %) is enabled. From P5 on, the additional
costs increase more, with the largest increase occurring between P9 and the emission-optimized sce-
nario. The emission-optimized scenario enables a significant reduction of GHG emissions to 48 t/a
(−93 %), but also increased financial costs of 416 ke/a (+160 %).

With decreasing total GHG emissions, the heat supply is progressively decentralized. At the same
time, the heating demand is reduced due to building insulation, and electricity demand increases due
to electrification of the heat supply.

In the emission-optimized scenario, the remaining heating demand of maximum possible insulated
buildings is provided by air source heat pumps (ASHPs), ground coupled heat pumps (GCHPs) and
solar thermal systems. Decentralized ASHPs are preferred over centralized ones, as heat losses (about
8 %) and life-cycle emissions for the construction of district heating (DH) pipes are thus avoided. PV
systems, hydrogen, and CHPP are used for electricity supply and battery storages for load shifting.
The PV potential is not fully utilized in any of the scenarios, especially with respect to PV modules
deviating more than 65° from the south axis. Solar thermal systems were only considered in the
emission-optimized scenario on surfaces without PV potential.

Sensitivity: GHG Emissions of Imported Energy

Within two individual sensitivity analyses, the GHG emissions of (1) imported electricity and (2)
imported hydrogen between 0 % and 200 %, respectively 1 000 %, of the reference values.

In the financially-optimized scenario, varying the GHG impact of imported electricity (Appendix
??) and hydrogen (Appendix ??) has no effect on investment or dispatch decisions, as no financial
parameters are changed. However, absolute GHG emissions are reduced, corresponding to the extent
of respective energy imports.

Within the emission-optimized scenario, the import of electricity and the use of hydrogen CHPP
for electricity supply are in direct competition (Appendix ?? and ??). Electricity imports increase
in emission-optimized scenarios when the GHG impact of electricity (reference 366 g/kWh) drops
below the footprint of electricity supplied by the hydrogen CHPP (120 g/kWh in the reference case)
or even by PV systems (27 g/kWh). The hydrogen CHPP is applied within the optimization for
GHG emissions of imported hydrogen up to 132 g/kWh (reference 44 g/kWh). However, if non-green
hydrogen is imported, electricity imports are preferred over the hydrogen CHPP (this includes when
the imported electricity is used for hydrogen production). The heat supply, apart from the cases of
emissions-neutral imports of electricity or hydrogen, remains unchanged.
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Figure 2: Pareto front composed of optimized energy systems for an urban district with
different weighting of primary (financial costs) and secondary (GHG emis-
sions) optimization criteria. The financially-optimized scenario causes financial costs
of 160 ke/a and annual GHG emissions of 641 t/a. Starting from there, up to the P4 sce-
nario a significant reduction in emissions (−37 %) with only a slight increase in financial
costs (+2 %) is enabled. From P5 on, the additional costs increase more, with the largest
increase occurring between P9 and the emission-optimized scenario. The emission-optimized
scenario enables a significant reduction of GHG emissions to 48 t/a (−93 %), but also in-
creased financial costs of 416 ke/a (+160 %).

combined heat and power plant (CHPP), as well as PV systems (Fig. 3). The net inter-

nal electricity production exceeds the electricity demand; therefore, large shares are exported.

However, electricity still needs to be imported in small quantities at times when the internal

production is insufficient.

With decreasing total GHG emissions, the heat supply is progressively decentralized. At

the same time, the heating demand is reduced due to building insulation, and electricity demand

increases due to electrification of the heat supply. In P5 and P6, flexible electricity supply is

low while the heating demand is met by heat pumps that are adjusted to the load profiles of PV

systems. Thermal storages are utilized more frequently, although not with a higher capacity

than in other scenarios, to match heat supply with consumption. As the GHG emissions

constraint increases, the natural gas CHPP production is designed to zero in P7, and the

electricity demand increases to its maximum in P9 due to heat pump usage. In scenarios

P6 through P9, major shares of electricity are imported. In the emission-optimized scenario,

battery storages and hydrogen CHPP are considered instead. P9 is the only scenario, where a

combination of electrolysis and hydrogen storage are used for electric load shifting.

In the emission-optimized scenario, the remaining heating demand of maximum possible
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insulated buildings is provided by air source heat pumps (ASHPs), ground coupled heat pumps

(GCHPs) and solar thermal systems. Decentralized ASHPs are preferred over centralized ones,

as heat losses (about 8 %) and life-cycle emissions for the construction of DH pipes are thus

avoided. PV systems, hydrogen, and CHPP are used for electricity supply and battery storages

for load shifting. The PV potential is not fully utilized in any of the scenarios, especially with

respect to PV modules deviating more than 65° from the south axis. Solar thermal systems

were only considered in the emission-optimized scenario on surfaces without PV potential.

3.2. Sensitivity: GHG Emissions of Imported Energy

Within two individual sensitivity analyses, the GHG emissions of (1) imported electricity and

(2) imported hydrogen between 0 % and 200 %, respectively 1 000 %, of the reference values.

In the financially-optimized scenario, varying the GHG emissions of imported electricity

(Appendix C) and hydrogen (Appendix D) has no effect on investment or dispatch decisions,

as no financial parameters are changed. However, absolute GHG emissions are reduced, corre-

sponding to the extent of respective energy imports.

Within the emission-optimized scenario, the import of electricity and the use of hydrogen

CHPP for electricity supply are in direct competition (Appendix C and D). Electricity imports

increase in emission-optimized scenarios when the GHG emissions of imported electricity (ref-

erence 366 g/kWh) drops below the footprint of electricity supplied by the hydrogen CHPP

(120 g/kWh in the reference case) or even by PV systems (27 g/kWh). The hydrogen CHPP

is applied within the optimization for GHG emissions of imported hydrogen up to 132 g/kWh

(reference 44 g/kWh). However, if non-green hydrogen is imported, electricity imports are

preferred over the hydrogen CHPP (this includes when the imported electricity is used for

hydrogen production). The heat supply, apart from the cases of emissions-neutral imports of

electricity or hydrogen, remains unchanged.

3.3. Sensitivity: Energy Prices

Within four individual sensitivity analyses, the prices for (1) natural gas, (2) electricity, (3)

hydrogen, and (4) all together (combined energy prices) were varied between 0 % and 1 000 %

of the respective reference values.
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Figure 2: Heat (top) and electricity (bottom) supply in the optimized reference case scenario
in dependency on total GHG emissions. In the financially-optimized case, the heat supply
is primarily based on natural gas with a major share (13/19 buildings) of centralized heat supply.
Building insulation (reducing the heating demand by 6 %), GCHPs (7 % of the heating demand),
and electric heating (2 % of the heating demand) technologies are less important. In P5 and P6,
flexible electricity supply is low while the heating demand is met by heat pumps that are adjusted
to the load profiles of PV systems. Thermal storages are utilized more frequently, although not with
a higher capacity than in other scenarios, to match heat supply with consumption. As the GHG
emissions constraint increases, the natural gas CHPP production is designed to zero in P7, and the
electricity demand increases to its maximum in P9 due to heat pump usage. In scenarios P6 through
P9, major shares of electricity are imported. In the emission-optimized scenario, battery storages and
hydrogen CHPP are considered instead. P9 is the only scenario, where a combination of electrolysis
and hydrogen storage are used for electric load shifting. In the emission-optimized case, the maximum
possible building insulation enables a reduction of heating demand by −53 %, the remaining heating
demand being covered by heat pumps (76 % ASHPs and 17 % GCHPs) and solar thermal systems
(7 %). Electricity is supplied by PV systems (0.36 GWh/a) and a central hydrogen CHPP (operated
purely electrically, 0.24 GWh/a) in combination with battery storages (0.07 GWh/a). Further results
are presented in Appendix ??.
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Figure 3: Heat (top) and electricity (bottom) supply in the optimized reference case sce-
nario in dependency on total GHG emissions. In the financially-optimized case, the
heat supply is primarily based on natural gas with a major share (13/19 buildings) of cen-
tralized heat supply. Building insulation (reducing the heating demand by 6 %), GCHPs
(7 % of the heating demand), and electric heating (2 % of the heating demand) technologies
are less important. In the emission-optimized case, the maximum possible building insula-
tion enables a reduction of heating demand by −53 %, the remaining heating demand being
covered by heat pumps (76 % ASHPs and 17 % GCHPs) and solar thermal systems (7 %).
Electricity is supplied by PV systems (0.36 GWh/a) and a central hydrogen CHPP (oper-
ated purely electrically, 0.24 GWh/a) in combination with battery storages (0.07 GWh/a).
Further results are presented in Appendix B.

The comparison of the effects of changes in combined energy prices (Fig. 4) with those in

individual energy prices shows that the effect of changing natural gas prices (Appendix E)

dominates the financially-optimized scenario. The centralized natural gas technologies

have their maximum viability between 75 % and 100 % of the reference case. At higher natural
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gas prices, reduced CHPP capacities lead to higher shares of PV systems and electricity imports.

However, the increase in electricity prices (Appendix F) has a damping effect on this trend, and

even at 1 000 % of the reference combined energy prices, four buildings remain connected to

the natural gas-based DH network. Reduced CHPP electricity supply is replaced by increased

PV usage, small battery storages, and (only in the case of 1000 % combined energy prices) a

hydrogen CHPP. In scenarios with the least internal electricity production, thermal storages

Sensitivity: Energy Prices

Within four individual sensitivity analyses, the prices for (1) natural gas, (2) electricity, (3) hydrogen,
and (4) all together as combined energy prices were varied between 0 % and 1 000 % of the respective
reference values.

The comparison of the effects of changes in combined energy prices (Fig. 3) with those in individ-
ual energy prices shows that the effect of changing natural gas prices (Appendix ??) dominates the
financially-optimized scenario. The centralized natural gas technologies have their maximum vi-
ability between 75 % and 100 % of the reference case. At higher natural gas prices, reduced CHPP
capacities lead to higher shares of PV systems and electricity imports. However, the increase in elec-
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Figure 3: Supplied heat (top) and electricity (bottom) in the financially- (left) and emission-
optimized (right) reference case in dependency on changing combined energy prices.
The financially-optimized reference case corresponds to the maximum of natural gas-based central
heat supply with 13 out of 19 buildings being connected and a heat supply share of 84 %. With
energy prices ten times higher than the reference case, energy is supplied with building insulation (re-
ducing demands by −46 %), thermal storages (shifting 23 %), GCHP (supplying 19 %), ASHP (48 %),
natural gas CHPP (30 %), and hydrogen CHPP (4 %) for heat supply and PV systems (supply of
73 % of the internal demand with additional export of temporal surpluses), natural gas CHPP (34 %),
hydrogen CHPP (6 %) and battery storages (shifting 9 %) for electricity supply. Further results of the
sensitivity of combined energy prices are visualized in Appendix ??. Results for individual variations
of natural gas, electricity and hydrogen are shown in Appendices ??, ??, and ??.

5 Monday 19th June, 2023

Figure 4: Supplied heat (top) and electricity (bottom) in the financially- (left) and
emission-optimized (right) reference case in dependency on changing combined
energy prices. The financially-optimized reference case corresponds to the maximum of
natural gas-based central heat supply with 13 out of 19 buildings being connected and a heat
supply share of 84 %. With energy prices ten times higher than the reference case, energy is
supplied with building insulation (reducing demands by −46 %), thermal storages (shifting
23 %), GCHP (supplying 19 %), ASHP (48 %), natural gas CHPP (30 %), and hydrogen
CHPP (4 %) for heat supply and PV systems (supply of 73 % of the internal demand with
additional export of temporal surpluses), natural gas CHPP (34 %), hydrogen CHPP (6 %)
and battery storages (shifting 9 %) for electricity supply. Further results of the sensitivity
of combined energy prices are visualized in Appendix H. Results for individual variations of
natural gas, electricity and hydrogen are shown in Appendices E, F, and G.
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are again utilized more intensively by increasing storage frequency. Overall, with an increase

of combined energy prices, the energy supply moves towards the emission-optimized scenario.

The usage of PV systems is replaced when electricity prices decrease below the production

costs of PV (0.08−0.14 e/kWh, depending on orientation). For the hypothetical scenario of

all energy prices decreasing to near-zero, the electricity price has a dominant effect and the use

of electric heating systems for heat supply rises sharply shortly before the case of a cost-free

energy.

The emission-optimized scenario is not affected, because changes in energy prices do not

affect the minimization of GHG emissions within the applied model.

3.4. Sensitivity: Energy Demands

Within two individual sensitivity analyses, the (1) electricity demand and the (2) heating

demands have been varied between 0 % and 200 % of the respective reference values.

Changing electricity demands (Appendix I) only affects the electricity supply, not the heat

supply. The influence is limited primarily to the dimensioning of PV systems in the financially-

optimized scenario and to hydrogen CHPP and battery storages in the emission-optimized

scenario. If the behavioral based electricity demand is reduced to zero, the absolute electricity

demand and thus the electricity supply has an offset which is caused by the electrified heat

supply.

Changes in heating demand (Fig. 5) based on consumption behavior affect optimization for both

heat and electricity supply. In the financially-optimized scenario, with decreasing heating

demand, the shares of insulation, GCHPs, and decentralized gas heating systems increase.

As soon as the electricity production through heat driven natural gas CHPP in combination

with PV systems cannot meet the electricity demand from a certain state on, electricity imports

increase. With increasing heating demand, the profitability of natural gas-based central heating

supply increases due to increased spatial density of heating demands and more buildings being

connected to the DH network. In the emission-optimized scenario, the usage of ASHP,

GCHP, solar thermal systems, and thermal storages changes linearly with heating demand.

The usage of hydrogen CHPP changes linearly for heating demands above 50 % of the reference

value, due to the sector coupled system. Below this value, the system remains unchanged and
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Figure 4: Supplied heat (top) and electricity (bottom) in the financially- (left) and emission-
optimized (right) reference case in dependency on changing heating demands. In the
financially-optimized scenario, the heat is primarily supplied by natural gas regardless of the heating
demand, but the number of buildings connected to the DH network varies from five (at a maximum
of 75 % of the reference heating demand) to 16 buildings (at a minimum of 150 % of the reference
heating demand). At the same time, with higher heating demand based on consumption behavior, less
insulation is considered, because the viability of natural gas-based central heat supply increases. In all
emission-optimized scenarios apart 0 % heating demand, the maximum possible building insulation
is used. The use of the considered supply technologies (ASHP, GCHP, solar thermal systems, and
thermal storage) changes linearly with heating demand. Further results of the sensitivity of heating
demands based on consumption behavior are visualized in Appendix ??.

Sensitivity: Population Density

Within this sensitivity analysis, the population density was varied by changing the number of inhabi-
tants per housing unit between 0 % and 200 % of the respective reference values.

The population density primarily influences the absolute electricity demand (Appendix ??) for both
financially and emission-optimized scenarios. Therefore, the system design is rather robust against
changes in population density. However, the specific energy supply per inhabitant changes significantly
(Fig. 5), and the relative impact on both specific financial costs and GHG emissions is enormous.
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Figure 5: Supplied heat (top) and electricity (bottom) in the financially- (left) and
emission-optimized (right) reference case in dependency on changing heating
demands. In the financially-optimized scenario, the heat is primarily supplied by natural
gas regardless of the heating demand, but the number of buildings connected to the DH
network varies from five (at a maximum of 75 % of the reference heating demand) to 16
buildings (at a minimum of 150 % of the reference heating demand). At the same time, with
higher heating demand based on consumption behavior, less insulation is considered, because
the viability of natural gas-based central heat supply increases. In all emission-optimized
scenarios apart 0 % heating demand, the maximum possible building insulation is used.
The use of the considered supply technologies (ASHP, GCHP, solar thermal systems, and
thermal storage) changes linearly with heating demand. Further results of the sensitivity of
heating demands based on consumption behavior are visualized in Appendix J.

PV systems relatively dominate. As the heating demand increases, flexibility is mostly provided

by increased thermal storages, leading to reduced battery storage usage.

Both reductions of electricity and heating demands enable a significant reduction in financial

costs and GHG emissions. However, the reduction of the heating demand has a larger impact

since it makes up a larger share on total energy demand.
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3.5. Sensitivity: Population Density

Within this sensitivity analysis, the population density was varied between 0 % and 200 % of

the respective reference values.

The population density primarily influences the absolute electricity demand (Appendix K)

for both financially and emission-optimized scenarios. Therefore, the system design is rather

robust against changes in population density. However, the specific energy supply per inhabitant

changes significantly (Fig. 6), and the relative impact on both specific financial costs and GHG

emissions is enormous.
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Figure 5: Supplied heat (top) and electricity (bottom) per inhabitant in the financially (left) and
emission-optimized (right) reference case in dependency on changing population density.
The curves are not linear, since the energy demand of non-residential buildings remains unchanged as
a base demand. The change in population density has limited impact on the absolute optimized energy
supply. Mainly the absolute use of PV systems in the financially-optimized case and hydrogen CHPP
in the emission-optimized case change, but the specific use per inhabitant remains rather constant.
Further results of the sensitivity of population density are visualized in Appendix ??.

Potential-Risk and No-Regret Options

The analysis showed that the level of system’s permitted GHG emissions, the price of imported energy,
especially natural gas, as well as absolute heat and electricity demands have the highest influence on
the design of optimized urban energy systems. Measures and technologies for optimizing urban energy
systems can be considered as no-regret options if the sensitivity analyses of this study have proven
their suitability for both financial and emissions-based optimization and if they are robust to parameter
changes. Expected trends such as GHG mitigation requirements, rising energy prices, or declining
GHG emissions from imported electricity are particularly relevant. Measures and technologies that
are particularly sensitive to these changes can be considered as potential-risk options.

The implementation of building insulation is a no-regret strategy for financially-optimized decar-
bonisation of urban energy systems. The optimal amount of building insulation used in a system is
subject to trends of energy prices, requested reductions in total GHG emissions, and trends of energy

8 Monday 19th June, 2023

Figure 6: Supplied heat (top) and electricity (bottom) per inhabitant in the financially
(left) and emission-optimized (right) reference case in dependency on changing
population density. The curves are not linear, since the energy demand of non-residential
buildings remains unchanged as a base demand. The change in population density has
limited impact on the absolute optimized energy supply. Mainly the absolute use of PV
systems in the financially-optimized case and hydrogen CHPP in the emission-optimized
case change, but the specific use per inhabitant remains rather constant. Further results of
the sensitivity of population density are visualized in Appendix K.
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4. Discussion

4.1. Potential-Risk and No-Regret Options

The analysis showed that the level of system’s permitted GHG emissions, the price of imported

energy, especially natural gas, as well as absolute heat and electricity demands have the high-

est influence on the design of optimized urban energy systems. Measures and technologies for

optimizing urban energy systems can be considered as no-regret options if the sensitivity

analyses of this study have proven their suitability for both financial and emissions-based opti-

mization and if they are robust to parameter changes. Expected trends such as GHG mitigation

requirements, rising energy prices, or declining GHG emissions from imported electricity are

particularly relevant. Measures and technologies that are particularly sensitive to these changes

can be considered as potential-risk options.

The implementation of building insulation is a no-regret strategy for financially-optimized

decarbonisation of urban energy systems. The optimal amount of building insulation used in a

system is subject to trends of energy prices, requested reductions in total GHG emissions, and

trends of energy demands, and will yet more likely increase than decrease under any predictable

future scenarios. The obvious positive climate effect may be diminished by a high climate

intensity of the material used for insulation. Reducing energy demands (heat and electricity)

by behavioral and structural changes is a no-regret measure with regard to reducing both

financial costs and GHG emissions. It is expected that the mix of supply options will remain

largely unchanged, while the sizing of the technologies will change in response to demand. Only

the share of central heating, which is dependent on the spatial density of heating demands,

decreases with demand reductions. Reduction of living space per inhabitant by adapting

the population density is a no-regret strategy, as both financial costs and GHG emissions per

inhabitant are reduced while the design of optimized systems remains largely unchanged.

The use of decentralized natural gas technologies for heat supply is very sensitive to

the analyzed system changes, and their usage is therefore a clear potential-risk option. With

respect to predictable trends such as increasing total GHG emissions mitigation requirements

and energy prices, their usage is partially or even completely reduced in optimized scenarios.

The usage of decentralized heat pumps for heat supply in turn steadily increases or at least
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remains at the same level. As far as heat potentials can be used both central and decentral,

decentralized heat pumps allow a more viable use compared to centralized heat pumps due

to less heat losses, investment costs, and life-cycle emissions of DH pipes. The usage of heat

pumps, especially decentralized ones, is therefore a clear no-regret option.

The viability of implementing new DH networks is very sensitive on total GHG emissions,

energy prices, and heating demands. Therefore, the exact connectability of buildings to DH

networks should be analyzed in detail and be planned with caution. The generalized implemen-

tation of DH networks for entire areas, for example, in the context of a connection obligation,

carries a high potential-risk.

The optimum size of the PV systems varies, but a certain amount with a region-specific

maximum azimuth deviation from the south axis is highly robust. This maximum azimuth

deviation increases with additional restrictions on total GHG emissions and increasing energy

prices. PV systems within the acceptable deviation are no-regret technologies. However, using

solar thermal systems on surfaces where viable PV usage is an option is a possible-risk

option. The usage of PV systems is superior to solar thermal systems with regard to both

financial cost and GHG emission reduction.

Exchanging electricity with higher-level energy systems by exporting electricity surpluses

and importing deficits is a no-regret strategy, which was applied in each of the optimized

scenarios examined. It reduces the need for local electricity storage capacities and oversized

plants to meet peak loads. However, this approach may be limited due to transmission capacities

and the ability of neighboring and higher-level systems to provide the necessary load exchange.

For emission optimized systems, the GHG emissions of imported electricity must furthermore

be comparable to or lower than internal electricity production. Fewer restrictions apply to the

local exchange of locally produced (renewable) electricity between sub-systems. It is a no-

regret strategy which reduces necessary storage capacities and, by avoiding electricity imports,

financial costs and GHG emissions.

As long as such local exchange of electricity between sub-systems is possible, battery storages

are only suitable for certain cases of total GHG emission minimization, but not for financial

optimization at all. Their usage in optimized systems is furthermore sensitive on GHG emissions

of imported energy (electricity and hydrogen) and the system’s energy demands (electricity and
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heat). In combination with the conflict with the robust measures of electricity exchange on

various levels, the implementation of large battery storages thus carries a potential-risk. Due

to lower life cycle GHG emissions, thermal storage systems are more robust for shifting

volatile electricity supply with regard to system changes, especially in the case of electrified

heat supplies. Depending on the type of heat supply, either centralized or decentralized thermal

storage for electric load shifting is therefore a no-regret option.

Green hydrogen-powered CHPP is not viable from a financial perspective. It is especially

sensitive to the system’s absolute energy demands, and its capability for emission reduction

is only viable if GHG emissions of imported electricity are higher than electricity supplied by

the hydrogen CHPP. The use of hydrogen is therefore a potential-risk option, and the use of

non-green hydrogen is no option for system optimization at all.

4.2. Transferability

The results of this study are particularly applicable to urban energy systems in EU mem-

ber states, especially for western and central Europe, based on the characteristics of market

structures, transition goals [6], climate conditions, consumption structures, and energetic po-

tentials [11, 12, 13]. In a wider perspective, statements on (1) decisions between centralized

and decentralized energy supply, (2) the requirement of sector-coupling, (3) the relationship

between (non-)flexible energy provision and storage facilities, (4) the interaction between (sub-

)systems for energy exchange, (5) the interaction between strategies of efficiency, consistency,

and sufficiency for fulfilling sustainability goals, as well as (6) the identification of GHG reduc-

tion potentials at low financial costs are expected to be widely transferable independently of

differing input conditions of other regions.

Although market structures are comparable in the mentioned regions, absolute energy prices

may differ significantly. For instance, electricity prices for households are +75 % higher in

Denmark and −60 % lower in France than in Germany (end of 2022, [14]). It can, however, be

assumed that similar sensitivity effects occur, although they shift horizontally along the price

scale. For example, there is also a maximum profitability of natural gas supported central heat

supply (Fig. 4) if natural gas prices are lower than in Germany; it just requires a higher relative

price increase for it to be exceeded.
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To maintain transparency, all model parameters are accessible (Appendix A).

5. Conclusion

The analysis on design of financially- and emission-optimized urban energy systems has iden-

tified the following no-regret options, which are robust against external drivers such as

changing energy prices and GHG emissions of imported energy:

• reducing relative and absolute energy demands by behavioral and structural changes,

building insulation, and reducing living space per inhabitant

• preferred use of decentralized heat pumps for heat supply

• using PV systems on surfaces with suitable orientations

• using thermal storages for electric load shifting

• enabling electricity exchange both between sub-systems and with higher-level energy

systems

On the other hand, the following potential-risk options are particularly sensitive to changes

in permitted GHG emissions, the price of imported energy, especially natural gas, as well as

absolute heat and electricity demands:

• using solar thermal systems on surfaces which are suitable for PV usage

• decentralized natural gas technologies for heat supply

• generalized implementation of district heating (dh) networks

• using high capacities of battery storages

• hydrogen for building energy supply

In order to be prepared for constant system changes in predictable trends, but also for sudden

changes, for example in the context of a renewed energy crisis, it is advisable to focus on

the mentioned no-regret options and to avoid the possible-risk options when planning urban

energy systems. While those pathways are generalizable, detailed analyses of individual urban

systems, taking into account all relevant energy sectors, demands and potentials to consider all

area-specific synergies, financial constraints and GHG reduction targets are essential.

Furthermore, specific framework conditions that influence energy system planning but go be-
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yond the scope of energy system modeling (like resource use, quality of living) might shift the

focus in respective municipalities and thus the preferred supply options.
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Acronyms

ASHP air source heat pump

CHPP combined heat and power plant

DH district heating

EU European Union

GCHP ground coupled heat pump

GHG greenhouse gas

oemof Open Energy Modelling Framework

PV photovoltaic

RAM random-access memory

SESMG Spreadsheet Energy System Model Generator
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Appendix

A. Model Parameters

The model is subject to the common problem in energy system modeling of uncertainty of input

data [4, 24, 26]. The applied configuration of model-based methods for reducing computing

requirements have led, in past studies, to underestimation of the viability of heat pumps and PV

systems [21]. Therefore, their role as no-regret decisions may even have been underestimated

in the presented analysis. The viability of battery storages has been underestimated in the

past as well [21]. The fundamental decision whether a battery storage should be used or not

is unaffected, but the question of what capacity to use is affected [21]. Therefore, the decision
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between thermal and battery storage is not affected and the recommendations derived remain

valid.

All parameters and modeling methods used for this study are openly available within the

following directories:

• Description of the model structure and all modeling parameters: https://doi.org/10.

5281/zenodo.7896185

• Applied version of the Spreadsheet Energy System Model Generator (SESMG): https:

//doi.org/10.5281/zenodo.8055828

• SESMG model definitions: https://doi.org/10.5281/zenodo.8042239

• SESMG model results: https://doi.org/10.5281/zenodo.8046254

B. Results: Reference / GHG emissions

Table 2: Optimized technology capacities in the reference case in dependency on total
GHG emissions. The results are aggregated for each technology type.
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FO 125 106 0 0 0 0 0 116 65 70 0 17 632 0 0 13
P1 116 91 0 0 0 0 0 112 81 82 0 20 585 0 0 11
P2 100 90 0 0 0 0 0 95 104 84 0 30 628 0 0 8
P3 86 64 0 0 0 0 0 99 127 84 2 29 608 0 0 6
P4 74 92 0 0 0 0 0 43 105 105 11 45 668 0 0 5
P5 61 55 0 0 0 0 0 51 91 134 30 54 682 0 0 4
P6 39 27 0 0 0 0 0 17 124 158 55 54 734 0 0 3
P7 0 0 0 0 0 0 0 32 200 151 49 54 566 0 0 0
P8 0 0 0 0 0 0 0 23 123 216 100 50 728 33 0 0
P9 0 0 0 10 26 0 0 29 2 295 201 28 1392 222 236 0
EO 0 0 0 185 0 0 56 0 0 295 218 28 1654 349 0 0

Acronyms: ashp = air source heat pump; centr. = central; chpp = combined heat and power plant; decentr. = decentral;
dh = district heating; EO = emission-optimized; FO = financially-optimized; gchp = ground coupled heat pump
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C. Results: GHG Emissions of Imported ElectricityC. Results: GHG Emissions of Imported Electricity
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Figure 7: Deviations financially-optimized and emission-optimized scenarios caused by changes of
the sensitivity parameter (GHG emissions of imported electricity). Pareto front (top
diagram): Changes of the financially-optimized scenario are shown in red of emission-optimized
scenario in blue. If no changes occur, the points lie on top of each other. Otherwise, the lowest
value (0 % of the sensitivity parameter compared to the reference case) is marked as “−”, the highest
as “+”. In the emission-optimized case the scenarios including 25 %, 50 %, 100 %, 125 %, 150 %,
and 200 % lie on top of each other. Supplied energy (four diagrams below): Supplied heat
(top) and electricity (bottom) in the financially (left) and emission-optimized (right) reference case in
dependency on the sensitivity parameter.
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Figure 7: Deviations financially-optimized and emission-optimized scenarios caused by
changes of the sensitivity parameter (GHG emissions of imported electricity).
Pareto front (top diagram): Changes of the financially-optimized scenario are shown
in red of emission-optimized scenario in blue. If no changes occur, the points lie on top of
each other. Otherwise, the lowest value (0 % of the sensitivity parameter compared to the
reference case) is marked as “−”, the highest as “+”. In the emission-optimized case the
scenarios including 25 %, 50 %, 100 %, 125 %, 150 %, and 200 % lie on top of each other.
Supplied energy (four diagrams below): Supplied heat (top) and electricity (bottom)
in the financially (left) and emission-optimized (right) reference case in dependency on the
sensitivity parameter.
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Table 3: Optimized technology capacities in the finanically-optimized (FO) and emission-
optimized (EO) reference case in dependency on changes of GHG emissions of
imported electricity. The results are aggregated for each technology type.
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FO-0.0 125 106 0 0 0 0 0 116 65 70 0 17 632 0 0 13
FO-0.25 125 106 0 0 0 0 0 116 65 70 0 17 632 0 0 13
FO-0.5 125 106 0 0 0 0 0 116 65 70 0 17 632 0 0 13
FO-0.75 125 106 0 0 0 0 0 116 65 70 0 17 632 0 0 13
FO-1.0 125 106 0 0 0 0 0 116 65 70 0 17 632 0 0 13
FO-1.2 125 106 0 0 0 0 0 116 65 70 0 17 632 0 0 13
FO-1.5 125 106 0 0 0 0 0 116 65 70 0 17 632 0 0 13
FO-2.0 125 106 0 0 0 0 0 116 65 70 0 17 632 0 0 13

EO-0.0 0 0 0 0 0 0 0 532 0 0 0 0 393 0 0 0
EO-0.25 0 0 0 0 0 0 29 0 0 295 200 28 1378 316 0 0
EO-0.5 0 0 0 185 0 0 56 0 0 295 218 28 1654 347 0 0
EO-0.75 0 0 0 185 0 0 56 0 0 295 218 28 1654 348 0 0
EO-1.0 0 0 0 185 0 0 56 0 0 295 218 28 1654 349 0 0
EO-1.25 0 0 0 185 0 0 56 0 0 295 218 28 1654 347 0 0
EO-1.5 0 0 0 185 0 0 56 0 0 295 218 28 1654 346 0 0
EO-2.0 0 0 0 185 0 0 56 0 0 295 218 28 1654 347 0 0

Acronyms: ashp = air source heat pump; centr. = central; chpp = combined heat and power plant; decentr. = decentral;
dh = district heating; EO = emission-optimized; FO = financially-optimized; gchp = ground coupled heat pump
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D. Results: GHG Emissions of Imported HydrogenD. Results: GHG Emissions of Imported Hydrogen
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Figure 8: Deviations financially-optimized and emission-optimized scenarios caused by changes of
the sensitivity parameter (GHG emissions of imported hydrogen). Pareto front (top
diagram): Changes of the financially-optimized scenario are shown in red of emission-optimized
scenario in blue. If no changes occur, the points lie on top of each other. Otherwise, the lowest value
(0 % of the sensitivity parameter compared to the reference case) is marked as “−”, the highest as
“+”. In the emission-optimized case the scenarios 400 %, 500 %, and 1 000 % lie on top of each
other. Supplied energy (four diagrams below): Supplied heat (top) and electricity (bottom) in
the financially (left) and emission-optimized (right) reference case in dependency on the sensitivity
parameter.
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Figure 8: Deviations financially-optimized and emission-optimized scenarios caused by
changes of the sensitivity parameter (GHG emissions of imported hydrogen).
Pareto front (top diagram): Changes of the financially-optimized scenario are shown
in red of emission-optimized scenario in blue. If no changes occur, the points lie on top of
each other. Otherwise, the lowest value (0 % of the sensitivity parameter compared to the
reference case) is marked as “−”, the highest as “+”. In the emission-optimized case the
scenarios 400 %, 500 %, and 1 000 % lie on top of each other. Supplied energy (four
diagrams below): Supplied heat (top) and electricity (bottom) in the financially (left)
and emission-optimized (right) reference case in dependency on the sensitivity parameter.
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Table 4: Optimized technology capacities in the finanically-optimized (FO) and emission-
optimized (EO) reference case in dependency on changes of GHG emissions of
imported hydrogen. The results are aggregated for each technology type.
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FO-0.0 125 106 0 0 0 0 0 116 65 70 0 17 632 0 0 13
FO-0.5 125 106 0 0 0 0 0 116 65 70 0 17 632 0 0 13
FO-0.75 125 106 0 0 0 0 0 116 65 70 0 17 632 0 0 13
FO-1.0 125 106 0 0 0 0 0 116 65 70 0 17 632 0 0 13
FO-2.0 125 106 0 0 0 0 0 116 65 70 0 17 632 0 0 13
FO-3.0 125 106 0 0 0 0 0 116 65 70 0 17 632 0 0 13
FO-4.0 125 106 0 0 0 0 0 116 65 70 0 17 632 0 0 13
FO-5.0 125 106 0 0 0 0 0 116 65 70 0 17 632 0 0 13
FO-10.0 125 106 0 0 0 0 0 116 65 70 0 17 632 0 0 13

EO-0.0 0 0 0 286 0 0 0 73 0 0 243 52 422 0 0 0
EO-0.5 0 0 0 168 0 0 2 0 0 295 196 28 1160 311 0 0
EO-0.75 0 0 0 172 0 0 33 0 0 295 202 28 1403 337 0 0
EO-1.0 0 0 0 185 0 0 56 0 0 295 218 28 1654 349 0 0
EO-2.0 0 0 0 207 62 0 73 62 0 292 286 28 3131 328 167 0
EO-3.0 0 0 0 207 160 0 126 160 0 265 299 28 5962 326 7455 0
EO-4.0 0 0 0 157 160 0 132 160 0 265 320 28 6620 321 9999 0
EO-5.0 0 0 0 157 160 0 132 160 0 265 320 28 6620 321 9999 0
EO-10.0 0 0 0 157 160 0 132 160 0 265 320 28 6620 325 9999 0

Acronyms: ashp = air source heat pump; centr. = central; chpp = combined heat and power plant; decentr. = decentral;
dh = district heating; EO = emission-optimized; FO = financially-optimized; gchp = ground coupled heat pump
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E. Results: Natural Gas PriceE. Results: Natural Gas Price
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Figure 9: Deviations financially-optimized and emission-optimized scenarios caused by changes of
the sensitivity parameter (natural gas price). Pareto front (top diagram): Changes of the
financially-optimized scenario are shown in red of emission-optimized scenario in blue. If no changes
occur, the points lie on top of each other. Otherwise, the lowest value (0 % of the sensitivity parameter
compared to the reference case) is marked as “−”, the highest as “+”. In the financially-optimized
case the scenarios 500 % and 1 000 % lie on top of each other. Supplied energy (four diagrams
below): Supplied heat (top) and electricity (bottom) in the financially (left) and emission-optimized
(right) reference case in dependency on the sensitivity parameter.
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Figure 9: Deviations financially-optimized and emission-optimized scenarios caused by
changes of the sensitivity parameter (natural gas price). Pareto front (top dia-
gram): Changes of the financially-optimized scenario are shown in red of emission-optimized
scenario in blue. If no changes occur, the points lie on top of each other. Otherwise, the
lowest value (0 % of the sensitivity parameter compared to the reference case) is marked as
“−”, the highest as “+”. In the financially-optimized case the scenarios 500 % and 1 000 %
lie on top of each other. Supplied energy (four diagrams below): Supplied heat (top)
and electricity (bottom) in the financially (left) and emission-optimized (right) reference
case in dependency on the sensitivity parameter.
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Table 5: Optimized technology capacities in the finanically-optimized (FO) and emission-
optimized (EO) reference case in dependency on changes of natural gas prices.
The results are aggregated for each technology type.
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FO-0.0 92 96 0 0 0 0 0 73 207 65 0 0 753 0 0 6
FO-0.5 121 81 0 0 0 0 0 116 119 66 0 0 710 0 0 11
FO-0.75 131 97 0 0 0 0 0 121 87 66 0 2 638 0 0 13
FO-1.0 125 106 0 0 0 0 0 116 65 70 0 17 632 0 0 13
FO-2.0 57 97 0 0 0 0 0 88 12 121 78 49 657 0 0 6
FO-5.0 0 0 0 0 0 0 0 37 0 176 272 55 1072 0 0 0
FO-10.0 0 0 0 0 0 0 0 37 0 176 272 55 1072 0 0 0

EM-0.0 0 0 0 185 0 0 56 0 0 295 218 28 1654 349 0 0
EM-0.5 0 0 0 185 0 0 56 0 0 295 218 28 1654 349 0 0
EM-0.75 0 0 0 185 0 0 56 0 0 295 218 28 1654 349 0 0
EM-1.0 0 0 0 185 0 0 56 0 0 295 218 28 1654 349 0 0
EM-2.0 0 0 0 185 0 0 56 0 0 295 218 28 1654 349 0 0
EM-5.0 0 0 0 185 0 0 56 0 0 295 218 28 1654 349 0 0
EM-10.0 0 0 0 185 0 0 56 0 0 295 218 28 1654 349 0 0

Acronyms: ashp = air source heat pump; centr. = central; chpp = combined heat and power plant; decentr. = decentral;
dh = district heating; EO = emission-optimized; FO = financially-optimized; gchp = ground coupled heat pump
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F. Results: Electricity PriceF. Results: Electricity Price
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Figure 10: Deviations financially-optimized and emission-optimized scenarios caused by changes of
the sensitivity parameter (electricity price). Pareto front (top diagram): Changes of the
financially-optimized scenario are shown in red of emission-optimized scenario in blue. If no changes
occur, the points lie on top of each other. Otherwise, the lowest value (0 % of the sensitivity parameter
compared to the reference case) is marked as “−”, the highest as “+”. In the financially-optimized
case the scenarios 75 %, 100 %, 200 %, 500 %, and 1 000 % lie on top of each other. Supplied
energy (four diagrams below): Supplied heat (top) and electricity (bottom) in the financially
(left) and emission-optimized (right) reference case in dependency on the sensitivity parameter.
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Figure 10: Deviations financially-optimized and emission-optimized scenarios caused by
changes of the sensitivity parameter (electricity price). Pareto front (top di-
agram): Changes of the financially-optimized scenario are shown in red of emission-
optimized scenario in blue. If no changes occur, the points lie on top of each other. Other-
wise, the lowest value (0 % of the sensitivity parameter compared to the reference case) is
marked as “−”, the highest as “+”. In the financially-optimized case the scenarios 75 %,
100 %, 200 %, 500 %, and 1 000 % lie on top of each other. Supplied energy (four
diagrams below): Supplied heat (top) and electricity (bottom) in the financially (left)
and emission-optimized (right) reference case in dependency on the sensitivity parameter.
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Table 6: Optimized technology capacities in the finanically-optimized (FO) and emission-
optimized (EO) reference case in dependency on changes of electrcity prices. The
results are aggregated for each technology type.
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FO-0.0 0 0 0 0 0 0 0 539 0 0 0 0 340 0 0 0
FO-0.5 114 111 0 0 0 0 0 127 42 34 6 34 648 0 0 12
FO-0.75 123 131 0 0 0 0 0 94 56 62 3 19 697 0 0 13
FO-1.0 125 106 0 0 0 0 0 116 65 70 0 17 632 0 0 13
FO-2.0 127 117 0 0 0 0 0 100 66 70 0 17 662 0 0 13
FO-5.0 128 116 0 0 0 0 0 99 66 70 0 17 703 0 0 13
FO-10.0 134 94 0 0 0 0 0 111 67 70 0 17 739 0 0 13

EO-0.0 0 0 0 185 0 0 56 0 0 295 218 28 1654 349 0 0
EO-0.5 0 0 0 185 0 0 56 0 0 295 218 28 1654 349 0 0
EO-0.75 0 0 0 185 0 0 56 0 0 295 218 28 1654 349 0 0
EO-1.0 0 0 0 185 0 0 56 0 0 295 218 28 1654 349 0 0
EO-2.0 0 0 0 185 0 0 56 0 0 295 218 28 1654 349 0 0
EO-5.0 0 0 0 185 0 0 56 0 0 295 218 28 1654 349 0 0
EO-10.0 0 0 0 185 0 0 56 0 0 295 218 28 1654 349 0 0

Acronyms: ashp = air source heat pump; centr. = central; chpp = combined heat and power plant; decentr. = decentral;
dh = district heating; EO = emission-optimized; FO = financially-optimized; gchp = ground coupled heat pump

30

138 Appendix



G. Results: Hydrogen PriceG. Results: Hydrogen Price
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Figure 11: Deviations financially-optimized and emission-optimized scenarios caused by changes
of the sensitivity parameter (hydrogen price). Pareto front (top diagram): Changes of
the financially-optimized scenario are shown in red of emission-optimized scenario in blue. If no
changes occur, the points lie on top of each other. Otherwise, the lowest value (0 % of the sensitivity
parameter compared to the reference case) is marked as “−”, the highest as “+”. In the financially-
optimized case the scenarios 50 %, 75 %, 100 %, 200 %, 500 %, and 1 000 % lie on top of each
other. Supplied energy (four diagrams below): Supplied heat (top) and electricity (bottom) in
the financially (left) and emission-optimized (right) reference case in dependency on the sensitivity
parameter.
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Figure 11: Deviations financially-optimized and emission-optimized scenarios caused by
changes of the sensitivity parameter (hydrogen price). Pareto front (top di-
agram): Changes of the financially-optimized scenario are shown in red of emission-
optimized scenario in blue. If no changes occur, the points lie on top of each other. Other-
wise, the lowest value (0 % of the sensitivity parameter compared to the reference case) is
marked as “−”, the highest as “+”. In the financially-optimized case the scenarios 50 %,
75 %, 100 %, 200 %, 500 %, and 1 000 % lie on top of each other. Supplied energy (four
diagrams below): Supplied heat (top) and electricity (bottom) in the financially (left)
and emission-optimized (right) reference case in dependency on the sensitivity parameter.
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Table 7: Optimized technology capacities in the finanically-optimized (FO) and emission-
optimized (EO) reference case in dependency on changes of hydrogen prices. The
results are aggregated for each technology type.
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FO-0.0 0 0 0 30 0 331 0 127 386 29 0 0 706 0 0 0
FO-0.5 125 106 0 0 0 0 0 116 65 70 0 17 632 0 0 13
FO-0.75 125 106 0 0 0 0 0 116 65 70 0 17 632 0 0 13
FO-1.0 125 106 0 0 0 0 0 116 65 70 0 17 632 0 0 13
FO-2.0 125 106 0 0 0 0 0 116 65 70 0 17 632 0 0 13
FO-5.0 125 106 0 0 0 0 0 116 65 70 0 17 632 0 0 13
FO-10.0 125 106 0 0 0 0 0 116 65 70 0 17 632 0 0 13

EO-0.0 0 0 0 185 0 0 56 0 0 295 218 28 1654 349 0 0
EO-0.5 0 0 0 185 0 0 56 0 0 295 218 28 1654 349 0 0
EO-0.75 0 0 0 185 0 0 56 0 0 295 218 28 1654 349 0 0
EO-1.0 0 0 0 185 0 0 56 0 0 295 218 28 1654 349 0 0
EO-2.0 0 0 0 185 0 0 56 0 0 295 218 28 1654 349 0 0
EO-5.0 0 0 0 185 0 0 56 0 0 295 218 28 1654 349 0 0
EO-10.0 0 0 0 185 0 0 56 0 0 295 218 28 1654 349 0 0

Acronyms: ashp = air source heat pump; centr. = central; chpp = combined heat and power plant; decentr. = decentral;
dh = district heating; EO = emission-optimized; FO = financially-optimized; gchp = ground coupled heat pump

32

140 Appendix



H. Results: Combined Energy PriceH. Results: Combined Energy Price
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Figure 12: Deviations financially-optimized and emission-optimized scenarios caused by changes of
the sensitivity parameter (combined energy price). Pareto front (top diagram): Changes
of the financially-optimized scenario are shown in red of emission-optimized scenario in blue. If no
changes occur, the points lie on top of each other. Otherwise, the lowest value (0 % of the sensitivity
parameter compared to the reference case) is marked as “−”, the highest as “+”. Supplied energy
(four diagrams below): Supplied heat (top) and electricity (bottom) in the financially (left) and
emission-optimized (right) reference case in dependency on the sensitivity parameter.
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Figure 12: Deviations financially-optimized and emission-optimized scenarios caused by
changes of the sensitivity parameter (combined energy price). Pareto front
(top diagram): Changes of the financially-optimized scenario are shown in red of emission-
optimized scenario in blue. If no changes occur, the points lie on top of each other. Other-
wise, the lowest value (0 % of the sensitivity parameter compared to the reference case) is
marked as “−”, the highest as “+”. Supplied energy (four diagrams below): Supplied
heat (top) and electricity (bottom) in the financially (left) and emission-optimized (right)
reference case in dependency on the sensitivity parameter.
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Table 8: Optimized technology capacities in the finanically-optimized (FO) and emission-
optimized (EO) reference case in dependency on changes of combined energy
prices. The results are aggregated for each technology type.
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FO-0.0 0 0 0 0 0 0 0 539 0 0 0 0 340 0 0 0
FO-0.5 121 92 0 0 0 0 0 117 98 29 0 10 687 0 0 11
FO-0.75 129 130 0 0 0 0 0 87 73 60 0 15 728 0 0 13
FO-1.0 125 106 0 0 0 0 0 116 65 70 0 17 632 0 0 13
FO-2.0 69 100 0 0 0 0 0 31 59 114 58 51 758 0 0 5
FO-5.0 93 6 0 0 0 0 0 46 8 165 99 54 1138 12 0 4
FO-10.0 81 0 0 10 50 0 0 54 0 295 132 39 1303 175 438 4

EO-0.0 0 0 0 185 0 0 56 0 0 295 218 28 1654 349 0 0
EO-0.5 0 0 0 185 0 0 56 0 0 295 218 28 1654 349 0 0
EO-0.75 0 0 0 185 0 0 56 0 0 295 218 28 1654 349 0 0
EO-1.0 0 0 0 185 0 0 56 0 0 295 218 28 1654 349 0 0
EO-2.0 0 0 0 185 0 0 56 0 0 295 218 28 1654 349 0 0
EO-5.0 0 0 0 185 0 0 56 0 0 295 218 28 1654 349 0 0
EO-10.0 0 0 0 185 0 0 56 0 0 295 218 28 1654 349 0 0

Acronyms: ashp = air source heat pump; centr. = central; chpp = combined heat and power plant; decentr. = decentral;
dh = district heating; EO = emission-optimized; FO = financially-optimized; gchp = ground coupled heat pump

34

142 Appendix



I. Results: Electricity DemandI. Results: Electricity Demand
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Figure 13: Deviations financially-optimized and emission-optimized scenarios caused by changes
of the sensitivity parameter (electricity demand). Pareto front (top diagram): Changes
of the financially-optimized scenario are shown in red of emission-optimized scenario in blue. If no
changes occur, the points lie on top of each other. Otherwise, the lowest value (0 % of the sensitivity
parameter compared to the reference case) is marked as “−”, the highest as “+”. Supplied energy
(four diagrams below): Supplied heat (top) and electricity (bottom) in the financially (left)
and emission-optimized (right) reference case in dependency on the sensitivity parameter. If the
behavioral based electricity demand is reduced to zero the absolute electricity demand and thus the
electricity supply has an offset, which is caused by the electrified heat supply.
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Figure 13: Deviations financially-optimized and emission-optimized scenarios caused by
changes of the sensitivity parameter (electricity demand). Pareto front (top
diagram): Changes of the financially-optimized scenario are shown in red of emission-
optimized scenario in blue. If no changes occur, the points lie on top of each other. Other-
wise, the lowest value (0 % of the sensitivity parameter compared to the reference case) is
marked as “−”, the highest as “+”. Supplied energy (four diagrams below): Supplied
heat (top) and electricity (bottom) in the financially (left) and emission-optimized (right)
reference case in dependency on the sensitivity parameter. If the behavioral based elec-
tricity demand is reduced to zero the absolute electricity demand and thus the electricity
supply has an offset, which is caused by the electrified heat supply.
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Table 9: Optimized technology capacities in the finanically-optimized (FO) and emission-
optimized (EO) reference case in dependency on changes of electricity demands.
The results are aggregated for each technology type.
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FO-0.0 124 114 0 0 0 0 0 111 65 8 0 17 633 0 0 13
FO-0.5 123 131 0 0 0 0 0 90 65 42 0 17 701 0 0 13
FO-0.75 125 110 0 0 0 0 0 113 65 56 0 17 635 0 0 13
FO-1.0 125 106 0 0 0 0 0 116 65 70 0 17 632 0 0 13
FO-1.25 125 119 0 0 0 0 0 102 65 84 0 17 649 0 0 13
FO-1.5 127 103 0 0 0 0 0 116 66 101 0 17 633 0 0 13
FO-2.0 127 117 0 0 0 0 0 97 65 132 0 18 720 0 0 13

EO-0.0 0 0 0 155 22 0 4 22 0 295 230 28 1422 36 22 0
EO-0.5 0 0 0 178 0 0 12 0 0 295 241 28 1592 172 0 0
EO-0.75 0 0 0 186 0 0 29 0 0 295 234 28 1658 263 0 0
EO-1.0 0 0 0 185 0 0 56 0 0 295 218 28 1654 349 0 0
EO-1.25 0 0 0 185 0 0 62 0 0 295 202 28 1508 417 0 0
EO-1.5 0 0 0 191 11 0 62 11 0 295 194 28 1452 496 11 0
EO-2.0 0 0 0 209 33 0 63 33 0 295 187 28 1527 623 33 0

Acronyms: ashp = air source heat pump; centr. = central; chpp = combined heat and power plant; decentr. = decentral;
dh = district heating; EO = emission-optimized; FO = financially-optimized; gchp = ground coupled heat pump
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J. Results: Heat DemandJ. Results: Heat Demand
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Figure 14: Deviations financially-optimized and emission-optimized scenarios caused by changes
of the sensitivity parameter (heat demand). Pareto front (top diagram): Changes of
the financially-optimized scenario are shown in red of emission-optimized scenario in blue. If no
changes occur, the points lie on top of each other. Otherwise, the lowest value (0 % of the sensitivity
parameter compared to the reference case) is marked as “−”, the highest as “+”. Supplied energy
(four diagrams below): Supplied heat (top) and electricity (bottom) in the financially (left) and
emission-optimized (right) reference case in dependency on the sensitivity parameter.
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Figure 14: Deviations financially-optimized and emission-optimized scenarios caused by
changes of the sensitivity parameter (heat demand). Pareto front (top di-
agram): Changes of the financially-optimized scenario are shown in red of emission-
optimized scenario in blue. If no changes occur, the points lie on top of each other. Other-
wise, the lowest value (0 % of the sensitivity parameter compared to the reference case) is
marked as “−”, the highest as “+”. Supplied energy (four diagrams below): Supplied
heat (top) and electricity (bottom) in the financially (left) and emission-optimized (right)
reference case in dependency on the sensitivity parameter.
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Table 10: Optimized technology capacities in the finanically-optimized (FO) and emission-
optimized (EO) reference case in dependency on changes of heat demands. The
results are aggregated for each technology type.
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FO-0.0 0 0 0 0 0 0 0 0 0 84 0 0 0 0 0 0
FO-0.5 39 44 0 0 0 0 0 22 49 75 0 18 314 0 0 5
FO-0.75 56 56 0 0 0 0 0 58 99 74 0 23 491 0 0 5
FO-1.0 125 106 0 0 0 0 0 116 65 70 0 17 632 0 0 13
FO-1.25 160 136 0 0 0 0 0 148 78 70 0 19 796 0 0 14
FO-1.5 218 182 0 0 0 0 0 187 66 66 0 9 975 0 0 16
FO-2.0 285 246 0 0 0 0 0 251 94 66 0 9 1304 0 0 16

EO-0.0 0 0 0 37 0 0 0 0 0 295 0 0 0 360 0 0
EO-0.5 0 0 0 57 26 0 0 26 0 295 51 5 292 332 26 0
EO-0.75 0 0 0 105 0 0 2 0 0 295 118 14 689 351 0 0
EO-1.0 0 0 0 185 0 0 56 0 0 295 218 28 1654 349 0 0
EO-1.25 0 0 0 247 0 0 74 0 0 295 298 41 2074 323 0 0
EO-1.5 0 0 0 319 0 0 85 0 0 295 399 52 2623 311 0 0
EO-2.0 0 0 0 473 0 0 101 0 0 292 619 65 3797 304 0 0

Acronyms: ashp = air source heat pump; centr. = central; chpp = combined heat and power plant; decentr. = decentral;
dh = district heating; EO = emission-optimized; FO = financially-optimized; gchp = ground coupled heat pump
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Figure 15: Deviations financially-optimized and emission-optimized scenarios caused by changes
of the sensitivity parameter (population density). Pareto front (top diagram): Changes
of the financially-optimized scenario are shown in red of emission-optimized scenario in blue. If no
changes occur, the points lie on top of each other. Otherwise, the lowest value (0 % of the sensi-
tivity parameter compared to the reference case) is marked as “−”, the highest as “+”. Supplied
energy (four diagrams below): Supplied heat (top) and electricity (bottom) per inhabitant in
the financially (left) and emission-optimized (right) reference case in dependency on the sensitivity
parameter.
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Figure 15: Deviations financially-optimized and emission-optimized scenarios caused by
changes of the sensitivity parameter (population density). Pareto front (top
diagram): Changes of the financially-optimized scenario are shown in red of emission-
optimized scenario in blue. If no changes occur, the points lie on top of each other. Other-
wise, the lowest value (0 % of the sensitivity parameter compared to the reference case) is
marked as “−”, the highest as “+”. Supplied energy (four diagrams below): Supplied
heat (top) and electricity (bottom) per inhabitant in the financially (left) and emission-
optimized (right) reference case in dependency on the sensitivity parameter.
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Table 11: Optimized technology capacities in the finanically-optimized (FO) and emission-
optimized (EO) reference case in dependency on changes of population density.
The results are aggregated for each technology type.
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FO-0.0 124 112 0 0 0 0 0 113 65 17 0 17 631 0 0 13
FO-0.5 125 106 0 0 0 0 0 117 66 57 0 17 628 0 0 13
FO-0.75 125 106 0 0 0 0 0 116 65 63 0 17 632 0 0 13
FO-1.0 125 106 0 0 0 0 0 116 65 70 0 17 632 0 0 13
FO-1.25 125 106 0 0 0 0 0 116 66 80 0 17 632 0 0 13
FO-1.5 125 128 0 0 0 0 0 90 65 95 0 18 699 0 0 13
FO-2.0 126 119 0 0 0 0 0 101 65 112 0 17 665 0 0 13

EO-0.0 0 0 0 165 4 0 4 4 0 295 239 28 1521 38 4 0
EO-0.5 0 0 0 182 0 0 38 0 0 295 228 28 1721 263 0 0
EO-0.75 0 0 0 184 0 0 45 0 0 295 225 28 1654 293 0 0
EO-1.0 0 0 0 185 0 0 56 0 0 295 218 28 1654 349 0 0
EO-1.25 0 0 0 186 16 0 62 16 0 295 208 28 1555 400 16 0
EO-1.5 0 0 0 187 0 0 61 0 0 295 194 28 1435 445 0 0
EO-2.0 0 0 0 203 0 0 62 0 0 295 194 28 1426 568 0 0

Acronyms: ashp = air source heat pump; centr. = central; chpp = combined heat and power plant; decentr. = decentral;
dh = district heating; EO = emission-optimized; FO = financially-optimized; gchp = ground coupled heat pump
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F SESMG Interface

Figure F.1: Screenshots of the “urban district upscaling sheet” in which locally-specific param-
eters of an urban energy system are entered.

Figure F.2: Screenshots of the “model definition” spreadsheet. The spreadsheet consists of sev-
eral sheets and contains all model parameters necessary for the creation of a model.
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Figure F.3: Screenshot of the GUI. On the left side user inputs are made, on the right side
descriptions and results can be accessed..

Figure F.4: Screenshot of the “demo tool”, which can be accessed within the GUI. On the left
side a technology mix can be selected, on the right side a description of the demo
model (before the model run) and the model results (after the model run) are shown.

Figure F.5: Screenshot of automatically generated model results (time series plots). The result
output is interactive, the user can select which plots are displayed and scale them
as desired.
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Figure F.6: Screenshots of various automatically generated model results. From top to bottom:
(1) Pareto diagram, (2) energy amount diagram, (3) tabular summary and (4) sys-
tem graph. The results outputs are interactive, users can select and deselect plot
elements, and table elements can be filtered as desired.
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