

Europa-Universität Flensburg

Doctoral Thesis

Economics of control reserve provision
by fluctuating renewable energy sources

by

Malte Jansen

A thesis submitted in fulfilment of the requirements for
the degree of Doctor of Economics (Dr. rer. pol.)

in the

Interdisciplinary Institute for Environmental, Social and Human Sciences
Department of Energy and Environmental Management

Supervisors:

Prof. Dr.-Ing. Olav Hohmeyer - European University of Flensburg

Prof. Poul Ejnar Sørensen - Technical University of Denmark

December 2016

“Essentially, all models are wrong, but some are useful.”

George Edward Pelham Box, 1987

Kurzzusammenfassung

In einem Energiesystem mit steigenden Versorgungsanteilen durch
Erneuerbare Energien gehört die Bereitstellung von Regelleistung, und damit
die Übernahme von Systemverantwortung, zu den zentralen Bausteinen der
Energiesystemtransformation. Diese Dissertation weist nach, dass
fluktuierende Erneuerbare Energien, wie Onshore- und Offshore-Windparks
sowie Photovoltaikanlagen, in der Lage sind, Regelleistung mit gleicher
Zuverlässigkeit wie konventionelle Kraftwerke bereitzustellen. Darüber
hinaus kann durch die Teilnahme von fluktuierenden Erneuerbaren Energien
am Regelleistungsmarkt ein Wohlfahrtgewinn erschlossen werden, welcher
zum Teil zu zusätzlichem Einkommen der Anbieter führt und zum anderen
Teil zu Kostenersparnissen bei der Regelleistungsbereitstellung. Es wird
gezeigt, wie dieser Wohlfahrtsgewinn von den Marktbedingungen abhängt
und wie diese angepasst werden müssen um ihn zu maximieren.

Stichworte: Fluktuierende Erneuerbare Energien, Probabilistische Prog-
nosen, Systemdienstleistung, Regelleistung, Energiemärkte, Ökonometrische
Analyse, Geschäftsmodell, Wohlfahrtsgewinne

Abstract

The provision of control reserve, and therefore contributing to the secure
operation of the power system, is paramount in a future energy system with
increasing shares of fluctuating renewable energy sources. This doctoral
thesis proves that fluctuating renewable energy sources, such as onshore and
offshore wind farms as well as photovoltaic systems, are capable of providing
control reserve at the same level of reliability as conventional generators. It
is shown that the introduction of fluctuating renewables to the control
reserve market can access a welfare gain that could be realized as additional
income by the new market participants or as cost saving potential of the
control reserve procurement. The dependency analysis between the welfare
gain and the regulatory framework leads to recommendations for the
development of the control reserve market

Key words: Fluctuating renewable energy sources, probabilistic forecasts,
ancillary services, control reserve, energy markets, econometric analysis,
business model, welfare gain

Eidesstattliche Versicherung | VII

Eidesstattliche Versicherung

Ich erkläre hiermit an Eides Statt, dass ich die vorliegende Arbeit

selbstständig und ohne Hilfsmittel angefertigt habe; die aus fremden Quellen

(einschließlich elektronischer Quellen, dem Internet und mündlicher

Kommunikation) direkt oder indirekt übernommenen Gedanken sind

ausnahmslos unter genauer Quellenangabe als solche kenntlich gemacht.

Insbesondere habe ich nicht die Hilfe sogenannter Promotionsberaterinnen /

Promotionsberater in Anspruch genommen. Dritte haben von mir weder

unmittelbar noch mittelbar Geld oder geldwerte Leistungen für Arbeiten

erhalten, die im Zusammenhang mit dem Inhalt der vorgelegten Dissertation

stehen. Die Arbeit wurde bisher weder im Inland noch im Ausland in gleicher

oder ähnlicher Form einer anderen Prüfungsbehörde vorgelegt.

Kassel/London/Flensburg, December 2016

Malte Jansen

Contents | IX

Contents

Kurzzusammenfassung .. V

Abstract .. V

Eidesstattliche Versicherung ... VII

Contents .. IX

1 Executive Summary .. 1

1.1 Problem ... 1

1.2 Methodology ... 2

1.3 Results ... 4

1.4 Conclusion ... 8

2 Introduction .. 9

2.1 Motivation and Problem Statement ... 9

2.2 Objectives and research hypothesis ... 11

2.3 Thesis outline ... 14

3 State of the discussion in energy economics ... 17

3.1 Energy-economic foundations .. 17

3.1.1 Regulatory Framework for Power Markets 17

3.1.2 Wholesale Power Markets ... 21

3.1.3 Spot market at the European Power Exchange 23

3.2 Control Reserve.. 30

3.2.1 Types of Ancillary Services and their costs 30

3.2.2 Types of control reserve .. 35

3.2.3 Demand for control reserve ... 40

3.2.4 Procurement and price development 44

3.2.5 Renewables in the control reserve markets 54

3.3 Current state of research ... 58

3.3.1 Relevant literature on the provision of control
reserve to the control reserve markets by RES
generators .. 58

X | Contents

3.3.2 Identification of the challenges of bringing generators
to the control reserve market .. 64

3.3.3 Research projects and international development 72

3.4 Possible methodologies for the validation of the research
hypothesis ... 80

3.4.1 Conclusion of challenges from the literature 80

3.4.2 Requirements for answering the research question
through econometric modelling 84

3.4.3 Possible approaches to assess the participation of
fluctuating RES in the control reserve market 86

3.4.4 Development of a customized new approach 95

4 Modelling the economics of control reserve provision by fluctuating
RES .. 97

4.1 Introduction to the econometric modelling approach with REBal .. 97

4.2 Modelling assumptions .. 101

4.3 Data used in the model .. 105

4.3.1 Market prices ... 105

4.3.2 Electricity consumption ... 107

4.3.3 Time series of fluctuating RES generators 107

4.3.4 Control reserve dispatch .. 111

4.3.5 Summary and overview ... 112

4.4 Modelling Steps in detail .. 113

4.4.1 Probabilistic forecast with kernel density estimators ... 113

4.4.2 Determining the technical potential 127

4.4.3 Bid creation of fluctuating RES generators in the
control reserve market .. 129

4.4.4 Matching of bids with the bids in the market 134

4.4.5 Determining the changes in costs 136

4.4.6 Impacts of the proof mechanism on the spot market ... 138

4.4.7 Welfare gain from fluctuating RES 146

4.4.8 Forecasting the welfare gain in 2020 and 2030 150

4.5 Limitations of the chosen modelling approach 154

5 Economics of fluctuating RES in the control reserve markets 157

5.1 Probabilistic Forecasts ... 158

5.2 Technical potentials ... 164

5.2.1 Deriving quantity bids from the probabilistic forecast .. 164

5.2.2 Energy losses due to the proof mechanism 173

5.3 Calculation of bids for the control reserve market 175

Contents | XI

5.3.1 Opportunity cost driven bids ... 176

5.3.2 Profit maximizing bids .. 183

5.4 Matching of bids in the market and additional revenue for
fluctuating RES generators ... 192

6 Economic impact of fluctuating RES on the power system level 203

6.1 Determination of the change in costs ... 203

6.2 Impacts of the proof mechanism on the spot market 211

6.3 Social welfare gain ... 214

6.4 Forecast of welfare gain in 2020 and 2030 221

7 Final assessment of the hypothesis and conclusions 227

7.1 Main findings ... 228

7.2 Suggestions for action .. 231

7.3 Recommendation for future research .. 232

7.4 Conclusion ... 234

References .. XIII

List of figures ... XXXI

List of tables .. XLIV

List of acronyms and abbreviations ... XLV

Previous publications by the author ... XLIX

Appendix A Distribution estimation functions LV

Appendix B Plots on economics of fluctuating RES generators LVII

Appendix C Plots on economic impact on the system level LXXXVII

Appendix D Plots on social welfare gain ... XCIII

Appendix E Source code and sample data ... CIII

Executive Summary | 1

1 Executive Summary

1.1 Problem

Climate change has been identified as a threat to humankind by the

Intergovernmental Panel on Climate Change (Pachauri & Mayer, 2014, p. 13).

In the wake of these findings, the European Union confirmed the EU

20/20/20 targets that oblige its member states to source 20 % of its energy

consumption from renewable sources by 2020 (Directive 2009/28/EC of the

European Parliament and of the Council, 2009). The German Renewable

Energies Act (EEG) defines the target of 80 % of renewable electricity in the

year 2050 (Erneuerbare-Energien-Gesetz, 2014). This will lead to decreasing

shares of conventional generation in the future (Nitsch J. et al., 2012, p. 185).

During times with high fluctuating renewable energy sources (RES)

instantaneous penetration levels, ancillary services have to be provided by

RES generators, since the currently used conventional units become

unavailable. Ancillary services are the services in the power system that

ensure the security of supply. One of these ancillary services is the provision

of frequency regulation service, called control reserve (UCTE, 2009).

Alternative generation technologies, such as wind farms and PV systems, will

have to be responsible for maintaining the security of supply.

The 2012 revision of the EEG enables RES to deliver energy to the markets

and provide ancillary services at the same time. Biomass generators are

already integrated into the control reserve markets (Lange et al., 2014, p. 14).

Fluctuating RES will follow as soon as the regulatory framework has been

adapted for a possible control reserve provision.

Earlier assessments by Brauns et al. (2014) have shown a method for the

delivery of control reserve from wind turbines. The findings suggested that

the economics of a possible control reserve provision should be investigated

further, in order to understand the influence of market design on economic

aspects. This doctoral thesis investigates the economics of the control reserve

2 | Executive Summary

provision from fluctuating RES generators and puts forward the following

hypothesis:

Stochastic units, such as wind farms and PV systems, can provide

control reserve to the power system competitively without altering the

level of reliability whilst decreasing system costs.

The underlying economics are an essential part of a successful provision of

control reserve. If fluctuating RES generators are to have an increasing

responsibility for system balancing, regulations will require changes in a

non-discriminatory way for all market participants. Therefore, it is necessary

to investigate the market rules in the control reserve markets. This thesis

presents the economic potentials of a control reserve provision from

fluctuating RES as well as the influence of the regulatory framework on these

potentials. The assessment is carried out for the German market and its

regulations.

1.2 Methodology

The necessity for a new methodology has been identified and therefore the

REBal model (Renewable Energy Balancing) has been created. The

methodology used in the REBal model provides the answer to the research

question by assessing the economics of a control reserve provision of

fluctuating RES in detail.

REBal is an econometric model that quantifies the welfare gain of fluctuating

RES in the market, thus applying the welfare economics theory. The model

provides insight into the economics of control reserve provision of

fluctuating RES for both the supply and the demand side. The modelling steps

are visualized in the figure below.

Executive Summary | 3

 Source: Own analysis

Figure 1-1: Flow chart of REBal

The REBal model identifies the economic potentials and constraints for the

delivery of control reserve from fluctuating RES generation (onshore and

offshore wind farms and PV systems). The model structure is as follows:

1. The offers placed on control reserve markets need to be at least as

reliable as offers from the current market participants. Therefore,

probabilistic forecasts are used.

4.4.1 Probabilistic
Forecast

4.4.2 Technical potential

4.4.3.1 Opportunity cost
driven bid creation

4.4.3.1 Profit maximizing
bid creation

4.4.4 Matching bids in
the market

4.4.5 Cost differences
with RES particiaption

4.4.6 Impact on the spot
market

4.4.7 Social welfare gain

Ec
on

om
ic

s f
or

 th
e

bu
sin

es
s c

as
e

Fl
uc

tu
at

in
g

RE
S

ge
ne

ra
to

r
Fo

re
ca

st

5.1 Probabilistic
Forecast

5.2 Quantities CR
Market, lost energy

5.3 Capacity and
energy prices

5.4 Additional income

6.1 Cost saving
potential

6.2 Cost increase on
spot market

4.4.7 Forecast of
welfare gain

6.3 Welfare gain with
fluctuating RES

6.4 Welfare gain
in 2020/2030

Results

Input

Model step

Results

M
ic

ro
-e

co
no

m
ic

 a
ss

es
sm

en
t

Sy
st

em
 le

ve
l

4 | Executive Summary

2. The technical potential of the fluctuating RES is calculated for

different combinations of restraining factors.

3. The opportunity costs for the provision of control reserve by

fluctuating RES generators are calculated, resulting in tradable

standard market products, i.e. price/quantity bids.

4. Simultaneously tradable profit maximizing price/quantity bids are

created to maximize the possible income on the market.

5. The bids are matched with existing bids in the merit-order lists. They

are accepted if they are cheaper than the bid in the market.

6. The changes in costs are calculated, using a full dispatch simulation

for the capacity and energy bids.

7. The influence of the proof mechanism on the bidding behaviour is

investigated and resulting effects on the spot market quantified, which

will reveal the interdependency between spot markets and control

reserve markets.

8. The welfare gains to the system through the participation of

fluctuating RES are quantified using a welfare economic approach.

9. Welfare gains for the future are forecasted for the years 2020 and

2030.

1.3 Results

The introduction of probabilistic forecasting allows fluctuating RES

generators to provide control reserve as reliable as conventional generators.

This thesis uses a kernel density estimator (KDE) to calculate the

probabilistic forecasts. The results from this methodology for a 30 GW pool of

wind farms, representing all German wind turbines, between the 14th of

August 2014 and the 20th of August 2014 can be seen in the figure below,

based on the day-ahead forecast. The graph depicts the different quantiles of

a probabilistic forecast from 95 % reliability to 99.999 % where the increase

Executive Summary | 5

in forecast reliability leads to decreasing potentials. So called point forecasts

are commonly used throughout the industry. They have only one value,

which is the value with the highest probability.

 Source: Own analysis

Figure 1-2: Probabilistic day-ahead forecast of a 30 GW onshore wind farm pool,
representing all German wind turbines, for different levels of reliability

Regardless of the generator type, the probabilistic forecasts generated are

significantly lower than what has been forecasted with the point forecast.

With a forecast reliability of 99.994 % it is guaranteed that the control

reserve is as reliable as from conventional units. While the KDE can deliver

reliable forecasts, other forecasting methods might deliver more suitable

results that in turn would enhance the economic potential.

Using the probabilistic forecasts, bids for the market are created, with each

one containing a capacity price, an energy price and a quantity. Two

fundamentally different sets of bids are generated. The first set of bids is

based on an opportunity cost approach, whereas the second set has a

market-based approach that maximizes the possible additional income in the

market. For the fluctuating RES generators the difference between both

approaches results in additional income that could be earned through the

Feed-In

95%

99%

99.5%

99.9%

99.99%

99.994%

99.999%

14/08/2014 15/08/2014 16/08/2014 17/08/2014 18/08/2014 19/08/2014 20/08/2014
0

0.1

0.2

0.3

0.4

0.5

0.6

Time

N
or

m
al

iz
ed

 P
ow

er

6 | Executive Summary

market participation. The REBal model performs a full cost calculation of the

capacity and dispatch costs of the control reserve market, comparing the

costs of the participation of fluctuating RES with the base case.

The figure below illustrates the possible additional income for a 30 GW pool

of wind farms, a 1 GW pool of wind farms, a 1 GW pool of offshore wind

turbines, a 30 GW pool of PV systems and a 1 GW pool of PV systems; all

based on different forecasts. The assessment period is from 2010 to 2014,

with missing data for some of the generators in individual years. The figure

shows the results for the negative secondary and the negative tertiary

control reserve markets, as these are the markets with the highest market

potential, whereas the tertiary market is the most likely option for the initial

market entry. The results for a product length of four hours with a reliability

level of 99.994 % would be the market setup that is equivalent to the real

negative tertiary control reserve, and to the negative secondary control

reserve in the future (Bundesnetzagentur, 2015). Positive control reserve

market segments are practically irrelevant in the current market structure.

 Source: Own analysis

Figure 1-3: Additional possible income for different fluctuating RES generators in the
negative secondary and negative tertiary control reserve with realistic
market conditions

Negative secondary | Four hours | 99.994%

2010 2011 2012 2013 2014
0

20

40

60

80

Year

Ad
di

ti
on

al
 in

co
m

e
in

 m
io

. E
U

R

Negative tertiary | Four hours | 99.994%

2010 2011 2012 2013 2014
0

5

10

15

20

Year

Ad
di

ti
on

al
 in

co
m

e
in

 m
io

. E
U

R

Onshore Wind 30 GW Germany

Onshore Wind 1 GW Pool

Offshore Wind 1 GW Germany

Photovoltaic Systems 30 GW Germany

Photovoltaic Systems 1 GW Pool

Executive Summary | 7

The results show that the fluctuating RES generators could generate

substantial revenue in both market segments. In all market segments, apart

from the negative tertiary control reserve, a decreasing market potential is

observed. A clear trend between the years 2010 and 2014 is visible for the

secondary control reserve markets. Revenues in the negative tertiary market

for the 30 GW pool of wind farms would have reached between

9.1 million EUR (2012) and 18.7 million EUR (2013), whereas the 1 GW pool

of wind farms would have yielded between 1.1 million EUR (2010/2012) and

3.0 million EUR (2013). It can be concluded that the fluctuating RES

generators will be able to access the markets’ potential in an increasingly

competitive environment.

The REBal model is also able to calculate the welfare gain that is created by to

the participation of fluctuating RES generators in the control reserve market.

The welfare gain can either be allocated to the control reserve providers as

additional income, or as cost saving potentials for the systems. The welfare

gain by the wind farms are shown in blue in the figure below, whereas the

PV systems are shown in orange. The darker lines apply to the negative

secondary market and the lighter lines to the negative tertiary market.

 Source: Own analysis

Figure 1-4: Welfare gain for the capacity component induced by the German 30 GW
pool of wind farms and the 30 GW pool PV systems for a product length of
four hours and a level of reliability of 99.994 %.

Wind negative secondary control reserve

Wind negative tertiary control reserve

PV systems negative secondary control reserve

PV systems negative tertiary control reserve

Negative control reserve markets | Four hours | 99.994%

2010 2011 2012 2013 2014
0

10

20

30

40

50

60

70

80

Year

W
el

fa
re

 g
ai

n
in

 m
io

. E
U

R

8 | Executive Summary

The results show the welfare gain for the capacity costs only, since the

dispatch costs might increase the costs for the system, in some cases. The

participation of fluctuating RES generators in the control reserve market is

beneficial for the power system, if potential dispatch cost increases are

addressed by improved market regulations. The welfare gain of the dispatch

component in the negative control reserve markets is positive for all years,

market segments and generator types. However, the total value decreases

over the years, due to a decreasing total market volume. The correlation

between the market volume and the welfare gain allows the forecast of the

welfare gain in the future.

1.4 Conclusion

The study was set up to explore the economics of a control reserve provision

by fluctuating RES generators. The very specific feed-in characteristics

require additional steps to bring these generators to a market that requires

reliable delivery. The research results show that the research question can be

answered.

Being able to replace large amounts of conventional generators in the control

reserve market fosters the transformation of the power system. In a system

with increasingly dynamic residual load requirements, conventional

generators often do not operate at their maximum capacity. Each

conventional generator in the power system that provides control reserve is

therefore a potential must-run unit and causes uneconomic dispatch.

Fluctuating RES generators should be admitted to the control reserve market

since they can deliver added value to the market. The ability to provide all

necessary ancillary services from fluctuating RES generators is paramount

for a power system with high shares of renewables. This implicitly demands

fair competition, with a regulatory framework that facilitates the market

participation of as many units as possible. Given fair market conditions, wind

farms and PV systems are a part of the solution for a secure and stable energy

system in the future.

Introduction | 9

2 Introduction

2.1 Motivation and Problem Statement

Climate change has been identified as a threat to humankind by the

Intergovernmental Panel on Climate Change. In its synthesis report of the

fifth assessment report the IPPC states (Pachauri & Mayer, 2014, p. 13):

“Climate change will amplify existing risks and create new risks for

natural and human systems. Risks are unevenly distributed […]

[amongst] countries at all levels of development.”

The IPCC further concludes that climate change is induced mostly by the

energy related emissions of CO2 into the atmosphere of the earth. Limiting

global warming requires the reduction of CO2 emissions to

pre-industrialization levels and thus an adaptation of the way energy is

generated and used. One of several pathways to mitigate CO2 emission is the

use of renewable energies.

In the year 2009, the European Union agreed upon the EU 20/20/20 targets.

These targets oblige its member states to source 20 % of its energy

consumption from renewable sources by 2020. Subsequently this decision

was transferred into the national action plans that were published in 2010

(Directive 2009/28/EC of the European Parliament and of the Council, 2009).

In the same year, Germany decided on its targets for Renewable Energies for

the year 2020 and beyond. The share of electricity from renewable energy

sources (RES) will reach 35 % by 2020 (Bundesregierung, 2010). The

German Renewable Energies Act (EEG) defines the target of 80 % of

renewable electricity in the year 2050 (Erneuerbare-Energien-Gesetz, 2014).

These changes will lead to a decreasing share of conventional generation in

the future. A possible path towards meeting these targets can be seen at the

EE-Langfristszenarien (RES long term scenarios) (Nitsch J. et al., 2012,

p. 185).

Climate change

Targets and scenarios
for the on the use of
renewable energy
sources in the future

10 | Introduction

In these scenarios, we are more likely to observe situations in which the

electricity demand is satisfied solely by RES. This means that conventional

generation units will have very small shares in the overall power supply,

especially in times of very high instantaneous penetration levels of

fluctuating RES. As of today, ancillary services are provided mainly through

conventional generation units, as they still supply large amounts of the

electric energy in the power system. Ancillary services are those services in

the power system that ensure the security of supply, such as control reserve,

voltage control or black start capability, amongst others.

With the introduction of fluctuating RES generators, the electricity

generation pattern has changed significantly in the last decade. This leads to

times when a large amount of conventional generation is disconnected from

the grid, since the energy is supplied by RES. This stands contrary to the fact

that currently ancillary services are mainly provided by conventional

generation units. Alternative generation technologies in the power system

will have the responsibility for maintaining the security of supply. Ancillary

services always should be supplied by those units, which are providing

power to the system.

The transmission system operators (TSO) in Europe use control reserve for

the confinement of frequency deviations from 50 Hz within operational limits

of ±200 mHz (UCTE, 2009). Currently these frequency control services are

mainly provided by conventional generation units. In a future power system,

it will be necessary that this reserve is also provided by fluctuating RES when

their power feed-in is high.

In accordance with the energy economics act (“Energiewirtschaftsgesetz”)

the energy system should be affordable, ecological and reliable. This triangle

of competing objectives needs to be balanced and optimised appropriately

under changing framework conditions. One has to take these conditions into

consideration in deciding when wind turbines should offer control reserve

(Energiewirtschaftsgesetz, 2011). The 2012 revision of the German

Renewable Energies Act (EEG) enables RES to deliver energy to the markets

and provide ancillary services at the same time (Erneuerbare-Energien-

Gesetz, 2014). With the RES support scheme "optional market premium" a

High shares of
renewables requires
the delivery of ancillary
services by renewables

Ancillary services are
sourced inefficiently by
using units that are not
used in the spot market

Ensuring grid
parameters when RES
feed-in is high

Legislation for RES
generators

Introduction | 11

successful integration of wind farms and photovoltaic systems (PV systems)

into the energy markets was observed (Lange et al., 2014, p. 16). The share of

wind turbines being sold under this RES support scheme was more than

80 % by the end of February 2014 (Köpke, 2014). Biomass is already

integrated into the control reserve markets (Lange et al., 2014, p. 14).

Apart from legislative changes, the regulatory framework has not been

adapted for a possible control reserve provision of fluctuating RES. Earlier

assessments by Brauns et al. (2014) have proven the feasibility of the

delivery of control reserve from wind turbines, assessing how wind turbines

could fulfil the requirements of the current market design. The economics of

a control reserve delivery were discussed in Brauns et al. and a computer

model for the economic impact assessment was developed. Despite the

results, further research in this field is necessary in order to understand the

influence of the market design on economic aspects. This thesis investigates

the economic aspects of the control reserve provision from fluctuating RES.

The increasing share of renewable energies leads to times when fluctuating

RES have a very large share in the production at a given hour. This could lead

to a situation where conventional generators are only delivering energy to

the system because they have committed to deliver control reserve on a

larger time horizon, e.g. a week in advance. However, depending on the share

of fluctuating RES it would not be necessary to keep those generators

connected to the grid for the supply of electricity. They are solely connected

for delivering control reserve to the system and therefore distort the market

as a whole. This ultimately leads to the point where fluctuating RES are

curtailed for that reason.

2.2 Objectives and research hypothesis

Available literature does not provide information detailed enough to assess

the potentials for the delivery of control reserve from fluctuating renewable

generation in a realistic scenario. Many publications refer to a situation

without any markets or regulations. They do, however, provide useful

information on the technological and economic strengths and weaknesses of

Previous assessments
were only able to
capture single effects

Solving the inefficient
dispatch problem
through market control
reserve market changes

Lack of knowledge on
the economics of
fluctuating RES in
control reserve markets

12 | Introduction

wind farms providing control reserve. Photovoltaic systems so far have not

been examined as thoroughly as wind farms. This is mainly because wind

farms are widely built throughout the world and the technology has a higher

degree of maturity.

During the literature research, the most advanced methodology considering

the assessment of control reserve in real markets was found in several

papers by Kirby, Ela, Tuohy, Milligan et al. (2011; 2010; 2012) . However, it

does not address the central issues of volatility and forecast errors. The

results presented with the given scenario do not allow the transfer of the

results to the European power system. The economic revenues from the

system’s point of view are not presented. Due to the nature of different

regulatory philosophies in the power system, the assessment needs to be

adapted specifically to the target region. Results cannot be transferred to

Europe without considering the framework conditions. The proposed thesis

presents a methodology to offer control reserve and quantify the economic

impact in a close-to-reality scenario.

This thesis presents the economic potentials of a control reserve provision

from fluctuating RES as well as the influence of the regulatory framework on

these potentials. Recommendations for changes in this framework are given,

in order to enable the provision of control reserve by fluctuating RES. The

delivery of control reserve to the markets with different bidding strategies

under varying framework conditions has an impact on the economic viability.

One superior policy goal is to reduce the amount of must-run capacity of

conventional generation that is required for the delivery of ancillary services

under the current framework conditions. The assessment is carried out for

the German market and its regulations.

The underlying economics are an essential part of a successful delivery of

such services by any unit to the power system. If fluctuating RES generators

are to have an increasing responsibility for system balancing, regulations will

require changes in order to guarantee the system reliability. It is only

possible to achieve positive changes in the energy system if market rules are

non-discriminatory for all market participants. Therefore, it is necessary to

Developing a
methodology for
economic impact
assessment for the
provision of control
reserve

Identifying ideal
framework conditions

Requirements for
regulatory changes

Introduction | 13

investigate the market rules in reserve markets and the interdependencies

with other electricity markets.

Based on the current state of the research the hypothesis for the thesis is as

following:

Stochastic units, such as wind farms and PV systems, can

provide control reserve to the power system competitively

without altering the level of reliability whilst decreasing

system costs.

The aspects that have to be investigated in order to be able to acknowledge

or to reject the main hypothesis of the thesis are the following subordinated

hypotheses:

- It is possible to provide control reserve with fluctuating RES generators

reliably.

- The provision of fluctuating RES generators can temporarily substitute

services that are currently provided by conventional generation.

- The impact of the regulatory framework is important for the delivery of

control reserve by fluctuating RES and other stochastic units with

regard to economic incentives.

- The economic benefits are greater than the costs when fluctuating RES

provide control reserve.

Based on the aforementioned aspects the hypothesis will either be

acknowledged or rejected. Additionally one could formulate research

questions out of these hypotheses, which will be answered throughout this

work. Conclusive results shall ensure that fluctuating RES deliver control

reserve when they can and at the same time, the delivery is carried out with

other units when they cannot. This would follow the principle that energy

and ancillary services are dispatched from different units most efficiently.

The novelty will be the presentation of a scalable methodology to assess the

economic value of fluctuating RES delivering control reserve from the

Main research
hypothesis

Subordinated research
hypotheses

Improving power
system efficiency
through better dispatch

Expected novelty and
results

14 | Introduction

system’s point of view as well as from the sellers’ point of view. The

conclusion identifies the need for change of individual market rules and

regulations that hinder the integration of fluctuating RES into control

reserve. The effect on the potentials, as well as the loss or gain in social

welfare is also quantified.

2.3 Thesis outline

Firstly, the fundamentals of the relevant energy-economic and physical

backgrounds are laid out in chapter 3. This includes a general description of

energy markets, ancillary services and the relevant regulatory framework. All

relevant information in relation to the presented methodology is shown. A

description of the wholesale power market prices and the prices in the

control reserve markets is included. The regulations and mechanisms for the

delivery of control reserve in Germany are presented in detail. The current

situation for the delivery of control reserve by both non-fluctuating and

fluctuating RES is presented. This chapter also presents available literature

on the topic of control reserve provision of fluctuating RES and approaches to

perform the economic impact assessments. Derived from this, the study

setting is described and the research question is located in the context of the

available literature. Based on the given literature different approaches for the

economic impact assessment are presented as well as an alternative

approach, which is presented in this thesis. All approaches are evaluated

according to quality criteria.

The methodology, which is developed in chapter 4, is derived from the

findings in the previous chapter. The modelling for answering the research

question is developed here, starting with modelling a market participation of

fluctuating RES generators in the control reserve market. Subsequently the

methodology for measuring the economic potential is presented. Different

influencing factors are captured and included in the methodology. The data

used are shown here, with limitations and potential problems arising from

the data sets clearly communicated. The modelling assumptions and

limitations of the chosen approach are also presented in this chapter.

Chapter 3 – State of the
discussion in energy
economics

Chapter 4 - Modelling
the economics of
control reserve
provision by fluctuating
RES

Introduction | 15

The results from the first part of the methodology chapter are presented in

chapter 5, which contains the economic assessment from the fluctuating RES

generators’ point of view. It presents the probabilistic forecasts and the

technical potentials. Based on this the bids for the market are presented

following the methodology on bid creation. Lastly, in this chapter the possible

additional income for the RES generators is presented and compared

between different pools of RES generators.

The economic impact from the system’s point of view is presented in

chapter 6. Firstly, the cost changes under different bidding approaches are

analysed. Secondly, the micro-economic impact of the proof method for the

delivery of control reserve is quantified, showing how regulations affect

more than just the control reserve markets. Thirdly, based on the cost saving

potentials and the possible additional income from the previous chapter the

welfare gain is explained and the added value for the system quantified.

A forecast of the welfare gain in 2020 and 2030 is shown at the end of this

chapter.

Chapter 7 summarizes and concludes the research results from this work,

drawing on the initial research question. The hypothesis is tested and

accepted or rejected. The implications for the regulatory framework are laid

out and further research is identified. The chapter closes with a presentation

of the advancement in the research through this thesis.

Chapter 5 - Economics
of fluctuating RES in the
control reserve market

Chapter 6 - Economic
impact of fluctuating
RES on the power
system level

Chapter 7 - Final
assessment of the
hypothesis and
conclusions

16 | Introduction

State of the discussion in energy economics | 17

3 State of the discussion in energy economics

3.1 Energy-economic foundations

This doctoral thesis assesses the technical and economic potentials of wind

farms and photovoltaic systems to provide control reserve. Since the

liberalization of the power markets in Europe (Directive 96/92/EC of the

European Parliament and the Council, 1996) energy and selected ancillary

services are traded on markets. Currently control reserve is the only ancillary

services in Germany that is procured in a standardized market environment.

Since markets will determine the value of wind farms and photovoltaic

systems in the power system, the fundamentals of the relevant market

segments in Germany and the underlying regulatory framework are

explained in this chapter.

3.1.1 Regulatory Framework for Power Markets

The introduction of the EU internal market in electricity directive 96/92/EC

on 19th December 1996 (Directive 96/92/EC of the European Parliament and

the Council, 1996) has led to the liberalization of electricity markets. The

directive was implemented on the 24th of April 1998 into the

Energiewirtschaftsgesetz (EnWG) (English: German Energy Act)

(Energiewirtschaftsgesetz, 2011). The entire electricity market has been

opened for competition, which led to the possibility for electricity customers

to choose their own supplier freely. Additionally the non-discriminatory

network access had to be granted, and integrated energy utilities had to be

unbundled. The Bundesnetzagentur (BNetzA) (English: Federal Network

Agency) was set up in 2005 as an independent regulatory body to regulate

power market rules (Konstantin, 2009, p. 46). Rights and privileges of the

regulator are organized in Stromnetzzugangsverordnung (StromNZV)

(English: regulation on electricity feed-in to and consumption from electricity

supply grids) (Stromnetzzugangsverordnung, 2014).

Markets access for
fluctuating RES
generation

EU internal market
directive, German
Energy Act and the
regulator BNetzA

18 | State of the discussion in energy economics

The framework under which Renewable Energy Sources (RES) are supported

is the German Erneuerbare-Energien-Gesetz (EEG) (English: German

Renewables Act) (Erneuerbare-Energien-Gesetz, 2014). This regulates the

payments for electricity from RES generators. The law grants RES generator

payments for each kilowatt-hour (kWh) that is fed into the grid. Since 2012,

the generator can opt between a fixed feed-in tariff (FIT) model and a direct

marketing model with market premium payments. With the market premium

model applied, the income from the power market is supplemented by

market premium payments, which are aligned with the height of the FIT as a

reference. (Erneuerbare-Energien-Gesetz, 2014)

 Source: own analysis based on data (Erneuerbare-Energien-Gesetz, 2014; Fraunhofer IWES, 2015; Quaschning, 2015;

www.solaranlagen-portal.com)

Figure 3-1: Development of the EEG based initial and base feed-in tariffs for onshore
and offshore wind farms and the feed-in tariff for photovoltaic systems

Figure 3-1 shows the development of the FIT in the past for on- and offshore

wind farms and open field photovoltaic systems. On- and offshore wind farms

initially receive a higher FIT, indicated as initial FIT (blue and green line).

Photovoltaic systems open field

Onshore wind initial FIT

Onshore wind base FIT

Offshore wind initial FIT

Offshore wind base FIT

Development of feed-in tariff (FIT) of fluctuating RES

2009 2010 2011 2012 2013 2014 2015
0

25

50

75

100

125

150

175

200

225

250

275

300

Year

Fe
ed

-in
 t

ar
iff

 in
 E

U
R/

M
W

h

RES support scheme

Historic feed-in-tariff
and chosen FIT for
simulations

State of the discussion in energy economics | 19

After a pre-defined period of time and based on the location of the wind farm,

the FIT is reduced to a base tariff (dashed line) until the end of the support

time span. For all calculations in this thesis, the FIT is based on the initial FIT

for the 31st of December 2014, providing a consistent FIT through all years.

Balancing responsibility for electrical energy consumption and production in

Germany is commercially allocated to balancing groups. A balancing group is

responsible for the balancing of all contracted generation and consumption

units for every quarter of an hour. Every grid connection point has to be

allocated to a balancing group within a transmission system operator’s

(TSO’s) control area, according to the grid access regulation StromNZV §4 (3)

(Stromnetzzugangsverordnung, 2014). Balancing groups pool the power

trades, electricity generation and electricity consumption of one or more

market participants. All power trades between different balancing groups

have to be carried out by means of schedules (StromNZV §5 (1)) which

announce the exchanged energy between those balancing groups.

The balancing group contract is a standard contract containing formal

definitions from the Federal Network Agency (Bundesnetzagentur, 2013)1

and is made between the Balance Responsible Party (BRP) and the operator

of the control area (TSO). It coordinates the rights and obligations of BRPs in

each control area. A list of balancing groups is published regularly2. The

balancing group contract allows the exchange of electrical energy with the

grid, i.e. consumption, production or trading of electricity. One of the key

duties of a BRP is balancing the feed-in and purchase trades of electricity

with consumption and sale trades of energy in every quarter of an hour.

Every exchange of electricity has to be reported by the BRP to the TSO

through schedules prior to consumption one day in advance. (Bundesnet-

zagentur, 2011a)

For planning purposes, schedules have to be sent to the TSO as well as the

scheduled consumption and generation forecast. All schedules for balance

1 An English version of this contract can be found here:
http://www.amprion.net/sites/default/files/pdf/Standard%20Bilanzkreisvertrag_DE_EN.pdf

2 http://www.bdew.de/internet.nsf/id/DE_EIC-Codes-und-VNB-Bilanzkreise

Balancing responsibility
and allocation of
electricity to balancing
groups

Balancing group
contract

Scheduling of energy
exchange

20 | State of the discussion in energy economics

responsible parties have to be balanced for each 15-minute imbalance

settlement period. The exact processing of data and billing is stated in the

Market rules for balancing group billing in the area of electricity (MaBiS)

(Bundesnetzagentur, 2009a, 2009b, 2009c, 2011b). Schedules from the BRP

have to be transmitted before 14:30 on the previous day (day-ahead).

Amendments to the schedules within the German control areas may be

changed no later than 15 minutes prior to the delivery period. Verification of

grid safety requires an individual schedule of every unit (e.g. power plants)

with a physical electrical capacity of more than 100 MW before 14:30 at the

previous day (day-ahead).

According to the balancing group contract, imbalances that occur during

operation will result in the allocation of balancing energy from the TSO to the

balancing group. The exchange of balancing energy is subsequently priced at

the balancing energy price. The balancing energy price for each quarter hour

is multiplied by the quarter hour balancing energy price. Depending on the

balancing group’s imbalance and the balancing energy price, this may result

in financial obligations or reimbursements. Balancing energy prices are

calculated for every quarter of an hour based on the dispatch costs of control

reserve. Balancing energy prices are a uniform common balancing energy

price (German: regelzonenübergreifender einheitlicher Bilanzausgleichsen-

ergiepreis (reBAP)) which is applied symmetrically to the balancing energy

delivered (50Hertz Transmission GmbH, Amprion, TenneT TSO GmbH, &

TransnetBW GmbH, 2012b). ‘Symmetrically’ means that received balancing

energy will be charged while supplied balancing energy will be reimbursed

with the balancing energy price. Balancing energy cost obligations can be

transferred from one balancing group to another. (50Hertz Transmission

GmbH et al., 2012b)

The TSO will publish the reBAP no later than on the 20th working day after

the end of the delivery month and will determine the balancing deviations of

the balancing groups from the 30th working day after the end of the delivery

month based on the billing data available at the end of the 29th working day.

The settlement of balancing energy is made on a monthly basis, 42 working

days after the end of the delivery month, at the latest. The following

Balancing energy price

Publication of balancing
energy price

State of the discussion in energy economics | 21

histogram shows the annual frequency of the balancing energy price with a

bin width of 5 EUR/MWh. (50Hertz Transmission GmbH, 2015)

 Source: Own analysis based on data from (50Hertz Transmission GmbH, Amprion GmbH, TransnetBW GmbH, & TenneT

TSO GmbH, 2013)

Figure 3-2: Annual frequency of balancing energy price reBAP

3.1.2 Wholesale Power Markets

The basic principles of electricity trading on spot markets and derivative

markets are similar to other commodity markets. Commodity trading is

typically applied for different commodities such as metals, coal, agricultural

products, crude oil and natural gas. The purpose of the long-term derivative

markets is to hedge risks against unforeseen price developments in the

shorter-term spot markets. The nature of a commodity contract is that the

seller agrees upfront to pay a price for specified goods at a specified delivery

date whereas the seller agrees to deliver the goods at the specified time.

These contracts can be concluded at exchanges or bilaterally between the

buyer and the seller, the so-called over-the-counter trade (OTC). (Liebau,

2012, pp. 42–43)

2010

2011

2012

2013

2014

-200 -150 -100 -50 0 50 100 150 200
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

reBAP in EUR/MWh

Re
la

ti
ve

 fr
eq

eu
nc

y

Trading the commodity
electricity

22 | State of the discussion in energy economics

The European Energy Exchange (EEX) operates the power derivative market

for the market area of Germany. Daily operation and matching of supply and

demand for the German market area is facilitated though the short-term spot

markets, which are operated by EPEX SPOT. Spot markets determine

equilibrium power prices for every hour and for every quarter of an hour.

Trading on spot markets is one way of balancing a balancing group as

described in chapter 3.1.1. Trading does not affect the balancing

responsibilities. (Liebau, 2012, pp. 43–45)

Alongside electricity trading it is necessary for the TSOs to procure ancillary

services in order to guarantee the stable operation of the system. Ancillary

services are procured by the TSO either bilaterally or through a market

scheme (50Hertz Transmission GmbH, Amprion, TenneT TSO GmbH, &

TransnetBW GmbH, 2012a). Currently control reserve is the only ancillary

service that is procured through a market scheme. The assessment of the

economics of a control reserve provision by fluctuating RES is based on this

market. Its rules and conditions are essential to the outcome of the

assessment. Details for the control reserve market are shown in chapter 3.2.

The following graph shows an overview of possible ways to trade power on

wholesale markets.

 Source: Adapted from (Bundeskartellamt, 2011, p. 15)

Figure 3-3: Overview of trading on wholesale and ancillary service markets

The different trading options and the actions by single market participants

are shown in Figure 3-4. The spot market actions are marked in orange, the

actions as balance responsible party in blue, and the actions on the control

reserve market in black.

Wholesale market Ancillary services

OTC Market

Spot
Market

Forward
Market

Exchange Market

Spot
Market

Futures
and

Options
Market

Bilateral Market

Contracting of
Voltage control,

Black start capability,
redispatch

Market based

Tendering of control
reserve and

interruptible service

Exchange market for
electricity trading

Procurement of
ancillary services

Market participants’
actions

State of the discussion in energy economics | 23

 Source: Own analysis based on (Consentec, 2014; EPEX SPOT SE, 2016; Liebau, 2012, p. 41)

Figure 3-4: Schematic overview of the procedures covering the participation in spot energy and control
reserve markets

As an alternative, energy can be trade over-the-counter (OTC). OTC

transactions can take place without further formal framework conditions.

The OTC contract conditions such as time of delivery and volume are not

standardized and are negotiated between the trading parties involved. Both

counterparties need to be associated with a balancing group to account for

the traded electricity. Different OTC trading platforms provide an

organizational setup to facilitate OTC trading. One example of such a solution

is the internet platform IntradayS (Power2Energy, 2013) where trades are

performed as OTC. (Michetti, 2012, p. 5)

3.1.3 Spot market at the European Power Exchange

Trading on the spot market enables market participants to sell and buy

electricity in a non-discriminatory and anonymous environment and ensures

the maximization of the social welfare through merit-order dispatch (Jiang

Wu, Xiaohong Guan, Feng Gao, & Guoji Sun, 2008). The exchange prices (spot

and derivatives) serve as a reference for all market participants, even for the

OTC traded contracts (Kalantzis & Milonas, 2013, p. 460; Michetti, 2012, p. 4).

Electricity can be traded in standardized contracts on a day-ahead auction

09
:0

0

10
:0

0

11
:0

0

12
:0

0

13
:0

0

14
:0

0

15
:0

0

16
:0

0

17
:0

0

18
:0

0

19
:0

0

20
:0

0

21
:0

0

22
:0

0

23
:0

0

00
:0

0

01
:0

0

02
:0

0

03
:0

0

04
:0

0

05
:0

0

06
:0

0

07
:0

0

08
:0

0

12:00
Auction

12:20
Results

14:30
Schedules by BRP

10:00
Reserve Market
Weekly / Weekdaily

15:00
1h Intraday

16:00
¼h Intraday initial auction

05:30
1h and ¼h Intraday market

gate closure

05:45
Last change of schedule

06:00
Real-time
balancing

OTC trading

Purpose of exchange
trading and share of
traded wholesale
electricity

24 | State of the discussion in energy economics

and continuous intraday trading at the European Power Exchange EPEX

SPOT. The Energy traded in the power exchange markets accounted for more

than 40 % (EPEX SPOT SE, 2015a) of the national gross electricity

consumption in the year 2013. An increasing trend can be seen which is

driven by the increase of generation from renewable energy sources and

their need for day-ahead settlement as well as by the participants desire to

optimize unit commitment (EPEX SPOT SE, 2014b).

Any other shares of national gross electricity consumption are marketed

through the intraday exchange, forward markets (energy derivatives) or the

OTC market. The number emphasizes the importance of the market and its

relevance as a price reference for all the other markets. (EPEX SPOT SE,

2014b)

The EPEX SPOT exchange is run applying exchange regulations. These

regulations consist of the so-called the code of conduct, the market rules and

the operational rules. These rules are applied uniformly to all market

participants and govern the operation of the exchange (EPEX SPOT SE,

2014c).

The participation at the EPEX SPOT markets consists of two parts. This

includes the admission by the market operator and the admission by a

so-called clearing house. For the admission by the market operator, no

technical qualification is necessary. Trading on EPEX SPOT does not require

any physical units to be delivering or consuming power. Admission to the

market enables trading on all market segments. By the end of February 2016

231 companies were admitted to trade in the market.

3.1.3.1 Day-ahead auction

Bids by market participants, also called orders, are submitted via an

electronic trading system client to the order book of the exchange. The orders

placed in the trading system need to fulfil specified conditions (also see Table

3-1). All orders and transactions are anonymous. The order book is closed

each day at 12:00, from which time orders cannot be changed and are

binding (EPEX SPOT SE, 2016). In addition to the hourly day-ahead auction,

Alternative ways of
trading

Rules of market
operation

Admission to the spot
markets

Placing orders on the
market

State of the discussion in energy economics | 25

trading has been possible for 15-minute-intervals since December 2014

(EPEX SPOT SE, 2014d).

Single contract orders are placed as a monotonous individual demand curve

with up to 256 price-quantity combinations that limit the volume to a specific

price. The curve is interpolated linearly between the entered price-quantity

combinations. The entered prices must lie in-between the minimum and the

maximum price of the exchange market. (EPEX SPOT SE, 2016)

Specification Product detail - 1 hour day-ahead auction

Trading procedure /
days

Daily Auction / Year-round

Tradable Contracts 1 hour of the day
Hour 01: the period between midnight and 1:00,
Hour 02: the period between 1:00 and 2:00, and so on and so
forth

Order Book opening /
Trading session opens

45 days before Delivery Day

Order Book closes /
Trading closes

Daily at 12:00 for the next day

Publication time As soon as possible from 12:42 for preliminary results; Binding
final results will be published between 12:55 and 13:503

Minimum and maximum
prices

-500.00 EUR/ 3000.0 EUR

Minimum price
increment

0.1 EUR/MWh

Minimum Volume
Increment

0.1MW

Order quantity One order with at least 2 and no more than 256 price/quantity
combinations

Source: (EPEX SPOT SE, 2016)

Table 3-1: EPEX SPOT day-ahead auction contracts specifications

The orders are auctioned daily after the closure of the order book. The price

is determined through matching of the exchange members' aggregated

supply and demand curves4 for each time interval. The price determined by

3 Time between order book closure the publishing of the results is needed for the calculation. The
calculation of the market settlement requires computing-intense processes that differ with the amount
on bids entered into the trading system.

4 Aggregated curves are the sum of all individual curves (demand or supply). Each one of them can consist of
up 256 price-quantity combinations

Forming the market
participants individual
order curve

Determining the
market clearing price

26 | State of the discussion in energy economics

the trading system is the price at which the highest volume will be executed,

the so-called market clearing price with the equilibrium quantity. With the

marginal pricing principle applied, also called pay-as-clear pricing, every

market participant receives the same price. The entire process of price

determination is called market clearing (EPEX SPOT SE, 2016). If the

matching algorithm does not generate a valid market price (e.g. insufficient

liquidity) a second auction is performed. This should give the exchange

members the chance to change their orders to improve the situation.

(EPEX SPOT SE, 2016)

In the post-trading period, the market participants receive notice from the

exchange operator about the traded amounts. The exchange members are

responsible for transferring the market results into schedules for the TSO.

The exchange members forward the results to the corresponding balance

responsible party for the creation of schedules. Balance responsible parties

have to fill in the form for the schedule using the exchange operator as a

counterpart to balance positions. The energy exchange operator provides a

balancing group for that purpose. The traded amount on the exchange has to

match the amounts in the exchange schedule of the balance responsible

party. The BRP equilibrium of physical production, consumption and trading

is covered under the regulations of the balancing group contract and the

MaBiS processes (see also chapter 3.1.1). Trading on the exchanges is a

separate process from the obligations of the balancing group contract.

(EPEX SPOT SE, 2016)

Due to grid constraints and other barriers, markets are locally segmented.

These segmented markets can be brought together by means of market

coupling. Market coupling has the effect of harmonization of market prices

and encourages the most efficient unit commitment (den Ouden & Jean

Verseille, 2011, p. 47), resulting in a social welfare gain (EPEX SPOT SE,

2014a).

Figure 3-5 shows the price and volume development of the day-ahead

auction market at EPEX SPOT. The price curves present the monthly average

off-peak price (average price from 20:00 to 08:00) and the monthly average

peak price (average price from 08:00 to 20:00).

Post trading period,
notification of market
participants and
scheduling of the
market participants

Market coupling

Price and quantity
development

State of the discussion in energy economics | 27

 Source: Own analysis based on data from (EPEX SPOT SE, 2015a, 2015e)

Figure 3-5: Monthly averaged Base and Peak prices and Highest Twelve Prices of the
day-ahead auction at EPEX SPOT

3.1.3.2 Intraday trading

Intraday trading on EPEX SPOT intraday markets includes the trading of

one-hour products as well as quarter-of-an-hour products. The basic

principles of both markets are identical except for the product length. As

opposed to the day-ahead auction, intraday market contracts are traded

continuously, starting the day before physical settlement at 15:00 for the

hourly products. The quarter-of-an hour contracts have an initial auction at

15:00, followed by continuous intraday trading of the contract from 16:00.

The last trading opportunity under continuous trading is 30 minutes before

physical settlement, after which the order book is closed. (EPEX SPOT SE,

2016)

Off-Peak 20:00 to 08:00

Peak 08:00 to 20:00

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
10

20

30

40

50

60

70

80

90

100

110

Year

Se
tt

le
m

en
t

Pr
ic

es
 in

 E
U

R/
M

W
h

Intraday trading at the
EPEX SPOT

28 | State of the discussion in energy economics

The traded volume on the intraday market is much smaller when compared

to the day-ahead spot market. This can be explained by the nature of the

day-ahead spot market, where the largest share of electricity is traded in

order to ensure the most economic dispatch. Intraday markets are most

commonly used for balancing unexpected events, such as power plants

failures and forecast updates of fluctuating RES, throughout the day prior to

operation. Fluctuating RES have more reliable forecasts the closer the

forecast is to the actual time of production, hence trading on the intraday

markets close to real time decreases the need for balancing fluctuating RES

forecast errors. (Liebau, 2012, pp. 45,98–99)

Since the intraday market has continuous trading, liquidity and prices for

each contract might vary over time. Depending on the order’s price limit,

quantity, and order book configuration, single contracts may not be executed

due to the lack of a matching counter position in the order book by that time.

After the submission of the orders to the trading system, they are

immediately matched with other orders in the order book. If a match is found

the orders are executed at the best price available in the system. (EPEX SPOT

SE, 2016)

Purpose of intraday
markets and the
relation to trading
volume

Order execution

State of the discussion in energy economics | 29

The following table shows the contract specification for intraday trading at

the EPEX SPOT:

Specification Product detail -
1 hour continuous
trading

Product detail -
Quarter hour
continuous trading

Product detail -
Quarter hour
intraday auction

Trading
procedure / days

Continuous / Year-
round

Continuous / Year-
round

Daily Auction / Year-
round

Tradable
Contracts

1 hour of the day
Hour 01: the period
between midnight and
1:00
Hour 02: the period
between 1:00 and
2:00, and so on and so
forth

Quarter hour (15
min.)
Four 15-minute
contracts open per
corresponding
underlying hour e.g.;
For Hour 01, the
following 15-minute
contracts will open:
00:00-00:15
00:15-00:30
00:30-00:45
00:45-01:00

Quarter hour (15
minutes)
Four 15-minute
contracts open per
corresponding
underlying hour e.g.;
For Hour 01, the
following 15-minute
contracts will open:
00:00-00:15
00:15-00:30
00:30-00:45
00:45-01:00

Order Book
opening / Trading
session opens

24 hours a day
Hourly contracts for
the next day open at
3:00

24 hours a day
15-minute contracts
for the next day open
at 16:00

24 hours a day
15-minute contracts
for the next day open
at 15:00

Order Book closes
/ Trading closes

30 minutes before
delivery

30 minutes before
delivery

Daily at 15:00 for the
next day

Publication time No publication time in
continuous trading
possible. Prices are
publicized
continuously

No publication time in
continuous trading
possible. Prices are
publicized
continuously

As soon as possible
from 15:10 pm

Minimum and
maximum prices

-9999.99 EUR /
9999.99 EUR

-9999.99 EUR /
9999.99 EUR

-3000.00 EUR/
3000.00 EUR

Minimum price
increment

0.01 EUR/MWh 0.01 EUR/MWh 0.01 EUR/MWh

Minimum Volume
Increment

0.1MW 0.1MW 0.1MW

Order quantity Unlimited (with limit
in daily monetary
value stated by
clearing house)

Unlimited (with limit
in daily monetary
value stated by
clearing house)

One order with at
least 2 and not more
than256
price/quantity
combinations

Source: (EPEX SPOT SE, 2016)

Table 3-2: EPEX SPOT intraday trading contracts specifications

The traded volume on the intraday market is less than a tenth of the

day-ahead traded volume. This amount does also include several trades from

Intraday contact
specifications

Price and quantity
development

30 | State of the discussion in energy economics

one party that acquired electricity at one time and has sold it at later point.

The frequency of price differences between day-ahead prices and the average

intraday prices of each contract is given in Figure 3-6 for several years. The

majority of price differences of contracts for one hour between both of these

markets are smaller than 20 EUR. (EPEX SPOT SE, 2015a, 2015e)

 Source: Own analysis based on data from (EPEX SPOT SE, 2015a, 2015e)

Figure 3-6: Annual frequency of price differences (day-ahead minus intraday) between
the last intraday price (ID) and the day-ahead price (DA) of contracts traded
for the same hour

3.2 Control Reserve

3.2.1 Types of Ancillary Services and their costs

TSOs are responsible for secure grid operation at all times, which may

require the use of ancillary services to address different system stability

issues. The ancillary services used by the TSOs in Germany are as follows. In

other countries, especially outside Europe, this may vary significantly:

(Bundesnetzagentur & Bundeskartellamt, 2014)

2010

2011

2012

2013

2014

-60 -40 -20 0 20 40 60
0

0.02

0.04

0.06

0.08

0.1

Price difference in EUR/MWh

Re
la

ti
ve

 fr
eq

eu
nc

y

Types of ancillary
services

State of the discussion in energy economics | 31

• Compensation of grid losses: Energy transmission causes grid losses,

which have to be accounted for. The TSOs are responsible for the

compensation of these losses. The predictable long-term losses have

to be procured through a tendering procedure. Short-term losses can

be procured through a third party who has to be selected through a

tendering process. In both cases energy can also be procured on the

market at EPEX SPOT (Bundesnetzagentur, 2008a).

• Black start capability: This service is used in the case of a grid failure

that has led to outages. Power generators that are providing black

start services are able to reinitiate the supply infrastructure after a

blackout without external help. This service is procured by the TSOs

from the generators through bilateral contracts.

• Reactive power for voltage control: For the operation of most

electrical devices, the voltage has to be kept within specific limits. The

grid operator has to ensure that the voltages in the grid are within

certain levels at all points along the line. The transport of reactive

power can lead to a deviation of the voltage that is not desirable. To

compensate these deviations counteractive reactive power is used to

increase the ratio between active and reactive power. This service is

contracted bilaterally or is originated from controllable grid compo-

nents.

• Countertrading: This service is used to resolve congestion issues in

the grid. Countertrading is performed in anticipation of a congested

grid. The energy is usually traded on the energy exchange.

• Redispatch: Physical congestions in the grid may occur due to the

energy flow or voltage issues. Either could be resolved by a change of

the production from numerous generators and consumers according

to §13(1) and §13(2) EnWG (Energiewirtschaftsgesetz, 2011). The

generators and consumption units are reimbursed for their financial

damage.

32 | State of the discussion in energy economics

• Control reserve for frequency control: For grid operation, it is

necessary that the frequency of the grid does not deviate from its set

point of 50 Hz. This occurs when the power that is fed into the grid is

not equal to the power drawn off. The grid operator compensates this

difference between feed-in and consumption with the help of fast

responding reserves. The procurement of control reserve in Germany

is carried out at the dedicated market regelleistung.net.

• Interruptible service: Since the end of 2012, immediately and quickly

interruptible loads are procured by the TSOs. An interruptible load is

a unit in the power system that is consuming large volumes of

electricity in a continuous manner. It is also capable of reducing or

interrupting its electricity consumption on short notice for a certain

time span. It therefore acts similarly to the control reserve. The

procurement is organized as for control reserve markets and is

governed by the AbLaV (interruptible loads regulation) (Verordnung

zu abschaltbaren Lasten, 2012). The costs are shifted through a

dedicated levy.

The TSOs are financially reimbursed for the costs of procurement and

dispatch of ancillary services. The costs of these ancillary services are

monitored and published annually in a summary by the Federal Network

Agency (BNetzA) (Bundesnetzagentur, 2010, p. 201, 2012b, p. 109;

Bundesnetzagentur, 2014, p. 74; Bundesnetzagentur & Bundeskartellamt,

2013, p. 80, 2014, p. 87). The costs for each ancillary service can be seen in

Figure 3-7. By the end of 2015 only data until the end of 2014 were available

from official sources. The costs of interruptible services and control reserve

have been recalculated, based on data from regelleistung.net (50Hertz

Transmission GmbH, Amprion GmbH, TransnetBW GmbH, & TenneT TSO

GmbH, 2015).

Cost monitoring by the
regulator

State of the discussion in energy economics | 33

 Source: (Bundesnetzagentur, 2006, 2007, 2008b, 2009d, 2010; Bundesnetzagentur & Bundeskartellamt, 2014, 2015)

 Control reserve costs and interruptible service costs are own calculation based on:
 (50Hertz Transmission GmbH, Amprion GmbH, TransnetBW GmbH et al., 2015)

Figure 3-7: Costs for the different ancillary services for the years 2004 to 2014

19

6

41

104

145

228

103

185

1

27

5

288

7

4

81

158

153

359

85

113

2

33

6

333

168

75

359

269

82

165

0

68

5

354

187

100

123

375

112

42

88

27

7

317

162

89

180

503

107

13

35

30

5

300

266

425

134

25

1

37

8

464

217

475

118

45

49

8

408

316

376

86

30

54

11

431

271

388

84

50

400

269

468

88

44

349

211

432

97

51

235

0 100 200 300 400 500 600

Quickly interruptible service capacity payments

Immediately interruptible service capacity payments

Tertiary reserve energy payments

Tertiary reserve capacity payments

Secondary reserve energy payments

Secondary reserve capacity payments

Primary reserve capacity payments

Redispatch

Countertrading

Reactive power

Black start capability

Transmission losses

Costs in million EUR

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

34 | State of the discussion in energy economics

The last available monitoring report is from the year 2015 and provides data

for the year 2014. According to this the report the costs for transmission

losses in 2014 were 288 million EUR. The German TSOs spent 5 million EUR

in 2014 for the provision of black start capability and 27 million EUR for the

procurement of reactive power. This is similar to the years 2010, 2011 and

2013 – in 2012 there were special expenditures that had to be considered.

The costs for countertrading measures in the year 2014 were 1 million EUR.

Redispatch costs are constantly rising: they multiplied more than tenfold

from 2010 to 185 million EUR in 2014. This accounts for 2686 changes in

production of generators in that period. The increase in renewable energies

and the lack of additional transmission capacity has led to more congestion in

the grid. The costs for the interruptible loads accounted for 11 million EUR in

2013 and 25 million EUR in 2014. The costs for 2013 however are not

representative since the regulation came into force in the end of 2012 and

the market participants did not have time to engage fully in 2013.

(Bundesnetzagentur, 2010, p. 201, 2012b, p. 109; Bundesnetzagentur, 2014,

p. 87; Bundesnetzagentur & Bundeskartellamt, 2013, p. 80, 2014, p. 87)

The costs for secondary and tertiary control reserve capacity and energy

payments accounted for 878 million EUR in the year 2014, having been

751 million EUR in 2013 and 871 million EUR in 2012. The German TSOs

procure three different types of control reserve (see chapter 3.2.2). In the

year 2014, primary control reserve accounted for 103 million EUR of the

costs, secondary control for 249 million EUR and tertiary control for

506 million EUR. The capacity payments are socialized through the grid

utilisation fees whereas the energy payments are covered through the

payments of the imbalance settlement price by the balance responsible

parties. The entire costs can also be considered the market size of the control

reserve market. Comparing the costs of all ancillary services it can be

concluded that the costs of all types of control reserve together are the

biggest single position. Besides the countertrading, it is also the only ancillary

service that is procured in a market environment. (Bundesnetzagentur, 2010,

p. 201, 2012b, p. 109; Bundesnetzagentur, 2014, p. 87; Bundesnetzagentur

& Bundeskartellamt, 2013, p. 80, 2014, p. 87)

Costs of ancillary
services – Grid losses,
black start, reactive
power, countertrading,
redispatch and
interruptible loads

Costs of ancillary
services – Control
reserve

State of the discussion in energy economics | 35

3.2.2 Types of control reserve

For the stable operation of the power system, it is necessary that the

frequency and voltage in the grid is kept within specified operational limits.

To ensure a constant frequency in the power system, generation and

consumption always have to be in balance. This is part of the daily

operational planning implemented by the MaBiS processes. It accounts for

any deviations that occur between the planning until 15 minutes prior to

consumption. Until then the balancing responsible party (BRP) manages the

deviations of its own balancing group through trading or changes in the

schedule. In the case of an unforeseen event beyond the BRP’s time horizon,

which leads to an imbalance between generation and consumption units, the

TSOs have a responsibility to balance the system at short notice. Each

individual TSO in Europe is solely responsible for the balancing in its own

so-called control area. The TSO is responsible for the minimization of the

area control error (ACE) and the energy exchange over the cross-border

interconnectors. Required reserves are usually therefore procured for each

TSO’s own control area. (UCTE, 2009)

Despite the obligation to balance each control area in itself, cooperation

between TSOs is possible. Since 2010 the German TSOs cooperate within a

Grid Control Cooperation (Netzreglerverbund) (GCC), resulting in the

operation of four control areas5 as a single control area. The joint operation

prevents opposite control reserve dispatch in single control areas. It also

allows the common dimensioning of control reserve, common procurement

of control reserve and cost-optimised activation of control reserve (merit-

order principle) (50Hertz Transmission GmbH, Amprion, TenneT TSO GmbH,

& TransnetBW GmbH, 2011b; Müller, 2011).

As a result of the cooperation, barriers for the procurement and activation of

control reserves in Germany have been lifted. Different aspects of the GCC

have been extended to the neighbouring countries, forming an International

GCC (IGCC). Denmark, the Netherlands, Switzerland, the Czech Republic,

5 In Germany all four TSOs are grouped as a control block

Balancing
responsibilities

Cooperation between
the TSOs - Grid Control
Cooperation in
Germany and Europe

International grid
control cooperation
IGCC

36 | State of the discussion in energy economics

Belgium and Austria prevent the opposite control reserve activation, if no

transmission contingencies are present (50Hertz Transmission GmbH,

Amprion, TenneT TSO GmbH, & TransnetBW GmbH, 2011a). Additionally

Switzerland and the Netherlands procure a part of their primary control

reserves (25 MW respectively 35 MW) via a common auction with the

German TSOs (50Hertz Transmission GmbH, Amprion GmbH, TenneT TSO

GmbH, & TransnetBW GmbH, 2012). This auction is open for all prequalified

providers of primary control reserve from these three countries. (Weidhas,

2012)

The Agency for the Cooperation of Energy Regulators (ACER) has suggested

creating a fully integrated balancing energy market for Europe. This would

improve the economic efficiency of control reserve procurement and

utilization. Existing barriers to a closer collaboration between the TSOs are

e.g. the diversity of balancing products and pricing mechanisms. ACER has

published its Framework Guidelines on Electricity Balancing in 2012 to

address the incompatibility issues. Core elements of the Framework

Guidelines are models for cross-border exchanges of balancing energy6 that

should result in one European platform for the procurement of control

reserves (ACER, 2012). Based on these Framework Guidelines ENTSO-E has

improved the Network Code on Electricity Balancing (NC EB) (ENTSO-E,

2013b).

TSOs procure ancillary services to fulfil their balancing responsibilities. For

the frequency control, the TSOs procure the so-called control reserve. Control

reserve is used for the restoration of frequency deviations from the set point

of 50 Hz within the operational limits of ±200 mHz (UCTE, 2009, p. 5). This is

carried out by control reserve units that are either generation or

consumption units and which can increase or decrease their generation or

consumption depending on frequency, or through dispatch by the TSO. The

German TSOs procure three different types of control reserves. They are

6 At this point balancing energy describes only the energy that is dispatched, not the reservation of capacity

Acer framework
guidelines, network
code electricity
balancing and pan-
European balancing
energy market

Frequency restoration
through control reserve

State of the discussion in energy economics | 37

called primary control (reserve), secondary control (reserve) and tertiary

control (reserve), in Germany called minute reserve. (UCTE, 2009)

The described ancillary service of frequency control in the power system will

be called control reserve throughout the thesis; however, it is lacking a

consistent naming scheme. Different names are used for the same or similar

services throughout Europe as well as outside of it. The European Network of

Transmission System Operators for Electricity (ENTSO-E) has performed the

task of harmonizing the European nomenclature of control reserve for its

different synchronous grid areas, also called regional groups (RG) (ENTSO-E,

2012). Each regional group has defined a set of frequency control services

that fulfil the same purpose, i.e. balancing the power system. The individual

characteristics of each individual service are different from one RG to

another one. The services are defined in (ENTSO-E, 2013b). The RG that is

considered in this thesis is the continental Europe RG (ENTSO-E RG CE).

The ENTSO-E nomenclature is divided into frequency containment reserves

(FCR), frequency restoration reserves (FRR) and replacement reserves (RR).

FRR are further divided into automatic frequency restoration reserves

(aFRR) and manual frequency restoration reserves (mFRR). FCR is

equivalent to primary control reserve, with aFRR provided by secondary

control reserve and mFRR delivered by tertiary control reserve. RRs are

allocated to the balancing responsibility of the BRPs in Germany. Figure 3-8

below shows the different control reserve names used in this thesis with

their equivalent ENTSO-E name. Secondary control reserve is often referred

to as automated generation control (AGC). (ENTSO-E, 2013b)

Nomenclature
differences in the
ENTSO-E

Nomenclature
differences in the
ENTSO-E

38 | State of the discussion in energy economics

 Source: adapted from (UCTE, 2009, p. 3)

Figure 3-8: Idealized dispatch cascade of positive control reserve after the occurrence
of a system event in the ENTSO-E RG Continental Europe with nomenclature
according to this thesis and its ENTSO-E equivalents

Figure 3-8 shows the idealized dispatch of all three control reserve types for

an event resulting in a frequency drop. This could be caused by the

unplanned outage of a power plant or the addition of a large consumer. The

figure shows the dispatch of reserves in a cascade where one control reserve

replaces the previous one. This is idealized since this would only be

applicable to a single system event. In reality, different events and their

effects overlap with each other. Table 3-3 summarizes the three different

control reserve types in Germany.

Tertiary control reserve

Secondary control reservePrimary control
reserve

30 s 15 min Gate Closure

Fr
eq

ue
nc

y
in

 H
z

Balancing responsibility of the TSO Balancing responsibility
of the BRP

In
er

tia

Time

Time

5 s

Manual frequency restoration reserve

Automatic frequency restoration reserve
Frequency

containment
reserve

Restoration Reserve

7.5 min

Trading & Scheduling
according to MaBiS

50 Hz

Idealized control
reserve dispatch
cascade

State of the discussion in energy economics | 39

 Primary control
reserve

Secondary control
reserve

Tertiary control
reserve

Purpose Stabilise grid
frequency after a
disturbance

Balance control areas,
bring grid frequency
back to nominal value,
replace primary
control

Complement and
replace secondary
control

Time until
complete
activation

30 sec 5 min 15 min

Reaction time Immediately, no
longer than 5 sec

30 sec until first
change of power for
pooled reserve
providers7

No more than 7.5 min

Activation Local, static relation to
the frequency

Automatically by grid
control centre with
MOL; activation
through MOLS

Manually by grid
control centre using
MOL; activation
through MOLS

Source: Own analysis based on (50Hertz Transmission GmbH, Amprion GmbH, TransnetBW GmbH et al., 2015)

Table 3-3: Control reserve specifications

Primary control reserve is a fast responding reserve available for the fast

stabilisation of the grid frequency after an event. The first response has to be

visible after five seconds and has to be fully activated within 30 seconds,

following a linear ramp between its initial activation and full activation. It is

activated uniformly by all contracted providers of primary control reserve

throughout the synchronous area of the ENTSO-E RG CE, disregarding the

origin of the imbalance (principle of solidarity). It is activated on a

decentralized basis, depending on the locally measured grid frequency.

(UCTE, 2009, pp. 4–11)

Every generator providing primary control reserve is controlled through a

decentralized control at each individual unit tracking the grid frequency8. The

dispatch of control reserve is proportional to the frequency deviation in the

grid. No reaction within a dead band of ±20 mHz is required. Deviations

between ±20 mHz and ±200 mHz trigger a dispatch of control reserve along a

7 Pools providing secondary control reserve have to show a first reaction to the secondary control activation
signal of the TSO within 30 seconds, at the latest.

8 Disregarding simultaneity effects it can be assumed that the frequency is identical at every point of a
synchronous grid

Principles of primary
control reserve

Dispatch mechanism of
primary control reserve

40 | State of the discussion in energy economics

linear ramp. This follows a static relation to the frequency with ±20 mHz

meaning no activation at all and ±200 mHz a full activation of the contracted

control reserve at each individual unit. (UCTE, 2009, pp. 4–11)

Secondary control reserve is used to balance the power system within each

TSO’s control area, counteract the area control error, replace primary control

and restore scheduled interconnector flows. Secondary frequency control is

activated centrally and automatically by the TSOs through a load-frequency

control. In Germany, this is performed jointly through the GCC. Activation

signals are sent to the units from the TSOs using the merit-order principle

and a merit-order list server (MOLS). Activated units have to respond within

30 seconds and have to be fully activated within five minutes. The

dimensioning of secondary control reserve is carried out for secondary

control reserve and tertiary control and will be explained in chapter 3.2.3.

(UCTE, 2009, pp. 5–24)

Tertiary control, also called minute reserve in Germany, initially

complements secondary control reserve and ultimately replaces it. After the

dispatch signal, tertiary control reserve has to be fully activated in 7.5 to 15

minutes, depending on the time of activation. The decision for dispatch is

made manually at the TSOs grid control centre. Although this decision is

made by the person in charge at the control centre, it is recommended by the

TSOs own operational rules whenever more than 60 % of the secondary

control is activated (M. Stobrawe, personal communication, 2012). Since

2012, the activation signal is transmitted to the units electronically using the

merit-order principle and a merit-order list server (MOLS). (UCTE, 2009,

pp. 25–28)

3.2.3 Demand for control reserve

In the ENTSO-E RG CE synchronous area 3000 MW of primary control

reserves are procured in total. This provides enough capacity for the outage

of the two largest generators in the power system (n-2). The required

capacity is split between all TSOs according to their annual peak load. The

German TSOs for example had to procure 568 MW in 2014 (50Hertz

Principles of secondary
control reserve

Principles of tertiary
control reserve

Dimensioning of
primary control reserve
– Dimensioning with
the Graf-Haubrich-
methodology

State of the discussion in energy economics | 41

Transmission GmbH, Amprion, TenneT TSO GmbH, & TransnetBW GmbH,

2015a). The necessary amount for the German TSOs is procured on

regelleistung.net (50Hertz Transmission GmbH, Amprion GmbH,

TransnetBW GmbH et al., 2015). (UCTE, 2009)

Germany has a probabilistic approach for the dimensioning of the secondary

and tertiary control reserve demand, which is named the Graf-Haubrich-

method. The principle of this method is the calculation of control reserve

demand based on previous imbalances. The calculation is carried out every

three months (in March, June, September and December) for the next three

months using data from the last four years. The same quarter of each of the

past years is selected for the dimensioning of the upcoming quarter9. Based

on this data a joint probability density functions for different imbalances is

generated. In the Graf-Haubrich-method different sources of imbalances

(load forecast error, power plant outages, etc.) are convoluted to a

probability density function that represents the probabilities for the

occurrence of all different imbalances. The method assumes stochastic

independency of the different imbalances, allowing the application of the

mathematical operation of convolution to generate a joint probability density

function. The principles are depicted in Figure 3-9. (Maurer, Krahl, & Weber,

2009)

When deficit and surplus probabilities are defined, they can be applied to the

probability density function as levels of significance. These levels of accepted

deficit for both negative and positive control reserve allow the calculation of

the required amounts of control reserve. The chosen deficit levels are

0.0225 % (Consentec, 2010, p. 21) for secondary and tertiary control reserve

together. This deficit level is distributed into deficit levels for secondary and

tertiary control reserve individually. The deficit levels for the tertiary control

reserve are derived from the total deficit level and the deficit level of

secondary control reserve. Currently the deficit level for secondary control

reserve is 0.0025 % (Consentec, 2010, p. 21). Due to this level of significance,

9 This means that the dimension for the second quarter of 2015 includes data from the second quarter of
2011, 2012, 2013 and 2014

Principles of
dimensioning of
secondary and tertiary
control reserve

Defining the level of
significance and
distribution between
secondary and tertiary
control reserve

42 | State of the discussion in energy economics

deficits may occur where the available control reserve is insufficient to meet

needs. A deficit may also occur if there is sufficient total control reserve but it

can only be activated with a time delay (Maurer et al., 2009, p. 5). Figure 3-9

shows the principles of this dimensioning process. (Consentec, 2008, 2010)

 Source: adapted from (Consentec, 2008, 2010; Jost, Braun, & Fritz, 2015)

Figure 3-9: Classification of different sources of imbalances, calculation of total control
reserve demand and separation into secondary and tertiary control reserve
and their required confidence levels

In order to create a joint probability density function all occurring

imbalances will have to be accounted for. Deviations may occur on different

time horizons, as some will have a noise characteristic and fluctuate within

the balancing period of fifteen minutes. According to (Maurer et al., 2009),

the influencing factors for the dispatch of control reserves can be classified as

following:

• Power plant outages: Unplanned outages of thermal power plants can

be characterized by power plant availability statistics. Unplanned

outages usually require the activation of secondary reserve after the

event. They only contribute to the positive reserve demand.

• Load variations and load forecast error: The stochastic behaviour of

consumers is the deviation of the sum of consumers from the standard

load profiles (SLP). It requires the dispatch of secondary control

reserve for its noise characteristics and tertiary reserves for con-

Individual error distributions Joint error distribution Total
Control Reserve

Load forecast error

Load variations (noise)

Exchange schedule error
and ramp error

Solar forecast error

Wind forecast error

Power plant outages

Convolution

Distribution between
SCR and TCR

Total Control Reserve

Secondary Control Reserve (SCR)

Pos. SCRNeg. SCR

Neg. TCR Pos. TCR

Tertiary Control Reserve (TCR)

99.995%
Confidence

99.955%
Confidence

Deficit level

Confidence
derived

from Total and SCR

Individual imbalances

State of the discussion in energy economics | 43

sistent deviations, such as temperature induced behaviour that is not

represented in the SLP. Data availability is an issue

• Forecast error of fluctuating RES generation: Similar to load variations

due to the stochastic behaviour of wind and solar forecast errors.

Deviations that have not been forecasted before gate closure have to

be counteracted by activation of control reserve.

• Exchange schedule error and ramp error (also called schedule step

error): Forecasting errors of cross-border trading could result due to

physical reasons as infeed in lines are ramped over a longer period of

time. This applies for the ramping characteristics of power plants.

Secondary control reserve is needed to balance these deviations.

Depending on the development of these imbalances, the entire demand for

control reserve might change. With an increasing share of fluctuation RES in

the power system challenges may arise as discussed in (Dany, 2001; Hamon

& Söder, 2011; Holttinen et al., 2009; Jónsson, Morales Gonzalez, Zogno,

Madsen, & Otterson, 2011; Matos & Bessa, 2011). Dobschinski et al. (2010)

have investigated the influence of the wind power forecast error. They

conclude that one of the best ways to reduce the control reserve demand is to

increase the quality of the wind power forecast. This can be generalized to all

the aforementioned sources of imbalances. The doctoral thesis of

Weißbach (2009, pp. 77–94) proposes the necessary changes to decrease the

schedule step errors.

Figure 3-10 shows the results from dimensioning of control reserve for all

three control reserve types since 2009. The procured volumes have changed

over time. The decline in the procured amounts is mainly due to smaller

errors in the different imbalance types and the introduction of the GCC in

2010 (50Hertz Transmission GmbH et al., 2011b). The different errors have

declined due to better RES forecasts, shorter gate closure times for trading

and increased incentives through the imbalance mechanism.

Developments of the
control reserve
demand

Development of control
reserve volumes

44 | State of the discussion in energy economics

 Source: Own analysis based on (50Hertz Transmission GmbH, Amprion, TenneT TSO GmbH, & TransnetBW GmbH,

2014)

Figure 3-10: Tendered amount of primary, secondary and tertiary control reserve

3.2.4 Procurement and price development

This chapter provides information on the current market design. Complying

with these rules would enable generators and consumers to participate in the

market. Usually large thermal and hydro power plants, pumped hydro

storages and loads provide control reserves. Recently smaller biomass power

plants have also gained in importance (Consentec, 2014, p. 12).

The German TSOs, partially in cooperation with neighbouring countries,

procure control reserve on a joint internet platform www.regelleistung.net.

An invitation to tender is published for the required amounts of each control

reserve individually. The specific call characteristics are presented in chapter

3.2.4.1. Market participants have to complete a nonrecurring prequalification

process and sign framework contracts before they are allowed to participate

Positive primary control reserve

Negative primary control reserve

Positive secondary control reserve

Negative secondary control reserve

Positive tertiary control reserve

Negative tertiary control reserve

2009 2010 2011 2012 2013 2014 2015

-3000

-2000

-1000

0

1000

2000

3000

Year

Co
nt

ro
l r

es
er

ve
 d

em
an

d
in

 M
W

Control reserve market
access for capable units

Procurement
procedure

http://www.regelleistung.net/

State of the discussion in energy economics | 45

in the auction of each market segment. The conditions to successfully

complete the prequalification are presented in chapter 3.2.4.2. The list of all

prequalified providers for each type of control reserve can be accessed on

www.regelleistung.net10. The auction results are published anonymously on

www.regelleistung.net. (50Hertz Transmission GmbH, Amprion GmbH,

TransnetBW GmbH et al., 2015)

3.2.4.1 Product specifications

In total five different control reserve products are tendered. Primary control

reserve is procured symmetrically, which means that positive and negative

reserves are procured together. Each bid in the auction will have to be able to

deliver the same amount of positive and negative control reserve. Primary

control reserve is tendered for a whole week (product length is one week

(Monday to Sunday)). Secondary and tertiary control reserve is procured

separately where the supplier of control reserve bids delivers either negative

or positive control reserve. Additionally it is differentiated between negative

and positive secondary control and peak and off-peak time, similar to the

energy exchange. The product length for secondary control reserve is one

week. Negative and positive tertiary control reserve is tendered in blocks of

four hours each (product length) on weekdays. This means that on Fridays, it

is procured for Sunday and Monday. The same principle applies to public

holidays. (50Hertz Transmission GmbH, Amprion GmbH, TransnetBW GmbH

et al., 2015)

10 https://www.regelleistung.net/ip/action/static/provider

Control reserve product
types

http://www.regelleistung.net/

46 | State of the discussion in energy economics

 Primary control
reserve

Secondary control
reserve

Tertiary control
reserve

Auction time Weekly
(10:00 on Tuesdays
for the next week)

Weekly
(10:00 on
Wednesdays for the
next week)

Daily, only on
weekdays
(10:00 for next day
and following
weekend or holidays)

Product delivery
time period

One calendar week
(Monday to Sunday)

Peak (Monday to
Friday from 8:00 till
20:00) or off-
peak(Monday to
Friday from 0:00 till
8:00 and 20:00 till
24:00 as well as
weekends and
national holidays from
0:00 till 24:00) of one
calendar week

4 h blocks (6 time
slices per day,
00:00-04:00,
04:00-08:00,
08:00-12:00,
12:00-16:00,
16:00-20:00,
20:00-00:00)

Product type Positive and negative
reserve in one product

Positive and negative
reserve separated

Positive and negative
reserve separated

Minimum bid size ≥ 1 MW symmetrical
positive and negative
reserve

≥ 5 MW ≥ 5 MW

Minimum bid
increment

1 MW 1 MW 1 MW

Payment scheme Capacity price (Pay-
as-Bid)

Capacity and energy
price (Pay-as-Bid)

Capacity and energy
price (Pay-as-Bid)

Number of
prequalified
providers (by
November
2015)11

19 33 44

Source: Own analysis based on (50Hertz Transmission GmbH, Amprion GmbH, TransnetBW GmbH et al., 2015)

Table 3-4: Control reserve product specifications and tender conditions

Providers of all three types of control reserve have to be able to deliver

control reserve according to the offered capacity over the entire product

length. Pooling is allowed within the control area between different

prequalified units. Units can be changed freely for every 15-minute interval

(FNN, 2009, pp. 13–14). The bids placed by the market participants have to

contain the amount of control reserve, the capacity price and the energy

price. The TSOs accept the bids with increasing capacity prices until the

required amount is reached (the award criterion). The capacity price is paid

11 50Hertz Transmission GmbH, Amprion GmbH, TenneT TSO GmbH, and TransnetBW GmbH (2015)

Pooling and Payment
scheme

State of the discussion in energy economics | 47

if the participant is awarded with the capacity. Control reserve units are

dispatched in increasing order of the energy price. Upon activation, the

energy price is paid to the market participant. Energy prices are only paid for

secondary and tertiary control reserve. All payments on the control reserve

market have the pay-as-bid principle applied, while the energy exchange

markets have the marginal price principles applied. Differences between the

two pricing methods can be seen in (Cramton, 2009; Guerci & Rastegar,

2013). (50Hertz Transmission GmbH, Amprion GmbH, TransnetBW GmbH et

al., 2015)

3.2.4.2 Requirements for market participation

The main requirement to access the control reserve market is the successful

completion of a prequalification process. The prequalification process allows

potential providers of control reserve to demonstrate their ability to operate

in the market and comply with all technical, financial and operational

requirements. This process usually takes no less than two months since it

involves the submission and review of all required prequalification

documents12. One important organisational requirement is the constant

availability of a contact person for the TSO during the provision of control

reserves. (50Hertz Transmission GmbH, Amprion GmbH, TransnetBW GmbH

et al., 2015)

For each technical unit (i.e. the individual units providing control reserve)

the potential provider of control reserve has to demonstrate technical

capabilities where the unit is tested using a model protocol which resembles

the dispatch of control reserve. Figure 3-11 shows the protocol adapted for

the negative tertiary control reserve. Model protocols for the other market

segments can be accessed on regelleistung.net (50Hertz Transmission GmbH

et al., 2014). This model protocol also explains how the market participant

12 All important documents regarding the prequalification process can be found regelleistung.net:
https://www.regelleistung.net/ext/static/prequalification

Prequalification process

Model protocol

48 | State of the discussion in energy economics

can prove the delivery of control reserve to the system for the TSO. (50Hertz

Transmission GmbH, Amprion GmbH, TransnetBW GmbH et al., 2015)

 Source: translated from (50Hertz Transmission GmbH et al., 2014)

Figure 3-11: Model protocol for the prequalification of a technical unit for negative
tertiary control eserve

All three types of control reserve can also be provided by pools of several

units. Pooling is permitted within one control area. Pooling outside the

control area is only permitted for secondary and tertiary control reserve if

the minimum bid size could not be reached otherwise. The providers have to

ensure that their offer is delivered when needed by the TSO. A very high

degree of availability is required for the entire product length. The

framework contracts require 100 % availability (50Hertz Transmission

GmbH, Amprion GmbH, TenneT TSO GmbH, & TransnetBW GmbH, 2015a,

2015b, 2015c) although this will not be possible with a technical system. The

market participant has to provide backup capacity. This capacity backs up

either 20 % of the tendered capacity or the loss of the two largest units in the

pool (n-2 backup). (50Hertz Transmission GmbH, Amprion GmbH,

TransnetBW GmbH et al., 2015)

 In the case that the provider is not able to fulfil this requirement the TSO is

allowed to cancel payments for missing capacity (lack of availability) or

energy (lack of energy during dispatch). The market participant is held liable

for any additional costs for appropriate substitution caused by its action.

Actual valueSet point

Po
w

er
 o

ut
pu

t i
n

M
W

0

20

10

15

5

Time

Activation
≤ 15 Min

Activation
≤ 15 Min

Dispatch
= 15 Min

Dispatch
= 15 Min

Recovery
= 15 Min

Deactivation
≤ 15 Min

Deactivation
≤ 15 Min

0 15 30 45 60 75 90 105-15

Negative tertiary control reserve

Operational issues

Procedure in the case
on non-fulfilment

State of the discussion in energy economics | 49

Continuous breaches of contract within one year will allow the TSO to charge

the market participant a contractual penalty (50Hertz Transmission GmbH et

al., 2015a, 2015b, 2015c). Continuous non-compliance may result in the

withdrawal of the prequalification. (50Hertz Transmission GmbH, Amprion

GmbH, TransnetBW GmbH et al., 2015)

Providers of primary and tertiary control reserve have to submit online data

and additional information to the TSO about the status of units providing

control reserve. Providers of secondary control reserve have additional and

more demanding requirements. The communication infrastructure needs to

feature e.g. redundant communication channels and quick control cycles

(maximum four seconds). Detailed requirements are available at

regelleistung.net (50Hertz Transmission GmbH, Amprion GmbH, TenneT TSO

GmbH, & TransnetBW GmbH).

3.2.4.3 Development of control reserve prices

The prices of all primary, secondary and tertiary control reserve products are

presented in the following graphs using a common price unit. For the

capacity prices, EUR/MW/h is used. For the energy prices, EUR/MWh is used.

Prices vary significantly between the different control reserve types and

product delivery time periods. Since the primary control reserve market will

not be focussed on in the thesis, market prices are only displayed for

secondary and tertiary control reserve markets.

The capacity prices of the secondary control reserve market are shown in

Figure 3-12. The top half illustrates the capacity prices for the negative

secondary market whereas the lower half is for the positive reserve market.

The figure shows the capacity-weighted average capacity prices (blue line)

and the complete price range of accepted bids (shades of grey). This is

necessary to account for the bay-as-bid pricing mechanism. The lighter grey

shows the entire price range, the medium grey area gives the price range

between the 5 % and 95 % percentile, and the darkest area is for the 25 % to

75 % percentile. For better readability, the graphs only display a limited

range of data. The highest capacity price observed in the negative secondary

Communication
prerequisites

Control reserve market
prices

Capacity prices in the
secondary control
reserve market

50 | State of the discussion in energy economics

control reserve market was 1969 EUR/MW/h during Christmas 2012. The

highest capacity price observed in the positive secondary market was

470 EUR/MW/h in spring 2011. The presented prices are one-week moving

average prices for peak and off-peak products simultaneously.

 Source: Own analysis based on (50Hertz Transmission GmbH, Amprion GmbH, TenneT TSO GmbH, & TransnetBW GmbH, 2015d)

Figure 3-12: Weekly average capacity prices of the secondary control reserve market

The energy prices are shown in a similar fashion, extended by the marginal

price of the dispatch as an orange line. The prices are displayed for a seven-

day average. The dispatch prices are based on a 15-minute average dispatch

Average capacity prices for negative secondary control reserve

2009 2010 2011 2012 2013 2014 2015
0

50

100

150

200

250

300

Year

Ca
pa

ci
ty

 p
ri

ce
 in

 E
U

R/
M

W
/h

Complete price range

5 % to 95 % percentile

25 % to 75 % percentile

Capacity weighted average

Average capacity prices for positive secondary control reserve

2009 2010 2011 2012 2013 2014 2015
0

100

200

300

400

500

Year

Ca
pa

ci
ty

 p
ri

ce
 in

 E
U

R/
M

W
/h

Energy prices in the
secondary control
reserve market

State of the discussion in energy economics | 51

of secondary control reserve, rather than the four-second data. Higher

resolution data would lead to higher marginal prices, even though they

would only be reached for a short time and thus would not cause high costs

due to the low energy contents. Maximum energy prices reached

6666 EUR/MWh in the negative and 7995 EUR/MWh in the positive

secondary market.

 Source: Own analysis based on (50Hertz Transmission GmbH et al., 2015d)

Figure 3-13: Weekly average energy prices of the secondary control reserve market and marginal price of
dispatch

Average energy prices for negative secondary control reserve

2009 2010 2011 2012 2013 2014 2015
0

1000

2000

3000

4000

5000

6000

Year

En
er

gy
 p

ri
ce

 in
 E

U
R/

M
W

h

Complete price range

5 % to 95 % percentile

25 % to 75 % percentile

Marginal dispatch price

Capacity weighted average

Average energy prices for positive secondary control reserve

2009 2010 2011 2012 2013 2014 2015
0

1000

2000

3000

4000

5000

6000

Year

En
er

gy
 p

ri
ce

 in
 E

U
R/

M
W

h

52 | State of the discussion in energy economics

The capacity prices of the tertiary control reserve market are illustrated in

Figure 3-14, although the capacity price does reach higher prices than shown.

The highest capacity price in the tertiary control reserve was

124 EUR/MW/h reached in December 2010. In the positive market prices

reached 158 EUR/MW/h. This seemed to be a one-off event since the next

highest price was 20 EUR/MW/h.

 Source: Own analysis based on (50Hertz Transmission GmbH et al., 2015d)

Figure 3-14: Weekly average capacity prices of the tertiary control reserve market

Average capacity prices for negative tertiary control reserve

2009 2010 2011 2012 2013 2014 2015
0

5

10

15

20

25

30

35

40

Year

Ca
pa

ci
ty

 p
ri

ce
 in

 E
U

R/
M

W
/h

Complete price range

5 % to 95 % percentile

25 % to 75 % percentile

Capacity weighted average

Average capacity prices for positive tertiary control reserve

2009 2010 2011 2012 2013 2014 2015
0

2

4

6

8

10

Year

Ca
pa

ci
ty

 p
ri

ce
 in

 E
U

R/
M

W
/h

Capacity prices in the
secondary control
reserve market

State of the discussion in energy economics | 53

The energy prices in the tertiary control reserve market are shown in

Figure 3-15. The prices are displayed for a seven-day average. Maximum

energy prices soared up to 202,000 EUR/MWh several times in the negative

control reserve market, while in the positive tertiary market

93,882 EUR/MWh was reached in a single event. By the end of 2014 a

maximum price of 40,000 EUR/MWh was reached continuously as maximum

price.

 Source: Own analysis based on (50Hertz Transmission GmbH et al., 2015d)

Figure 3-15: Weekly average energy prices of the tertiary control reserve market and marginal price of
dispatch

Average energy prices for negative tertiary control reserve

2009 2010 2011 2012 2013 2014 2015
0

2000

4000

6000

8000

10000

12000

Year

En
er

gy
 p

ri
ce

 in
 E

U
R/

M
W

h

Complete price range

5 % to 95 % percentile

25 % to 75 % percentile

Marginal dispatch price

Capacity weighted average

Average energy prices for positive tertiary control reserve

2009 2010 2011 2012 2013 2014 2015
0

2000

4000

6000

8000

10000

12000

Year

En
er

gy
 p

ri
ce

 in
 E

U
R/

M
W

h

Energy prices in the
tertiary control reserve
market

54 | State of the discussion in energy economics

The previous figures depicting the capacity and energy prices in the

secondary and tertiary control reserve market revealed a high volatility in

prices. If price patterns were explicable with fundamental analysis tools, they

would follow developments on the spot markets. The sudden and high price

peaks that slowly fade out imply that the market participants perform

strategic bidding. The competition in the market has led to decreasing

capacity prices in all market segments whilst very high increases in the

energy prices can be observed. This increase in the spread of the complete

price range in 2013 as well as the increase of the average price can be

observed in the negative secondary and tertiary markets. This is mainly due

to the opening of the control reserve market in 2011 by the regulator

(Bundesnetzagentur, 2011e) and the subsequent introduction of market

participants with different bidding strategies. Since the energy prices are not

part of the award criterion, they can be set to any price, which could

encourage strategic bidding.

3.2.5 Renewables in the control reserve markets

Market prices in the control reserve are highly influenced by its framework

conditions. The price development is highly volatile as it can be seen in

chapter 3.2.4.2. The pooling of virtual power plants (VPP) as well as the 2012

amendment of the EEG introduced the market premium model for RES

generators. Through this direct marketing scheme, the market was opened

for RES generators, including the control reserve markets. This has led to

decreasing prices and increased competition, especially in the negative

tertiary reserve market. Additionally the Federal Network Agency facilitated

easier market participation by reducing tender periods and product lengths

(Jansen, 2014; Jansen, Schneider, Siefert, & Widdel, 2014; Jansen &

Speckmann, 2013a; Jansen, Speckmann, & Baier, 2012, Jansen, Speckmann,

Harpe, & Hahler, 2013, 2013; Jansen, Speckmann, Schneider, & Siefert, 2013;

Jansen, Speckmann, & Schwinn, 2012; Rohrig et al., 2013).

Conclusion on market
prices

Changing market
environment and
transformation process
for the integration of
fluctuating RES

State of the discussion in energy economics | 55

The regulator is determined to decrease the necessary must-run capacities

due to control reserve market design issues which currently account for up to

25 GW of must-run capacity, as stated in FGH, Consentec & IAEW (2012, p. 1)

or 19.9 GW as shown in Grünwald, Ragwitz, Sensfuß and Winkler (2015,

p. 107). Much more recently the Federal Ministry of Economic Affairs and

Energy (BMWi) has issued the Green Paper "An Electricity Market for

Germany's Energy Transition" in October 2014 (Bundesministerium für

Wirtschaft und Energie, 2014) to change the market for electricity. This will

most likely lead to changes in the electricity market design demanding more

flexibility from the market participants. Control reserve markets are one of

many aspects in the subsequent white paper published in July 2015

(Bundesministerium für Wirtschaft und Energie, 2015b). In this context, it is

necessary that fluctuating RES can provide ancillary services.

According to a survey by the industry magazine Energie&Management

(English: Energy and management) (Energie&Management, 2015b) more

than 45 direct marketers are active in bringing RES to the energy markets

under the market premium model in the EEG. In January 2015 more than

45,000 MW were marketed in this scheme, including wind farms,

photovoltaic systems, biomass plants and hydro power plants. All data

provided is by the companies and may show inconsistencies when added up.

Contracted capacities are particularly likely to be exaggerated. In total

approximately 1,690 MW of control reserve from renewable energy sources

is available. Due to the lack of prequalified units of fluctuating RES, the

capacities are provided by biomass plants and hydro power plants only.

Figure 3-16 shows the portfolios of those direct marketers that have biomass

and/or hydro power plants and that participate in the control reserve

market. (Energie&Management, 2015a)

Reducing must-run
capacity

Current situation of
controllable RES in the
control reserve market

56 | State of the discussion in energy economics

 Source: Own analysis based on (Energie&Management, 2015a)

Figure 3-16: Selection of portfolios with direct marketing of RES and prequalified units
for the provision of control reserve

A previous study (Lange et al., 2014, p. 13) claims that approximately

1,050 MW of RES are prequalified for participation in the control reserve

market. Furthermore, the authors state that 230 MW of this capacity is from

hydro power plants. This is in line with the numbers from (Ener-

gie&Management, 2015a) where 298 MW of hydro power plants were in

direct marketing. It can be safely assumed that most of the capacity is able to

provide control reserve. Taking this into account and using the updated data

from (Energie&Management, 2015a) the total number of biomass plants

delivering control reserve is approximately 1460 MW. This would account for

36 % of all directly marketed biomass plants. Lange et al. assume that

20-30 % of the capacity is prequalified as secondary control reserve; the rest

is prequalified as tertiary control reserve only. This finding can be confirmed

by looking at Schäfer-Stradowsky et al. (Schäfer-Stradowsky et al., 2014,

pp. 19–20). From the authors’ findings, one can conclude that the ratio of

998 1120
0

100

200

300

400

500

600

700

800

Ca
pa

ci
ty

 in
 d

ire
ct

 m
ar

ke
tin

g
in

 M
W

Biomass Hydro Control reserve

Distribution of units to
different technologies
and markets

State of the discussion in energy economics | 57

positive to negative prequalification is 5 % whereas the ratio of secondary to

tertiary control reserve is 42 %.

Schäfer-Stradowsky et al. (Schäfer-Stradowsky et al., 2014) have surveyed

the participation of controllable RES in the control reserve market. Based on

the responses to the questionnaire the authors state that 378 MW (960 units)

of Biomass plants are prequalified. The author states that due to a lack of

responses to the questionnaire the actual number is likely to be higher,

although the returned questionnaires have led the author to state that

additional capacity will be prequalified in the near future. This would

increase the prequalified capacity to 1,150 MW. The sources in

Lange et al. (2014), Schäfer-Stradowsky et al. (2014) and Ener-

gie&Management (2015a) state different numbers for the capacity. It is

apparent that the market is dynamic and has seen continual significant

growth over the past. It is also not easily identifiable which contribution can

be allocated to individual market players.

The German green energy provider LichtBlick SE has developed a system to

deliver secondary control reserve with a large number of micro-CHPs, called

“Schwarmstrom” (English: swarm electricity). In this concept, more than 400

home-installed CHPs are connected through an ICT solution (information and

communications technology). The first delivery of control reserve was

performed in April 2015. For prequalification LichtBlick did not follow the

standard procedure of prequalifying each individual technical unit.

(LichtBlick SE, 2014)

Together with the TSOs new approaches were developed. Prequalification

was granted based on the type of the technical unit, also called type

prequalification. Previously, technical units were admitted to the market

individually, since they were different each time. In order to achieve high

levels of reliability the pool concept is examined and tested thoroughly.

Communication links to the individual micro-CHPs are realized using GSM

connections (GPRS) (LichtBlick SE, 2014, p. 20). This is also a novelty in the

area of secondary control reserve provision. (LichtBlick SE, 2014, 2015)

Market structure
cannot be analysed
precisely

LichtBlick delivers
control reserve with a
pool of micro-CHP

Type base
prequalification

58 | State of the discussion in energy economics

Statkraft Markets GmbH delivered negative tertiary control reserve with the

German wind farm Dornum in January 2015 after accomplishing

prequalification. The prequalified capacity is 5 MW, the minimum bid size.

The proof method for the delivery was the same as for any other unit in the

market, generating energy losses for the wind farms. Statements on the level

of reliability have not been issued. (Statkraft Markets GmbH, 2015)

Towards the end of 2015 the German TSOs announced the allowance of

prequalification of wind turbines in the negative tertiary control reserve

market within a pilot project (50Hertz Transmission GmbH, Amprion,

TenneT TSO GmbH, & TransnetBW GmbH, 2015b). Wind farms will be

prequalified using the available active power proof mechanism (see

chapter 3.3.3.1). In addition to this, the BNetzA has started a consultation

process on possible market changes in the secondary and tertiary control

reserve markets (Bundesnetzagentur, 2015). The proposed changes envision

the introduction of “energy-only” short-term balancing markets with a gate

closure time of 25 minutes before physical delivery. The secondary control

reserve market will have a product length of four hours or less and daily

tendering, according to the discussed changes. For the tertiary control

reserve market, daily tendering is also proposed.

3.3 Current state of research

This chapter will give an overview of the current state of the research. This

mainly includes the delivery of control reserve and the market design as well

the creation of probabilistic forecast for wind power plants and photovoltaic

systems.

3.3.1 Relevant literature on the provision of control reserve to the control
reserve markets by RES generators

The doctoral thesis of Gesino (2011) explains the fundamentals of control

reserve provision by wind farms. Gesino describes a methodology to

calculate wind power forecasts at different levels of reliability. This approach

Statkraft delivers
negative tertiary
control reserve with
wind farms

Upcoming market
changes

Introduction

Thesis Gesino on
control reserve from
wind farms

State of the discussion in energy economics | 59

takes into account the forecast errors of wind power forecasts in order to

deduct a defined amount from the forecast (Gesino, 2011, pp. 78–80). This

increases the level of reliability of a given forecast. Gesino proves in his thesis

that wind farms can be regulated in a controlled manner, following a given

set point (Gesino, 2011, pp. 99–119).

The doctoral thesis of Speckmann (2016) deals with the potentials for the

provision of control reserve from wind farms. In this thesis, potentials for the

delivery of control reserve have been presented. The results on potentials

were created by Malte Jansen in a joint research project with the REBal

model, presented in this doctoral thesis. The thesis describes how

Malte Jansen calculated the potentials for the delivery of control reserve with

the help of a kernel density estimator. The kernel density estimator proves to

be a more precise tool to create probabilistic forecasts for fluctuating RES

than the methodology presented by Gesino (Speckmann, 2016, pp. 65–66). A

probabilistic forecast has at least a set of two values. One value is the

predicted power and the other one is the probability that which the predicted

power will be reached. Speckmann also presents a new method to prove the

delivery of control reserve using the available active signal of a wind farm

rather than the announced schedule (Speckmann, 2016, pp. 67–75).

The doctoral thesis of Braun (2009) investigated the technical and economic

potentials of controllable distributed generators under a FIT scheme

delivering control reserve. Braun has focussed on frequency control (i.e.

control reserve) and voltage control. For this thesis, the economic potentials

are of interest. Using a cost-benefit analysis, he concludes on the issues of

profitability that controllable distributed generators are most likely to

operate in negative secondary and negative tertiary control reserve markets

(Braun, 2009, p. 61). In the paper of Frunt, Kechroud, Kling and Myrzik

(2009) the potential of different decentralized generators (DG) in the control

reserve market is investigated. They state that participation is unprofitable

for generators receiving a FIT. They conclude with suggestions for regulatory

changes to open the market for DG (Frunt et al., 2009, p. 6). Kapetanovic,

Buchholz, Buchholz and Buehner (2008) come to the same finding and

Thesis Speckmann on
potentials for the
delivery of control
reserve by wind farms

Doctoral thesis of
Braun, Papers by Frunt
et al and Kapetanovic
et al. on technical and
economic potentials for
the delivery of ancillary
services by controllable
RES generators

60 | State of the discussion in energy economics

emphasize the effects that the European market integration will have an

influence on the potentials of DG (Kapetanovic et al., 2008, p. 458).

In Pinson (2006) a methodology is presented to generate accurate forecasts

of wind generation. It is shown that forecasts can be accompanied with

information on their uncertainty. The methodologies laid out in this thesis

allow the application to ancillary services (Pinson, 2006, p. 154). In Pinson,

Chevallier and Kariniotakis (2007) short term wind power forecasts are used

for trading in the Dutch electricity spot market using probabilistic forecasts,

with confidence intervals ranging from 10 % to 90 % (Pinson et al., 2007,

p. 6).

A research paper by Papaefthymiou et al. (2015) presents the potential

income of offshore wind farms in the German control reserve markets. The

authors implement a methodology that is similar to the methodology in this

thesis. They conclude that offshore wind farms are able to generate

additional income in the negative control reserve market and will be able to

do so in the future (Papaefthymiou et al., 2015, p. 5).

In Kirby, Milligan and Ela (2010) the economics of the provision of control

reserve from wind farms were assessed for different control areas in the

United States. Following the market structure, the authors use an

opportunity cost approach for market participation. As a consequence of this

approach the wind turbines compete in the market with conventional

generators. The authors state that the provision from wind is an economical

option for some hours of the year and that market rules are a barrier to the

provision (Kirby et al., 2010, p. 1). They also state that wind power forecasts

have to be developed further (Kirby et al., 2010, p. 8), which is a challenge

for researchers according to Yuen, Oudalov and Timbus (2011).

In Andersen, Strom, Tang, Davidsen and Dupont (2012) the participation

in the eastern Denmark (Market DK2) negative manual activation reserve

market is described for a 21 MW wind farm. For the offer calculation,

deterministic forecasts were used. The Danish manual activation reserve

market has a lead-time of one hour and, unlike the German reserve market, is

Paper Pinson et al. on
probabilistic wind
power forecasting

Paper Papaefthymiou
on additional income
for offshore wind in
negative tertiary
control reserve market

Paper Kirby et al. on
economics of control
reserve provision in
Texas

Paper Andersen et al.
on control reserve
provision from wind
farms in Eastern
Denmark

State of the discussion in energy economics | 61

an energy only market. It was shown that under the Danish conditions wind

farms could provide balancing energy reliably and economically (Andersen et

al., 2012, p. 26).

Saiz-Marin, Garcia-Gonzalez, Barquin and Lobato (2012) and Saiz-Marin,

Lobato and Linares (2012) describe the creation of offers where a fixed

share of the forecast is subtracted, determined by risk assessment. The

offered amount is set to 10 % of the wind power forecast (Saiz-Marin, Garcia-

Gonzalez et al., 2012, p. 870). The participation in the control reserve market

is also assessed. The concept presented for the provision matches the

concept used for the Spanish demonstration in the project TWENTIES.

A dispatch simulation by Tuohy, Brooks, Ela and Kirby (2012) shows the

opportunities for the provision of control reserve by wind farms in a 2020

scenario. The authors state that wind farms should not provide more than

20 % of the procured reserve, as the economic gain at this value appears

optimal (Tuohy et al., 2012, p. 5).

In a study by Consentec, r2b and FGH (2011) it is shown that fluctuating

RES have a high potential for the provision of control reserve, especially at

times when conventional generation has a very low production (Consentec et

al., 2011, pp. 105–106). The participation of fluctuating RES however is

hindered by current market regulations in Germany. Consentec et al. also

state that for the provision of control reserve conventional generation that

otherwise would be disconnected has to stay connected to the grid

(Consentec et al., 2011, p. 105). The capacity of these must-run power plants

is estimated to be between 8 GW and 25 GW (FGH et al., 2012, p. 1).

A different study by Consentec (2011) showed an approach to calculate the

impact of dispatchable renewable energies on the control reserve market

(Consentec, 2011, p. 21). This approach uses a hindcasting approach to

calculate the effects on the market.

Zhang, Sun and Cheng (2013) have investigated the possible participation of

wind farms in regulation markets in California. Regulation markets are

ancillary services markets similar to control reserve markets in Germany.

Paper Saiz-Marin et al.
on the use of wind
farms for ancillary
services in the
TWENTIES project

Paper Tuohy et al. on
reserve provision in a
2020 scenario

Policy study on the
future of control
reserve and
identification of must-
run capacity through
inefficient market
design

Policy study on
controllable RES in the
market

Paper Zhang et al. on
the selection of the
right market

62 | State of the discussion in energy economics

Zhang et al. incorporate a stochastic approach for the wind power forecast

and the expected market prices. The wind forecast errors were generated

using an auto-regressive moving average (ARMA) model for wind speeds and

a power curve. It was concluded that participation in down-regulation is

more beneficial than up-regulation (Zhang et al., 2013, p. 886). The authors

also state that power markets and ancillary service markets are different in

Europe to the ones in the United States and propose to use different bidding

strategies for these markets (Zhang et al., 2013, p. 894).

Morales, Conejo and Perez-Ruiz (2010) have developed methodology to

bid wind energy to the MIBEL spot market and reduce the risk of price

volatilities through an auto-regressive model. Zugno, Pinson and Jónsson

(2010) presented a bidding strategy for wind energy in the NordPool spot

market. Both author teams used probabilistic forecasts of wind farms for

their optimisation strategies.

Previous publications on the provision of control reserve were made by the

author of this doctoral thesis on several occasions (e.g. (Brauns et al., 2014;

Hennig et al., 2014; Jansen, 2014, Jansen & Speckmann, 2013a, 2013b; Jansen,

Speckmann, Harpe et al., 2013; Rohrig et al., 2013)). These publications

include the participation of wind farms and PV systems in the negative

control reserve markets. The modelling approach in this thesis was

developed in those papers. The model has also been used to assess the

impact of controllable generation. A description of the publications can be

found at the end of this thesis.

The following table classifies the aforementioned approaches according to

their topics. It can be seen whether a source covers wind energy or not,

whether it is addressing control reserve, market participation, stochastic

bidding, possible income for the generators and the impact on the market.

Papers Morales et al.
and Zugno et al. on
minimizing price risks
for producers

Previous publications of
the same author of this
doctoral thesis

Classification of
approaches in the
literature

State of the discussion in energy economics | 63

Author /

Highlights

W
in

d
/

PV

/O
th

er
s

Co
nt

ro
l

re
se

rv
e

M
ar

ke
t

pa
rt

ic
ip

at
io

n

St
oc

ha
st

ic

In
co

m
e

po
te

nt
ia

ls

Co
st

 s
av

in
g

po
te

nt
ia

ls

Gesino (2011): Calculation of wind power forecasts at different
levels of reliability. Wind farms can be regulated, following a set point Wind Yes No Yes Yes No

Speckmann (2016): Potentials for the provision of control reserve
from wind farms. New method to prove the delivery of control
reserve using the available power signal

Wind Yes No Yes Yes No

Braun (2009): Technical and economical potentials of controllable
distributed generators

Wind,
PV &

others
Yes Yes No Yes No

Frunt, Kechroud, Kling, and Myrzik (2009): Potentials of different
decentralized generators in the control reserve market, participation
unprofitable with FIT

Wind,
PV &

others
Yes Yes No Yes No

Kapetanovic, Buchholz, Buchholz, and Buehner (2008):
Participation unprofitable for generators receiving a FIT; European
market integration will have an influence on the potentials of DG

Others Yes Yes No Yes No

Pinson (2006): Generate accurate forecasts of wind Wind No No Yes No No

Pinson, Chevallier, and Kariniotakis (2007): Short term
probabilistic wind power forecasts are used for trading in the Dutch
electricity spot market

Wind No Yes Yes No No

Papaefthymiou et al. (2015): Offshore wind farms in the German
control reserve markets are able to generate additional income in the
negative control reserve market

Wind Yes Yes Yes Yes Yes

Kirby, Milligan, and Ela (2010): Economics of the of control reserve
provision from wind farms in the US show that provision is economic
in some hours

Wind Yes Yes Yes Yes Yes

Andersen, Strom, Tang, Davidsen, and Dupont (2012):
Participation of wind in the eastern Denmark negative manual
activation reserve market is economically viable in the Danish market

Wind Yes Yes No Yes No

Saiz-Marin, Garcia-Gonzalez, Barquin, and Lobato (2012):
Participation on the control reserve market is assessed with offers
that have a fixed share subtracted from the forecast

Wind Yes Yes No Yes No

Tuohy, Brooks, Ela, and Kirby (2012): Opportunities for the
provision of control reserve by wind farms in a 2020 scenario Wind Yes Yes No Yes Yes

Consentec, r2b, and FGH (2011): Fluctuating RES have a high
potential for the provision of control reserve Other Yes No No No No

Consentec (2011): Impact of dispatchable renewable energies on
the control reserve market with hindcasting approach Other Yes Yes No No No

Zhang, Sun, and Cheng (2013): Participation of wind farms in
regulation markets in California, using a stochastic approach, is more
beneficial for down-regulation

Wind Yes Yes Yes Yes Yes

Morales, Conejo, and Perez-Ruiz (2010): Stochastic methodology
to bid wind energy to the MIBEL spot market Wind Yes Yes Yes Yes Yes

Zugno, Pinson, and Jónsson (2010): Bidding strategy for wind
energy in NordPool spot market Use probabilistic forecasts of wind
farms for their optimisation strategies

Wind No Yes Yes Yes No

Source: Own analysis based on (Andersen et al., 2012; Braun, 2009; Consentec, 2011; Consentec et al., 2011; Frunt et al., 2009; Gesino, 2011;
Kapetanovic et al., 2008; Kirby et al., 2010; Morales et al., 2010; Papaefthymiou et al., 2015; Pinson, 2006; Pinson et al., 2007; Saiz-Marin, Garcia-

Gonzalez et al., 2012; Speckmann, 2016; Tuohy et al., 2012; Zhang et al., 2013; Zugno et al., 2010)

Table 3-5: Classification of the different approaches by their addressed topics

64 | State of the discussion in energy economics

3.3.2 Identification of the challenges of bringing generators to the control
reserve market

Spitalny, Unger and Myrzik (2012) show how control reserve can be

delivered from run-off hydro power plants in the German control reserve

market. The authors show how the available reserve could be brought to the

market and how run-off hydro could be supplemented with wind farms and

PV systems. They state that the forecast quality of fluctuating RES is

insufficient to serve the entire product length (Spitalny et al., 2012, p. 5). It

was also concluded that the delivery of positive control reserve (primary,

secondary and tertiary) is economically and ecologically inefficient, also due

to the FIT paid to these units (Spitalny et al., 2012, p. 5). The current price

structure would prohibit beneficial market participation. In a study by

Sterner et al. (2010) the relevance of pumped hydro and other storages are

investigated. The impact on the balancing demand is shown. Pumped hydro

power plants already provide control reserve to the market (Sterner et al.,

2010, pp. 104–105).

The study dena II (dena et al., 2010) investigated the impact of increasing

RES on the power system in detail. The study identified an increasing

demand of control reserve for 2020 (dena et al., 2010, p. 19) and also

assessed how wind farms could provide control reserve. These results agree

with e.g. Dany (2001, p. 6). In the overview paper of Hamon and Söder

(2011) the impact of wind farms on balancing needs is investigated (Hamon

& Söder, 2011, pp. 898–899). The paper shows how they can contribute and

provide primary and secondary control reserve (Hamon & Söder, 2011,

pp. 899–900).

Ehsani, Ranjbar and Fotuhi-Firuzabad (2009) introduce the concept of risk

management for the provision of control reserve and spot market energy

using co-optimization. They compare deterministic risk management

(n-1 criterion) with probabilistic approaches (risk indexing). The authors

have shown how the social welfare can be maximized using a market model

(Ehsani et al., 2009, p. 106). The paper also mentions the application of game

theory to bidding behaviour (Ehsani et al., 2009, p. 105).

Control reserve by
hydro power plants

Increasing balancing
needs and impact of
wind farms

Risk management and
co-optimizing for
control reserve markets

State of the discussion in energy economics | 65

Ketterer (2014, p. 279) investigated the relationship between wind power

generation and electricity price behaviour in Germany. She concludes that

the introduction of wind power decreases prices due to the merit-order effect

(Ketterer, 2014). The merit-order effect was described by Sensfuß, Ragwitz

and Genoese (2007). Impacts on the technical parameters of conventional

power plants is given in Gottelt (2009). Gottelt concludes that retrofit of

power plants is necessary (Gottelt et al., 2009, pp. 198–199). Ketterer shows

that regulatory changes can have a significant impact on the electricity price

by incentivizing a desired behaviour of the market participants (Ketterer,

2014, p. 279). The findings are confirmed by Forrest et al. (Forrest & MacGill,

2013, p. 130) for the Australian electricity market. Wassermann, Reeg and

Nienhaus (2015) summarize the current development in Germany and

indicate regulatory changes. Nicolosi (2010) has indicated that the increase

in fluctuating RES requires more flexibility in the market. It is assumed that

this could be provided partially by fluctuating RES with an adequate change

in market design (Nicolosi, 2010, p. 7267).

Two papers by Rebours, Kirschen, Trotignon and Rossignol (2007a; 2007b)

investigate the technical and economic features of control reserve provision

in eleven different countries worldwide, including their costs. In Rivero,

Barquin and Rouco (2011) different European reserve markets are

compared. A systematic overview of the different schemes presented in

Rivero et al. (2011) concludes that secondary control reserve is handled

similarly throughout Europe whereas tertiary control reserve is interpreted

and used differently in each country (Rivero et al., 2011, p. 338). This can be

confirmed with (ENTSO-E, 2013a). Market design is one key factor for a

successful market integration of fluctuating RES. This is one of the reasons

why results for one country cannot be applied to another country without

further work.

The doctoral thesis of Waver (Waver, 2007) investigates the German market

design. The dependency between the spot market and the control reserve

market is assessed. Growitsch, Rammerstorfer and Weber have investigated

the dependencies between the spot market and tertiary control reserve

market. The authors were able to show that the impact of spot prices on

Impact of fluctuating
RES on the electricity
market

Comparison of different
market design for
reserve provision

Dependency between
spot market and
control reserve market

66 | State of the discussion in energy economics

positive tertiary control reserves is higher than on the negative tertiary

control reserve. They conclude that the market for positive tertiary control

reserves serves as an alternative market for the spot market, which was not

directly observable for the negative control reserve market (Growitsch et al.,

p. 5). Weber (2010) investigates the dependencies between intraday

markets, control reserve markets and the balancing settlement mechanism,

concluding that additional research is necessary to formulate the most

efficient market design (Weber, 2010, p. 3163).

The thesis of Kurscheid (Kurscheid, 2009) has investigated the possibilities

of positive tertiary control reserve through decentralized micro-CHPs. The

author investigated the technical and economic potentials and used a

stochastic approach to determine the dispatch probability.

A comprehensive study by Schuller and Rieger (2013) shows the economic

potential of electric vehicles participating in the control reserve market

based on a methodology by Kempton and Tomić (2005). Schuller and Rieger

apply their opportunity cost model to the different control reserve markets.

They conclude that it is most beneficial to participate in the markets for

negative control reserve (secondary and tertiary) (Schuller & Rieger, 2013,

p. 192). With a number of adaptations, the approach can be used for wind

farms and PV systems.

In their overview paper Aho et al. (2012) emphasize the importance of wind

turbine control that enables the wind farms to deliver frequency support

services and operate reliably at a given power set-point. The authors also

state the importance of establishing an ancillary market for services from

wind farms.

The doctoral thesis of Al-Awaad (2009) investigates the delivery of ancillary

services by wind farms. This publication includes a short economic

evaluation from the wind farm’s as well as from the TSOs point of view.

Al-Awaad states that the participation of wind turbines will not increase the

costs for the TSO since wind farms will only provide reserves if they are

Stochastic dispatch
probability

Economics of electric
vehicles providing
control reserve

Importance of wind
farms in the reserve
market

Economic impact of
wind farms in the
control reserve market
is positive

State of the discussion in energy economics | 67

cheaper than the existing units in the market (Al-Awaad, 2009, p. 81). The

approach does not include the uncertainty of the wind power forecast.

Almeida and Lopes (2007) have also investigated the delivery of control

reserve by wind turbines. They focused on the double-fed induction

generator (DFIG) technology of wind turbines. The authors describe how a

wind turbine can provide a symmetrical reserve band which is controlled by

the grid frequency. Anaya-Lara, Hughes, Jenkins and Strbac (2006) have

presented a methodology to use the rotors kinetic energy to provide

frequency support in the form of virtual inertia (inertial response). This

finding is supported in the paper of Morren, Haan, Kling and Ferreira (2006,

p. 434), Bevrani, Ghosh and Ledwich (2010, p. 453) and Bhatt, Roy and

Ghoshal (2011). Chowdhury and Ma (2008) show that inertial response and

pitch control can be used to provide frequency control services. The same

approach is used by Erlich and Wilch (2010), expanding it by adding the

possibility to increase the rotor speed first and let it discharge later. All the

methods are tested in simulations. Ping-Kwan Keung, Pei Li, Banakar and

Boon Teck Ooi (2009, p. 286) assess the performance of inertial response on

the system level. They conclude that wind turbines can potentially fully

replace the inertia provided by conventional generation today. Margaris,

Papathanassiou, Hatziargyriou, Hansen and Sørensen (2012, p. 198) show

that wind farms are technically capable of providing inertia (see also

Figure 3-8) and primary control reserve. The authors quantified the expected

benefits and costs for both options for different wind turbine technologies.

Okou, Akhri, Beguenane and Tarbouchi (2012) have developed a control

algorithm for a PV system that is able to provide frequency (i.e. primary

control reserve) and voltage control. Their findings show that the PV system

is technically capable of behaving like a synchronous generator for the

investigated time frame (Okou et al., 2012, p. 5).

In a diploma thesis by Schaich (2010) the provision of negative tertiary

control reserve is investigated using stochastic approaches. For the forecast

creation Schaich follows the methodology from Pinson (2006). Schaich also

calculates the possible additional income for the wind farms using a 300 MW

wind farm as an example. For the calculation, he uses the average weighted

Proven technical
capabilities of wind
farms and PV systems
to provide frequency
control

Provision of negative
tertiary control reserve
using probabilistic
forecasts

68 | State of the discussion in energy economics

capacity price. The diploma thesis by Schwinn (2011) uses probabilistic

forecasts to calculate possible contributions from wind farms and PV

systems. The forecast method used is called quantile regression. Schwinn

used lower intervals for confidence intervals of up to 99.9 % (Schwinn, 2011,

p. 53).

In Ravnaas, Farahmand and Doorman (2010) the incentives for strategic

bidding of wind farms within different balancing settlement pricing

mechanisms are investigated. Ravnaas et al. conclude that a one-price system

(as implemented in Germany) allows the creation of additional revenue by

willingly deviating from the schedule when the bids for the market are

created (Ravnaas et al., 2010, p. 35). With a two-price system (as in Norway

and Denmark) no additional revenue could be generated. These results

concur with the findings in the master thesis of Jansen (2011, pp. 78–79).

A methodology to proof the delivery of control reserve is presented in

Speckmann and Baier (2011, p. 2) and further developed in Brauns et al.

(2014, pp. 75–81). The implementation of the new proof method requires

obtaining the value for the available active power of the wind farm, which is

the maximum possible feed-in under current meteorological conditions. In

Eisen, Sørensen, Donovan and Hansen (2007) a wake model of a wind farm

was used to correct the errors that were previously observed during

curtailment. Ramakrishnan Kirshna (USA 2012/0078518 A1, 2009) has

applied to patent the estimation of the available active power in the US using

the power output of the turbine, the current rotor speed and the blade pitch

angle. Schneider, Kaminski, Siefert and Speckmann (2013) presented a

method using high resolution three-second data for the delivery of secondary

frequency control. The approach with the least error is the one where the

turbines’ anemometers are used (Schneider, Kaminski et al., 2013).

In the doctoral thesis of Glotzbach (2010) existing approaches for the

creation of the available active power signal for PV systems are presented,

including the robust approach presented in Beyer, Heilscher and Bofinger

(2004). Glotzbach also presents a new approach using artificial neural

Impacts of the
balancing settlement
mechanism

Determination of the
available active power
signal wind for the new
proof method

Determination of the
active power signal of
PV systems for the new
proof method

State of the discussion in energy economics | 69

networks (ANN) (Glotzbach, 2010, pp. 74–95). The approach of Beyer et al.

has also been used by Bündgen (2012) in his diploma thesis.

Since the delivery of control reserve has to be reliable, the offer has to be

based on reliable forecasts. Ernst, Reyer and Vanzetta (2009) have presented

a methodology to use short-term ensemble and meta forecasts for balancing

renewables. The authors state that forecasts can be used to calculate the

necessary amount of control reserve for balancing (Ernst et al., 2009, p. 1).

The necessity for further research is postulated in Hodge et al. (2012, p. 6).

They state that forecast errors cannot be estimated by the standard

distribution appropriately13, as there are far more values at the tails of the

distributions than the standard distribution would allow (Hodge et al., 2012,

pp. 5–6). For probabilistic forecasts, this can be very important. A hyperbolic

distribution could achieve a better fit. In Lange et al. (2011, pp. 95–96) the

forecast qualities for wind are given. The forecast quality is usually given

with the value for the normalised root mean square error (nRMSE). For the

one hour-ahead forecast the nRMSE is approximately 1.5 % (Lange et al.,

2011, p. 95), while for the day-ahead forecast it is approximately 5 % (Lange

et al., 2011, p. 96). It can be assumed that the forecast quality has increased

in the meantime.

Probabilistic forecasts can be created in several ways. One way is to use a

kernel density estimator (KDE) (Bowman & Azzalini, 1997). Based on this

approach Bessa, Miranda, Botterud, Zhou and Wang (2012) further develop

the method to use a time-adaptive quantile-copula estimator for kernel

density forecasts. Bessa et al. also elaborate on the difficulties of selecting

appropriate kernels for the modelled problem. In their approach they used a

conditional kernel (Bessa et al., 2012, pp. 30–32). They also compare their

results with a second state-of-the-art approach, called quantile

regression (QR). The authors conclude that their approach is superior to the

quantile regression approach (Bessa et al., 2012, p. 38). Foley, Leahy,

Marvuglia and McKeogh (2012) show an in-depth analysis of stochastic

13 Which does not mean that the KDE cannot use Gaussian kernels

Reliable forecasts are
subject to further
research

Possible approaches to
generate probabilistic
forecasts

70 | State of the discussion in energy economics

(KDE and QR) and machine learning approaches (ANN) to create

probabilistic forecasts. Juban, Fugon and Kariniotakis (2007) and Juban,

Siebert and Kariniotakis, (2007) also used a KDE to generate probabilistic

wind power forecasts. Both author teams conclude that the KDE is a suitable

approach to match the state-of-the-art forecasting techniques (Juban, Fugon

et al., 2007, p. 8; Juban, Siebert et al., 2007, p. 1). They point out that kernel

density forecasts have the tendency to be computational intensive. The

bachelor thesis of Wingenbach (2011) presents a methodology to calculate

probabilistic wind power forecasts using quantiles.

Just (2011) raises the question of the optimal market design by assessing the

impact of contract durations in the primary and secondary control markets

on efficiency. This extends and builds on an analysis of the dependency of

spot market prices on control reserve market prices in Just and Weber

(2008). Just concludes that shorter product lengths lead to an economic

dispatch of units, and thus to lower prices on the spot market and the control

reserve market (Just, 2011, p. 19). Long product lengths favour holders of

large portfolios of units whereas smaller market participants have a

disadvantage (Just, 2011, p. 19). Together with the discriminatory pay-as-bid

pricing mechanism and the market power exercised (see also (Growitsch et

al.; Heim & Goetz, 2013)) by large portfolios this will lead to market

distortions. Just concludes that daily four-hour or hourly auctions would be

preferable to achieve economic dispatch (Just, 2011, p. 19).

Haucap, Heimeshoff and Jovanovic (2012) have investigated the effects of the

reforms in the control reserve market. The authors found evidence that the

introduction of the common internet platform for the tendering of primary,

secondary and tertiary control reserve (regelleistung.net) has had an impact

on the tertiary control reserve prices (Haucap et al., 2012, p. 8,28). This was

not the case for the secondary and primary control reserve market. This

would imply that the tertiary control reserve market is much more

competitive than the secondary and primary control reserve markets. This is

also evident when looking at the numbers of participants in the market

(50Hertz Transmission GmbH et al., 2015a). Competitive markets decrease

the incentives to bid strategically, even in pay-as-bid markets.

Short product lengths
lead to economic use of
units

Market reforms
increase competition in
the tertiary control
reserve market,
whereas other markets
are less competitive

State of the discussion in energy economics | 71

Cramton and Stoft (2007) have investigated the difference between

bay-as-bid pricing and marginal pricing in spot markets for electricity. The

authors conclude that it is favourable to implement marginal pricing rather

than pay-as-bid (Cramton & Stoft, 2007, pp. 36–37). Oren (2004) discusses

situations when it is favourable to implement pay-as-bid pricing and when

marginal pricing is preferable. Although in theory, both schemes should

generate the same revenue, Oren states that pay-as-bid pricing has the effect

of flattening the supply function of the merit-order curve (Oren, 2004,

p. 713). Oren argues that pay-as-bid pricing is more suitable for highly

fragmented markets, such as the reserve markets (Oren, 2004, p. 714).

Swider and Weber (2007) have developed a methodology for bidding on

several markets with price uncertainty using strategic bidding behaviour.

They conclude that strategic bidding behaviour is needed. This supports the

modelling approach of determining the range of possible solutions and

identifying the best and the worst outcome for the bidder, as described in

chapter 4.4.3. Heim and Goetz (2013) examine the use of market power in

their discussion paper and present the relevant literature. The authors

investigate the behaviour of market participants in the secondary control

reserve market. They conclude that market power is exercised by the largest

companies on the market due to the applied pay-as-bid pricing mechanism

(Heim & Goetz, 2013, p. 1). They also examine the problems introduced by

the “guess-the-clearing-price” phenomenon (Heim & Goetz, 2013, p. 17). In

comparison, the authors state that the tertiary control reserve market is the

most competitive control reserve market. Even for this market high

concentration and insufficient competition has been identified by Growitsch,

Höffler and Wissner (2010, p. 30). It was proven by Son, Baldick, Lee and

Siddiqi (2004, p. 1997) that pay-as-bid markets lead to less efficient dispatch

and lower total revenue.

Elberg, Growitsch, Höffler, Richter and Wambach (2012) have considered a

unit commitment with the spot market positive control reserve market only,

assuming that negative reserves will be provided by RES. The authors claim

that there is a link of spot market and control reserve market prices. Prices in

control reserve markets depend on the spot market price and the volumes in

Difference between
pay-as-bid markets and
marginal pricing
markets

Strategic bidding in the
control reserve market
is necessary to
maximize income

Coupling of spot
market and control
reserve market with
possible contributions
from CCGT

72 | State of the discussion in energy economics

the control reserve market. Prices in the spot market and the control reserve

market influence each other and are driven both ways by their opportunity

costs (Elberg et al., 2012, p. 93). The authors assess income possibilities for

gas turbines (GT) and combined cycle gas turbines (CCGT). They also state

that the results are very much dependent on the initial assumptions (Elberg

et al., 2012, pp. 26–28).

The issues with bidding in markets for control reserve have been discussed

by David and Fushuan Wen (2000), who show the existence of strategic

behaviour by the market participants. This leads to the finding that the

market participants base their decision on additional factors other than pure

economic incentives (David & Fushuan Wen, 2000, p. 2172). Richter (2012,

p. 1) showed that the outcome on the control reserve market is determined

by the expectations of the outcome from the market participants. The spot

market followed the decisions taken on the control reserve market. If

outcomes are influenced by expectations, fundamental analysis will no longer

yield valid results. This will then be in the field of game theory as discussed

by Shahidehpour, Yamin and Li (2002), and would also imply that costs are

no longer the driver for the economic activity rather than the (expected)

prices, as discussed in Ferrero, Shahidehpour and Ramesh (1997).

3.3.3 Research projects and international development

3.3.3.1 Research projects

In the EU Framework 7 funded research project TWENTIES (European

Commission, 2009) the delivery of ancillary services was demonstrated with

wind farm clusters in Spain. These tests were conducted for the provision of

control reserve and reactive power. Both tests were completed successfully.

The determination of offers in the reserve markets were performed by

subtracting a security margin from the wind power forecast (Azpiri et al.,

2013). In addition to this an independent economic evaluation for the

delivery of control reserve was performed by the author of this doctoral

Strategic behaviour in
electricity markets

European research
project TWENTIES on
the delivery of ancillary
services by wind
turbines in Spain and
Germany

State of the discussion in energy economics | 73

thesis for the German markets (Jansen, Hochloff, Schreiber, Oehsen, &

Peñaloza, 2013).

Another EU Framework 7 funded project is REserviceS (European

Commission, 2010). The project consortium consisted of different partners in

research, the renewables trade bodies and the industry. The aim is to provide

recommendations for the design of a European ancillary services market.

Results from earlier iterations of the methodology shown in this doctoral

thesis have been presented in the project reports (Faiella, Hennig, Cutululis,

& van Hulle, 2013, pp. 47–52), although no direct contribution to the project

was made.

In the German research project Kombikraftwerk2 (Bundesministerium für

Umwelt, Naturschutz, Bau und Reaktorsicherheit, 2014) the delivery of

ancillary services in a 100 % RES scenario has been investigated. The project

concludes that it is possible to provide all necessary ancillary services in a

carbon-free electricity system (Knorr et al., 2014, p. 209).

The project Dynamische Bestimmung des Regelleistungsbedarfs im

Stromnetz (English: dynamic dimensioning of control reserve demand)

addresses the issues with the calculation of the demand for control reserve.

Results of this project can be seen in Jost, Braun and Fritz (2014; 2015).

Today in Germany, the control reserve demand is calculated every three

months, taking into account the errors in the power system from the

corresponding quarters of the last four years. For details, see chapter 3.2.3. In

a system with high RES penetration levels, it is important to calculate the

reserve demand more frequently, e.g. on a daily basis, taking into account the

day-ahead forecasts of wind farms and PV systems. This flexibility would

allow wind farms and PV systems to offset potentially high forecast errors

through a flexible provision of control reserve, since the hours with a high

demand can be identified (Jost, Braun, Fritz, Drusenbaum, & Rohrig, p. 41).

Comparative papers have been published e.g. by Ela et al. (2010) and

Holttinen et al. (2011).

European research
project REserviceS
concludes on the
necessary market
changes for control
reserve

German research
project
Kombikraftwerk2 is
providing answers to
AS provision in a 100 %
RES scenario

German research
project to develop RES
sensitive control
reserve dimensioning

74 | State of the discussion in energy economics

The principles of market participation in spot and control reserve markets

using probabilistic forecasts have been shown in a study by the

Fraunhofer IWES for Westkapital (Speckmann & Baier, 2011) and in the

European project ANEMOS.plus project (Focken & Schaller, 2011). It was

concluded that the proof method for the delivery of control reserve has to be

adapted for wind farms (Fraunhofer IWES, 2011, p. 31). The principles to

calculate probabilistic forecasts presented in this thesis build upon these

findings, although no direct connection was established.

PV Regel is a research project by SMA, the Technical University of

Braunschweig and GEWI AG that is targeted at the provision of control

reserve from photovoltaic systems. The project develops a concept for the

delivery of control reserve and plans to test this with a field test. The project

also considers the black start capabilities of photovoltaic systems. (SMA, TU

Braunschweig, & GEWI AG, 2015)

In the research project Regelenergie durch Windkraftanlagen (English:

Control reserve from wind farms) Fraunhofer IWES together with partners

from the industry and two TSOs developed concepts for the delivery of

control reserve from wind farms (Brauns et al., 2014). The project included

the development of a proof mechanism that would allow wind turbines to

deliver control reserve without previous curtailment to their schedule. The

project also developed a method to offer control reserve in the market that

has the same level of reliability as conventional generation. Some aspects of

this thesis were presented in (Brauns et al., 2014). The results were also used

in (Speckmann, 2016). Finally, all theoretical concepts were tested in a field

test. The concepts have also been applied to offshore wind farms (Rohrig et

al., 2013).

Two different proof methods for the delivery of control have been

assessed in Regelenergie durch Windkraftanlagen (Brauns et al., 2014). A

detailed analysis of the proof methods is also presented in the doctoral thesis

of Speckmann (2016).

European research
project ANEMOS.plus
on probabilistic
forecasts and control
reserve offering

German Research
project PV Regel
researches the delivery
of control reserve from
PV systems

German research
project to create
solutions how wind
farms could deliver
control reserve

Proof method
investigated in
Regelenergie durch
Windkraftanlagen

State of the discussion in energy economics | 75

The first proof method is derived from the proof method for conventional

generation, called balance control (BC). The proof of the delivery from the

unit to the system is carried out through the comparison of the planned

schedule of the power plant with the actual feed-in. It is assumed that the

generator would have produced according to the schedule, since it is

controllable. When the generator changes production for the delivery of

control reserve a delta occurs between the schedule and the actual feed-in.

This is then interpreted as the proof of delivery of the contracted amount of

control reserve. The delta has to match the contracted amount of control

reserve. However, this leads to the circumstance that the wind farm (or

PV system) is curtailed when the capacity is contracted but not dispatched.

This not only influences the economic feasibility but also generates energy

losses that have to be compensated by other generators. Figure 3-17 shows

the principles of this proof method. The wind farm is curtailed to a reliable

schedule that is then used for reference. During dispatch the wind farm is

curtailed based on this schedule. (Brauns et al., 2014, pp. 75–76)

 Source: adapted from (Brauns et al., 2014, p. 75)

Figure 3-17: Balance control (BC) proof method for the delivery of negative control
reserve

0
Time in min

15 30

delivery of negative
control reserve

Deterministic Forecast

Available active power

Feed-In

Probabilistc Forecast @ x%
Probabilistc Forecast @ x%

Feed-In

Deterministic Forecast

Po
w

er
 o

ut
pu

t i
n

M
W

Current proof method
requires the
curtailment of
fluctuating RES
generators

76 | State of the discussion in energy economics

The second proof method investigated in “Regelenergie durch Wind und PV”

is called available active power control (AAP), or delta control. For this

proof method the active power signal of a wind farm has to be calculated. The

available active power signal is the power that would have been produced if

the wind farm had not been curtailed. The proof of the delivery is achieved by

comparing the available active power signal with the actual feed-in.

Assuming that the available active power signal is accurate the difference

between the signal and the feed-in is equal to the contracted amount of

control reserve. The calculation however is challenging, according Schneider,

Tietz, Siefert, & Speckmann (2013, p. 5). The graph below shows the

principles of operation. If the wind farm is not dispatched for control reserve,

it operates as it currently would under the market premium model. (Brauns

et al., 2014, pp. 76–77)

 Source: adapted from (Brauns et al., 2014, p. 76)

Figure 3-18: Available active power (AAP) proof method for the delivery of negative
control reserve

The Danish research project PossPow (Possible Power) (DTU, 2012) at the

Technical University of Denmark, together with Vattenfall, Vestas and

Siemens wind power, investigates the question of the calculation of the

available active power signal for offshore wind farms. From the Danish

perspective offshore wind is the obvious choice since it will most likely

0

Po
w

er
 o

ut
pu

t i
n

M
W

Time in min
15 30

delivery of negative
control reserve

Available active power

Feed-In

Deterministic Forecast Probabilistc Forecast @ x%
Probabilistc Forecast @ x%

Deterministic Forecast

Alternative proof
method does not
require curtailment
when reserve is ready
for dispatch

Danish research project
PossPow determines
the best way to
calculate the available
active power signal

State of the discussion in energy economics | 77

contribute the most when the RES share is increased in Denmark. With

adaptations it might be possible to scale the results to onshore wind turbines.

The concepts in this research were developed in parallel to the concepts at

Fraunhofer IWES.

To follow up on these ideas the research project Regelenergie durch Wind

und PV (English: Control reserve from wind farms) (Fraunhofer IWES et al.,

2014) is currently being carried out. It adapts the concepts developed for the

wind turbines to photovoltaic systems and investigates possible benefits for

the combination of both technologies. It also investigates the central question

of determining the available active power for PV systems.

The research project INEES by Fraunhofer IWES, Volkswagen, SMA and

LichtBlick (Fraunhofer IWES, LichtBlick SE, & Volkswagen AG, 2012)

investigates the possibility of control reserve delivery by electric vehicles.

The field test took place in a test phase with several cars in greater Berlin.

The problem for electric vehicles is similar to wind farms and PV systems as

their availability can only be predicted with a certain degree of reliability.

The forecast of the availability however is influenced by user pattern rather

than weather forecasts. Additionally the communication solutions are very

challenging. The business model is still subject to ongoing research. In

general, this concept is adaptable to any sort of demand side management

(DSM) application for the delivery of control reserve. Possible solutions will

be more diverse than for wind farms or PV systems. The research in the

project was influenced by the finding of the project “Regelenergie durch

Windkraftanlagen“ through communication and joint project work.

The following table briefly summarizes the project results from the previous

sections. It provides a non-exhaustive list of topics that are relevant in this

doctoral thesis. Each project might have additional project results that are

relevant in a different context.

German research
project Regelenergie
durch Wind und PV

German research
project INEES combines
pools electric vehicles
for the delivery of
control reserve

Summarizing table on
relevant projects

78 | State of the discussion in energy economics

Project Results

TWENTIES

• Provision of control reserve and reactive power with wind farm
clusters in Spain

• Testing was completed successfully
• Offers in the reserve markets were created by subtracting a

security margin from the wind power forecast
• Reserve provision economically not viable in the Spanish control

reserve market

REserviceS

• Provides recommendations for the design of a European
ancillary services market, based mostly on literature review

• Required changes in the market structure to include more
decentralized generators were identified

Kombikraftwerk2
• Energy system with 100% renewables is technically feasible
• All ancillary services can be provided in a 100 % RES scenario

Dynamische
Bestimmung des
Regelleistungsbe-
darfs im Stromnetz

• In a system with high RES penetration levels, it is possible to
calculate the reserve demand on a short term to include forecast
errors of wind farms and PV systems

Westkapital • Concept for market participation in control reserve markets
using probabilistic forecasts are shown

PV Regel

• Development of concept for the delivery of control reserve with
PV systems

• Plans for field testing
• Investigation on black start capabilities of PV systems

Regelenergie durch
Windkraftanlagen

• Development of a proof mechanism for wind farms that would
allow wind turbines to deliver control reserve without previous
curtailment using the available active power signal

• Development of signal requires further research
• Methodology to offer control reserve in the market that has the

same level of reliability as conventional generation
• Field testing to show the proof of concept

PossPow • Calculation of the available active power signal for offshore wind
farms

Regelenergie durch
Wind und PV

• Adapting the concepts developed for the wind turbines to
photovoltaic systems

• Investigation of possible benefits for the combination of both
technologies

• Determining the available active power for PV systems

INEES

• Investigation of concepts to provide control reserve with electric
vehicles

• Field testing with 20 vehicles in Berlin proved technical
feasibility

• Currently no business model
• Communication solutions developed for bi-directional charging

Source: Own analysis based on (Azpiri et al., 2013; Brauns et al., 2014; DTU, 2012; European Commission, 2009, 2010;
Fraunhofer IWES, 2011; Fraunhofer IWES et al., 2014; Fraunhofer IWES et al., 2012; Jost et al.; Knorr et al., 2014;

Schneider, Tietz et al., 2013; SMA et al., 2015)

Table 3-6: Main results of projects related to the doctoral thesis

State of the discussion in energy economics | 79

3.3.3.2 International development

In Great Britain wind farms with an installed capacity of more than 50 MW

have to be capable of being controlled in a frequency sensitive droop mode.

Two different modes are used. One control mode is always active (Frequency

Sensitive Mode) and one is only applicable if the frequency exceeds 50.4 Hz

(Limited Frequency Sensitive Mode). Additionally wind farms can participate

in the control reserve market if they fulfil the minimal technical requirements

which prove to be difficult to match with the fluctuating generation of wind

farms. (National Grid Electricity Transmission plc, 2012)

All wind farms in Denmark have to be capable of being frequency controlled

in two modes. The first one controls the wind farms in relation to the

frequency throughout the entire generation envelope. The second mode

ensures a linear progressive curtailment beyond a threshold frequency. This

is similar to the British model. The participation of wind turbines on the

control reserve market for energy-only-bids is possible and used without

capacity payments. Participation in the capacity based secondary and

primary control reserve markets is not possible. (Elkraft, 2004; Elkraft &

Eltra, 2004)

For Ireland (Republic of Ireland), the control reserve provision by wind

farms is mandatory for the grid connection. The wind farms are operated in a

droop control mode based on the frequency. The droop control is applicable

for positive and negative control reserve, which creates energy losses during

normal operation. The control reserve would be equivalent to primary

control reserve in ENTSO-E RG CE. (EirGrid, 2009)

Control reserve
provision by fluctuating
RES in Great Britain

Control reserve
provision by fluctuating
RES in Denmark

Control reserve
provision by fluctuating
RES in Ireland

80 | State of the discussion in energy economics

3.4 Possible methodologies for the validation of the research hypothesis

3.4.1 Conclusion of challenges from the literature

From the previous review of the literature different challenges are identified,

as discussed in chapter 3.3. In order to answer the research question one has

to assess the major challenges that exist due to the given setup of the

environment. The critical aspects examined can be summarized as follows:

1. The technical capabilities for the delivery of ancillary services

are proven. Wind farms (Al-Awaad, 2009, p. 81; Almeida & Lopes,

2007, p. 949; Anaya-Lara et al., 2006, p. 169; Andersen et al., 2012,

p. 28; Bevrani et al., 2010, p. 453; Chowdhury & Ma, 2008, p. 5;

Erlich & Wilch, 2010, p. 7; Gesino, 2011, pp. 99–119; Margaris et

al., 2012, p. 198; Morren et al., 2006, p. 434; Ping-Kwan Keung et

al., 2009, p. 286) and PV systems (Bhatt & Chowdhury, 2011, p. 6;

Kakimoto, Takayama, Satoh, & Nakamura, 2009, p. 548; Okou et al.,

2012, p. 6) are technically capable of providing different types of

reserves. This ranges from fast responding virtual inertia to all

different types of control reserve, as currently used by the TSOs.

This allows the conclusion that technical problems are solved, or

will be solved in the near future. The technical feasibility does not

pose a challenge in itself.

2. Several different approaches for economic assessments have

been presented. These approaches mostly aim to predict the pos-

sible income of the control reserve providers. Different approach-

es have been selected for different types of units (Consentec, 2011;

Elberg et al., 2012; Kirby et al., 2010; Kurscheid, 2009; Schuller

& Rieger, 2013; Spitalny et al., 2012; Sterner et al., 2010; Yuen et

al., 2011). In the diversity of the models, it can be seen that eco-

nomic assessment can be performed in different ways. The impact

on the system costs has not been investigated with the same level

of detail. Literature focusses on the impact of wind on balancing

Summary of the critical
aspects

State of the discussion in energy economics | 81

needs and the costs. Little is known about possible income for

wind and even less for PV.

3. The previously presented assessments show vulnerability to

price changes (Elberg et al., 2012, pp. 27–28). These are partially

addressed by using average prices which are mean values over a

certain time (Al-Awaad, 2009, pp. 82–86; Schuller & Rieger, 2013,

p. 183; Yuen et al., 2011, p. 177) or over all the existing prices in

the merit-order list (Kurscheid, 2009, p. 81). Together with the

price volatility indicated in 3.2.4.2 one can conclude that it is

challenging to investigate the economic effects of a possible re-

serve provision without investigating the market in detail. A pre-

cise picture of the income situation and the impact at the system

level can only be achieved by looking at the entire merit-order list.

4. Many approaches in number 3 use a price oriented (Consentec,

2011; Khorasani & Rajabi Mashhadi, 2012, p. 86) and/or a cost-

based (Khorasani & Rajabi Mashhadi, 2012, p. 84; Richter, 2012,

p. 7) approach for the economic assessment. Ideally, both ap-

proaches should be used to calculate the efficiency gain and the

additional benefit that could be distributed between the producer

(producer surplus) and the consumer (consumer surplus). The

additional benefit is largest for the producer under a price-

oriented approach, whereas it is largest under the cost-based

approach for the consumer. Current models fail to address this

issue. It is unlikely that approaches that produce a single result

can capture the most likely outcome in the market.

5. The pricing mechanism in the control reserve market leads to

behaviour of market participants that cannot be explained with

a purely cost-based approach (i.e. fundamental analysis). The

behaviour of the market participants is driven by income opportu-

nities rather than their costs. Cost-based approaches are therefore

not sufficient (Swider & Weber, 2007, p. 1307). The difficulties

arising from the pricing mechanism in the control reserve market

82 | State of the discussion in energy economics

and the influence on the market participants have been acknowl-

edged by many authors (Cramton, 2009; Cramton & Stoft, 2007;

Haucap et al., 2012; Heim & Goetz, 2013; Oren, 2004, Swider,

2005a, 2005b). It has been proven that pay-as-bid markets lead to

less efficient dispatch and lower total revenue (Son et al., 2004,

p. 1997). In order to assess the economic value of wind farms and

PV systems in the control reserve market it is necessary to discov-

er the entire range of all possible behaviours (i.e. bidding strate-

gies) of a market participant in relation to the prevailing prices,

accepting inefficiencies as a given pre-condition.

6. Introducing wind farms and PV systems to the control reserve

market requires the use of stochastic models in order to compen-

sate for the forecast errors by the fluctuating RES units. Stochastic

modelling and forecasting have been applied in some of presented

approaches (Brauns et al., 2014, pp. 33–47; Ernst et al., 2009, p. 7;

Kurscheid, 2009, pp. 43–45; Pinson, 2006; Pinson et al., 2007;

Pinson & Madsen, 2009; Ruiz, Philbrick, & Sauer, 2009; Schaich,

2010, pp. 36–40; Schwinn, 2011, p. 53; Speckmann, 2016, pp. 32–

47). Apart from (Brauns et al., 2014, p. 96) none of the other ap-

proaches was used to calculate the impact on the market. Ap-

proaches used for controllable generation cannot be used for

fluctuating RES without adaptation. One also has to compare the

level of reliability with current units in the market.

7. Prices in the control reserve market are volatile, partly due to the

market participants’ behaviour, which is induced by the pricing

mechanism. On a short-term basis, prices are relatively stable and

can be predicted accurately, using the prices from the past bidding

period (see chapter 3.2.4.2). In the long term, this leads to large

errors when prices for the future are forecasted. This is mainly

because the prices cannot be explained accurately with fundamen-

tal analysis models. This requires relying on existing prices. Back-

casting (Robèrt, 2005, p. 843) obtains results which eliminate

State of the discussion in energy economics | 83

uncertainties from flawed price forecasts. Assessments can pro-

vide limited information if future markets are considered.

8. In a market with perfect competition, with wind farms and PV

systems joining the market, we would be able to observe decreas-

ing prices due to the additional capacity on the supply side. Since

control reserve markets are far from being competitive

(Growitsch et al., p. 5; Haucap et al., 2012, p. 28) it is impossible to

predict the changes in the prices. Market participants’ actions

cannot be predicted accurately enough with the addition of these

new units. Market outcomes will change due to the new units and

their unique bidding characteristics. However, it is impossible to

evaluate the behaviour of all other market participants since mar-

ket outcomes (changes in market prices) do not behave according

to the standard economic model (Waver, 2007, p. 75). Price chang-

es induced from units other than wind farms and PV systems are

therefore omitted in this thesis. A possible approach could be

using a game theory approach, calculating the Nash equilibrium

(Ferrero et al., 1997, pp. 1341–1343; Shahidehpour et al., 2002,

pp. 191–233).

9. All presented models fail to address the influence of regulatory

aspects. Since social welfare gains in real markets depend on the

framework conditions (Just, 2011, p. 19), “wrong” regulation might

have a negative effect on the social welfare whereas others would

have a positive effect (Forrest & MacGill, 2013, p. 130; Ketterer,

2014, p. 279). It is necessary that different regulatory setups can

be investigated (Just & Weber, 2008, p. 3201). For practical rea-

sons this would require keeping all the other variables constant.

10. Co-optimization of control reserve markets and spot markets

would increase the complexity since stochastic optimization

would be required. Efficiency gains will be insignificant (Just,

2011, p. 19). This is especially true since the fluctuating RES are

driven by their support scheme (Spitalny et al., 2012, p. 5). It is

84 | State of the discussion in energy economics

unlikely that the income from the control reserve market will have

a large influence on spot market behaviour.

3.4.2 Requirements for answering the research question through econometric
modelling

The research question targets the economic value of fluctuating RES in a

future power system. As previously presented, the value of the fluctuating

RES in the control reserve market can be determined with different

methodologies. The main interest with regard to the research question is the

determination of the social welfare gain. This determines the amount of

efficiency gain by the introduction of fluctuating RES into the control reserve

market environment. Derived from the research hypothesis in chapter 2.2 the

research question is formulated as following:

How can stochastic units, such as wind farms and PV systems,

provide control reserve to the power system competitively

without altering the level of reliability whilst decreasing

system costs?

Derived from the findings in chapter 3.3 and chapter 3.4.1 the necessary

requirements for answering the research question are developed. The

requirements towards the model are listed below:

1. The selected model will have to be able to include current regulations

and be able to assess possible changes in the regulatory framework.

2. It will be necessary to show how wind farms and PV systems

perform in detail under those different regulations. This will

determine the ideal changes in the current market design.

3. It is not necessary to determine how to remove those inefficiencies

in general. Inefficiencies in the markets are present and accepted in

the course of this research. This is due to the finding that the most

economic market design has not yet been identified. It is believed that

due to the findings in this thesis the market design will evolve from its

Rephrasing research
question

The requirements for
answering the research
question

State of the discussion in energy economics | 85

current state to a more efficient state. Therefore, this research needs

to provide information on how the market should evolve departing

from its current state.

4. A holistic approach shall unveil the most important effects that are

caused by the introduction of wind farms and PV systems to the

control reserve market.

5. Cross-market optimization is not required, since the control

reserve market cannot be the main source of income. Wind farms and

PV system shall be driven by their core business model, relying on the

spot market and market premium model. In reality these markets are

cleared separately.

6. The behaviour of the market participants is not predictable and

fluctuating RES cannot dominate the market over the entire year.

Therefore, wind farms and PV systems will have to be assumed to be

price takers in the market. Rational expectations will guide the

behaviour of wind farms and PV systems in the control reserve

market.

7. Price forecasting risks need to be eliminated as they might

overshadow or outrun possible errors from the modelling of the

participation of wind farms and PV systems in the market. Perfect

price forecast has to be used since control reserve prices are largely

unpredictable, as shown in chapter 3.2.4.2. They follow fundamental

events with a large time lag and only to a certain degree. This

requirement implies the use of a hindcasting approach.

8. The model for the assessment shall provide detailed knowledge of

the seller’s point of view as well as the system’s point of view.

9. It shall provide information on the entire spectrum of possible

outcomes and therefore identify the possible social welfare gain.

86 | State of the discussion in energy economics

3.4.3 Possible approaches to assess the participation of fluctuating RES in the
control reserve market

In this chapter, approaches that have been used for assessing the value of

different units delivering control reserve are examined in detail. This

includes approaches that were applied to conventional generators and

controllable RES as well as wind farms and PV systems. These approaches

have all been mentioned in chapter 3.3. The models presented in this chapter

are the most commonly used approaches in modelling electricity markets.

According to Ventosa et al. (2005, p. 898) the electricity market modelling

can be classified into three different categories: equilibrium models, single

firm models and simulation models. These three categories, for a shorter

time horizon, can be covered with modelling approaches presented further

down, called fundamental analysis cost minimizing models (Ventosa et al.,

2005, pp. 901–904), profit maximizing unit commitment models (Ventosa et

al., 2005, pp. 899-201) and agent-based models (Ventosa et al., 2005,

pp. 904–906). However one has to keep in mind that there might be other

approaches as depicted in table 2 in (Ventosa et al., 2005, p. 910).

The purpose of this chapter is to evaluate the approaches and test them with

the challenges identified in chapter 3.4.1. The approaches will be tested

against the criteria numbered from 1 to 9 in chapter 3.4.2. An assessment will

be made as to whether they are suitable for the given task.

3.4.3.1 Option 1 – Fundamental analysis cost minimizing unit commitment
models

One approach to determine the value of ancillary services from generators is

an analytical approach, using a unit commitment (UC) dispatch model. A UC

model optimizes the units in the power system in the most economical way.

Either it can be used to minimize the costs for electricity generation from the

system’s point of view or it can be used to maximize the income for a

generation company (GENCO). The latter option will be discussed in 3.4.3.2

(Option 2 – Profit maximizing unit commitment models). Dispatch models

are often used for future scenarios since they can provide a roadmap for the

Comparing three
different approaches
that have been used
before

Testing approaches
with the previously
defined criteria

Unit commitment
models provides the a
cost efficient solution
for power plant
dispatch

State of the discussion in energy economics | 87

development of the power market. Different authors have presented the

current state of research, including approaches for chapter 3.4.3.2

(Dentcheva, Gollmer, Möller, Römisch, & Schultz, 1996; Padhy, 2004;

Saravanan, Das, Sikri, & Kothari, 2013; Wright, 2013). UC models are also

used by companies to support knowledge based strategic decisions (Energy

Brainpool, 2015).

UC models incorporate constraints of the individual units. Under the given

constraints this will lead to the most cost efficient dispatch of units in the

power system (Saravanan et al., 2013, p. 223). Usually these are determined

by the profit, emissions and/or time constraints of the units. The delivery of

control reserve can be added as an additional constraint. Similarly the

system’s reserve requirements can be included (Chattopadhyay & Baldick,

2002, p. 285). This UC can be performed on the control reserve market or on

the spot and control reserve markets simultaneously. Optimization

algorithms often used are called exhaustive enumeration, priority listing,

dynamic programming, branch and bound, integer and linear programming,

simulated annealing, lagrangian relaxation, taboo search, and interior point

optimization (Padhy, 2004, pp. 1199–1202; Saravanan et al., 2013, p. 226).

Wright (2013, p. 12) states that currently mixed integer programming is the

most commonly used. Saravanan lists 28 different UC models using different

optimization techniques and purposes.

Ideally functioning markets are necessary in order to realize this economic

dispatch. This guarantees that each unit participates in the most efficient

manner. It is assumed that the decision for using or withholding a unit is

made purely on economic terms (Dentcheva et al., 1996, p. 1). This means

that each unit individually has a different optimum of market conditions, e.g.

regarding lead-time or product length. In a real market environment,

however, the implementation of a market is necessarily a trade-off between

the requirements of the different units, also called market participants. This

necessarily moves the dispatch solution away from the economic optimum

(Saravanan et al., 2013, p. 226).

Economic dispatch with
unit constraints

Unit commitment
assumes ideal markets

88 | State of the discussion in energy economics

UC models are demanding in terms of computation time and memory

demand when a large number of different units with many constraints are

considered. This was the case in the model presented by Oehsen (2012),

which could only be executed on a high-performance cluster (Oehsen, 2012,

p. 32). According to Saravanan et al. (2013, p. 223) it is impossible to create

an optimization method which is capable of describing the UC problem for

the real power system. Therefore, only an approximation will be possible.

Hui Wu and Gooi (1999, p. 1489) have presented a method to deal with

complex optimization problems by simplifying the problem. They chose to

optimize the spinning reserve requirements in a post-processing step and

thereby save calculation time. Chattopadhyay and Baldick (2002, p. 285)

claim that this step can be integrated into the unit commitment problem at

higher computational efficiency by an approximation of the problem.

Since UC models are designed to deliver the economic optimum for unit

commitment, the capability to incorporate market constraints is limited. In

many cases, the events in the market cannot be approximated sufficiently,

using dispatch models. This is the case when the use of units is not solely

based on economic decisions (Ventosa et al., 2005, p. 899). The suitability of

assessing the market players’ behaviour is low in markets where market

power is exercised and strategic bidding is used (Kumar David & Fushuan

Wen, 2001, p. 357). Therefore, they are not suitable if one wants to assess the

quantitative impact of market conditions on the potentials for the delivery of

control reserve from fluctuating RES in a highly regulated environment.

However, they can provide information on the gap between the economic

optimum and the current implementation.

The approach is tested against the requirements in chapter 3.4.2, numbers 1

to 9. Cost minimizing UC models have a limited capability to address different

regulatory framework situations. The influence of such market regulations

will have little impact on the fluctuating RES, since they are seen as an input

that cannot be adjusted. By definition, cost-minimizing UC does not reflect

inefficiencies. These would have to be modelled explicitly, hence increasing

the constraints and calculation time. As for the criteria of the holistic

approach and separate clearing, the model is suitable. The cost minimizing

Computational
requirements

Suitability in real
markets

Suitability according to
the defined
requirements

State of the discussion in energy economics | 89

UC models do not compute price forecast as an output, although they can be

designed to generate price time series. It is not possible to model how the

units act as price takers and therefore provide detailed knowledge about the

market participants’ behaviour. The optimization results in an optimal

solution, which will not reveal the range of possible solutions. Overall, cost

minimizing UC models have a very limited capability to address the research

question.

3.4.3.2 Option 2 – Profit maximizing unit commitment models

Another approach, which has been used in the literature, is the assessment of

the income side from the seller’s point of view, to maximize their profits.

Similarly to the previous approach it is often carried out with the help of UC

software solutions. The goal is to optimize the UC of generation units of

different natures for participation in the markets. (Ventosa et al., 2005,

pp. 899–900)

Profit maximizing UC, also called price based UC, is a similar approach to the

fundamental analysis of cost minimizing UC. While in the cost minimizing

approach the main objective is to supply the demand at any given hour at

minimal costs, the profit maximizing approach aims at maximizing the

income on the market for a market player with a given portfolio. The profit

maximizing approach is determined by the expected price. The GENCO has to

decide whether it wants to generate electricity to supply its customers or buy

the electricity on the market. The GENCO will use its own generation units

when they can generate electricity cheaper than the market price. The

generation costs are determined by factors such as the fuel price, the

generation technology ramp restraints and others. (Hochloff, Baier, Ferner,

Lesch, & Schlögl, 2010; Hochloff & Schreiber, 2012)

The optimization techniques listed in the previous option can equally be

applied to the profit maximizing UC models. However, Li and Shahidehpour

(2005) have suggested using mixed integer linear programming. Since all

market players are evaluating their UC simultaneously the sum of all results

will be traded and then placed on the market (Saravanan et al., 2013, p. 229).

Optimizing for a market
from the providers
point of view

Similarities to cost
minimizing UC models

Optimization
techniques

90 | State of the discussion in energy economics

The sum of all UC models will approximate the results obtained from

approaches in the previous option. However, the generation of the necessary

price forecasts might lead to uncertainties.

The participation in the markets for GENCOs requires the previous definition

of the market conditions. This includes the calculation of prices as an input.

The residual load can be converted into market prices, using the previous

approach. Since the (residual) load is information that is not available to the

market participants, the price will have to be the leading input that

substitutes the (residual) load as the main input. Other market conditions

have to be defined prior to optimization (Ventosa et al., 2005, pp. 899–900)

The profit maximizing UC approach would allow assessment of the value of

fluctuating RES in the control reserve market for the portfolio operator. The

UC would then have to be carried out for the reserve market, with the spot

market as a constraint, or be co-optimized for maximized revenue from both

markets (Chattopadhyay & Baldick, 2002, p. 285). Together with real market

data, the impact of different regulations can be assessed.

The fulfilment of the requirements in chapter 3.4.2 reveals the suitability of

the approach for answering the research question. Profit maximizing UC

models can assess the impact of different regulatory framework situations.

Through the market prices, the influence of such market regulations will have

a large impact on the dispatch of fluctuating RES for control reserve. The

inefficiencies in the market can be accounted for through the price forecasts.

Inefficient markets will have higher prices than under the most efficient cost

minimizing UC approach. A holistic approach is not possible since feedback,

induced by the market participants, does not influence the system, i.e. price

changes in the market. Clearing is not modelled by profit maximizing UC

models, since they are price takers. Price forecasts are a given input, whether

they are obtained from a cost minimizing UC model or from other sources.

Under the given framework, one can gain detailed knowledge about the

dispatch of each unit from the market participants. With the optimization

results indicating the optimal solution, one will not be able to assess the

entire range of possible solutions. This approach alone will not provide

Definition of market
and price forecast

Co-optimization for
spot and reserve
market

Suitability according to
the defined
requirements

State of the discussion in energy economics | 91

information on the social-welfare gain. Overall profit maximizing UC models

are better suited for addressing the research question.

3.4.3.3 Option 3 – Agent-based models

A third option for an approach is the use of a model that emulates the

behaviour of several different market participants, called agents. A certain

behavioural pattern is predefined (Shafiei et al., 2012, p. 1664) for agents in

order to assess the impact on prices and costs. These agents react

individually on changing external factors, for example changes in the market

price. Based on these input factors the agents implement a certain action

from their predefined choice set (Shafiei et al., 2012, p. 1651). Agent-based

(AB) modelling can be seen as a more realistic approach to explain the

interaction of different market players in the power system (Tesfatsion &

Judd, 2006, p. 900).

Since the nature of agents is not pre-defined by the modelling approach itself,

the specific design of agents is adapted to fit the modelling purposes (Macal &

North, 2010, pp. 157–158). Therefore, the specific design of the agents can

vary. For example it is possible that agents may have a unit commitment

modelling implemented for their decision making or that they may rely on a

different set of algorithms such as artificial intelligence (Müller, Sensfuß, &

Wietschel, 2007, p. 4285). Agents in AB models are characterized by their

ability to make decisions that emulate the behaviour of real market

participants (Macal & North, 2010, p. 153). The behaviour is driven by the

objectives of an agent, which may be profit maximization for a given portfolio

(Ventosa et al., 2005, p. 906). This allows them to interact with other agents

and can determine the course of action of an agent (Macal & North, 2010,

p. 152). The knowledge communicated between the agents may vary

(Conzelmann, Boyd, Koritarov, & Veselka, 2005, p. 1). It would be realistic in

the case of the control reserve market to assume little or no communication

between the different market players.

Agents can be designed as independent entities who make decisions

autonomously based on a predefined set of actions. However, they can be set

Agent-based modelling

Characterization of
agents in agent-based
models

Agents as independent
decision makers

92 | State of the discussion in energy economics

up to learn from their past experiences and adapt their behavioural

strategies to achieve their goals (Koritarov, 2004, p. 40). Agents can be

assigned to specific tasks. They can take the role of a GENCO, a grid operator,

the demand side and others (Conzelmann et al., 2005, p. 2; Weidlich & Veit,

2008, p. 1733). Grid congestion and other restraints can be modelled which

might influence the agent’s decisions (Veit, Weidlich, & Krafft, 2009, p. 4132).

AB models incorporate a variety of results from several research areas such

as game theory, social sciences and software engineering (Müller et al., 2007,

p. 4285).

Compared to the UC market modelling, AB modelling allows the application

of market practice into a model with possibilities to adapt for the market

participants. These markets are usually modelled as AB market models.

Within these constraints, the models provide information on the optimum

design of the market. This approach can model scenarios and real data,

allowing for a reality check of the scenarios. The introduction of AB models

led away from the rational behaviour and equilibrium models approach (UC

models) towards a more realistic and adaptive one (Weidlich & Veit, 2008,

p. 1756). This complexity has become manageable through the availability of

sufficient computing power and allows us to investigate certain aspects in

detail (Weidlich & Veit, 2008, p. 1729). The market equilibrium is a result of

the interaction of the different agents and may differ from the optimum

obtained from the UC modelling approach. Therefore AB models account for

system immanent inefficiencies and are capable of modelling the real

electricity market adequately (Weidlich & Veit, 2008, p. 1756). The AB

approach with its multitude of agents participating in the markets is able to

investigate different bidding strategies, risk aversion preference and decision

making patterns (North et al., 2002, p. 17).

The quality of the results in AB models largely depends on the design of the

modelling system and the agents’ behaviour. By no means can AB modelling

be considered a mature method. Standard modelling approaches have not

been identified (Heath, Hill, & Ciarallo, 2009, p. 18). The selection and

adoption of techniques and algorithms from other areas of research is an

Realistic markets with
AB modelling

Drawbacks of AB
modelling

State of the discussion in energy economics | 93

important factor and may influence the results from this modelling approach

in various ways (Heath et al., 2009, p. 18).

The AB model approach has to be evaluated against the requirements in

chapter 3.4.2 in order to evaluate its suitability. The first requirement that

the approach has to fulfil is the capability of addressing issues with the

regulatory framework. AB modelling allows the investigation and testing of

different regulatory frameworks before implementing them in the real

market (Conzelmann et al., 2005, p. 2). This allows identification of the ideal

changes in the market and regulatory framework to accommodate for

fluctuating RES. The inefficiencies in the market can be modelled to achieve

out-of-equilibrium economics (Müller et al., 2007, p. 4285). AB modelling

does not provide a single optimized solution (optimized market equilibrium)

for the entire system, which could be obtained by optimizing one sole

objective, e.g. to minimize cost, as in the UC model approach (Macal & North,

2010, p. 153). Since the emphasis of the AB approach is on the behaviour of

the agents (i.e. market participants), a holistic approach can only be achieved

by extensive scenario variations. This is computationally demanding and yet

unlikely to capture all effects on the system level since the agents change

their behaviour constantly. However it is likely to observe a large range of the

agents’ possible behaviours (Macal & North, 2010, p. 153). Current

computational constraints require limitations of the number of agents. For

example, participation of ancillary services markets is often modelled after

the spot market has closed and therefore is not part of the optimization

process (Conzelmann et al., 2005, p. 3).

The same optimization problems as with the UC models are present and

exaggerated by the implementation of various agents. By their behaviour,

agents may become price makers, even knowingly exploiting that if their skill

set allows them to take advantage of it. Price forecast may or may not be of

concern to the agents. Perfect price forecasts are unlikely to be realistic since

the market results will not be the economic optimum and will be subject to

the agents’ behaviour. AB modelling allows us to gain detailed knowledge the

activities of the seller and buyer (Weidlich & Veit, 2008, pp. 1752–1753).

Despite the fact that a multitude of possible solutions are presented through

Suitability according to
the defined
requirements

Agent-based modelling
provides a better
solution, is not yet
capable of answering
the research question

94 | State of the discussion in energy economics

the agents’ behaviour, one cannot be assured that all possible solutions have

been captured. AB models provide a more suitable and flexible solution to

simulate market behaviour than UC models.

3.4.3.4 Summarizing the suitability of approaches

In this chapter, the suitability according to chapter 3.4.2 is summarized and a

conclusion is drawn. The overview of all three approaches presented can be

seen in Table 3-7. Criteria being fulfilled by an approach are marked with 

whereas an unfulfilled criterion is indicated with .

Requirement Fundamental
analysis cost

minimizing UC
model

Profit maximizing
UC models

Agent-based model

1. Regulatory
framework   

2. Ideal market
changes for
fluctuating RES

  

3. Inefficiencies as is   

4. Holistic approach   

5. Separate clearing   

6. Price taker   

7. Perfect price
forecast   

8. Detailed
knowledge seller
and buyer

 14 

9. Range of possible
solutions   

Source: Own analysis

Table 3-7: Suitability of different modelling approaches to the requirements laid out in
chapter 3.4.2

14 Seller side only

Summarizing the
suitability of
approaches

State of the discussion in energy economics | 95

None of the approaches presented in chapter 3.4.3 was able to fulfil all given

criteria in chapter 3.4.2. The cost optimizing UC model approach was able to

fulfil two of nine criteria, the profit maximizing UC model approach six of

nine, and the AB modelling approach five out of nine. The different models

have different strengths (criterion fulfilled) and weaknesses (criterion not

fulfilled). If all strengths were combined, eight out of nine criteria could be

fulfilled. All approaches fell short on the criterion pertaining to the

assessment of the entire range of possible solutions from the sellers’ point of

view, which will be necessary to assess the social welfare gain.

3.4.4 Development of a customized new approach

None of the presented approaches would be able to answer the research

question appropriately. Since the research question is about the economics of

control reserve delivery of fluctuating RES and the subsequent induced

changes in system costs an additional approach must be considered. This

new approach has to be developed with the aim of supplementing the

available approaches and investigating the research in detail where the

aforementioned approaches would fail. At this point, a simulation approach is

suggested, which combines the benefits of all aforementioned approaches.

This is in line with Ventosa et al. (Ventosa et al., 2005, p. 3) as they concluded

that simulation models can be better suited for individual applications. They

emphasize considering the influence of the assumptions in the approach

when interpreting the results.

Summary of criterion
fulfilment

New approach uses the
strengths of the
possible methodologies
and combines them
into a new tailor-made
new approach

96 | State of the discussion in energy economics

 Source: Own analysis

Figure 3-19: Linking the presented approaches with a new model

The proposed new approach shall also combine the different approaches

from chapter 3.4.3. The three approaches are not in competition with the

new approach. They can merely model the framework around it; providing

the bigger picture as they cannot provide information detailed enough to

answer the research question. The aim is to isolate individual effects without

questioning the model of a system. Assuming that the external conditions are

constant and unaffected by the introduction of wind farms and PV systems to

the control reserve market, one can assess their participation in detail.

Results from the new approach can be used as an input for other models. This

could be, for example, the impact of changed prices in the control reserve

market or changed residual load due to specific curtailing patterns of

fluctuating RES. The new approach is presented in chapter 4 in detail.

Profit maximizing unit
commitment model Agent-based model

Combination of strengths of the
different approaches

Cost minimizing
unit commitment model

New Approach
REBal

(Renewable Energy Balancing)

Linking the presented
approaches with a new
model

Modelling the economics of control reserve provision by fluctuating RES | 97

4 Modelling the economics of control reserve provision
by fluctuating RES

4.1 Introduction to the econometric modelling approach with REBal

Concluding the findings in chapter 3.4.4 the necessity for a new methodology

has been identified. An approach that suits the previously listed

requirements has been conceived previously. The methodology that is

presented is called the REBal model (Renewable Energy Balancing). The

structure of the model described in this chapter has been presented at

several conferences and in reviewed papers by this author (Jansen, 2014;

Jansen et al., 2014; Jansen & Speckmann, 2013a; Jansen, Speckmann, & Baier,

2012, Jansen, Speckmann, Harpe et al., 2013, 2013; Jansen, Speckmann,

Schneider et al., 2013; Jansen, Speckmann, & Schwinn, 2012; Rohrig et al.,

2013). The results from the modelling were calculated with different stages

of development of the REBal model. Therefore, results in the previous

publications might differ when compared to the results of this publication.

This thesis will describe the methodology used in the REBal model in detail

and elaborate on the many additional aspects that have not been presented

before. Results were computed with a common model setup for several years

and different types of fluctuating RES generators. It provides the information

required to answer the research question and fulfils the requirements from

chapter 3.4.2.

REBal is an econometric model that quantifies the welfare gain of fluctuating

RES in the market, and thus applies the welfare economics theory. The model

provides insight into the economics of control reserve provision of

fluctuating RES for the supply side and the demand side. The modelling steps

are visualized in Figure 4-1 and explained below the figure.

New methodology
REBal has been
presented before

Econometric model
REBal

98 | Modelling the economics of control reserve provision by fluctuating RES

 Source: Own analysis

Figure 4-1: Flow chart of REBal

The REBal model presented here identifies the potentials and constraints for

the delivery of control reserve from fluctuating RES generation (onshore and

offshore wind farms and PV systems). The model is structured according to

the following steps, which are explained in detail in the subchap-

ters 4.4.1 to 4.4.8:

4.4.1 Probabilistic
Forecast

4.4.2 Technical potential

4.4.3.1 Opportunity cost
driven bid creation

4.4.3.1 Profit maximizing
bid creation

CR market
influence

4.4.4 Matching bids in
the market

4.4.5 Cost differences
with RES particiaption

4.4.6 Impact on the spot
market

4.4.7 Social welfare gain

Ec
on

om
ic

s f
or

 th
e

bu
sin

es
s c

as
e

Fl
uc

tu
at

in
g

RE
S

ge
ne

ra
to

r
Fo

re
ca

st

5.1 Probabilistic
Forecast

5.2 Quantities CR
Market, lost energy

5.3 Capacity and
energy prices

5.4 Additional income

6.1 Cost saving
potential

6.2 Cost increase on
spot market

4.4.7 Forecast of
welfare gain

6.3 Welfare gain with
fluctuating RES

6.4 Welfare gain
in 2020/2030

Results

Input

Model step

Results

M
ic

ro
-e

co
no

m
ic

 a
ss

es
sm

en
t

Sy
st

em
 le

ve
l

Implementation in the
REBal model

Modelling the economics of control reserve provision by fluctuating RES | 99

1. The offers placed on control reserve markets need to be at least as

reliable as offers from the current market participants. Therefore,

probabilistic forecasts (methodology 4.4.1; results 5.1) are used. The

REBal model uses a kernel density estimator with Gaussian kernels.

The result is a probabilistic forecast with different levels of reliability.

2. The technical potential (methodology: 4.4.2; results: 5.2) of the

fluctuating RES is calculated for different combinations of restraining

factors. These factors can be e.g. product length, gate closure time and

security levels of the offer. The results are the offerable amounts on

the reserve market.

3. The opportunity costs (methodology: 4.4.3.1; results: 5.3.1) for the

provision of control reserve by fluctuating RES generators are

calculated, resulting in tradable standard market products, i.e.

price/quantity pairs according to Table 3-3. Different opportunity

costs can be expected with varying regulatory framework conditions.

4. Additionally to the previous step, tradable profit maximizing

price/quantity pairs (methodology: 4.4.3.2; results: 5.3.2) are

created based on the expected additional income in the selected

control reserve market. Since this approach is influenced by the

market participants’ expectancy, various combinations of bidding

strategies can result.

5. The bids (price/quantity pairs) from number 3 and 4 are matched

(methodology: 4.4.4) with the bids in the existing merit-order lists. If

the bid of the fluctuating RES generator is cheaper than the bid in the

market, the bid is accepted and replaces the current bid in the merit-

order list. Based on the bid the possible additional income (method-

ology: 4.4.4, 4.4.5; results: 5.4) is calculated.

6. The changes in costs (methodology: 4.4.5; results: 6.1) through the

participation of fluctuating RES generators are calculated using a full

dispatch simulation for the capacity and energy bids. Costs of the

100 | Modelling the economics of control reserve provision by fluctuating RES

provision and dispatch of merit-order lists with and without bids from

fluctuating RES are compared.

7. The influence of the proof mechanism (see Figure 3-17 and

Figure 3-18) on the bidding behaviour of the fluctuating RES genera-

tors and their implications in the spot market (methodology: 4.4.6;

results: 6.2) are investigated. If the unit has to be curtailed when

reserve are contracted this energy is not available in the spot market.

The economic value is determined.

8. The participation of wind farms and PV systems in the market allow to

access welfare gains (methodology: 4.4.7; results: 6.3) in the market.

The social welfare can increase or decrease depending on the market

design.

9. Based on the welfare gains in the previous number the welfare gains

for the future are forecasted (methodology: 4.4.8; results: 6.4). The

forecast is performed for the year 2020 and the year 2030.

The outlined methodology of the REBal model shall be classified in order to

relate this to other approaches. In chapter 3.4.3, different approaches have

been presented and it has been concluded that a new methodology has to be

developed. It has also been stated that a modelling for this specified task is

likely more suitable than a more universal UC or AB model. In summary the

REBal model would best be described as follows:

“REBal is an econometric hindcasting15 model, using

stochastic methods to calculate the value of fluctuating RES in

the control reserve markets. “

REBal borrows several methodologies from different modelling approaches,

which have been shown previously. The simplification of a stochastic

problem to a deterministic problem has been previously applied by

15 Hindcasting is also known as backcasting, backtesting, re-analysis, or retrodiction.

Classification of REBal

Previous approaches
that have used
methodologies that
were adapted in REBal

Modelling the economics of control reserve provision by fluctuating RES | 101

Zhang et al. (2013, p. 890) using analytical solutions. In REBal, this is the case

for assessing the different levels of reliability as separate results. Zhang et al.

have also used the technique of using real market data. The forecasting and

application methods in step 1 and 2 have been presented previously by

various authors (Bessa et al., 2012; Bowman & Azzalini, 1997; Foley et al.,

2012; Juban, Fugon et al., 2007; Juban, Siebert et al., 2007). REBal uses the

technique of cost-based assessment in step 3. The revenue maximizing

approach in step 4 has been used in UC and AB models. Steps 5 and 6 can be

commonly described as the merit-order principle (Sensfuß, 2010; Sensfuß et

al., 2007). Step 6 follows the argumentation in Consentec (2008). Step 7 has

previously been shown in Hirth (2013) and Hirth and Ziegenhagen (Hirth &

Ziegenhagen, 2015) as the impact of fluctuating RES in the market, also called

the merit-order effect.

4.2 Modelling assumptions

This chapter explains and justifies the underlying assumptions of the model.

For further details, please also see chapter 3.4.1 and 3.4.2.

• The entire portfolio of the German wind farms and PV systems can be

pooled (see chapter 4.3.5). According to the prequalification rules

however, this would only be possible within one control area.

• The portfolio of offshore wind power plants is derived from a varying

portfolio over time. In the beginning of the time series, a single wind

power forecast represents the entire portfolio. Later on, data of a few

wind farms are included, where data was available. Spatial variations

of the feed-in between those wind farms are found to be high

(Durante, Westerhellweg, & Jimenez, 2012, p. 67). To counteract

possible inconsistencies arising from the data, the forecasts errors are

calculated based on weather models (also see chapter 4.3.3.1). They

are not derived from the feed-in and forecast time series of each

individual wind farm, as it is the case for the other portfolios in this

doctoral thesis. Therefore, data accuracy of the offshore wind farm

Main assumption for
the REBal model

102 | Modelling the economics of control reserve provision by fluctuating RES

pool is inferior when compared to the other portfolios. Weighing the

inferior data accuracy against the possible additional information

gained by including the offshore wind farm in the assessment,

suggests using the data despite initial concerns. Using simulated

forecast errors removes inconsistencies arising from changing

portfolios compositions for the forecast error simulation. Figure 5-4

proves that the required quantiles of the simulated error data are met

and the potentials to deliver control reserve are not overestimated

due to underestimation of forecast errors. Later results suggest that

the potential is as dependent on the forecast quality as much as it is

dependent on the value of the point forecast (see onshore wind farm

pools in Figure 5-7). The value of the point forecasts in total correlate

to the energy available at each wind farm. Although a timely spatial

difference between different wind farms exists, it can be assumed that

the energy yield for the different wind farms is similar due to similar

average wind speeds at FINO 1 and FINO 3 (Kindler, 2011, p. 13).

• Grid connection issues are not considered, especially n-1 security

problems for offshore wind farms. It is assumed that the grid

operators are responsible for providing adequate infrastructure in the

future.

• The nominal installed capacity of the German portfolios is normalized

to 30 GW. The technical potential (see chapter 5.2) can be displayed

on a per unit (p.u.) basis, such as offering potential per MW installed.

For comparability reasons, a constant installed capacity is assumed,

disregarding growing portfolios over time. The installed capacity is

essential for the economic assessment (chapter 5.3 and following)

where results are expected to be changing in relation to the installed

capacity. An installed capacity of 30 GW roughly averages the installed

capacities of the years between 2010 and 2014.

• For the German pool of offshore wind power plants, an installed

capacity of 1 GW is assumed. Considering that the real installed

Modelling the economics of control reserve provision by fluctuating RES | 103

capacity was about 1 GW at the end of 2014 (AEE, 2015) it would be

unrealistic to assume a pool of 30 GW as well.

• Growing portfolios are normalized to one constant value. The 1 GW

pool of PV systems and the 1 GW pool of offshore wind farms have

seen an especially large increase in installed capacity. It is likely that

in the beginning these portfolios had bigger forecast errors than at a

later points. Since the economic impact does not scale linearly, it is

necessary to maintain the installed capacity constant to eliminate

those effects from the results.

• It is assumed that prequalification requirements (chapter 3.2.4.2) are

fulfilled by all fluctuating RES for all types of control reserve. There is

good evidence that the technical requirements can be fulfilled by

onshore wind farms and indicative evidence for PV systems (see

chapter 3.3.1 and 3.3.2). Although more research is needed for

offshore wind farms, the assumption is extended since the technology

is similar to onshore wind farms.

• Due to uncertainties regarding technical capabilities, primary control

reserve is not addressed in this thesis.

• The calculation of the offer assumes that all units in the pool are

capable of delivering reserve power. They uniformly must be able to

be curtailed freely between the available active power and zero. This

assumption disregards the possibility that it might not be the case for

all units at all the times.

• Daily bidding in the control reserve market is assumed since

fluctuating RES cannot be forecasted reliably for more than 72 hours

(Giebel, Brownsword, Kariniotakis, Denhards, & Draxl, 2011, pp. 47–

48; Holttinen, Miettinen, & Samuli, 2013, p. 10). For the tertiary

control reserve market a week-daily tendering is currently carried

out. Secondary and tertiary control reserve markets are tendered

weekly (see Table 3-3 Control reserve specifications). Merit-order

lists are used from the weekly tendering and treated as if they were

104 | Modelling the economics of control reserve provision by fluctuating RES

tendered on a daily basis. If those markets were tendered daily one

could expect price changes (Haucap et al., 2012, p. 28) which are being

disregarded. However, fluctuating RES could participate in the control

reserve market today through a control reserve pool.

• The desired security levels are only influenced by the forecast errors.

Other reasons such as outages by units, connection line outages,

unprecedented redispatch or the error from determining the available

active power signal are not considered. This is mainly because those

factors cannot be accounted for accurately enough.

• The finest data resolution is 15 minutes. Fluctuations on a shorter

basis cannot be accounted for due to the lack of data. It is assumed

that those short variations are balanced out due to the pooling and

dispersion effects of fluctuating RES.

• FIT can be used as an average value for an entire portfolio. Due to the

minor fluctuations of the FIT for (onshore) wind farms, this assump-

tion is extended to offshore wind farms and PV systems (see

Figure 3-1). The feed-in tariffs used for the assessment are

89.5 EUR/MWh for onshore wind farms, 150 EUR/MWh for offshore

wind farms and 90 EUR/MWh for PV systems. For onshore and

offshore wind farms, this is the initial FIT. For PV systems, this

represents the FIT by the end of the year 2014 for non-rooftop PV

systems.

• It is also assumed that market participants are perfectly informed

about future prices (perfect price forecast). This is necessary to

identify the maximum additional income in the profit maximizing

strategies (see number 4 in chapter 4.1 and chapter 4.4.3.2). Imperfect

price forecasts would lead to a different bidding behaviour and would

not identify the welfare gains accurately. Price forecasting is challeng-

ing and would require separate investigations as in Kian and Keyhani

(2001).

Modelling the economics of control reserve provision by fluctuating RES | 105

4.3 Data used in the model

The impact of fluctuating RES on the control reserve markets is assessed

based on historical data. For this reason, the data used in the REBal model

are presented in this chapter. The assessment period stretches from the year

2010 to 2014. All data is processed in the time zone UTC+1 (CET)

4.3.1 Market prices

4.3.1.1 Wholesale market prices

The price information and market data of the wholesale electricity market

are obtained from EPEX SPOT (EPEX SPOT SE, 2015d). The day-ahead

auction data can be downloaded freely from the homepage on a day-to-day

basis (EPEX SPOT SE, 2015a). The same applies for the intraday auction data

(EPEX SPOT SE, 2015b) and the intraday continuous trading data

(EPEX SPOT SE, 2015c). More conveniently all three data sets can be

downloaded through a fee-based ftp-server (EPEX SPOT SE, 2015e). All data

is based on hourly price information.

An intraday call auction was introduced on the 9th of December 2014

(EPEX SPOT SE, 2014d), was 15-minute intraday continuous trading on the

14th of December 2011 (EPEX SPOT SE, 2011). The data does not span the

entire assessment period and is therefore not used. Resulting errors even out

over the year and are disregarded.

The gate closure of the spot market is assumed to be one hour throughout the

assessment period. It has been reduced several times during the assessment

period. Lastly, the lead time of the intraday market was reduced to

30 minutes from the 16th of July 2015 (EPEX SPOT SE & European

Commodity Clearing, 2015).

Hindcasting uses real
data

Data sources for the
spot market

Using hourly data in
REBal

One-hour gate closure
time in REBal

106 | Modelling the economics of control reserve provision by fluctuating RES

4.3.1.2 Balancing energy prices

The balancing energy price has to be paid by the balancing responsible

parties (BRP) for imbalances between the schedule and the physical delivery.

The balancing energy price reBAP (see chapter 3.1.1) is calculated by the

German TSOs (50Hertz Transmission GmbH et al., 2012b). It can be acquired

at the website of regelleistung.net. The reBAP has been calculated for all four

TSOs together since the 1st of May 2010 (50Hertz Transmission GmbH,

2015).

Prices prior to that exclude the control area of Amprion. For the time before

the 1st of May 2010, it is assumed that the reBAP was applicable in all four

balancing areas. The calculation schemes of the reBAP have changed in

December 2012 (Bundesnetzagentur, 2012a), but despite these changes the

reBAP can be seen as a price input only. Therefore, behavioural changes are

very unlikely since they could only be exploited with strategic bidding that

has been excluded in the modelling approach.

4.3.1.3 Control reserve prices

The control reserve prices in the form of complete merit-order lists can be

obtained from regelleistung.net (50Hertz Transmission GmbH, Amprion

GmbH, TransnetBW GmbH et al., 2013). They are available for the entire

assessment period. The product lengths were shortened by the Federal

Network Agency (BNetzA) in 2011 (Bundesnetzagentur, 2011c, 2011d,

2011e).

The primary and tertiary control reserve product lengths were shortened as

of June 27th 2011. Exact product details are discussed in chapter 3.2.4.1.

From the 1st of December 2011, the minute reserve was tendered week-daily

for four-hour blocks. Subsequently, price changes in the tertiary control

reserve market were observed (Haucap et al., 2012, p. 9). One has to take into

account that the results may differ depending on the product length.

Shortening the product length has led to decreasing prices. Therefore, the

economic potential of fluctuating RES in the control reserve markets might

Balancing energy price
reBAP at
regelleistung.net

Changes in the price
calculation
methodology over time

Control reserve merit-
order lists at
regelleistug.net

Price changes in 2011

Modelling the economics of control reserve provision by fluctuating RES | 107

be reduced. The availability of other data sets for the year 2010 (i.e. single

wind farms) encourages use of the market data despite possible concerns.

4.3.2 Electricity consumption

The energy consumption for Germany can be retrieved from the ENTSO-E

website at (ENTSO-E, 2015). The data is available for the entire assessment

period. Although the data of the original source does not add up to the official

statistical values (Bundesministerium für Wirtschaft und Energie, 2015a),

the ENTOS-E data is multiplied by a factor to account for the error. This

guarantees that the sum of the data is equal to the official statistics whilst

maintaining the information on the shape of the load curve.

4.3.3 Time series of fluctuating RES generators

4.3.3.1 Wind farm data

Wind farm data can be obtained from (eex, 2015b) or through a ftp-server

(eex, 2015a). The day-ahead forecasts are available at (eex, 2015f) and the

extrapolated feed-in at (eex, 2015d). The data is provided for each control

area individually. The data is available for the entire assessment period. The

one-hour intraday forecast is created according to chapter 4.4.1.3, due to the

lack of data from official sources. The 30 GW pool has a day-ahead forecast

that has an nRMSE (normalized root mean square error) of 4.74 %, which is

in line with the findings by Lange et al. (2011) and Schulz (2011, p. 13). The

nRMSE for a one-hour-ahead intraday forecast is 1.12 %, which is

significantly lower than the 1.5 % in Lange et al. (2011) and slightly lower

than in Schulz (2011, p. 13). The better forecast quality might be due to

better knowledge of the state of the wind farms and the persistency-based

forecast.

Wind farm data on individual wind farms include the day-ahead forecast, the

intraday forecast and the measured actual feed-in. These data sets were also

gathered and created in the project “Regelenergie durch Windkraftanlagen”

ENTSO-E electricity
consumption data

Entire German 30 GW
wind farms portfolio

1 GW portfolio of
individual wind farms
for the years 2007-
2010 and 2012- 2013

108 | Modelling the economics of control reserve provision by fluctuating RES

(Brauns et al., 2014, pp. 54–55). The data basis is the same as used in the

thesis of Dobschinski (2016). The data used is available for the day-ahead

and the feed-in time series for the years 2007-2010 and 2012-2014. The

intraday forecast is also based on the persistency forecast, which facilitates

the comparability with the 30 GW pool. The pool of 1 GW was assembled by

hand from a large range of data sets of individual wind farms and

subsequently aggregated. The wind farms were selected by their overall data

quality and availability. Apparent measuring errors were removed

selectively. The pool of 1 GW is chosen since it represents an average wind

farm pool of a direct marketer. The arithmetic average size of a direct

marketer’s wind farm pool is 1,375 MW and the median is 900 MW, based on

a survey by Energie&Management (2016),. Twelve out of 27 direct marketers

have a portfolio size of 1 GW and more.(Energie&Management, 2015b, p. 35)

For the calculation of the probabilistic forecast, only the data from 2007 to

2010 were used, since these data produced better results than if the entire

span was used. The resulting nRMSE of the day-ahead forecast is 5.98 %

whereas the nRMSE of the one-hour ahead intraday forecast is 1.56 %. This

shows that the forecasts are less reliable than for the 30 GW pool in total.

However, the size of 1 GW for the pool appears to be large enough so that

portfolio effects can be accessed. All wind farm data is available on a

15-minute time resolution.

The German 1 GW pool of offshore wind farms includes the day-ahead

forecast as a meta forecast16 as well as the measured actual feed-in for the

years 2010/2011 and 2013/2014. These data were obtained during the

course of several projects. The data are not publicly available although they

can be approximated with the data from the TSO TenneT TSO GmbH which

publishes the share of offshore wind energy (TenneT TSO GmbH, 2015). The

data can be further approximated with the help of official data by the Danish

TSO energinet.dk (Energinet.dk) since the German and Danish wind farms

are in relative proximity and have similar production patterns. As mentioned

16 Meta forecast describes a forecast that is joined from different forecasts according to desirable selection
criteria

German 1 GW pool of
offshore wind farms

Modelling the economics of control reserve provision by fluctuating RES | 109

in the modelling assumptions, wind speeds have significant temporal spatial

variations (Durante et al., 2012, p. 67). The forecast error is modelled based

on weather data and is not dependent on the spatial temporal variations of

the wind power feed-in. The average wind speeds at the two offshore wind

measuring platforms FINO 117 and FINO 318, which are approximately 135 km

apart, have very similar average wind speeds, 9.4 m/s for FINO 1 and 9.9 m/s

for FINO 3 with otherwise similar monthly wind speed patterns (Kindler,

2011, p. 13). The similar results for both platforms allow generating the data

from combining the aforementioned sources, since the forecast error time

series for the probabilistic forecast is used as per the approach in

Rohrig et al. (2013, pp. 40–43), using simulated forecast errors based on

realistic assumptions and weather data. However, it is possible that not all

extreme values are modelled correctly. This aspect of the fat-tails-theory

(Hodge et al., 2012) was mentioned in chapter 3.3.2. The nRMSE of the

day-ahead forecast is 8.48 %, and the nRMSE of the one-hour ahead intraday

forecast is 7.85 %. The nRMSEs from the used methodology (Rohrig et al.,

2013, pp. 40–43) are 7.64 % and 1.49 %.

4.3.3.2 PV systems data

The PV systems data for the entire German 30 GW pool can be obtained from

eex-transparency.com (eex, 2015b). The day-ahead forecast of PV systems

can be obtained from (eex, 2015e). The feed-in data are based on an

upscaling algorithm since not all units are measured directly. Based on the

units that are actually measured, the generation of all PV systems is

extrapolated. These data can be downloaded at (eex, 2015c). The data are

normalized over the entire assessment period using the installed capacity.

Equally to the market data (chapter 4.3.1) these data can be accessed through

a fee-based ftp-server (eex, 2015a). The data are provided for each control

17 Coordinates FINO 1: 54°0.86' N 6°35.26' E (Durante, Westerhellweg, & Jimenez, 2012, p. 69)
18 Coordinates FINO 3: 55°11.7' N 7°9.5' E (Durante, Westerhellweg, & Jimenez, 2012, p. 69)

German 30 GW pool PV
systems available at
eex-transparency.com

110 | Modelling the economics of control reserve provision by fluctuating RES

area individually. The data are available for the entire assessment period

between January 2010 and December 2014.

The data quality of the day-ahead forecast of the 30 GW pool has an nRMSE

(normalized root mean square error) of 5.21 %, excluding hours without

generation. The forecast accuracy is higher than shown in Lange et al. (2011)

and is close to fulfilling the requirements in (Schulz, 2011, p. 13). Since the

publication is from 2011 one can assume that the improvement over the

recent years has increased the forecast quality. The intraday forecast is

generated according to chapter 4.4.1.3, due to the lack of data from official

sources. Persistency forecasts are less reliable for PV systems than for wind

farms, due to the periodicity of the feed-in. The nRMSE for a one-hour-ahead

intraday forecast is 2.02 % which fails to fulfil the required forecast quality in

(Schulz, 2011, p. 13)

PV systems data on individual systems include the day-ahead and intraday

forecast as a meta forecast as well as the measured actual feed-in. The data

sets were obtained during several research projects at the Fraunhofer IWES,

in collaboration with the project partners. One of these is the project

“Regelleistung durch Wind- und Photovoltaikparks” (Stromnetze, 2015). The

data from this project is not publicly available. The day-ahead forecast and

the actual feed-in are available from the 31st of October 2012 to the end of

2014. The intraday forecast is available from the 1st of October 2012 to the

end of 2014. All data of the PV systems are available with a 15-minute time

resolution. The nRMSE of the day-ahead forecast is 6.95 %, and the nRMSE of

the one-hour ahead intraday forecast is 3.19 %. Compared to the 1 GW pool

of onshore wind farms this value is significantly lower. The 1 GW pool of PV

systems is based on real forecasts whereas the pool of onshore wind farms is

based on persistency forecasts. Persistency forecasts assume the online

measurement of the entire portfolio, which cannot be assumed for the real

forecast of the pool of PV systems. Certain weather effects pose an additional

challenge for the forecast accuracy of PV systems.

Data quality of the
30 GW pool and
creation intraday
forecast

1 GW pool of PV
systems

Modelling the economics of control reserve provision by fluctuating RES | 111

4.3.3.3 Installed capacity of wind farms and PV systems

The installed capacity of the wind farms and PV systems was published in the

EEG-Stammdaten until the 31st of July 2014. A refinement of this data set is

available at energymap.info (EnergyMap, 2015), the use of which is highly

recommended as this refined data set is more reliable than the official

statistics. Since the 31st of July, data have been collected by the BNetzA.

However, these data are not published yet and according to EnergyMap it is

unlikely that usable data will be published in 2016. For the period between

the 31st of July and the 31st of December 2014, errors may occur when the

data is normalized. This may lead to increased forecast errors and therefore

decreased potentials for the offering of control reserve. As a result, the

economic impact could be slightly underestimated.

4.3.4 Control reserve dispatch

The dispatch of secondary and tertiary control reserve is used to calculate

the costs of the dispatch. Data with a time resolution of 15 minutes can be

downloaded at regelleistung.net (50Hertz Transmission GmbH et al., 2015d)

for the entire assessment period. A higher time resolution is necessary for

the correct calculation of the dispatch costs of the secondary control reserve.

The signal for the dispatch of secondary control reserve provides data with a

4-second time resolution, which allows a precise cost calculation. The data

are available through personal contact with one of the four TSOs. High

resolution data used in this thesis are available from the 1st of July 2010

onwards. Prior to the 1st of July, the 15-minute data are used instead. This

may introduce a small error in the dispatched energy for the year 2010 that

will be disregarded in order to be able to model an entire year. The total

dispatched energy for negative and positive secondary control reserve for the

entire year 2010 with 4-second data from July to December and 15-minute

data from January to June is 4.76 TWh. The dispatched energy with

15-minute data only is 4.65 TWh, which is 2.2 % less than with the high-

resolution data. Similarly, for the year 2011 the dispatched energy with

Installed capacity

Control reserve
dispatch data

112 | Modelling the economics of control reserve provision by fluctuating RES

4-second data for the entire year is 5.66 TWh. 15-minute data yields

5.41 TWh, which 4.3 % lower.

4.3.5 Summary and overview

The following figure summarizes the availability of the data sets used and

indicates important aspects where data consistency or quality might be

affected.

 Source: Own analysis

Figure 4-2: Availability of data used in REBal

The data availability is summarized graphically in Figure 4-2. The control

reserve related data and market prices are shown in lime green. Inconsistent

data sets are marked with a lighter shade of lime green. The 30 GW pool of

2010Before
2010

15-minute

Primary, Secondary and Tertiary (FCC, aFRR, mFRR)

hourly

2011 2012 2013 2014

hourly

3 TSO

Intraday prices

Day-ahead prices

reBAP

Reserve prices

Persistency with KDE calculated from ACT OnWind GER

Persistency with KDE calculated from ACT PV GER

DAFC OnWind GER

IDFC OnWind GER

ACT OnWind GER

DAFC OnWind WF

IDFC OnWind WF

ACT OnWind WF

DAFC PV GER

IDFC PV GER

ACT PV GER

DAFC PVF

IDFC PVF

ACT PVF

Secondary and Tertiary (3-second-data for aFRR)Reserve dispatch 15min
only

Inconsistent data

Significantly better
data quality for
2007-2010, used
solely for prob. FC

DAFC OffWind GER

IDFC OffWind GER

ACT OffWind GER

Inconsistent data
due to increasing
portfolio, for prob.
FC the last available
full year and data
from 2015 is used

Persistency with KDE calculated from ACT OnWind WF

Inconsistent data,
simulated forecast
error series based
on 2010/2011 is
used

4 TSO

Legend:
DAFC Day-ahead forecast
IDFC Intraday forecast
ACT Actual feed-in

OnWind Onshore wind farm pool
OffWind Offshore wind farm pool
PV Photovoltaic systems pool

GER German pool
WF Wind farm pool (1 GW)
PVF PV systems pool (1 GW)

Data availability

Colour coding of the
data sets

Modelling the economics of control reserve provision by fluctuating RES | 113

wind farms is shown in blue. The intraday forecast is available in the data but

not used. If the persistency forecast is used it is indicated by the text and the

lighter colour shade. The 1 GW pool of individual wind farms is shown in

dark blue whereas the 1 GW pool of PV systems is green. The 30 GW pool of

PV systems is marked in yellow, the 1 GW pool in darker yellow. The colour

coding of the fluctuating RES generators will be used in the results chapters 5

and 6.

4.4 Modelling Steps in detail

This subchapter explains the modelling steps in detail, which includes the

implementation of REBal in the Matlab environment.

4.4.1 Probabilistic forecast with kernel density estimators

The offers placed on control reserve markets from fluctuating RES need to be

as least as reliable as offers from the current market participants. Due to the

fluctuating nature, this cannot be guaranteed with the current methods

applied. This specifically addresses the forecasts used. Current forecasts for

fluctuating RES only provide values with the highest probability, the so-called

expected value. The level of reliability is 50 %, with a 50 % chance that the

observed value will surpass the forecasted value or fall short of it. Other

levels of reliability are not considered. This is called deterministic

forecasting.

Probabilistic forecasts with very high levels of reliability are influenced by

extreme values. If the reliability of a forecast over a year is 99.99 % then the

time where the forecasted data exceeds the feed-in shall not be more than

52 minutes per year. Accordingly, increasing the forecast reliability to

99.999 % changes this number to 5 minutes.

Offering control reserve with wind farms and photovoltaic systems requires

a defined level of reliability that has to be guaranteed by the market

participant. The use of probabilistic forecasts allows the allocation of

“Unpredictability” of
fluctuating RES with
current forecasts

How often/long can the
forecast not be met?

Gaining additional
information with
probabilistic forecasts

114 | Modelling the economics of control reserve provision by fluctuating RES

probabilities to a forecast value (see e.g. (Pinson, 2006)). Probabilistic

forecasting allows the generation of several values for the same time horizon.

This means that for one event in the future several forecast values can be

generated. Each value is given with its related probability. These can be

displayed as a continuous probability function, which would not be possible

with the aforementioned deterministic forecasting. The continuous functions

are called the probability density function (PDF) and cumulative distribution

function (CDF), as shown in Figure 4-3. The CDF is the integral of the PDF and

is monotonously increasing with values from 0 to 1. By deriving the CDF one

holds the PDF again (see e.g. (Walck, 2007, pp. 119–120)). For discrete

forecast values (e.g. 99 %), predictive intervals are calculated from the PDF

and the CDF. Figure 4-3 shows the CDF in blue and the PDF in red for a

normal distributed random variable.

 Source: Own analysis based on (Walck, 2007, pp. 119–200)

Figure 4-3: Gaussian probability density function (PDF) and cumulated probability
function (CDF)

4.4.1.1 Kernel density estimator

Previously several different approaches for the creation of probabilistic

forecasts have been shown (also see chapter 3.3.2). A summary of three

selected forecast algorithms can be seen in Brauns et al. (2014, pp. 34–42).

The investigated methodologies are the kernel density estimation, the

quantile regression and the physical-stochastic model. Based on the same

Probability density function (PDF)

Cumulative distribution function (CDF)

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

Pr
ob

ab
ili

ty

Comparing the kernel
density estimator with
other probabilistic
forecasting
methodologies

Modelling the economics of control reserve provision by fluctuating RES | 115

input data, all three options provide similar results (Brauns et al., 2014,

p. 42). The KDE approach is found to be equal or superior to other

forecasting methods in terms of sharpness19 and resolution20 (Juban, Fugon et

al., 2007, pp. 8–9; Juban, Siebert et al., 2007). Juban, Fugon et al. (2007, p. 8)

state that the KDE approach, even with an un-optimized bandwidth (see

further down), is marginally superior over quantile regression based

forecasts. The quantiles of the KDE approach deviate less from the perfect

reliability than the quantiles of the quantile regression approaches (Juban,

Fugon et al., 2007, p. 8).

The advantage of the KDE approach is the complete estimation function,

which can be used to extract any desired quantiles from it. Quantile based

methodologies only calculate the estimation function for pre-defined

quantiles (Juban, Fugon et al., 2007, p. 9). Since the KDE approach is a

non-parametric model, the approach is universal enough to be applied to

other problems as well (Juban, Fugon et al., 2007, p. 5,10). One of the

disadvantages are the relatively high computational intensity (Juban, Fugon

et al., 2007, p. 3), especially when large data sets are used. This is overcome

with the use of a high performance cluster by the REBal model.

Evaluating the different options to calculate the probabilistic forecasts, the

KDE approach holds the most advantages. It is therefore applied in the REBal

model and used in this doctoral thesis. The kernels of the KDE are Gaussian

kernels; it is therefore called Gaussian KDE.

In Pinson and Madsen (2009, p. 141) it is argued that any probability density

function can be approximated as a sum of Gaussian kernels. Bowman and

Azzalini (1997, p. 3) state that the exact shape of the kernels is not essential.

It should be pointed out, that the most suitable forecasting algorithm has yet

to be identified by research. Therefore, the REBal forecast module can be

19 Sharpness describes an indicator that measures the ability of a forecasting methodology to forecast
extreme probabilities at the tails of the distribution. It allows assessing the usefulness of the
methodology to provide reliable information under uncertainty. (Juban, Fugon, & Kariniotakis, 2007,
pp. 8–9)

20 Resolution is an indicator that measures the ability to provide situation dependent forecasts, i.e. the
entire range of fluctuating RES forecasts. (Juban, Fugon, & Kariniotakis, 2007, pp. 8–9)

Advantages and
disadvantages of the
KDE approach

Choosing the KDE
approach for the
calculation of
probabilistic forecasts

Choosing the KDE in the
REBal model

116 | Modelling the economics of control reserve provision by fluctuating RES

changed to accommodate other algorithms. The forecast creation presented

here is also presented in Speckmann (2016). This is due to the fact that

Speckmann relied on the REBal model to create the forecasts in the thesis.

This has been marked in the thesis of Speckmann accordingly.

The Gaussian KDE is a non-parametric technique21 that can be used to

estimate the probability density function of a given forecast for the future,

based on historic forecast and feed-in data. This is based on the approach

that each value of a random variable is replaced by a kernel (blue curves in

Figure 4-4). This kernel can have different probability functions in itself. For

this thesis Gaussian kernels are chosen. Subsequently these kernels are

aggregated which results in a normalized PDF. (Bowman & Azzalini, 1997,

p. 3)

 Source: Own analysis based on (Bowman & Azzalini, 1997)

Figure 4-4: Illustration of a one-dimensional kernel density estimator probability density
function based on Gaussian kernel function for one random variable

The equation for a one-dimensional generalized KDE can be written as

equation (4-1) (Bowman & Azzalini, 1997, p. 3). At this point, it has to be

noted that a one-dimensional KDE will only be able to predict a single

random variable and that is not in relation with a second variable.

21 No preselected distribution is fitted to the data. The shape of the PDF is a result of the input data.

Cumulated probability density function

Individual density functions for random variable

0 20 40 60 80 100 120 140 160 180 200
0

0.02

0.04

0.06

0.08

0.1

0.12

D
en

si
ty

The principles of kernel
density estimation
(KDE)

One-dimensional KDE

Modelling the economics of control reserve provision by fluctuating RES | 117

 𝑓𝑓(𝑦𝑦) =
1
𝑛𝑛
�𝑤𝑤
𝑛𝑛

𝑖𝑖=1

(𝑦𝑦 − 𝑦𝑦𝑖𝑖 ,ℎ) (4-1)

with: 𝑓𝑓 : density estimation
𝑤𝑤 : probability density
𝑦𝑦 − 𝑦𝑦𝑖𝑖 : observed value pairs
ℎ : bandwidth of kernel function
𝑛𝑛 : number of value pairs

A two-dimensional KDE is needed for day-ahead forecasts for fluctuating RES

where one random variable (i.e. day-ahead forecast) is dependent on a

second random variable (i.e. forecast error). According to (Bowman

& Azzalini, 1997, p. 6) equation (4-1) can be expanded to account for an

additional variable which yields equation (4-2). In the case of the

probabilistic forecast 𝑦𝑦1 − 𝑦𝑦1𝑖𝑖 are the forecast values (observed in the past)

and 𝑦𝑦2 − 𝑦𝑦2𝑖𝑖 the according forecast errors for the same time.

 𝑓𝑓(𝑦𝑦1, 𝑦𝑦2) =
1
𝑛𝑛
�𝑤𝑤(𝑦𝑦1 − 𝑦𝑦1𝑖𝑖 ,ℎ1) ∙ 𝑤𝑤(𝑦𝑦2 − 𝑦𝑦2𝑖𝑖 ,ℎ2)
𝑛𝑛

𝑖𝑖=1

 (4-2)

with: 𝑓𝑓 : density estimation
𝑤𝑤 : probability density
𝑦𝑦1 − 𝑦𝑦1i : observed value pairs of first random variable
𝑦𝑦2 − 𝑦𝑦2i : observed value pairs of second random variable
ℎ1 : bandwidth of first kernel function
ℎ2 : bandwidth of second kernel function
𝑛𝑛 : number of value pairs

This function can be expanded into the n-dimensional space to accommodate

for additional factors. In the case of the probabilistic forecast for fluctuating

RES, these are conditional pre-errors, which are incorporated into the KDE

forecasting module of REBal. The inclusion of pre-errors for short-term

forecasts allows an increase of the reliability and sharpness of the forecasts,

although the amount of necessary data does also increase. REBal uses two

sets of pre-errors for the KDE, represented by the value pairs 𝑦𝑦3 − 𝑦𝑦3𝑖𝑖

and 𝑦𝑦4 − 𝑦𝑦4𝑖𝑖 .

Pre-errors are errors between the forecast and the feed-in that have been

observed prior to the creation of the forecast for the target time period. The

information from a forecast deviation that has previously occurred is

Two-dimensional KDE
for day-ahead forecasts

n-dimensional KDE for
intraday forecasts

Pre-errors in a KDE

118 | Modelling the economics of control reserve provision by fluctuating RES

correlated with the probability density from equation (4-2). The described

pre-error setup is exemplary for a forecast that is created at 14:00 for the

time between 15:00 and 15:15. In this case, the forecast errors that occurred

between 13:45 and 14:00 and between 13:30 and 13:45 are used as forecast

errors for a one-hour-ahead probabilistic forecast. Expanding equation (4-2)

by two more dimensions yields equation (4-3) (Bowman & Azzalini, 1997,

p. 10):

𝑓𝑓(𝑦𝑦) =

1
𝑛𝑛
�𝑤𝑤(𝑦𝑦1 − 𝑦𝑦1𝑖𝑖 , ℎ1) ∙ 𝑤𝑤(𝑦𝑦2 − 𝑦𝑦2𝑖𝑖 ,ℎ2) ∙ 𝑤𝑤(𝑦𝑦3 − 𝑦𝑦3𝑖𝑖 ,ℎ3)
𝑛𝑛

𝑖𝑖=1

∙ 𝑤𝑤(𝑦𝑦4 − 𝑦𝑦4𝑖𝑖 ,ℎ4)

(4-3)

with: 𝑓𝑓 : density estimation
𝑤𝑤 : probability density
𝑦𝑦1 − 𝑦𝑦1i : observed value pairs of first random variable
𝑦𝑦2 − 𝑦𝑦2i : observed value pairs of second random variable
𝑦𝑦3 − 𝑦𝑦3i : observed value pairs of third random variable
𝑦𝑦4 − 𝑦𝑦4i : observed value pairs of second random variable
ℎ1 : bandwidth of first kernel function
ℎ2 : bandwidth of second kernel function
ℎ3 : bandwidth of first kernel function
ℎ4 : bandwidth of second kernel function
𝑛𝑛 : number of value pairs

The determination of the bandwidths ℎ1 and ℎ2 of the kernels 𝑤𝑤 in

equation (4-2) and ℎ1, … ,ℎ4 in equation (4-3) has been subject to various

scientific discussions (Chaudhuri, Chaudhuri, & Murthy, 1996, p. 1720;

Kristan, Leonardis, & Skočaj, 2011, p. 2632). The bandwidth determines the

smoothing of the kernels in the KDE. The effect of different bandwidths on

the probability density estimation can be seen in Figure 4-5. In both cases,

the same input and kernel functions have been used as in Figure 4-4, only the

bandwidth was adjusted. Compared to Figure 4-4 the bandwidth in the upper

graph was multiplied by 0.5 whereas in the lower graph it was multiplied by

two.

Bandwidth of the
kernel function in the
KDE

Modelling the economics of control reserve provision by fluctuating RES | 119

 Source: Own analysis based in (Bowman & Azzalini, 1997, pp. 3–4)

Figure 4-5: The effect of different bandwidths on the probability density estimation for
a one-dimensional and two-dimensional KDE

It can be seen that small bandwidths might be too sensitive whereas large

bandwidths might smear out the probability density estimation too much.

Small bandwidths allow for the identification of single data points, while

larger bandwidths show more of the functional relationship between the data

points. The accurate estimation of forecast errors for the probabilistic

forecast is only possible if the bandwidths of the kernels are calculated

appropriately. In this thesis the bandwidth for the calculation of probabilistic

forecasts is based on the approach in Bowman et al. (Bowman & Azzalini,

1997, pp. 31–32). For all ℎ1, … , ℎ4 the bandwidth ℎ𝑖𝑖 is then:

 ℎ𝑖𝑖=(
4

(d+2)n)
1

𝑑𝑑+4 ∙ 𝜎𝜎𝑖𝑖 (4-4)

with: 𝑑𝑑 : number of dimensions
σi : standard deviation of dimension 𝑖𝑖
𝑖𝑖 : dimension number
𝑛𝑛 : number of value pairs

0 20 40 60 80 100 120 140 160 180 200
0

0.05

0.1

0.15

0.2

D
en

si
ty

Cumulated probability density function

Individual density functions for random variable

0 20 40 60 80 100 120 140 160 180 200
0

0.05

0.1

0.15

0.2

D
en

si
ty

The influence of the
bandwidth

120 | Modelling the economics of control reserve provision by fluctuating RES

Bowman and Azzalini also propose to alter the calculation of σi to counteract

undesirable effects in the tails of the density distribution estimation.

Replacement of the standard deviation 𝜎𝜎𝑖𝑖 with the median absolute deviation

estimator 𝜎𝜎�𝑖𝑖 has been suggested (Bowman & Azzalini, 1997, p. 31).

 𝜎𝜎�𝑖𝑖 =
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚|(𝑦𝑦𝑖𝑖 − 𝜇𝜇�)|

0,6745
 (4-5)

with: 𝜎𝜎�𝑖𝑖 : median absolute deviation estimator
𝑦𝑦𝑖𝑖 : value set of value pairs 𝑦𝑦1 − 𝑦𝑦1 to 𝑦𝑦4 − 𝑦𝑦4𝑖𝑖.
𝜇𝜇� : median of the sample

As described earlier, the kernel function 𝑤𝑤 can have different functions. For

this assessment a Gaussian kernel function was chosen, as discussed earlier.

Therefore 𝑤𝑤 is then replaced with a normal distribution function (Bowman

& Azzalini, 1997, p. 3).

 𝑤𝑤(𝑦𝑦 − 𝑦𝑦𝑖𝑖 ,ℎ) = 1
√2𝜋𝜋𝜋𝜋2

𝑒𝑒�−
(𝑥𝑥−𝜇𝜇)
2𝜎𝜎2

� (4-6)

with: 𝑤𝑤 : kernel function
𝑦𝑦 − 𝑦𝑦𝑖𝑖 : value pairs
ℎ : variance of kernel function
𝜎𝜎 : standard deviation
𝜇𝜇 : median deviation
𝑥𝑥 : value of random variable

In equation (4-3) the kernel function 𝑤𝑤 is filled with Gaussian kernels from

equation (4-6) The KDE with Gaussian kernels is the probability density

function 𝑓𝑓𝐷𝐷𝐷𝐷 for the day-ahead probabilistic forecast with the input of the

forecast and the forecast error, following Speckmann (2016).

 𝑓𝑓𝐷𝐷𝐷𝐷�𝑃𝑃𝑓𝑓,𝑃𝑃𝑒𝑒� =
1
𝑛𝑛
�

𝑒𝑒
−12�

𝑃𝑃𝑓𝑓−𝑃𝑃𝑓𝑓,𝑖𝑖
ℎ𝑓𝑓

�
2

ℎ𝑓𝑓√2𝜋𝜋
∙
𝑒𝑒−

1
2�
𝑃𝑃𝑒𝑒−𝑃𝑃𝑒𝑒,𝑖𝑖

ℎ𝑒𝑒
�
2

ℎ𝑒𝑒√2𝜋𝜋

𝑛𝑛

𝑖𝑖=1

(4-7)

with: 𝑓𝑓𝐷𝐷𝐷𝐷 : density estimation for the day-ahead forecast
𝑃𝑃𝑓𝑓 − 𝑃𝑃𝑓𝑓,𝑖𝑖 : forecast value pair
𝑃𝑃𝑒𝑒 − 𝑃𝑃𝑒𝑒,𝑖𝑖 : forecast error value pair
ℎ𝑓𝑓 : bandwidth forecast
ℎ𝑒𝑒 : bandwidth forecast error

Accounting for the tails
of the distribution
estimation

Replacing the kernel
function with the
normal distribution
function

2-dimensional KDE with
Gaussian kernels

Modelling the economics of control reserve provision by fluctuating RES | 121

𝑃𝑃𝑓𝑓 and 𝑃𝑃𝑒𝑒 are the value pairs of the forecast and the forecast error for which

the probability estimation is created. 𝑃𝑃𝑓𝑓,1 to 𝑃𝑃𝑓𝑓,𝑛𝑛 are the values of the forecast,

and 𝑃𝑃𝑒𝑒,1 to 𝑃𝑃𝑒𝑒,𝑛𝑛 are the values for the forecast error over the number of value

pairs 𝑛𝑛.

The estimation function gained from the KDE for the day-ahead data can be

seen in Figure 4-6 below for the 30 GW wind farm pool. The KDE for the

intraday data is omitted at this point due to problems of plotting

five-dimensional graphs. The estimation functions for the other pools can be

seen in Appendix A. The x-axis shows the normalized day-ahead forecast

from zero to one, with one equal to the installed capacity, and the y-axis

shows the forecast error from -0.4 one to 0.4, where minus one and one

would be equal to 15 standard deviations of the probability density function.

Therefore -0.4 and 0.4 equals six standard deviations. On the z-axis, the

normalized probability distribution for each day-ahead forecast from zero to

one is depicted. For each forecast value on the x-axis, a CDF (see Figure 4-3)

can be extracted that has the maximum value of one. The z-values are formed

by the PDF functions for each x-value from one to zero; their sum therefore

cannot be one. The probability density function (z-values) is an

approximation of individual forecast (x-values) and forecast error (y-values)

data points that were fitted with Gaussian kernels and integrated

subsequently.

The resulting estimation function has two peaks, one at full load and one at

zero. This means that the forecast at this point has a high certainty and the

distribution of forecast errors is narrow. This is due to the fact that full load

and idle can be forecasted relatively easily. However, a small ridge in the

bottom left corner indicates that single events can deviate significantly from

the main peak, in this case a single storm event. One can identify single data

points and the shape of each Gaussian kernel in this section. In the middle

section of the graph, approximately between 0.2 and 0.8, the forecast errors

are less narrow. This can be explained by the highest forecast errors during

ramping of the wind turbines, where a small change in the wind speed leads

to a relatively high change in power output.

Forecast values and
forecast errors

Graphical results of the
distribution estimation

Interpreting of the two-
dimensional KDE

122 | Modelling the economics of control reserve provision by fluctuating RES

 Source: Own analysis

Figure 4-6: Illustration of the two-dimensional KDE based for the day-ahead
probabilistic forecasting of the German 30 GW onshore wind farm pool

Likewise, the kernels in equation (4-3) are replaced with Gaussian kernels

from equation (4-6). The KDE with Gaussian kernels is the probability

density function 𝑓𝑓𝐼𝐼𝐼𝐼 for the intraday probabilistic forecast.

𝑓𝑓𝐼𝐼𝐼𝐼�𝑃𝑃𝑓𝑓,𝑃𝑃𝑒𝑒 ,𝑃𝑃𝑝𝑝𝑝𝑝,1,𝑃𝑃𝑝𝑝𝑝𝑝,2�

=
1
𝑛𝑛
�

𝑒𝑒
−12�

𝑃𝑃𝑓𝑓−𝑃𝑃𝑓𝑓,𝑖𝑖
ℎ𝑓𝑓

�
2

ℎ𝑓𝑓√2𝜋𝜋
∙
𝑒𝑒−

1
2�
𝑃𝑃𝑒𝑒−𝑃𝑃𝑒𝑒,𝑖𝑖

ℎ𝑒𝑒
�
2

ℎ𝑒𝑒√2𝜋𝜋

𝑛𝑛

𝑖𝑖=1

∙
𝑒𝑒
−12�

𝑃𝑃𝑝𝑝𝑝𝑝1−𝑃𝑃𝑝𝑝𝑝𝑝1,𝑖𝑖
ℎ𝑝𝑝𝑝𝑝1

�
2

ℎ𝑝𝑝𝑝𝑝1√2𝜋𝜋
∙
𝑒𝑒
−12�

𝑃𝑃𝑝𝑝𝑝𝑝2−𝑃𝑃𝑝𝑝𝑝𝑝2,𝑖𝑖
ℎ𝑝𝑝𝑝𝑝2

�
2

ℎ𝑝𝑝𝑝𝑝2√2𝜋𝜋

(4-8)

with: 𝑓𝑓𝐼𝐼𝐼𝐼 : density estimation for the intraday forecast
𝑃𝑃𝑓𝑓 − 𝑃𝑃𝑓𝑓,𝑖𝑖 : forecast value pair
𝑃𝑃𝑒𝑒 − 𝑃𝑃𝑒𝑒,𝑖𝑖 : forecast error value pair
𝑃𝑃𝑝𝑝𝑝𝑝1 − 𝑃𝑃𝑝𝑝𝑝𝑝1,𝑖𝑖 : first pre-error value pair
𝑃𝑃𝑝𝑝𝑝𝑝2 − 𝑃𝑃𝑝𝑝𝑝𝑝2,𝑖𝑖 : second pre-error value pair
ℎ𝑓𝑓 : bandwidth forecast
ℎ𝑒𝑒 : bandwidth forecast error
ℎ𝑝𝑝𝑝𝑝1 : bandwidth of first pre-error
ℎ𝑝𝑝𝑝𝑝2 : bandwidth of second pre-error

4-dimensional KDE with
Gaussian kernels

Modelling the economics of control reserve provision by fluctuating RES | 123

The density estimation functions are calculated prior to the calculation of the

probabilistic forecast. The probability forecast for the deterministic forecast

value 𝑃𝑃𝑓𝑓,𝑓𝑓𝑓𝑓𝑓𝑓 for the time 𝑡𝑡 is searched. The density estimation functions 𝑓𝑓𝐷𝐷𝐷𝐷

and 𝑓𝑓𝐼𝐼𝐷𝐷 are used for 𝑃𝑃𝑓𝑓,𝑓𝑓𝑓𝑓𝑓𝑓. Since REBal uses hindcasting techniques it also

uses values to create 𝑓𝑓𝐷𝐷𝐷𝐷 and 𝑓𝑓𝐼𝐼𝐼𝐼 from a later point in time than 𝑃𝑃𝑓𝑓,𝑓𝑓𝑓𝑓𝑓𝑓. This

ensures a consistent forecast quality throughout all assessment years and

eliminates possible artefacts from the modelling. Data around the time 𝑡𝑡 is

not used to avoid self-correlation. Data from 14 days prior to time 𝑡𝑡 and two

days after is omitted when 𝑓𝑓𝐷𝐷𝐷𝐷 and 𝑓𝑓𝐼𝐼𝐼𝐼 are created. Since self-correlation can

be avoided by excluding data, it can be justified to use these data points since

they facilitate the aim of making results comparable between different years.

It is encouraged to use these when perfect price forecasts are assumed as

well. It also allows calculation of the potentials as close to reality as possible

and the drawing of conclusions from consistent data sets. The accuracy

gained from this is expected to be higher than the accuracy lost by having a

slightly better forecast quality available.

For the calculation of the probabilistic forecasts, the forecast value 𝑃𝑃𝑓𝑓,𝑓𝑓𝑓𝑓𝑓𝑓 is

inserted into the density estimation functions 𝑓𝑓𝐷𝐷𝐷𝐷 and 𝑓𝑓𝐼𝐼𝐼𝐼 (equations (4-7)

and (4-8)). For the density estimation function 𝑓𝑓𝐷𝐷𝐷𝐷 this yields equation (4-9).

Equal to equation (4-9) the forecast value 𝑃𝑃𝑓𝑓,𝑓𝑓𝑓𝑓𝑓𝑓 is inserted into 𝑓𝑓𝐼𝐼𝐼𝐼

accordingly. This can also be seen similarly in Speckmann (2016).

𝑓𝑓𝐷𝐷𝐷𝐷,𝑓𝑓𝑓𝑓𝑥𝑥(𝑃𝑃𝑒𝑒) = 𝑓𝑓𝐷𝐷𝐷𝐷 �𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ,𝑃𝑃𝑒𝑒�

=
1
𝑛𝑛
�

𝑒𝑒
−12�

𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
−𝑃𝑃𝑓𝑓,𝑖𝑖

ℎ𝑓𝑓
�
2

ℎ𝑓𝑓√2𝜋𝜋
 ∙
𝑒𝑒−

1
2�
𝑃𝑃𝑒𝑒−𝑃𝑃𝑒𝑒,𝑖𝑖

ℎ𝑒𝑒
�
2

ℎ𝑒𝑒√2𝜋𝜋

𝑛𝑛

𝑖𝑖=1

(4-9)

with: 𝑓𝑓𝐷𝐷𝐷𝐷,𝑓𝑓𝑓𝑓𝑓𝑓 : density estimation for a fixed day-ahead forecast
𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 − 𝑃𝑃𝑓𝑓,𝑖𝑖 : fixed forecast value pair
𝑃𝑃𝑒𝑒 − 𝑃𝑃𝑒𝑒,𝑖𝑖 : forecast error value pair
ℎ𝑓𝑓 : bandwidth forecast
ℎ𝑒𝑒 : bandwidth forecast error

Inclusion of values from
the future due to
hindcasting

Density estimation
functions for the day-
ahead case

124 | Modelling the economics of control reserve provision by fluctuating RES

In both cases (DA and ID) the resulting PDF is a one-dimensional cut-out of

𝑓𝑓𝐷𝐷𝐷𝐷 and 𝑓𝑓𝐼𝐼𝐼𝐼 (see also Figure 4-3)for a fixed forecast value. The integral of the

one-dimensional PDF has to be normalized to 1 again.

 � 𝑓𝑓𝐷𝐷𝐷𝐷,𝑓𝑓𝑓𝑓𝑓𝑓(𝑃𝑃𝑒𝑒) 𝑑𝑑𝑃𝑃𝑒𝑒

∞

−∞

≐ 1 (4-10)

with: 𝑓𝑓𝐷𝐷𝐷𝐷,𝑓𝑓𝑓𝑓𝑓𝑓 : density estimation for a fixed day-ahead forecast
𝑃𝑃𝑒𝑒 : forecast error values

Gaussian kernels as the kernel functions for KDE are selected since ongoing

research (Bessa et al., 2012, pp. 30–34) has not clearly identified the most

suitable kernel function. Due to this, possible problems in the tails of the

distribution may occur, as they might have values that are physically not

possible. These values will have to be within the physical boundaries.

 0 ≤ 𝑃𝑃𝑒𝑒,𝑥𝑥 ≤ 𝑃𝑃,𝑛𝑛 (4-11)

with: 𝑃𝑃𝑒𝑒,𝑥𝑥 : forecast error values with the probability 𝑥𝑥
𝑃𝑃𝑛𝑛 : nominal capacity

Values 𝑃𝑃𝑒𝑒, 𝑥𝑥 < 0 or >1 are floored and capped at 0 and 1. This could lead to

the integral of the PDF (or the CDF against infinity) being unequal to one.

This is addressed by normalizing the distribution to one again, as described

in equation (4-12):

 � 𝑓𝑓𝐷𝐷𝐷𝐷,𝑓𝑓𝑓𝑓𝑓𝑓(𝑃𝑃𝑒𝑒)
𝑃𝑃𝑃𝑃

0

≐ 1
(4-12)

with: 𝑃𝑃𝑒𝑒,𝑥𝑥 : forecast error values with the probability 𝑥𝑥
𝑃𝑃𝑛𝑛 : nominal capacity

Based on the individual probability density functions 𝑓𝑓𝐷𝐷𝐷𝐷,𝑓𝑓𝑓𝑓𝑓𝑓(𝑃𝑃𝑒𝑒) for each

𝑃𝑃𝑓𝑓,𝑓𝑓𝑓𝑓𝑓𝑓 the probabilistic forecast 𝑃𝑃𝑒𝑒,𝐿𝐿𝑟𝑟 for a defined level of reliability is

extracted. REBal uses a numerical search algorithm since 𝑓𝑓𝐷𝐷𝐷𝐷,𝑓𝑓𝑓𝑓𝑓𝑓(𝑃𝑃𝑒𝑒) are

described numerically.

Gaining the error
distribution for a fixed
forecast value

Restricting the error
distribution to the
physical limits

Normalizing the error
distribution

Obtaining the final
probabilistic forecast
value

Modelling the economics of control reserve provision by fluctuating RES | 125

 1 − 𝐿𝐿𝑟𝑟 = � 𝑓𝑓𝐷𝐷𝐷𝐷,𝑓𝑓𝑓𝑓𝑓𝑓(𝑃𝑃𝑒𝑒)𝑑𝑑𝑃𝑃𝑒𝑒

𝑃𝑃𝑒𝑒=𝑃𝑃𝑒𝑒,𝐿𝐿𝑟𝑟

𝑃𝑃𝑒𝑒=−∞

(4-13)

with: 𝑃𝑃𝑒𝑒,𝐿𝐿𝑟𝑟 : probabilistic forecast of a defined level of reliability
𝑓𝑓𝐷𝐷𝐷𝐷,𝑓𝑓𝑓𝑓𝑓𝑓 : density estimation for a fixed day-ahead forecast
𝐿𝐿𝑟𝑟 : level of reliability
𝑃𝑃𝑒𝑒 : forecast error values

4.4.1.2 Definition of the forecast reliability

In the course of this thesis, different levels of forecast reliability are assessed.

Since today’s requirements of 100 % reliability cannot be fulfilled by any

technical unit, reliability levels from 95 % to 99.999 % reliability are

assessed stepwise. In fact, a reliability of 99.994 % would ensure that the

reliability does not fall short of the reliability of current market participants

(Brauns et al., 2014, p. 33). Therefore, this level of reliability will have a

special emphasis throughout this work. The assessed levels of reliability

throughout this work are 95 %, 99 %, 99.5 %, 99.9 %, 99.99 %, 99.994 % and

99.999 %. The definition of reliability of probabilistic forecasts is important

since it has implications for the probabilistic forecast itself. Two different

definitions of reliability can be distinguished. Both definitions are depicted in

Figure 4-7.

 Source: Own analysis

Figure 4-7: Two different approaches to measure reliability of a probabilistic forecast
for fluctuating RES

 Probabilistic forecast

Actual feed-in

Time

Po
w

er

Assessed levels of
reliability of the
forecasts

126 | Modelling the economics of control reserve provision by fluctuating RES

The first possible definition of reliability uses the number of times when the

forecast exceeds the actual feed-in. In the example above, five time intervals

are shown. In one of these intervals, the forecast (in blue) exceeds the feed-in

(red). If the reliability is defined according to the time intervals this would

mean that the reliability of this forecast is four out of five, also expressed as

80 %.

The second possible definition is related to the energy content that was

unsupplied. Assuming the contents of the blue area (light blue and dark blue)

equals 1 and the contents of the light blue area 0.02, then the reliability of the

forecast is forty-nine out of fifty, or 98 %.

In any case, when the reliability is predefined this would lead to different

values for the probabilistic forecast, while the definition using the energy

contents will lead to higher values for the forecast. Since it is unknown which

definition will be applied in the future when fluctuating RES provide control

reserve, the more conservative, time-based approach is selected.

4.4.1.3 Intraday forecasts

As stated in chapter 4.3, data availability is an issue in some cases. This is

especially true for the intraday forecast time series for the German portfolios

that are not published by the German TSOs. Therefore, an approach has to be

used to emulate those intraday forecast time series. An appropriate approach

is the creation of a persistency forecast, called persistence or naïve predictor

(BM Intermittent Gen WG, 2010, p. 7; Dobschinski et al., 2010; Ela et al., 2011,

p. 14; Giebel et al., 2011, p. 10; Juban, Fugon et al., 2007, p. 7; Pinson, 2006,

pp. 24–25). Persistence uses online measurement data and extrapolates the

data into the near future. Forecast errors are the largest during wind and

solar gradients (Dobschinski et al., 2010, p. 9). Giebel et al. state that the

persistency forecast provides a robust and yet precise forecast algorithm that

delivers betters results than weather-model based approaches for short

forecast horizons (Giebel et al., 2011, p. 10). It provides a solution that will

not overestimate the potential (Pinson et al., 2007, p. 6). The persistency

forecast can be written as the following (Frunt, 2011, p. 110):

Reliability definition
with time

Reliability definition
with energy

Selection of approach
for the REBal model

Intraday forecast
created from
persistency

Modelling the economics of control reserve provision by fluctuating RES | 127

 𝑃𝑃𝑓𝑓(𝑡𝑡) = 𝑃𝑃�𝑡𝑡 − 𝜏𝜏𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝� (4-14)

with: 𝑃𝑃𝑓𝑓(𝑡𝑡) : forecast for time 𝑡𝑡
𝜏𝜏𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 : forecast horizon
𝑡𝑡 : time for forecast

Applying additional algorithms to the time series calculated with

equation (4-14) improves the forecast quality. Using local regression

methods as proposed by (Cleveland, 1979; Cleveland & Devlin, 1988) can

increase the forecast quality. Specifically a two-dimensional locally weighted

regression (LOESS) function is used, which employs quadratic polynomials

instead of the linear polynomials of the original locally weighted scatterplot

smoothing (LOWESS) function in Cleveland. For the sake of brevity, the

description of the LOESS function is omitted here. The idea of the LOESS

function is the application of several regression functions to data that are

valid only for parts of it. The result is a piece-wise regression function for the

given data set.

The forecast quality can be increased by applying the kernel density

estimator in chapter 4.4.1.1. The KDE is used to calculate the expected value

forecast, i.e. 50 % reliability. This technique allows the inclusion of pre-errors

that occurred in between previous forecast and feed-in values, as shown in

equation (4-8). This approach increases the forecast quality significantly.

4.4.2 Determining the technical potential

The probabilistic forecasts from the previous step are used to calculate the

amount that can be bid into the control reserve market at the desired level of

reliability. The offerable capacity from wind farms and PV systems depends

on different factors such as the time between the creation of the forecast and

the actual feed-in or the time span that the services are procured for. These

are usually expressed as the gate-closure time and product length. The

potential is calculated for different combinations of these influencing factors.

The product lengths investigated in this thesis are one hour, two hours, four

hours, eight hours, twelve hours and 24 hours. This step provides

Forecast improvements
with local regression
methods

Further improvement
using 4-dimensional
KDE for the expected
value

Creating capacity bids
for the market

128 | Modelling the economics of control reserve provision by fluctuating RES

information on the energetic potentials of fluctuating RES generators to

provide control reserve. Real market constraints, such as week-daily

tendering, can be taken into account as well as additional conditions.

The determination of the offers follows the simple method of using the

minimum of the probabilistic forecast for each product. Figure 4-8 shows the

principles for the product lengths of one hour, four hours and twelve hours,

based on a probabilistic wind power forecast with a 15-minute time

resolution. The offerable amount 𝑃𝑃𝑜𝑜𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑡𝑡) is obtained from:

 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡) = 𝑚𝑚𝑚𝑚𝑚𝑚(𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝐷𝐷𝐷𝐷,1,𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝐷𝐷𝐷𝐷,2, … ,𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝐷𝐷𝐷𝐷,𝑥𝑥,) (4-15)

with: 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡) : Offerable amount
𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝐷𝐷𝐷𝐷,1,…𝑛𝑛 : Probabilistc forcast values within time 𝑡𝑡

 Source: Own analysis

Figure 4-8: Principles of calculating the offerable amount of control reserve Poffer with
the probabilistic forecast PProbFC

Time

00:00 04:00 08:00 12:00 16:00 20:00

Po
w

er
 o

ut
pu

t

PProbFC reliable forecast

Poffer 1 hour

Poffer 4 hours

Poffer 12 hours

The offerable amount is
the minimum of the
probabilistic forecast in
each time period

Modelling the economics of control reserve provision by fluctuating RES | 129

4.4.3 Bid creation of fluctuating RES generators in the control reserve market

4.4.3.1 Opportunity cost driven bid creation

This step uses the information on potentials and combines it with market

information. Depending on the regulatory framework, fluctuating RES

generators have certain opportunity costs for the provision of control

reserve. This depends on the regulatory framework and market rules, for

example whether the fluctuating RES generator has to be curtailed in order to

provide control reserve or if has only to be curtailed when control reserve is

actually dispatched. These aspects are taken into account and opportunity

costs are calculated.

In the previous subchapters, the creation of probabilistic forecasts and their

conversion into quantities for offers in the markets are described. In this

chapter, the price for the offer is calculated based on opportunity costs. Two

prices are computed. The first one is the capacity price of the bid, which is

also the award criterion in the control reserve markets. The second price is

the energy price of the bid, which determines the price paid when the unit is

dispatched in the control reserve market. The next subchapter will show how

the price can be calculated to maximize the income generated from control

reserve market participation.

The opportunity cost based capacity price is expressed in EUR/MW/h. For

the provision of negative control reserve, it is unequal to zero only with the

balance control proof method applied. The available active power proof

method does not require curtailment and therefore does not create

opportunity costs caused by participation in the control reserve market.

Provision of positive control reserve leads to curtailment in both cases.

Therefore, capacity prices are computed for both proof mechanisms.

The capacity prices, based on the opportunity costs, compare the overall

income situation of fluctuating RES at the time 𝑡𝑡. The income with market

participation in the control reserve market 𝐼𝐼𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑡𝑡) is compared to the

income 𝐼𝐼𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑡𝑡) without market participation in the control reserve

The principles of bid
creation based on
opportunity costs

Capacity prices and
dispatch prices based
on opportunity costs

Differences caused by
the proof mechanism

Capacity prices
compare costs with and
without market
participation

130 | Modelling the economics of control reserve provision by fluctuating RES

market. For comparability, the unit will be given in EUR/MW/h. Therefore, it

is expressed in relation to the product length 𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 and the offerable

amount 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡).

 𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜(𝑇𝑇) =
𝐼𝐼𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑇𝑇) − 𝐼𝐼𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇)

∑𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡) ∙ 𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
 (4-16)

with: 𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜(𝑇𝑇) : opporunity costs based capacity price
𝐼𝐼𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 : income without control reserve market participation
𝐼𝐼𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 : income with control reserve market participation
𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 : product period

The income without market participation 𝐼𝐼𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 is the reference for

operation of fluctuating RES according to the RES scheme. The chosen RES

support scheme option is the direct marketing option (chap-

ter 3.1.1 and 3.2.5). Accordingly, the income is calculated from the trading on

the day-ahead spot market, and the intraday trading. The intraday trading is

used for forecast corrections only. Non-strategic bidding has to be assumed.

The costs and income from the imbalance settlement mechanism are not

included since they cannot be predicted as reliably as the spot market prices.

𝐼𝐼𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑇𝑇) = ��𝑃𝑃𝐹𝐹𝐹𝐹,𝐷𝐷𝐷𝐷(𝑡𝑡) ∙ 𝑆𝑆𝐷𝐷𝐷𝐷(𝑡𝑡)

𝑛𝑛

𝑡𝑡=1

+ �𝑃𝑃𝐹𝐹𝐹𝐹,𝐼𝐼𝐼𝐼(𝑡𝑡) − 𝑃𝑃𝐹𝐹𝐹𝐹,𝐷𝐷𝐷𝐷(𝑡𝑡)� ∙ 𝑆𝑆𝐼𝐼𝐼𝐼(𝑡𝑡)� ∙ 𝑡𝑡

(4-17)

with: 𝑛𝑛 : number of time steps 𝑡𝑡 in product period 𝑇𝑇
𝑡𝑡 : time step 𝑡𝑡 in the product period 𝑇𝑇
𝑃𝑃𝐹𝐹𝐹𝐹,𝐷𝐷𝐷𝐷(𝑡𝑡) : day-ahead forecast
𝑃𝑃𝐹𝐹𝐹𝐹,𝐼𝐼𝐼𝐼(𝑡𝑡) : intraday forecast
𝑆𝑆𝐷𝐷𝐷𝐷(𝑡𝑡) : day-ahead market price
𝑆𝑆𝐼𝐼𝐼𝐼(𝑡𝑡) : intraday market price

The income with participation in the control reserve markets can be

calculated, which leads to a different income situation due to curtailment in

some cases. Instead of the deterministic forecasts 𝑃𝑃𝐹𝐹𝐹𝐹,𝐷𝐷𝐷𝐷 and 𝑃𝑃𝐹𝐹𝐹𝐹,𝐼𝐼𝐼𝐼, the

probabilistic forecasts 𝑃𝑃𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝐷𝐷𝐷𝐷(𝑡𝑡) and 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝐼𝐼𝐼𝐼(𝑡𝑡) are traded. Analogue to

equation (4-17), the income can be calculated for the case of fluctuating RES

participation in the control reserve markets.

Income without control
reserve market
participation

Income with control
reserve market
participation

Modelling the economics of control reserve provision by fluctuating RES | 131

𝐼𝐼𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇) = ��(𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝐷𝐷𝐷𝐷(𝑡𝑡)) ∙ 𝑆𝑆𝐷𝐷𝐷𝐷(𝑡𝑡)

𝑛𝑛

𝑡𝑡=1

+ �𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝐼𝐼𝐼𝐼(𝑡𝑡) − 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝐷𝐷𝐷𝐷(𝑡𝑡)� ∙ 𝑆𝑆𝐼𝐼𝐼𝐼(𝑡𝑡)� ∙ 𝑡𝑡

(4-18)

with: 𝑛𝑛 : number of time steps 𝑡𝑡 in product period 𝑇𝑇
𝑡𝑡 : time step 𝑡𝑡 in the product period 𝑇𝑇
𝑃𝑃𝐹𝐹𝐹𝐹,𝐷𝐷𝐷𝐷(𝑡𝑡) : day-ahead forecast
𝑃𝑃𝐹𝐹𝐹𝐹,𝐼𝐼𝐼𝐼(𝑡𝑡) : intraday forecast
𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝐷𝐷𝐷𝐷(𝑡𝑡) : probabilistic day-ahead forecast
𝑃𝑃probFC,ID(𝑡𝑡) : probabilistic intraday forecast
𝑆𝑆𝐷𝐷𝐷𝐷(𝑡𝑡) : day-ahead market price
𝑆𝑆𝐼𝐼𝐼𝐼(𝑡𝑡) : intraday market price

If the capacity is bid to the positive control reserve market then

𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝐷𝐷𝐷𝐷(𝑡𝑡) ≐ 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝐷𝐷𝐷𝐷(𝑡𝑡) − 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡). Concluding from equation (4-16)

with equation (4-17) and equation (4-18) the capacity prices 𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜(𝑡𝑡) for each

product period 𝑇𝑇 can be calculated.

The opportunity cost based energy prices 𝐸𝐸𝐸𝐸𝑜𝑜𝑜𝑜(𝑡𝑡) only occur during the

dispatch of control reserve from the tendered units. The prices therefore are

calculated based on the trading in the markets and the RES support scheme

framework conditions. Prices are given in EUR/MWh and only paid when the

energy is requested by the TSO. The adaption of equation (4-16) allows the

formulation for the calculation of the energy prices. The income without the

control reserve market participation is governed by the current market

prices and the feed-in tariff of the fluctuating RES generator. Control reserve

is dispatched shortly before real-time production and after the last trading

possibility in the intraday market. The only income difference occurs in

payments by the RES support scheme, which are based on the actual feed-in

𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓. Decreasing the feed-in by the contracted amount 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 yields a new

actual feed-in 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ. Therefore the energy prices for the dispatch of

control reserve are:

Conclusion on the
calculation of capacity
prices

Opportunity cost based
energy prices

132 | Modelling the economics of control reserve provision by fluctuating RES

 𝐸𝐸𝐸𝐸𝑜𝑜𝑜𝑜(𝑇𝑇) =
1
𝑛𝑛
�

(𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡) − 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡)) ∙ (𝑀𝑀𝑀𝑀(𝑡𝑡) + 𝑀𝑀𝑀𝑀(𝑡𝑡))
𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡)

𝑛𝑛

𝑡𝑡=1

 (4-19)

with: 𝐸𝐸𝐸𝐸𝑜𝑜𝑜𝑜(T) : average opporunity costs based energy price
𝑡𝑡 : time steps in product period 𝑇𝑇
𝑛𝑛 : number of time steps 𝑡𝑡 in activation period
𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡) : actual feed-in
𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡) : actual feed-in during dispatch
𝑀𝑀𝑀𝑀(𝑡𝑡) : market premium
𝑀𝑀𝑀𝑀(𝑡𝑡) : manangement bonus

The opportunity cost based capacity and energy prices as well as the

offerable amount for each product period are merged. A standard market

product data set according to the market rules is created.

4.4.3.2 Profit maximizing bid creation

The aim of this chapter is to maximize the income that could be generated by

fluctuating RES in the control reserve market. The possible revenue could be

maximized with a different bidding strategy. Since the control reserve market

is a pay-as-bid priced market, the bids submitted to the market have a direct

impact on the additional income. Therefore, it is favourable to develop a

strategy that creates bids that are as high as possible and still being accepted

in the market. This requires that the merit-order lists in the control reserve

market are used to create the bids. Therefore, perfect price forecasts have to

be considered. This presented methodology can be considered a conservative

maximization approach. In contrast to the opportunity cost based approach

the bids from the profit maximizing approach depend on the market

environment. The offerable amount 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 will be bid with different prices,

depending on the chosen market.

The market price based capacity price is expressed in EUR/MW/h. The prices

are equal under both proof method regimes, as long as the prices are higher

than the bids from the opportunity cost approach. The market price based

capacity price can be derived from the market data. The market price based

capacity price 𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚 for the product period 𝑇𝑇 is the value of the monotonous

function 𝑓𝑓(𝐶𝐶) of the capacity 𝐶𝐶(𝑝𝑝) at the merit-order position 𝑝𝑝.

Forming market
suitable bids

The principles of bid
creation based on
achievable market
prices

Profit maximizing
capacity price is located
at the intersection of
the offerable capacity
with the merit-order
list

Modelling the economics of control reserve provision by fluctuating RES | 133

 𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚(𝑇𝑇) = 𝑓𝑓(𝐶𝐶(𝑝𝑝)) (4-20)

with: 𝑝𝑝 : merit-order list position
𝐶𝐶 : capacity price
𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚(𝑇𝑇) : market price based capacity price

The capacity and the capacity price at the position 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 is to be determined

by the offerable capacity 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 and the tendered amount 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚.

 𝐶𝐶�𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜� = 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 (4-21)

with: 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 : tendered amount
𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 : offerable capacity
𝐶𝐶�𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜� : capacity price at the position 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

The values of the merit-order list 𝐶𝐶𝐶𝐶 = 𝑓𝑓(𝐶𝐶) are processed numerically in

REBal. The following graph illustrates the principles.

 Source: Own analysis

Figure 4-9: Determination of market price based capacity price of fluctuating RES with
original merit-order list in lighter colours

The market price based energy price 𝐸𝐸𝐸𝐸𝑚𝑚𝑚𝑚 is expressed in EUR/MWh. The

energy price is equal to the bid that was replaced in the capacity merit-order

lists. After the auction in the capacity segment, the merit-order lists are

sorted by the energy bids, starting from the lowest energy bid. Since the

energy prices are not an award criterion, any energy price could be set by the

market participants, as visible in Figure 3-13 and Figure 3-15.

C
ap

ac
ity

 P
ric

e
in

 E
U

R
/M

W
/h

Capacity in MW

Poffer

Last price in the merit-order
list before replacement by

flucutating RES

C
P m

p

Finding the merit-order
position 𝑝𝑝

Numerical processing
of merit-order lists

Market price based
energy price

134 | Modelling the economics of control reserve provision by fluctuating RES

However it is assumed that fluctuating RES will follow the same approach for

𝐸𝐸𝐸𝐸𝑚𝑚𝑚𝑚 as for 𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚. This would ensure that the results are within reasonable

bounds, as they do not use extreme values that are likely to disappear once

fluctuating RES enter the market. Therefore, equations (4-20) and (4-21) as

well as Figure 4-9 can be applied to 𝐸𝐸𝐸𝐸𝑚𝑚𝑚𝑚 as well. If the opportunity cost

based energy price 𝐸𝐸𝐸𝐸𝑜𝑜𝑜𝑜 is higher than the market price based energy price

𝐸𝐸𝐸𝐸𝑚𝑚𝑚𝑚, then the opportunity cost based energy price is used.

4.4.4 Matching of bids with the bids in the market

Once a control reserve market is chosen the bids from the fluctuating RES are

entered in the merit-order lists. The different alternatives for creating bids

are presented in chapter 4.4.3. These bids replace the existing bids in the

market if the bid of the fluctuating RES generator is cheaper than the bid in

the market. When the bid is accepted, it replaces the current bid in the merit-

order list. The award criterion is the capacity price. For obvious reasons the

bids from the profit maximization approach will always be accepted.

The procedure is repeated for each individual bid in the merit-order list

position 𝑝𝑝 in the merit-order list 𝐶𝐶(𝑝𝑝) at each product period 𝑇𝑇. REBal uses

the methodology of the merit-order principle (Sensfuß et al., 2007). In fact,

the resulting cost reductions (see chapter 4.4.5) can be called the merit-order

effect in the control reserve market. The bids are replaced according to the

following condition, starting with the highest bid position 𝑝𝑝 = 𝑛𝑛.

∀𝐶𝐶𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇) < 𝐶𝐶𝑃𝑃(𝑝𝑝,𝑇𝑇) ∨�𝐶𝐶(𝑝𝑝,𝑇𝑇) ≤ 𝑃𝑃𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂

1

𝑝𝑝=𝑛𝑛

→ 𝐶𝐶𝐶𝐶(𝑝𝑝,𝑇𝑇) ≐ 𝐶𝐶𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇)

(4-22)

with: 𝐶𝐶𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏 : capacity price of the fluctuating RES for the auction time 𝑇𝑇
𝐶𝐶𝐶𝐶(𝑝𝑝,𝑇𝑇) : capacity price in the original merit-order list
𝐶𝐶(𝑝𝑝,𝑇𝑇) : capacity in the original merit-order list
𝑃𝑃𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 : offerable amount of the fluctuating RES
𝑇𝑇 : auction period

Energy prices are
created with the same
principles as capacity
prices

Entering the bids into
the merit-order lists

Bid replacement for
every merit-order list

Modelling the economics of control reserve provision by fluctuating RES | 135

To clarify, this means that all bids 𝐶𝐶𝐶𝐶(𝑝𝑝,𝑇𝑇) at the position 𝑝𝑝 in the merit-

order list will be replaced by the bid from the fluctuating RES 𝐶𝐶𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇) as

long as the capacity price is lower and the offerable amount 𝑃𝑃𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 has not

been exhausted by the replacement of the previous bids. 𝐶𝐶𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏 can be formed

from either approach in chapter 4.4.3 and may therefore vary in height. This

will be important when the total welfare is discussed in chapter 4.4.5.

Graphically this can presented as follows:

 Source: Own analysis

Figure 4-10: Replacement of bids in the merit-order list by list of the fluctuating RES

The new merit-order lists will be called 𝐶𝐶𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅(𝑝𝑝,𝑇𝑇). Naming differs

depending on whether the cost based approach or the market price based

approach was used. The cost-based approach is indexed as 𝐶𝐶𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅,𝑜𝑜𝑜𝑜(𝑝𝑝,𝑇𝑇)

whereas the market price based approach is indexed as 𝐶𝐶𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅,𝑚𝑚𝑚𝑚(𝑝𝑝,𝑇𝑇).

Following the argumentation in chapter 4.4.3.2 equation (4-22) is used for

the energy prices. Bids for the control reserve market incorporate capacity

prices and energy prices that are inseparable. For each capacity bid replaced,

energy bids are also replaced. 𝐸𝐸𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏 is derived from 𝐸𝐸𝐸𝐸𝑜𝑜𝑜𝑜 or 𝐸𝐸𝐸𝐸𝑚𝑚𝑚𝑚.

Ca
pa

ci
ty

 P
ric

e
in

 E
U

R/
M

W
/h

Capacity in MW

Ca
pa

ci
ty

 P
ric

e
in

 E
U

R/
M

W
/h

Capacity in MW

Redundant
bids

New bids from fluctuating RES

Poffer

Direction of replacement of bids

Description of
equation (4-22)

Naming convention of
the altered merit-order
lists

136 | Modelling the economics of control reserve provision by fluctuating RES

∀𝐶𝐶𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇) < 𝐶𝐶𝐶𝐶(𝑝𝑝,𝑇𝑇) ∨�𝐶𝐶(𝑝𝑝,𝑇𝑇) ≤ 𝑃𝑃𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂

1

𝑝𝑝=𝑛𝑛

→ 𝐸𝐸𝐸𝐸(𝑝𝑝,𝑇𝑇) ≐ 𝐸𝐸𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇)

(4-23)

with: 𝐶𝐶𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏 : capacity price of the fluctuating RES
𝐶𝐶𝐶𝐶(𝑝𝑝,𝑇𝑇) : capacity price in the original merit-order list
𝐶𝐶(𝑝𝑝,𝑇𝑇) : capacity in the original merit-order list
𝑃𝑃𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 : offerable amount of the fluctuating RES
𝐸𝐸𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝,𝑇𝑇) : energy price of the fluctuating RES for the auction time 𝑇𝑇
𝐸𝐸𝐸𝐸(𝑝𝑝,𝑇𝑇) : energy price in the original merit-order list
𝑇𝑇 : auction period

The merit-order list position 𝑝𝑝 indicates the same position for the

inseparable bids. The new merit-order lists 𝐸𝐸𝐸𝐸𝑅𝑅𝑅𝑅𝑅𝑅(𝑝𝑝,𝑇𝑇) are sorted after the

replacement of the bids. The cost based approach merit-order lists are named

𝐸𝐸𝐸𝐸𝑅𝑅𝑅𝑅𝑅𝑅,𝑜𝑜𝑜𝑜(𝑝𝑝,𝑇𝑇). The market price based approach is named 𝐸𝐸𝐸𝐸𝑅𝑅𝑅𝑅𝑅𝑅,𝑚𝑚𝑚𝑚(𝑝𝑝,𝑇𝑇).

4.4.5 Determining the changes in costs

A full dispatch simulation is performed to assess the economic impact of the

participation of fluctuating RES generators. A dispatch simulation includes

the changes in cost for reserve provision and dispatch for one selected

control reserve type.

The original (unaltered) merit-order lists are used as a benchmark. They

provide information on the cumulated overall costs for one control reserve

type 𝐶𝐶𝐵𝐵𝐵𝐵 in the status-quo. This is applied over the entire assessment period

for all 𝑇𝑇 = 1 …𝑚𝑚. The cost consists of the capacity costs 𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵 and the

dispatch cost 𝐷𝐷𝐷𝐷𝐵𝐵𝐵𝐵 .

 𝐶𝐶𝐵𝐵𝐵𝐵 = 𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵 + 𝐷𝐷𝐷𝐷𝐵𝐵𝐵𝐵 (4-24)

with: 𝐶𝐶𝐵𝐵𝐵𝐵 : cumulated overall cost over all 𝑇𝑇
𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵 : capacity costs
𝐷𝐷𝐷𝐷𝐵𝐵𝐵𝐵 : dispatch costs

The provision of control reserve means the provision (reservation) of

capacity for the later dispatch, if needed. The costs for the provision of

control reserve for the benchmark are calculated as follows:

Naming of new energy
price merit-order lists

Capacity cost and
dispatch simulation to
identify cost changes

Benchmark for cost
changes of fluctuating
RES in the market

Capacity costs

Modelling the economics of control reserve provision by fluctuating RES | 137

 𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵 = ��𝐶𝐶𝐶𝐶(𝑝𝑝,𝑇𝑇)
𝑛𝑛

𝑝𝑝=1

𝑚𝑚

𝑇𝑇=1

 (4-25)

with: 𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵 : cumulated capacity cost over all 𝑇𝑇
𝐶𝐶𝐶𝐶(𝑝𝑝,𝑇𝑇) : capacity prices in the original merit-order lists
𝑝𝑝 : position in the original merit-order list
𝑛𝑛 : maximum position in the original merit-order list at 𝑇𝑇
𝑇𝑇 : auction period
𝑚𝑚 : total number of auction periods

The dispatch costs of control reserve only occur when certain positions 𝑝𝑝 of

the merit-order list are activated. The costs for the dispatch of control

reserve for the benchmark are calculated as follows:

 𝐷𝐷𝐷𝐷𝐵𝐵𝐵𝐵 = � � 𝐸𝐸𝐸𝐸(𝑝𝑝,𝑇𝑇)

𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑝𝑝=1

∙ 𝐶𝐶(𝑝𝑝,𝑇𝑇)
𝑚𝑚

𝑇𝑇=1

(4-26)

with: 𝐷𝐷𝐷𝐷𝐵𝐵𝐵𝐵 : cumulated capacity cost over all 𝑇𝑇
𝐸𝐸𝐸𝐸(𝑝𝑝,𝑇𝑇) : capacity prices in the original merit-order lists
𝐶𝐶(𝑝𝑝,𝑇𝑇) : capacity of single bid
𝑝𝑝 : position original merit-order list
𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 : position at dispatched control reserve
𝑇𝑇 : auction period
𝑚𝑚 : total number of auction periods

Changes introduced into the merit-order lists by fluctuating RES generators

will lead to different costs than in the benchmark scenarios. These cost

changes between the benchmark case and the case with participation of

fluctuating RES in the control reserve market can be expressed as follows:

 𝛥𝛥𝛥𝛥 = 𝐶𝐶𝐵𝐵𝐵𝐵 − 𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅 (4-27)

with: 𝐶𝐶𝐵𝐵𝐵𝐵 : cumulated overall cost for the benchmark
𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅 : cumulated overall cost with fluctuating RES participation
𝛥𝛥𝛥𝛥 : change in costs

The cost for the provision and the dispatch of control reserve is calculated

based on the merit-order list that include the bids from the fluctuating RES.

Equally to equation (4-24) the total costs of 𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅 are:

Dispatch costs

Cost changes due to
fluctuating RES
generators

Sum of capacity and
dispatch costs from RES
merit-order lists

138 | Modelling the economics of control reserve provision by fluctuating RES

 𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅 = 𝐶𝐶𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅 + 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅𝑅𝑅 (4-28)

with: 𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅 : cumulated overall cost over all 𝑇𝑇 with fluctuating RES
𝐶𝐶𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅 : capacity costs with fluctuating RES
𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅𝑅𝑅 : dispatch costs with fluctuating RES

The costs for the provision of control reserve with the fluctuating RES in the

merit-order lists uses the merit-order lists 𝐶𝐶𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅 and 𝐸𝐸𝐸𝐸𝑅𝑅𝑅𝑅𝑆𝑆. 𝐶𝐶𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅 may either

be determined by 𝐶𝐶𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅,𝑜𝑜𝑜𝑜 or 𝐶𝐶𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅,𝑚𝑚𝑚𝑚. Accordingly, 𝐸𝐸𝐸𝐸𝑅𝑅𝑅𝑅𝑅𝑅 can either be

𝐶𝐶𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅,𝑜𝑜𝑜𝑜 or 𝐶𝐶𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅,𝑚𝑚𝑚𝑚. Derived from equation (4-25) this yields:

 𝐶𝐶𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅 = ��𝐶𝐶𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅(𝑝𝑝,𝑇𝑇)
𝑛𝑛

𝑝𝑝=1

𝑚𝑚

𝑇𝑇=1

 (4-29)

with: 𝐶𝐶𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅 : cumulated capacity cost over all 𝑇𝑇
𝐶𝐶𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅(𝑝𝑝,𝑇𝑇) : capacity prices in the altered merit-order lists
𝑝𝑝 : position in the altered merit-order list
𝑛𝑛 : maximum position in the altered merit-order at 𝑇𝑇
𝑇𝑇 : auction period
𝑚𝑚 : total number of auction periods

Equivalently, using equation (4-26), the dispatch costs are:

 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅𝑅𝑅 = � � 𝐸𝐸𝐸𝐸𝑅𝑅𝑅𝑅𝑅𝑅(𝑝𝑝,𝑇𝑇)

𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑝𝑝=1

∙ 𝐶𝐶(𝑝𝑝,𝑇𝑇)
𝑚𝑚

𝑇𝑇=1

(4-30)

with: 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅𝑅𝑅 : cumulated dispatch cost over all 𝑇𝑇
𝐸𝐸𝐸𝐸RES(𝑝𝑝, 𝑇𝑇) : capacity prices in the altered merit-order lists
𝐶𝐶(𝑝𝑝,𝑇𝑇) : capacity of single bid
𝑝𝑝 : positions altered merit-order list
𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 : position at dispatched control reserve
𝑇𝑇 : auction period
𝑚𝑚 : total number of auction periods

4.4.6 Impacts of the proof mechanism on the spot market

The choice of the proof mechanism for the delivery of control reserve, as

presented in Figure 3-17 and Figure 3-18, has implications on the behaviour

of fluctuating RES generators. It affects how much energy is available on the

wholesale market in total. The impact of the proof method on the spot market

prices and the subsequent costs changes are assessed. The curtailment of

Capacity cost with the
fluctuating RES

Behaviour of
fluctuating RES
generators due to proof
method

Modelling the economics of control reserve provision by fluctuating RES | 139

fluctuating RES will lead to energy losses and increased CO2 emissions due to

the merit-order shift. At the same time, this will lead to additional costs in the

energy system. Energy losses are shown in chapter 5.2.2 and additional costs

are shown in chapter 6.2.

The energy losses that are induced by the regulations in the control reserve

market have impacts on other markets than the control reserve market.

These cross-market dependencies may work both ways. For example, the

unavailability of power plants due to low spot market prices may lead to

unavailability in the control reserve markets. In the other direction the

commitment to provide control reserve could lead to certain units having to

deliver energy to the spot market and thus having to cope with the low prices

there. The latter is also known as control reserve market introduced must-

run capacity in the spot market and can reach up to 25 GW (FGH et al., 2012,

p. 1; Grünwald et al., 2015, p. 107).

The balance control (BC) proof mechanism requires the fluctuating RES

generator to be curtailed when control reserve is contracted. Despite the cost

increase in the markets, decreasing costs might also occur. Negative costs can

come from reduced payments in the RES support scheme due to less feed-in.

However, those payments guarantee the existence of fluctuating RES in the

energy system. In the current market environment, few wind farms and PV

systems would have been built without it. This also endangers political

targets of maximizing the RES feed-in.

A second potential cost decreasing effect of the proof method is on the

demand for control reserve itself. In the case of the balance control proof

method, the forecast errors are minimized. This is due to the curtailment to a

secure forecast. The forecast errors disappear almost entirely. This reduces

the balancing needs since the forecast error of fluctuating RES is one

contributing factor in the Graf-Haubrich-method described in chapter 3.2.3.

Previous assessments (Jansen, Speckmann, Schneider et al., 2013, p. 4) have

shown a decrease in reserve demand by approximately 5 %. However, cost

implications are small and largely depend on the probabilistic forecast used.

Cross-market
implications

Less RES payments due
to curtailment under
balance control proof
method

Cost reductions due to
less reserve demand

140 | Modelling the economics of control reserve provision by fluctuating RES

Since the forecast quality in this thesis has improved sufficiently, this effect

can be disregarded.

The application of the balance control proof method withholds energy of

fluctuating RES from the markets. The curtailment of the fluctuating RES

generators creates energy losses that have to be replaced by other units in

the market to satisfy the demand. The principles of the energy losses can be

seen in Figure 4-11 which is adapted from Figure 3-17 and shows the

provision of control reserve only. The contracted control reserve is not

requested by the TSO. Therefore, both 15-minute intervals show the energy

losses. The lost energy is the green and white striped area between the

probabilistic forecast and the available active power signal. The available

active power signal would have been the energy production with the

available active power proof method applied.

 Source: adapted from (Brauns et al., 2014, p. 74)

Figure 4-11: Illustration of the energy losses with the balance control proof method
applied marked as green striped area, adapted from Figure 3-17

0
Time in min

15 30

Po
w

er
 o

ut
pu

t i
n

M
W

Available active power

Feed-In
Probabilistic Forecast @ x%

Probabilistic Forecast @ x%
Feed-In

Deterministc Forecast

Deterministc Forecast

Cost increase due to
replacement costs and
merit-order effect

Modelling the economics of control reserve provision by fluctuating RES | 141

The lost energy can be calculated for each time interval 𝑡𝑡, which is the

15-minute balancing period in this case.

 𝐸𝐸𝑙𝑙(𝑡𝑡) = (𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡) − 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡)) ∙
𝑛𝑛𝑡𝑡
ℎ

 (4-31)

with: 𝐸𝐸𝑙𝑙(𝑡𝑡) : lost energy in time interval t
𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡) : actual power feed-in of fluctuating RES
𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡) : power forecast of fluctuating RES
𝑛𝑛𝑡𝑡
ℎ

 : number of time interval 𝑡𝑡 per hour ℎ

Annually this can be accumulated to allow quantification of the energy losses

𝐸𝐸𝑙𝑙,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 for the entire assessment period, i.e one year.

 𝐸𝐸𝑙𝑙,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = �𝐸𝐸𝑙𝑙(𝑡𝑡)
𝑛𝑛

𝑡𝑡=1

 (4-32)

with: 𝐸𝐸𝑙𝑙(𝑡𝑡) : lost energy in time interval t
𝐸𝐸𝑙𝑙,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 : annually cumulated lost energy
n : number of time intervals

These losses will have to be compensated, presumably by conventional

generation. Using conventional generation to replace the lost energy creates

the energy replacement price 𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡) that is an energy price, measured in

EUR/MWh.

 𝛥𝛥𝛥𝛥𝐵𝐵𝐵𝐵 = �[𝐸𝐸𝑙𝑙(𝑡𝑡) ∙ 𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡)]
𝑛𝑛

𝑡𝑡=1

 (4-33)

with: 𝛥𝛥𝛥𝛥𝐵𝐵𝐵𝐵 : cost changes due to BC proof method
𝐸𝐸𝑙𝑙(𝑡𝑡) : lost energy in time interval t
𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡) : energy replacement price
𝑛𝑛 : number of time intervals

The determination of EPrep(t) cannot be performed using simple techniques.

A possible approach will have to be robust and also account for uncertainties.

In this case, more than one approach is chosen to carry out this task. Two

different approaches will provide the upper and lower boundaries. In reality,

the results will likely be located between those boundaries. The curtailed

energy can be valued with the average fuel prices or the market prices. The

Calculation of lost
energy

Annual energy losses

Energy replacement
costs

Two possible
approaches for the
energy replacement
costs

142 | Modelling the economics of control reserve provision by fluctuating RES

first approach yields the cost changes 𝛥𝛥𝛥𝛥𝐹𝐹𝐹𝐹 whereas the latter yields 𝛥𝛥𝛥𝛥𝑀𝑀𝑀𝑀. In

addition to the energy replacement costs, the merit-order shift can be

evaluated, leading to the cost changes ΔCMO.

4.4.6.1 Cost of energy losses valued with average fuel price

The first approach uses average fuel costs. In this approach 𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡) is equal

for all 𝑡𝑡, called 𝐸𝐸𝐸𝐸𝐹𝐹𝐹𝐹 . A more sophisticated approach would be to model the

merit-order of the different fuels. In low demand situations, figures for

cheaper priced fuel such as lignite would have to be applied, whereas natural

gas is used during high demand situations. It is likely that using the market

based merit-order approach will yield similar or better results. Table 4-1

shows the fuel costs assessed for the years 2010 and 2013 and the installed

capacities for the most commonly used fuel types in Germany. For the REBal

model the average of those fuel costs are used.

Fuel Type Electricity generation costs

EUR/MWhel

Installed capacity

GW4

Nuclear 51.61 - 124.03 12.1

Hard Coal 47.81 - 71.52 26.3

Lignite 36.91 - 45.52 20.2

Natural Gas 75.11 - 86.52 26.5

Source: 1(Wissel, Fahl, Blesl, & Voß, 2010, p. 34) 2(Kost et al., 2013, p. 2) 3(DECC, 2013) 4(50Hertz Transmission GmbH,
Amprion GmbH, TenneT TSO GmbH, & TransnetBW GmbH, 2013, p. 35)

Table 4-1: Specific cost of electricity generation for the years 2010 and 2013

The average energy replacement cost based on average fuel prices 𝐸𝐸𝐸𝐸𝐹𝐹𝐹𝐹 is

65.9 EUR/MWh. Using the average fuel cost for the energy replacement price

allows simplifying equation (4-33).

 𝛥𝛥𝛥𝛥𝐵𝐵𝐵𝐵,𝐹𝐹𝐹𝐹 = 𝐸𝐸𝑙𝑙,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∙ 𝐸𝐸𝐸𝐸𝐹𝐹𝐹𝐹 (4-34)

with: 𝛥𝛥𝛥𝛥𝐵𝐵𝐵𝐵,𝐹𝐹𝐹𝐹 : cost changes due to BC proof method
𝐸𝐸𝑙𝑙,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 : cumulated lost energy
𝐸𝐸𝐸𝐸𝐹𝐹𝐹𝐹 : average fuel cost energy replacement price

Average fuel cost for
lost energy

Average fuel cost is
65.9 EUR/MWh

Modelling the economics of control reserve provision by fluctuating RES | 143

4.4.6.2 Cost of energy losses valued with spot market prices

The second approach uses the market prices to calculate the energy

replacement costs 𝐸𝐸𝐸𝐸𝑀𝑀𝑀𝑀(𝑡𝑡). In this approach, the market price changes

throughout the year can be accommodated using the spot market prices. The

losses are valued with their respective market prices at that time. The market

price based energy replacement cost is applied to all 𝐸𝐸𝑙𝑙(𝑡𝑡) individually.

 𝛥𝛥𝛥𝛥𝐵𝐵𝐵𝐵,𝑀𝑀𝑀𝑀 = �[𝐸𝐸𝑙𝑙(𝑡𝑡) ∙ 𝐸𝐸𝐸𝐸𝑀𝑀𝑀𝑀(𝑡𝑡)]
𝑛𝑛

𝑡𝑡=1

 (4-35)

with: 𝛥𝛥𝛥𝛥𝐵𝐵𝐵𝐵,𝑀𝑀𝑀𝑀 : cost changes due to BC proof method
𝐸𝐸𝑙𝑙(𝑡𝑡) : lost energy in time interval 𝑡𝑡
𝐸𝐸𝐸𝐸𝑀𝑀𝑀𝑀(𝑡𝑡) : market based energy replacement price
𝑛𝑛 : number of time intervals

The day-ahead spot market data is used, since it can be considered the most

reliable price information due to the high liquidity of the market. Price

occluding fluctuations from strategic bidding will be minimized when

compared to markets with low liquidity.

4.4.6.3 Costs due to increased spot market prices for all market participants

The dispatch at the electricity market is determined by the power plants

used. Power plants with increasing marginal costs are used during high load

situations. The introduction of renewables requires that only the residual

load 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟 be generated. The residual load is the electricity load 𝐿𝐿𝐷𝐷 minus the

feed-in of the fluctuating RES 𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓. Increasing RES feed-in leads to lower

residual loads. The spot market electricity prices 𝑀𝑀𝑀𝑀 can be expressed as a

function of the residual load

 𝐸𝐸𝐸𝐸𝑀𝑀𝑀𝑀(𝑡𝑡) = 𝑀𝑀𝑀𝑀(𝑡𝑡) = 𝑓𝑓(𝐿𝐿𝐷𝐷(𝑡𝑡) − 𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑡𝑡)) (4-36)

with: 𝐸𝐸𝐸𝐸𝑀𝑀𝑀𝑀(𝑡𝑡) : market based energy replacement price
𝑀𝑀𝑀𝑀(𝑡𝑡) : spot market price
𝐿𝐿𝐷𝐷(𝑡𝑡) : electricity load
𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 : feed-in fluctuating RES

Market price based
replacement costs

Day-ahead spot market
due to high liquidity

Merit-order principle

144 | Modelling the economics of control reserve provision by fluctuating RES

The balance control proof method has impacts on the dispatch of fluctuating

RES. The generators will be curtailed when they provide control reserve, as

required by the proof method. This changes the available PfluctRES on the

market and leads to changing market prices.

 𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,𝐵𝐵𝐵𝐵(𝑡𝑡) = 𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑡𝑡) − 𝐸𝐸𝑙𝑙(𝑡𝑡) (4-37)

with: 𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 : feed-in of fluctuating RES
𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,𝐵𝐵𝐵𝐵 : feed-in of fluctuating RES with curtailment
𝐸𝐸𝑙𝑙(𝑡𝑡) : lost energy

The relationship between the market prices and changing residual loads is

investigated, to calculate the merit-order effect (Sensfuß et al., 2007). The

correlation between the residual load and the market price can be fitted with

a polynomial using polynomial regression (see e.g. (Heiberger & Neuwirth,

2009, pp. 269–283). This is helpful since volatility caused by price events is a

“natural” phenomenon in electricity markets (Weron, 2006, p. 69). It is

necessary to use methods that are able to account for outliers in order to

recover the prevailing trend in the data (Forrest & MacGill, 2013, p. 124). The

scatter plot in Figure 4-12 shows the relationship between the residual load

and the spot market prices (grey dots) and an nth grade polynomial (green

line) which can be written as:

 𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑥𝑥) = 𝑎𝑎0 + 𝑎𝑎1𝑥𝑥 + 𝑎𝑎2𝑥𝑥2 + 𝑎𝑎3𝑥𝑥3 + ⋯+ 𝑎𝑎𝑛𝑛𝑥𝑥𝑛𝑛 + 𝑏𝑏 (4-38)

with: 𝑎𝑎1 … 𝑎𝑎𝑛𝑛 (~) : spot market price
𝑥𝑥 (~) : independent variable
𝑏𝑏 (~) : random error term

For the fitting of the polynomial to the data it is necessary that the 𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑥𝑥) is

monotonously increasing. REBal applies different grade polynomials to the

data. The highest-grade polynomial that fulfils the monotonicity criterion is

chosen, provided that all the previous lower grade polynomials also fulfilled

the criterion.

Change of residual load
due to proof method

Relationship between
the market prices and
residual load

Monotonicity as a
selection criterion for
the polynomial fit

Modelling the economics of control reserve provision by fluctuating RES | 145

 Source: Own analysis

Figure 4-12: Correlation of residual load and the day-ahead spot market price with its
highest-grade possible monotonously increasing polynomial fit

Additionally the criterion shall be tested for values < 𝑚𝑚𝑚𝑚𝑚𝑚(𝑀𝑀𝑀𝑀) and

> 𝑚𝑚𝑚𝑚𝑚𝑚(𝑀𝑀𝑀𝑀). This ensures that the fitted function is valid even in areas

without original data. It is reasonable to extend the merit-order list fitting by

a certain value, which can be chosen freely. Once the polynomial is fitted, the

energy replacement can be calculated.

𝑀𝑀𝑀𝑀𝐵𝐵𝐵𝐵(𝑡𝑡) = 𝑀𝑀𝑀𝑀(𝑡𝑡)

+ �𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 �𝐿𝐿𝐷𝐷(𝑡𝑡) − 𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,𝐵𝐵𝐵𝐵(𝑡𝑡)�

− 𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 �𝐿𝐿𝐷𝐷(𝑡𝑡) − 𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑡𝑡)��

(4-39)

with: 𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 : nth grade polynomial of the market price
𝑀𝑀𝑀𝑀(𝑡𝑡) : spot market price
𝑀𝑀𝑀𝑀𝐵𝐵𝐵𝐵(𝑡𝑡) : spot market price with BC curtailment
𝐿𝐿𝐷𝐷(𝑡𝑡) : electricity load
𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 : feed-in fluctuating RES
𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,𝐵𝐵𝐵𝐵 : feed-in fluctuating RES with BC curtailment

The changed availability of fluctuating RES increases the market prices for all

market participants since less RES generation shifts the supply curve. This

Extending the
Monotonicity criterion
beyond the initial data
set

Cost changes due to
the merit-order effect

146 | Modelling the economics of control reserve provision by fluctuating RES

increases the equilibrium market price which is known as the merit-order

effect (Sensfuß et al., 2007). The merit-order cost changes can be quantified

 𝛥𝛥𝛥𝛥𝑀𝑀𝑀𝑀 = ��𝑀𝑀𝑀𝑀𝐵𝐵𝐵𝐵(𝑡𝑡) ∙ 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟,𝐵𝐵𝐵𝐵(𝑡𝑡) −𝑀𝑀𝑀𝑀(𝑡𝑡) ∙ 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡)�
𝑛𝑛

𝑡𝑡=1

 (4-40)

with: 𝑀𝑀𝑀𝑀 : spot market price
𝑀𝑀𝑀𝑀𝐵𝐵𝐵𝐵 : spot market price with BC proof method
𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡) : residual load
𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟.𝐵𝐵𝐵𝐵(𝑡𝑡) : residual load with BC proof method
𝛥𝛥𝛥𝛥𝐵𝐵𝐵𝐵,𝑀𝑀𝑀𝑀 : cost changes due to merit-order shift

4.4.7 Welfare gain from fluctuating RES

The changes of costs 𝛥𝛥𝛥𝛥 can be interpreted as changes in the welfare. Welfare

is a term in micro-economic theory, often used when the supply and demand

allocation in a market is assessed. The concept of welfare economics is a long

standing theory (Pigou, 1920). More recent readings can be found in e.g.

Broadway and Bruce (2011) or Johansson (1997). The total welfare consists

of the consumer surplus and the producer surplus. The control reserve

market requires the adaption of the welfare economics theory due to the

presence of strategic bidding and the pay-as-bid pricing mechanism.

The theory on welfare economics states that an economic system is improved

if the financial situation of one market participant is improved (in this case

the fluctuating RES) without impairing the financial situation of other market

participants (in this case the TSO). The starting point is a non-optimal

situation (Pareto optimal) which is improved towards a better non-optimal

situation where everybody is better off than before. Therefore, welfare

economics ranks different non-optimal situations, as well as the influence of

regulatory entities. The theory is based on two theorems. The first theorem

states that one market participant’s generated revenue is a second market

participant’s expenditure. If the economic situation improves for the first

market participant and does not worsen for the second, an improvement is

achieved (Pareto improvement). The second theorem states that an increase

in Pareto efficiency is gained by good regulation of the market mechanisms.

Occasionally a third theorem is mentioned; this states that the allocation of

Use of welfare
economics

A very short
introduction to welfare
economics

https://en.wikipedia.org/wiki/Microeconomics

Modelling the economics of control reserve provision by fluctuating RES | 147

resources and revenues cannot be optimal for all market participants

simultaneously. Despite its usefulness, the theory has been challenged in the

past. Discussion of this will not be presented here, however. (see e.g.

(Boadway & Bruce, 2011; Johansson, 1997; Pigou, 1920))

With the help of Figure 4-13 the application of the concept of welfare in the

control reserve market is explained. The supply function 𝑆𝑆𝑆𝑆 is based on the

example merit-order lists in Figure 4-9 to Figure 4-10 showing the capacity

prices. In reality, the supply function depends on many different variables,

such as the time of day, the market segment and product as well as the

current power plant availability. The procedure for energy prices is not

presented at this point. It follows an equal principle with the difference that

the demand function is constantly moving according to the dispatch, yet is

still inelastic.

The control reserve demand function 𝐷𝐷𝐷𝐷 is calculated according to the Graf-

Haubrich-methodology described in chapter 3.2.3. The total control reserve

demand 𝐶𝐶𝐷𝐷𝐷𝐷𝐷𝐷 is dependent on the desired system security. The steepness of a

demand function that determines its sensitivity to price changes is called

elasticity 𝐸𝐸. This quantifies the changes as a function of the price change.

Elasticity in the case of control reserve markets can only be expected when

the costs for provision of the reserve exceed the value of lost load (VoLL).

Since this value is currently significantly higher than reserve cost (see e.g.

(London Economics, 2013)) it can be assumed that the demand is completely

inelastic. This is indicated by the vertical orange line for 𝐷𝐷𝐷𝐷.

 𝐸𝐸(𝐷𝐷𝐷𝐷) =
𝛥𝛥𝛥𝛥
𝛥𝛥𝛥𝛥

= 0 (4-41)

with: 𝛥𝛥𝛥𝛥 : Change in quantity
𝛥𝛥𝛥𝛥 : Change in price

The consumers in the case of control reserve are the TSOs and hence

ultimately all grid users. The consumer surplus 𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵 is infinite in

Figure 4-13; it extends infinitely beyond the boundaries of the graph. In

reality, it will be finite and limited by the value of lost load (VoLL).

Welfare gain in the
control reserve market

Control reserve
demand function 𝐷𝐷𝐷𝐷

TSOs and grid users are
the consumers

148 | Modelling the economics of control reserve provision by fluctuating RES

 Source: Own analysis

Figure 4-13: Supply and demand function for the capacity bids of the control reserve
market with inelastic demand

Due to the pay-as-bid pricing mechanism, the producer surplus 𝑃𝑃𝑃𝑃𝐵𝐵𝐵𝐵 above

the merit-order list will be realized by the TSOs, not by the producers. The

supply function 𝑆𝑆𝑆𝑆 can lie between the benchmark merit-order list

𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵(green line) and the maximum achievable prices at 𝑆𝑆𝑆𝑆’’’ (grey dotted

line). This is the case when all producers can “guess the clearing price” (Heim

& Goetz, 2013, p. 1) correctly. The 𝑆𝑆𝑆𝑆 becomes flatter, as indicated by 𝑆𝑆𝑆𝑆’,

𝑆𝑆𝑆𝑆’’ (light green lines) and 𝑆𝑆𝑆𝑆’’’. Ideally the producers are able to recover the

entire benchmark producer surplus 𝑃𝑃𝑃𝑃𝐵𝐵𝐵𝐵. In this case 𝑃𝑃𝑃𝑃𝐵𝐵𝐵𝐵 is equal for

pay-as-bid and marginal pricing. In a real market, imperfect price forecasts

and strategic bidding will prevent this from happening. Therefore, the real

merit-order list will be used as a benchmark, assuming that the producer

surplus cannot be maximized further.

The introduction of fluctuating RES into the control reserve market will shift

the supply function 𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵 to the right to form 𝑆𝑆𝑆𝑆𝑅𝑅𝑅𝑅𝑅𝑅. Depending whether

𝑆𝑆𝑆𝑆𝑅𝑅𝑅𝑅𝑅𝑅 is made out of the merit-order list with the opportunity cost approach

𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂 or the market price approach 𝑆𝑆𝑆𝑆𝑀𝑀𝑀𝑀 it could have a different shape.

𝐶𝐶𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅,𝑚𝑚𝑚𝑚𝑚𝑚 could differ between the two bidding strategies that have an

Quantity in MW

Ca
pa

ci
ty

 p
ric

e
in

 E
U

R/
M

W
/h

Benchmark
Producer Surplus PSBM

Benchmark
Consumer Surplus CSBM

SF’’

SF’

SF’’’CPBM,max

CDim

In pay as bids markets the supply
function SF can take any shape between
SFBM and SF’’’ without altering marginal
capacity price CPBM,maxSFBM DF

Equilibrium
Price PBM

Specialties due to pay-
as-bid pricing

Fluctuating RES shift
supply function from
𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵 to 𝑆𝑆𝑆𝑆𝑅𝑅𝑅𝑅𝑅𝑅

Modelling the economics of control reserve provision by fluctuating RES | 149

influence on the accepted quantities from fluctuating RES. For reasons of

simplicity in Figure 4-14 it is assumed that 𝐶𝐶𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅,𝑚𝑚𝑚𝑚𝑚𝑚,𝑜𝑜𝑜𝑜 = 𝐶𝐶𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅,𝑚𝑚𝑚𝑚𝑥𝑥,𝑚𝑚𝑚𝑚 and

only the shape of 𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂 and 𝑆𝑆𝑆𝑆𝑀𝑀𝑀𝑀 between 0 and 𝐶𝐶𝐷𝐷𝐷𝐷𝐷𝐷 is altered. In reality,

however this will most likely not be the case.

 Source: Own analysis

Figure 4-14: Supply and demand function for the capacity bids of the control reserve
market with inelastic demand and the fluctuating RES generators with bids
from the opportunity cost approach (OP) and the profit maximizing
approach (MP)

The shift of the supply function 𝑆𝑆𝑆𝑆 leads to changes in the consumer surplus

𝐶𝐶𝐶𝐶 and the producer surplus 𝑃𝑃𝑃𝑃. The orange and white striped area (area E)

plus the orange and grey striped (area A) area make up the consumer surplus

𝐶𝐶𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅. Compared with Figure 4-13 this is increased by the additional

consumer surplus 𝐶𝐶𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅, indicated as area A. The additional producer surplus

consists of the green and white striped area (area D) as well as the dark blue

and grey (area B) and light blue and grey (area C) striped areas. Areas D and

C cannot be accessed by the producers due to the pay-as-bid pricing

mechanism.

These changes in welfare are now set in relation to the cost changes from

chapter 4.4.5, meaning the increase or loss in welfare can be calculated with

equation (4-27) in chapter 4.4.5. If 𝐶𝐶𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅,𝑚𝑚𝑚𝑚𝑚𝑚,𝑜𝑜𝑜𝑜 = 𝐶𝐶𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅,𝑚𝑚𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚 then 𝐶𝐶𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅,𝑂𝑂𝑂𝑂

Quantity in MW

Ca
pa

ci
ty

 p
ric

e
in

 E
U

R/
M

W
/h

Consumer Surplus CSRES

CPBM,max

CDim

DF

CPRES,max

SFOP

SFMP

SFBM

Additional
CSRES,OP
CSRES,MP

Additional
PSRES,MP

Additional
PSRES,OP

Producer Surplus PSRES

A

B

CD

E

Equilibrium
Price PRES

Identifying the
producer and consumer
surplus in the pay-as-
bid control reserve
market

Relation between cost
changes and welfare
gain

150 | Modelling the economics of control reserve provision by fluctuating RES

is equal to 𝐶𝐶𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅,𝑀𝑀𝑀𝑀. The cost changes induced by the fluctuating RES bidding

their opportunity costs can be calculated as following:

 𝛥𝛥𝐶𝐶𝑂𝑂𝑂𝑂 = 𝐶𝐶𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅,𝑂𝑂𝑂𝑂 + 𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅,𝑂𝑂𝑂𝑂 + 𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅,𝑀𝑀𝑀𝑀 (4-42)

with: 𝐶𝐶𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅,𝑂𝑂𝑂𝑂 : additional consumer surplus (area A)
𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅,𝑂𝑂𝑂𝑂 : additional producer surplus (area B)
𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅,𝑀𝑀𝑀𝑀 : additional producer surplus (area C)
𝛥𝛥𝐶𝐶𝑂𝑂𝑂𝑂 : change in costs with opportunity cost merit-order lists

The fluctuating RES, oriented to the market price bidding, generate the

additional income 𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅,𝑂𝑂𝑂𝑂, which is the difference between the opportunity

cost and profit maximizing bidding approach. The principles are equally

applied to the capacity component as well as the energy component of the

existing control reserve markets. The cost changes for market-based bidding

can be calculated as follows:

 𝛥𝛥𝐶𝐶𝑀𝑀𝑀𝑀 = 𝐶𝐶𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅,𝑀𝑀𝑀𝑀 + 𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅,𝑀𝑀𝑀𝑀 (4-43)

with: 𝐶𝐶𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅,𝑂𝑂𝑂𝑂 : additional consumer surplus (area A)
𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅,𝑀𝑀𝑀𝑀 : additional producer surplus (area C)
𝛥𝛥𝐶𝐶𝑀𝑀𝑀𝑀 : cost change with market price merit-order lists

𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅,𝑂𝑂𝑂𝑂 is the possible additional income for the fluctuating RES generators

through their market participation. Results are displayed in chapter 5.4. The

cost changes 𝛥𝛥𝐶𝐶𝑀𝑀𝑀𝑀 are the cost saving potential from the systems point of

view, as shown in chapter 6.1. The welfare gain is obtained from 𝛥𝛥𝐶𝐶𝑂𝑂𝑂𝑂 as

presented in chapter 6.3.

4.4.8 Forecasting the welfare gain in 2020 and 2030

The identification of the welfare gain in the previous chapter allows

forecasting for the future. This chapter is based on the findings of the

previous chapter as well as on the findings in chapter 6.3, which opens up the

possibility of carrying out the forecast. Extrapolating the welfare into the

future with results from the hindcasting approach allows an approach that is

robust against short-term price changes.

Cost changes of market
based bidding and
possible additional
income

Interpretation of the
results

Forecast the welfare
gain based on the
results of the
hindcasting model

Modelling the economics of control reserve provision by fluctuating RES | 151

The extrapolation is likely to capture the underlying fundamentals of the

market development, as discussed by Lorenz and Gerbaulet (2015). The

approach of Lorenz and Gerbaulet is based on a fundamental analysis model

(see chapter 3.4.3.1) for the year 2025. The authors elaborate on the

difficulties of estimated prices for negative control reserve markets. They

conclude that the conditions in 2025 might lead to relatively lower costs for

positive control reserve (secondary and tertiary) and higher costs for

negative reserves (secondary and tertiary). In total however, lower costs

could be observed. This would indicate that the negative control reserve

markets would develop in a stable manner, with a downward slope due to

the participation of wind and PV (Lorenz & Gerbaulet, 2015, p. 10).

From the results in Figure 6-5 one can conclude that the contribution of

fluctuating RES will strongly diminish in the future for the dispatch

component. Current developments indicate an increase in competition in the

energy price component of the control reserve markets (Bundesnetzagentur,

2015). The addition of an energy-only reserve market follows the previous

announcements by Acer (2012) and ENTSO-E (2014). It is very likely that the

suggested changes will increase the competition significantly, pricing the

dispatch of control reserve energy by fluctuating RES out of the market. The

forecast of welfare gains is based on the capacity component only.

The provision of positive control reserve by fluctuating RES generators

cannot create significant welfare gains in the market, based on the capacity

component only (see Figure 5-17, Figure 6-1, Figure 6-2, Figure 6-5 and

Figure 6-6). This is mainly due to the high costs of curtailments, which are

not expected to change in the future. Even with the ongoing merit-order

effect and subsequent negative prices, the market penetration in the positive

reserve market will stay insignificant, due to the underlying fundamentals.

This leads to the conclusion that the forecast of the welfare gains shall only

be based on the negative control reserve market.

The changes currently being discussed by the Federal Network Agency

suggest that the product lengths of the secondary and tertiary control reserve

are both harmonized to a product length of four hours (Bundesnetzagentur,

Future market
development and
welfare gain follow
fundamentals in the
control reserve market

Considering only
capacity component of
the markets

Only negative reserve
markets

Forecasts is created for
secondary and tertiary
markets together due
to interchangeability of
those markets

152 | Modelling the economics of control reserve provision by fluctuating RES

2015, p. 5,12). This not only increases the economics of a possible reserve

provision by fluctuating RES generators, but also makes both markets

interchangeable. Since fluctuating RES generators are technically able to

provide both services, they will contribute to whichever market provides the

larger benefits and hence creates the larger welfare gain. Therefore, the

welfare gain in the markets should be forecasted jointly, without

distinguishing between them. At the current time, the shares of the welfare

gain of both market segments, as shown in Figure 6-7, are averaged and

forecasted into the future.

𝛥𝛥𝑊𝑊𝑊𝑊𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,2030 = 𝛥𝛥𝑊𝑊𝑊𝑊𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,2020 = 𝛥𝛥𝑊𝑊𝑊𝑊𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,2010…2014������������������������

=
1
𝑛𝑛

�
(𝛥𝛥𝑊𝑊𝑊𝑊𝑆𝑆𝑆𝑆𝑆𝑆,𝑡𝑡 + 𝛥𝛥𝑊𝑊𝑊𝑊𝑇𝑇𝑇𝑇𝑇𝑇,𝑡𝑡)

2

2014

𝑡𝑡=2010

(4-44)

with: 𝑛𝑛 : number of years
𝛥𝛥𝑊𝑊𝑊𝑊𝑆𝑆𝑆𝑆𝑆𝑆,𝑡𝑡 : observed welfare gain as the ratio between the capacity
 component welfare gain and the capacity cost market value
 of the secondary market in the year 𝑡𝑡
𝛥𝛥𝑊𝑊𝑊𝑊𝑇𝑇𝑇𝑇𝑇𝑇,𝑡𝑡 : observed welfare gain as the ratio between the capacity
 component welfare gain and the capacity cost market value
 of the tertiary market in the year 𝑡𝑡
𝛥𝛥𝑊𝑊𝑊𝑊𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑡𝑡����������� : average of observed annual welfare gains from both
 markets
𝛥𝛥𝑊𝑊𝑊𝑊𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,2020 : ratio of welfare gain and total market volume in 2020
𝛥𝛥𝑊𝑊𝑊𝑊𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,2030 : ratio of welfare gain and total market volume in 2030

Equation (4-44) explains how the ratio between the welfare gains for the

capacity cost component and the capacity cost component market size is

extrapolated into the future. The mean value of the ratio in the secondary and

tertiary market is averaged over all assessment years. Since the average of

the ratios is relatively stable for the assessment period, it is assumed that the

fluctuating RES generators will achieve the same share in the future. The

constant share can also be explained by the fact that the potentials are

limited due to resource availability.

Since the welfare gain of the capacity component is dependent on the market

size in the future, this must first be forecasted. This can be done by

considering the past development (for market volume data see Figure 3-7).

The market size of the capacity component of the secondary and tertiary

Naïve predictor for the
ratio between welfare
gain and market size

Extrapolating the
market development
from the past

Modelling the economics of control reserve provision by fluctuating RES | 153

market has decreased significantly over recent years. Based on past

development, the data is extrapolated into the future. The welfare gain from

of the fluctuating RES generators can then be expressed as a share of the

market size, as shown in equation (4-44).

The decreasing market size correlates with a decrease in the control reserve

demand in Figure 3-10. The decrease in control reserve demand can be

associated with the removal of inefficiencies in the power system design,

especially in the balancing group contracts. It can be assumed that these

inefficiencies have been removed for the most part. Further decrease in

control reserve demand should not be expected. It is likely that the forecast

errors of fluctuating RES will have an increasing influence on the demand.

The dena II study concludes that the demand will not increase significantly

(dena et al., 2010, p. 19) in the future. For this thesis, it is assumed that the

demand stabilizes at the level of 2014. It can therefore be assumed to be

constant in the future. However, since past market volume data was

influenced by the by now removed inefficiencies, the data is adjusted to

accommodate this effect. The market volume is derated in proportion to the

amount that the demand exceeded pre-2014 levels. After this adjustment the

market size can be extrapolated.

For the extrapolation the choice of the extrapolation function is paramount. It

is assumed that the market volume will not reach zero at any time. It can be

safely assumed that the market volume will stabilize at lower levels than

today’s levels, due to increased competition. The chosen function needs to

fulfil this requirement. Two groups of functions have been identified to be

particularly suited for this task. The first is the group of exponential functions

(see e.g. (Papula, 2009, p. 103)) or the broken rational functions (see e.g.

(Papula, 2009, p. 85)). The latter group of functions show undesirable

asymptotic behaviour with the fitted data. Therefore exponential functions in

the form of equation (4-45) are chosen:

Forecasting the market
volume in the 2020 and
2030

Choosing an
appropriate
extrapolation function

154 | Modelling the economics of control reserve provision by fluctuating RES

 𝑓𝑓(𝑥𝑥) = 𝑎𝑎 ∙ 𝑒𝑒(𝑏𝑏∙𝑥𝑥) (4-45)

with: 𝑒𝑒 : euler number
𝑎𝑎 : first coefficient
𝑏𝑏 : second coefficient

After fitting the market development to the function 𝑓𝑓(𝑥𝑥), the annual market

volume is calculated for the years 2020 and 2030 (𝑓𝑓(2020) and 𝑓𝑓(2030)).

The shares of equation (4-44) are applied for the results from the previous

chapter, using different levels of reliability and product lengths.

4.5 Limitations of the chosen modelling approach

The modelling of the participation of fluctuating RES in the control reserve

market fulfils the criteria. However, due to the chosen modelling approach

several limitations can be observed. Since REBal is a hindcasting model, it is

only able to model for the ex-post. Forecasting the economic impact in the

future can only be carried out as an approximation from the results. Despite

best efforts to model all eventualities, results may prove volatile as a result of

changes of the input parameters. In general, results show a high dependency

on price movements in the market.

It is likely that the addition of fluctuating RES will have an impact on the

behaviour of other market participants in the control reserve market. REBal

does not allow observation of those changes, which would require certain

assumptions about the market participants’ behaviour. It is therefore unable

to measure changes in control reserve prices by any other means than

fluctuating RES. Possible behavioural changes would decrease the possible

additional income for new market participants. The welfare gain will be the

same however, as the Pareto optimal is shifted and the gain is accessed by the

demand side.

The results are subject to regulatory framework changes. A change of the

pricing mechanism from pay-as-bid to marginal pricing would change the

shape of the merit-order list completely. This can only be modelled with

assumptions of the shape and must be considered highly speculative.

Application of market
volume to welfare gain
ratios

Drawbacks using the
REBal model and
dependencies

Participation of other
market participants
cannot be modelled

Regulatory framework
changes

Modelling the economics of control reserve provision by fluctuating RES | 155

Economic gains might only realize on a short-time scale. The modelled

merit-order effect does not include long-term capacity effects, which would

have to be evaluated with a different approach.

Changes to legislation could change the market structure significantly. The

REBal model is flexible enough to accommodate for this, the results shown in

this study might not reflect the new market structure.

No long-term capacity
effects modelled

Regulatory changes will
change the market
structure that would
require recalculation

156 | Modelling the economics of control reserve provision by fluctuating RES

Economics of fluctuating RES in the control reserve markets | 157

5 Economics of fluctuating RES in the control reserve
markets

The results of the modelling are split into two parts. The first part assesses

the behaviour of fluctuating RES in the control reserve markets, and shows

the economic impact on the generators themselves. The second part assesses

the micro-economic impact of the behaviour on a system-wide level. In this

chapter, the key decision elements of fluctuating RES delivering control

reserve are presented and their economic importance evaluated.

The economic impact assessment for the fluctuating RES generators in this

chapter purely focuses on the supply side. These generators as financial

entities will strive to optimize their market participation and thus maximize

their potential income. Achieving this goal encourages strategic bidding in

the market. The relatively small size of the control reserve market with its

potential lack in market liquidity could lead to a strong influence on the

market results by single market participants. This influence of the fluctuating

RES generators is quantified in chapter 6. However, only the influence of the

new market participants is assessed, since strategic bidding hinders the

modelling of the reaction of the other market participants.

The bids and results in this chapter are calculated for the combination of a

multitude of parameters. In total 504 different combinations of bids were

created for each one of the five different fluctuating RES generator types

(data overview in Figure 4-2). The assessed pool of fluctuating RES

generators are the 30 GW onshore wind farm pool in Germany, the 1 GW

onshore wind pool of individual wind farms, the 1 GW offshore wind farm

pool Germany, the 30 GW pool of PV systems in Germany and the 1 GW pool

of individual PV systems. The bids for each generator type include bids for

the secondary and tertiary control reserve market, each individually for

negative and positive markets as well as with symmetric bidding. For the

sake of brevity, symmetric bidding will not be presented. Primary control

reserve could be modelled by REBal; although, while proven by some

Economic impact
assessment from the
generators’ point of
view and the system
point of view

Bidding behaviour in
the market by market
participants

Parameter variation for
fluctuating RES
generators in the
secondary and tertiary
control reserve market

158 | Economics of fluctuating RES in the control reserve markets

research results, the technical capabilities of the units are still disputed.

Therefore, it does not form part of the assessment at any point.

The investigated product lengths are one hour, two hours, four hours, eight

hours, twelve hours and 24 hours. The levels of reliability are 95 %, 99 %,

99.5 %, 99.9 %, 99.99 %, 99.994 % and 99.999 %. For each of the scenarios

an opportunity cost based approach and a market price based approach is

calculated, implementing two different proof methods (see Figure 3-17 and

Figure 3-18). This leads to 2520 individual sets of bids in four different

market segments, namely negative and positive secondary and tertiary

control reserve. A sensitivity analysis is not required due to the initial

variation of all input parameters.

5.1 Probabilistic Forecasts

Based on the methodology in chapter 4.4.1 the probabilistic forecasts for the

assessed fluctuating RES are examined. These forecasts are used to

determine the offerable capacity for each generator type at each point in

time. For the wind farms, this includes the entire German 30 GW wind farm

pool, the 1 GW pool of individual wind farms, and the entire German offshore

wind farm pool of 1 GW. The investigated PV systems include the entire

German pool of 30 GW of PV systems and the 1 GW pool of PV systems.

Exemplary data for the different onshore wind park pools are shown in

Figure 5-1 for the period from the 14th of August 2014 to the 20th of August

2014. The German offshore wind farm pool of 1 GW is shown in Figure 5-2.

For the PV systems, exemplary data are shown in Figure 5-3 for the same

period. The probabilistic forecasts for the one-hour ahead intraday forecasts

are shown in Appendix B-A. Each of the graphs shows the different quantiles

of a probabilistic forecast. Lower reliability is indicated by blue colours,

through greens to higher reliability shown in orange. The actual feed-in is

shown in grey.

Variation of product
length, levels of
reliability, proof
method and markets

Probabilistic forecast
for offering control
reserve reliably

Description of the
following graphs

Economics of fluctuating RES in the control reserve markets | 159

 Source: Own analysis

Figure 5-1: Probabilistic day-ahead forecast of the German 30 GW onshore wind farm
pool and the 1 GW onshore wind farm pool

The probabilistic forecast data in Figure 5-1 are presented for the forecast

quantiles of 95 %, 99 %, 99.5 %, 99.9 %, 99.99 %, 99.994 %, and 99.999 %.

One can observe the different feed-in characteristics of the three different

14/08/2014 15/08/2014 16/08/2014 17/08/2014 18/08/2014 19/08/2014 20/08/2014
0

0.2

0.4

0.6

0.8

1

Time

N
or

m
al

iz
ed

 P
ow

er

Onshore Wind 30 GW Germany

Feed-In

95%

99%

99.5%

99.9%

99.99%

99.994%

99.999%

Onshore Wind 1 GW Pool

14/08/2014 15/08/2014 16/08/2014 17/08/2014 18/08/2014 19/08/2014 20/08/2014
0

0.2

0.4

0.6

0.8

1

Time

N
or

m
al

iz
ed

 P
ow

er

Forecast security levels
for five different data
sets of fluctuating RES

160 | Economics of fluctuating RES in the control reserve markets

sets of wind farms (Figure 5-1 and Figure 5-2) and the two sets of PV

systems (Figure 5-3).

 Source: Own analysis

Figure 5-2: Probabilistic day-ahead forecast of the German 1 GW offshore wind farm
pool

With increasing forecast reliability the offerable amount decreases

significantly. The amount depends on the quality of the initial forecast. The

onshore wind farm pool of 1 GW has fewer smoothing effects than the 30 GW

pool. At comparable day-ahead point forecasts, the 30 GW wind farm pool

probabilistic forecast is significantly higher at the same level of reliability.

The same behaviour can be seen in the one-hour ahead intraday forecast in

the Appendix B-A. The forecasts for the offshore wind farm pool show that

there is a high confidence in the forecast when full load is predicted. At the

same time, the forecasts tend to show a high level of uncertainty in times

with low or medium feed-in levels. Offshore wind forecasts suffer from

Feed-In

95%

99%

99.5%

99.9%

99.99%

99.994%

99.999%

Offshore Wind 1 GW Germany

14/08/2014 15/08/2014 16/08/2014 17/08/2014 18/08/2014 19/08/2014 20/08/2014
0

0.2

0.4

0.6

0.8

1

Time

N
or

m
al

iz
ed

 P
ow

er

Analysis of the forecast
curves of the wind farm
portfolios

Economics of fluctuating RES in the control reserve markets | 161

changes in the portfolio’s size over time, thus changing production and

forecast patterns.

 Source: Own analysis

Figure 5-3: Probabilistic forecast of the German 30 GW pool of PV systems and the
1 GW pool of PV systems

14/08/2014 15/08/2014 16/08/2014 17/08/2014 18/08/2014 19/08/2014 20/08/2014
0

0.2

0.4

0.6

0.8

1

Time

N
or

m
al

iz
ed

 P
ow

er

Photovoltaic Systems 30 GW Germany

14/08/2014 15/08/2014 16/08/2014 17/08/2014 18/08/2014 19/08/2014 20/08/2014
0

0.2

0.4

0.6

0.8

1

Time

N
or

m
al

iz
ed

 P
ow

er

Feed-In

95%

99%

99.5%

99.9%

99.99%

99.994%

99.999%

Photovoltaic Systems 1 GW Pool

162 | Economics of fluctuating RES in the control reserve markets

The forecasts of the PV systems, as shown in Figure 5-3, show a different

behaviour compared to the 30 GW and1 GW wind farm pool. The German

30 GW pool of PV systems shows a weaker forecast performance than the

forecast for the 1 GW pool. This is contrary to the previous findings. The pool

size and geographical smoothing effect seem to have little impact on the

forecast quality. The data for Germany are gathered by/for the TSOs.

Therefore, one can safely assume that it lacks real-time data of

measurements of all PV systems and relies heavily on upscaling algorithms.

For the 1 GW pool real measurements are gathered ex-post. These data can

be used to improve forecast quality. Additionally the 1 GW pool consists only

of open field PV systems whereas the 30 GW is mostly installed on rooftops.

Moreover, for the intraday forecast quality, the intraday forecast for the

30 GW pool was created with the persistency method as described earlier.

The 1 GW pool uses real forecast data from a forecast service provider.

In any case, the probabilistic forecasts generated are significantly lower than

the forecasted value of the point forecast. The results show the importance of

the forecast quality. Additionally forecasting methods other than the KDE

might deliver results that are more suitable. The difference between the

probabilistic forecast and point forecast is highly dependent on the initial

forecast quality and the characteristics of the error between the feed-in and

the expected value forecasts of each data set.

The following figure shows the frequency of forecast violations for the

security levels from 99.95 % to 99.999 % as an average value for the entire

assessment period. The curves indicate the number of times when the

probabilistic forecast has exceeded the actual feed-in. In this case, the

amount offered at the control reserve market would not have been fully

available, causing a breach of contract. The theoretical values that would be

allowed at that level of reliably are shown in grey, while the actual values are

shown in different colours for the different RES generators. At a level of

reliably of 99.994 % the forecast should only be violated in two ¼ hours of a

year. Offshore wind and the 30 GW pool of PV systems have on average five

¼ hour violations each year, the 30 GW onshore wind farm pool has six, the

30 GW pool of wind farms eight. All of the fluctuating RES generators

Analysis of the forecast
curves of the PV
systems portfolios

Prerequisites for a high
performing
probabilistic forecast

Assessing the forecast
quality for high levels of
reliability

Economics of fluctuating RES in the control reserve markets | 163

exceeded the required number of violations. The 1 GW pool of PV systems

has on average 18 violations, although this is based on the least amount of

data available for the probabilistic forecast. The deviations of all other

fluctuating RES generators can be considered to lie within the allowance of

the statistical scattering. It can be concluded that the kernel density

estimator is a suitable approach to generate probabilistic forecast that

provide the desired levels of reliability.

 Source: Own analysis

Figure 5-4: Quantiles of the probability forecasts and the theoretical value for the
probabilistic day-ahead forecast

One can conclude that the forecast quality increases with the pool size and

the geographical dispersion of the fluctuating RES generators. The

markdowns for the intraday forecasts are significantly lower and less

dependent on the pool size and geographic location. This is in line with the

findings in (Brauns et al., 2014, pp. 52–57).

Onshore Wind 30 GW

Onshore Wind 1 GW

Offshore Wind 1 GW

PV 30 GW

PV 1 GW

Theoretical value

99.95 99.99 99.994 99.999
0

5

10

15

20

25

30

35

Level of reliabilty in %

N
um

be
r

of
 v

io
la

te
d

1/
4

ho
ur

s

Pool size and
geographic location are
influencing probabilistic
forecast the most

164 | Economics of fluctuating RES in the control reserve markets

5.2 Technical potentials

The probabilistic forecasts from chapter 5.1 are used to calculate the offers

for the control reserve market by the fluctuating RES. The generation of

market suitable quantity bids is explained in chapter 4.4.2. For each market

segment the minimum of day-ahead and intraday forecasts are used to

generate the offerable amount that can be bid into any market. The quantities

are later allocated to a specific market when the prices are calculated.

5.2.1 Deriving quantity bids from the probabilistic forecast

Figure 5-5 shows probabilistic forecasts, offerable amounts in the control

reserve market and the actual feed-in for the period from the 14th of August

2014 to the 20th of August 2014, the same time period as in Figure 5-1,

Figure 5-2 and Figure 5-3. The reliability is 99.994 % and the product lengths

are one hour (top), four hours (middle) and twelve hours (bottom). The

four-hour length is used since it is the product length in the tertiary control

reserve market. One hour is likely to be used in the future by pan-European

balancing market as laid out by the network code on electricity balancing

(NC EB). Twelve hours is the current product length of secondary control

reserve22.

In Figure 5-5 one can observe the relationship between the probabilistic

day-ahead forecast (orange line) and the corresponding offerable amount

based on the day-ahead forecast (orange area). The blue lines indicate the

one-hour ahead probabilistic intraday forecast (blue line) and the offerable

amount based on this forecast (blue area). The grey line indicates the

maximum possible feed-in based on the available resource. Figure 5-6 shows

the same relationship for the German 30 GW pool of PV systems.

22 This is an approximation since the low tariff / high tariff structure requires covering longer periods on
Sundays where only the low tariff control reserve providers are used. Additionally tendering is carried
out on a weekly basis, therefore the product length is one week, separated into several blocks of
twelve hours.

From probabilistic
forecasts to a market
suitable quantity bid

Shown time period and
shown product lengths

Explanation of the
presented data

Economics of fluctuating RES in the control reserve markets | 165

 Source: Own analysis

Figure 5-5: Probabilistic day-ahead and one-hour ahead intraday forecasts, feed-in and
offerable amounts of control reserve based on the day-ahead and intraday
probabilistic forecast for the German 30 GW onshore wind farm pool for the
reliability of 99.994 % and a product length of one, four and twelve hours

Product length: 1 hour

14/08/2014 15/08/2014 16/08/2014 17/08/2014 18/08/2014 19/08/2014 20/08/2014
0

0.1

0.2

0.3

0.4

0.5

0.6

Time

N
or

m
al

iz
ed

 P
ow

er

Product length: 4 hours

14/08/2014 15/08/2014 16/08/2014 17/08/2014 18/08/2014 19/08/2014 20/08/2014
0

0.1

0.2

0.3

0.4

0.5

0.6

Time

N
or

m
al

iz
ed

 P
ow

er

Feed-In

Probabilistic day-ahead forecast with 99.994% reliability

Probabilistic one-hour ahead intraday forecast with 99.994% reliability

Offerable control reserve based on day-ahead forecast

Offerable control reserve based on intraday forecast

Product length: 12 hours

14/08/2014 15/08/2014 16/08/2014 17/08/2014 18/08/2014 19/08/2014 20/08/2014
0

0.1

0.2

0.3

0.4

0.5

0.6

Time

N
or

m
al

iz
ed

 P
ow

er

166 | Economics of fluctuating RES in the control reserve markets

The data used for the German 30 GW onshore wind farm pool is the same as

in Figure 5-1 and Appendix B-A. Results for the 1 GW onshore wind farm

pool, the German 1 GW offshore wind farm pool and the 1 GW pool of PV

systems are located in Appendix B-B, where results for selected levels of

reliability and selected product lengths are also available. Results for the

product lengths of one hour, two hours, four hours, eight hours, twelve hours

and 24 hours are produced for the entire range of results.

The results shown in Figure 5-5 and Figure 5-6 show the principles of using

probabilistic forecast to provide quantities to the control reserve market. The

aim is to identify suitable product lengths for the control reserve market that

allow the participation of fluctuating RES.

For the given product lengths, wind farms are able to provide control reserve

for up to 24 hours (see Appendix B-B). For product lengths of up to four

hours the potential is not restricted. With longer product lengths, the

potential decreases significantly. The 1 GW pool of wind farms is already very

limited in its potential with a product length of twelve hours (Figure B-16 in

Appendix B-B). The 1 GW pool of offshore wind farms, similarly to the entire

German onshore pool, is not largely affected by increasing product lengths. In

fact, the opposite is the case. The steady full load production of offshore wind

is favourable for the provision of control reserve for longer time periods.

PV systems on the other hand already have limited capabilities to provide

control reserve with product lengths of four hours or more. The significantly

better forecast of the 1 GW pool also shows much higher potentials at a

product length of four hours (Figure B-18). With product lengths of 12 hours

or more, PV systems will not be able to deliver control reserve at all. It is

therefore important to shorten the product lengths as much as possible. The

impact of the product length on the capability to provide control reserve can

also be seen on a cumulated basis in Figure 5-7, Figure 5-8 and Appendix B-C.

Further results in
Appendix B-B

From probabilistic
forecasts to offerable
quantities in the
control reserve markets

Impact of the product
length on the potential
provision of control
reserve by wind farms

Impact of the product
length on the potential
provision of control
reserve by PV systems

Economics of fluctuating RES in the control reserve markets | 167

 Source: Own analysis

Figure 5-6: Probabilistic day-ahead and one-hour ahead intraday forecasts, feed-in and
offerable amounts of control reserve based on the day-ahead and intraday
probabilistic forecast for the German 30 GW pool of PV systems for the
reliability of 99.994 % and a product length of one, four and twelve hours

Product length: 1 hour

14/08/2014 15/08/2014 16/08/2014 17/08/2014 18/08/2014 19/08/2014 20/08/2014
0

0.1

0.2

0.3

0.4

0.5

0.6

Time

N
or

m
al

iz
ed

 P
ow

er

Product length: 4 hours

14/08/2014 15/08/2014 16/08/2014 17/08/2014 18/08/2014 19/08/2014 20/08/2014
0

0.1

0.2

0.3

0.4

0.5

0.6

Time

N
or

m
al

iz
ed

 P
ow

er

Feed-In

Probabilistic day-ahead forecast with 99.994% reliability

Probabilistic one-hour ahead intraday forecast with 99.994% reliability

Offerable control reserve based on day-ahead forecast

Offerable control reserve based on intraday forecast

Product length: 12 hours

14/08/2014 15/08/2014 16/08/2014 17/08/2014 18/08/2014 19/08/2014 20/08/2014
0

0.1

0.2

0.3

0.4

0.5

0.6

Time

N
or

m
al

iz
ed

 P
ow

er

168 | Economics of fluctuating RES in the control reserve markets

Fluctuations that occur with a time-scale of less than 15 minutes are not

accounted for in the REBal model. These intra-15-minute fluctuations could

be accounted for by an additional markdown. For the assessment of pools of

fluctuating RES, it can be assumed that these fluctuations are balanced

stochastically throughout the pool. If the assessment were to be made for a

single windfarm, these fluctuations would need to be accounted for.

It is also worth mentioning that the offerable amount has a higher reliability

than the probabilistic forecast that it was derived from. This is because the

minimum value of the entire product length determines the offerable

amount. Therefore, all 15-minute intervals of the probabilistic forecast were

higher than the value for the offerable amount, hence increasing the

reliability of all other forecasts and the reliability of the offerable control

reserve amount.

Since the results shown in Figure 5-5, Figure 5-6 and Appendix B-B vary

significantly over time; it is desirable to display them as aggregated numbers.

This facilitates comparability between the different fluctuating RES

generators and allows the presentation of all assessed parameters. The

indicator based values are the summarized annual offerable amount. In

Figure 5-7 the annual offerable amount based on the day-ahead forecast is

shown. The values correlate to the orange areas in Figure 5-5 and Figure 5-6.

The figure shows the integral (sum) of the available capacity for all products.

The integral of the capacity is expressed as its possible energy content, and

therefore can be given in MWh.

Due to different feed-in characteristics it is favourable to provide specific

numbers for the ratio between the possible energy content for the control

reserve market and the maximum possible feed-in based on the available

resource. Setting the potentials in relation to the possible feed-in allows for

the comparison of the different pool sizes.

Each bar in Figure 5-7 is the average value over different years of the

assessment. In the case of the German 30 GW onshore wind farms portfolio

this spans the entire five years whereas the 1 GW pool of PV system spans

Intra-15-minute
fluctuations not
accounted for

‘The offerable amount
has a higher level of
reliability than the
original probabilistic
forecast

Showing the offerable
amount as an indicator
value

Specific values based
on feed-in

Interpreting the bars,
range indicators and
values in the graph

Economics of fluctuating RES in the control reserve markets | 169

only two years, as per the data availability (also see Figure 4-2). The range

indicator on the bars shows the difference between the minimum and

maximum values in the different years. The total values on the bars show the

mean energy content of the offerable amount expressed in TWh.

 Source: Own analysis

Figure 5-7: Potentials for offering control reserve based on the day-ahead forecast for different fluctuating
RES generators with varying levels of reliability and product lengths of one, four and twelve hours

Product length: 1 hour

95% 99% 99.5% 99.9% 99.99% 99.994% 99.999%
0

20

40

60

80

29
.7

22
.9

20
.4

15
.2

12
.2

11
.8

11
.1

0.
7

0.
5

0.
4

0.
3

0.
2

0.
1

0.
1

3.
1

2.
8

2.
7

2.
5

2.
3

2.
3

2.
2

17
.1

12
.4

10
.3

7.
5

6.
1

6.
0

5.
7

0.
6

0.
5

0.
4

0.
3

0.
3

0.
3

0.
2

Level of reliability

%
 o

f a
ct

ua
l f

ee
d-

in

Product length: 4 hours

95% 99% 99.5% 99.9% 99.99% 99.994% 99.999%
0

5

10

15

20

6.
7

5.
1

4.
6

3.
3

2.
6

2.
5

2.
4

0.
2

0.
1

0.
1

0.
1

0.
0

0.
0

0.
0

0.
7

0.
6

0.
6

0.
5

0.
5

0.
5

0.
5

2.
2

1.
4

1.
1

0.
7

0.
5

0.
4

0.
4

0.
1

0.
1

0.
0

0.
0

0.
0

0.
0

0.
0

Level of reliability

%
 o

f a
ct

ua
l f

ee
d-

in

Onshore Wind 30 GW Germany

Onshore Wind 1 GW Pool

Offshore Wind 1 GW Germany

Photovoltaic Systems 30 GW Germany

Photovoltaic Systems 1 GW Pool

Product length: 12 hours

95% 99% 99.5% 99.9% 99.99% 99.994% 99.999%
0

1

2

3

4

5

1.
8

1.
3

1.
2

0.
8

0.
6

0.
6

0.
6

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
2

0.
2

0.
1

0.
1

0.
1

0.
1

0.
1

Level of reliability

%
 o

f a
ct

ua
l f

ee
d-

in

170 | Economics of fluctuating RES in the control reserve markets

In each plot from left to right, the potentials are given for the different data

sets. In line with the colour scheme in Figure 4-2 the 30 GW onshore wind

farm pool is in blue, the 1 GW onshore wind farm pool in dark blue, the

offshore wind farms pool in green, the 30 GW pool of PV systems in yellow

and the 1 GW pool of PV systems in orange. From left to right different levels

of security are displayed from 95 % to 99.999 %.

The top graph shows the potentials for the product length of one hour. This is

chosen since it is likely that this product length will be relevant in the future,

as e.g. in the white paper (Bundesministerium für Wirtschaft und Energie,

2015b) or the network code electricity balancing (ENTSO-E, 2014). The four-

hour product length represents the current tertiary control reserve market,

which is presented in the middle graph. The twelve-hour product length in

the bottom graph can be found in the secondary control reserve market with

its peak and off-peak products.

The potential for providing control reserve to the market differs with the

product length and the level of security. About 26.5 % of the available wind

reserve could be offered as control reserve by the 30 GW pool of onshore

wind farms, assuming a product length of one hour and a level of reliability of

99.994 %. The pool of onshore wind farms could offer 10.6 %, and the

offshore wind farms 54.4 % of their wind resource. Interestingly the offshore

wind farms seem to realize the highest potential. This might correlate with

the previously discussed issue of how well they can be forecasted reliably

during full load operation. With offshore wind most of the production

happens during full load operation. The 30 GW pool of PV systems could offer

22.5 % and the 1 GW pool 22.9 % of the available resource. With increasing

product lengths, the offerable amounts decrease significantly. Additional

graphs with different product lengths can be seen in Appendix B-C.

The potentials do not differ strongly between the different years. This is

visible by the narrow range, indicated by the range indicators. However, it

has to be mentioned that for all years the exact same error distribution for

each data set has been used. Therefore small deviations can occur. Outside a

modelling environment, probabilistic forecasts created for 2010 are based on

Colour coding and
levels of reliability

Choosing the product
lengths

Shares of the available
resource for the
provision of control
reserve

Small annual variations
due to uniformly used
error data in the
probabilistic forecast

Economics of fluctuating RES in the control reserve markets | 171

different data sets for their error information to the data that are calculated

for the year 2014.

Due to a limited demand in the control reserve market, it may be that not all

of the potential can be absorbed by the market. However, these potentials

can be split and bid into different markets simultaneously. It is also more

likely that bids for positive reserve products are less economical due to their

higher opportunity costs.

The annual offerable amount based on the one-hour ahead intraday forecast

is shown in Figure 5-8. These values are connected to the blue areas in

Figure 5-5 and Figure 5-6. Similarly to Figure 5-8 the integral (or sum) of the

available capacity is shown. Only the product length of one hour is generated.

Longer product lengths would require a mixture of forecasts with different

lead times. For a four-hour product length, for example the last hour of the

forecast would be significantly less reliable than for the first hour. The

product length of one hour is also relevant for the pan-European balancing

market (ACER, 2012). The figure is arranged in the same way as Figure 5-7.

The given values are in TWh.

 Source: Own analysis

Figure 5-8: Potentials for offering control reserve based on the one hour intraday forecast for different
fluctuating RES generators with varying levels of reliability and a product length of one hour

Onshore Wind 30 GW Germany

Onshore Wind 1 GW Pool

Offshore Wind 1 GW Germany

Photovoltaic Systems 30 GW Germany

Photovoltaic Systems 1 GW Pool

Product length: 1 hour

95% 99% 99.5% 99.9% 99.99% 99.994% 99.999%
0

20

40

60

80

100

41
.0

39
.1

38
.4

36
.7

34
.6

34
.2

33
.1

1.
3

1.
2

1.
2

1.
1

1.
0

0.
9

0.
9

4.
0

4.
0

4.
0

3.
9

3.
8

3.
8

3.
824

.8

22
.9

21
.9

20
.6

20
.0

19
.9

19
.6

1.
1

1.
0

1.
0

1.
0

0.
9

0.
9

0.
9

Level of reliability

%
 o

f a
ct

ua
l f

ee
d-

in

Potentials might not be
absorbed by the
market

Offerable potentials
based on the one-hour
ahead intraday forecast

172 | Economics of fluctuating RES in the control reserve markets

The results in Figure 5-7 and Figure 5-8 can also be represented as duration

curves as in Figure 5-9 for the day-ahead case and as in Figure 5-10 for the

intraday case. Both graphs show the duration curve of the offerable amount

of different RES generators. The values are expressed in percent of installed

capacity, which enables comparability between the different pool sizes. A

value of 30 % means that 30 % of the installed capacity can be used to

provide control reserve. The duration curves are given for the year 2014 and

a product length of one hour, since this displays the highest potential. Larger

product lengths decrease the potential. It is not necessary to provide plots for

additional years since all the probabilistic forecasts use the same base

training data. The height of the curves only differs by the degree of the annual

fluctuations of the feed-in. Annual fluctuations however have already been

captured in Figure 5-7 and Figure 5-8.

 Source: Own analysis

Figure 5-9: Duration curve for the offerable control reserve based on the day-ahead forecast for different
fluctuating RES generators for the levels of reliability of 95 % (dashed line) and 99.994 % for the
year 2014 and a product length of one hour

Onshore Wind 30 GW Germany @95%

Onshore Wind 30 GW Germany @99.994%

Onshore Wind 1 GW Pool @95%

Onshore Wind 1 GW Pool @99.994%

Offshore Wind 1 GW Germany @95%

Offshore Wind 1 GW Germany @99.994%

Photovoltaic Systems 30 GW Pool @95%

Photovoltaic Systems 30 GW Pool @99.994%

Photovoltaic Systems 1 GW Germany @95%

Photovoltaic Systems 1 GW Germany @99.994%

1000 2000 3000 4000 5000 6000 7000 8000
0

20

40

60

80

100

Hours of the year

%
 o

f i
ns

ta
lle

d
ca

pa
ci

ty

Visualization as
duration curves

Economics of fluctuating RES in the control reserve markets | 173

In line with the results shown in Figure 5-8 the duration curve of the

offerable control reserve based on the one-hour ahead intraday forecast can

be seen. Similarly to Figure 5-8, the potentials in the duration curve are much

higher in more hours of the year than in the day-ahead case and much closer

to the maximum possible feed-in (not shown in this graph).

 Source: Own analysis

Figure 5-10: Duration curve for the offerable control reserve based on the one hour ahead intraday forecast
for different fluctuating RES generators for the levels of reliability of 95 % (dashed line) and
99.994 % for the year 2014 and a product length of one hour

5.2.2 Energy losses due to the proof mechanism

If the wind farm were to be curtailed due to the application of the balance

control proof method, as illustrated in Figure 4-11, then energy losses based

on equation (4-32) would occur. These energy losses, as depicted in

Figure 5-11, are created by the curtailment of the wind farms to the level of

the probabilistic forecast. In line with the rest of the calculations, the losses

Onshore Wind 30 GW Germany @95%

Onshore Wind 30 GW Germany @99.994%

Onshore Wind 1 GW Pool @95%

Onshore Wind 1 GW Pool @99.994%

Offshore Wind 1 GW Germany @95%

Offshore Wind 1 GW Germany @99.994%

Photovoltaic Systems 30 GW Pool @95%

Photovoltaic Systems 30 GW Pool @99.994%

Photovoltaic Systems 1 GW Germany @95%

Photovoltaic Systems 1 GW Germany @99.994%

1000 2000 3000 4000 5000 6000 7000 8000
0

20

40

60

80

100

Hours of the year

%
 o

f i
ns

ta
lle

d
ca

pa
ci

ty

Duration curve for the
intraday forecast

Energy losses due to
curtailment on the
schedule with the
balance control
mechanism

174 | Economics of fluctuating RES in the control reserve markets

would occur between the one-hour ahead intraday forecast and feed-in. The

given values are the average of the ratio between the energy losses and the

maximum possible feed-in (available active power) for the different types of

RES generators. In the case that the RES generator does not place an offer for

a specific product, then the energy losses do not occur, since operation would

fall back to normal mode without curtailment. This graphic does not account

for possible rejections of bids in the market due to high bid prices.

The product length of one hour is chosen. The given average values span the

entire data period available for each type of RES generators. The number on

the bar provides the average annual lost energy in GWh. For additional

product lengths, refer to Appendix B-C. The values given are the ratio

between the energy lost (MWhlost) per offered (MWhoffered).

 Source: Own analysis

Figure 5-11: Average annual specific energy losses with control reserve being offered
day-ahead under the balance control proof mechanism (bars) for different
types of fluctuating RES generators for the product length of one hour and
different levels of reliability and the average annual total losses as numbers
on the bars in gigawatt hours

Onshore Wind 30 GW Germany

Onshore Wind 1 GW Pool

Offshore Wind 1 GW Germany

Photovoltaic Systems 30 GW Germany

Photovoltaic Systems 1 GW Pool

95% 99% 99.5% 99.9% 99.99% 99.994% 99.999%
0

0.05

0.1

0.15

0.2

0.25

0.3

25
92

.8

30
35

.7 30
65

.4

28
49

.8 25
24

.7

24
54

.5

23
35

.9

92
.0

98
.4

93
.1

71
.0

50
.5

46
.0

34
.3

92
.6 11

2.
0

11
7.

6 13
3.

7 16
3.

9

16
9.

1

18
4.

4

13
46

.9

19
23

.0

20
38

.6

17
32

.2

13
55

.4

13
38

.7

12
59

.7

53
.3

57
.9 56

.7

53
.3

51
.9 51
.7 47
.8

Level of reliability

Lo
st

 e
ne

rg
y

in
 M

W
h lo

st
/M

W
h of

fe
re

d

Description of data sets

Economics of fluctuating RES in the control reserve markets | 175

With possible energy losses, the impact of regulations on the economic

feasibility and the environment becomes visible. It is paramount that

regulations and market conditions are designed in such a way that

unintended effects are avoided. For example, if too long product lengths are

chosen, PV systems cannot offer control reserve at all. The application of the

balance control proof mechanism is not favourable in terms of environmental

impact. The financial implications of these losses are evaluated in chapter 6.2.

5.3 Calculation of bids for the control reserve market

Based on the technical potentials from the previous section, prices for

bidding into the control reserve market are calculated from perfect price

forecasts (see assumptions chapter 4.2). The calculation of prices is divided

into two parts. The first part presents the resulting prices from the

opportunity cost based approach and the second part gives the results from

the profit maximizing approach. Later these two approaches are used in

order to identify the possible income, according to chapter 4.4.7. Results are

shown in chapter 5.4. The aforementioned energy losses only occur with the

opportunity cost based bids and the balance control method applied. The

losses themselves and the economic valuation are presented later in

chapter 6.2 in the context of the power systems’ point of view. The market

price based bids are not dependent on the lost energy.

Bids for the control reserve have three values. The first value is the quantity

of the bid. The second value is the capacity price for the provision of control

reserve. This is an availability payment, which is also the award criterion.

Thirdly, every bid has to have an energy price that is paid to the market

participant if the bid is activated. All of the bids presented fulfil these criteria.

Conclusion on the
energy losses

Structure of the
chapter

Basic description of
bids

176 | Economics of fluctuating RES in the control reserve markets

5.3.1 Opportunity cost driven bids

The opportunity cost based approach creates bids for the control reserve

market that are the cheapest bids possible for the fluctuating RES generators.

This is done as described in chapter 4.4.3.1. This approach only covers

expenses that are created through the provision of control reserve. With this

approach, the operator of the fluctuating RES generators will not generate

any additional revenue. Therefore, this approach is not very likely to be

implemented by market participants; however, it leads to the lowest control

reserve procurement costs for the system, revealing the possible market

value. The prices generated in this step are independent from the chosen

control reserve market.

The capacity prices are an availability payment to the market participants.

The opportunity costs to be covered by the fluctuating RES generators partly

depend on the proof mechanism (see Figure 3-17 and Figure 3-18) and on

whether the bids are created for negative or positive reserve markets. For

negative reserve markets, with the available active power proof method

applied, no additional costs for making the reserve available are generated

(Figure 3-18). In case of the positive reserve provision, the opportunity costs

only amount to the tendered amount. With the balance control proof method

applied additional opportunity costs arise from the curtailment to the

schedule for both negative and positive reserve products. These costs are

added to the costs that arise with the active power proof method.

Energy costs for the bids are determined by the opportunity costs of a

dispatch of control reserve. The dispatch costs are the same with both

possible proof methods. In the case that positive reserve is dispatched from

fluctuating RES generators, negative dispatch costs might result from the

design of the RES support scheme (EEG). The energy price of the bids

depends on the assumed feed-in tariff and the price forecast.

The prices for the reserve provision depend on the offerable capacity.

Figure 5-12 displays the combinations of the capacity and the capacity price

for the negative reserve market with the balance control proof method

Principles of the
opportunity cost based
bidding approach

Opportunity costs for
capacity reservations
differ based on the
proof method

Opportunity costs for
reserve dispatch are
proof method
independent

Description of the
following
price/quantity scatter
plot

Economics of fluctuating RES in the control reserve markets | 177

applied. The scattered dots indicate the price/quantity combinations of the

30 GW onshore wind farms pool (blue) and the 30 GW pool of PV systems

(yellow) for the product length of one hour and a level of reliability of 95 %

(darker colours) and 99.994 % (lighter colours). The price/quantity

combinations are a log-log plot, which reveals the functional relationship

between the offerable amount and the capacity price. PV systems generate

significantly higher capacity prices than wind farms. The optical vicinity may

be deceptive due to the double logarithmic scaling.

 Source: Own analysis

Figure 5-12: Opportunity cost based capacity price bids for different fluctuating RES generators with a level of
reliability of 95 % and 99.994 % under the balance control proof mechanism for the product
length of one hour for any negative control reserve market and all years

Onshore Wind 30 GW Germany 95%

Onshore Wind 30 GW Germany 99.994%

Photovoltaic Systems 30 GW Germany 95%

Photovoltaic Systems 30 GW Germany 99.994%

178 | Economics of fluctuating RES in the control reserve markets

The capacity costs under the available active power proof method are zero by

definition. The subsequent plot Figure 5-13 shows the capacity prices for the

positive reserve markets with the balance control proof method applied for a

product length of one hour. The price/quantity combinations are again

shown as a log-log plot below. The capacity prices under the available active

power proof method for positive bids can be obtained by subtracting the

capacity prices in Figure 5-12 from the prices in Figure 5-13. The scatter plot

for this can be seen in Appendix B-D.

 Source: Own analysis

Figure 5-13: Opportunity cost based capacity price bids for different fluctuating RES generators with a level of
reliability of 95 % and 99.994 % under the balance control proof mechanism for the product
length of one hour for any positive control reserve market and all years

Onshore Wind 30 GW Germany 95%

Onshore Wind 30 GW Germany 99.994%

Photovoltaic Systems 30 GW Germany 95%

Photovoltaic Systems 30 GW Germany 99.994%

Difference between the
proof methods

Economics of fluctuating RES in the control reserve markets | 179

In the double logarithmical scaling one can identify a nearly inverse linear

correlation between the capacity and the price. Only bids with prices in the

lower section of the plot have a chance of being accepted in the market.

These tend to appear when the fluctuating RES generators produce close to

or at full load capacity. This also shows the complexity of bid creation. Since

log-log plots are not intuitively usable and they cannot easily be used to

compare different fluctuating RES generators, indicator based values are

used further on. Specifically, capacity weighted annual averages are

presented.

When looking at the graphs from Figure 5-14 onwards, one should keep in

mind the underlying complexity of the bids. This is also one of several

reasons why the modelling results from REBal are not easily scalable or

transferable to other generators. Further challenges arise from the

development of the prices in the market. If the assumption of perfect price

forecasts were dropped, the bids would most likely look dissimilar and may

not have a functional relationship. Despite the simplified presentation in this

document, REBal processes each one of these bids individually. On a case-by-

case basis, it is decided whether the created bids are accepted in the market

or not.

 Figure 5-14 shows the annually averaged capacity prices for the balance

control mechanism as coloured bars for the negative control reserve market

(both secondary and tertiary) for a product length of one hour and different

levels of reliability. The capacity prices for the available active power

mechanism are zero and indicated as small light coloured stripes at the

bottom. The value in the bar represents the average annual value for the data

available (see Figure 4-2). The range indicators show the minimum and

maximum of the mean average annual values. Additional plots for other

product lengths and levels of reliability can be found in Appendix B-D.

Simplifying complexity
of bids for the market
by using indicator
values

Complexity is kept in
the modelling
environment REBal

Indicator based
presentation of
capacity price bids for
negative control
reserve markets

180 | Economics of fluctuating RES in the control reserve markets

 Source: Own analysis

 Figure 5-14: Average opportunity cost based capacity price bids for different fluctuating
RES generators with a level of reliability of 99.994 % under the balance
control (darker colours) and available active power (lighter colours) proof
mechanism for the product length of one hour for any negative control
reserve market

Figure 5-15 shows price/quantity combinations for bids for any of the

positive control reserve markets. For the prices with the available active

power proof method, opportunity costs arise from the previous curtailment

of the generators to increase the power output when the control reserve is

dispatched. For the balance control proof method, these costs are added to

the cost of providing negative control reserve as shown in Figure 5-14. The

light coloured values are the capacity prices with the available active power

proof method applied. The corresponding range indicators are shown in red.

Onshore Wind 30 GW Germany balance control capacity bids

Onshore Wind 1 GW Pool balance control capacity bids

Offshore Wind 1 GW Germany balance control capacity bids

Photovoltaic Systems 30 GW Germany balance control capacity bids

Photovoltaic Systems 1 GW Pool balance control capacity bids

Onshore Wind 30 GW Germany available active power capacity bids

Onshore Wind 1 GW Pool available active power capacity bids

Offshore Wind 1 GW Germany available active power capacity bids

Photovoltaic Systems 30 GW Germany available active power capacity bids

Photovoltaic Systems 1 GW Pool available active power capacity bids

95% 99% 99.5% 99.9% 99.99% 99.994% 99.999%
0

25

50

75

100

125

150

Level of reliability

Av
er

ag
e

ca
pa

ci
ty

 p
ri

ce
 E

U
R/

M
W

/h

Indicator based
presentation of
capacity price bids for
positive control reserve
markets

Economics of fluctuating RES in the control reserve markets | 181

 Source: Own analysis

Figure 5-15: Average opportunity cost based capacity price bids for different fluctuating
RES generators with a level of reliability of 99.994 % under the balance
control and available active power proof mechanism for the product length
of one hour for any positive control reserve market

The opportunity cost based capacity prices for the negative reserve market

are significantly lower than for the positive reserve market. The lost energy

that has to be financially recovered under the balance control proof method

leads to high opportunity costs which most likely would prevent fluctuating

RES generators from participation in the control reserve markets. For prices

in the market, please refer to price information from Figure 3-12 to

Figure 3-15. From the relationships shown in Figure 5-12 and Figure 5-13, it

is apparent that some capacity bids may enter the merit-order list. However,

Onshore Wind 30 GW Germany balance control capacity bids

Onshore Wind 1 GW Pool balance control capacity bids

Offshore Wind 1 GW Germany balance control capacity bids

Photovoltaic Systems 30 GW Germany balance control capacity bids

Photovoltaic Systems 1 GW Pool balance control capacity bids

Onshore Wind 30 GW Germany available active power capacity bids

Onshore Wind 1 GW Pool available active power capacity bids

Offshore Wind 1 GW Germany available active power capacity bids

Photovoltaic Systems 30 GW Germany available active power capacity bids

Photovoltaic Systems 1 GW Pool available active power capacity bids

95% 99% 99.5% 99.9% 99.99% 99.994% 99.999%
0

25

50

75

100

125

150

175

200

225

250

Level of reliability

Av
er

ag
e

ca
pa

ci
ty

 p
ri

ce
 E

U
R/

M
W

/h

Analysis of the
opportunity cost based
capacity price bids

182 | Economics of fluctuating RES in the control reserve markets

based on the average value this would not be the case. The market structure

might change in the future since the availability of power plants in the spot

market also affects the units available in the control reserve market.

Figure 5-16 shows the energy prices of bids by the fluctuating RES generators

for negative and positive control reserve markets. These are independent of

the proof method and therefore have equal energy prices in both regimes.

Since the energy prices of the bids are mostly governed by the underlying

feed-in tariff they do not fluctuate as much as the capacity price bids. The

presentation of the individual prices is therefore omitted. The prices shown

are for the product length of one hour. The level of reliability does not have

an influence on the costs of control reserve dispatch. Throughout the

evaluation, energy prices correspond to dispatch prices and dispatch costs.

The energy prices show little variation over time within each year and little

variation between the years. Neither the product length nor the level of

reliability has an influence on the energy price bids. These findings are true

as long as the opportunity costs are calculated independently from the

capacity price costs. Dispatch of negative control reserve from fluctuating

RES generators would create positive dispatch costs for the system, although

with the benefit of decreased RES support scheme payments to the

generators. The dispatch of positive control reserve generates negative

dispatch costs at the cost of increased RES support scheme payments.

Energy price bids for
negative control and
positive reserve
markets

Analysis of energy price
bids for negative
control and positive
reserve markets

Economics of fluctuating RES in the control reserve markets | 183

 Source: Own analysis

Figure 5-16: Average opportunity cost based energy price bids for different fluctuating
RES generators for the product length of one hour for any negative and
positive control reserve market

5.3.2 Profit maximizing bids

The profit maximizing bidding approach creates bids for the control reserve

market that maximize the additional revenue that could be achieved by the

fluctuating RES generators. The methodology is laid out in chapter 4.4.3.2.

This approach displays the additional revenue that would have been

generated by operators of the fluctuating RES generators. The market price

based bidding strategy leads to no or very little reduction in control reserve

procurement costs from the system’s point of view.

Onshore Wind 30 GW Germany negative energy dispatch bids

Onshore Wind 1 GW Pool negative energy dispatch bids

Offshore Wind 1 GW Germany negative energy dispatch bids

Photovoltaic Systems 30 GW Germany negative energy dispatch bids

Photovoltaic Systems 1 GW Pool negative energy dispatch bids

Onshore Wind 30 GW Germany positive energy dispatch bids

Onshore Wind 1 GW Pool positive energy dispatch bids

Offshore Wind 1 GW Germany positive energy dispatch bids

Photovoltaic Systems 30 GW Germany positive energy dispatch bids

Photovoltaic Systems 1 GW Pool positive energy dispatch bids

95% 99% 99.5% 99.9% 99.99% 99.994% 99.999%
-150

-100

-50

0

50

100

150

Level of reliability

Av
er

ag
e

en
er

gy
 p

ri
ce

 b
id

s
in

 E
U

R/
M

W
h

Introduction to profit
maximizing bidding

184 | Economics of fluctuating RES in the control reserve markets

The market optimizing bids from the price/quantity combinations are

plotted in the log-log plot in Figure 5-17 which shows the resulting profit

maximizing capacity prices with the available active power proof method

applied. Results for the balance control method are located in Appendix B-D.

 Source: Own analysis

Figure 5-17: Profit maximizing capacity price bids for different fluctuating RES generators with a level of
reliability of 95 % and 99.994 % under the available active power proof mechanism for the
product length of one hour for four control reserve market segments and all years

Onshore Wind 30 GW Germany 95%

Onshore Wind 30 GW Germany 99.994%

Photovoltaic Systems 30 GW Germany 95%

Photovoltaic Systems 30 GW Germany 99.994%

Individual
price/quantity
combinations for the
profit maximizing
bidding approach

Economics of fluctuating RES in the control reserve markets | 185

The results presented in Figure 5-17 can be read the same way as in

Figure 5-12 and Figure 5-13. The dark blue dots indicate the 30 GW onshore

wind farm pool at a reliability of 95 %, whereas the lighter dots indicate a

level of reliability of 99.994 %. This is applied similarly to the yellow dots for

the 30 GW pool of PV systems. The graph also shows the four considered

control reserve market segments, since the prices depend on the market.

The capacity prices in the market approach are formed by using the capacity

price of the last replaced bid in the merit order list (see Figure 4-9). The price

of this intersection in the merit-order list is largely determined by the

offerable amount for each individual product. A pool of 30 GW would

generate more yield than a 1 GW pool simply through the fact that the merit-

order list is intersected at a different position, even with a perfectly equal

forecast quality. The results additionally depend on the chosen market and

the type of RES generator.

The resulting prices vary between the different fluctuating RES generators

due to the fact that their offerable amount differs. The wind farm portfolio

tends to realize higher market prices through deeper market penetration.

This means that the merit-order list is intersected at a different position,

depending on the current potential for delivering control reserve. Prices

differ little with regard to the reliability of the underlying forecast. A

significant difference could only occur during times when the opportunity

costs were higher than the market price. The forecast with a high level of

reliability is then at a disadvantage to the lower reliability forecast. Due to

highly diverse capacity prices (Figure 5-12 and Figure 5-13), it can be safely

concluded that this is not the case very often. One can safely assume that the

opportunity costs are clearly either above or below the market prices for all

levels of reliability.

Comparing the results from Figure 5-17 with those results that have the

balance control proof method applied (Appendix B-D), one can see that the

balance control proof method will effectively reduce the market participation

in the negative control reserve markets and almost completely hinder any

participation in the positive reserve markets.

Description of the
previous plot

Market effects through
pool size and generator
type

Analysis of the profit
maximizing capacity
bids

Impact of the proof
method on the profit
maximizing capacity
price bids

186 | Economics of fluctuating RES in the control reserve markets

In Figure 5-18 the annual averages from Figure 5-17 are depicted for all of

the investigated pools of fluctuating RES generators. The bars are given in

EUR/MW/h. This facilitates comparability, as opposed to EUR/MW. The grey

range indicators show the minimum and maximum of the average values

spanning all years of each data set.

 Source: Own analysis

Figure 5-18: Annual average profit maximizing capacity price bids for different fluctuating
RES generators with different levels of reliability for the product length of
one hour in the negative secondary control reserve market

The negative secondary control reserve market yields by far the highest

prices of all markets. The pools of 1 GW would be able to generate prices on

average above 20 EUR/MW/h at a level of reliability of 99.994 %. The 30 GW

Onshore Wind 30 GW Germany negative capacity bids

Onshore Wind 1 GW Pool negative capacity bids

Offshore Wind 1 GW Germany negative capacity bids

Photovoltaic Systems 30 GW Germany negative capacity bids

Photovoltaic Systems 1 GW Pool negative capacity bids

95% 99% 99.5% 99.9% 99.99% 99.994% 99.999%
0

10

20

30

40

50

60

Level of reliability

Av
er

ag
e

ca
pa

ci
ty

 p
ri

ce
 E

U
R/

M
W

/h

Description of following
plots

High capacity prices in
the negative secondary
control reserve market

Economics of fluctuating RES in the control reserve markets | 187

pools can even generate average prices above 30 EUR/MW/h. Based on the

results shown in Figure 5-12 and Figure 5-14, this would most likely allow

the participation of fluctuating RES in the negative control reserve market

with the balance control mechanism applied.

 Source: Own analysis

Figure 5-19: Annual average profit maximizing capacity price bids for different fluctuating
RES generators with different levels of reliability for the product length of
one hour in the positive secondary control reserve market

The average capacity prices of the fluctuating RES generators participating in

the positive secondary control reserve market (Figure 3-13) show very low

capacity prices. This indicates that the market penetration cannot be very

high. It allows the conclusion that this might only happen with perfect price

Onshore Wind 30 GW Germany positive capacity bids

Onshore Wind 1 GW Pool positive capacity bids

Offshore Wind 1 GW Germany positive capacity bids

Photovoltaic Systems 30 GW Germany positive capacity bids

Photovoltaic Systems 1 GW Pool positive capacity bids

95% 99% 99.5% 99.9% 99.99% 99.994% 99.999%
0

2

4

6

8

10

12

14

16

18

Level of reliability

Av
er

ag
e

ca
pa

ci
ty

 p
ri

ce
 E

U
R/

M
W

/h

Low market value of
the capacity bids in the
positive secondary
control reserve market

188 | Economics of fluctuating RES in the control reserve markets

forecasts. However, the range indicators show very high annual average

values, which then in turn would allow participation. It can be concluded that

the market potential for fluctuating RES generators is limited and highly

dependent on the market price dynamics.

 Source: Own analysis

Figure 5-20: Annual average profit maximizing capacity price bids for different fluctuating
RES generators with different levels of reliability for the product length of
one hour in the negative tertiary control reserve market

Figure 5-20 illustrates the annual average profit maximizing bids and their

annual average extremes (range indicator) in the negative tertiary control

reserve market. The resulting prices lead to a medium market penetration. In

addition, the prices are mostly unaffected by the level of security. The

Onshore Wind 30 GW Germany negative capacity bids

Onshore Wind 1 GW Pool negative capacity bids

Offshore Wind 1 GW Germany negative capacity bids

Photovoltaic Systems 30 GW Germany negative capacity bids

Photovoltaic Systems 1 GW Pool negative capacity bids

95% 99% 99.5% 99.9% 99.99% 99.994% 99.999%
0

5

10

15

Level of reliability

Av
er

ag
e

ca
pa

ci
ty

 p
ri

ce
 E

U
R/

M
W

/h

Negative control
reserve market most
suitable as an entry
market

Economics of fluctuating RES in the control reserve markets | 189

indicated range of prices draws a much clearer picture and hints at a more

consistent behaviour of fluctuating RES in the market. At the same time, the

tertiary control reserve market is more competitive than the secondary

control reserve market and has significantly lower market entry barriers.

This makes it more likely to be implemented first.

The market penetration that can be achieved differs greatly in the four

investigated market segments. Smaller pools of fluctuating RES generators

can access less market potential, for the aforementioned reasons. The highest

market penetration can be achieved in the negative secondary control

reserve market. The clear pricing patterns in this market reflect the bids of

the fluctuating RES. The negative tertiary control reserve market provides a

good opportunity for fluctuating RES generators to participate. The positive

secondary control reserve market would be able to absorb fluctuating RES

generators to a certain degree. However, forecasts with a higher reliability

could possibly prevent their participation in the market. It is also apparent

that wind farms have an advantage over PV systems. The smallest

opportunity for participation is offered by the positive tertiary control

reserve market. A successful contribution by fluctuating RES would only be

possible at certain times. If the assumption of the perfect price forecast (see

chapter 4.2) was taken away, the market penetration would most likely be

very close to zero.

Lastly, Figure 5-21 shows the average annual bids for the positive tertiary

control reserve market for a product length of one hour. The results in

Figure 5-17 allow the conclusion that very few bids can actually enter the

market since the opportunity costs are too high. The positive tertiary control

reserve market is by far the least beneficial market for fluctuating RES

generators.

Summary on achieved
market penetration

Lowest profitability for
fluctuating RES in the
positive tertiary control
reserve market

190 | Economics of fluctuating RES in the control reserve markets

 Source: Own analysis

Figure 5-21: Annual average profit maximizing capacity price bids for different fluctuating
RES generators with different levels of reliability for the product length of
one hour in the positive tertiary control reserve market

Since not all dependencies have been shown in this section, additional

product lengths for Figure 5-18 to Figure 5-21 are available in Appendix B-D.

However, the impact of the product lengths has already been discussed in

chapter 5.2. In both the Appendix and the following sections, the product

lengths focussed on will be one hour, four hours and twelve hours.

Figure 5-22 shows the average energy prices of the bids for the negative and

positive secondary and tertiary control reserve markets that are derived

from the replaced bids in the original merit-order list. The opportunity cost

Onshore Wind 30 GW Germany positive capacity bids

Onshore Wind 1 GW Pool positive capacity bids

Offshore Wind 1 GW Germany positive capacity bids

Photovoltaic Systems 30 GW Germany positive capacity bids

Photovoltaic Systems 1 GW Pool positive capacity bids

95% 99% 99.5% 99.9% 99.99% 99.994% 99.999%
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Level of reliability

Av
er

ag
e

ca
pa

ci
ty

 p
ri

ce
 E

U
R/

M
W

/h

Additional information
in the appendix

Energy price bids

Economics of fluctuating RES in the control reserve markets | 191

prices are used if they are higher than the market based solution thus

ensuring that the bids are economically beneficial for the RES generators.

 Source: Own analysis

Figure 5-22: Average profit maximizing energy price bids for different fluctuating RES
generators with different levels of reliability for the product length of one
hour for the negative and positive secondary and tertiary control reserve
markets

The energy price bids for the negative reserve markets largely depend on the

opportunity costs. They resemble the findings in Figure 5-16. However, some

generator types are capable of catching the high prices that occur in the years

Secondary control reserve

95% 99% 99.5% 99.9% 99.99% 99.994% 99.999%
0

50

100

150

200

Level of reliability

Av
er

ag
e

en
er

gy
 p

ri
ce

 in
 E

U
R/

M
W

h

Tertiary control reserve

95% 99% 99.5% 99.9% 99.99% 99.994% 99.999%
0

50

100

150

200

Level of reliability

Av
er

ag
e

en
er

gy
 p

ri
ce

 in
 E

U
R/

M
W

h

Onshore Wind 30 GW Germany negative energy dispatch bids

Onshore Wind 1 GW Pool negative energy dispatch bids

Offshore Wind 1 GW Germany negative energy dispatch bids

Photovoltaic Systems 30 GW Germany negative energy dispatch bids

Photovoltaic Systems 1 GW Pool negative energy dispatch bids

Onshore Wind 30 GW Germany positive energy dispatch bids

Onshore Wind 1 GW Pool positive energy dispatch bids

Offshore Wind 1 GW Germany positive energy dispatch bids

Photovoltaic Systems 30 GW Germany positive energy dispatch bids

Photovoltaic Systems 1 GW Pool positive energy dispatch bids

Analysis of the energy
price bids

192 | Economics of fluctuating RES in the control reserve markets

2013 and 2014. The 1 GW onshore wind farm in particular has just about the

right pool size to take advantage of the current merit-order list composition.

Different markets have different potentials. Secondary and tertiary negative

control reserve markets are especially likely to absorb substantial amounts

of control reserve from fluctuating RES generators. The proof method has a

major impact on the profitability of offering control reserve to the market. It

is very unlikely that a deep market penetration with fluctuating RES

generators in the control reserve market will be reached with the balance

control proof mechanism. The prices designed in this market step are also an

indicator for the levels of accepted capacity, which is discussed in the

subsequent chapter.

5.4 Matching of bids in the market and additional revenue for fluctuating
RES generators

This chapter provides information on the calculation of possible additional

revenues for the fluctuating RES generators. A full cost calculation of the

capacity and energy costs of the control reserve market with the original

merit-order lists is performed. Subsequently the bids from the previous

section with both bidding approaches (chapter 5.2.2) are placed in the

market. Each one of these bids contains a capacity price, an energy price and

a quantity. These individual bids are evaluated against the existing prices in

the original merit-order lists, as laid out in chapter 4.4.4. In the case that the

bid from the fluctuating RES generator is cheaper than the original bid in the

merit-order list, it is replaced by the RES generators. The award criterion in

the current market design is solely based on the capacity price. The possible

participation is performed for all market segments with all possible

combinations of bids. The principles are also laid out in Figure 4-10.

For each set of bids by the fluctuating RES generators, a cost comparison is

carried out. Firstly, the benchmark is calculated with the original merit-order

lists, which eventually leads to the costs presented in Figure 3-7. Secondly,

with the help of the merit-order lists that contain the bids from the

fluctuating RES generators, a full cost calculation of the capacity and energy

Conclusion

Introduction to the
calculation of the
additional revenue for
the fluctuating RES
generators

Deriving possible
additional income from
the cost changes due to
the participation of
fluctuating RES

Economics of fluctuating RES in the control reserve markets | 193

costs is carried out. The difference between the cost of control reserve with

the original merit-order lists and the altered merit-order lists allows

assessment of the cost changes. These cost changes depend on the bidding

behaviour. The difference between the cost change with the opportunity cost

based approach and the cost change with the market-based approach is the

possible additional income that could be accessed by the fluctuating RES

generators. This is the area marked as B in Figure 4-14. The assessment is

carried out based on the difference between the opportunity cost based

approach and the profit maximizing approach, with only the available active

power mechanism applied. Market results under the balance control are

expected to be insignificant, as visible in Figure B-26 in Appendix B-D and

later in chapter 6.1.

Figure 5-23 to Figure 5-26 present the additional incomes of the fluctuating

RES generators. The four graphs correspond to the negative secondary

control reserve (Figure 5-23), the positive secondary control reserve

(Figure 5-24), the negative tertiary control reserve (Figure 5-25) and the

positive tertiary control reserve (Figure 5-26). These also correspond to the

price bids with the different bidding approaches (Figure 5-12 to Figure 5-22)

as shown in chapter 5.2.2.

Each of the graphs presented in Figure 5-23 to Figure 5-26 shows a different

fluctuating RES data set. These cover all years of the assessment period, two

different levels of reliability and three different product lengths. Each figure

contains three graphs. The left one displays the results with a product length

of one hour, the middle one four hours, and the right one a product length of

twelve hours. Each single graph gives the years on the x-axis. The bars in the

different colours present the results for the five different RES generator pools

with colour coding in line with Figure 4-2. Each data set contains two values.

The lighter coloured bar indicates the possible additional income with a level

of reliability of 95 % whereas the darker coloured bar shows the results with

the level of reliability at 99.994 %. The numbers on top of each the darker

coloured bars show the possible additional income in million EUR.

Relation to the
previous findings in
chapter 5.2.2

Description on the
presented cost saving
potential

194 | Economics of fluctuating RES in the control reserve markets

Figure 5-23 presents the results for the negative secondary control reserve

market. The results from this market show that the fluctuating RES

generators could generate substantial revenue in this market. The results for

the twelve-hour product length and a reliability of 99.994 % are those results

that would be achieved in the current market setup.

 Source: Own analysis

Figure 5-23: Additional possible income for different fluctuating RES generators in the negative secondary
control reserve market for the levels of reliability of 95 % (light colours) and 99.994 % (dark
colours)

Product length: One hour

2010 2011 2012 2013 2014
0

20

40

60

80

100

120

140

160

180
70

.4

55
.6

46
.1

46
.0

21
.7

3.
6 5.

4

4.
4

1.
5

31
.5

28
.3

26
.8

16
.3

5.
5

4.
6 7.

8

2.
1

2.
1

0.
5

Year

Ad
di

ti
on

al
 in

co
m

e
in

 m
io

. E
U

R

Product length: Four hours

2010 2011 2012 2013 2014
0

20

40

60

80

100

120

140

160

180

54
.5

44
.9

35
.2

35
.1

17
.3

2.
3 4.

1

2.
9

0.
9

23
.6

22
.7

20
.1

12
.9

Year

Ad
di

ti
on

al
 in

co
m

e
in

 m
io

. E
U

R

Product length: Twelve hours

2010 2011 2012 2013 2014
0

20

40

60

80

100

120

140

160

180

80
.5

62
.1

53
.4

53
.0

23
.9

4.
7 6.

3

5.
2

1.
9

35
.6

31
.4

30
.8

18
.1

11
.3

8.
4

15
.4

3.
9

4.
0

1.
2

Year

Ad
di

ti
on

al
 in

co
m

e
in

 m
io

. E
U

R

Onshore Wind 30 GW Germany 95%

Onshore Wind 1 GW Pool negative capacity bids 95%

Offshore Wind 1 GW Germany negative capacity bids 95%

Photovoltaic Systems 30 GW Germany negative capacity bids 95%

Photovoltaic Systems 1 GW Pool negative capacity bids 95%

Onshore Wind 30 GW Germany 99.994%

Onshore Wind 1 GW Pool 99.994%

Offshore Wind 1 GW Germany 99.994%

Photovoltaic Systems 30 GW Germany 99.994%

Photovoltaic Systems 1 GW Pool 99.994%

Possible additional
income in the negative
secondary control
reserve market

Economics of fluctuating RES in the control reserve markets | 195

Figure 5-24 shows the possible additional income for the positive secondary

control reserve market. In this market segment, the level of reliability has a

very large impact on the potential additional revenues in this market. At the

same time, the market entry can be described as the most challenging out of

the four assessed market segments.

 Source: Own analysis

Figure 5-24: Additional possible income for different fluctuating RES generators in the positive secondary
control reserve market for the levels of reliability of 95 % (light colours) and 99.994 % (dark
colours)

Product length: One hour

2010 2011 2012 2013 2014
0

20

40

60

80

100

120

140

160

180

200

220

2.
8 8.

3

7.
6

0.
1

7.
3

3.
4 5.

2

2.
8

1.
2

10
3.

2

62
.6

40
.6

49
.0

5.
8

6.
3

2.
0 2.
4

1.
6

0.
9

Year

Ad
di

ti
on

al
 in

co
m

e
in

 m
io

. E
U

R

Product length: Four hours

2010 2011 2012 2013 2014
0

20

40

60

80

100

120

140

160

180

200

220

5.
7 9.

5

3.
3 3.
5 5.
5

0.
9 3.

9

1.
8

0.
2

67
.9

33
.3

21
.1

31
.9

Year

Ad
di

ti
on

al
 in

co
m

e
in

 m
io

. E
U

R

Product length: Twelve hours

2010 2011 2012 2013 2014
0

20

40

60

80

100

120

140

160

180

200

220

14
.7

2.
8

12
.1

3.
0

0.
84.

8 6.
2

3.
9

2.
2

12
4.

0

81
.7

57
.3

71
.7

4.
3

13
.5

9.
4

2.
58.

6

5.
0

Year

Ad
di

ti
on

al
 in

co
m

e
in

 m
io

. E
U

R

Onshore Wind 30 GW Germany 95%

Onshore Wind 1 GW Pool negative capacity bids 95%

Offshore Wind 1 GW Germany negative capacity bids 95%

Photovoltaic Systems 30 GW Germany negative capacity bids 95%

Photovoltaic Systems 1 GW Pool negative capacity bids 95%

Onshore Wind 30 GW Germany 99.994%

Onshore Wind 1 GW Pool 99.994%

Offshore Wind 1 GW Germany 99.994%

Photovoltaic Systems 30 GW Germany 99.994%

Photovoltaic Systems 1 GW Pool 99.994%

Possible additional
income in the positive
secondary control
reserve market

196 | Economics of fluctuating RES in the control reserve markets

The possible additional income in the negative tertiary control reserve

market is presented in Figure 5-25. This market represents the most likely

option for initial market entry. It combines relatively low technical

requirements with a considerable additional income. The results for a

product length of four hours with a reliability of 99.994 % could be achieved

in the real tertiary control reserve market with its current regulation.

 Source: Own analysis

Figure 5-25: Additional possible income for different fluctuating RES generators in the negative tertiary
control reserve market for the levels of reliability of 95 % (light colours) and 99.994 % (dark
colours)

Product length: One hour

2010 2011 2012 2013 2014
0

10

20

30

40

50

14
.1

17
.6

9.
1

18
.7

16
.8

1.
1

1.
1

3.
0

1.
3

8.
1

11
.3

18
.1

14
.1

2.
5

2.
2

7.
7

3.
3

1.
0

0.
6

Year

Ad
di

ti
on

al
 in

co
m

e
in

 m
io

. E
U

R

Product length: Four hours

2010 2011 2012 2013 2014
0

10

20

30

40

50

10
.5

14
.7

6.
7

14
.5

13
.5

0.
8 0.
9 2.

1

0.
8

6.
5

9.
2

12
.8

11
.5

Year

Ad
di

ti
on

al
 in

co
m

e
in

 m
io

. E
U

R

Product length: Twelve hours

2010 2011 2012 2013 2014
0

10

20

30

40

50

16
.2

19
.9

10
.9

21
.4

18
.1

1.
3 1.
4

3.
7

1.
6

9.
0

12
.5

20
.7

15
.7

5.
1

3.
6

9.
2

4.
5

2.
5

1.
4

Year

Ad
di

ti
on

al
 in

co
m

e
in

 m
io

. E
U

R

Onshore Wind 30 GW Germany 95%

Onshore Wind 1 GW Pool negative capacity bids 95%

Offshore Wind 1 GW Germany negative capacity bids 95%

Photovoltaic Systems 30 GW Germany negative capacity bids 95%

Photovoltaic Systems 1 GW Pool negative capacity bids 95%

Onshore Wind 30 GW Germany 99.994%

Onshore Wind 1 GW Pool 99.994%

Offshore Wind 1 GW Germany 99.994%

Photovoltaic Systems 30 GW Germany 99.994%

Photovoltaic Systems 1 GW Pool 99.994%

Possible additional
income in the negative
tertiary control reserve
market

Economics of fluctuating RES in the control reserve markets | 197

Lastly, the possible additional income in the positive tertiary control reserve

market is presented in Figure 5-26. Confirming the findings in chapter 5.3.2,

this market is the least beneficial for fluctuating RES.

 Source: Own analysis

Figure 5-26: Additional possible income for different fluctuating RES generators in the positive tertiary control
reserve market for the levels of reliability of 95 % (light colours) and 99.994 % (dark colours)

The additional income that could be generated by fluctuating RES generators

differs largely, depending on different factors. The pool size does not prevent

the generators from participating. Nevertheless, the result from the 1 GW

Product length: One hour

2010 2011 2012 2013 2014
0

5

10

15

20

25

1.
2

0.
5

5.
7

1.
1

3.
0

0.
7

0.
1

0.
9

0.
0

14
.3

2.
5

6.
5

8.
5

0.
3

5.
2

1.
9

1.
2

1.
0

0.
6

Year

Ad
di

ti
on

al
 in

co
m

e
in

 m
io

. E
U

R

Product length: Four hours

2010 2011 2012 2013 2014
0

5

10

15

20

25

0.
7

0.
2

2.
4

1.
5

2.
5

0.
0 0.
2 0.

6

0.
0

8.
3

1.
6

2.
4

5.
0

Year

Ad
di

ti
on

al
 in

co
m

e
in

 m
io

. E
U

R

Product length: Twelve hours

2010 2011 2012 2013 2014
0

5

10

15

20

25

2.
4

0.
5

7.
0

0.
8

2.
6

1.
2

0.
0

1.
1

0.
2

15
.9

2.
9

9.
5

11
.4

0.
5

6.
0

1.
1

0.
1

3.
1

2.
6

Year

Ad
di

ti
on

al
 in

co
m

e
in

 m
io

. E
U

R

Onshore Wind 30 GW Germany 95%

Onshore Wind 1 GW Pool negative capacity bids 95%

Offshore Wind 1 GW Germany negative capacity bids 95%

Photovoltaic Systems 30 GW Germany negative capacity bids 95%

Photovoltaic Systems 1 GW Pool negative capacity bids 95%

Onshore Wind 30 GW Germany 99.994%

Onshore Wind 1 GW Pool 99.994%

Offshore Wind 1 GW Germany 99.994%

Photovoltaic Systems 30 GW Germany 99.994%

Photovoltaic Systems 1 GW Pool 99.994%

Possible additional
income in the positive
tertiary control reserve
market

Analysis on the
possibilities for
additional income

198 | Economics of fluctuating RES in the control reserve markets

pool cannot be scaled linearly to the 30 GW and vice versa. Successful market

participation merely depends on the quality of the probabilistic forecast

rather than the pool size. The 1 GW pool of PV systems clearly outperforms

the 30 GW pool when comparing the numbers on a per GW basis. The better

forecast not only offsets the disadvantages of the small pool size, but also

generates additional income. The intersection of the merit-order list at a

higher price generates a smaller gap between the market price approach and

the underlying opportunity costs. The 1 GW pool of wind farms is able to

generate significant revenue despite the fact of having the less favourable

forecast quality. Offshore wind performs best based on the given forecast,

achieving a deep market penetration at its mostly full load oriented

generation pattern. However, offshore is also the RES generator that has the

most uncertainty about the achievable forecast quality and its technical

connection to the mainland grid.

Based on the observations one can conclude that the level of reliability has a

large influence on the market potential. The effect is more pronounced in the

positive markets than in negative markets. The impact of reliability, however,

seems to soften over the years due to the price development in the market.

The change in market structure, from a capacity price intensive market to a

more dispatch cost oriented market, appears to suit the characteristics of

fluctuating RES while allowing them to have a stable income. This is

especially true for the negative tertiary control reserve market, which is by

far the most competitive market.

No PV system could generate any revenue with a product length of twelve

hours or more. In today’s secondary control reserve market, they would not

be able to participate at all. Wind farms would also suffer from longer

product lengths; however, they would still generate significant revenue in the

negative reserve markets.

In all market segments but the negative tertiary control reserve, a decreasing

market potential can be observed. A clear trend between the years 2010 and

2014 is visible for the secondary control reserve markets. In this time, there

has been a significant increase in new market players such as virtual power

Impact of the level of
reliability

Impact of the product
length

Identification of trends

Economics of fluctuating RES in the control reserve markets | 199

plant (VPP) operators that aggregate decentralized biogas fired combined

heat and power (CHP) units.

The negative secondary control reserve market with a level of reliability of

99.994 % and a product length of 12 hours most closely imitates the real

secondary control reserve market the most. The real market still has weekly

tendering (see assumptions in chapter 4.2). In this market environment, PV

systems cannot participate. The 30 GW wind farm pool would have been able

to generate up to 54.5 million EUR in 2010 and as much as 17.3 million EUR

in 2014. The 1 GW pool of wind farms would have generated between

4.1 million EUR (in 2012) and 0.9 million EUR (in 2014).Where the 30 GW

pool has a clearly decreasing trend over the years the 1 GW has no clear

direction. The 1 GW pool of offshore wind farms follows the trend of the

30 GW onshore wind farm pool, from 23.6 million EUR in 2010 to

12.9 million EUR in 2014. In total, it can be assumed that the market potential

is decreasing over time due to increased competition. The 1 GW pool will

follow this trend in general.

The market with the lowest market entry barrier is the negative tertiary

control reserve market. For that reason, it is also the most competitive

market in general. Currently a product length of four hours is applied.

Together with an expected reliability requirement of 99.994 %, significant

revenues can be generated in this market segment. The 30 GW pool of

onshore wind farms would have generated between 9.1 million EUR (2012)

and 18.7 million EUR (2013). The 1 GW pool of onshore wind farms would

have yielded between 1.1 million EUR (2010/2012) and 3.0 million EUR

(2013). Offshore wind farms could have generated between 8.1 million EUR

(2010) and 18.1 million EUR (2013). The German 30 GW pool of PV systems

would also have generated additional income of between 2.2 million EUR

(2012) and 7.7 million EUR (2013). The 1 GW pool of individual PV systems

would have generated between 0.6 million EUR (2014) and 1.0 million EUR

(2013). It can be concluded that the income for any technology peaks in the

year 2013 and is at its lowest for most of the pools in 2010 or 2012. This

reveals a strong dependency on market prices in general. For the outlook, it

will be necessary to relate the economic value to the market development.

Focus on negative
secondary control
reserve market

Focus on negative
tertiary control reserve
market

200 | Economics of fluctuating RES in the control reserve markets

The following table shows the possible additional income in EUR per

megawatt per year for all four investigated market segment. The presented

results are derived from Figure 5-23 to Figure 5-26 and are given for the four

hour product length with a reliability of 99.994 %, as these market conditions

are most likely to implemented in the future (Bundesnetzagentur, 2015).

Possible
additional
income in
EUR/MWinst/a

30 GW
onshore

wind farm

1 GW
onshore

wind farm

1 GW
offshore

wind farm

30 GW PV
systems

1 GW PV
systems

Secondary
negative market

1600
(720-
2300)

3700
(1500-
5400)

25700
(16300-
31500)

170
(70-
260)

1300
(520-
2100)

Secondary positive
market

170
(0-

280)

3200
(1200-
5200)

63900
(40600-
103200)

4100
(2000-
6300)

1300
(910-
1600)

Tertiary negative
market

510
(300-
620)

1600
(1100-
3000)

12900
(8100-
18100)

130
(70-
260)

800
(600-
1000)

Tertiary positive
market

80
(20-
190)

420
(30-
870)

8000
(2500-
14300)

70
(10-
170)

810
(570-
1000)

Source: own analysis

Table 5-1: Possible additional income in EUR/MWinst/a for all market segments and
years with a reliability of 99.994 % and a product length of four hours with
minimum and maximum values in brackets

The results in the previous table show the average additional income of each

generator pool in the four market segments assessed. Offshore wind has by

far the largest additional income per MWinst. This is due to the feed-in

characteristics of offshore wind power plants. Forecasts for offshore wind

farms have a high reliability during hours with maximum feed-in as this

weather regime is stable and has little forecast errors. The offshore wind

farms in total have also more full load hours. The negative secondary and

tertiary control reserve markets will see the fluctuating RES first. The

additional income in these markets can be generated through competition for

the capacity price. This will also be shown in Figure 6-1 and Figure 6-2. The

high additional income in the positive secondary control reserve market can

Overview of the results

Analysis of the results

Economics of fluctuating RES in the control reserve markets | 201

only be accessed through price differences of the dispatch cost, which are

most likely not sustainable.

A decreasing market potential for fluctuating RES generators can be observed

in the negative secondary control reserve market and a stagnating market

potential in the negative tertiary control reserve market. Both positive

market segments are practically irrelevant in the current market structure,

especially if market price forecast uncertainties are accounted for. Though

the possible revenues for the RES generators have declined over time, they

could still prove that they are competitive in the latest data from 2014. From

this, it can be concluded that the fluctuating RES generators will be able to

access the market’s potential in an increasingly competitive environment.

Competition, however, will increase further through the changes induced by

the green paper / white paper process of the BMWi (Bundesministerium für

Wirtschaft und Energie, 2015b).

Conclusions

202 | Economics of fluctuating RES in the control reserve markets

Economic impact of fluctuating RES on the power system level | 203

6 Economic impact of fluctuating RES on the power
system level

The bids from the previous chapter are placed into the market environment

of the negative and positive secondary and tertiary control reserve markets,

using the hindcasting approach described in chapter 4.4. Identifying the

change in control reserve procurement costs allows the determination of the

gain in welfare due to the introduction of additional market participants,

such as the fluctuating RES generators. Also in this chapter, the impact of the

proof method on the spot market is shown. At the end of this chapter, the

results for a forecasting approach are presented.

The system point of view is chosen for the entire chapter. Subsequently only

the input data for the 30 GW pool of wind farms and the 30 GW pool of PV

systems are used. Only these pools would be able to deliver an insight into

the possible impact of fluctuating RES in the control reserve market. The

three 1 GW pools would only be able to show a fraction of the entire

potential. They are therefore omitted. In reality, both 30 GW pools would

consist of several smaller pools competing against each other in the market.

6.1 Determination of the change in costs

The introduction of new market participants leads to a change of the cost

structure in the market. It is solely dependent on the capacity price whether a

bid is accepted or not. This is called the award criterion. Since the dispatch

costs are not part of the criterion, the overall costs can increase, although the

capacity costs decrease by the introduction of new market players. This is the

case when the dispatch costs increase more than the capacity costs decrease.

The changes in control reserve procurement cost are calculated with the bids

from the two different bidding approaches in chapter 5.3 according to the

methodology in chapter 4.4.5.

Introduction to the
micro-economic
evaluation of
fluctuating RES in the
control reserve markets

Identification of the
cost saving potential
and welfare gain is
based on the two
30 GW pools

Summary of the applied
methodology

204 | Economic impact of fluctuating RES on the power system level

Figure 6-1 shows the cost saving potentials for the German 30 GW wind farm

pool participating in negative and positive secondary and tertiary control

reserve markets. The cost saving potentials are given in million EUR. The

presented numbers include the saving potentials for the capacity costs, the

dispatch costs and, as a sum of both, the total cost savings. The upper graph

shows the saving potentials with the opportunity cost based bids and the

available active power mechanism applied. The middle graph is based on the

opportunity cost based approach with the balance control mechanism

applied. The lower graph shows the cost saving with the market-based profit

maximizing approach. For further reference, it is assumed that the market-

based approach has the available active power proof method applied.

The difference in cost reduction between each one of the first two

opportunity cost based approaches (upper and middle graph) and the market

based profit maximizing approach (lower graph) equals the possible

additional revenue for the fluctuating RES generators, as shown in

chapter 5.4; however the additional income under the balance control

mechanism is not displayed. The bids presented in chapter 5.3 are used for

the calculation of the saving potentials.

The figure displays values for the product length of one hour and a level of

reliability of 99.994 %. The product length of one hour is chosen since it

allows for the best comparison between wind farms and PV systems, without

having a predominant effect of the product length on the potentials. The level

of reliability is chosen to ensure that the potentials have the same level of

reliability as current units in the market. Therefore, it is most likely to be

implemented in the future. The years covered by the data set are 2010 to

2014. For results with the product lengths of four hours and twelve hours

please refer to Appendix C-A.

Interpreting the
upcoming graph on
cost saving potentials

Relationship between
cost saving potentials
and possible additional
income

Selection of presented
values

Economic impact of fluctuating RES on the power system level | 205

 Source: Own analysis

Figure 6-1: Capacity, energy and total cost saving potentials of the German 30 GW onshore wind pool in the
negative and positive secondary and tertiary control reserve markets for the opportunity cost
based approach with the available active power (top) and balance control mechanism applied
(middle) as well the profit maximizing based approach (bottom) for a level of reliability of
99.994 %, for the years 2010 to 2014, and a product length of one hour

The differences between the top graph and the middle graph are caused by

the difference between the proof methods applied: the available active power

2010

-120
-100

-80
-60
-40
-20

0
20
40
60
80

100
120

2011

-120
-100

-80
-60
-40
-20

0
20
40
60
80

100
120

2012

-120
-100

-80
-60
-40
-20

0
20
40
60
80

100
120

2013

-120
-100

-80
-60
-40
-20

0
20
40
60
80

100
120

2014

-120
-100

-80
-60
-40
-20

0
20
40
60
80

100
120

-120
-100

-80
-60
-40
-20

0
20
40
60
80

100
120

-120
-100

-80
-60
-40
-20

0
20
40
60
80

100
120

-120
-100

-80
-60
-40
-20

0
20
40
60
80

100
120

-120
-100

-80
-60
-40
-20

0
20
40
60
80

100
120

-120
-100

-80
-60
-40
-20

0
20
40
60
80

100
120

0 0

-120
-100

-80
-60
-40
-20

0
20
40
60
80

100
120

Neg. S
CR

Pos. SCR

Neg. TCR

Pos. TCR

0

-120
-100

-80
-60
-40
-20

0
20
40
60
80

100
120

Neg. S
CR

Pos. SCR

Neg. TCR

Pos. TCR

0

-120
-100

-80
-60
-40
-20

0
20
40
60
80

100
120

Neg. S
CR

Pos. SCR

Neg. TCR

Pos. TCR

0 3

-120
-100

-80
-60
-40
-20

0
20
40
60
80

100
120

Neg. S
CR

Pos. SCR

Neg. TCR

Pos. TCR

0 4

-120
-100

-80
-60
-40
-20

0
20
40
60
80

100
120

Neg. S
CR

Pos. SCR

Neg. TCR

Pos. TCR

Inefficiencies due to
the proof method

Total cost saving potential in mio. EUR

Capacity cost saving potential in mio. EUR

Dispatch cost saving potential in mio. EUR

Co
st

 s
av

in
g

po
te

nt
ia

l i
n

m
io

. E
U

R
Co

st
 s

av
in

g
po

te
nt

ia
l i

n
m

io
. E

U
R

Co
st

 s
av

in
g

po
te

nt
ia

l i
n

m
io

. E
U

R

206 | Economic impact of fluctuating RES on the power system level

proof method and the balance control method. The significantly lower cost

saving potentials with the balance control method can be interpreted as the

inefficiencies of the proof method, as it fails to generate significant levels of

market penetration.

The previous figure shows the cost saving potential of the 30 GW wind farm

pool in all four different market segment. The uppermost graph displays the

results with the available active power proof method applied and the

opportunity cost based bidding approach. This approach provides the highest

saving potentials from the system point of view. Apart from one data set in

the year 2011 for the negative secondary control reserve market, all results

indicate positive saving potentials from the system’s point of view. The same

applies for the opportunity cost based approach with the balance control

method. In contrast, however, the saving potentials are very low, as they

never exceed 10 million EUR. Interestingly, the profit maximizing approach

still generates significant amounts of saving potentials. It could have been

expected that these would be rather small. The bidding behaviour uses the

intersection of the merit-order list for price determination for the wind

farms. Replacing large parts of the merit-order list leads to very low prices

for the replaced bids. Since all bids then have the same low price, significant

saving potentials can be accessed. In a real market environment these saving

potentials could partially be accessed by the fluctuating RES generators. The

degree of this is highly uncertain due to strategic bidding in the market.

The saving potentials are displayed both as a total and also split into the two

contributing cost components. The market award criterion is based on the

capacity price. In all of the data sets, a positive saving potential based on the

capacity costs is achieved. This means that the fluctuating RES generators

were able to reduce the capacity costs. Under the available active power

proof method, this would be up to 100 million EUR (year 2010) and never

lower than 40 million EUR in the negative secondary market. In the negative

tertiary market, the capacity cost saving accounts for up to 60 million EUR

and at least 20 million EUR. With the market-based approach, the savings

would still be around 20 million EUR annually for the negative secondary

market and 10 to 36 million EUR in the negative tertiary market.

Analysis of the cost
saving potentials of
wind farms by bidding
approach

Capacity cost saving
potentials

Economic impact of fluctuating RES on the power system level | 207

The secondary cost components are the dispatch costs. These occur when the

contracted generator delivers energy from the control reserve unit to the

power system. Since the dispatch price is not part of the award criterion, the

market participants are free to bid any price. This has recently led to price

hikes of up to 6000 EUR/MWh, and even higher ones in the past. Any new

addition to the market that replaces a lower priced position in the merit-

order list increases the costs. In the future one can expect regulatory changes

on this specific aspect. The dispatch costs will be considered in the tendering

process (see green paper / white paper process of the BMWi

(Bundesministerium für Wirtschaft und Energie, 2015b)). For the wind farms

with relatively expensive dispatch costs due to the RES support scheme

payments, this could lead to increasing system costs under the current

market design. Wind farms have negative dispatch costs in positive reserve

markets and may generate additional cost savings there. In negative reserve

markets, negative dispatch cost savings can be observed. Whether the bids

generate cost savings or increases depends on the market situation. For any

positive reserve market, the wind farms generate additional positive cost

saving potentials.

The findings in Figure 6-1 show that the cost saving potentials can be offset

by cost increases due to higher dispatch costs. In 2011, the participation of

fluctuating RES in the negative secondary control reserve market, with the

available active power proof mechanism, would have led to a cost increase.

For all years in the market optimizing approach, cost increases in the

negative secondary market can be observed. In the negative tertiary market

some additional cost savings occur during the years

The saving potentials for the 30 GW pool of PV systems are shown in

Figure 6-2. Results for a product length of four hours are available in

Appendix C-A. Longer product lengths do not need to be displayed for PV

systems. The cost saving potentials for the 1 GW onshore wind farm pool, the

1 GW German offshore wind farm pool and the 1 GW pool PV systems are not

shown here. They have limited significance when the impact at the system

level is assessed as these pools would not be able to exploit the entire market

Dispatch cost saving
potentials

Cost savings in the
capacity costs are
partially offset by cost
increases in the
dispatch costs

30 GW pool of PV
systems and 1 GW
pools

208 | Economic impact of fluctuating RES on the power system level

potential. For completeness they can be seen in the Appendix C-A for a

product length of one hour and a reliability of 99.994 % only.

 Source: Own analysis

Figure 6-2: Capacity, energy and total cost saving potentials of the German 30 GW pool of PV systems in the
negative and positive secondary and tertiary control reserve markets for the opportunity cost
based approach with the available active power (top) and balance control mechanism applied
(middle) as well the profit maximizing based approach (bottom) for a level of reliability of
99.994 %, for the years 2010 to 2014, and a product length of one hour

2010

-40

-20

0

20

40

2011

-40

-20

0

20

40

2012

-40

-20

0

20

40

2013

-40

-20

0

20

40

2014

-40

-20

0

20

40

-40

-20

0

20

40

-40

-20

0

20

40

-40

-20

0

20

40

-40

-20

0

20

40

-40

-20

0

20

40

-40

-20

0

20

40

Neg. S
CR

Pos. SCR

Neg. TCR

Pos. TCR
-40

-20

0

20

40

Neg. S
CR

Pos. SCR

Neg. TCR

Pos. TCR
-40

-20

0

20

40

Neg. S
CR

Pos. SCR

Neg. TCR

Pos. TCR
-40

-20

0

20

40

Neg. S
CR

Pos. SCR

Neg. TCR

Pos. TCR
-40

-20

0

20

40

Neg. S
CR

Pos. SCR

Neg. TCR

Pos. TCR

Total cost saving potential in mio. EUR

Capacity cost saving potential in mio. EUR

Dispatch cost saving potential in mio. EUR

Co
st

 s
av

in
g

po
te

nt
ia

l i
n

m
io

. E
U

R
Co

st
 s

av
in

g
po

te
nt

ia
l i

n
m

io
. E

U
R

Co
st

 s
av

in
g

po
te

nt
ia

l i
n

m
io

. E
U

R

Economic impact of fluctuating RES on the power system level | 209

The 30 G pool of PV systems manages to realize cost saving potentials.

Findings can be transferred from the findings for the 30 GW pool of wind

farms. The total savings however are significantly lower than for the wind

farms. With the available active power proof method, significant cost saving

potentials can be achieved whereas the balance control proof method will

effectively inhibit successful market participation.

The total cost saving potentials of PV systems are significantly lower than

those of the with wind farms at the same installed capacity. This is due to the

lower full load hours and the simultaneity of the feed-in. The highest saving

potential, of 30 million EUR, was observed in the secondary positive market

in 2012. The savings were realized through significantly lower dispatch costs.

A real market participant, however, will exploit the tendering process and

monetarize these saving potentials. The lowest saving potential

was -20 million EUR (opportunity cost approach) in the negative secondary

control reserve market in 2011, once again determined by the dispatch

prices.

Similarly to the wind farm pool, capacity cost saving potentials are realized in

all years for the negative secondary and tertiary control reserve markets. In

the negative secondary control reserve market, the cost saving potentials

reach from 5 million EUR (2014) to over 22 million EUR (2013) based on the

opportunity cost based bids. Cost saving potentials with bids from the profit

maximizing approach are smaller. In the negative tertiary control reserve

market, the capacity cost reductions lie between 5 million EUR (2011) and

21 million EUR (also 2013). The capacity cost saving potentials are offset by

an increase in dispatch cost in three of the four yours for the negative

secondary market. In the negative tertiary market, no significant dispatch

cost changes can be observed. Capacity cost saving potentials in the positive

reserve markets are limited to low single digit values. However, significant

dispatch cost savings can be realized in those markets; between

9 million EUR and 30 million EUR in case of the positive secondary markets.

Analysis of the cost
saving potentials of PV
systems

Total cost saving
potentials

Capacity and dispatch
cost saving potentials
from PV systems

210 | Economic impact of fluctuating RES on the power system level

The results for the 30 GW wind farms pool and the pool of PV systems show a

large variation of the results throughout the different years. A consistent

trend in the data is the decrease in negative dispatch cost reductions in the

negative secondary market over the years. It is notable that the negative

tertiary market generates consistent results for both wind farms and PV

systems for the different years with a slightly upward trend towards 2014.

Other than that, the cost saving potentials largely depend on prices in the

spot market as well as in the control reserve markets. Spot market prices

affect the opportunity costs for the provision of capacity. The spot market

prices, however, have decreased significantly in the past.

The participation of wind farms and PV systems in the negative and positive

secondary and tertiary control reserve market would not only generate

additional income for those generators (see chapter 5.4), but also reduce the

overall control reserve procurement costs. Due to the market size, the

highest saving potentials can be located in the secondary control reserve

market. In some cases, however, the current market design leads to total cost

increases. This is mainly due to the fact that dispatch costs are not part of the

tendering process. This undesirable behaviour has been observed mostly in

the negative secondary market segment. If this mechanism were exploited by

the market participants further price increases in dispatch prices could be

expected. At the same time, increased competition in the market has led to

the diminishing importance of this effect in more recent years. Additionally,

the issue will be addressed by future legislation. Without the effect from the

dispatch costs, the negative control reserve markets generate more saving

potentials than the positive markets by far. In total, the participation of wind

farms and PV systems in the control reserve markets generates benefits for

the generators and the systems. The cost saving potentials are significant if

the regulations are adjusted accordingly.

Annual variations

Conclusion

Economic impact of fluctuating RES on the power system level | 211

6.2 Impacts of the proof mechanism on the spot market

This chapter investigates additional losses that occur with the

implementation of the balance control proof method as in 5.2.2. The nature of

the balance control proof method requires that wind farms and PV systems

are curtailed to a schedule with a guaranteed level of reliability. This

curtailment means less feed-in of fluctuating RES. This electricity has to be

generated by other (presumably conventional) generation. The energy losses

presented in Figure 5-11 are valued with the fuel replacement costs as well

as with the day-ahead spot market prices at each point in time according to

the methodology in chapter 4.4.6. Additionally, costs due to an increased

day-ahead spot market price for all market participants are shown. The

results can be seen in Figure 6-3.

The lines in Figure 6-3 show the additional costs in the power system for

compensating the curtailment of the fluctuating RES generators. The results

in blue and yellow represent the additional energy replacement costs of wind

farms and PV systems. The grey lines show the cost increment caused by the

lower RES penetration in the market and the resulting increase in the market

price. The lighter grey line is for the PV systems whereas the darker grey line

gives the results for the wind farms. The straight lines show the results for

the fuel replacement cost approach. The dashed lines show the additional

costs when the curtailed energy is valued with the spot market price.

The losses are taken from the same time series as presented in chapter 5.2.2.

This means that no matching of the bids with market has yet taken place. It is

therefore assumed that whenever an offer can be made to the market the

according losses have to be covered by other units in the market. For this

reason, these results present the upper limit of the additional costs, as not all

bids are accepted in the market. However, since the participation of

fluctuating RES in the control reserve market is very dependent on the

market situation, conclusive results would not be gained by considering this

information. Results in reality might be significantly lower than presented

here.

Energy losses due to
proof mechanism

Description of the
following figure

Remarks on the issue of
bid acceptance in the
market

212 | Economic impact of fluctuating RES on the power system level

 Source: Own analysis

Figure 6-3: Cost for the replacement of curtailed energy valued with the spot market prices and the fuel
replacement costs, as well as additional cost due to merit-order induced increases in the market
price.

The results show that the maximum cost increase caused by the curtailment

of fluctuating RES due to the proof mechanism can create significant costs in

other markets, such as the spot market. The additional cost for the curtailed

wind at a level of reliability of 99.994 % accounts for up to 407 million EUR

per year when valued with the market price, and 681 million EUR with the

average fuel replacement cost. PV systems would generate maximum

additional costs between 288 million EUR for the market price approach and

up to 449 million EUR for the fuel costs approach at the same level of

reliability. The maximum increase in the market price due to the lack of

fluctuating RES generation is 1.52 EUR/MWh for wind farms and

0.93 EUR/MWh for PV systems. The associated costs at a level of reliability of

Fuel cost based approach Onshore Wind 30GW Germany

Fuel cost based approach Photovoltaic Systems 30 GW Germany

Market price based approach onshore Wind 30GW Germany

Market price based approach Photovoltaic Systems 30 GW Germany

Increased electricity costs for all market participants Onshore Wind 30GW Germany

Increased electricity costs for all market participants Photovoltaic Systems 30 GW Germany

95% 99% 99.5% 99.9% 99.99% 99.994% 99.999%
0

200

400

600

800

1000

1200

1400

1600

Level of reliability

Co
st

 o
f c

ur
ta

ile
d

en
er

gy
 in

 m
io

. E
U

R/
a

Cost increments due to
curtailment of
fluctuating RES
generators under the
balance control proof
method

Economic impact of fluctuating RES on the power system level | 213

99.994 % could reach up to 1,218 million EUR for the wind farms and up to

838 million EUR for the PV systems.

The results show a small annual variability with the fuel cost and a medium

variability with the market price approach. This indicates that the results are

consistent throughout the years despite cost changes in the market. The costs

for the increased market prices for all market participants show a high

annual variability. Since the previous results were consistent, this would

indicate that the steepness of the merit-order list in the spot market changes

over time.

The total overall cost increase for the replacement of the curtailed electricity

from fluctuating RES generators has the same order of magnitude when

valued with the fuel cost and the market prices. However, it is notable that

the fuel cost approach delivers higher values than the market price approach.

This is controversial since the market prices should reflect the fuel costs

including an additional mark-up gain for the generators. This controversy

could be explained by the fact that the fuel replacement cost as an average

value does not consider merit-order information. If fluctuating RES were

curtailed during times with high RES penetration, then the generation

technology used in the market would have significantly lower fuel costs than

the average figures. The market price reflects the current state of the merit-

order and also contains older power plants. These may no longer have to

recover their investment costs and could therefore have much lower

generation costs. The average fuel cost approach delivers full cost recovery

generation costs.

The costs presented in this chapter are not taken into account in the next

chapter where the social welfare gain is presented. This is simply because the

balance control proof method is not economical and would occlude the real

potential of wind farms and PV systems in the reserve market. The following

chapter will only apply the available active power proof method.

Variability of the
calculated cost
increases

Analysis of the
projected increase in
costs

The possible coupling
to the spot market
decreases the benefits
of the balance control
approach

214 | Economic impact of fluctuating RES on the power system level

The balance control proof method is prohibitively expensive due to its effects

on other markets, such as the spot market. The possible cost increases in the

spot market outweigh the additional benefit that could be gained in the

control reserve markets. Although the balance control mechanism reduces

the need for balancing fluctuating RES, it can be safely assumed that the

additional costs for balancing fluctuating RES are lower than the possible cost

increase in the spot market, which exceeds the entire market volume of all

control reserve markets.

6.3 Social welfare gain

The results for welfare gain from the participation of fluctuating RES

generators in the control reserve market are calculated according to

chapter 4.4.7. The welfare gain, or added value, is calculated from the cost

reduction in the opportunity cost approach. The determination of the welfare

is also assessed separately based on the cost saving from the capacity costs as

well as from the dispatch costs. The welfare gain can also be expressed as the

sum of the profit maximizing approach and the possible additional income.

The social welfare gain is only displayed for the 30 GW pool of wind farms

and the 30 GW pool of PV systems since it is the aim of this chapter to reveal

the maximum potentials. Smaller pools that do not cover the entire German

fluctuating RES generators fail to deliver in this aspect.

Figure 6-4 shows the welfare gain of the 30 GW wind farm pool and the

30 GW pool of PV systems. The welfare gain by the wind farms is presented

in blue whereas the PV systems are shown in orange. The darker lines apply

for the secondary control reserve market, the lighter, for the tertiary control

reserve market. The straight lines show the results for participation in the

negative reserve markets. The dashed lines show the welfare gain when

fluctuating RES participate in positive control reserve markets. The grey bars

in the background show the shares of 10 %, 20 % and 30 % of the entire

market volume or the investigated component costs. The darker bars on the

left represent the secondary control reserve market, whereas the lighter

coloured bars show the market volume of the tertiary control reserve

Conclusions

Introduction to social
welfare gain from
fluctuating RES
generators in the
control reserve market

Description of the
following graph

Economic impact of fluctuating RES on the power system level | 215

market. Values shown refer to the entire market volume, both negative and

positive market segments together. A selection of additional product lengths

and levels of reliability can be seen in Appendix D-A.

 Source: Own analysis

Figure 6-4: Total welfare gain induced by the German 30 GW pool of wind farms and
the 30 GW pool of PV systems for a product length of one hour, a level of
reliability of 99.994 % and the available active power proof method applied
in the negative and positive secondary and tertiary control reserve market
based on the total cost saving potentials

The results for the welfare gain reconfirm the previous finding that the

participation of fluctuating RES generators in the control reserve market is

beneficial for the power system in most cases. This would not be the case for

30% threshold of secondary market share

30% threshold of tertiary market share

20% threshold of secondary market share

20% threshold of tertiary market share

10% threshold of secondary market share

10% threshold of tertiary market share

Wind negative secondary control reserve

Wind positive secondary control reserve

Wind negative tertiary control reserve

Wind positive tertiary control reserve

PV systems negative secondary control reserve

PV systems positive secondary control reserve

PV systems negative tertiary control reserve

PV systems positive tertiary control reserve

2010 2011 2012 2013 2014
-30

-20

-10

0

10

20

30

40

50

60

70

80

Year

W
el

fa
re

 g
ai

n
in

 m
io

. E
U

R

Separation of welfare
gain into capacity and
dispatch component

216 | Economic impact of fluctuating RES on the power system level

the 30 GW pool of wind farms in the negative secondary reserve market in

the year 2011 nor for the PV systems in any year but 2013. It is assumed that

this is due to the energy price effects as described in chapter 6.1. In summary,

no clear trend can be identified in the previous figure. The price effects

require the separation of the welfare gain into a capacity component and a

dispatch component. Figure 6-5 illustrates the dispatch cost component.

 Source: Own analysis

Figure 6-5: Dispatch component welfare gain based induced by the German 30 GW pool
of wind farms and the 30 GW pool of PV systems for a product length of one
hour, a level of reliability of 99.994 % and the available active power proof
method applied in the negative and positive secondary and tertiary control
reserve market

30% threshold of secondary market share

30% threshold of tertiary market share

20% threshold of secondary market share

20% threshold of tertiary market share

10% threshold of secondary market share

10% threshold of tertiary market share

Wind negative secondary control reserve

Wind positive secondary control reserve

Wind negative tertiary control reserve

Wind positive tertiary control reserve

PV systems negative secondary control reserve

PV systems positive secondary control reserve

PV systems negative tertiary control reserve

PV systems positive tertiary control reserve

2010 2011 2012 2013 2014
-120

-100

-80

-60

-40

-20

0

20

40

60

80

Year

W
el

fa
re

 g
ai

n
in

 m
io

. E
U

R

Economic impact of fluctuating RES on the power system level | 217

Figure 6-5 has the same structure as Figure 6-4. The difference is that this

figure only presents the dispatch component of the welfare gain. The grey

bars show only the dispatch cost component of the market. The illustration of

the dispatch component of the welfare gain allows the identification of a

trend in the data. The aforementioned increase in dispatch costs leads to a

negative welfare gain in the negative secondary market. For wind this peaks

at -110 million EUR in 2011; however, it is reduced to about -22 million EUR

in 2014. Equally, the 30 GW pool of PV systems follows the same trend with

the highest value of -40 million EUR in 2011 decreasing to about -8 million

EUR. A cost increase in the negative tertiary market can be observed for wind

farms in the years 2010 and 2011 with a maximum of -12 million EUR in

2011. In subsequent years, wind farms generate positive welfare gains in the

dispatch component. PV systems fail to deliver added value to market

altogether, although the maximum total amount of -2 million EUR is very

small.

The welfare gain of the dispatch component in the positive markets is

positive for all years, markets and generators. The positive tertiary market is

relatively small, however. PV systems manage to generate an additional value

of up to 8 million EUR in 2013, and for wind farms this reaches 7 million EUR

in 2012. In the positive secondary market, PV systems generated up to

30 million EUR in 2012, and wind farms up to 52 million EUR in the same

year. Both values decrease significantly until 2014 down to 9 million EUR for

the PV systems and 13 million EUR for the wind farms.

The analysis of the dispatch component of the welfare gain shows that the

total value is decreasing. The dispatch costs will have less impact over time in

the future. Apart from wind farms in the negative secondary market in 2014

fluctuating RES did not generate additional value of more than 15 million

EUR in absolute values. The trend will carry on and accelerate with new

regulations, fostering competition in the market. The second component is

the added value in the capacity market, as shown in Figure 6-6, applying the

same structure as Figure 6-5 and Figure 6-4 for the capacity component.

Negative welfare gains
of the dispatch
component in the
negative control
reserve markets

Positive welfare gains
of the dispatch
component in the
positive control reserve
markets

Fluctuating RES deliver
a declining added value
to the cost component
of the welfare gain

218 | Economic impact of fluctuating RES on the power system level

 Source: Own analysis

Figure 6-6: Capacity component welfare gain induced by the German 30 GW pool of
wind farms and the 30 GW pool of PV systems for a product length of one
hour, a level of reliability of 99.994 % and the available active power proof
method applied in the negative and positive secondary and tertiary control
reserve market

The results in Figure 6-6 show a declining welfare gain from 100 million EUR

(2010) to 42 million EUR (2014) in the negative secondary market that

roughly correlates with the decrease in capacity cost in that market segment.

The welfare gain in the negative tertiary market segment, however, has an

increasing trend from 25 million EUR in 2010 to 47 million EUR in 2014

peaking at 58 million EUR in 2013. At the same time, the increase correlates

30% threshold of secondary market share

30% threshold of tertiary market share

20% threshold of secondary market share

20% threshold of tertiary market share

10% threshold of secondary market share

10% threshold of tertiary market share

Wind negative secondary control reserve

Wind positive secondary control reserve

Wind negative tertiary control reserve

Wind positive tertiary control reserve

PV systems negative secondary control reserve

PV systems positive secondary control reserve

PV systems negative tertiary control reserve

PV systems positive tertiary control reserve

2010 2011 2012 2013 2014
0

20

40

60

80

100

120

Year

W
el

fa
re

 g
ai

n
in

 m
io

. E
U

R

Positive welfare gains
in the capacity
component for all
market segments

Economic impact of fluctuating RES on the power system level | 219

with the total capacity cost in the tertiary market. PV systems follow the

same trend in both market segments, peaking at 24 million EUR in the

negative secondary market and 21 million EUR in the negative tertiary

market. The added value of wind in the positive reserve markets is limited.

For the positive secondary market, it stagnates between 3 million EUR and

6 million EUR and is consistently less than 1 million EUR in the positive

tertiary control reserve market. Once again the PV systems follow the trend

of overall lower values. The added value in the negative secondary market is

between less than 1 million EUR and up to 4 million EUR depending on the

year, and is less than 1 million EUR in the positive tertiary control reserve

market.

The observed results show a large dependency on the entire market volume.

For the representation of the cost component, a dependency on the

corresponding cost component of the market was identifiable. The

dependency varies significantly throughout the years, however, possibly due

to strategic bidding in the market and therefore occludes the real price. It can

be concluded that a significant welfare gain can be achieved in the negative

reserve markets with only marginal gains in the positive markets.

Additionally the added value largely depends on the market volume.

The possible influence of the market volume on the added value from

fluctuating RES generators is taken into account in Figure 6-7, which shows

the ratio between the added value and the total market costs. The values

expressed as percentages are the cost reduction potentials as a share of the

entire market size. A given percentage value for bids placed in the negative

tertiary control reserve markets is set in relation to the entire market volume

of the negative and positive tertiary control reserve market. The market

volume is equal to the control reserve costs given in Figure 3-7. Figure 6-7

resembles the previous figures apart from the fact that the grey bars with

market information are omitted.

Added value dependent
on the market size

Displaying the relation
the welfare gain and
the total market size

220 | Economic impact of fluctuating RES on the power system level

 Source: Own analysis

Figure 6-7: Ratio between the capacity component welfare gain and the capacity cost
market value based on capacity cost reductions only induced by the German
30 GW pool of wind farms and the 30 GW pool of PV systems for a product
length of one hour, a level of reliability of 99.994 % and the available active
power proof method applied in the negative and positive secondary and
tertiary control reserve market

Fluctuating RES generators achieve significant market shares in the negative

reserve markets. Wind farms in the negative secondary market generate a

welfare gain based on the market size, of between 18 % and 30 % at a level of

reliability of 99.994 %. In the negative tertiary market, this would be

between 29 % and 45 %. PV systems would achieve 2-8 % in the negative

secondary market and between 6 % and 13 % in the negative tertiary

Wind negative secondary control reserve

Wind positive secondary control reserve

Wind negative tertiary control reserve

Wind positive tertiary control reserve

PV systems negative secondary control reserve

PV systems positive secondary control reserve

PV systems negative tertiary control reserve

PV systems positive tertiary control reserve

2010 2011 2012 2013 2014
0

5

10

15

20

25

30

35

40

45

50

Year

%
 o

f c
ap

ac
it

y
m

ar
ke

t
va

lu
e

High market share in
the negative market
segments and very
small market shares in
the positive market
segments

Economic impact of fluctuating RES on the power system level | 221

market. In both positive reserve markets, the added value does not exceed

3 % of the market volume with slightly higher shares in the secondary

market. This confirms that the economics for fluctuating RES are far more

suitable to participate in the negative control reserve markets.

Being able to replace large amounts of conventional generators in the market

fosters the transformation of the power system. In a system with increasingly

dynamic residual load requirements, conventional generators often do not

operate at their maximum capacity. Each conventional generator in the

power system that provides control reserve is therefore a potential must-run

unit and causes uneconomic dispatch. Fluctuating RES generators providing

control reserve therefore can have a positive impact on the spot market. In

conclusion, significant welfare gains can be achieved by the introduction of

fluctuating RES generators into the markets. High market shares can be

achieved in the negative reserve markets.

6.4 Forecast of welfare gain in 2020 and 2030

Based on all previous findings, this chapter aims to forecast the welfare gain

in the years 2020 and 2030. This is carried out with the methodology from

chapter 4.4.8. The presented methodology is highly dependent on the results

shown in chapter 6.3. The methodology builds on the finding that the welfare

gain is proportional to the market volume.

Based on the presented methodology three steps are necessary. The first step

identifies the average ratio between the capacity cost based welfare gain and

the total volume of the capacity market, which includes the capacity

components of the entire secondary and tertiary control reserve markets.

Since the welfare gain correlates with the market volume, it is forecasted in

the second step. Finally, the ratios gained from the first step are applied to

the forecasted market volume.

The first step evaluates the ratios between the capacity cost based welfare

gain and the total capacity market volume of the control reserve market. The

average ratio is the mean value of the ratios in the secondary and tertiary

Conclusions and
consideration on must-
run units

Methodology on the
welfare gain for 2020
and 2030

Steps for forecasting
the welfare gain in
2020 and 2030

Identifying average
ratios of welfare gain in
2010 to 2014

222 | Economic impact of fluctuating RES on the power system level

market control reserve capacity market components. The two markets are

evaluated together, since they are interchangeable for fluctuating RES

generators under the forthcoming market changes (see (Bundesnetzagentur,

2015)). The ratios are the average values over all years of the average value

of the two markets, as laid out in equation (4-44). The individual shares for

each year and market segment are presented in Figure 6-7 and Figure D-41

to Figure D-44 in Appendix D-B. The annual average ratios of both markets

are shown in Figure 6-8 below.

 Source: Own analysis

Figure 6-8: Average annual ratios between welfare gain and the joint capacity market
volume for different levels of reliability and product lengths

1h product length wind farms

2h product length wind farms

4h product length wind farms

8h product length wind farms

12h product length wind farms

24h product length wind farms

1h product length PV systems

2h product length PV systems

4h product length PV systems

8h product length PV systems

12h product length PV systems

24h product length PV systems

95% 99% 99.5% 99.9% 99.99% 99.994% 99.999%
0

10

20

30

40

50

60

Level of reliability

Ra
ti

o
of

 w
el

fa
re

 g
ai

n
to

 t
ot

al
 c

ap
ac

it
y

m
ar

ke
t

va
lu

e
in

 %

Economic impact of fluctuating RES on the power system level | 223

The average of the ratios for wind with a level of reliability of 99.994% and a

product length of one hour is 28.7 %. With a product length of four hours this

falls to 25.8 %. The ratios of PV systems are significantly lower. At the same

level of reliability we see 7.5 % with a product length of one hour, and 4.1 %

with a product length of four hours. In general, one can observe diminishing

ratios of welfare gain with increasing product lengths and increasing levels of

reliability. Once again, it is emphasized that the level of reliability of

99.994 % and the product length of one hour is guaranteeing the security of

the bids whilst maximizing the output at the same time. The product length of

one hour is most suitable for comparing wind farms and PV systems.

Changing the product length from one hour to four hours, diminishes the PV

systems potential by 45.3 %, while it is reduced by only 10.1 % for the wind

farms. For 2020 and 2030, it can also be assumed that the product length is

shortened to one hour, as already indicated by the Federal Network Agency.

The previous step identified that the ratio between the welfare gain and the

market volume of the capacity costs of the secondary and tertiary control

reserve market capacity component is approximately constant while

maintaining the same installed capacity. Knowing the market volume in the

future allows identification of the welfare gains by fluctuating RES

generators. This finding requires the extrapolation of the market volume to

2020 and 2030 in the second step. The methodology is presented in

chapter 4.4.8. The proposed methodology identifies the exponential function

as a suitable function family. The function is fitted to the previous market

volumes, as shown in Figure 6-9.

The market volumes are the sum of the capacity components of the

secondary and tertiary control reserve markets. These values are depicted as

blue crosses in Figure 6-9. Fitting equation (4-45) to these values yields the

coefficients 𝑎𝑎 = 2.843𝑒𝑒52 and 𝑏𝑏 = −0.05696, resulting in the blue curve. The

goodness of the fit is relatively low with 𝑅𝑅2 = 0.6324. Since the demand has

changed in the past, the impact on the market volume has to be accounted

for. Control reserve demand is presented in Figure 3-10. Past market

volumes are derated in proportion to their annual average control reserve

demand in both markets and scaled to the demand for the year 2014. This

Annual average welfare
gain ratios for wind
farms and PV systems

Forecasting the market
volume for 2020 and
2030

Adjustment of market
volume to the demand

224 | Economic impact of fluctuating RES on the power system level

adjusts the market volumes in the past. For the years 2004 to 2009 in

particular the market volume is reduced, by up to 101.7 million EUR in 2006.

In 2011 and 2012 the demand was lower than in 2014, and the market

volume is increased accordingly. These demand adjustments reduce the

steepness of the fitted exponential function. The new coefficients are

𝑎𝑎 = 1.246𝑒𝑒36 and 𝑏𝑏 = −0.03825, forming the orange curve. The goodness of

fit is reduced to 𝑅𝑅2 = 0.5006.

 Source: Own analysis

Figure 6-9: Extrapolation of joint capacity market volume for the years 2020 and 2030
based on the observed market size between 2004 and 2014 using an
exponential fit

The resulting market volumes for the years 2020 and 2030 are indicated in

Figure 6-9 with grey crosses. For the exponential fit with no demand

adjustments, the market volume would be 304.9 million EUR in 2020 and

172.5 million EUR in 2030. With the control reserve demand based

adjustments the market volume would reach 346.5 million EUR in 2020, and

Total capacity market volume

Demand adjusted total capacity market volume

Exponential fit: y = 2.843e+52*exp(-0.05696*x)

Exponential fit with demand adjustment: y = 1.246e+36*exp(-0.03825*x)

Extrapolated data for 2020/2030

2005 2010 2015 2020 2025 2030
0

100

200

300

400

500

600

700

800

Year

To
ta

l c
ap

ac
it

y
m

ar
ke

t
vo

lu
m

e
(S

FC
 a

nd
 T

FC
) i

n
m

io
. E

U
R

Forecasted total
capacity market
volumes (SCR and TCR)

Economic impact of fluctuating RES on the power system level | 225

236.4 million EUR in 2030. The market forecast for 2020 would therefore be

higher than the lowest value of 332.2 million EUR, observed in 2014. Since

market volume information is derived from the exponential extrapolation

only, it would be desirable to validate this with a different methodology, as

e.g. in Lorenz and Gerbaulet (2015). This becomes increasingly important for

larger time horizons, especially for the year 2030 and beyond.

In the third and final step, the average ratios of the welfare gain are applied

to the forecasted market volume information. The forecasts for the welfare

gain from fluctuating RES generators are calculated. The results for a level of

reliability of 99.994 % and the various product lengths of one hour, four

hours and twelve hours can be seen in Figure 6-10 below. The same plot with

level of reliability of 95 % can be found in Figure D-50 in Appendix D-C.

 Source: Own analysis

Figure 6-10: Forecast of welfare gain by the fluctuating RES generators in the control
reserve market for the years 2020 and 2030 at a level of reliability of
99.994 %

Product length: 1 hour

2020 2030
0

10

20

30

40

50

60

70

80

90

100

Year

Fo
re

ca
st

ed
 w

el
fa

re
 g

ai
n

in
 m

io
. E

U
R

Product length: 4 hours

2020 2030
0

10

20

30

40

50

60

70

80

90

100

Year

Fo
re

ca
st

ed
 w

el
fa

re
 g

ai
n

in
 m

io
. E

U
R

Product length: 12 hours

2020 2030
0

10

20

30

40

50

60

70

80

90

100

Year

Fo
re

ca
st

ed
 w

el
fa

re
 g

ai
n

in
 m

io
. E

U
R

Wind farms

Demand adjusted wind farms

PV systems

Demand adjusted PV systems

Forecast of the welfare
gain

226 | Economic impact of fluctuating RES on the power system level

The figure above shows the potential welfare gains in 2020 and in 2030. The

yellow colours refer to the data on the 30 GW pool of PV systems. The blue

bars indicate the results for the 30 GW wind farm pool. The lighter colours

are for the market volume forecast without demand adjustment, while the

darker colours include the demand adjustment. In the case of the wind farms

with the demand adjusted forecast for 2020, the welfare gain is

100.0 million EUR with a product length of one hour and 90.0 million EUR

with a product length of four hours. The PV systems would create 26.0 and

14.2 million EUR respectively. The results for the year 2030 are 31.8 % lower

than in 2020.

In both cases the capacity is assumed to be 30 GW, equal to the values in the

assessment period. However, an increase in capacity is expected. This would

potentially increase the welfare gain further. At the same time, the welfare

gain could have been overestimated, due to the fact that the average has been

used and applied to the entire market volume, whereas previously it was

stated that the capacity could have been exhausted in one market segment

already. Although this might be true in some hours of the year, the fluctuating

RES provide enough reliable capacity to provide both services

simultaneously, judging by the forecasts presented before.

The forecast of the welfare gain for the years 2020 and 2030 revealed

significant potentials. However, the results should be verified by different

modelling approaches, such as fundamental models. If the welfare gain were

monetized by the wind farms and PV systems, additional income could be

generated. For 2020, wind farms could generate approximately

3300 EUR/MWinst, and PV systems up to 850 EUR/MWinst, applying a level of

security of 99.994 % and a product length of one hour. The forecasts of the

welfare gain show the economic significance of a possible control reserve

provision for the system and the contributing fluctuating RES generators.

Forecasted welfare gain
by fluctuating RES
generators in 2020 and
2030

Discussion of results

Conclusions

Final assessment of the hypothesis and conclusions | 227

7 Final assessment of the hypothesis and conclusions

The study set out to explore the economics of a control reserve provision by

fluctuating renewable energy sources. The very specific feed-in

characteristics require additional steps to bring these generators to a market

that requires reliable delivery. The high importance of this topic becomes

apparent through the current consideration in the green/white paper

process (Bundesministerium für Wirtschaft und Energie, 2015b), and the

announcement of market participants (Döring, Sachs, & Thomas, 2014) as

well as the frequent changes in the market design (Bundesnetzagentur,

2011c, 2011d, 2011e, 2015). Discussions in this area often lack reliable

scientific data (Bucksteeg et al., 2014); decisions on regulatory changes often

depend on the aggregated opinions of the stakeholders rather than scientific

evidence (Bundesnetzagentur, 2015). This is underlined by the undoubtedly

beneficial consultation periods before major market design changes. Since

the technical capabilities of fluctuating RES to provide control reserve have

been proven previously, this study is seeking to shed light on the economics

of the topic. This is the next step towards a business model and market

implementation.

Derived from the research hypothesis the research question is stated again:

How can stochastic units, such as wind farms and PV systems,

provide control reserve to the power system competitively

without altering the level of reliability whilst decreasing

system costs?

Answering the research question enables policy makers, researchers and

market participants to know the value of their actions. The policy makers can

adjust legislation towards a more fluctuating RES oriented market design.

Researchers can match the numbers from this thesis with their results gained

from unit commitment and agent-based models. This would lead to an

exchange in scientific ideas. Market participants can estimate the value of

Context of the study
and relevance to policy
makers and market
participants

Research question

Beneficiaries of the
research results

228 | Final assessment of the hypothesis and conclusions

their assets and judge whether they have a valid business model to prepare

their market entrance.

7.1 Main findings

The research results have shown that they can answer the research question.

The requirements to enable fluctuating RES generators to provide control

reserve to the market have been identified. The results also indicate that

having the wrong market regulations in place may lead to undesirable results

and a potential increase in costs. The keywords of the findings are

highlighted.

With the application of probabilistic forecasts, it is possible for fluctuating

RES generators to provide control reserve with a very high level of

reliability. If the real level of reliability of the existing market participants

was disclosed by the grid operators, the forecast could be tuned to this exact

value. This would guarantee that the reserve provided by fluctuating RES

generators were no less than equally reliable as the reserve provided by

conventional generation.

Fluctuating RES generators can achieve a deep market penetration. Wind

farms have an advantage over PV systems since they have more full load

hours and no diurnal periodicity, hence low simultaneity of their feed in. At

times of high fluctuating RES penetration, wind farms and PV systems can

contribute large shares of the control reserve demands, and therefore

relieve other generators from their duty. The degree of market penetration

can vary substantially, depending on the market, the product specifications

and other influencing factors.

The impact of many issues of market regulation is captured and the effects on

the fluctuating generators are quantified. By the variation of the product

length, the level of reliability and other parameters, the impact of different

market regulations is determined. For each different type of generator,

numerous results were obtained. For example, if the product lengths are too

long, PV systems would not be able to provide control reserve, although

Answers to the
research question

Providing reliability is
possible

Large shares of
renewables can provide
large shares of control
reserve

Regulatory
environment is
paramount for
successful market
participation

Final assessment of the hypothesis and conclusions | 229

certain shares of their feed-in can be forecasted very reliably, whilst bearing

in mind the daily and seasonal periodicity. Current secondary control reserve

markets would be inaccessible for this reason alone, setting aside the other

market entrance barriers. For the highest potential, the product length and

the gate closure time should be as short as possible without discriminating

against existing market participants. The level of reliability should be as high

as necessary to fulfil the criteria but as low as possible to increase the

potentials.

The economics of possible participation of fluctuating RES generators have

been assessed extensively. This thesis has demonstrated a way to create

market compliant bids with the required level of reliability, as appropriate

for the control reserve market. Different bidding approaches have been

modelled specifically to capture the entire range of possible market

outcomes. The real market outcome will lie in-between the two approaches.

The achievable market penetration differs largely between different bidding

approaches and the market regulations. For all of the bids a market entry

simulation has been performed to address the income possibilities of

fluctuating RES generators in those markets. The results show that significant

additional revenue can be generated in the negative secondary and tertiary

control reserve markets.

Wind farms in particular have a good ability to generate additional

income in the market. With a falling trend over the years studied, a 30 GW

pool was able to generate at least 17 million EUR and up to 54 million EUR in

the negative secondary market, applying close-to-reality market conditions.

PV systems’ additional income is one order of magnitude inferior. Wind

farms have proven to be adaptable to changes in the most dynamic and

competitive of all market segments, the negative tertiary market. The

additional revenue over the years varied from 10 million EUR to 19 million

EUR with a much more stable outlook into the future. Additional income

opportunities in the positive reserve market mostly arise from the dispatch

of control reserve. Forthcoming regulatory changes, which are due to

inefficiencies in the past, will decrease this potential significantly.

Range of bidding
approaches captures
the possible additional
income

Significant additional
income for fluctuating
RES generators

230 | Final assessment of the hypothesis and conclusions

In a hindcasting approach, the bids from the fluctuating RES generators have

been used to generate possible cost saving potentials for the system.

Derived from these results the welfare gain is determined. If the dispatch

component were considered negative, welfare gains would be possible. Since

these inefficiencies will be solved by regulatory changes, the welfare gain

based only on the capacity component is considered, which leads to solely

positive welfare gains in all market segments. The welfare gains expressed

as a share of the market volume averages 24 % in the negative secondary

market and 37 % in the negative tertiary market. The share in the negative

secondary market is mostly constant whereas the share in the negative

tertiary market is increased. The share of PV systems is significantly lower, at

only 5 % in the secondary and 10 % in the tertiary market. However, both

technologies might complement each other well. The welfare gain in positive

markets does not exceed low single digit percentage values. The results are

used to provide an outlook of the welfare gain for the years 2020 and 2030.

The forecast in the future based on the welfare gains is in opposition to the

approach of Papaefthymiou et al. (2015), which uses forecasted price data.

The approach via the welfare gain is far more robust since control reserve

market prices tend to be highly erratic, due to the strategic bidding in the

market. Similar findings were made on the bidding characteristics of the

wind farms. For onshore wind farms the difference is an order of magnitude

inferior. According to the approach of Papaefthymiou offshore wind farms

could generate an additional 5,000 - 8,000 EUR/MWinst. The results in this

study suggest that the additional income is between 8000 EUR/MWinst and

18000/MWinst. The results from this study confirm the findings in

(Papaefthymiou et al., 2015, p. 5). It has to be noted however, that the paper

of Papaefthymiou builds upon the methodology presented in this work and

its preceding publications. Matching results with an alternative methodology

would increase the confidence in the results further. The study by Consentec

(2011, p. 29) comes to a similar conclusion on the same issues of potentially

increasing dispatch costs, although in this case for dispatchable RES

generators.

High welfare gains
through wind farms in
the negative reserve
markets

Differentiation from
publications of other
authors

Final assessment of the hypothesis and conclusions | 231

The presented results show that fluctuating RES generators can deliver

control reserve reliably, and confirm which regulations need to be addressed

to enable the provision of control reserve with an increasing share of

fluctuating RES in the grid. It is proven not only that a valid business model

for the generators exists, but also that the costs for the procurement of

control reserve can be reduced. The work has provided an insight into the

economics of fluctuating RES in the control reserve markets and the

dependencies on the regulatory framework. The research hypothesis can

therefore be accepted.

7.2 Suggestions for action

Based on the results, the control reserve market should be developed further

to allow fluctuating RES generators to participate. Some of the suggestions

are already in the discussion (Bundesministerium für Wirtschaft und Energie,

2015b; Bundesnetzagentur, 2015), some may go beyond the scope of it.

1. Carry out the daily tendering for all control reserve types. This

reduces the effects on the spot markets (must-run), increases

competition and allows the dynamic dimensioning of the reserves for

the next day (Jost et al., 2014). Abandon week-daily tendering as the

market participants move towards a 24/7-operation.

2. Investigate the possibility of shortening the lead-time of the market.

The current regulation of tendering the control reserve market before

the spot market reduces the dispatch efficiency in the spot market

without increasing the efficiency in the control reserve market.

Consider control reserve market gate closure time after the publishing

of the results in the spot market and the announcement of the

schedules by the balance responsible party.

3. Reduce the product lengths in the control reserve markets to no more

than four hours. If PV systems were to deliver control reserve, the

product length would not be more than two hours. Explore the

Closing the research
question

Regulatory changes

232 | Final assessment of the hypothesis and conclusions

possibility of product lengths of one hour and the implications on

system operation and conventional generators.

4. Define a level of reliability for the market participants. The current

reliability of 100 % is unrealistic for any market participant and

occludes the associated risks.

5. Include the dispatch price in the tendering process to avoid the

occurrence of very high dispatch prices. At the same time, this will

increase the competition in the market and subsequently lead to

decreasing costs.

6. Allow the available active power proof method for fluctuating RES

generators and other stochastic units in the power system. The

control reserve market is not suitable to improve the balancing

discipline of the balance responsible parties. Use the balancing energy

price mechanism instead.

7.3 Recommendation for future research

New potential research questions have arisen in this study. Some of the initial

questions might not have been answered to exhaustion.

1. Investigation of the effects of co-optimization for the control reserve

markets and spot markets simultaneously. Just (2011) stated that the

increase in complexity does not lead to a high increase in efficiency.

Alternatively investigate the efficiency gains when the co-optimization

is performed stochastically. Results in Brauns et al. (2014, p. 58) show

that high gains can be achieved when fluctuating RES and dispatcha-

ble generation are pooled. Investigate the changes on bidding prices

and feed them back to the REBal model.

2. Explore the impact of alternate methodologies to calculate the

probabilistic forecast. Many of the presented results are dependent on

the probabilistic forecasts. When parametric methodologies are used,

the issue of fat-tailed distributions needs to be investigated, since

Future research

Final assessment of the hypothesis and conclusions | 233

extreme values might not fit the chosen approach. The selected

method for this work does not have this problem since it is a

non-parametric methodology. Necessarily, one would need to assess

and optimize different forecast methods for their suitability in the

control reserve provision.

3. Investigate the bidding behaviour of real market participants in detail.

This would allow modelling and forecasting the economic results

more precisely. Combine the bidding of different fluctuating RES

generators to address the simultaneity issues.

4. Iterate more portfolio sizes to identify the functional relationship

between the pool size and the welfare gain.

5. Place the bids in all market segments simultaneously, starting with the

most profitable one and then using spare capacity in the next-best

market segment and so on.

6. Explore the possibility of determining the welfare gain in the future in

more detail, using a different methodology. This could incorporate the

use of fundamental models to generate prices in the future.

7. Determine how the control reserve markets can be described best.

These markets are partially driven by the fundamentals in the market

and partially by strategic bidding behaviour. Determining the extent

of the strategic behaviour, allows estimation of the level of uncertainty

in future predictions of the market outcome and the welfare gain.

8. Increase the overall potential for the delivery of control reserve by

identifying recurring or foreseeable patterns that have a large

negative influence on the forecast levels. Probabilistic forecasts with

very high levels of reliability are influenced by the extreme values. If

the reliability of a forecast over a year is 99.99 %, then the time where

the forecasted data exceeds the feed-in shall not be more than

52 minutes per year. Increasing the forecast reliability to 99.999 %

changes this number to 5 minutes. For this reason, it might be

234 | Final assessment of the hypothesis and conclusions

favourable to remove certain times from the data. One class of

influencing events for wind turbines is storms, which repeatedly

introduce large forecast errors (Dobschinski, Wessel, Lange, Bremen,

& Saint-Drenan, 2008). If data for a predicted storm event were

omitted the forecast accuracy could be increased (Dobschinski et al.,

2010, p. 11).

9. Investigate the risk of offshore wind farms lacking n-1 security for

their connection.

7.4 Conclusion

The distinctive production patterns of onshore wind farms, offshore wind

farms and PV systems relate to their ability to provide a control reserve that

is based on the availability of the resources. The “gaps” in-between can be

filled with other renewable or non-renewable generation, such as biomass,

hydro-storages and conventional generation. Economically this makes sense

since these units are providing electricity when the resources are not

available.

Fluctuating RES generators should be admitted to the market since they can

deliver added value to the market and beyond. The ability to provide all

necessary ancillary services from fluctuating RES generators is paramount

for a power system with high shares of renewables. An energy system with a

high level of RES penetration will not only have the demand for electricity at

the right time in the year but also the need for ancillary services. Therefore, it

is desirable that fluctuating RES generators are enabled to provide control

reserve when they are supplying a large share of the energy to the power

system.

The participation of fluctuating RES implicitly demands fair competition, with

a regulatory framework that facilitates the market participation of as many

units as possible. Fair market conditions, wind farms and PV systems are a

part of the solution for a secure and stable energy system in the future. In

Final assessment of the hypothesis and conclusions | 235

summary, the safe and secure operation of the grid can be achieved with

renewables at competitive costs.

References | XIII

References

50Hertz Transmission GmbH. (2015). Bilanzkreisabrechnung. Retrieved from
http://www.50hertz.com/de/Maerkte/Regelenergie/Bilanzkreisabrechnung

50Hertz Transmission GmbH, Amprion, TenneT TSO GmbH, & TransnetBW GmbH. (2011a).
Informationen zur internationelen Erweiterung des Netzregelverbundes um die
Regelzone Dänemark-West.

50Hertz Transmission GmbH, Amprion, TenneT TSO GmbH, & TransnetBW GmbH. (2011b).
Netzregelverbund. Retrieved from
https://www.regelleistung.net/regelleistungWeb/static/netzregelverbund.jsp

50Hertz Transmission GmbH, Amprion, TenneT TSO GmbH, & TransnetBW GmbH. (2012a).
Ausschreibungen. Retrieved from
https://www.regelleistung.net/regelleistungWeb/publicAusschreibungen/PublicAussch
reibungenController.jpf

50Hertz Transmission GmbH, Amprion, TenneT TSO GmbH, & TransnetBW GmbH. (2012b).
Modell zur Berechnung des regelzonenübergreifenden einheitlichen
Bilanzausgleichsenergiepreises (reBAP) unter Beachtung des Beschlusses BK6-12- 024 der
Bundesnetzagentur vom 25.10.2012.

50Hertz Transmission GmbH, Amprion, TenneT TSO GmbH, & TransnetBW GmbH. (2014).
Prequalification procedure for the provision and activation of control reserve. Retrieved
from https://www.regelleistung.net/ext/static/prequalification

50Hertz Transmission GmbH, Amprion, TenneT TSO GmbH, & TransnetBW GmbH. (2015a).
Bestimmung des Bedarfs an Primärregelleistung. Retrieved from
https://www.regelleistung.net/ip/action/dimensionierung

50Hertz Transmission GmbH, Amprion, TenneT TSO GmbH, & TransnetBW GmbH. (2015b).
Leitfaden zur Präqualifikation von Windenergieanlagen zur Erbringung von
Minutenreserveleistung im Rahmen einer Pilotphase. Retrieved from
https://www.regelleistung.net/ext/download/pqWindkraft

50Hertz Transmission GmbH, Amprion GmbH, TenneT TSO GmbH, & TransnetBW GmbH.
Mindestanforderungen an die Informationstechnik des Anbieters für die Erbringung von
Sekundärregelleistung. Retrieved from
https://www.regelleistung.net/ip/action/static/prequalSrl

50Hertz Transmission GmbH, Amprion GmbH, TenneT TSO GmbH, & TransnetBW GmbH.
(2012). Gemeinsame Ausschreibung Primärregelleistung auf regelleistung.net. Retrieved
from https://www.regelleistung.net/ext/static/prl

50Hertz Transmission GmbH, Amprion GmbH, TenneT TSO GmbH, & TransnetBW GmbH.
(2013). Netzentwicklungsplan Strom 2013 (NEP2013), Teil 1: Zweiter Entwurf. Berlin,
Pulheim, Bayreuth, Stuttgart.

50Hertz Transmission GmbH, Amprion GmbH, TenneT TSO GmbH, & TransnetBW GmbH.
(2015a). Musterprotokoll zum Nachweis der Erbringung von positiver
Minutenreserveleistung am Beispiel einer 30 MW - Präqualifikation. Retrieved from
https://www.regelleistung.net/ip/action/static/prequal

50Hertz Transmission GmbH, Amprion GmbH, TenneT TSO GmbH, & TransnetBW GmbH.
(2015b). Musterprotokoll zum Nachweis der Erbringung von positiver
Primärregelleistung. Retrieved from
https://www.regelleistung.net/ip/action/static/prequal

50Hertz Transmission GmbH, Amprion GmbH, TenneT TSO GmbH, & TransnetBW GmbH.
(2015c). Musterprotokoll zum Nachweis der Erbringung von positiver
Sekundärregelleistung. Retrieved from
https://www.regelleistung.net/ip/action/static/prequal

50Hertz Transmission GmbH, Amprion GmbH, TenneT TSO GmbH, & TransnetBW GmbH.
(2015). Präqualifizierte Anbieter je Regelenergieart. Retrieved from
https://www.regelleistung.net/ip/action/static/provider

XIV | References

50Hertz Transmission GmbH, Amprion GmbH, TenneT TSO GmbH, & TransnetBW GmbH.
(2015d). Tender overview. Retrieved from
https://www.regelleistung.net/ip/action/ausschreibung/public?language=en

50Hertz Transmission GmbH, Amprion GmbH, TransnetBW GmbH, & TenneT TSO GmbH.
(2013). Ausschreibungen - Daten zur Regelenergie. Retrieved from
www.regelleistung.net/ip/action/ausschreibung/public

50Hertz Transmission GmbH, Amprion GmbH, TransnetBW GmbH, & TenneT TSO GmbH.
(2015). regelleistung.net: Internetplattform zur Ausschreibung von Regelleistung der
deutschen Übertragungsnetzbetreiber. Retrieved from www.regelleistung.net

ACER. (2012). Framework Guidelines on Electricity Balancing. Retrieved from
http://www.acer.europa.eu/Electricity/FG_and_network_codes/Pages/Balancing.aspx

AEE. (2015). Stürmischer Dezember steigert Windstromeinspeisung. Retrieved from
http://www.unendlich-viel-energie.de/erneuerbare-energie/wind/offshore/offshore-
windenergie-ueberschreitet-2014-die-
gigawattmarke?utm_source=Newsletter&utm_medium=newsletter&utm_campaign=rene
ws_jan15

Aho, J., Buckspan, A., Laks, J., Jeong, Y., Dunne, F., Pao, L.,. . . Johnson, K. (2012). Tutorial of
Wind Turbine Control for Supporting Grid Frequency through Active Power Control: To
be presented at the 2012 American Control Conference Montreal, Canada June 27-29,
2012.

Al-Awaad, A. (2009). Beitrag von Windenergieanlagen zu den Systemdienstleistungen in Hoch-
und Höchstspannungsnetzen: Dissertation an der Universität Wuppertal.

Almeida, R. G. de, & Lopes, J. A. P. (2007). Participation of Doubly Fed Induction Wind
Generators in System Frequency Regulation: Power Systems, IEEE Transactions on.
Power Systems, IEEE Transactions on, 22(3), 944–950.

Anaya-Lara, O., Hughes, F. M., Jenkins, N., & Strbac, G. (2006). Contribution of DFIG-based
wind farms to power system short-term frequency regulation: Generation, Transmission
and Distribution, IEE Proceedings-. Generation, Transmission and Distribution, IEE
Proceedings-, 153(2), 164–170.

Andersen, A., Strom, S., Tang, J., Davidsen, T., & Dupont, N. (2012). Proactive participation of
wind turbines in the electricity markets: Proceedings of EWEA Annual Event 2012, 16 -
19 April 2012, Copenhagen.

Azpiri, I., Combarros, C., Pére, C. J., Veguillas, R., López, M., Lorenzo, M.,. . . Saiz, E. (2013).
TWENTIES Deliverable nº 9.1 DEMO 1: Test results, with their technical impact and
validation, regarding the secondary frequency control demonstration & voltage control
demonstration. Retrieved from http://www.twenties-
project.eu/system/files/Deliverable%209_1%20Final.pdf

Bessa, R. J., Miranda, V., Botterud, A., Zhou, Z., & Wang, J. (2012). Time-adaptive quantile-
copula for wind power probabilistic forecasting. Renewable Energy, 40(1), 29–39.
doi:10.1016/j.renene.2011.08.015

Bevrani, H., Ghosh, A., & Ledwich, G. (2010). Renewable energy sources and frequency
regulation: survey and new perspectives: Renewable Power Generation, IET. Renewable
Power Generation, IET, 4(5), 438–457.

Beyer, H. G., Heilscher, G., & Bofinger, S. (2004). A robust model for the MPP performance of
different types of PV-modules applied for the performance check of grid connected
systems: Proceedings Eurosun 2004, Freiburg, Germany.

Bhatt, P., Roy, R., & Ghoshal, S. P. (2011). Dynamic participation of doubly fed induction
generator in automatic generation control. Renewable Energy, 36(4), 1203–1213.
Retrieved from http://www.sciencedirect.com/science/article/pii/S0960148110003873

Bhatt, R., & Chowdhury, B. (2011). Grid frequency and voltage support using PV systems with
energy storage. In North American Power Symposium (NAPS), 2011 : North American
Power Symposium (NAPS), 2011 : North American Power Symposium (NAPS), 2011 (pp. 1–
6). doi:10.1109/NAPS.2011.6025112

BM Intermittent Gen WG. (2010). BM Uni Data from Intermittent Generation - final:
WORKING GROUP REPORT.

Boadway, R., & Bruce, N. (2011). Welfare economics ([Nachdr.]). Oxford: Blackwell.

References | XV

Bowman, A. W., & Azzalini, A. (1997). Applied smoothing techniques for data analysis: The
kernel approach with S-Plus illustrations. Oxford, New York: Clarendon Press; Oxford
University Press.

Braun, M. (2009). Provision of ancillary services by distributed generators. Technological and
economic perspective (Dissertation). Universität Kassel, Kassel. Retrieved from
http://www.uni-kassel.de/upress/online/OpenAccess/978-3-89958-638-
1.OpenAccess.pdf

Brauns, S., Jansen, M., Jost, D., Siefert, M., Speckmann, M., & Widdel, M. (2014). Regelenergie
durch Windkraftanlagen - Abschlussbericht. Kassel.

Bucksteeg, M., Niesen, L., Himmes, P., Schober, D., Weber, C., Baumgart, B.,. . . Bittner, M.
(2014). Marktdesign für zukunftsfähige Elektrizitätsmärkte unter besonderer
Berücksichtigung der vermehrten Einspeisung von erneuerbaren Energien – DESIRE –:
DESIRE Endbericht. Duisburg, Essen, Aachen. Retrieved from Universität Duisburg-Essen;
Trianel GmbH; BET Büro für Energiewirtschaft und technische Planung GmbH website:
http://www.bet-
aachen.de/fileadmin/redaktion/PDF/Studien_und_Gutachten/DESIRE_Endbericht__1410
24_FINAL_Lang.pdf

Bundeskartellamt. (2011). Sektoruntersuchung Stromerzeugung und -großhandel:
Abschlussbericht gemäß § 32e GWB – Januar 2011. Bonn. Retrieved from
Bundeskartellamt website:
http://www.bundeskartellamt.de/SharedDocs/Publikation/DE/Sektoruntersuchungen/
Sektoruntersuchung%20Stromerzeugung%20Stromgrosshandel%20-
%20Abschlussbericht.pdf?__blob=publicationFile&v=3

Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit. (2014).
Kombikraftwerk 2: Sicherer Stromnetzbetrieb bei 100% Erneuerbaren Energien in
Zukunft möglich. Retrieved from http://www.kombikraftwerk.de/

Bundesministerium für Wirtschaft und Energie. (2014). Green Paper: An electric power
market for the energy transition. Berlin. Retrieved from Bundesministerium für Wirtschaft
und Energie website: http://www.bmwi.de/EN/Topics/Energy/Electricity-Market-of-
the-Future/green-paper,did=679748.html

Bundesministerium für Wirtschaft und Energie. (2015a). BMWi - Zahlen und Fakten.
Retrieved from http://www.bmwi.de/DE/Themen/Energie/Strommarkt-der-
Zukunft/zahlen-fakten

Bundesministerium für Wirtschaft und Energie. (2015b). Ein Strommarkt für die
Energiewende: Ergebnispapier des Bundesministerium für Wirtschaft und Energie
(Weißbuch). Berlin. Retrieved from
http://www.bmwi.de/DE/Mediathek/publikationen,did=718200.html

Bundesnetzagentur. (2006). Monitoringbericht 2006: Bericht nach § 63 Abs. 4 i.V.m. § 35
EnWG. Bonn, Berlin. Retrieved from Bundesnetzagentur website:
http://www.bundesnetzagentur.de/SharedDocs/Downloads/DE/Sachgebiete/Energie/U
nternehmen_Institutionen/DatenaustauschUndMonitoring/Monitoring/Monitoringberic
ht2006.pdf?__blob=publicationFile&v=2

Bundesnetzagentur. (2007). Monitoringbericht 2007: Bericht gemäß § 63 Abs. 4 EnWG i.V.m. §
35 EnWG. Bonn. Retrieved from Bundesnetzagentur website:
http://www.bundesnetzagentur.de/SharedDocs/Downloads/DE/Sachgebiete/Energie/U
nternehmen_Institutionen/DatenaustauschUndMonitoring/Monitoring/Monitoringberic
ht2007.pdf?__blob=publicationFile&v=2

Bundesnetzagentur. (2008a). BK6-08-006 Festlegung des Ausschreibungsverfahrens für
Verlustenergie und des Verfahrens zur Bestimmung der Netzverluste.

Bundesnetzagentur. (2008b). Monitoringbericht 2008. Bonn. Retrieved from
Bundesnetzagentur website:
http://www.bundesnetzagentur.de/SharedDocs/Downloads/DE/Sachgebiete/Energie/U
nternehmen_Institutionen/DatenaustauschUndMonitoring/Monitoring/Monitoringberic
ht2008.pdf?__blob=publicationFile&v=2

XVI | References

Bundesnetzagentur. (2009a). Anhang 1 und 2 zu BK6-07-002 Festlegung von Marktregeln für
die Durchführung der Bilanzkreisabrechnung Strom: Anhang 1 und 2 zu MaBiS. Retrieved
from Bundesnetzagentur - Beschlusskammer 6 website:
http://www.bundesnetzagentur.de/DE/Service-Funktionen/Beschlusskammern/1BK-
Geschaeftszeichen-Datenbank/BK6-GZ/2007/2007_001bis099/BK6-07-002/BK6-07-
002_Anlagen1und2zumBeschluss10062009_bf.pdf?__blob=publicationFile&v=3

Bundesnetzagentur. (2009b). Anhang 3 zu BK6-07-002 Festlegung von Marktregeln für die
Durchführung der Bilanzkreisabrechnung Strom: Anhang 3 zu MaBiS. Retrieved from
Bundesnetzagentur - Beschlusskammer 6 website:
http://www.bundesnetzagentur.de/DE/Service-Funktionen/Beschlusskammern/1BK-
Geschaeftszeichen-Datenbank/BK6-GZ/2007/2007_001bis099/BK6-07-002/BK6-07-
002_Anlage3Beschluss10062009_bf.pdf?__blob=publicationFile&v=3

Bundesnetzagentur. (2009c). BK6-07-002 Festlegung von Marktregeln für die Durchführung
der Bilanzkreisabrechnung Strom: MaBiS. Retrieved from Bundesnetzagentur -
Beschlusskammer 6 website: http://www.bundesnetzagentur.de/cln_1421/DE/Service-
Funktionen/Beschlusskammern/1BK-Geschaeftszeichen-Datenbank/BK6-
GZ/2007/2007_001bis099/BK6-07-002/BK6-07-002_Beschluss_BKV.html?nn=269602

Bundesnetzagentur. (2009d). Monitoringbericht 2009: Monitoringbericht gemäß § 63 Abs. 4
EnWG i.V.m. § 35 EnWG. Bonn. Retrieved from Bundesnetzagentur website:
http://www.bundesnetzagentur.de/SharedDocs/Downloads/DE/Sachgebiete/Energie/U
nternehmen_Institutionen/DatenaustauschUndMonitoring/Monitoring/Monitoringberic
ht2009.pdf?__blob=publicationFile&v=2

Bundesnetzagentur. (2010). Monitoringbericht 2010: Monitoringbericht gemäß § 63 Abs. 4
EnWG i.V.m. § 35 EnWG. Bonn. Retrieved from Bundesnetzagentur website:
http://www.bundesnetzagentur.de/SharedDocs/Downloads/DE/Sachgebiete/Energie/U
nternehmen_Institutionen/DatenaustauschUndMonitoring/Monitoring/Monitoringberic
ht2010.pdf?__blob=publicationFile&v=1

Bundesnetzagentur. (2011a). Bilanzkreisvertrag - Anlage zum Beschluss BK6-06-013.
Bundesnetzagentur. (2011b). BK6-07-002 Festlegung von Marktregeln für die Durchführung

der Bilanzkreisabrechnung Strom - Konsolidierte Lesefassung gemäß der letzten Änderung
durch den Beschluss BK6-11-150 vom 28.10.2011: MaBiS. Retrieved from
Bundesnetzagentur - Beschlusskammer 6 website:
http://www.bundesnetzagentur.de/DE/Service-
Funktionen/Beschlusskammern/Beschlusskammer6/BK6_31_GPKE_und_GeLiGas/Mitteil
ung_Nr_31/Anlagen/Konsolidierte_Lesefassung_MaBiS.pdf?__blob=publicationFile&v=2

Bundesnetzagentur. (2011c). Festlegung zu Verfahren und Ausschreibung von Regelenergie in
Gestalt der Minutenreserve: BK6-10-099.

Bundesnetzagentur. (2011d). Festlegung zu Verfahren zu Ausschreibung von Regelenergie in
Gestalt der Primärregelleistung: BK6-10-097.

Bundesnetzagentur. (2011e). Festlegung zu Verfahren zur Ausschreibung von Regelenergie in
Gestalt der Sekundärregelung: BK6-10-098.

Bundesnetzagentur. (2012a). Beschluss in dem Verwaltungsverfahren wegen der
Weiterentwicklung des Ausgleichsenergiepreis-Abrechnungssystems: Az: BK6-12-024.

Bundesnetzagentur. (2012b). Monitoringbericht 2011: Monitoringbericht gemäß §63 Abs. 4
EnWG i.V.m. § 35 EnWG. Bonn.

Bundesnetzagentur. (2013). BK6-06-013 - Festlegung zur Vereinheitlichung der
Bilanzkreisverträge.

Bundesnetzagentur. (2015). Festlegungsverfahren zur Weiterentwicklung der
Ausschreibungsbedingungen und Veröffentlichungspflichten für Sekundärregelung und
Minutenreserve: Konsultation von Eckpunkten. § 29 EnWG, § 27 Abs. 1 Nr. 2 und Abs. 2
StromNZV. Bonn. Retrieved from Bundesnetzagentur - Beschlusskammer 6 website:
http://www.bundesnetzagentur.de/DE/Service-Funktionen/Beschlusskammern/1BK-
Geschaeftszeichen-Datenbank/BK6-GZ/2015/2015_0001bis0999/BK6-15-158/BK6-15-
158_Eckpunktepapier_vom_23_11_2015.pdf?__blob=publicationFile&v=2

Bundesnetzagentur, & Bundeskartellamt. (2013). Monitoringbericht 2012:
Monitoringbericht gemäß § 63 Abs. 3 i.V.m. § 35 EnWG und § 48 Abs. 3 i.V.m. § 53 Abs. 3
GWB.

References | XVII

Bundesnetzagentur, & Bundeskartellamt. (2014). Monitoringbericht 2014: Monitoringbericht
gemäß § 63 Abs. 3 i. V. m. § 35 EnWG und § 48 Abs. 3 i. V. m. § 53 Abs. 3 GWB. Bonn.

Bundesnetzagentur, & Bundeskartellamt. (2015). Monitoringbericht 2015: Monitoringbericht
gemäß § 63 Abs. 3 i. V. m. § 35 EnWG und § 48 Abs. 3 i. V. m. § 53 Abs. 3 GWBStand: 10.
November 2015. Bonn. Retrieved from Bundesnetzagentur; Bundeskartellamt website:
http://www.bundesnetzagentur.de/SharedDocs/Downloads/DE/Allgemeines/Bundesne
tzagentur/Publikationen/Berichte/2015/Monitoringbericht_2015_BA.pdf?__blob=public
ationFile&v=2

Bundesnetzagentur, B. (2014). Monitoringbericht 2013: gemäß § 63 Abs. 3 i. V. m. § 35 EnWG
und § 48 Abs. 3 i. V. m. § 53 Abs. 3 GWB. Bonn.

Bundesregierung. (2010). Energiekonzept für eine umweltschonende, zuverlässige und
bezahlbare Energieversorgung.

Verordnung zu abschaltbaren Lasten. Bundesgesetzblatt 2998 (Bundesregierung 2012).
Stromnetzzugangsverordnung, Bundesregierung 2014.
Bündgen, F. (2012). Regelleistung durch Photovoltaik (Diploma-Thesis). Technische

Hochschule Mittelhessen, Gießen.
Chattopadhyay, D., & Baldick, R. (2002). Unit commitment with probabilistic reserve. In

Winter Meeting of the Power Engineering Society (pp. 280–285).
doi:10.1109/PESW.2002.984999

Chaudhuri, D., Chaudhuri, B. B., & Murthy, C. A. (1996). A data driven procedure for density
estimation with some applications. Pattern Recognition, 29(10), 1719–1736.
doi:10.1016/0031-3203(96)00028-3

Chowdhury, B. H., & Ma, H. T. (2008). Frequency regulation with wind power plants: Power
and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the
21st Century, 2008 IEEE. Power and Energy Society General Meeting - Conversion and
Delivery of Electrical Energy in the 21st Century, 2008 IEEE, 1–5.

Cleveland, W. S. (1979). Robust Locally Weighted Regression and Smoothing Scatterplots.
Journal of the American Statistical Association, 74(368), 829–836.
doi:10.1080/01621459.1979.10481038

Cleveland, W. S., & Devlin, S. J. (1988). Locally Weighted Regression: An Approach to
Regression Analysis by Local Fitting. Journal of the American Statistical Association,
83(403), 596. doi:10.2307/2289282

Consentec. (2008). Gutachten zur Höhe des Regelenergiebedarfs: Im Auftrag der BNetzA.
Consentec. (2010). Gutachten zur Dimensionierung des Regelleistungsbedarfs unter dem NRV:

Untersuchung im Auftrag der BNetzA.
Consentec. (2011). Auswirkungen der Teilnahme von EEG-Anlagen aus der festen

Einspeisvergütung auf die Regelenergiemärkte: Gutachten im Auftrag der BNetzA. Aachen,
Bonn.

Consentec. (2014). Beschreibung von Regelleistungskonzepten und Regelleistungsmarkt:
Studie im Auftrag der deutschen Übertragungsnetzbetreiber. Aachen.

Consentec, r2b, & FGH. (2011). Optimierung und Umstrukturierung der EEG-Förderung zur
verbesserten Netz- und Marktintegration Erneuerbarer Energien: Studie im Auftrag des
BMWi.

Conzelmann, G., Boyd, G., Koritarov, V., & Veselka, T. (2005). Multi-agent power market
simulation using EMCAS. In IEEE Power Engineering Society General Meeting, 2005
(pp. 917–922). doi:10.1109/PES.2005.1489271

Cramton, P. (2009). Single Clearing Price in Electricity Markets. Retrieved from
http://www.cramton.umd.edu/papers2005-2009/baldick-single-price-auction.pdf

Cramton, P., & Stoft, S. (2007). Why We Need to Stick with Uniform-Price Auctions in
Electricity Markets. The Electricity Journal, 20(1), 26–37. doi:10.1016/j.tej.2006.11.011

Dany, G. (2001). Power reserve in interconnected systems with high wind power
production: Power Tech Proceedings, 2001 IEEE Porto. Power Tech Proceedings, 2001
IEEE Porto, 4, 6 pp. vol.4.

XVIII | References

David, A. K., & Fushuan Wen (2000). Strategic bidding in competitive electricity markets: a
literature survey. In 2000 Power Engineering Society Summer Meeting (pp. 2168–2173).
doi:10.1109/PESS.2000.866982

DECC. (2013). Electricity Generation Costs. Retrieved from Department of Energy and Climate
Change website:
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/2698
88/131217_Electricity_Generation_costs_report_December_2013_Final.pdf

den Ouden, B., & Jean Verseille (2011, June). CWE Market Coupling Flow-Based Forum,
Amterdam. Retrieved from https://www.epexspot.com/document/13241/Flow-
Based_Forum-%20June-presentation.pdf

dena, Molly, J. P., Neddermann, B., Schorer, T., Callies, D., Knorr, K.,. . . Sievers, J. (2010). dena-
Netzstudie II: Integration erneuerbarer Energien in die deutsche Stromversorgung im
Zeitraum 2015 - 2020 mit Ausblick 2025. Berlin.

Dentcheva, D., Gollmer, R., Möller, A., Römisch, W., & Schultz, R. (1996). Solving the Unit
Commitment Problem in Power Generation by Primal and Dual Methods. Berlin. Retrieved
from HU Berlin website: http://edoc.hu-berlin.de/series/mathematik-preprints/1996-
25/PDF/25.pdf

Energiewirtschaftsgesetz Bundesgesetzeblatt, Deutscher Bundestag 2011.
Erneuerbare-Energien-Gesetz Bundesgesetzeblatt 1066, Deutscher Bundestag 2014.
Dobschinski, J., Pascalis, E. de, Wessel, A., Bremen, L. von, Lange, B., Rohrig, K., & Saint-

Drenan, Y.-M. (2010). The potential of advanced shortest-term forecasts and dynamic
prediction intervalls for reducing the wind power induced reserve requirements.
European Wind Energy Conference and Exhibition.

Dobschinski, J. (2016). Vorhersage der Prognosegüte verschieden großer Windpark-Portfolios.
Publication Pending.

Dobschinski, J., Wessel, A., Lange, B., Bremen, L. von, & Saint-Drenan, Y.-M. (2008).
Estimation of wind power prediction intervals using stochastic methods and artificial
intelligence ensembles: DEWEK 2008, 9th German Wind Energy Conference. Proceedings.
26 - 28 November 2008, Bremen, Germany.

ENERTRAG AG; Trianel GmbH; GESY Green Energy Systems GmbH. (2014). ENERTRAG, GESY
und Trianel gehen Kooperation ein: Systemstabilität durch Regelenergie aus Windkraft.
Aachen. Retrieved from
http://www.trianel.com/de/pressearchiv/details/article//enertrag-gesy-und-trianel-
geh.html

DTU. (2012). PossPOW: Possible Power of Offshore Wind power plants. Retrieved from
http://www.posspow.dtu.dk/

Durante, F., Westerhellweg, A., & Jimenez, B. (2012). Comparison of a Mesoscale Model with
FINO Measurements in the German Bight and the Baltic Sea. In DEWI (Ed.), DEWI
Magazin (No. 40).

eex. (2015a). eex - Infoproducts: Transparency data of wind power plants and PV systems.
Retrieved from infoproducts.eex.com

eex. (2015b). eex - Transparency in electricity markets. Retrieved from
www.transparency.eex.com

eex. (2015c). Transparency in Energy Markets - Actual Solar Power Generation (chart).
Retrieved from http://www.eex-
transparency.com/homepage/power/germany/production/usage/actual-solar-power-
generation-

eex. (2015d). Transparency in Energy Markets - Actual Wind Power Generation (chart).
Retrieved from http://www.eex-
transparency.com/homepage/power/germany/production/usage/actual-wind-power-
generation

eex. (2015e). Transparency in Energy Markets - Expected Solar Power Generation (chart).
Retrieved from http://www.eex-
transparency.com/homepage/power/germany/production/usage/expected-solar-
power-generation-/expected-solar-power-generation-chart-

References | XIX

eex. (2015f). Transparency in Energy Markets - Expected Wind Power Generation (chart).
Retrieved from http://www.eex-
transparency.com/homepage/power/germany/production/usage/expected-wind-
power-generation-

Ehsani, A., Ranjbar, A. M., & Fotuhi-Firuzabad, M. (2009). A proposed model for co-
optimization of energy and reserve in competitive electricity markets. Applied
Mathematical Modelling, 33(1), 92–109. doi:10.1016/j.apm.2007.10.026

EirGrid. (2009). EirGrid - Grid Code Version 3.4: Modifications approved October 16th 2009.
Eisen, S., Sørensen, P., Donovan, M., & Hansen, K. (2007). Real Time Estimation of Possible

Power for Wind Plant Control. In N. Cutululis & P. Sørensen (Eds.): Vol. 1624. Risø R,
Report, Proceedings, Nordic Wind Power Conference, Risø National Laboratory, 1 - 2
November 2007. Roskilde: Risø National Laboratory.

Ela, E., Kirby, B., Lannoye, E., Milligan, M., Flynn, D., Zavadil, B., & O'Malley, M. (2010).
Evolution of operating reserve determination in wind power integration studies: Power
and Energy Society General Meeting, 2010 IEEE. Power and Energy Society General
Meeting, 2010 IEEE, 1–8.

Ela, E., Milligan, M., & Kirby, B. (2011). Operating Reserves and Variable Generation:
Technical Report.

Elberg, C., Growitsch, C., Höffler, F., Richter, J., & Wambach, A. (2012). Untersuchungen zu
einem zukunftsfähigen Strommarktdesign: im Auftrag des Bundesministeriums für
Wirtschaft und Technologie (BMWi). Köln, Berlin. Retrieved from Energiewirtschaftliches
Institut an der Universität zu Köln (EWI) website:
http://www.bmwi.de/BMWi/Redaktion/PDF/Publikationen/endbericht-
untersuchungen-zu-einem-zukunftsfaehigen-strommarktdesign.pdf

Elkraft. (2004). Regulation TF3.2.6 Wind turbines connected to grids with voltages below 100
kV: Technical regulations for the propertiesand the control of wind turbines. Official english
translation. Retrieved from
https://selvbetjening.preprod.energinet.dk/NR/rdonlyres/E976C1E0-BBD7-431B-
ADAE-
E69E02C06EA3/0/Windturbinesconnectedtogridswithvoltagesbelow100kV2004.pdf

Elkraft, & Eltra. (2004). Regulation TF 3.2.5 Wind Turbines Connected to Grids with Voltages
above 100 kV: Technical regulation for the properties and the regulation of wind turbines.
Retrieved from https://selvbetjening.preprod.energinet.dk/NR/rdonlyres/E4E7A0BA-
884F-4E63-A2F0-
98EB5BD8D4B4/0/WindTurbinesConnectedtoGridswithVoltageabove100kV.pdf

Energie&Management. (2015a). E&M-Direktvermarkter und Ihre Portfolios 2014. Retrieved
from http://www.energie-und-
management.de/uploads/media/Screenshot_Direktvermarkter.jpg

Energie&Management. (2015b). Energie und Management online. Retrieved from
http://www.energie-und-management.de

Energie&Management. (2016). Die Direktvermarkter und ihre Portfolios 2015. Retrieved
from
http://www.energy2market.de/fileadmin/e2m/user_upload/Bilder/Downloads/EM_20
16_03_Direktvermarktung.pdf

Energinet.dk. Download of market data. Retrieved from
http://www.energinet.dk/en/el/engrosmarked/udtraek-af-
markedsdata/Sider/default.aspx

Energy Brainpool. (2015). Fundamentalmodell Power2Sim - Energy Brainpool:
Fundamentales Energiemarktmodell zur Simulation von Strompreisen. Retrieved from
http://www.energybrainpool.com/analyse/fundamentalmodell-power2sim.html

EnergyMap. (2015). EnergyMap - Auf dem Weg zu 100% EE - Der Datenbestand. Retrieved
from http://www.energymap.info/download.html

ENTSO-E. (2012). Regional Groups. Retrieved from https://www.entsoe.eu/system-
operations/regional-groups/

XX | References

ENTSO-E. (2013a). 2013 Survey on Ancillary Services Procurement and Electricity Balancing
Market Design: Ancillary Services Working Group (WGAS). Retrieved from
https://www.entsoe.eu/publications/position-papers/position-papers-
archive/Pages/Position%20Papers/2013%20Survey-on-Ancillary-Services-
Procurement-and-Electricity-Balancing-Market-Design-.aspx

ENTSO-E. (2013b). ENTSO-E Network Code on Load-Frequency Control and Reserves.
ENTSO-E. (2014). ENTSO-E Network code on Electricity Balancing: Version 3.0. Retrieved

from
https://www.entsoe.eu/Documents/Network%20codes%20documents/NC%20EB/140
806_NCEB_Resubmission_to_ACER_v.03.PDF

ENTSO-E. (2015). Hourly load values for a specific country for a sprecific month. Retrieved
from https://www.entsoe.eu/db-query/consumption/mhlv-a-specific-country-for-a-
specific-month

EPEX SPOT SE. (2011). 15-minute contracts succesfully launched on German intraday market:
EPEX SPOT helps to integrate renewable energy into the power system. Paris. Retrieved
from https://www.epexspot.com/document/14763/2011-12-
15_15%20minute_contracts_launch.pdf

EPEX SPOT SE. (2014a). CWE FB MC project. Retrieved from
http://static.epexspot.com/document/28430/Social%20Welfare%20Report_02-
07%202014.pdf

EPEX SPOT SE. (2014b). EPEXDIB Digital Information Board: Prices, Volumes and
statistics: The markets' core figures at a glance. Retrieved from
http://www.epexspot.com/dib/

EPEX SPOT SE. (2014c). Trading. Retrieved from http://www.epexspot.com/en/product-
info/Trading

EPEX SPOT SE. (2014d). Successful launch of 15-Minute Intraday Call Auction in Germany.
Paris, Leipzig. Retrieved from https://www.epexspot.com/en/press-
media/press/details/press/_Successful_launch_of_15-
Minute_Intraday_Call_Auction_in_Germany

EPEX SPOT SE. (2015a). EPEX SPOT SE: Day-Ahead Auction. Retrieved from
http://www.epexspot.com/en/market-data/dayaheadauction

EPEX SPOT SE. (2015b). EPEX SPOT SE: Intraday Auction. Retrieved from
http://www.epexspot.com/en/market-data/intradayauction

EPEX SPOT SE. (2015c). EPEX SPOT SE: Intraday Continuous. Retrieved from
http://www.epexspot.com/en/market-data/intradaycontinuous

EPEX SPOT SE. (2015d). EPEX SPOT SE: Welcome. Retrieved from
http://www.epexspot.com/en/

EPEX SPOT SE. (2015e). FTP-Server Marktinformationsdaten. Retrieved from
https://mis.eex.com/

EPEX SPOT SE. (2016). EPEX Spot Operational Rules. Retrieved from
http://www.epexspot.com/en/extras/download-center

EPEX SPOT SE; European Commodity Clearing. (2015). EPEX SPOT and ECC to reduce
Intraday lead time on all markets: Trading up to 30 minutes before delivery – Austrian lead
time decreases by 45 minutes. Paris, Leipzig, Bern, Vienna.

Erlich, I., & Wilch, M. (2010). Primary frequency control by wind turbines: Power and Energy
Society General Meeting, 2010 IEEE. Power and Energy Society General Meeting, 2010
IEEE, 1–8.

Ernst, B., Reyer, F., & Vanzetta, J. (2009). Wind power and photovoltaic prediction tools for
balancing and grid operation: Integration of Wide-Scale Renewable Resources Into the
Power Delivery System, 2009 CIGRE/IEEE PES Joint Symposium. Integration of Wide-
Scale Renewable Resources Into the Power Delivery System, 2009 CIGRE/IEEE PES Joint
Symposium, 1–9.

European Commission. (2009). TWENTIES Project: Transmission system operation with
large penetration of wind and other renewable electricity sources in networks by means
of innovative tools and and integrated energy solutions. Retrieved from
http://www.twenties-project.eu

References | XXI

European Commission. (2010). REserviceS Project: Wind and solar PV: powerful and
economic service providers for managing the future European electricity system.
Retrieved from http://www.reservices-project.eu/

Directive 2009/28/EC of the European Parliament and of the Council. Official Journal of the
European Union pp. 16-47 (European Parliament; European Council 2009).

Directive 96/92/EC of the European Parliament and the Council. Official Journal of the
European Communities 20 (European Parliament and the Council 19.12.1996).

Faiella, M., Hennig, T., Cutululis, N., & van Hulle, F. (2013). Capabilities and costs for ancillary
services provision by wind power plants: Deliverable D 3.1.

Ferrero, R. W., Shahidehpour, S. M., & Ramesh, V. C. (1997). Transaction analysis in
deregulated power systems using game theory. IEEE Transactions on Power Systems,
12(3), 1340–1347. doi:10.1109/59.630479

FGH, Consentec, & IAEW. (2012). Studie zur Ermittlung der technischen Mindesterzeugung
des konventionellen Kraftwerksparks zur Gewährleistung der Systemstabilität in den
deutschen Übertragungsnetzen bei hoher Einspeisung aus erneuerbaren Energien:
Abschlussbericht. Retrieved from
http://www.50hertz.com/Portals/3/Content/Dokumente/Presse/Publikationen/Studie
n/Studie-Mindesterzeugung-4TSO-20120120.pdf

FNN. (2009). TransmissionCode 2007: Anhang D2 Teil 2: Anforderungen für die Umsetzung
des SRL-Poolkonzepts zwischen ÜNB und Anbietern.

Focken, U., & Schaller, M. (2011). Solutions for Optimal Trading of Wind Energy: Evaluation
results and highlights for the demo case at EWE. Workshop - "Towards Smart Integration
of Wind Generation", Paris, France.

Foley, A. M., Leahy, P. G., Marvuglia, A., & McKeogh, E. J. (2012). Current methods and
advances in forecasting of wind power generation. Renewable Energy, 37(1), 1–8.
doi:10.1016/j.renene.2011.05.033

Forrest, S., & MacGill, I. (2013). Assessing the impact of wind generation on wholesale prices
and generator dispatch in the Australian National Electricity Market. Energy Policy, 59,
120–132. doi:10.1016/j.enpol.2013.02.026

Fraunhofer IWES. (2011). Begleitstudie zum Vorschlags für einen Anhang zum Transmission
Code zur Präqualifikation von Windparks für die Erbringung von Minutenreserve: Studie
im Auftrag der Firma Westkapital.

Fraunhofer IWES. (2015). Wind Monitor: Einspeisevergütung. Retrieved from
http://windmonitor.iwes.fraunhofer.de/windmonitor_de/4_Offshore/6_foerderbedingun
gen/1_einspeiseverguetung/

Fraunhofer IWES, Amprion GmbH, 50Hertz Transmission GmbH, Enerparc AG, TenneT TSO
GmbH, Energiequelle GmbH, & VGB PowerTech e.V. (2014). Regelenergie durch Wind und
PV: ReWP. STROMNETZE Forschungsinitiative der Bundesregierung. Retrieved from
http://www.energiesystemtechnik.iwes.fraunhofer.de/de/projekte/suche/laufende/rew
p.html

Fraunhofer IWES, LichtBlick SE, & Volkswagen AG. (2012). Intelligente Netzanbindung von
Elektrofahrzeugen zur Erbringung von Systemdienstleistungen: INEES. Retrieved from
http://www.energiesystemtechnik.iwes.fraunhofer.de/de/projekte/suche/laufende/ine
es.html

Frunt, J., Kechroud, A., Kling, W. L., & Myrzik, J. M. A. (2009). Participation of distributed
generation in balance Management. In 2009 IEEE Bucharest PowerTech (POWERTECH)
(pp. 1–6). doi:10.1109/PTC.2009.5281990

Frunt, J. (2011). Analysis of balancing requirements in future sustainable and reliable power
systems: Doctoral Thesis at the university of Eindhoven. Enschede.

Gesino, A. J. (2011). Power reserve provision with wind farms: Grid integration of wind power.
Kassel: Kassel University Press.

Giebel, G., Brownsword, R., Kariniotakis, G. N., Denhards, M., & Draxl, C. (2011). Deliverable D-
1.2 - The State-Of-The-Art in Short-Term Prediction of Wind Power: A Literature Overview,
2nd Edition (No. 2). Roskilde. Retrieved from
http://orbit.dtu.dk/fedora/objects/orbit:83397/datastreams/file_5277161/content

XXII | References

Glotzbach, T. (2010). Ein Beitrag zur mathematischen Charakterisierung von Photovoltaik-
Dünnschichttechnologien auf Basis realer I/U-Kennlinien: Dissertation an der Uni Kassel.

Gottelt, F., Ziems, C., Meinke, S., Haase, T., Nocke, J., Weber, H., & HAssel, E. (2009).
Auswirkungen von fluktuierenden Windenergieeinspeisung auf das regel- und
thermodynamische Betriebsverhalten konventionleler Kratwerke in Deutscfhland-
Bestandsaufnahme und Ableitung zukünftier Anforderungen. Forschungsprojekt des VGB
PowerTech e.V.

Growitsch, C., Höffler, F., & Wissner, M. (2010). Marktmachtanalyse für den deutschen
Regelenergiemarkt. WIK - Diskussionsbeitrag, Bad Honnef.

Growitsch, C., Rammerstorfer, M., & Weber, C. Redesigning the balancing power market in
Germany - a critical assessment. In 2008 5th International Conference on the European
Electricity Market (EEM 2008) (pp. 1–6). doi:10.1109/EEM.2008.4579025

Grünwald, R., Ragwitz, M., Sensfuß, F., & Winkler, J. (2015). Regenerative Energieträger zur
Sicherung der Grundlast in der Stromversorgung: Endbericht zum Monitoring. Berlin,
Karlsruhe. Retrieved from TAB - Büro für Technikfolgen-Abschätzung beim deutschen
Bundestag website: http://www.tab-beim-bundestag.de/de/untersuchungen/u140.html

Guerci, E., & Rastegar, M. A. (2013). Comparing system-marginal-price versus pay-as-bid
auctions in a realistic electricity market scenario. In A. Teglio, S. Alfarano, E. Camacho-
Cuena, & M. Ginés-Vilar (Eds.), Lecture Notes in Economics and Mathematical Systems.
Managing Market Complexity (Vol. 662, pp. 141–153). Berlin, Heidelberg: Springer Berlin
Heidelberg. doi:10.1007/978-3-642-31301-1_12

Hamon, C., & Söder, L. (2011). Review paper on wind power impact on operation of reserves:
Energy Market (EEM), 2011 8th International Conference on the European. Energy
Market (EEM), 2011 8th International Conference on the European, 895–903.

Haucap, J., Heimeshoff, U., & Jovanovic, D. (2012). Competition in Germany’s Minute Reserve
Power Market: An Econometric Analysis: Discussion Paper (No. 75). Düsseldorf. Retrieved
from Düsseldorf Institute for Competition Economics website:
http://www.dice.hhu.de/fileadmin/redaktion/Fakultaeten/Wirtschaftswissenschaftliche
_Fakultaet/DICE/Discussion_Paper/075_Haucap_Heimeshoff_Jovanovic.pdf

Heath, B., Hill, R., & Ciarallo, F. (2009). A Survey of Agent-Based Modeling Practices (January
1998 to July 2008). Journal of Artificial Societies and Social Simulation. Retrieved from
http://jasss.soc.surrey.ac.uk/12/4/9.html

Heiberger, R. M., & Neuwirth, E. (2009). Polynomial Regression. In R. M. Heiberger & E.
Neuwirth (Eds.), Use R! R through Excel. A spreadsheet interface for statistics, data analysis,
and graphics (pp. 269–284). Dordrecht, New York: Springer. doi:10.1007/978-1-4419-
0052-4_11

Heim, S., & Goetz, G. (2013). Do pay-as-bid auctions favor collusion?: Evidence from Germany’s
market for reserve power. Joint Discussion Paper Series in Economics No. 24-2013 (No.
24-2013). Aachen, Gießen, Göttingen, Kassel, Marburg, Siegen. Retrieved from
https://www.uni-giessen.de/faculties/f02/faculty/professorships/economics/goetz/do-
pay-as-bid-auctions-favor-collusion-evidence-from-germanys-market-for-reserve-power

Hennig, T., Löwer, L., Faiella, L. M., Stock, S., Jansen, M., Hofmann, L., & Rohrig, K. (2014).
Ancillary Services Analysis of an Offshore Wind Farm Cluster – Technical Integration
Steps of a Simulation Tool. Energy Procedia, 53, 114–123.
doi:10.1016/j.egypro.2014.07.220

Hirth, L. (2013). The market value of variable renewables. Energy Economics, 38, 218–236.
doi:10.1016/j.eneco.2013.02.004

Hirth, L., & Ziegenhagen, I. (2015). Balancing power and variable renewables: Three links.
Renewable and Sustainable Energy Reviews, 50, 1035–1051.
doi:10.1016/j.rser.2015.04.180

Hochloff, P., Baier, A., Ferner, F., Lesch, K., & Schlögl, F. (2010). Optimized storage operation
in virtual power plants in the electricity market: 5th International Renewable Energy
Storage Conference (IRES 2050), 22- 24 November 2010.

Hochloff, P., & Schreiber, M. (2012). Biogasanlagen und Speicher zur Integration
erneuerbarer Energien: Beitrag auf dem 17. Kasseler Symposium 2012.

References | XXIII

Hodge, B.-M. S., Lew, D., Milligan, M., Holttinen, H., Sillanpäa, S., Gómez-Lázaro, E. S. R.,. . .
Dobschinski, J. (2012). Wind Power Forecasting Error Distributions: An International
Comparison: Preprint - To be presented at The 11th Annual International Workshop on
Large-Scale Integration of Wind Power into Power Systems as well as on Transmission
Networks for Offshore Wind Power Plants Conference, Lisbon, Portugal, November 13–
15, 2012.

Holttinen, H., Milligan, M., Ela, E., Menemenlis, N., Dobschinski, J., Bessa, R. J.,. . . Detlefson, N.
(2011). Methodologies to Determine Operating Reserves due to Increased Wind Power.
IEEE PES Transactions on Sustainable Energy.

Holttinen, H., Meibom, P., Orths, A., van Hulle, F., Lange, B., O'Malley, M.,. . . Ela, E. (2009).
Design and operation of power systems with large amounts of wind power: Final report,
Phase one 2006 - 08. IEA Wind Task 25. Espoo.

Holttinen, H., Miettinen, J., & Samuli, S. (2013). Wind power forecasting accuracy and
uncertainty in Finland. Espoo. Retrieved from VTT website:
http://www.vtt.fi/inf/pdf/technology/2013/T95.pdf

Hui Wu, & Gooi, H. B. (1999). Optimal scheduling of spinning reserve with ramp constraints.
In IEEE Power Engineering Society. 1999 Winter Meeting (Cat. No.99CH36233) (p. 785-790
vol.2). doi:10.1109/PESW.1999.747264

Jansen, M. (2011). Bewertung von Mechanismen zur Bepreisung von Ausgleichsenergie
hinsichtlich der Systemintegration von Windenergie (Masterthesis). Universität Flensburg
/ Fachhochschule Flensburg, Flensburg.

Jansen, M., Hochloff, P., Schreiber, M., Oehsen, A. von, & Peñaloza, B. (2013).
TWENTIES Deliverable nº 16.4: Report on the portability of VPP concepts to Germany -
Economic Impact Assessment.

Jansen, M., Schneider, D., Siefert, M., & Widdel, M. (2014). Regelenergie durch
Windkraftanlagen: Proceedings of 13th Symposium Energieinnovation, 12. - 14. February
2014, Graz.

Jansen, M., & Speckmann, M. (2013a). Participation of photovoltaic systems in control
reserve markets. In 22nd International Conference and Exhibition on Electricity
Distribution (CIRED 2013) (p. 245). doi:10.1049/cp.2013.0631

Jansen, M., & Speckmann, M. (2013b). Wind turbine participation on Control Reserve
Markets: Proceedings of EWEA Annual Event, 4 - 7 February 2013, Vienna. In European
Wind Energy Association (EWEA) (Ed.), European Wind Energy Conference & Exhibition
2013. Red Hook, NY: Curran.

Jansen, M., Speckmann, M., & Baier, A. (2012). Impact of frequency control supply by wind
turbines on balancing costs: Proceedings of EWEA Annual Event, 16 - 19 April 2012,
Copenhagen.

Jansen, M., Speckmann, M., Harpe, A. von, & Hahler, M. (2013). Pool of Photovoltaic Systems
delivering Control Reserve - Large scale PV systems in the German RES market scheme:
Proceedings of 3rd International Workshop on Integration of Solar Power into Power
Systems, 21 - 22 October 2013, London.

Jansen, M., Speckmann, M., Schneider, D., & Siefert, M. (2013). Macro Economic Evaluation of
Proof Methods for the delivery of Balancing Reserve by Wind Farms - A holistic approach
considering different cost effects: Proceedings of 12th International Workshop on Large-
Scale Integration of Wind Power into Power Systems as well as on Transmission
Networks for Offshore Wind Power Plants, 22 - 24 October 2013, London.

Jansen, M., Speckmann, M., & Schwinn, R. (2012). Impact of control reserve provision of wind
farms on regulating power costs and balancing energy prices: Proceedings of 11th
International Workshop on Large-Scale Integration of Wind Power into Power Systems as
well as on Transmission Networks for Offshore Wind Power Plants, 13 - 15 November
2012, Lisbon.

Jansen, M. (2014). Optimierung der Marktbedingungen für Die Regelleistungserbringung
Durch Erneuerbare Energien: Kurzstudie im Auftrag des Bunderverbandes Erneuerbare
Energie. e.V. und der Hannover Messe. Kassel, Berlin. Retrieved from Fraunhofer IWES
website: http://www.bee-
ev.de/_downloads/publikationen/studien/2014/20140407_BEE_OptimierungderMarktb
edingungenfrRegelleistungserbringungfuerErneuerbareEnergien.pdf

XXIV | References

Jansen, M. (2016). Economics of control reserve provision by fluctuating renewable energy
sources (forthcoming). In EEM 13th International Conference on the European Energy
Market. EEM15 : Porto, 6-9 Juni 2016. Piscataway, NJ: IEEE.

Jiang Wu, Xiaohong Guan, Feng Gao, & Guoji Sun (2008). Social welfare maximization auction
for electricity markets with elastic demand. In 2008 7th World Congress on Intelligent
Control and Automation (pp. 7157–7162). doi:10.1109/WCICA.2008.4594029

Johansson, P.-O. (1997). An introduction to modern welfare economics (Reprinted.).
Cambridge: Cambridge Univ. Press.

Jónsson, T., Morales Gonzalez, J., Zogno, M., Madsen, H., & Otterson, S. (2011). Allocation and
Deployment of Spinning Reserves.

Jost, D., Braun, A., & Fritz, R. (2014). Sizing control reserves with a new dynamic method
considering wind and photovoltaic power forecasts. In U. Betancourt & T. Ackermann
(Eds.), Proceedings / 13th Wind Integration Workshop, International Workshop on Large-
Scale Integration of Wind Power into Power Systems as well as on Transmission Networks
for Offshore Wind Power Plants, 11 - 13 November 2014, Berlin, Germany. Langen:
Energynautics.

Jost, D., Braun, A., & Fritz, R. (2015). Dynamic Dimensioning of Frequency Restoration
Reserve Capacity based on Quantile Regression. In EEM 12th International Conference on
the European Energy Market. EEM15 : Lisbon, 19-22 May 2015. Piscataway, NJ: IEEE.

Jost, D., Braun, A., Fritz, R., Drusenbaum, C., & Rohrig, K. Dynamische Bestimmung des
Regelleistungsbedarfs: Abschlussbericht.

Juban, J., Siebert, N., & Kariniotakis, G. N. (2007). Probabilistic Short-term Wind Power
Forecasting for the Optimal Management of Wind Generation. In 2007 IEEE Power Tech
(pp. 683–688). doi:10.1109/PCT.2007.4538398

Juban, J., Fugon, L., & Kariniotakis, G. (2007). Probabilistic short-term wind power
forecasting based on kernel density estimators.

Just, S. (2011). Appropriate contract durations in the German markets for on-line reserve
capacity. EWL Working Paper No. 02/10. Duisburg, Essen. Retrieved from University of
Duisburg-Essen website: https://www.wiwi.uni-due.de/fileadmin/fileupload/BWL-
ENERGIE/Arbeitspapiere/RePEc/pdf/wp1002_Just_ContractDurations_2010_08_16.pdf

Just, S., & Weber, C. (2008). Pricing of reserves: Valuing system reserve capacity against spot
prices in electricity markets: Technological Change and the Environment. Energy
Economics, 30(6), 3198–3221. doi:10.1016/j.eneco.2008.05.004

Kakimoto, N., Takayama, S., Satoh, H., & Nakamura, K. (2009). Power Modulation of
Photovoltaic Generator for Frequency Control of Power System: Energy Conversion, IEEE
Transactions on. Energy Conversion, IEEE Transactions on, 24(4), 943–949.
doi:10.1109/TEC.2009.2026616

Kalantzis, F. G., & Milonas, N. T. (2013). Analyzing the impact of futures trading on spot price
volatility: Evidence from the spot electricity market in France and Germany. Energy
Economics, 36, 454–463. doi:10.1016/j.eneco.2012.09.017

Kapetanovic, T., Buchholz, B. M., Buchholz, B., & Buehner, V. (2008). Provision of ancillary
services by dispersed generation and demand side response – needs, barriers and
solutions. e & i Elektrotechnik und Informationstechnik, 125(12), 452–459.
doi:10.1007/s00502-008-0599-8

Kempton, W., & Tomić, J. (2005). Vehicle-to-grid power fundamentals: Calculating capacity
and net revenue. Journal of Power Sources, 144(1), 268–279.
doi:10.1016/j.jpowsour.2004.12.025

Ketterer, J. C. (2014). The impact of wind power generation on the electricity price in
Germany. Energy Economics, 44, 270–280. doi:10.1016/j.eneco.2014.04.003

Khorasani, J., & Rajabi Mashhadi, H. (2012). Bidding analysis in joint energy and spinning
reserve markets based on pay-as-bid pricing. IET Generation, Transmission & Distribution,
6(1), 79. doi:10.1049/iet-gtd.2011.0317

Kian, A., & Keyhani, A. (2001). Stochastic price modeling of electricity in deregulated energy
markets. In Hawaii International Conference on System Sciences. HICSS-34 (p. 7).
doi:10.1109/HICSS.2001.926292

References | XXV

Kindler, D. (2011). 20 Months of Wind Data from the FINO3 Meteorological Mast. In GL
Garrad Hassan (Ed.), FINO Conference 2011. Retrieved from http://www.gl-
garradhassan.com/FINO_2011_Session3_04_Kindler.pdf

Kirby, B., Milligan, M., & Ela, E. (2010). Providing Minute-to-Minute Regulation from Wind
Plants: Preprint.

Knorr, K., Zimmermann, B., Kirchner, D., Speckmann, M., Spieckermann, R., Widdel, M.,. . .
Ritter, P. (2014). Kombikraftwerk 2 - Abschlussbericht. Kassel, Hannover. Retrieved from
http://www.kombikraftwerk.de/

Konstantin, P. (2009). Praxisbuch Energiewirtschaft: Energieumwandlung, -transport und -
beschaffung im liberalisierten Strommarkt (2. bearbeitete und aktualisierte Auflage).
Berlin Heidelberg: Springer.

Köpke, R. (2014). Windmüller fahren auf Direktvermarktung ab: E&M powernews. Retrieved
from http://www.energie-und-management.de/?id=84&no_cache=1&terminID=103442

Koritarov, V. (2004). Real-world market representation with agents. IEEE Power and Energy
Magazine, 2(4), 39–46. doi:10.1109/MPAE.2004.1310872

Kost, C., Mayer, J., Thomsen, J., Hartmann, N., Senkpiel, C., Phillips, S.,. . . Schlegl, T. (2013).
Stromgestehungskosten Erneuerbare Energien: Version November 2013. Freiburg.
Retrieved from Fraunhofer ISE website:
https://www.ise.fraunhofer.de/de/veroeffentlichungen/veroeffentlichungen-pdf-
dateien/studien-und-konzeptpapiere/studie-stromgestehungskosten-erneuerbare-
energien.pdf

Kristan, M., Leonardis, A., & Skočaj, D. (2011). Multivariate online kernel density estimation
with Gaussian kernels. Pattern Recognition, 44(10-11), 2630–2642.
doi:10.1016/j.patcog.2011.03.019

Kumar David, A., & Fushuan Wen. (2001). Market power in electricity supply. IEEE
Transactions on Energy Conversion, 16(4), 352–360. doi:10.1109/60.969475

Kurscheid, E. (2009). Zur Bereitstellung positiver Minutenreserve durch dezentrale KWK-
Anlagen: Doktorarbeit an der TU Chemnitz.

Lange, A., Rostankowski, A., Richts, C., Holzhammer, U., Gerhardt, N., Klobasa, M.,. . . Lehnert,
W. (2014). Regelleistungsbereitstellung von Erneuerbaren Energien in der
Direktvermarktung: Auswirkungen, Potenziale und Weiterentwicklung. im Rahmen des
Projektes Laufende Evaluierung der Direktvermarktung von Strom aus erneuerbaren
Energien. Berlin.

Lange, B., Rohrig, K., Dobschinski, J., Wessel, A., Saint-Drenan, Y.-M., & Felder, M. (2011).
Prognosen der zeitlich-räumlichen Variabilität von Erneuerbaren.
Transformationsforschung für ein nachhaltiges Energiesystem - Beiträge zur FVEE, 93–101.

Li, T., & Shahidehpour, M. (2005). Price-Based Unit Commitment: A Case of Lagrangian
Relaxation Versus Mixed Integer Programming. IEEE Transactions on Power Systems,
20(4), 2015–2025. doi:10.1109/TPWRS.2005.857391

LichtBlick SE. (2014). Entwicklung und Bereitstellung von Sekundärregelleistung durch
intelligente Steuerung von ZuhauseKraftwerken - Abschlussbericht. Retrieved from
https://www.lichtblick.de/pdf/info/schwarmenergie/BMWI0325393Abschlussbericht.p
df

LichtBlick SE. (2015). Medienmitteilung: SchwarmStrom für einen stabilen Puls im Stromnetz:
LichtBlick liefert Regelenergie aus Mini-Kraftwerken. Hambrug. Retrieved from
http://www.lichtblick.de/medien/news/?detail=327&type=press

Liebau, B. (2012). Der deutsche Strommarkt: Marktdesign und Anbieterverhalten (1. Aufl.). MV
Wissenschaft: Vol. 5. Münster: Verl.-Haus Monsenstein und Vannerdat.

London Economics. (2013). The Value of Lost Load (VoLL) for Electricity in Great Britain:
Final report for OFGEM and DECC. Retrieved from London Economics; Ofgem; DECC
website: https://www.ofgem.gov.uk/ofgem-publications/82293/london-economics-
value-lost-load-electricity-gb.pdf

Lorenz, C., & Gerbaulet, C. (2015). Entwicklung des Regelleistungsmarktes in Deutschland bis
2025: Strommarkttreffen 14.08.2015. Berlin. Retrieved from TU Berlin, Workgroup for
Infrastructure Policy; DIW Berlin, Department of Energy, Transportation, Environment
website: http://www.strommarkttreffen.org/2015-8-Lorenz-Regelleistung.pdf

XXVI | References

Macal, C. M., & North, M. J. (2010). Tutorial on agent-based modelling and simulation. Journal
of Simulation, 4(3), 151–162. doi:10.1057/jos.2010.3

Margaris, I. D., Papathanassiou, S. A., Hatziargyriou, N. D., Hansen, A. D., & Sørensen, P.
(2012). Frequency Control in Autonomous Power Systems With High Wind Power
Penetration: Sustainable Energy, IEEE Transactions on. Sustainable Energy, IEEE
Transactions on, 3(2), 189–199. doi:10.1109/TSTE.2011.2174660

Matos, M. A., & Bessa, R. J. (2011). Setting the Operating Reserve Using Probabilistic Wind
Power Forecasts: Power Systems, IEEE Transactions on. Power Systems, IEEE
Transactions on, 26(2), 594–603.

Maurer, C., Krahl, S., & Weber, H. (2009). Dimensioning of secondary and tertiary control
reserve by probabilistic methods. European Transactions on Electrical Power, 19(4), 544–
552. doi:10.1002/etep.326

Michetti, E. (2012). European Energy Markets Transparency Report - 2012 EDITION.
Retrieved from
http://cadmus.eui.eu/bitstream/handle/1814/24516/ETA_Report.pdf?sequence=1

Morales, J. M., Conejo, A. J., & Perez-Ruiz, J. (2010). Short-Term Trading for a Wind Power
Producer. IEEE Transactions on Power Systems, 25(1), 554–564.
doi:10.1109/TPWRS.2009.2036810

Morren, J., Haan, S. de, Kling, W. L., & Ferreira, J. A. (2006). Wind Turbines Emulating Inertia
and Supporting Primary Frequency Control. IEEE Transactions on Power Systems, 21(1),
433–434. doi:10.1109/TPWRS.2005.861956

Müller, L. (2011, November). Kooperation bei der Regelenergie - Einführung des
Netzregelverbund und weitere Perspektiven: Vortrag auf IQPC Konferenz
"Zukunftsperspektiven für den Regelenergiemarkt Strom", Berlin.

Müller, M., Sensfuß, F., & Wietschel, M. (2007). Simulation of current pricing-tendencies in
the German electricity market for private consumption. Energy Policy, 35(8), 4283–4294.
doi:10.1016/j.enpol.2007.02.032

National Grid Electricity Transmission plc. (2012). THE GRID CODE: Issue 4 Revision 11.
16th March 2012. Retrieved from
http://www.nationalgrid.com/NR/rdonlyres/67374C36-1635-42E8-A2B8-
B7B8B9AF2408/52340/Z_CompleteGridCode_I4R11.pdf

Nicolosi, M. (2010). Wind power integration and power system flexibility–An empirical
analysis of extreme events in Germany under the new negative price regime. Energy
Policy, 38(11), 7257–7268. doi:10.1016/j.enpol.2010.08.002

Nitsch J., Pregger, T., Naegler, T., Heide D., Luca de Tena, D., Trieb, F., Scholz, Y.,. . . Wenzel, B.
(2012). EE-Langfristszenarien 2011: Langfristszenarien und Strategien für den Ausbau
der erneuerbaren Energien in Deutschland bei Berücksichtigung der Entwicklung in
Europa und global. Schlussbericht BMU - FKZ 03MAP146.

North, M., Conzelmann, G., Koritarov, V., North, Macal, Charles, Thimmaouram, P., & Veselka,
T. (2002). E-Laboratories: Agent-based moldeling of Electricity MarketsMARKETS. For
submission to 2002 American Power Conference. Argonne, IL. Retrieved from Center for
Energy, Environmental, and Economic Systems Analysis (CEEESA) website:
http://www.researchgate.net/profile/Vladimir_Koritarov/publication/228605359_E-
laboratories_agent-
based_modeling_of_electricity_markets/links/0deec524c3d61ae0cc000000.pdf

Oehsen, A. von. (2012). Entwicklung und Anwendung einer Kraftwerks- und
Speicherinsatzoptimierung für die Untersuchung von Energieversorgungsszenarien mit
hohem Anteil erneuerbarer Energieversorgungsszenarien mit hohem Anteil erneuerbarer
Energien in Deutschland: Dissertation zur Erlangung des akademischen Grades eines
Doktors der Ingenieurwissenschaften (Dr. -Ing.) im Fachbereich Elektrotechnik/Informatik
der Universität Kassel. Retrieved from http://d-nb.info/1038379601/34

Okou, A. F., Akhri, O., Beguenane, R., & Tarbouchi, M. (2012). Nonlinear control strategy
insuring contribution of PV generator to voltage and frequency regulation. In 6th IET
International Conference on : Power Electronics, Machines and Drives (PEMD 2012) (pp. 1–
5). doi:10.1049/cp.2012.0332

References | XXVII

Oren, S. (2004). When is a pay-as bid preferable to uniform price in electricity markets:
Power Systems Conference and Exposition, 2004. IEEE PES. Power Systems Conference
and Exposition, 2004. IEEE PES, 1618-1620 vol.3.

Pachauri, R. K., & Mayer, L. (2014). Climate change 2014: Synthesis report.
Padhy, N. P. (2004). Unit Commitment - A Bibliographical Survey. IEEE Transactions on

Power Systems, 19(2), 1196–1205. doi:10.1109/TPWRS.2003.821611
Papaefthymiou, G., van Doorn, J., Kakorin, A., van der Meijden, Mart, Laurisch, L.,

Meulenbroeks, J.-W., & Nabe, C. (2015). Future provision of control reserve from offshore
wind farms: An analysis of benefits and barriers. In 2015 12th International Conference on
the European Energy Market (EEM) (pp. 1–5). doi:10.1109/EEM.2015.7216710

Papula, L. (2009). Mathematische Formelsammlung für Ingenieure und Naturwissenschaftler:
10. Auflage. Wiesbaden: Vieweg + Teubner.

Pigou, A. C. (1920). The economics of welfare. London: MacMillan.
Ping-Kwan Keung, Pei Li, Banakar, H., & Boon Teck Ooi. (2009). Kinetic Energy of Wind-

Turbine Generators for System Frequency Support: Power Systems, IEEE Transactions
on. Power Systems, IEEE Transactions on, 24(1), 279–287.

Pinson, P. (2006). Estimation of the uncertainty in wind power forecasting: These pour obtenir
le grade de Docteur de l`Ecole des Mines de Paris - Spécialité "Energétique". Disseration.

Pinson, P., Chevallier, C., & Kariniotakis, G. N. (2007). Trading Wind Generation From Short-
Term Probabilistic Forecasts of Wind Power. IEEE Transactions on Power Systems, 22(3),
1148–1156. doi:10.1109/TPWRS.2007.901117

Pinson, P., & Madsen, H. (2009). Ensemble-based probabilistic forecasting at Horns Rev.
Wind Energy, 12(2), 137–155. doi:10.1002/we.309

Power2Energy. (2013). IntradayS Market Aufnahmeunterlagen. Retrieved from
http://www.power2energy.eu/ism/start/100/ISM-Aufnahmeunterlagen-131015d.pdf

Quaschning, V. (2015). Vergütung für Strom aus Photovoltaikanlagen nach dem
Erneuerbare-Energien-Gesetz (EEG). Retrieved from http://www.volker-
quaschning.de/datserv/EEG-PV/index.php

Ramakrishnan Kirshna, S. (2009) USA 2012/0078518 A1. USA.
Ravnaas, K. W., Farahmand, H., & Doorman, G. (2010). Optimal wind farm bids under

different balancing market arrangements: Probabilistic Methods Applied to Power
Systems (PMAPS), 2010 IEEE 11th International Conference on. Probabilistic Methods
Applied to Power Systems (PMAPS), 2010 IEEE 11th International Conference on, 30–35.

Rebours, Y. G., Kirschen, D. S., Trotignon, M., & Rossignol, S. (2007a). A Survey of Frequency
and Voltage Control Ancillary Services—Part I: Technical Features: Power Systems,
IEEE Transactions on. Power Systems, IEEE Transactions on, 22(1), 350–357.

Rebours, Y. G., Kirschen, D. S., Trotignon, M., & Rossignol, S. (2007b). A Survey of Frequency
and Voltage Control Ancillary Services—Part II: Economic Features: Power
Systems, IEEE Transactions on. Power Systems, IEEE Transactions on, 22(1), 358–366.

Richter, J. (2012). On the interaction between product markets and markets for production
capacity: The case of the electricity industry: EWI Working Paper No 11/09. Köln.

Rivero, E., Barquin, J., & Rouco, L. (2011). European balancing markets: Energy Market
(EEM), 2011 8th International Conference on the European. Energy Market (EEM), 2011
8th International Conference on the European, 333–338.

Robèrt, M. (2005). Backcasting and econometrics for sustainable planning. Journal of Cleaner
Production, 13(8), 841–851. doi:10.1016/j.jclepro.2003.12.028

Rohrig, K., Richts, C., Bofinger, S., Jansen, M., Siefert, M., Pfaffel, S., & Durstewitz, M. (2013).
Energiewirtschaftliche Bedeutung der Offshore-Windenergie für die Energiewende:
Langfassung. Kassel. Retrieved from Fraunhofer IWES website: http://www.offshore-
stiftung.com/60005/Uploaded/SOW_Download|Langfassung-
EnergiewirtschaftlicheBedeutungderOffshore-Windenergie.pdf

XXVIII | References

Ruiz, P. A., Philbrick, C. R., & Sauer, P. W. (2009). Wind power day-ahead uncertainty
management through stochastic unit commitment policies: Power Systems Conference
and Exposition, 2009. PSCE '09. IEEE/PES. Power Systems Conference and Exposition,
2009. PSCE '09. IEEE/PES, 1–9. Retrieved from
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4840133

Saiz-Marin, E., Lobato, E., & Linares, P. (2012). Optimal Band Provision by Wind Generation
in the Spanish Secondary Regulation Market: Power and Energy Engineering Conference
(APPEEC), 2012 Asia-Pacific Power and Energy Engineering Conference (APPEEC), 2012
Asia-Pacific, 27-29 March 2012, Shanghai.

Saiz-Marin, E., Garcia-Gonzalez, J., Barquin, J., & Lobato, E. (2012). Economic Assessment of
the Participation of Wind Generation in the Secondary Regulation Market. IEEE
Transactions on Power Systems, 27(2), 866–874. doi:10.1109/TPWRS.2011.2178618

Saravanan, B., Das, S., Sikri, S., & Kothari, D. P. (2013). A solution to the unit commitment
problem—a review. Frontiers in Energy, 7(2), 223–236. doi:10.1007/s11708-013-0240-3

Schäfer-Stradowsky, S., Gerhardt, N., Holzhammer, U., Richts, C., Stelzer, M., Klobasa, M.,. . .
Lehnert, W. (2014). 10. Quartalsbericht Laufende Evaluierung der Direktvermarktung von
Strom aus Erneuerbaren Energien: Stand 08/2014: Monitoring - Erstellt im Auftrag des
Bundesministeriums für Wirtschaft und Energie. Berlin.

Schaich, A. (2010). Die Bereitstellung negativer Minutenreserve durch Windenergieanlagen:
Eine anwendungsorientierte Analyse.

Schneider, D., Kaminski, K., Siefert, M., & Speckmann, M. (2013). Available Active Power
Estimation for the Provision of Control Reserve by Wind Turbines: EWEA 2013, Vienna,
4.2. - 7.2.2013. In European Wind Energy Association (EWEA) (Ed.), European Wind
Energy Conference & Exhibition 2013. Red Hook, NY: Curran.

Schneider, D., Tietz, S., Siefert, M., & Speckmann, M. (2013). Available Active Power
Estimation of Wind Power Plants with 3-Second Data. In U. Betancourt & T. Ackermann
(Eds.), Proceedings / 12th Wind Integration Workshop, International Workshop on Large-
Scale Integration of Wind Power into Power Systems as well as on Transmission Networks
for Offshore Wind Power Plants, 22 - 24 October 2013, London, UK (pp. 1–5). Langen:
Energynautics. Retrieved from http://publica.fraunhofer.de/documents/N-360057.html

Schuller, A., & Rieger, F. (2013). Assessing the Economic Potential of Electric Vehicles to
Provide Ancillary Services: The Case of Germany. Zeitschrift für Energiewirtschaft, 37(3),
177–194. doi:10.1007/s12398-013-0112-x

Schulz, C. (2011). Aktuelle und Zukünftige Anforderungen an EEG-Einspeiseprognosen:
Netzführungskonzepte. Retrieved from https://www.uni-
oldenburg.de/fileadmin/user_upload/physik/ag/ehf/enmet/download/proc/A01_Schul
z_EEG.pdf

Schwinn, R. (2011). Vorschläge zur Anpassung der deutschen Regelleistungsmärkte zur
verbesserten Teilnahme Erneuerbarer Energien: Masterarbeit an der Universität Kassel.

Sensfuß, F., Ragwitz, M., & Genoese, M. (2007). The Merit-Order Effect: A Detailed Analyis of
the Price Effect of Renewable Electricity Generation on Spot Market Prices in Germany.
Retrieved from http://www.isi.fraunhofer.de/publ/downloads/isi07a18/merit-order-
effect.pdf

Sensfuß, F. (2010). Analysen zum Merit-Order Effekt erneuerbarer Energien - Update für das
Jahr 2010.

Shafiei, E., Thorkelsson, H., Ásgeirsson, E. I., Davidsdottir, B., Raberto, M., & Stefansson, H.
(2012). An agent-based modeling approach to predict the evolution of market share of
electric vehicles: A case study from Iceland. Technological Forecasting and Social Change,
79(9), 1638–1653. doi:10.1016/j.techfore.2012.05.011

Shahidehpour, M., Yamin, H., & Li, Z. (2002). Market operations in electric power systems:
Forecasting, scheduling, and risk management. [New York]: Institute of Electrical and
Electronics Engineers, Wiley-Interscience.

SMA, TU Braunschweig, & GEWI AG. (2015). PV Regel: Forschung Stromnetze: Regelleistung
mit PV-Anlagen für stabilen Netzbetrieb. Retrieved from http://forschung-
stromnetze.info/projekte/regelleistung-mit-pv-anlagen-fuer-stabilen-netzbetrieb/

References | XXIX

Son, Y. S., Baldick, R., Lee, K.-H., & Siddiqi, S. (2004). Short-Term Electricity Market Auction
Game Analysis: Uniform and Pay-as-Bid Pricing. IEEE Transactions on Power Systems,
19(4), 1990–1998. doi:10.1109/TPWRS.2004.836192

Speckmann, M. (2016). Bereitstellung von Regelleistung durch fluktuierende Erzeuger am
Beispiel der Windenergie (1. Auflage). Schriftenreihe des Energie-Forschungszentrums
Niedersachsen (EFZN): Vol. 35. Göttingen, Niedersachsen: Cuvillier, E.

Speckmann, M., & Baier, A. (2011). Provision of Frequency Control by Wind Farms: 10th
International Workshop on Large-Scale Integration of Wind Power into Power Systems as
well as on Transmission Networks for Offshore Wind Power Plants; 25 - 26.10.2011.

Spitalny, L., Unger, D., & Myrzik, J. M. A. (2012). Potential of small hydro power plants for
delivering control energy in Germany. In Energytech, 2012 IEEE : Energytech, 2012 IEEE :
Energytech, 2012 IEEE (pp. 1–6). doi:10.1109/EnergyTech.2012.6304700

Statkraft Markets GmbH. (2015). Press information: Statkraft succeeds in delivering tertiary
reserve from wind power plant. Essen. Retrieved from
http://www.statkraft.de/presse/Pressemitteilungen/20151/Statkraft-liefert-erstmals-
Minutenreserve-aus-windkraft/

Sterner, M., Gerhardt, N., Saint-Drenan, Y.-M., Oehsen, A. von, Hochloff, P., Kocmajewski, M.,. . .
Rohrig, K. (2010). Energiewirtschaftliche Bewertung von Pumpspeicherwerken und
anderen Speichern im zukünftigen Stromversorgungssystem: Endbericht. Laufenburg,
Kassel.

Stobrawe, M. (2012). Activiation of tertiray control reserve when 60% of secondary control
reserve is actived (oral).

Stromnetze. (2015). Forschung Stromnetze: Regelleistung durch Wind- und
Photovoltaikparks. Retrieved from http://forschung-
stromnetze.info/projekte/regelleistung-durch-wind-und-photovoltaikparks/

Swider, D. J. (2005a). Sequential Bidding in Day-Ahead Auctions for Spot Energy and Power
Systems Reserve.

Swider, D. J. (2005b). Simultaneous bidding on day-ahead auction markets for spot energy
and power systems reserve: Proceedings 15th Power Systems Computation Conference
(PSCC) 2005.

Swider, D. J., & Weber, C. (2007). Bidding under price uncertainty in multi-unit pay-as-bid
procurement auctions for power systems reserve. European Journal of Operational
Research, 181(3), 1297–1308. doi:10.1016/j.ejor.2005.11.046

TenneT TSO GmbH. (2015). Actual and forecast wind energy feed-in - TenneT TSO GmbH.
Retrieved from http://www.tennettso.de/site/en/Transparency/publications/network-
figures/actual-and-forecast-wind-energy-feed-in

Tesfatsion, L., & Judd, K. L. (2006). Handbook of computational economics. Handbooks in
economics: Vol. 13. Amsterdam, New York: Elsevier.

Tuohy, A., Brooks, D., Ela, E., & Kirby, B. (2012). Provision of Regulating Reserve from Wind
Power - Economic Benefits and Steady State System Operation Implications: Proceedings
of 11th International Workshop on Large-Scale Integration of Wind Power into Power
Systems as well as on Transmission Networks for Offshore Wind Power Plants, 13 - 15
November 2012, Lisbon.

UCTE. (2009). Policy 1: Load-Frequency Control and Performance: UCTE Operation
Handbook.

Veit, D. J., Weidlich, A., & Krafft, J. A. (2009). An agent-based analysis of the German electricity
market with transmission capacity constraints. Energy Policy, 37(10), 4132–4144.
doi:10.1016/j.enpol.2009.05.023

Ventosa, M., Baıĺlo, AÁ ., Ramos, A., & Rivier, M. (2005). Electricity market modeling trends.
Energy Policy, 33(7), 897–913. doi:10.1016/j.enpol.2003.10.013

Walck, C. (2007). Hand-book on STATISTICAL DISTRIBUTIONS for experimentalists.
Retrieved from http://www.fysik.su.se/~walck/suf9601.pdf

Wassermann, S., Reeg, M., & Nienhaus, K. (2015). Current challenges of Germany’s energy
transition project and competing strategies of challengers and incumbents: The case of
direct marketing of electricity from renewable energy sources. Energy Policy, 76, 66–75.
doi:10.1016/j.enpol.2014.10.013

XXX | References

Waver, T. (2007). Förderung erneuerbarer Energien im liberalisierten deutschen
Strommarkt: Dissertation an der Universität Münster.

Weber, C. (2010). Adequate intraday market design to enable the integration of wind energy
into the European power systems: Large-scale wind power in electricity markets with
Regular Papers. Energy Policy, 38(7), 3155–3163. doi:10.1016/j.enpol.2009.07.040

Weidhas, G. (2012, June). Vom deutschen Netzregelverbund zur International Grid Control
Cooperation (IGCC): Die Integration der niederländischen TenneT und der Energinet.dk.
Regelenergiemarkt Strom 2012, Berlin. Retrieved from http://www.inform-
you.de/Referentenbeitrag.aspx?id=301954&code=P1105338

Weidlich, A., & Veit, D. (2008). A critical survey of agent-based wholesale electricity market
models. Energy Economics, 30(4), 1728–1759. doi:10.1016/j.eneco.2008.01.003

Weißbach, T. (2009). Verbesserung des Kraftwerks- und Netzregelverhaltens bezüglich
handelsseitiger Fahrplansprünge: Doktorarbeit an der Universität Stuttgart.

Weron, R. (2006). Modeling and forecasting electricity loads and prices: A statistical approach.
Wiley finance series. Chichester, England, Hoboken, NJ: John Wiley & Sons.

Wingenbach, C. (2011). Präqualifikation von Windenergieanlagen für die Erbringung
negativer Minutenreserve. Bachelor-Thesis an der FH Flensburg (Bachelor-Thesis).
Fachhochschule Flensburg, Flensburg.

Wissel, S., Fahl, U., Blesl, M., & Voß, A. (2010). Erzeugungskosten zur Bereitstellung
elektrischer Energie von Kraftwerksoptionen in 2015. Retrieved from Universität Stuttgart;
Institut für Energiewirtschaft und Rationelle Energieanwendung website:
http://www.ier.uni-
stuttgart.de/publikationen/arbeitsberichte/downloads/Arbeitsbericht_08.pdf

Wright, B. (2013). A Review of Unit Commitment. New York. Retrieved from Department of
Electrical Engineering - Columbia University website:
http://www.ee.columbia.edu/~lavaei/Projects/Brittany_Wright.pdf

www.solaranlagen-portal.com. Einspeisevergütung für Photovoltaik Anlagen 2015.
Retrieved from http://www.solaranlagen-
portal.com/photovoltaik/wirtschaftlichkeit/einspeiseverguetung

Yuen, C., Oudalov, A., & Timbus, A. (2011). The Provision of Frequency Control Reserves
From Multiple Microgrids: Industrial Electronics, IEEE Transactions on. Industrial
Electronics, IEEE Transactions on, 58(1), 173–183.

Zhang, Z.-S., Sun, Y.-Z., & Cheng, L. (2013). Potential of trading wind power as regulation
services in the California short-term electricity market. Energy Policy. (0).
doi:10.1016/j.enpol.2013.04.056

Zugno, M., Pinson, P., & Jónsson, T. (2010). Trading wind energy based on probabilistic
forecasts of wind generation and market quantities.

List of figures | XXXI

List of figures

Figure 1-1: Flow chart of REBal ... 3

Figure 1-2: Probabilistic day-ahead forecast of a 30 GW onshore
wind farm pool, representing all German wind
turbines, for different levels of reliability 5

Figure 1-3: Additional possible income for different fluctuating
RES generators in the negative secondary and negative
tertiary control reserve with realistic market
conditions ... 6

Figure 1-4: Welfare gain for the capacity component induced by
the German 30 GW pool of wind farms and the 30 GW
pool PV systems for a product length of four hours and
a level of reliability of 99.994 %. ... 7

Figure 3-1: Development of the EEG based initial and base feed-in
tariffs for onshore and offshore wind farms and the
feed-in tariff for photovoltaic systems 18

Figure 3-2: Annual frequency of balancing energy price reBAP 21

Figure 3-3: Overview of trading on wholesale and ancillary service
markets ... 22

Figure 3-4: Schematic overview of the procedures covering the
participation in spot energy and control reserve
markets ... 23

Figure 3-5: Monthly averaged Base and Peak prices and Highest
Twelve Prices of the day-ahead auction at EPEX SPOT 27

Figure 3-6: Annual frequency of price differences (day-ahead
minus intraday) between the last intraday price (ID)
and the day-ahead price (DA) of contracts traded for
the same hour ... 30

Figure 3-7: Costs for the different ancillary services for the years
2004 to 2014 ... 33

Figure 3-8: Idealized dispatch cascade of positive control reserve
after the occurrence of a system event in the ENTSO-E
RG Continental Europe with nomenclature according
to this thesis and its ENTSO-E equivalents 38

Figure 3-9: Classification of different sources of imbalances,
calculation of total control reserve demand and
separation into secondary and tertiary control reserve
and their required confidence levels 42

Figure 3-10: Tendered amount of primary, secondary and tertiary
control reserve .. 44

XXXII | List of figures

Figure 3-11: Model protocol for the prequalification of a technical
unit for negative tertiary control eserve 48

Figure 3-12: Weekly average capacity prices of the secondary
control reserve market ... 50

Figure 3-13: Weekly average energy prices of the secondary control
reserve market and marginal price of dispatch 51

Figure 3-14: Weekly average capacity prices of the tertiary control
reserve market .. 52

Figure 3-15: Weekly average energy prices of the tertiary control
reserve market and marginal price of dispatch 53

Figure 3-16: Selection of portfolios with direct marketing of RES
and prequalified units for the provision of control
reserve .. 56

Figure 3-17: Balance control (BC) proof method for the delivery of
negative control reserve ... 75

Figure 3-18: Available active power (AAP) proof method for the
delivery of negative control reserve 76

Figure 3-19: Linking the presented approaches with a new model 96

Figure 4-1: Flow chart of REBal ... 98

Figure 4-2: Availability of data used in REBal .. 112

Figure 4-3: Gaussian probability density function (PDF) and
cumulated probability function (CDF) 114

Figure 4-4: Illustration of a one-dimensional kernel density
estimator probability density function based on
Gaussian kernel function for one random variable 116

Figure 4-5: The effect of different bandwidths on the probability
density estimation for a one-dimensional and two-
dimensional KDE ... 119

Figure 4-6: Illustration of the two-dimensional KDE based for the
day-ahead probabilistic forecasting of the German
30 GW onshore wind farm pool ... 122

Figure 4-7: Two different approaches to measure reliability of a
probabilistic forecast for fluctuating RES 125

Figure 4-8: Principles of calculating the offerable amount of
control reserve Poffer with the probabilistic forecast
PProbFC ... 128

Figure 4-9: Determination of market price based capacity price of
fluctuating RES with original merit-order list in lighter
colours .. 133

Figure 4-10: Replacement of bids in the merit-order list by list of
the fluctuating RES .. 135

Figure 4-11: Illustration of the energy losses with the balance
control proof method applied marked as green striped
area, adapted from Figure 3-17 .. 140

List of figures | XXXIII

Figure 4-12: Correlation of residual load and the day-ahead spot
market price with its highest-grade possible
monotonously increasing polynomial fit 145

Figure 4-13: Supply and demand function for the capacity bids of
the control reserve market with inelastic demand 148

Figure 4-14: Supply and demand function for the capacity bids of
the control reserve market with inelastic demand and
the fluctuating RES generators with bids from the
opportunity cost approach (OP) and the profit
maximizing approach (MP) ... 149

Figure 5-1: Probabilistic day-ahead forecast of the German 30 GW
onshore wind farm pool and the 1 GW onshore wind
farm pool .. 159

Figure 5-2: Probabilistic day-ahead forecast of the German 1 GW
offshore wind farm pool ... 160

Figure 5-3: Probabilistic forecast of the German 30 GW pool of PV
systems and the 1 GW pool of PV systems 161

Figure 5-4: Quantiles of the probability forecasts and the
theoretical value for the probabilistic day-ahead
forecast ... 163

Figure 5-5: Probabilistic day-ahead and one-hour ahead intraday
forecasts, feed-in and offerable amounts of control
reserve based on the day-ahead and intraday
probabilistic forecast for the German 30 GW onshore
wind farm pool for the reliability of 99.994 % and a
product length of one, four and twelve hours 165

Figure 5-6: Probabilistic day-ahead and one-hour ahead intraday
forecasts, feed-in and offerable amounts of control
reserve based on the day-ahead and intraday
probabilistic forecast for the German 30 GW pool of PV
systems for the reliability of 99.994 % and a product
length of one, four and twelve hours 167

Figure 5-7: Potentials for offering control reserve based on the
day-ahead forecast for different fluctuating RES
generators with varying levels of reliability and product
lengths of one, four and twelve hours 169

Figure 5-8: Potentials for offering control reserve based on the
one hour intraday forecast for different fluctuating RES
generators with varying levels of reliability and a
product length of one hour .. 171

Figure 5-9: Duration curve for the offerable control reserve based
on the day-ahead forecast for different fluctuating RES
generators for the levels of reliability of 95 % (dashed
line) and 99.994 % for the year 2014 and a product
length of one hour .. 172

XXXIV | List of figures

Figure 5-10: Duration curve for the offerable control reserve based
on the one hour ahead intraday forecast for different
fluctuating RES generators for the levels of reliability of
95 % (dashed line) and 99.994 % for the year 2014 and
a product length of one hour.. 173

Figure 5-11: Average annual specific energy losses with control
reserve being offered day-ahead under the balance
control proof mechanism (bars) for different types of
fluctuating RES generators for the product length of
one hour and different levels of reliability and the
average annual total losses as numbers on the bars in
gigawatt hours .. 174

Figure 5-12: Opportunity cost based capacity price bids for
different fluctuating RES generators with a level of
reliability of 95 % and 99.994 % under the balance
control proof mechanism for the product length of one
hour for any negative control reserve market and all
years .. 177

Figure 5-13: Opportunity cost based capacity price bids for
different fluctuating RES generators with a level of
reliability of 95 % and 99.994 % under the balance
control proof mechanism for the product length of one
hour for any positive control reserve market and all
years .. 178

Figure 5-14: Average opportunity cost based capacity price bids for
different fluctuating RES generators with a level of
reliability of 99.994 % under the balance control
(darker colours) and available active power (lighter
colours) proof mechanism for the product length of
one hour for any negative control reserve market 180

Figure 5-15: Average opportunity cost based capacity price bids for
different fluctuating RES generators with a level of
reliability of 99.994 % under the balance control and
available active power proof mechanism for the
product length of one hour for any positive control
reserve market .. 181

Figure 5-16: Average opportunity cost based energy price bids for
different fluctuating RES generators for the product
length of one hour for any negative and positive
control reserve market ... 183

Figure 5-17: Profit maximizing capacity price bids for different
fluctuating RES generators with a level of reliability of
95 % and 99.994 % under the available active power
proof mechanism for the product length of one hour
for four control reserve market segments and all years 184

List of figures | XXXV

Figure 5-18: Annual average profit maximizing capacity price bids
for different fluctuating RES generators with different
levels of reliability for the product length of one hour
in the negative secondary control reserve market 186

Figure 5-19: Annual average profit maximizing capacity price bids
for different fluctuating RES generators with different
levels of reliability for the product length of one hour
in the positive secondary control reserve market 187

Figure 5-20: Annual average profit maximizing capacity price bids
for different fluctuating RES generators with different
levels of reliability for the product length of one hour
in the negative tertiary control reserve market 188

Figure 5-21: Annual average profit maximizing capacity price bids
for different fluctuating RES generators with different
levels of reliability for the product length of one hour
in the positive tertiary control reserve market 190

Figure 5-22: Average profit maximizing energy price bids for
different fluctuating RES generators with different
levels of reliability for the product length of one hour
for the negative and positive secondary and tertiary
control reserve markets .. 191

Figure 5-23: Additional possible income for different fluctuating
RES generators in the negative secondary control
reserve market for the levels of reliability of 95 % (light
colours) and 99.994 % (dark colours) 194

Figure 5-24: Additional possible income for different fluctuating
RES generators in the positive secondary control
reserve market for the levels of reliability of 95 % (light
colours) and 99.994 % (dark colours) 195

Figure 5-25: Additional possible income for different fluctuating
RES generators in the negative tertiary control reserve
market for the levels of reliability of 95 % (light
colours) and 99.994 % (dark colours) 196

Figure 5-26: Additional possible income for different fluctuating
RES generators in the positive tertiary control reserve
market for the levels of reliability of 95 % (light
colours) and 99.994 % (dark colours) 197

Figure 6-1: Capacity, energy and total cost saving potentials of the
German 30 GW onshore wind pool in the negative and
positive secondary and tertiary control reserve
markets for the opportunity cost based approach with
the available active power (top) and balance control
mechanism applied (middle) as well the profit
maximizing based approach (bottom) for a level of
reliability of 99.994 %, for the years 2010 to 2014, and
a product length of one hour.. 205

XXXVI | List of figures

Figure 6-2: Capacity, energy and total cost saving potentials of the
German 30 GW pool of PV systems in the negative and
positive secondary and tertiary control reserve
markets for the opportunity cost based approach with
the available active power (top) and balance control
mechanism applied (middle) as well the profit
maximizing based approach (bottom) for a level of
reliability of 99.994 %, for the years 2010 to 2014, and
a product length of one hour.. 208

Figure 6-3: Cost for the replacement of curtailed energy valued
with the spot market prices and the fuel replacement
costs, as well as additional cost due to merit-order
induced increases in the market price. 212

Figure 6-4: Total welfare gain induced by the German 30 GW pool
of wind farms and the 30 GW pool of PV systems for a
product length of one hour, a level of reliability of
99.994 % and the available active power proof method
applied in the negative and positive secondary and
tertiary control reserve market based on the total cost
saving potentials ... 215

Figure 6-5: Dispatch component welfare gain based induced by
the German 30 GW pool of wind farms and the 30 GW
pool of PV systems for a product length of one hour, a
level of reliability of 99.994 % and the available active
power proof method applied in the negative and
positive secondary and tertiary control reserve market 216

Figure 6-6: Capacity component welfare gain induced by the
German 30 GW pool of wind farms and the 30 GW
pool of PV systems for a product length of one hour, a
level of reliability of 99.994 % and the available active
power proof method applied in the negative and
positive secondary and tertiary control reserve market 218

Figure 6-7: Ratio between the capacity component welfare gain
and the capacity cost market value based on capacity
cost reductions only induced by the German 30 GW
pool of wind farms and the 30 GW pool of PV systems
for a product length of one hour, a level of reliability of
99.994 % and the available active power proof method
applied in the negative and positive secondary and
tertiary control reserve market .. 220

Figure 6-8: Average annual ratios between welfare gain and the
joint capacity market volume for different levels of
reliability and product lengths .. 222

Figure 6-9: Extrapolation of joint capacity market volume for the
years 2020 and 2030 based on the observed market
size between 2004 and 2014 using an exponential fit 224

List of figures | XXXVII

Figure 6-10: Forecast of welfare gain by the fluctuating RES
generators in the control reserve market for the years
2020 and 2030 at a level of reliability of 99.994 % 225

Figure A-1: Illustration of the two-dimensional KDE based on the
day-ahead probabilistic forecasting of the German
1 GW onshore wind farm pool ... LV

Figure A-2: Illustration of the two-dimensional KDE based on the
day-ahead probabilistic forecasting of the German
1 GW offshore wind farm pool ... LV

Figure A-3: Illustration of the two-dimensional KDE based on the
day-ahead probabilistic forecasting of the German
30 GW pool of PV systems ... LVI

Figure A-4: Illustration of the two-dimensional KDE based on the
day-ahead probabilistic forecasting of the 1 GW pool
of PV systems ... LVI

Figure B-5: Probabilistic one-hour ahead intraday forecast of the
German 30 GW wind farm pool .. LVII

Figure B-6: Probabilistic one-hour ahead intraday forecast of the
1 GW wind farm pool ... LVIII

Figure B-7: Probabilistic one-hour ahead intraday forecast of the
German 1 GW offshore wind farm pool LIX

Figure B-8: Probabilistic one-hour ahead intraday forecast of the
German 30 GW pool of PV systems LX

Figure B-9: Probabilistic one-hour ahead intraday forecast of the
1 GW pool of PV systems ... LXI

Figure B-10: Probabilistic day-ahead and one-hour ahead intraday
forecasts, feed-in and offerable amounts of control
reserve based on the day-ahead and intraday
probabilistic forecasts for the German 30 GW pool of
wind farms for the reliability of 95 % and a product
length of one hour .. LXII

Figure B-11: Probabilistic day-ahead and one-hour ahead intraday
forecasts, feed-in and offerable amounts of control
reserve based on the day-ahead and intraday
probabilistic forecasts for the German 30 GW pool of
wind farms for the reliability of 95 % (top) and 99.994
% (bottom) and a product length of two hours LXIII

Figure B-12: Probabilistic day-ahead and one-hour ahead intraday
forecasts, feed-in and offerable amounts of control
reserve based on the day-ahead and intraday
probabilistic forecasts for the German 30 GW pool of
wind farms for the reliability of 95 % and a product
length of four hours ... LXIV

XXXVIII | List of figures

Figure B-13: Probabilistic day-ahead and one-hour ahead intraday
forecasts, feed-in and offerable amounts of control
reserve based on the day-ahead and intraday
probabilistic forecasts for the German 30 GW pool of
wind farms for the reliability of 95 % (top) and 99.994
% (bottom) and a product length of eight hours LXV

Figure B-14: Probabilistic day-ahead and one-hour ahead intraday
forecasts, feed-in and offerable amounts of control
reserve based on the day-ahead and intraday
probabilistic forecasts for the German 30 GW pool of
wind farms for the reliability of 95 % and a product
length of twelve hours ... LXVI

Figure B-15: Probabilistic day-ahead and one-hour ahead intraday
forecasts, feed-in and offerable amounts of control
reserve based on the day-ahead and intraday
probabilistic forecasts for the German 30 GW pool of
wind farms for the reliability of 95 % (top) and 99.994
% (bottom) and a product length of 24 hours LXVII

Figure B-16: Probabilistic day-ahead and one-hour ahead intraday
forecasts, feed-in and offerable amounts of control
reserve based on the day-ahead and intraday
probabilistic forecasts for the 1 GW onshore wind farm
pool for the reliability of 99.994 % and a product
length of one, four and twelve hours LXVIII

Figure B-17: Probabilistic day-ahead and one-hour ahead intraday
forecasts, feed-in and offerable amounts of control
reserve based on the day-ahead and intraday
probabilistic forecasts for the German 1 GW offshore
wind farm pool for the reliability of 99.994 % and a
product length of one, four and twelve hours LXIX

Figure B-18: Probabilistic day-ahead and one-hour ahead intraday
forecasts, feed-in and offerable amounts of control
reserve based on the day-ahead and intraday
probabilistic forecasts for the 1 GW pool of PV systems
for the reliability of 99.994 % and a product length of
one, four and twelve hours .. LXX

Figure B-19: Potentials for offering control reserve based on the
day-ahead forecast for different fluctuating RES
generators with varying levels of reliability and product
lengths of two, eight and 24 hours LXXI

Figure B-20: Duration curve for the offerable control reserve based
on the day-ahead forecast for different fluctuating RES
generators for the levels of reliability of 95 % (dashed
line) and 99.994 % for the year 2014 and a product
length of two (top) and four hours (bottom) LXXII

List of figures | XXXIX

Figure B-21: Duration curve for the offerable control reserve based
on the day-ahead forecast for different fluctuating RES
generators for the levels of reliability of 95 % (dashed
line) and 99.994 % for the year 2014 and a product
length of eight and twelve hours LXXIII

Figure B-22: Duration curve for the offerable control reserve based
on the day-ahead forecast for different fluctuating RES
generators for the levels of reliability of 95 % (dashed
line) and 99.994 % for the year 2014 and a product
length of 24 hours .. LXXIV

Figure B-23: Average annual specific energy losses with control
reserve being offered day-ahead under the balance
control proof mechanism (bars) for different types of
fluctuating RES generators for the product length of
four hours and different levels of reliability and the
average annual total losses as numbers on the bars in
gigawatt hours .. LXXV

Figure B-24: Average annual specific energy losses with control
reserve being offered day-ahead under the balance
control proof mechanism (bars) for different types of
fluctuating RES generators for the product length of
twelve hours and different levels of reliability and the
average annual total losses as numbers on the bars in
gigawatt hours ... LXXVI

Figure B-25: Opportunity cost based capacity price bids for
different fluctuating RES generators with a level of
reliability of 95 % and 99.994 % under the available
active power proof mechanism for the product length
of one hour for any positive control reserve market LXXVII

Figure B-26: Profit maximizing capacity price bids for different
fluctuating RES generators with a level of reliability of
95 % and 99.994 % under the balance control proof
mechanism for the product length of one hour for four
control reserve market segments LXXVIII

Figure B-27: Annual average profit maximizing capacity price bids
for different fluctuating RES generators with different
levels of reliability for the product length of four hours
in the negative secondary control reserve market LXXIX

Figure B-28: Annual average profit maximizing capacity price bids
for different fluctuating RES generators with different
levels of reliability for the product length of four hours
in the positive secondary control reserve market LXXX

Figure B-29: Annual average profit maximizing capacity price bids
for different fluctuating RES generators with different
levels of reliability for the product length of four hours
in the negative tertiary control reserve market LXXXI

XL | List of figures

Figure B-30: Annual average profit maximizing capacity price bids
for different fluctuating RES generators with different
levels of reliability for the product length of four hours
in the positive tertiary control reserve market LXXXII

Figure B-31: Annual average profit maximizing capacity price bids
for different fluctuating RES generators with different
levels of reliability for the product length of twelve
hours in the negative secondary control reserve
market .. LXXXIII

Figure B-32: Annual average profit maximizing capacity price bids
for different fluctuating RES generators with different
levels of reliability for the product length of twelve
hours in the positive secondary control reserve marketLXXXIV

Figure B-33: Annual average profit maximizing capacity price bids
for different fluctuating RES generators with different
levels of reliability for the product length of twelve
hours in the negative tertiary control reserve market ... LXXXV

Figure B-34: Annual average profit maximizing capacity price bids
for different fluctuating RES generators with different
levels of reliability for the product length of twelve
hours in the positive tertiary control reserve market ... LXXXVI

Figure C-35: Capacity, energy and total cost saving potentials of the
German 30 GW wind onshore pool in the negative and
positive secondary and tertiary control reserve
markets for the opportunity cost based approach with
the available active power (top) and balance control
mechanism applied (middle) as well as the profit
maximizing based approach (bottom) for a level of
reliability of 99.994 %, the years 2010 to 2014, and a
product length of four hours .. LXXXVII

Figure C-36: Capacity, energy and total cost saving potentials of the
German 30 GW wind onshore pool in the negative and
positive secondary and tertiary control reserve
markets for the opportunity cost based approach with
the available active power (top) and balance control
mechanism applied (middle) as well as the profit
maximizing based approach (bottom) for a level of
reliability of 99.994 %, the years 2010 to 2014, and a
product length of twelve hours LXXXVIII

List of figures | XLI

Figure C-37: Capacity, energy and total cost saving potentials of the
German 30 GW pool of PV systems in the negative and
positive secondary and tertiary control reserve
markets for the opportunity cost based approach with
the available active power (top) and balance control
mechanism applied (middle) as well as the profit
maximizing based approach (bottom) for a level of
reliability of 99.994 %, the years 2010 to 2014, and a
product length of four hours ... LXXXIX

Figure C-38: Capacity, energy and total cost saving potentials of the
1 GW wind farm pool in the negative and positive
secondary and tertiary control reserve markets for the
opportunity cost based approach with the available
active power (top) and balance control mechanism
applied (middle) as well as the profit maximizing based
approach (bottom) for a level of reliability of 99.994 %,
the years 2010 to 2014, and a product length of one
hour ... XC

Figure C-39: Capacity, energy and total cost saving potentials of the
German 1 GW offshore wind farm pool in the negative
and positive secondary and tertiary control reserve
markets for the opportunity cost based approach with
the available active power (top) and balance control
mechanism applied (middle) as well as the profit
maximizing based approach (bottom) for a level of
reliability of 99.994 %, the years 2010 to 2014, and a
product length of one hour ... XCI

Figure C-40: Capacity, energy and total cost saving potentials of the
1 GW pool PV systems in the negative and positive
secondary and tertiary control reserve markets for the
opportunity cost based approach with the available
active power (top) and balance control mechanism
applied (middle) as well as the profit maximizing based
approach (bottom) for a level of reliability of 99.994 %,
the years 2010 to 2014, and a product length of one
hour ... XCII

Figure D-41: Total welfare gain induced by the German 30 GW pool
of wind farms and the 30 GW pool PV systems for a
product length of four hours, a level of reliability of
99.994 % and the available active power proof method
applied in the negative and positive secondary and
tertiary control reserve market based on the total cost
saving potentials .. XCIII

XLII | List of figures

Figure D-42: Total welfare gain induced by the German 30 GW pool
of wind farms and the 30 GW pool PV systems for a
product length of twelve hours, a level of reliability of
99.994 % and the available active power proof method
applied in the negative and positive secondary and
tertiary control reserve market based on the total cost
saving potentials ... XCIV

Figure D-43: Total welfare gain induced by the German 30 GW pool
of wind farms and the 30 GW pool PV systems for a
product length of one hour, a level of reliability of 95 %
and the available active power proof method applied
in the negative and positive secondary and tertiary
control reserve market based on the total cost saving
potentials ... XCV

Figure D-44: Total welfare gain induced by the German 30 GW pool
of wind farms and the 30 GW pool PV systems for a
product length of twelve hours, a level of reliability of
95 % and the available active power proof method
applied in the negative and positive secondary and
tertiary control reserve market based on the total cost
saving potentials ... XCVI

Figure D-45: Ratio between the capacity component welfare gain
and the capacity cost market value based on capacity
cost reductions only induced by the German 30 GW
pool of wind farms and the 30 GW pool PV systems for
a product length of four hours, a level of reliability of
99.994 % and the available active power proof method
applied in the negative and positive secondary and
tertiary control reserve market XCVII

Figure D-46: Ratio between the capacity component welfare gain
and the capacity cost market value based on capacity
cost reductions only induced by the German 30 GW
pool of wind farms and the 30 GW pool PV systems for
a product length of twelve hours, a level of reliability
of 99.994 % and the available active power proof
method applied in the negative and positive secondary
and tertiary control reserve market XCVIII

Figure D-47: Ratio between the capacity component welfare gain
and the capacity cost market value based on capacity
cost reductions only induced by the German 30 GW
pool of wind farms and the 30 GW pool PV systems for
a product length of one hour, a level of reliability of 95
% and the available active power proof method
applied in the negative and positive secondary and
tertiary control reserve market ... XCIX

List of figures | XLIII

Figure D-48: Ratio between the capacity component welfare gain
and the capacity cost market value based on capacity
cost reductions only induced by the German 30 GW
pool of wind farms and the 30 GW pool PV systems for
a product length of four hours, a level of reliability of
95 % and the available active power proof method
applied in the negative and positive secondary and
tertiary control reserve market .. C

Figure D-49: Ratio between the capacity component welfare gain
and the capacity cost market value based on capacity
cost reductions only induced by the German 30 GW
pool of wind farms and the 30 GW pool PV systems for
a product length of twelve hours, a level of reliability
of 95 % and the available active power proof method
applied in the negative and positive secondary and
tertiary control reserve market ... CI

Figure D-50: Forecast of welfare gain by the fluctuating RES
generators in the control reserve market for the years
2020 and 2030 at a level of reliability of 95 % CII

XLIV | List of tables

List of tables

Table 3-1: EPEX SPOT day-ahead auction contracts specifications 25

Table 3-2: EPEX SPOT intraday trading contracts specifications 29

Table 3-3: Control reserve specifications .. 39

Table 3-4: Control reserve product specifications and tender
conditions ... 46

Table 3-5: Classification of the different approaches by their
addressed topics ... 63

Table 3-6: Main results of projects related to the doctoral thesis 78

Table 3-7: Suitability of different modelling approaches to the
requirements laid out in chapter 3.4.2 94

Table 4-1: Specific cost of electricity generation for the years
2010 and 2013 .. 142

Table 5-1: Possible additional income in EUR/MWinst/a for all
market segments and years with a reliability of
99.994 % and a product length of four hours with
minimum and maximum values in brackets 200

List of acronyms and abbreviations | XLV

List of acronyms and abbreviations

AAP Available active power

AB Agent-based, describes an out-of-equilibrium modelling
approach which uses behavioural patterns of agents

ACE Area Control Error

ACER European Agency for the Corporation of Energy
Regulators

ACT Actual feed-in

AS Ancillary Services

Balancing Energy Energy that is exchanged by the BRP with the TSO due to
deviations between the schedule and actual
production/consumption

Balancing Group A balancing group consists of several grid connection
points within one control area and pools their feed-in
respectively withdrawal. A balancing group is managed
by its BRP.

Base All day, sum of Peak and Off-Peak

BMWi Federal ministry of economics and energy

BNetzA Bundesnetzagentur (English: Federal network agency)

BRP The Balance Responsible Party is responsible for
forecasting and balancing the generation and
consumption of one or more balancing group as well as
the exchange of energy with other balancing groups

CDF Cumulative distribution function

CHP Combined Heat and Power; Cogeneration of heat and
power

Control Area Part of the transmission system that is operated by a
single TSO

Control Block Several control areas

CR Control reserve

DAFC Day-ahead forecast

XLVI | List of acronyms and abbreviations

Dispatch Activation of units for the delivery of energy

EEX European Energy Exchange. Facilitates the trading of
futures and options for the German/Austrian market area

ENTSO-E European Network of Transmission System Operators

EPEX SPOT Market operator for the German/Austrian market area for
day-ahead and intraday markets

Exchange Electricity trading place for the exchange members

FIT Feed-in Tariff

Fluctuating RES RES which fluctuate feed-in according to environmental
variables. Usually covers onshore wind, offshore wind,
and photovoltaic systems. May also cover run-off hydro or
tidal technologies.

GCC Grid control cooperation

GW Giga watts

ICT Information and communications technology

IDFC Intraday forecast (shortest-term forecast with one hour
lead time)

IGCC International grid control cooperation

KDE Kernel density estimator

LOWESS Locally weighted scatterplot smoothing

LOESS Locally weighted regression

MaBiS Market rules for balancing group billing in the area of
electricity (Marktregeln für die Durchführung der
Bilanzkreisabrechnung Strom)

Market Coupling Connection of two or more market areas for joint
operation

MO Merit-order

MOL Merit-order list

MOLS MOL-Server

MW Megawatt

MWh Megawatt hour

List of acronyms and abbreviations | XLVII

n-1 Compensation for the outage of the largest unit in the
system

n-2 see n-1

Off-peak Hours between 20:00 and 08:00 from Monday to
Saturday and for the entire day on Sundays and public
holidays

OTC Over-the-counter, opposite to exchange trade products

Peak Hours between 08:00 and 20:00, excluding Sundays and
public holidays

PCR Primary control reserve

PDF Probability density function

PHELIX Physical electricity index, also the name for futures and
options traded on EEX

Pool Various numbers of units connected through ICT which
are marketed together

p.u. Per unit

reBAP unique and common balancing energy price for the four
German control areas (regelzonenübergreifender
einheitlicher Bilanzausgleichsenergiepreis)

REMIT Regulation on Wholesale Energy Market Integrity and
Transparency

RES Renewable Energy Sources

Residual Load Remaining load after the inclusion of fluctuating RES
(Residual Load = Load – feed-in fluctuating RES)

SCR Secondary control reserve

SLP Standard Load Profile; analytic load curve for
non-measured load

TCR Tertiary control reserve

Trading Day Day on which energy is traded on the exchange. Differs
between different exchanges

TSO Transmission System Operator - Company that is
responsible for operating the transmission system for a
control area

XLVIII | List of acronyms and abbreviations

UC Unit commitment, describes an optimization technique to
obtain equilibrium based results for the power system
modelling

UCTE Union for the Co-ordination of Transmission of Electricity
– predecessor of the ENTSO-E regional group of
Continental Europe

VoLL Value of lost load

VPP Virtual Power Plant; Software solution for the aggregation
of different decentralized units

Week-daily Days from Monday to Friday

Previous publications by the author | XLIX

Previous publications by the author

The topic was conceived and first results presented in previous publications.

For the publications known algorithms were used to calculate probabilistic

forecasts which were provided by the co-authors and were derived from the

literature review. The implementation of the algorithms into the bid creation

for the control reserve markets was performed by the main author. The bid

creation and economic impact assessment has not been carried out before for

wind turbines and PV systems. The ability to assess the economic impact

from the suppliers’ point of view and the system’s point of view is a novelty.

The new method to prove the delivery of control reserve was not developed

by the author. However it was used by the author to create bids for the

control reserve market.

The first publication on the methodology was presented at the EWEA Annual

Event 2012 in Copenhagen (Jansen, Speckmann, & Baier, 2012). The

conference paper includes the presentation of different proof methods

previously presented by Speckmann and Baier (Speckmann & Baier, 2011),

and demonstrates the basic bidding principles on the German control reserve

market that a wind farm has to face. The creation of bids for the control

reserve markets using a kernel density estimator are shown for the first time

in a scientific environment. The data used was for the entire German wind

portfolio. The installed capacity was set to be 30 GW. This value is kept in

later papers in order to ensure comparability between them. This paper

shows how the individual bids are placed in a market environment and how

the economic benefits are calculated. The results of this methodology are

presented for data from July 2010 to December 2010. The results show a

significant cost reduction potential of more than 20 % of the control reserve

costs in the secondary or tertiary control reserve market with a reliability of

99.99 %. The results also show the economic advantages of the new proof

method for the delivery of control reserve, presented in (Speckmann & Baier,

2011). In this publication the author presents a methodology which is

implemented as a Matlab model, later to be named as the REBal (Renewable

L | Previous publications by the author

Energy Balancing) model. The publication was designed and written by the

author in dialogue with the co-authors, the calculation was carried out by the

main author alone.

At the Wind Integration Workshop 2012 in Lisbon (Jansen, Speckmann, &

Schwinn, 2012) the author first presented an improved version of the Matlab

model. The model has been expanded to assess the economic impact for the

balance responsible parties more precisely by calculating the anticipated

changes in the balancing settlement price, which is induced by the

participation of wind farms in the control reserve markets. For a reliability of

99.99 % the balancing settlement prices could decrease on average by as

much as 12.23 EUR/MWh on average. In addition to the previous paper this

publication expands the level of security to 99.999 % and assesses the

economic effects of a wind farm pool with an installed capacity of 1 GW. The

results at this stage have also been published in the Deliverable 16.4 of the

EU Framework 7 project TWENTIES (Jansen, Hochloff et al., 2013).

At the EWEA Annual Event 2013 in Vienna (Jansen et al., 2014) the paper

presented the concept of the calculation of the available active power which

is used in the new proof method (Speckmann & Baier, 2011). The calculation

of the available active power is based on data with a 10 minute time

resolution and produces about the same error as the production error of a

conventional power plant. The time period of ten minutes would not be short

enough for the delivery of control reserve. Detailed results of the calculation

can be seen in (Schneider, Tietz et al., 2013). In this publication a more

precise calculation of the probabilistic forecasts is introduced into the model,

allowing the inclusion of pre-errors into the probabilistic intraday-forecast.

This paper states that the level of reliability of the offer should be at least

99.994 % to ensure that the reliability is not declining as a result of the

inclusion of wind farms in the control reserve market.

The paper on the 22nd International Conference on Electricity

Distribution (Jansen & Speckmann, 2013a) showed how PV systems could

deliver control reserve, using the knowledge gained from wind farms (Jansen

et al., 2014). The methodology is transferred to apply to PV systems. The

Previous publications by the author | LI

potentials are calculated for the entire German portfolio of PV systems using

the kernel density estimator. The installed capacity is set to be 30 GW to

ensure comparability. This paper includes the calculation of the available

active power signal for a real PV system, using real data with a time

resolution of one second. It was proven that the available active power can be

calculated with high precision. The macro- and micro economic potential is

much smaller compared to the wind farms, due to fewer full load hours and

feed-in tariffs.

The paper presented at the Solar Integration Workshop 2013 in London

(Jansen, Speckmann, Harpe et al., 2013) presents the potentials of a real

portfolio of PV systems for the time between the 1st of November 2012 and

the 31st of May 2013. The data were derived from a growing portfolio of PV

systems. The portfolio has 39 PV systems, representing 400 MW of installed

capacity. The data was merged and normalized to make it comparable over

the assessment period. It is in this paper that the model is first named as the

REBal (Renewable Energy Balancing) model.

At the Wind Integration Workshop 2013 in London (Jansen, Speckmann,

Schneider et al., 2013) a paper was presented that examines the economic

differences between the current implementation of the proof mechanism to

the delivery of control reserve and the newly proposed proof mechanism

presented in (Speckmann & Baier, 2011). The paper presents a comparison

between three different criteria. A first criterion is the assessment of the

impact on the procurement costs. According to the analysis in the paper the

procurement costs of control reserve will decrease with the participation of

wind energy. The proof method using the available active power signal will

reduce procurement costs much more than they would be reduced with the

conventional method applied. Control reserve can be offered at lower

opportunity costs by the market participants, assuming the available active

power proof method is applied. This leads to lower costs for the procurement

of control reserve by the TSO. The main reason why control reserve can be

provided more economically with the available active power proof method

applied is the fact that the wind turbines do not need to be curtailed under

this scheme. The second criterion is the amount of volatility introduced into

LII | Previous publications by the author

the system. The available active power proof method induces more volatility

in the system than the conventional proof method. Wind farms are not forced

to be curtailed to their schedule and therefore fluctuate more. This leads to

more volatility in the power system. With the conventional proof method

applied these fluctuations are much smaller. In order to evaluate this effect,

an assessment is undertaken into how much more control reserve is needed

in a system with these fluctuations. With the conventional proof method

applied the energy production is less volatile and therefore needs less control

reserve to balance these fluctuations. Less control reserve leads to smaller

procurement costs for the Transmission System Operators (TSOs). The

dimensioning developed for the project “Dynamische Bestimmung des

Regelleistungsbedarfs im Stromnetz” was used by Dominik Jost to assess the

reduction in the demand for control reserve. In order to assess the economic

effects it was assumed that the decreased demand leads to shortened control

reserve merit-order lists. The now redundant bids from the original merit-

order lists can be seen in the decrease in procurement costs. The reduction of

volatility only happens with the conventional proof method applied. For the

available active power proof method no changes in the system’s volatility is

assumed, since wind farms do not change their production pattern compared

to the current situation. The last criterion is the reduction of wind energy

available in the market when the conventional proof method is applied. This

is for the reason that a part of the wind energy production is curtailed. This

curtailed energy has to be replaced by other sources. To evaluate these

replacement costs two approaches have been used. One takes into account

average fuel costs, the other one the prices that would have to be paid on the

EPEX Spot market. Both show that the curtailed energy is of significant

economic value. The overall results using the three criteria are that the usage

of the new proof method with the available active power will decrease

system costs greatly whilst ensuring economic benefits for the market

participants.

The results for wind energy from the previously presented paper are also

published in the project report for “Regelenergie durch Windkraftanla-

gen”. These results, amongst other results from the project, have been

Previous publications by the author | LIII

disseminated at the Symposium Energieinnovationen 2014 in Graz

(Jansen et al., 2014).

The methodology presented has been adapted to assess the economic

potentials provided in different scenarios with offshore wind energy in the

study „Energiewirtschaftliche Bedeutung der Offshore-Windenergie“

(English: energy-economic relevance of offshore wind energy) for the

German Offshore Wind Foundation (Rohrig et al., 2013). It was possible to

show that offshore wind farms are capable of providing control reserve with

high reliability at many more full load hours than onshore wind, not taking

into account the constraints given by the lack of n-1 grid security.

Results from the papers above were merged into the study “Optimierung der

Marktbedingungen für die Regelleistungserbringung durch Erneuerbare

Energien” (English: Optimisation of market conditions for the provision of

control reserve by renewable energies) conducted for the German

Renewable Energy Federation BEE (Bundesverband Erneuerbare Energie

e.V.) and the Hannover Messe in April 2014 (Jansen, 2014). The novelty in

this study is that real market conditions have been applied to theoretical

potentials of wind farms and PV systems that have been presented in the

papers mentioned above. The study concludes with specific suggestions for

policy makers.

An as-yet non-published working paper for the German Federal Ministry of

the Environment used the methodology to assess the macro-economic

impact of biogas power plants. The module for the offering was replaced by

an alternative module to account for the bidding strategy of controllable

generation.

In the paper by Hennig (Hennig et al., 2014) the delivery of control reserve

by offshore wind farms was discussed. Besides many technical aspects of this

paper the offering of control reserve followed the approach presented

previously.

A conference paper by Jansen (forthcoming 2016) presents the results from

this doctoral thesis with the same parametrization and version of REBal. It

LIV | Previous publications by the author

focusses on the possible additional income for wind farms and PV systems.

The paper is accepted for publishing.

Distribution estimation functions | LV

Appendix A Distribution estimation functions

 Source: Own analysis

Figure A-1: Illustration of the two-dimensional KDE based on the day-ahead
probabilistic forecasting of the German 1 GW onshore wind farm pool

 Source: Own analysis

Figure A-2: Illustration of the two-dimensional KDE based on the day-ahead
probabilistic forecasting of the German 1 GW offshore wind farm pool

LVI | Distribution estimation functions

 Source: Own analysis

Figure A-3: Illustration of the two-dimensional KDE based on the day-ahead
probabilistic forecasting of the German 30 GW pool of PV systems

 Source: Own analysis

Figure A-4: Illustration of the two-dimensional KDE based on the day-ahead
probabilistic forecasting of the 1 GW pool of PV systems

Plots on economics of fluctuating RES generators | LVII

Appendix B Plots on economics of fluctuating RES
generators

Appendix B-A Probabilistic intraday forecasts for time of the 14th of
August 2014 to the 20th of August 2014

 Source: Own analysis

Figure B-5: Probabilistic one-hour ahead intraday forecast of the German 30 GW wind
farm pool

Feed-In

95%

99%

99.5%

99.9%

99.99%

99.994%

99.999%

Onshore Wind 30 GW Germany

14/08/2014 15/08/2014 16/08/2014 17/08/2014 18/08/2014 19/08/2014 20/08/2014
0

0.2

0.4

0.6

0.8

1

Time

N
or

m
al

iz
ed

 P
ow

er

LVIII | Plots on economics of fluctuating RES generators

 Source: Own analysis

Figure B-6: Probabilistic one-hour ahead intraday forecast of the 1 GW wind farm pool

Feed-In

95%

99%

99.5%

99.9%

99.99%

99.994%

99.999%

Onshore Wind 1 GW Pool

14/08/2014 15/08/2014 16/08/2014 17/08/2014 18/08/2014 19/08/2014 20/08/2014
0

0.2

0.4

0.6

0.8

1

Time

N
or

m
al

iz
ed

 P
ow

er

Plots on economics of fluctuating RES generators | LIX

 Source: Own analysis

Figure B-7: Probabilistic one-hour ahead intraday forecast of the German 1 GW offshore
wind farm pool

Feed-In

95%

99%

99.5%

99.9%

99.99%

99.994%

99.999%

Offshore Wind 1 GW Germany

14/08/2014 15/08/2014 16/08/2014 17/08/2014 18/08/2014 19/08/2014 20/08/2014
0

0.2

0.4

0.6

0.8

1

Time

N
or

m
al

iz
ed

 P
ow

er

LX | Plots on economics of fluctuating RES generators

 Source: Own analysis

Figure B-8: Probabilistic one-hour ahead intraday forecast of the German 30 GW pool of
PV systems

Feed-In

95%

99%

99.5%

99.9%

99.99%

99.994%

99.999%

Photovoltaic Systems 30 GW Germany

14/08/2014 15/08/2014 16/08/2014 17/08/2014 18/08/2014 19/08/2014 20/08/2014
0

0.2

0.4

0.6

0.8

1

Time

N
or

m
al

iz
ed

 P
ow

er

Plots on economics of fluctuating RES generators | LXI

 Source: Own analysis

Figure B-9: Probabilistic one-hour ahead intraday forecast of the 1 GW pool of
PV systems

Feed-In

95%

99%

99.5%

99.9%

99.99%

99.994%

99.999%

Photovoltaic Systems 1 GW Pool

14/08/2014 15/08/2014 16/08/2014 17/08/2014 18/08/2014 19/08/2014 20/08/2014
0

0.2

0.4

0.6

0.8

1

Time

N
or

m
al

iz
ed

 P
ow

er

LXII | Plots on economics of fluctuating RES generators

Appendix B-B Probabilistic day-ahead and one-hour ahead intraday
forecasts, feed-in and offerable amounts of control reserve

 Source: Own analysis

Figure B-10: Probabilistic day-ahead and one-hour ahead intraday forecasts, feed-in and
offerable amounts of control reserve based on the day-ahead and intraday
probabilistic forecasts for the German 30 GW pool of wind farms for the
reliability of 95 % and a product length of one hour

Feed-In

Probabilistic day-ahead forecast with 95% reliability

Probabilistic one-hour ahead intraday forecast with 95% reliability

Offerable control reserve based on day-ahead forecast

Offerable control reserve based on intraday forecast

Product length: 1 hour

14/08/2014 15/08/2014 16/08/2014 17/08/2014 18/08/2014 19/08/2014 20/08/2014
0

0.1

0.2

0.3

0.4

0.5

0.6

Time

N
or

m
al

iz
ed

 P
ow

er

Plots on economics of fluctuating RES generators | LXIII

 Source: Own analysis

Figure B-11: Probabilistic day-ahead and one-hour ahead intraday forecasts, feed-in and
offerable amounts of control reserve based on the day-ahead and intraday
probabilistic forecasts for the German 30 GW pool of wind farms for the
reliability of 95 % (top) and 99.994 % (bottom) and a product length of two
hours

14/08/2014 15/08/2014 16/08/2014 17/08/2014 18/08/2014 19/08/2014 20/08/2014
0

0.1

0.2

0.3

0.4

0.5

0.6

Time

N
or

m
al

iz
ed

 P
ow

er

Feed-In

Probabilistic day-ahead forecast with 99.994% reliability

Probabilistic one-hour ahead intraday forecast with 99.994% reliability

Offerable control reserve based on day-ahead forecast

Offerable control reserve based on intraday forecast

14/08/2014 15/08/2014 16/08/2014 17/08/2014 18/08/2014 19/08/2014 20/08/2014
0

0.1

0.2

0.3

0.4

0.5

0.6

Time

N
or

m
al

iz
ed

 P
ow

er

LXIV | Plots on economics of fluctuating RES generators

 Source: Own analysis

Figure B-12: Probabilistic day-ahead and one-hour ahead intraday forecasts, feed-in and
offerable amounts of control reserve based on the day-ahead and intraday
probabilistic forecasts for the German 30 GW pool of wind farms for the
reliability of 95 % and a product length of four hours

Feed-In

Probabilistic day-ahead forecast with 95% reliability

Probabilistic one-hour ahead intraday forecast with 95% reliability

Offerable control reserve based on day-ahead forecast

Offerable control reserve based on intraday forecast

14/08/2014 15/08/2014 16/08/2014 17/08/2014 18/08/2014 19/08/2014 20/08/2014
0

0.1

0.2

0.3

0.4

0.5

0.6

Time

N
or

m
al

iz
ed

 P
ow

er

Plots on economics of fluctuating RES generators | LXV

 Source: Own analysis

Figure B-13: Probabilistic day-ahead and one-hour ahead intraday forecasts, feed-in and
offerable amounts of control reserve based on the day-ahead and intraday
probabilistic forecasts for the German 30 GW pool of wind farms for the
reliability of 95 % (top) and 99.994 % (bottom) and a product length of eight
hours

14/08/2014 15/08/2014 16/08/2014 17/08/2014 18/08/2014 19/08/2014 20/08/2014
0

0.1

0.2

0.3

0.4

0.5

0.6

Time

N
or

m
al

iz
ed

 P
ow

er

Feed-In

Probabilistic day-ahead forecast with 99.994% reliability

Probabilistic one-hour ahead intraday forecast with 99.994% reliability

Offerable control reserve based on day-ahead forecast

Offerable control reserve based on intraday forecast

14/08/2014 15/08/2014 16/08/2014 17/08/2014 18/08/2014 19/08/2014 20/08/2014
0

0.1

0.2

0.3

0.4

0.5

0.6

Time

N
or

m
al

iz
ed

 P
ow

er

LXVI | Plots on economics of fluctuating RES generators

 Source: Own analysis

Figure B-14: Probabilistic day-ahead and one-hour ahead intraday forecasts, feed-in and
offerable amounts of control reserve based on the day-ahead and intraday
probabilistic forecasts for the German 30 GW pool of wind farms for the
reliability of 95 % and a product length of twelve hours

Feed-In

Probabilistic day-ahead forecast with 95% reliability

Probabilistic one-hour ahead intraday forecast with 95% reliability

Offerable control reserve based on day-ahead forecast

Offerable control reserve based on intraday forecast

Product length: 12 hours

14/08/2014 15/08/2014 16/08/2014 17/08/2014 18/08/2014 19/08/2014 20/08/2014
0

0.1

0.2

0.3

0.4

0.5

0.6

Time

N
or

m
al

iz
ed

 P
ow

er

Plots on economics of fluctuating RES generators | LXVII

 Source: Own analysis

Figure B-15: Probabilistic day-ahead and one-hour ahead intraday forecasts, feed-in and
offerable amounts of control reserve based on the day-ahead and intraday
probabilistic forecasts for the German 30 GW pool of wind farms for the
reliability of 95 % (top) and 99.994 % (bottom) and a product length of 24
hours

14/08/2014 15/08/2014 16/08/2014 17/08/2014 18/08/2014 19/08/2014 20/08/2014
0

0.1

0.2

0.3

0.4

0.5

0.6

Time

N
or

m
al

iz
ed

 P
ow

er

Feed-In

Probabilistic day-ahead forecast with 99.994% reliability

Probabilistic one-hour ahead intraday forecast with 99.994% reliability

Offerable control reserve based on day-ahead forecast

Offerable control reserve based on intraday forecast

14/08/2014 15/08/2014 16/08/2014 17/08/2014 18/08/2014 19/08/2014 20/08/2014
0

0.1

0.2

0.3

0.4

0.5

0.6

Time

N
or

m
al

iz
ed

 P
ow

er

LXVIII | Plots on economics of fluctuating RES generators

 Source: Own analysis

Figure B-16: Probabilistic day-ahead and one-hour ahead intraday forecasts, feed-in and
offerable amounts of control reserve based on the day-ahead and intraday
probabilistic forecasts for the 1 GW onshore wind farm pool for the
reliability of 99.994 % and a product length of one, four and twelve hours

Product length: 1 hour

14/08/2014 15/08/2014 16/08/2014 17/08/2014 18/08/2014 19/08/2014 20/08/2014
0

0.1

0.2

0.3

0.4

0.5

0.6

Time

N
or

m
al

iz
ed

 P
ow

er

Product length: 4 hours

14/08/2014 15/08/2014 16/08/2014 17/08/2014 18/08/2014 19/08/2014 20/08/2014
0

0.1

0.2

0.3

0.4

0.5

0.6

Time

N
or

m
al

iz
ed

 P
ow

er

Feed-In

Probabilistic day-ahead forecast with 99.994% reliability

Probabilistic one-hour ahead intraday forecast with 99.994% reliability

Offerable control reserve based on day-ahead forecast

Offerable control reserve based on intraday forecast

Product length: 12 hours

14/08/2014 15/08/2014 16/08/2014 17/08/2014 18/08/2014 19/08/2014 20/08/2014
0

0.1

0.2

0.3

0.4

0.5

0.6

Time

N
or

m
al

iz
ed

 P
ow

er

Plots on economics of fluctuating RES generators | LXIX

 Source: Own analysis

Figure B-17: Probabilistic day-ahead and one-hour ahead intraday forecasts, feed-in and
offerable amounts of control reserve based on the day-ahead and intraday
probabilistic forecasts for the German 1 GW offshore wind farm pool for the
reliability of 99.994 % and a product length of one, four and twelve hours

Product length: 1 hour

14/08/2014 15/08/2014 16/08/2014 17/08/2014 18/08/2014 19/08/2014 20/08/2014
0

0.2

0.4

0.6

0.8

1

Time

N
or

m
al

iz
ed

 P
ow

er

Product length: 4 hours

14/08/2014 15/08/2014 16/08/2014 17/08/2014 18/08/2014 19/08/2014 20/08/2014
0

0.2

0.4

0.6

0.8

1

Time

N
or

m
al

iz
ed

 P
ow

er

Feed-In

Probabilistic day-ahead forecast with 99.994% reliability

Probabilistic one-hour ahead intraday forecast with 99.994% reliability

Offerable control reserve based on day-ahead forecast

Offerable control reserve based on intraday forecast

Product length: 12 hours

14/08/2014 15/08/2014 16/08/2014 17/08/2014 18/08/2014 19/08/2014 20/08/2014
0

0.2

0.4

0.6

0.8

1

Time

N
or

m
al

iz
ed

 P
ow

er

LXX | Plots on economics of fluctuating RES generators

 Source: Own analysis

Figure B-18: Probabilistic day-ahead and one-hour ahead intraday forecasts, feed-in and
offerable amounts of control reserve based on the day-ahead and intraday
probabilistic forecasts for the 1 GW pool of PV systems for the reliability of
99.994 % and a product length of one, four and twelve hours

Product length: 1 hour

14/08/2014 15/08/2014 16/08/2014 17/08/2014 18/08/2014 19/08/2014 20/08/2014
0

0.2

0.4

0.6

0.8

1

Time

N
or

m
al

iz
ed

 P
ow

er

Product length: 4 hours

14/08/2014 15/08/2014 16/08/2014 17/08/2014 18/08/2014 19/08/2014 20/08/2014
0

0.2

0.4

0.6

0.8

1

Time

N
or

m
al

iz
ed

 P
ow

er

Feed-In

Probabilistic day-ahead forecast with 99.994% reliability

Probabilistic one-hour ahead intraday forecast with 99.994% reliability

Offerable control reserve based on day-ahead forecast

Offerable control reserve based on intraday forecast

Product length: 12 hours

14/08/2014 15/08/2014 16/08/2014 17/08/2014 18/08/2014 19/08/2014 20/08/2014
0

0.2

0.4

0.6

0.8

1

Time

N
or

m
al

iz
ed

 P
ow

er

Plots on economics of fluctuating RES generators | LXXI

Appendix B-C Potentials for offering control reserve based on the day-
ahead forecast

 Source: Own analysis

Figure B-19: Potentials for offering control reserve based on the day-ahead forecast for different fluctuating
RES generators with varying levels of reliability and product lengths of two, eight and 24 hours

Product length: 2 hours

95% 99% 99.5% 99.9% 99.99% 99.994% 99.999%
0

10

20

30

40

14
.4

11
.0

9.
8

7.
3

5.
8

5.
6

5.
3

0.
4

0.
2

0.
2

0.
1

0.
1

0.
1

0.
1

1.
5

1.
3

1.
3

1.
2

1.
1

1.
1

1.
07.

1

5.
1

4.
2

3.
0

2.
4

2.
3

2.
2

0.
3

0.
2

0.
2

0.
1

0.
1

0.
1

0.
1

Level of reliability

%
 o

f a
ct

ua
l f

ee
d-

in

Product length: 8 hours

95% 99% 99.5% 99.9% 99.99% 99.994% 99.999%
0

2

4

6

8

3.
0

2.
3

2.
0

1.
4

1.
1

1.
1

1.
0

0.
1

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
3

0.
3

0.
3

0.
2

0.
2

0.
2

0.
2

0.
9

0.
6

0.
4

0.
3

0.
2

0.
1

0.
1

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

Level of reliability

%
 o

f a
ct

ua
l f

ee
d-

in

Onshore Wind 30 GW Germany

Onshore Wind 1 GW Pool

Offshore Wind 1 GW Germany

Photovoltaic Systems 30 GW Germany

Photovoltaic Systems 1 GW Pool

Product length: 24 hours

95% 99% 99.5% 99.9% 99.99% 99.994% 99.999%
0

0.5

1

1.5

2

0.
7

0.
5

0.
4

0.
3

0.
2

0.
2

0.
2

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
1

0.
1

0.
1

0.
0

0.
0

0.
0

0.
0

Level of reliability

%
 o

f a
ct

ua
l f

ee
d-

in

LXXII | Plots on economics of fluctuating RES generators

 Source: Own analysis

Figure B-20: Duration curve for the offerable control reserve based on the day-ahead forecast for different
fluctuating RES generators for the levels of reliability of 95 % (dashed line) and 99.994 % for the
year 2014 and a product length of two (top) and four hours (bottom)

1000 2000 3000 4000 5000 6000 7000 8000
0

20

40

60

80

100

Hours of the year

%
 o

f i
ns

ta
lle

d
ca

pa
ci

ty

Onshore Wind 30 GW Germany @95%

Onshore Wind 30 GW Germany @99.994%

Onshore Wind 1 GW Pool @95%

Onshore Wind 1 GW Pool @99.994%

Offshore Wind 1 GW Germany @95%

Offshore Wind 1 GW Germany @99.994%

Photovoltaic Systems 30 GW Pool @95%

Photovoltaic Systems 30 GW Pool @99.994%

Photovoltaic Systems 1 GW Germany @95%

Photovoltaic Systems 1 GW Germany @99.994%

1000 2000 3000 4000 5000 6000 7000 8000
0

20

40

60

80

100

Hours of the year

%
 o

f i
ns

ta
lle

d
ca

pa
ci

ty

Plots on economics of fluctuating RES generators | LXXIII

 Source: Own analysis

Figure B-21: Duration curve for the offerable control reserve based on the day-ahead forecast for different
fluctuating RES generators for the levels of reliability of 95 % (dashed line) and 99.994 % for the
year 2014 and a product length of eight and twelve hours

1000 2000 3000 4000 5000 6000 7000 8000
0

20

40

60

80

100

Hours of the year

%
 o

f i
ns

ta
lle

d
ca

pa
ci

ty

Onshore Wind 30 GW Germany @95%

Onshore Wind 30 GW Germany @99.994%

Onshore Wind 1 GW Pool @95%

Onshore Wind 1 GW Pool @99.994%

Offshore Wind 1 GW Germany @95%

Offshore Wind 1 GW Germany @99.994%

Photovoltaic Systems 30 GW Pool @95%

Photovoltaic Systems 30 GW Pool @99.994%

Photovoltaic Systems 1 GW Germany @95%

Photovoltaic Systems 1 GW Germany @99.994%

1000 2000 3000 4000 5000 6000 7000 8000
0

20

40

60

80

100

Hours of the year

%
 o

f i
ns

ta
lle

d
ca

pa
ci

ty

LXXIV | Plots on economics of fluctuating RES generators

 Source: Own analysis

Figure B-22: Duration curve for the offerable control reserve based on the day-ahead forecast for different
fluctuating RES generators for the levels of reliability of 95 % (dashed line) and 99.994 % for the
year 2014 and a product length of 24 hours

Onshore Wind 30 GW Germany @95%

Onshore Wind 30 GW Germany @99.994%

Onshore Wind 1 GW Pool @95%

Onshore Wind 1 GW Pool @99.994%

Offshore Wind 1 GW Germany @95%

Offshore Wind 1 GW Germany @99.994%

Photovoltaic Systems 30 GW Pool @95%

Photovoltaic Systems 30 GW Pool @99.994%

Photovoltaic Systems 1 GW Germany @95%

Photovoltaic Systems 1 GW Germany @99.994%

1000 2000 3000 4000 5000 6000 7000 8000
0

20

40

60

80

100

Hours of the year

%
 o

f i
ns

ta
lle

d
ca

pa
ci

ty

Plots on economics of fluctuating RES generators | LXXV

 Source: Own analysis

Figure B-23: Average annual specific energy losses with control reserve being offered
day-ahead under the balance control proof mechanism (bars) for different
types of fluctuating RES generators for the product length of four hours and
different levels of reliability and the average annual total losses as numbers
on the bars in gigawatt hours

Onshore Wind 30 GW Germany

Onshore Wind 1 GW Pool

Offshore Wind 1 GW Germany

Photovoltaic Systems 30 GW Germany

Photovoltaic Systems 1 GW Pool

95% 99% 99.5% 99.9% 99.99% 99.994% 99.999%
0

0.05

0.1

0.15

0.2

0.25

0.3

25
86

.9

30
19

.2 30
42

.4

28
12

.4

23
47

.9

22
86

.4

22
49

.6

91
.0

96
.7

91
.1

68
.4

46
.9

38
.6

27
.9

89
.0 10

6.
4

11
1.

2

12
4.

9 15
4.

0

15
8.

9

17
3.

4

99
2.

2

14
57

.3

15
52

.2

13
45

.8

96
8.

4

95
2.

3

74
3.

6

38
.5

41
.7 40

.1

36
.4

36
.1 36

.3 33
.8

Level of reliability

Lo
st

 e
ne

rg
y

in
 M

W
h lo

st
/M

W
h of

fe
re

d

LXXVI | Plots on economics of fluctuating RES generators

 Source: Own analysis

Figure B-24: Average annual specific energy losses with control reserve being offered
day-ahead under the balance control proof mechanism (bars) for different
types of fluctuating RES generators for the product length of twelve hours
and different levels of reliability and the average annual total losses as
numbers on the bars in gigawatt hours

Onshore Wind 30 GW Germany

Onshore Wind 1 GW Pool

Offshore Wind 1 GW Germany

Photovoltaic Systems 30 GW Germany

Photovoltaic Systems 1 GW Pool

95% 99% 99.5% 99.9% 99.99% 99.994% 99.999%
0

0.05

0.1

0.15

0.2

0.25

0.3

25
63

.8

29
56

.4 29
51

.0

26
72

.0

19
52

.9

19
29

.0

19
21

.0

87
.6

91
.1

84
.6

60
.9 39

.2

29
.6

20
.3

81
.7 94

.2 97
.7 10

6.
2 12

9.
8

13
4.

1

14
7.

4

Level of reliability

Lo
st

 e
ne

rg
y

in
 M

W
h lo

st
/M

W
h of

fe
re

d

Plots on economics of fluctuating RES generators | LXXVII

Appendix B-D Offer calculation

 Source: Own analysis

Figure B-25: Opportunity cost based capacity price bids for different fluctuating RES generators with a level of
reliability of 95 % and 99.994 % under the available active power proof mechanism for the
product length of one hour for any positive control reserve market

Onshore Wind 30 GW Germany 95%

Onshore Wind 30 GW Germany 99.994%

Photovoltaic Systems 30 GW Germany 95%

Photovoltaic Systems 30 GW Germany 99.994%

LXXVIII | Plots on economics of fluctuating RES generators

 Source: Own analysis

Figure B-26: Profit maximizing capacity price bids for different fluctuating RES generators with a level of
reliability of 95 % and 99.994 % under the balance control proof mechanism for the product
length of one hour for four control reserve market segments

Onshore Wind 30 GW Germany 95%

Onshore Wind 30 GW Germany 99.994%

Photovoltaic Systems 30 GW Germany 95%

Photovoltaic Systems 30 GW Germany 99.994%

Plots on economics of fluctuating RES generators | LXXIX

 Source: Own analysis

Figure B-27: Annual average profit maximizing capacity price bids for different fluctuating
RES generators with different levels of reliability for the product length of
four hours in the negative secondary control reserve market

Onshore Wind 30 GW Germany negative capacity bids

Onshore Wind 1 GW Pool negative capacity bids

Offshore Wind 1 GW Germany negative capacity bids

Photovoltaic Systems 30 GW Germany negative capacity bids

Photovoltaic Systems 1 GW Pool negative capacity bids

95% 99% 99.5% 99.9% 99.99% 99.994% 99.999%
0

10

20

30

40

50

60

70

Level of reliability

Av
er

ag
e

ca
pa

ci
ty

 p
ri

ce
 E

U
R/

M
W

/h

LXXX | Plots on economics of fluctuating RES generators

 Source: Own analysis

Figure B-28: Annual average profit maximizing capacity price bids for different fluctuating
RES generators with different levels of reliability for the product length of
four hours in the positive secondary control reserve market

Onshore Wind 30 GW Germany positive capacity bids

Onshore Wind 1 GW Pool positive capacity bids

Offshore Wind 1 GW Germany positive capacity bids

Photovoltaic Systems 30 GW Germany positive capacity bids

Photovoltaic Systems 1 GW Pool positive capacity bids

95% 99% 99.5% 99.9% 99.99% 99.994% 99.999%
0

2

4

6

8

10

12

14

16

18

20

Level of reliability

Av
er

ag
e

ca
pa

ci
ty

 p
ri

ce
 E

U
R/

M
W

/h

Plots on economics of fluctuating RES generators | LXXXI

 Source: Own analysis

Figure B-29: Annual average profit maximizing capacity price bids for different fluctuating
RES generators with different levels of reliability for the product length of
four hours in the negative tertiary control reserve market

Onshore Wind 30 GW Germany negative capacity bids

Onshore Wind 1 GW Pool negative capacity bids

Offshore Wind 1 GW Germany negative capacity bids

Photovoltaic Systems 30 GW Germany negative capacity bids

Photovoltaic Systems 1 GW Pool negative capacity bids

95% 99% 99.5% 99.9% 99.99% 99.994% 99.999%
0

2

4

6

8

10

12

14

16

18

Level of reliability

Av
er

ag
e

ca
pa

ci
ty

 p
ri

ce
 E

U
R/

M
W

/h

LXXXII | Plots on economics of fluctuating RES generators

 Source: Own analysis

Figure B-30: Annual average profit maximizing capacity price bids for different fluctuating
RES generators with different levels of reliability for the product length of
four hours in the positive tertiary control reserve market

Onshore Wind 30 GW Germany positive capacity bids

Onshore Wind 1 GW Pool positive capacity bids

Offshore Wind 1 GW Germany positive capacity bids

Photovoltaic Systems 30 GW Germany positive capacity bids

Photovoltaic Systems 1 GW Pool positive capacity bids

95% 99% 99.5% 99.9% 99.99% 99.994% 99.999%
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Level of reliability

Av
er

ag
e

ca
pa

ci
ty

 p
ri

ce
 E

U
R/

M
W

/h

Plots on economics of fluctuating RES generators | LXXXIII

 Source: Own analysis

Figure B-31: Annual average profit maximizing capacity price bids for different fluctuating
RES generators with different levels of reliability for the product length of
twelve hours in the negative secondary control reserve market

Onshore Wind 30 GW Germany negative capacity bids

Onshore Wind 1 GW Pool negative capacity bids

Offshore Wind 1 GW Germany negative capacity bids

Photovoltaic Systems 30 GW Germany negative capacity bids

Photovoltaic Systems 1 GW Pool negative capacity bids

95% 99% 99.5% 99.9% 99.99% 99.994% 99.999%
0

10

20

30

40

50

60

70

Level of reliability

Av
er

ag
e

ca
pa

ci
ty

 p
ri

ce
 E

U
R/

M
W

/h

LXXXIV | Plots on economics of fluctuating RES generators

 Source: Own analysis

Figure B-32: Annual average profit maximizing capacity price bids for different fluctuating
RES generators with different levels of reliability for the product length of
twelve hours in the positive secondary control reserve market

Onshore Wind 30 GW Germany positive capacity bids

Onshore Wind 1 GW Pool positive capacity bids

Offshore Wind 1 GW Germany positive capacity bids

Photovoltaic Systems 30 GW Germany positive capacity bids

Photovoltaic Systems 1 GW Pool positive capacity bids

95% 99% 99.5% 99.9% 99.99% 99.994% 99.999%
0

5

10

15

20

25

Level of reliability

Av
er

ag
e

ca
pa

ci
ty

 p
ri

ce
 E

U
R/

M
W

/h

Plots on economics of fluctuating RES generators | LXXXV

 Source: Own analysis

Figure B-33: Annual average profit maximizing capacity price bids for different fluctuating
RES generators with different levels of reliability for the product length of
twelve hours in the negative tertiary control reserve market

Onshore Wind 30 GW Germany negative capacity bids

Onshore Wind 1 GW Pool negative capacity bids

Offshore Wind 1 GW Germany negative capacity bids

Photovoltaic Systems 30 GW Germany negative capacity bids

Photovoltaic Systems 1 GW Pool negative capacity bids

95% 99% 99.5% 99.9% 99.99% 99.994% 99.999%
0

2

4

6

8

10

12

14

Level of reliability

Av
er

ag
e

ca
pa

ci
ty

 p
ri

ce
 E

U
R/

M
W

/h

LXXXVI | Plots on economics of fluctuating RES generators

 Source: Own analysis

Figure B-34: Annual average profit maximizing capacity price bids for different fluctuating
RES generators with different levels of reliability for the product length of
twelve hours in the positive tertiary control reserve market

Onshore Wind 30 GW Germany positive capacity bids

Onshore Wind 1 GW Pool positive capacity bids

Offshore Wind 1 GW Germany positive capacity bids

Photovoltaic Systems 30 GW Germany positive capacity bids

Photovoltaic Systems 1 GW Pool positive capacity bids

95% 99% 99.5% 99.9% 99.99% 99.994% 99.999%
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Level of reliability

Av
er

ag
e

ca
pa

ci
ty

 p
ri

ce
 E

U
R/

M
W

/h

Plots on economic impact on the system level | LXXXVII

Appendix C Plots on economic impact on the system level

Appendix C-A Cost saving potentials

 Source: Own analysis

Figure C-35: Capacity, energy and total cost saving potentials of the German 30 GW wind onshore pool in the
negative and positive secondary and tertiary control reserve markets for the opportunity cost
based approach with the available active power (top) and balance control mechanism applied
(middle) as well as the profit maximizing based approach (bottom) for a level of reliability of
99.994 %, the years 2010 to 2014, and a product length of four hours

2010

-120
-100

-80
-60
-40
-20

0
20
40
60
80

100
120

R

R

2011

-120
-100

-80
-60
-40
-20

0
20
40
60
80

100
120

R

R

2012

-120
-100

-80
-60
-40
-20

0
20
40
60
80

100
120

R

R

2013

-120
-100

-80
-60
-40
-20

0
20
40
60
80

100
120

R

R

2014

-120
-100

-80
-60
-40
-20

0
20
40
60
80

100
120

R

R

-120
-100

-80
-60
-40
-20

0
20
40
60
80

100
120

-120
-100

-80
-60
-40
-20

0
20
40
60
80

100
120

-120
-100

-80
-60
-40
-20

0
20
40
60
80

100
120

-120
-100

-80
-60
-40
-20

0
20
40
60
80

100
120

-120
-100

-80
-60
-40
-20

0
20
40
60
80

100
120

-120
-100

-80
-60
-40
-20

0
20
40
60
80

100
120

Neg. S
CR

Pos. SCR

Neg. TCR

Pos. TCR
-120
-100

-80
-60
-40
-20

0
20
40
60
80

100
120

Neg. S
CR

Pos. SCR

Neg. TCR

Pos. TCR
-120
-100

-80
-60
-40
-20

0
20
40
60
80

100
120

Neg. S
CR

Pos. SCR

Neg. TCR

Pos. TCR
-120
-100

-80
-60
-40
-20

0
20
40
60
80

100
120

Neg. S
CR

Pos. SCR

Neg. TCR

Pos. TCR
-120
-100

-80
-60
-40
-20

0
20
40
60
80

100
120

Neg. S
CR

Pos. SCR

Neg. TCR

Pos. TCR

Total cost saving potential in mio. EUR

Capacity cost saving potential in mio. EUR

Dispatch cost saving potential in mio. EUR

Co
st

 s
av

in
g

po
te

nt
ia

l i
n

m
io

. E
U

R
Co

st
 s

av
in

g
po

te
nt

ia
l i

n
m

io
. E

U
R

Co
st

 s
av

in
g

po
te

nt
ia

l i
n

m
io

. E
U

R

LXXXVIII | Plots on economic impact on the system level

 Source: Own analysis

Figure C-36: Capacity, energy and total cost saving potentials of the German 30 GW wind onshore pool in the
negative and positive secondary and tertiary control reserve markets for the opportunity cost
based approach with the available active power (top) and balance control mechanism applied
(middle) as well as the profit maximizing based approach (bottom) for a level of reliability of
99.994 %, the years 2010 to 2014, and a product length of twelve hours

2010

-120
-100

-80
-60
-40
-20

0
20
40
60
80

100
120

R

R

R

2011

-120
-100

-80
-60
-40
-20

0
20
40
60
80

100
120

R

R

R

2012

-120
-100

-80
-60
-40
-20

0
20
40
60
80

100
120

R

R

R

2013

-120
-100

-80
-60
-40
-20

0
20
40
60
80

100
120

R

R

R

2014

-120
-100

-80
-60
-40
-20

0
20
40
60
80

100
120

R

R

R

-120
-100

-80
-60
-40
-20

0
20
40
60
80

100
120

R

R
-120
-100

-80
-60
-40
-20

0
20
40
60
80

100
120

R

R
-120
-100

-80
-60
-40
-20

0
20
40
60
80

100
120

R

R
-120
-100

-80
-60
-40
-20

0
20
40
60
80

100
120

R

R
-120
-100

-80
-60
-40
-20

0
20
40
60
80

100
120

R

R

-120
-100

-80
-60
-40
-20

0
20
40
60
80

100
120

Neg. S
CR

Pos. SCR

Neg. TCR

Pos. TCR
-120
-100

-80
-60
-40
-20

0
20
40
60
80

100
120

Neg. S
CR

Pos. SCR

Neg. TCR

Pos. TCR
-120
-100

-80
-60
-40
-20

0
20
40
60
80

100
120

Neg. S
CR

Pos. SCR

Neg. TCR

Pos. TCR
-120
-100

-80
-60
-40
-20

0
20
40
60
80

100
120

Neg. S
CR

Pos. SCR

Neg. TCR

Pos. TCR
-120
-100

-80
-60
-40
-20

0
20
40
60
80

100
120

Neg. S
CR

Pos. SCR

Neg. TCR

Pos. TCR

Total cost saving potential in mio. EUR

Capacity cost saving potential in mio. EUR

Dispatch cost saving potential in mio. EUR

Co
st

 s
av

in
g

po
te

nt
ia

l i
n

m
io

. E
U

R
Co

st
 s

av
in

g
po

te
nt

ia
l i

n
m

io
. E

U
R

Co
st

 s
av

in
g

po
te

nt
ia

l i
n

m
io

. E
U

R

Plots on economic impact on the system level | LXXXIX

 Source: Own analysis

Figure C-37: Capacity, energy and total cost saving potentials of the German 30 GW pool of PV systems in the
negative and positive secondary and tertiary control reserve markets for the opportunity cost
based approach with the available active power (top) and balance control mechanism applied
(middle) as well as the profit maximizing based approach (bottom) for a level of reliability of
99.994 %, the years 2010 to 2014, and a product length of four hours

2010

-40

-20

0

20

40

60

80

2011

-40

-20

0

20

40

60

80

2012

-40

-20

0

20

40

60

80

2013

-40

-20

0

20

40

60

80

2014

-40

-20

0

20

40

60

80

-40

-20

0

20

40

60

80

-40

-20

0

20

40

60

80

-40

-20

0

20

40

60

80

-40

-20

0

20

40

60

80

-40

-20

0

20

40

60

80

-40

-20

0

20

40

60

80

Neg. S
CR

Pos. SCR

Neg. TCR

Pos. TCR
-40

-20

0

20

40

60

80

Neg. S
CR

Pos. SCR

Neg. TCR

Pos. TCR
-40

-20

0

20

40

60

80

Neg. S
CR

Pos. SCR

Neg. TCR

Pos. TCR
-40

-20

0

20

40

60

80

Neg. S
CR

Pos. SCR

Neg. TCR

Pos. TCR
-40

-20

0

20

40

60

80

Neg. S
CR

Pos. SCR

Neg. TCR

Pos. TCR

Total cost saving potential in mio. EUR

Capacity cost saving potential in mio. EUR

Dispatch cost saving potential in mio. EUR

Co
st

 s
av

in
g

po
te

nt
ia

l i
n

m
io

. E
U

R
Co

st
 s

av
in

g
po

te
nt

ia
l i

n
m

io
. E

U
R

Co
st

 s
av

in
g

po
te

nt
ia

l i
n

m
io

. E
U

R

XC | Plots on economic impact on the system level

 Source: Own analysis

Figure C-38: Capacity, energy and total cost saving potentials of the 1 GW wind farm pool in the negative and
positive secondary and tertiary control reserve markets for the opportunity cost based approach
with the available active power (top) and balance control mechanism applied (middle) as well as
the profit maximizing based approach (bottom) for a level of reliability of 99.994 %, the years
2010 to 2014, and a product length of one hour

2010

-2

0

2

4

6

8

10

2011

-2

0

2

4

6

8

10

2012

-2

0

2

4

6

8

10

2013

-2

0

2

4

6

8

10

2014

-2

0

2

4

6

8

10

-2

0

2

4

6

8

10

-2

0

2

4

6

8

10

-2

0

2

4

6

8

10

-2

0

2

4

6

8

10

-2

0

2

4

6

8

10

-2

0

2

4

6

8

10

Neg. S
CR

Pos. SCR

Neg. TCR

Pos. TCR
-2

0

2

4

6

8

10

Neg. S
CR

Pos. SCR

Neg. TCR

Pos. TCR
-2

0

2

4

6

8

10

Neg. S
CR

Pos. SCR

Neg. TCR

Pos. TCR
-2

0

2

4

6

8

10

Neg. S
CR

Pos. SCR

Neg. TCR

Pos. TCR
-2

0

2

4

6

8

10

Neg. S
CR

Pos. SCR

Neg. TCR

Pos. TCR

Total cost saving potential in mio. EUR

Capacity cost saving potential in mio. EUR

Dispatch cost saving potential in mio. EUR

Co
st

 s
av

in
g

po
te

nt
ia

l i
n

m
io

. E
U

R
Co

st
 s

av
in

g
po

te
nt

ia
l i

n
m

io
. E

U
R

Co
st

 s
av

in
g

po
te

nt
ia

l i
n

m
io

. E
U

R

Plots on economic impact on the system level | XCI

 Source: Own analysis

Figure C-39: Capacity, energy and total cost saving potentials of the German 1 GW offshore wind farm pool in
the negative and positive secondary and tertiary control reserve markets for the opportunity cost
based approach with the available active power (top) and balance control mechanism applied
(middle) as well as the profit maximizing based approach (bottom) for a level of reliability of
99.994 %, the years 2010 to 2014, and a product length of one hour

2010

-40

-20

0

20

40

60

80

100

120

140

2011

-40

-20

0

20

40

60

80

100

120

140

2012

-40

-20

0

20

40

60

80

100

120

140

2013

-40

-20

0

20

40

60

80

100

120

140

2014

-40

-20

0

20

40

60

80

100

120

140

-40

-20

0

20

40

60

80

100

120

140

-40

-20

0

20

40

60

80

100

120

140

-40

-20

0

20

40

60

80

100

120

140

-40

-20

0

20

40

60

80

100

120

140

-40

-20

0

20

40

60

80

100

120

140

-40

-20

0

20

40

60

80

100

120

140

Neg. S
CR

Pos. SCR

Neg. TCR

Pos. TCR
-40

-20

0

20

40

60

80

100

120

140

Neg. S
CR

Pos. SCR

Neg. TCR

Pos. TCR
-40

-20

0

20

40

60

80

100

120

140

Neg. S
CR

Pos. SCR

Neg. TCR

Pos. TCR
-40

-20

0

20

40

60

80

100

120

140

Neg. S
CR

Pos. SCR

Neg. TCR

Pos. TCR
-40

-20

0

20

40

60

80

100

120

140

Neg. S
CR

Pos. SCR

Neg. TCR

Pos. TCR

Total cost saving potential in mio. EUR

Capacity cost saving potential in mio. EUR

Dispatch cost saving potential in mio. EUR

Co
st

 s
av

in
g

po
te

nt
ia

l i
n

m
io

. E
U

R
Co

st
 s

av
in

g
po

te
nt

ia
l i

n
m

io
. E

U
R

Co
st

 s
av

in
g

po
te

nt
ia

l i
n

m
io

. E
U

R

XCII | Plots on economic impact on the system level

 Source: Own analysis

Figure C-40: Capacity, energy and total cost saving potentials of the 1 GW pool PV systems in the negative and
positive secondary and tertiary control reserve markets for the opportunity cost based approach
with the available active power (top) and balance control mechanism applied (middle) as well as
the profit maximizing based approach (bottom) for a level of reliability of 99.994 %, the years
2010 to 2014, and a product length of one hour

2010

-2

0

2

4

6

8

10

R

R

2011

-2

0

2

4

6

8

10

R

R

2012

-2

0

2

4

6

8

10

R

R

2013

-2

0

2

4

6

8

10

R

R

2014

-2

0

2

4

6

8

10

R

R

-2

0

2

4

6

8

10

-2

0

2

4

6

8

10

-2

0

2

4

6

8

10

-2

0

2

4

6

8

10

-2

0

2

4

6

8

10

-2

0

2

4

6

8

10

Neg. S
CR

Pos. SCR

Neg. TCR

Pos. TCR
-2

0

2

4

6

8

10

Neg. S
CR

Pos. SCR

Neg. TCR

Pos. TCR
-2

0

2

4

6

8

10

Neg. S
CR

Pos. SCR

Neg. TCR

Pos. TCR
-2

0

2

4

6

8

10

Neg. S
CR

Pos. SCR

Neg. TCR

Pos. TCR
-2

0

2

4

6

8

10

Neg. S
CR

Pos. SCR

Neg. TCR

Pos. TCR

Total cost saving potential in mio. EUR

Capacity cost saving potential in mio. EUR

Dispatch cost saving potential in mio. EUR

Co
st

 s
av

in
g

po
te

nt
ia

l i
n

m
io

. E
U

R
Co

st
 s

av
in

g
po

te
nt

ia
l i

n
m

io
. E

U
R

Co
st

 s
av

in
g

po
te

nt
ia

l i
n

m
io

. E
U

R

Plots on social welfare gain | XCIII

Appendix D Plots on social welfare gain

Appendix D-A Total welfare gain

 Source: Own analysis

Figure D-41: Total welfare gain induced by the German 30 GW pool of wind farms and
the 30 GW pool PV systems for a product length of four hours, a level of
reliability of 99.994 % and the available active power proof method applied
in the negative and positive secondary and tertiary control reserve market
based on the total cost saving potentials

30% threshold of secondary market share

30% threshold of tertiary market share

20% threshold of secondary market share

20% threshold of tertiary market share

10% threshold of secondary market share

10% threshold of tertiary market share

Wind negative secondary control reserve

Wind positive secondary control reserve

Wind negative tertiary control reserve

Wind positive tertiary control reserve

PV systems negative secondary control reserve

PV systems positive secondary control reserve

PV systems negative tertiary control reserve

PV systems positive tertiary control reserve

2010 2011 2012 2013 2014
-30

-20

-10

0

10

20

30

40

50

60

70

80

Year

W
el

fa
re

 g
ai

n
in

 m
io

. E
U

R

XCIV | Plots on social welfare gain

 Source: Own analysis

Figure D-42: Total welfare gain induced by the German 30 GW pool of wind farms and
the 30 GW pool PV systems for a product length of twelve hours, a level of
reliability of 99.994 % and the available active power proof method applied
in the negative and positive secondary and tertiary control reserve market
based on the total cost saving potentials

30% threshold of secondary market share

30% threshold of tertiary market share

20% threshold of secondary market share

20% threshold of tertiary market share

10% threshold of secondary market share

10% threshold of tertiary market share

Wind negative secondary control reserve

Wind positive secondary control reserve

Wind negative tertiary control reserve

Wind positive tertiary control reserve

PV systems negative secondary control reserve

PV systems positive secondary control reserve

PV systems negative tertiary control reserve

PV systems positive tertiary control reserve

2010 2011 2012 2013 2014
-30

-20

-10

0

10

20

30

40

50

60

70

80

Year

W
el

fa
re

 g
ai

n
in

 m
io

. E
U

R

Plots on social welfare gain | XCV

 Source: Own analysis

Figure D-43: Total welfare gain induced by the German 30 GW pool of wind farms and
the 30 GW pool PV systems for a product length of one hour, a level of
reliability of 95 % and the available active power proof method applied in
the negative and positive secondary and tertiary control reserve market
based on the total cost saving potentials

30% threshold of secondary market share

30% threshold of tertiary market share

20% threshold of secondary market share

20% threshold of tertiary market share

10% threshold of secondary market share

10% threshold of tertiary market share

Wind negative secondary control reserve

Wind positive secondary control reserve

Wind negative tertiary control reserve

Wind positive tertiary control reserve

PV systems negative secondary control reserve

PV systems positive secondary control reserve

PV systems negative tertiary control reserve

PV systems positive tertiary control reserve

2010 2011 2012 2013 2014
-50

0

50

100

150

200

250

300

Year

W
el

fa
re

 g
ai

n
in

 m
io

. E
U

R

XCVI | Plots on social welfare gain

 Source: Own analysis

Figure D-44: Total welfare gain induced by the German 30 GW pool of wind farms and
the 30 GW pool PV systems for a product length of twelve hours, a level of
reliability of 95 % and the available active power proof method applied in
the negative and positive secondary and tertiary control reserve market
based on the total cost saving potentials

30% threshold of secondary market share

30% threshold of tertiary market share

20% threshold of secondary market share

20% threshold of tertiary market share

10% threshold of secondary market share

10% threshold of tertiary market share

Wind negative secondary control reserve

Wind positive secondary control reserve

Wind negative tertiary control reserve

Wind positive tertiary control reserve

PV systems negative secondary control reserve

PV systems positive secondary control reserve

PV systems negative tertiary control reserve

PV systems positive tertiary control reserve

2010 2011 2012 2013 2014
-50

0

50

100

150

200

250

300

Year

W
el

fa
re

 g
ai

n
in

 m
io

. E
U

R

Plots on social welfare gain | XCVII

Appendix D-B Ratios between capacity component welfare gain and
capacity market volume

 Source: Own analysis

Figure D-45: Ratio between the capacity component welfare gain and the capacity cost
market value based on capacity cost reductions only induced by the German
30 GW pool of wind farms and the 30 GW pool PV systems for a product
length of four hours, a level of reliability of 99.994 % and the available active
power proof method applied in the negative and positive secondary and
tertiary control reserve market

Wind negative secondary control reserve

Wind positive secondary control reserve

Wind negative tertiary control reserve

Wind positive tertiary control reserve

PV systems negative secondary control reserve

PV systems positive secondary control reserve

PV systems negative tertiary control reserve

PV systems positive tertiary control reserve

2010 2011 2012 2013 2014
0

5

10

15

20

25

30

35

40

45

50

Year

%
 o

f c
ap

ac
it

y
m

ar
ke

t
va

lu
e

XCVIII | Plots on social welfare gain

 Source: Own analysis

Figure D-46: Ratio between the capacity component welfare gain and the capacity cost
market value based on capacity cost reductions only induced by the German
30 GW pool of wind farms and the 30 GW pool PV systems for a product
length of twelve hours, a level of reliability of 99.994 % and the available
active power proof method applied in the negative and positive secondary
and tertiary control reserve market

Wind negative secondary control reserve

Wind positive secondary control reserve

Wind negative tertiary control reserve

Wind positive tertiary control reserve

PV systems negative secondary control reserve

PV systems positive secondary control reserve

PV systems negative tertiary control reserve

PV systems positive tertiary control reserve

2010 2011 2012 2013 2014
0

5

10

15

20

25

30

35

40

45

50

Year

%
 o

f c
ap

ac
it

y
m

ar
ke

t
va

lu
e

Plots on social welfare gain | XCIX

 Source: Own analysis

Figure D-47: Ratio between the capacity component welfare gain and the capacity cost
market value based on capacity cost reductions only induced by the German
30 GW pool of wind farms and the 30 GW pool PV systems for a product
length of one hour, a level of reliability of 95 % and the available active
power proof method applied in the negative and positive secondary and
tertiary control reserve market

Wind negative secondary control reserve

Wind positive secondary control reserve

Wind negative tertiary control reserve

Wind positive tertiary control reserve

PV systems negative secondary control reserve

PV systems positive secondary control reserve

PV systems negative tertiary control reserve

PV systems positive tertiary control reserve

2010 2011 2012 2013 2014
0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

Year

%
 o

f c
ap

ac
it

y
m

ar
ke

t
va

lu
e

C | Plots on social welfare gain

 Source: Own analysis

Figure D-48: Ratio between the capacity component welfare gain and the capacity cost
market value based on capacity cost reductions only induced by the German
30 GW pool of wind farms and the 30 GW pool PV systems for a product
length of four hours, a level of reliability of 95 % and the available active
power proof method applied in the negative and positive secondary and
tertiary control reserve market

Wind negative secondary control reserve

Wind positive secondary control reserve

Wind negative tertiary control reserve

Wind positive tertiary control reserve

PV systems negative secondary control reserve

PV systems positive secondary control reserve

PV systems negative tertiary control reserve

PV systems positive tertiary control reserve

2010 2011 2012 2013 2014
0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

Year

%
 o

f c
ap

ac
it

y
m

ar
ke

t
va

lu
e

Plots on social welfare gain | CI

 Source: Own analysis

Figure D-49: Ratio between the capacity component welfare gain and the capacity cost
market value based on capacity cost reductions only induced by the German
30 GW pool of wind farms and the 30 GW pool PV systems for a product
length of twelve hours, a level of reliability of 95 % and the available active
power proof method applied in the negative and positive secondary and
tertiary control reserve market

Wind negative secondary control reserve

Wind positive secondary control reserve

Wind negative tertiary control reserve

Wind positive tertiary control reserve

PV systems negative secondary control reserve

PV systems positive secondary control reserve

PV systems negative tertiary control reserve

PV systems positive tertiary control reserve

2010 2011 2012 2013 2014
0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

Year

%
 o

f c
ap

ac
it

y
m

ar
ke

t
va

lu
e

CII | Plots on social welfare gain

Appendix D-C Forecast welfare gain

 Source: Own analysis

Figure D-50: Forecast of welfare gain by the fluctuating RES generators in the control
reserve market for the years 2020 and 2030 at a level of reliability of 95 %

Product length: 1 hour

2020 2030
0

20

40

60

80

100

120

140

160

180

200

Year

Fo
re

ca
st

ed
 w

el
fa

re
 g

ai
n

in
 m

io
. E

U
R

Product length: 4 hours

2020 2030
0

20

40

60

80

100

120

140

160

180

200

Year
Fo

re
ca

st
ed

 w
el

fa
re

 g
ai

n
in

 m
io

. E
U

R

Product length: 12 hours

2020 2030
0

20

40

60

80

100

120

140

160

180

200

Year

Fo
re

ca
st

ed
 w

el
fa

re
 g

ai
n

in
 m

io
. E

U
R

Wind farms

Demand adjusted wind farms

PV systems

Demand adjusted PV systems

Source code and sample data | CIII

Appendix E Source code and sample data

In the attachment of this PDF, you will find the source code of the REBal

model in the version number 1.4, which was used for this doctoral thesis. The

attachment can be extracted from the PDF by clicking on the floppy disk icon

and saving it to the desired location.

Note that the model is further developed and results might deviate in the

future. The attached archive contains a README file with further explanation

on how to use the model as well as sample data for the first two weeks in

January 2014. The archive can be opened with the open source software 7zip,

amongst others supporting the *.7z file extension.

	Kurzzusammenfassung
	Abstract
	Eidesstattliche Versicherung
	Contents
	1 Executive Summary
	1.1 Problem
	1.2 Methodology
	1.3 Results
	1.4 Conclusion

	2 Introduction
	2.1 Motivation and Problem Statement
	2.2 Objectives and research hypothesis
	2.3 Thesis outline

	3 State of the discussion in energy economics
	3.1 Energy-economic foundations
	3.1.1 Regulatory Framework for Power Markets
	3.1.2 Wholesale Power Markets
	3.1.3 Spot market at the European Power Exchange
	3.1.3.1 Day-ahead auction
	3.1.3.2 Intraday trading

	3.2 Control Reserve
	3.2.1 Types of Ancillary Services and their costs
	3.2.2 Types of control reserve
	3.2.3 Demand for control reserve
	3.2.4 Procurement and price development
	3.2.4.1 Product specifications
	3.2.4.2 Requirements for market participation
	3.2.4.3 Development of control reserve prices

	3.2.5 Renewables in the control reserve markets

	3.3 Current state of research
	3.3.1 Relevant literature on the provision of control reserve to the control reserve markets by RES generators
	3.3.2 Identification of the challenges of bringing generators to the control reserve market
	3.3.3 Research projects and international development
	3.3.3.1 Research projects
	3.3.3.2 International development

	3.4 Possible methodologies for the validation of the research hypothesis
	3.4.1 Conclusion of challenges from the literature
	3.4.2 Requirements for answering the research question through econometric modelling
	3.4.3 Possible approaches to assess the participation of fluctuating RES in the control reserve market
	3.4.3.1 Option 1 – Fundamental analysis cost minimizing unit commitment models
	3.4.3.2 Option 2 – Profit maximizing unit commitment models
	3.4.3.3 Option 3 – Agent-based models
	3.4.3.4 Summarizing the suitability of approaches

	3.4.4 Development of a customized new approach

	4 Modelling the economics of control reserve provision by fluctuating RES
	4.1 Introduction to the econometric modelling approach with REBal
	4.2 Modelling assumptions
	4.3 Data used in the model
	4.3.1 Market prices
	4.3.1.1 Wholesale market prices
	4.3.1.2 Balancing energy prices
	4.3.1.3 Control reserve prices

	4.3.2 Electricity consumption
	4.3.3 Time series of fluctuating RES generators
	4.3.3.1 Wind farm data
	4.3.3.2 PV systems data
	4.3.3.3 Installed capacity of wind farms and PV systems

	4.3.4 Control reserve dispatch
	4.3.5 Summary and overview

	4.4 Modelling Steps in detail
	4.4.1 Probabilistic forecast with kernel density estimators
	4.4.1.1 Kernel density estimator
	4.4.1.2 Definition of the forecast reliability
	4.4.1.3 Intraday forecasts

	4.4.2 Determining the technical potential
	4.4.3 Bid creation of fluctuating RES generators in the control reserve market
	4.4.3.1 Opportunity cost driven bid creation
	4.4.3.2 Profit maximizing bid creation

	4.4.4 Matching of bids with the bids in the market
	4.4.5 Determining the changes in costs
	4.4.6 Impacts of the proof mechanism on the spot market
	4.4.6.1 Cost of energy losses valued with average fuel price
	4.4.6.2 Cost of energy losses valued with spot market prices
	4.4.6.3 Costs due to increased spot market prices for all market participants

	4.4.7 Welfare gain from fluctuating RES
	4.4.8 Forecasting the welfare gain in 2020 and 2030

	4.5 Limitations of the chosen modelling approach

	5 Economics of fluctuating RES in the control reserve markets
	5.1 Probabilistic Forecasts
	5.2 Technical potentials
	5.2.1 Deriving quantity bids from the probabilistic forecast
	5.2.2 Energy losses due to the proof mechanism

	5.3 Calculation of bids for the control reserve market
	5.3.1 Opportunity cost driven bids
	5.3.2 Profit maximizing bids

	5.4 Matching of bids in the market and additional revenue for fluctuating RES generators

	6 Economic impact of fluctuating RES on the power system level
	6.1 Determination of the change in costs
	6.2 Impacts of the proof mechanism on the spot market
	6.3 Social welfare gain
	6.4 Forecast of welfare gain in 2020 and 2030

	7 Final assessment of the hypothesis and conclusions
	7.1 Main findings
	7.2 Suggestions for action
	7.3 Recommendation for future research
	7.4 Conclusion

	References
	List of figures
	List of tables
	List of acronyms and abbreviations
	Previous publications by the author
	Appendix B-A Probabilistic intraday forecasts for time of the 14th of August 2014 to the 20th of August 2014
	Appendix B-B Probabilistic day-ahead and one-hour ahead intraday forecasts, feed-in and offerable amounts of control reserve
	Appendix B-C Potentials for offering control reserve based on the day-ahead forecast
	Appendix B-D Offer calculation
	Appendix C-A Cost saving potentials
	Appendix D-A Total welfare gain
	Appendix D-B Ratios between capacity component welfare gain and capacity market volume
	Appendix D-C Forecast welfare gain

Functions/+Probabilistic_Forecast/Thumbs.db

commonFunctions/allcomb_license.txt

Copyright (c) 2016, Jos (10584)
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

 * Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
 * Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in
 the documentation and/or other materials provided with the distribution

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

Functions/+Auxiliary_Functions/allcomb_license.txt

Copyright (c) 2016, Jos (10584)
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

 * Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
 * Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in
 the documentation and/or other materials provided with the distribution

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

commonFunctions/getfilenames_license.txt

Copyright (c) 2009, Joseph Burgel

All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions are

met:

 * Redistributions of source code must retain the above copyright

 notice, this list of conditions and the following disclaimer.

 * Redistributions in binary form must reproduce the above copyright

 notice, this list of conditions and the following disclaimer in

 the documentation and/or other materials provided with the distribution

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"

AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE

LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF

SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS

INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN

CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE

POSSIBILITY OF SUCH DAMAGE.

Functions/+Auxiliary_Functions/getfilenames_license.txt

Copyright (c) 2009, Joseph Burgel

All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions are

met:

 * Redistributions of source code must retain the above copyright

 notice, this list of conditions and the following disclaimer.

 * Redistributions in binary form must reproduce the above copyright

 notice, this list of conditions and the following disclaimer in

 the documentation and/or other materials provided with the distribution

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"

AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE

LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF

SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS

INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN

CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE

POSSIBILITY OF SUCH DAMAGE.

commonFunctions/ismonotonic_license.txt

Copyright (c) 2009, Richard Cotton

All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions are

met:

 * Redistributions of source code must retain the above copyright

 notice, this list of conditions and the following disclaimer.

 * Redistributions in binary form must reproduce the above copyright

 notice, this list of conditions and the following disclaimer in

 the documentation and/or other materials provided with the distribution

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"

AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE

LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF

SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS

INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN

CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE

POSSIBILITY OF SUCH DAMAGE.

Functions/+Auxiliary_Functions/ismonotonic_license.txt

Copyright (c) 2009, Richard Cotton

All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions are

met:

 * Redistributions of source code must retain the above copyright

 notice, this list of conditions and the following disclaimer.

 * Redistributions in binary form must reproduce the above copyright

 notice, this list of conditions and the following disclaimer in

 the documentation and/or other materials provided with the distribution

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"

AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE

LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF

SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS

INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN

CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE

POSSIBILITY OF SUCH DAMAGE.

LICENSE.txt

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

 END OF TERMS AND CONDITIONS

 APPENDIX: How to apply the Apache License to your work.

 To apply the Apache License to your work, attach the following
 boilerplate notice, with the fields enclosed by brackets "[]"
 replaced with your own identifying information. (Don't include
 the brackets!) The text should be enclosed in the appropriate
 comment syntax for the file format. We also recommend that a
 file or class name and description of purpose be included on the
 same "printed page" as the copyright notice for easier
 identification within third-party archives.

 Copyright [2016] [Malte Jansen]

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.

README.txt

ReadMe for REBal v1.4

%%

% 1. Introduction %

%%

This description shall help you to get started quickly using the REBal model. The package comes with a fully functional test data set, which allows you to execute the REBal model for two weeks in January 2014. The test data provides the information on the necessary format of the data input and the possible parameters. The REBal model is intended to run on Matlab R2013a and Matlab R2014a. Matlab is a commercial software by Mathworks. More information can be acquired at www.mathworks.com. The software is provided as is, without warranties of any kind.

The REBal model is an econometric hindcasting model to quantify the economic impact of wind and solar on the German control reserve market. It has been conceived and implemented for the doctoral thesis at the European University of Flensburg. Parts of the work have been carried out during the works at the Fraunhofer Institute for Wind Energy and Energy Systems (IWES). REBal assesses the business model and the welfare gain/loss of wind farms and solar systems participating the markets for secondary and tertiary control reserve. The REBal model uses probabilistic forecast to guarantee that the level of reliability is maintained and system security is maintained. At the same time the market rules are examined in order to maximize the welfare gain that wind and solar could generate.

Abstract from the doctoral thesis:

The provision of control reserve, and therefore contributing to the secure operation of the power system, is paramount in a future energy system with increasing shares of fluctuating renewable energy sources. This doctoral thesis proves that fluctuating renewable energy sources, such as onshore and offshore wind farms as well as photovoltaic systems, are capable of providing control reserve at the same level of reliability as conventional generators. It is shown that the introduction of fluctuating renewables to the control reserve market can access a welfare gain that could be realized as additional income by the new market participants or as cost saving potential of the control reserve procurement. The dependency analysis between the welfare gain and the regulatory framework leads to recommendations for the development of the control reserve market

Key words: Fluctuating renewable energy sources, probabilistic forecasts, ancillary services, control reserve, energy markets, econometric analysis, business model, welfare gain

%%

% 2. License and author info %

%%

License:

Copyright 2016 Malte Jansen

Licensed under the Apache License, Version 2.0 (the "License");

you may not use this file except in compliance with the License.

You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

The code contains work of other authors which has been published and is free to use. The license for the work is attached where necessary in a separate .txt file, e.g. codename_license. I explicitly do not claim the authorship or copyright of this work, all rights remain with the original authors.

Authors:

Malte Jansen, Fraunhofer Institute for Wind Energy and Energy Systems (IWES)

malte.jansen@outlook.de

%%

% 3. Known issues %

%%

- Having the financial toolbox installed may cause problems with the nansum function. Make sure that the nansum function of the REBal model is prioritized in the Matlab search paths

- Has been tested and confirmed to work on Matlab R2013a and Matlab R2014a. May not work on other version as intended, or not at all. If that happens, try debugging according to the code changes introduced in the different version.

%%

% 4. Getting started %

%%

Step 1:

Unzip the package using 7zip (or a similar programs) to a path of your choice.

Step 2:

enter the two following commands before executing REBal and replace the path according to your REBal storage location:

addpath(genpath('C:\Users\malte\Dissertation\Matlab\REBal\'))

addpath(genpath('C:\Users\malte\Dissertation\Matlab\REBal\commonFunctions'))

Or alternatively you can add these two paths to your Matlab search paths.

Step 3:

Open the initialisation script REBal_initiliasationBatch.m

Step 4:

Execute the script and wait for results. Expect a long run-time. If parallel computing toolbox is installed, calculation time can be shortened by replacing "for" with "parfor" in REBal_main.m

Step 5:

Results are to be found in REBal\Results	for each calculation run. Scripts for evaluation of results can be found in REBal\Functions\Results_Evaluation. Use with caution as they might need changes for your setup.

%%

% 3. Data input %

%%

This data input must be loaded into the memory before REBal_main.m can be executed

Abbreviations: DA=day-ahead, ID=intraday, FC=forecast, FreqC=Frequency Control

Variable Name		Short description					Data type		Data contents

actualFeedIn		feed-in for pool					1x1 struct		fields w/ time and data

actualFeedIn_PV		feed-in (Solar) for GER for macroec 1x1 struct		fields w/ time and data

actualFeedIn_Train	feed-in (Training data) for pool	1x1 struct		fields w/ time and data

actualFeedIn_Wind	feed-in (Wind) for GERfor macroec	1x1 struct		fields w/ time and data

DA_Forec			day-ahead FC for pool				1x1 struct		fields w/ time and data

DA_Forec_PV			DA FC (Solar)for GER for macroec	1x1 struct		fields w/ time and data

DA_Forec_Train		DA FC (Training data) for pool		1x1 struct		fields w/ time and data

DA_Forec_Wind		DA FC (Wind)for GER for macroec		1x1 struct		fields w/ time and data

ID_Forec			day-ahead FC for pool				1x1 struct		fields w/ time and data

ID_Forec_PV			ID FC (Solar)for GER for macroec	1x1 struct		fields w/ time and data

ID_Forec_Train		ID FC (Training data) for pool		1x1 struct		fields w/ time and data

ID_Forec_Wind		ID FC (Wind)for GER for macroec		1x1 struct		fields w/ time and data

DA_MarketPrice		DA Spot market price				1x1 struct		fields w/ time and price

ID_MarketPrice		ID Spot average market price		1x1 struct		fields w/ time and price

deli				Delimiter string					string			string for delimiter

dirRes				Results path						string			

dirRoot				Root path							string			

dispatchSFC			Secondary FreqC(3sec) for ecoImpact	1x1 struct		fields w/ time and data

dispatchTFC			Tertiary FreqC(15min) for ecoImpact	1x1 struct		fields w/ time, pos, neg

loadENTSOE			Load profile ENTSO-E for macroec	1x1 struct		fields w/ time and data

MoSFC				Merit-order lists secondary FreqC	1xN struct		fields w/ pos,neg,start,end*

MoTFC				Merit-order lists tertiary FreqC	1xN struct		fields w/ pos,neg,start,end*

optsImpact			Options for ecoImpact calc			1x1 struct		fields see options chapter

optsMacroImpact		Options for macroec calc			1x1 struct		fields see options chapter

optsOffer			Options for bid creation			1x1 struct		fields see options chapter

optsProbForecDA		Options for probabilistic DA FC calc1x1 struct		fields see options chapter

optsProbForecID		Options for probabilistic ID FC calc1x1 struct		fields see options chapter

RPP					Balancing energy price				1x1 struct		fields w/ time and data

simRuns				Iterates parameters for calculation 1xN struct		fields according to **

* pos and neg each contain the fields capacityPrice, energyPrice, capacity, capacityCum. All fields in pos and neg respectively must have the same length.

** securityLevel, leadTimeRP, productLength, percentPosRP, percentNegRP, installedCapacity, startTime, endTime, market, pool

%%

% 4. Options %

%%

The following options can be given to parametrize REBal. The values given are example values. For the

%%% Define options for the probabilistic DA Forecast %%%

optsProbForecDA.smoothFC 		= false; (true/false)

	Lets you apply an optional smoothing for to the time series. Affects the quantiles of the forecast and shall not be used for correct estimation for the level of reliability. True enables the amount of smoothing defined by optsProbForecDA.smooth.

optsProbForecDA.smooth			= 1; (1 ... n)

	% 1 is no smoothing, increment is 1. Defines the amount of smoothing if optsProbForecDA.smoothFC is true.

optsProbForecDA.preError		= 0; (1 ... n)

	% Use pre-errors in the forecast or not. 0 (false) does not include pre-errors, any number > 0 applies pre-errors to the forecast. Only use for intraday forecast. Increment is 1.

optsProbForecDA.reliabilityTSO	= 1; (1/0)

	% Allows to use an alternative definition of reliability based on the unsupplied amount of energy, instead of the capacity. Currently not fully tested. Use with caution.

optsProbForecDA.showWarnings	= 0; (1/0)

	% Displays warnings and on-screen messaged that might occur during the calculation.

%%% Define options for the probabilistic ID Forecast %%%

	All of the above apply equally to the intraday forecast.

optsProbForecID.smoothFC		= false;

optsProbForecID.smooth			= 2;

optsProbForecID.preError		= 2;

optsProbForecID.reliabilityTSO	= 1;

optsProbForecID.showWarnings	= 0;

%%% Define options for the offer of regulating power %%%

optsOffer.isStochastic			= true; (true/false)

	% Use this switch to use the REBal model for non-stochastic units, such as biomass or conventional generators that do not require probabilistic forecasts.

optsOffer.isFlexible			= true; (true/false)

	% Switch for definition of flexibility of offer. Currently lacking functionality

optsOffer.plot					= false; (true/false)

	% Plot the offers created for the market

optsOffer.subplot				= false; (true/false)

	% Show subplots

optsOffer.reducedID				= true; (true/false)

	% Set switch for reducing the amount of capacity committed to the delivery of control reserve for the intraday data. The increased amount of forecast reliability allows to relieve some of the units from delivering control reserve. They fall back into the normal production pattern. Taking this into account affects the economics of the control reserve delivery.

optsOffer.noBalPrice			= true; (true/false)

	% Disregard the balancing energy price for the calculation of the offer price. The balaning energy price is highly volatile and difficult to predict, even under the assumption of a perfect price forecast. It is encouraged to leave the value on true. Value true disregards the balancing energy (reBap) prices

optsOffer.realMarket			= false; (true/false)

	% Defines whether real market restrictions are modelled, i.e. minimum bid size, tendering periods, etc. Current market restriction are implemented, changes needed if regulation changes.

optsOffer.minBidSize			= 5; (0 ... n)

	% Min Bid Size in MW. Applies the minimum bid size if optsOffer.realMarket = true. Values below optsOffer.minBidSize are set to zero.

optsOffer.weekDailyTender		= true; (true/false)

	% Determines whether weekend tendering is allowed or not if optsOffer.realMarket = true. This excludes offers being bid more than one day ahead, i.e. no offers on sundays and mondays.

optsOffer.proofSched			= true; % Forces proof with schedule

	% Applies the proof method with the schedule if optsOffer.realMarket = true.

optsOffer.symmetricBid			= false; (true/false)

	% Forces symmetric bidding if optsOffer.realMarket = true.

optsOffer.limitMarket			= false; (true/false)

	% The tendered is limiting offer if optsOffer.realMarket = true. This limits the offer to the total market volume.

optsOffer.limitMarketNegative	= 2578; (1 ... n)

	% Market limitation if optsOffer.limitMarket = true. Limits tendered amount of negative control reserve.

optsOffer.limitMarketPositive	= 2470; (1 ... n)

	% Market limitation if optsOffer.limitMarket = true. Limits tendered amount of positive control reserve.

optsOffer.altPriceCalc			= false; % old method false / new true

	% Switch between newer and faster calculation method and legacy method. Results are the same.

%%% Define options for the economic impact assessment calculation %%%

optsImpact.market				= simRuns(1,1).market; ('SFC','TFC')

	% Defines the market in which the assessment takes place. It is highly recommended to for the simRuns struct, as givenin the example data

optsImpact.allMarkets			= unique({simRuns.market});

	% Extract all market from the simRuns file. Skip if not needed

optsImpact.returnMOLists		= false; (true/false)

	% Provides the options to store the altered merit-order lists. This may increase the memory and storage needs significantly.

%%% Define options for the calculation of the macro economic impact %%%

optsMacroImpact.xTraPolyCrit	= 0.2; (0 ... n)

	% Polynomial fitting is extended to test monotonic behaviour by x%. 0.2 equals 20%.

optsMacroImpact.xCeedPolyCrit	= 2;

	% Polynomial values may not deviate by more than x times from min/max of original values

%%

% 5. Closing remarks %

%%

The model in its current state is tailor-made to the German market reserve market. Due to it's modular approach, one could adapt the model to reflect the requirements on other markets without large changes to the structure.

commonFunctions/roundn_license.txt

Copyright (c) 2012, Brenden Epps
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

 * Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
 * Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in
 the documentation and/or other materials provided with the distribution

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

Functions/+Auxiliary_Functions/roundn_license.txt

Copyright (c) 2012, Brenden Epps
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

 * Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
 * Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in
 the documentation and/or other materials provided with the distribution

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

commonFunctions/smooth_license.txt

Copyright (c) 2010, Zhang Jiang
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

 * Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
 * Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in
 the documentation and/or other materials provided with the distribution

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

Functions/+Auxiliary_Functions/smooth_license.txt

Copyright (c) 2010, Zhang Jiang
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

 * Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
 * Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in
 the documentation and/or other materials provided with the distribution

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

commonFunctions/strjoin_license.txt

Copyright (c) 2011, Jonathan Karr
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

 * Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
 * Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in
 the documentation and/or other materials provided with the distribution

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

Functions/+Auxiliary_Functions/strjoin_license.txt

Copyright (c) 2011, Jonathan Karr
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

 * Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
 * Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in
 the documentation and/or other materials provided with the distribution

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

commonFunctions/allcomb.m

function A = allcomb(varargin)

% ALLCOMB - All combinations

% B = ALLCOMB(A1,A2,A3,...,AN) returns all combinations of the elements

% in the arrays A1, A2, ..., and AN. B is P-by-N matrix is which P is the product

% of the number of elements of the N inputs. This functionality is also

% known as the Cartesian Product. The arguments can be numerical and/or

% characters, or they can be cell arrays.

%

% Examples:

% allcomb([1 3 5],[-3 8],[0 1]) % numerical input:

% % -> [1 -3 0

% % 1 -3 1

% % 1 8 0

% % ...

% % 5 -3 1

% % 5 8 1] ; % a 12-by-3 array

%

% allcomb('abc','XY') % character arrays

% % -> [aX ; aY ; bX ; bY ; cX ; cY] % a 6-by-2 character array

%

% allcomb('xy',[65 66]) % a combination

% % -> ['xA' ; 'xB' ; 'yA' ; 'yB'] % a 4-by-2 character array

%

% allcomb({'hello','Bye'},{'Joe', 10:12},{99999 []}) % all cell arrays

% % -> { 'hello' 'Joe' [99999]

% % 'hello' 'Joe' []

% % 'hello' [1x3 double] [99999]

% % 'hello' [1x3 double] []

% % 'Bye' 'Joe' [99999]

% % 'Bye' 'Joe' []

% % 'Bye' [1x3 double] [99999]

% % 'Bye' [1x3 double] [] } ; % a 8-by-3 cell array

%

% ALLCOMB(..., 'matlab') causes the first column to change fastest which

% is consistent with matlab indexing. Example:

% allcomb(1:2,3:4,5:6,'matlab')

% % -> [1 3 5 ; 1 4 5 ; 1 3 6 ; ... ; 2 4 6]

%

% If one of the arguments is empty, ALLCOMB returns a 0-by-N empty array.

%

% See also NCHOOSEK, PERMS, NDGRID

% and NCHOOSE, COMBN, KTHCOMBN (Matlab Central FEX)

% Tested in Matlab R2015a

% version 4.1 (feb 2016)

% (c) Jos van der Geest

% email: samelinoa@gmail.com

% History

% 1.1 (feb 2006), removed minor bug when entering empty cell arrays;

% added option to let the first input run fastest (suggestion by JD)

% 1.2 (jan 2010), using ii as an index on the left-hand for the multiple

% output by NDGRID. Thanks to Jan Simon, for showing this little trick

% 2.0 (dec 2010). Bruno Luong convinced me that an empty input should

% return an empty output.

% 2.1 (feb 2011). A cell as input argument caused the check on the last

% argument (specifying the order) to crash.

% 2.2 (jan 2012). removed a superfluous line of code (ischar(..))

% 3.0 (may 2012) removed check for doubles so character arrays are accepted

% 4.0 (feb 2014) added support for cell arrays

% 4.1 (feb 2016) fixed error for cell array input with last argument being

% 'matlab'. Thanks to Richard for pointing this out.

narginchk(1,Inf) ;

NC = nargin ;

% check if we should flip the order

if ischar(varargin{end}) && (strcmpi(varargin{end},'matlab') || strcmpi(varargin{end},'john')),

 % based on a suggestion by JD on the FEX

 NC = NC-1 ;

 ii = 1:NC ; % now first argument will change fastest

else

 % default: enter arguments backwards, so last one (AN) is changing fastest

 ii = NC:-1:1 ;

end

args = varargin(1:NC) ;

% check for empty inputs

if any(cellfun('isempty',args)),

 warning('ALLCOMB:EmptyInput','One of more empty inputs result in an empty output.') ;

 A = zeros(0,NC) ;

elseif NC > 1

 isCellInput = cellfun(@iscell,args) ;

 if any(isCellInput)

 if ~all(isCellInput)

 error('ALLCOMB:InvalidCellInput', ...

 'For cell input, all arguments should be cell arrays.') ;

 end

 % for cell input, we use to indices to get all combinations

 ix = cellfun(@(c) 1:numel(c), args,'un',0) ;

 % flip using ii if last column is changing fastest

 [ix{ii}] = ndgrid(ix{ii}) ;

 A = cell(numel(ix{1}),NC) ; % pre-allocate the output

 for k=1:NC,

 % combine

 A(:,k) = reshape(args{k}(ix{k}),[],1) ;

 end

 else

 % non-cell input, assuming all numerical values or strings

 % flip using ii if last column is changing fastest

 [A{ii}] = ndgrid(args{ii}) ;

 % concatenate

 A = reshape(cat(NC+1,A{:}),[],NC) ;

 end

elseif NC==1,

 A = args{1}(:) ; % nothing to combine

else % NC==0, there was only the 'matlab' flag argument

 A = zeros(0,0) ; % nothing

end

Functions/+Auxiliary_Functions/allcomb.m

function A = allcomb(varargin)

% ALLCOMB - All combinations

% B = ALLCOMB(A1,A2,A3,...,AN) returns all combinations of the elements

% in the arrays A1, A2, ..., and AN. B is P-by-N matrix is which P is the product

% of the number of elements of the N inputs. This functionality is also

% known as the Cartesian Product. The arguments can be numerical and/or

% characters, or they can be cell arrays.

%

% Examples:

% allcomb([1 3 5],[-3 8],[0 1]) % numerical input:

% % -> [1 -3 0

% % 1 -3 1

% % 1 8 0

% % ...

% % 5 -3 1

% % 5 8 1] ; % a 12-by-3 array

%

% allcomb('abc','XY') % character arrays

% % -> [aX ; aY ; bX ; bY ; cX ; cY] % a 6-by-2 character array

%

% allcomb('xy',[65 66]) % a combination

% % -> ['xA' ; 'xB' ; 'yA' ; 'yB'] % a 4-by-2 character array

%

% allcomb({'hello','Bye'},{'Joe', 10:12},{99999 []}) % all cell arrays

% % -> { 'hello' 'Joe' [99999]

% % 'hello' 'Joe' []

% % 'hello' [1x3 double] [99999]

% % 'hello' [1x3 double] []

% % 'Bye' 'Joe' [99999]

% % 'Bye' 'Joe' []

% % 'Bye' [1x3 double] [99999]

% % 'Bye' [1x3 double] [] } ; % a 8-by-3 cell array

%

% ALLCOMB(..., 'matlab') causes the first column to change fastest which

% is consistent with matlab indexing. Example:

% allcomb(1:2,3:4,5:6,'matlab')

% % -> [1 3 5 ; 1 4 5 ; 1 3 6 ; ... ; 2 4 6]

%

% If one of the arguments is empty, ALLCOMB returns a 0-by-N empty array.

%

% See also NCHOOSEK, PERMS, NDGRID

% and NCHOOSE, COMBN, KTHCOMBN (Matlab Central FEX)

% Tested in Matlab R2015a

% version 4.1 (feb 2016)

% (c) Jos van der Geest

% email: samelinoa@gmail.com

% History

% 1.1 (feb 2006), removed minor bug when entering empty cell arrays;

% added option to let the first input run fastest (suggestion by JD)

% 1.2 (jan 2010), using ii as an index on the left-hand for the multiple

% output by NDGRID. Thanks to Jan Simon, for showing this little trick

% 2.0 (dec 2010). Bruno Luong convinced me that an empty input should

% return an empty output.

% 2.1 (feb 2011). A cell as input argument caused the check on the last

% argument (specifying the order) to crash.

% 2.2 (jan 2012). removed a superfluous line of code (ischar(..))

% 3.0 (may 2012) removed check for doubles so character arrays are accepted

% 4.0 (feb 2014) added support for cell arrays

% 4.1 (feb 2016) fixed error for cell array input with last argument being

% 'matlab'. Thanks to Richard for pointing this out.

narginchk(1,Inf) ;

NC = nargin ;

% check if we should flip the order

if ischar(varargin{end}) && (strcmpi(varargin{end},'matlab') || strcmpi(varargin{end},'john')),

 % based on a suggestion by JD on the FEX

 NC = NC-1 ;

 ii = 1:NC ; % now first argument will change fastest

else

 % default: enter arguments backwards, so last one (AN) is changing fastest

 ii = NC:-1:1 ;

end

args = varargin(1:NC) ;

% check for empty inputs

if any(cellfun('isempty',args)),

 warning('ALLCOMB:EmptyInput','One of more empty inputs result in an empty output.') ;

 A = zeros(0,NC) ;

elseif NC > 1

 isCellInput = cellfun(@iscell,args) ;

 if any(isCellInput)

 if ~all(isCellInput)

 error('ALLCOMB:InvalidCellInput', ...

 'For cell input, all arguments should be cell arrays.') ;

 end

 % for cell input, we use to indices to get all combinations

 ix = cellfun(@(c) 1:numel(c), args,'un',0) ;

 % flip using ii if last column is changing fastest

 [ix{ii}] = ndgrid(ix{ii}) ;

 A = cell(numel(ix{1}),NC) ; % pre-allocate the output

 for k=1:NC,

 % combine

 A(:,k) = reshape(args{k}(ix{k}),[],1) ;

 end

 else

 % non-cell input, assuming all numerical values or strings

 % flip using ii if last column is changing fastest

 [A{ii}] = ndgrid(args{ii}) ;

 % concatenate

 A = reshape(cat(NC+1,A{:}),[],NC) ;

 end

elseif NC==1,

 A = args{1}(:) ; % nothing to combine

else % NC==0, there was only the 'matlab' flag argument

 A = zeros(0,0) ; % nothing

end

Functions/+Economic_Impact/alterMOLists.m

function [alteredMOList, replacedCapSum, replacedCap, offerRP_Min] = alterMOLists(originalMOList, offerRP, block, scenario)

%% Calcute the Offer within the given time frame and given product length

% Predefine Inputs

counterMOList = 1;

replacedCapSum.AAP.pos	= 0;

replacedCapSum.AAP.neg	= 0;

replacedCapSum.BC.pos	= 0;

replacedCapSum.BC.neg	= 0;

replacedCapSum.BCredOfferID.pos	= 0;

replacedCapSum.BCredOfferID.neg	= 0;

replacedCapSum.AAP.pos	= 0;

replacedCapSum.AAP.neg	= 0;

replacedCapSum.BC.pos	= 0;

replacedCapSum.BC.neg	= 0;

replacedCapSum.BCredOfferID.pos	= 0;

replacedCapSum.BCredOfferID.neg	= 0;

for iBlock=1:length(block.start)

	

	actualBlock.startTime = block.start(iBlock,1);

	actualBlock.endTime = block.end(iBlock,1);

	

	pos.capacity		= offerRP.AAP.pos.capacity(iBlock,1);

	pos.capacityPrice	= offerRP.AAP.pos.capacityPrice(iBlock,1);

	pos.energyPrice		= offerRP.AAP.pos.energyPrice(iBlock,1);

	neg.capacity		= offerRP.AAP.neg.capacity(iBlock,1);

	neg.capacityPrice	= offerRP.AAP.neg.capacityPrice(iBlock,1);

	neg.energyPrice		= offerRP.AAP.neg.energyPrice(iBlock,1);

	AAP.pos				= pos;

	AAP.neg				= neg;

	pos.capacity		= offerRP.BC.pos.capacity(iBlock,1);

	pos.capacityPrice	= offerRP.BC.pos.capacityPrice(iBlock,1);

	pos.energyPrice		= offerRP.BC.pos.energyPrice(iBlock,1);

	neg.capacity		= offerRP.BC.neg.capacity(iBlock,1);

	neg.capacityPrice	= offerRP.BC.neg.capacityPrice(iBlock,1);

	neg.energyPrice		= offerRP.BC.neg.energyPrice(iBlock,1);

	BC.pos				= pos;

	BC.neg				= neg;

	pos.capacity		= offerRP.BCredOfferID.pos.capacity(iBlock,1);

	pos.capacityPrice	= offerRP.BCredOfferID.pos.capacityPrice(iBlock,1);

	pos.energyPrice		= offerRP.BCredOfferID.pos.energyPrice(iBlock,1);

	neg.capacity		= offerRP.BCredOfferID.neg.capacity(iBlock,1);

	neg.capacityPrice	= offerRP.BCredOfferID.neg.capacityPrice(iBlock,1);

	neg.energyPrice		= offerRP.BCredOfferID.neg.energyPrice(iBlock,1);

	BCredOfferID.pos	= pos;

	BCredOfferID.neg	= neg;

	

	blockOfferRP.AAP			= AAP;

	blockOfferRP.BC				= BC;

	blockOfferRP.BCredOfferID	= BCredOfferID;

	switch scenario

		case {'MAX','Max','max'}

			

			% Calculate altered Merrit-Order Lists

			[MOListBlock, capReplaced.max] = Economic_Impact.calcAlteredMOListsMAX(originalMOList, ...

				blockOfferRP, actualBlock);

			

			replacedCapSum.AAP.pos					= replacedCapSum.AAP.pos + capReplaced.max.AAP.pos;

			replacedCapSum.AAP.neg					= replacedCapSum.AAP.neg + capReplaced.max.AAP.neg;

			replacedCapSum.BC.pos					= replacedCapSum.BC.pos + capReplaced.max.BC.pos;

			replacedCapSum.BC.neg					= replacedCapSum.BC.neg + capReplaced.max.BC.neg;

			replacedCapSum.BCredOfferID.pos			= replacedCapSum.BC.pos + capReplaced.max.BCredOfferID.pos;

			replacedCapSum.BCredOfferID.neg			= replacedCapSum.BC.neg + capReplaced.max.BCredOfferID.neg;

			

			replacedCap.AAP.pos(iBlock,1)			= capReplaced.max.AAP.pos;

			replacedCap.AAP.neg(iBlock,1)			= capReplaced.max.AAP.neg;

			replacedCap.BC.pos(iBlock,1)			= capReplaced.max.BC.pos;

			replacedCap.BC.neg(iBlock,1)			= capReplaced.max.BC.neg;

			replacedCap.BCredOfferID.pos(iBlock,1)	= capReplaced.max.BCredOfferID.pos;

			replacedCap.BCredOfferID.neg(iBlock,1)	= capReplaced.max.BCredOfferID.neg;

			

			offerRP_Min = [];

			

		case {'MIN','Min','min'}

			

			% Calculate altered Merrit-Order Lists

			[MOListBlock, capReplaced.min, blockOfferRP_Min] = Economic_Impact.calcAlteredMOListsMIN(originalMOList, ...

				blockOfferRP, actualBlock);

			

			replacedCapSum.AAP.pos					= replacedCapSum.AAP.pos + capReplaced.min.AAP.pos;

			replacedCapSum.AAP.neg					= replacedCapSum.AAP.neg + capReplaced.min.AAP.neg;

			replacedCapSum.BC.pos					= replacedCapSum.BC.pos + capReplaced.min.BC.pos;

			replacedCapSum.BC.neg					= replacedCapSum.BC.neg + capReplaced.min.BC.neg;

			replacedCapSum.BCredOfferID.pos			= replacedCapSum.BCredOfferID.pos + capReplaced.min.BCredOfferID.pos;

			replacedCapSum.BCredOfferID.neg			= replacedCapSum.BCredOfferID.neg + capReplaced.min.BCredOfferID.neg;

			

			replacedCap.AAP.pos(iBlock,1)			= capReplaced.min.AAP.pos;

			replacedCap.AAP.neg(iBlock,1)			= capReplaced.min.AAP.neg;

			replacedCap.BC.pos(iBlock,1)			= capReplaced.min.BC.pos;

			replacedCap.BC.neg(iBlock,1)			= capReplaced.min.BC.neg;

			replacedCap.BCredOfferID.pos(iBlock,1)	= capReplaced.min.BCredOfferID.pos;

			replacedCap.BCredOfferID.neg(iBlock,1)	= capReplaced.min.BCredOfferID.neg;

			

			% assign minimum offerRP to the same structure as offerRP

			offerRP_Min.AAP.pos.capacity(iBlock,1) = blockOfferRP_Min.AAP.pos.capacity;

			offerRP_Min.AAP.pos.capacityPrice(iBlock,1) = blockOfferRP_Min.AAP.pos.capacityPrice;

			offerRP_Min.AAP.pos.energyPrice(iBlock,1) = blockOfferRP_Min.AAP.pos.energyPrice;

			offerRP_Min.AAP.neg.capacity(iBlock,1) = blockOfferRP_Min.AAP.neg.capacity;

			offerRP_Min.AAP.neg.capacityPrice(iBlock,1) = blockOfferRP_Min.AAP.neg.capacityPrice;

			offerRP_Min.AAP.neg.energyPrice(iBlock,1) = blockOfferRP_Min.AAP.neg.energyPrice;

			

			offerRP_Min.BC.pos.capacity(iBlock,1) = blockOfferRP_Min.BC.pos.capacity;

			offerRP_Min.BC.pos.capacityPrice(iBlock,1) = blockOfferRP_Min.BC.pos.capacityPrice;

			offerRP_Min.BC.pos.energyPrice(iBlock,1) = blockOfferRP_Min.BC.pos.energyPrice;

			offerRP_Min.BC.neg.capacity(iBlock,1) = blockOfferRP_Min.BC.neg.capacity;

			offerRP_Min.BC.neg.capacityPrice(iBlock,1) = blockOfferRP_Min.BC.neg.capacityPrice;

			offerRP_Min.BC.neg.energyPrice(iBlock,1) = blockOfferRP_Min.BC.neg.energyPrice;

			

			offerRP_Min.BCredOfferID.pos.capacity(iBlock,1) = blockOfferRP_Min.BCredOfferID.pos.capacity;

			offerRP_Min.BCredOfferID.pos.capacityPrice(iBlock,1) = blockOfferRP_Min.BCredOfferID.pos.capacityPrice;

			offerRP_Min.BCredOfferID.pos.energyPrice(iBlock,1) = blockOfferRP_Min.BCredOfferID.pos.energyPrice;

			offerRP_Min.BCredOfferID.neg.capacity(iBlock,1) = blockOfferRP_Min.BCredOfferID.neg.capacity;

			offerRP_Min.BCredOfferID.neg.capacityPrice(iBlock,1) = blockOfferRP_Min.BCredOfferID.neg.capacityPrice;

			offerRP_Min.BCredOfferID.neg.energyPrice(iBlock,1) = blockOfferRP_Min.BCredOfferID.neg.energyPrice;

			

		otherwise

			

			error('Secify the sceanario')

			

	end

	

	% Merge Merrit-Order Lists

	

	for iLists=1:size(MOListBlock.AAP,2)

		

		alteredMOList.AAP(counterMOList)			= MOListBlock.AAP(iLists);

		alteredMOList.BC(counterMOList)				= MOListBlock.BC(iLists);

		alteredMOList.BCredOfferID(counterMOList)	= MOListBlock.BCredOfferID(iLists);

		

		counterMOList = counterMOList+1;

		

	end

	

end

function checkMOLists(MOList)

%% Check Results of created Merrit-Order Lists

numberMOList = length(fieldnames(MOList.neg));

for i=1:numberMOList

	

	disp([['List' num2str(i)] ' Start: ' datestr(alteredMOList.AAP.neg.(['List' num2str(i)]).start, 'dd.mm.yyyy HH:MM:SS')]);

	disp([['List' num2str(i)] ' End : ' datestr(alteredMOList.AAP.neg.(['List' num2str(i)]).end, 'dd.mm.yyyy HH:MM:SS')]);

	disp(' ')

	

end

Functions/+Economic_Impact/calcAlteredMOListsMAX.m

function [alteredMO_List reducedCap] = calcAlteredMOListsMAX(MOList, offerRP, timeFrame)

%% MO-List for the given timeframe

% Change MO-Lists with price from AAP Mechanism

[alteredMO_List.AAP reducedCap.AAP] = alterMOListsMAX(MOList, offerRP.AAP, timeFrame.startTime, timeFrame.endTime);

% Change MO-Lists with price from BC Mechanism

[alteredMO_List.BC reducedCap.BC] = alterMOListsMAX(MOList, offerRP.BC, timeFrame.startTime, timeFrame.endTime);

% Change MO-Lists with price from BC with reduced intraday Mechanism

[alteredMO_List.BCredOfferID reducedCap.BCredOfferID] = alterMOListsMAX(MOList, offerRP.BCredOfferID, timeFrame.startTime, timeFrame.endTime);

function [MOList_altered reducedCap] = alterMOListsMAX(MOList, offerRP, startTime, endTime)

MOList = getMOSelect(MOList, startTime, endTime);

reducedCap.pos = 0;

reducedCap.neg = 0;

for iMOList = 1:size(MOList,2)

	

	% Get Block Length

	try

		blockLength = (datenum(MOList(iMOList).end)...

			- datenum(MOList(iMOList).start)) * 24;

	catch

		blockStart = datevec(MOList(iMOList).start);

		blockEnd = datevec(MOList(iMOList).start+1);

		blockEnd = [blockEnd(1,1:3) 0 0 0];

		blockLength = (datenum(blockEnd)...

			- MOList(iMOList).start) * 24;

	end

	

	

	% Write start & end time of MO-List

	

	MOList_altered(iMOList).start ...

		= MOList(iMOList).start;

	

	MOList_altered(iMOList).end ...

		= MOList(iMOList).end;

	

	% Write Data to temporary MO-List

	tmpMOList = MOList(iMOList);

	

	% Positive Bids--

	

	% Sort Merrit-Order List by the highest Capacity Price

	tmpMOListCAPSort.pos = Economic_Impact.sortMOListCAPPrice(tmpMOList.pos.capacityPrice, ...

		tmpMOList.pos.capacity, tmpMOList.pos.capacityCum, ...

		tmpMOList.pos.energyPrice);

	

	tmpMOListCAPSort.pos.isWindTendered = false(size(tmpMOListCAPSort.pos.capacity));

	

	% Replace Values with Offers

	discountOfferRPCapacity = offerRP.pos.capacity;

	iReplace = 1;

	while discountOfferRPCapacity > 0

		if iReplace > length(tmpMOListCAPSort.pos.capacity)

			break;

		end

		

		if tmpMOListCAPSort.pos.capacityPrice(iReplace,1) ...

				> offerRP.pos.capacityPrice * blockLength

			tmpMOListCAPSort.pos.capacityPrice(iReplace,1) ...

				= offerRP.pos.capacityPrice * blockLength;

			tmpMOListCAPSort.pos.energyPrice(iReplace,1) ...

				= offerRP.pos.energyPrice;

			discountOfferRPCapacity = discountOfferRPCapacity ...

				- tmpMOListCAPSort.pos.capacity(iReplace,1);

			

			% Flag bid as bid from wind

			tmpMOListCAPSort.pos.isWindTendered(iReplace,1) ...

				= true;			

			

			reducedCap.pos = reducedCap.pos + ...

				tmpMOListCAPSort.pos.capacity(iReplace,1);

			

		end

		iReplace = iReplace+1;

		

	end

	reducedCap.pos = reducedCap.pos * blockLength;

	

	% Sort Merrit-Order List by the highest Energy Price

	[MOList_altered(iMOList).pos.capacityPrice, MOList_altered(iMOList).pos.capacity, ...

		MOList_altered(iMOList).pos.capacityCum, MOList_altered(iMOList).pos.energyPrice, ...

		MOList_altered(iMOList).pos.isWindTendered] ...

		= Economic_Impact.sortMOListNRGPrice(tmpMOListCAPSort.pos.capacityPrice, ...

		tmpMOListCAPSort.pos.capacity, tmpMOListCAPSort.pos.capacityCum, ...

		tmpMOListCAPSort.pos.energyPrice,tmpMOListCAPSort.pos.isWindTendered);

	

% 	% Write Time Vector to Merrit-Order List

% 	MOList_altered(iMOList).start ...

% 		= tmpMOList.start;

	% Recreate cumulated capacity, that was changed due to reorganizing the

	% Merrit-Order List	

	

	MOList_altered(iMOList).pos.capacityCum(1,1)...

		= MOList_altered(iMOList).pos.capacity(1,1);

	for iCapCum=2:length(MOList_altered(iMOList).pos.capacityCum)

		MOList_altered(iMOList).pos.capacityCum(iCapCum,1)...

			= MOList_altered(iMOList).pos.capacityCum(iCapCum-1,1)...

			+ MOList_altered(iMOList).pos.capacity(iCapCum,1);

	end

	

	% End Positive---

	

	% Negative Bids--

	

	% Sort Merrit-Order List by the highest Capacity Price

	tmpMOListCAPSort.neg = Economic_Impact.sortMOListCAPPrice(tmpMOList.neg.capacityPrice, ...

		tmpMOList.neg.capacity, tmpMOList.neg.capacityCum, ...

		tmpMOList.neg.energyPrice);

	

	tmpMOListCAPSort.neg.isWindTendered = false(size(tmpMOListCAPSort.neg.capacity));

	

	% Replace Values with Offers

	discountOfferRPCapacity = offerRP.neg.capacity;

	iReplace = 1;

	while discountOfferRPCapacity > 0

		if iReplace > length(tmpMOListCAPSort.neg.capacity)

			break;

		end

		

		if tmpMOListCAPSort.neg.capacityPrice(iReplace,1) ...

				> offerRP.neg.capacityPrice * blockLength

			tmpMOListCAPSort.neg.capacityPrice(iReplace,1) ...

				= offerRP.neg.capacityPrice * blockLength;

			tmpMOListCAPSort.neg.energyPrice(iReplace,1) ...

				= offerRP.neg.energyPrice;

			discountOfferRPCapacity = discountOfferRPCapacity ...

				- tmpMOListCAPSort.neg.capacity(iReplace,1);

			% Flag bid as bid from wind

			tmpMOListCAPSort.neg.isWindTendered(iReplace,1) ...

				= true;

			

			reducedCap.neg = reducedCap.neg + ...

				tmpMOListCAPSort.neg.capacity(iReplace,1);

			

		end

		iReplace = iReplace+1;

	end

	reducedCap.neg = reducedCap.neg * blockLength;

	

	% Sort Merrit-Order List by the highest Energy Price

	[MOList_altered(iMOList).neg.capacityPrice, MOList_altered(iMOList).neg.capacity, ...

		MOList_altered(iMOList).neg.capacityCum, MOList_altered(iMOList).neg.energyPrice, ...

		MOList_altered(iMOList).neg.isWindTendered] ...

		= Economic_Impact.sortMOListNRGPrice(tmpMOListCAPSort.neg.capacityPrice, ...

		tmpMOListCAPSort.neg.capacity, tmpMOListCAPSort.neg.capacityCum, ...

		tmpMOListCAPSort.neg.energyPrice,tmpMOListCAPSort.neg.isWindTendered);

	

% 	% Write Time Vector to Merrit-Order List

% 	MOList_altered(iMOList).neg.time ...

% 		= tmpMOList.neg.time;

	% Recreate cumulated capacity, that was changed due to reorganizing the

	% Merrit-Order List	

	

	MOList_altered(iMOList).neg.capacityCum(1,1)...

		= MOList_altered(iMOList).neg.capacity(1,1);

	for iCapCum=2:length(MOList_altered(iMOList).neg.capacityCum)

		MOList_altered(iMOList).neg.capacityCum(iCapCum,1)...

			= MOList_altered(iMOList).neg.capacityCum(iCapCum-1,1)...

			+ MOList_altered(iMOList).neg.capacity(iCapCum,1);

	end	

	

	% End Negative---

	

	

	% Create new end Time due to block restrictions

	if iMOList == 1

		if datenum(MOList_altered(iMOList).start) ...

				< datenum(startTime);

			

			oldMOStart = MOList_altered(iMOList).start;

			MOList_altered(iMOList).start = startTime;

		else

			oldMOStart = MOList_altered(iMOList).start;

		end

		

	else

		oldMOStart = MOList_altered(iMOList).start;

	end

	

	if iMOList == size(MOList,2)

		

		if datenum(MOList_altered(iMOList).end) ...

				> datenum(endTime) + 1/24/3600;

			

			oldMOEnd = MOList_altered(iMOList).end;

			MOList_altered(iMOList).end = endTime;

		else

			oldMOEnd = MOList_altered(iMOList).end;

		end

		

	else

		oldMOEnd = MOList_altered(iMOList).end;

	end

	

	lengthOld = datenum(oldMOEnd) - datenum(oldMOStart);

	

	lengthNew = datenum(MOList_altered(iMOList).end) ...

		- datenum(MOList_altered(iMOList).start);

	

	

	

	MOList_altered(iMOList).pos.capacityPrice ...

		= MOList_altered(iMOList).pos.capacityPrice ...

		* (lengthNew/lengthOld);

	

	MOList_altered(iMOList).neg.capacityPrice ...

		= MOList_altered(iMOList).neg.capacityPrice ...

		* (lengthNew/lengthOld);

	

	

	

	% End Replacement--

	

	

end

function moOut = getMOSelect(moIn, startTime, endTime)

startTime = roundn(startTime,-9);

endTime = roundn(endTime,-9);

moStart = roundn(([moIn.start])',-9);

moEnd= roundn(([moIn.end])',-9);

moOut = moIn(find(moStart <= startTime,1,'last'):find(moEnd >= endTime,1,'first'));

Functions/+Economic_Impact/calcAlteredMOListsMIN.m

function [alteredMO_List, reducedCap, offerRP_Min] = calcAlteredMOListsMIN(MOList, offerRP, timeFrame)

%% Convert Input

startTime = timeFrame.startTime;

endTime = timeFrame.endTime;

%% MO-List for the given timeframe

% Change MO-Lists with price from AAP Mechanism

[alteredMO_List.AAP, reducedCap.AAP, offerRP_Min.AAP] = alterMOListsMIN(MOList, offerRP.AAP, startTime, endTime);

% Change MO-Lists with price from BC Mechanism

[alteredMO_List.BC, reducedCap.BC, offerRP_Min.BC] = alterMOListsMIN(MOList, offerRP.BC, startTime, endTime);

% Change MO-Lists with price from BC with reduced intraday Mechanism

[alteredMO_List.BCredOfferID, reducedCap.BCredOfferID, offerRP_Min.BCredOfferID] = alterMOListsMIN(MOList, offerRP.BCredOfferID, startTime, endTime);

function [MOList_altered, reducedCap, offerRP_Min] = alterMOListsMIN(MOList, offerRP, startTime, endTime)

MOList = getMOSelect(MOList, startTime, endTime);

reducedCap.pos = 0;

reducedCap.neg = 0;

for iMOList = 1:size(MOList,2)

	

	% Get Block Length

	try

		blockLength = (datenum(MOList(iMOList).end)...

			- datenum(MOList(iMOList).start)) * 24;

	catch

		blockStart = datevec(datenum(MOList(iMOList).start));

		blockEnd = datevec(datenum(MOList(iMOList).start)+1);

		blockEnd = [blockEnd(1,1:3) 0 0 0];

		blockLength = (datenum(blockEnd)...

			- datenum(MOList(iMOList).start)) * 24;

	end

	

	

	% Write start & end time of MO-List

	

	MOList_altered(iMOList).start ...

		= MOList(iMOList).start;

	

	MOList_altered(iMOList).end ...

		= MOList(iMOList).end;

	

	% Write Data to temporary MO-List

	tmpMOList = MOList(iMOList);

	

	

	% Positive Bids--

	

	% Sort Merrit-Order List by the highest Capacity Price

	tmpMOListCAPSort.pos = Economic_Impact.sortMOListCAPPrice(tmpMOList.pos.capacityPrice, ...

		tmpMOList.pos.capacity, tmpMOList.pos.capacityCum, ...

		tmpMOList.pos.energyPrice);

	

	tmpMOListCAPSort.pos.isWindTendered = false(size(tmpMOListCAPSort.pos.capacity));

	

	% Replace Values with Offers

	discountOfferRPCapacity = offerRP.pos.capacity;

	iReplace = 1;

	replaceByMin = false;

	

	while discountOfferRPCapacity > 0

		if iReplace > length(tmpMOListCAPSort.pos.capacity)

			break;

		end

		

		replaceByMin(iReplace) = true;

		

		discountOfferRPCapacity = discountOfferRPCapacity ...

			- tmpMOListCAPSort.pos.capacity(iReplace,1);

		

		% Flag bid as bid from wind

		tmpMOListCAPSort.pos.isWindTendered(iReplace,1) ...

			= true;

		

		iReplace = iReplace+1;

		

	end

	

	if any(replaceByMin)

		

		% Amount of replaced Energy

		reducedCap.pos = reducedCap.pos + ...

			sum(tmpMOListCAPSort.pos.capacity(replaceByMin,1))*blockLength;

		

		% Replace Cacacity Prices by the last price, that was substituted,

		% if offer is higher than replaced cap-price from MOL then the cap

		% price is used

		if offerRP.pos.capacityPrice * blockLength > min(tmpMOListCAPSort.pos.capacityPrice(replaceByMin))

			capPriceTemp = tmpMOListCAPSort.pos.capacityPrice(replaceByMin);

			capPriceTemp(offerRP.pos.capacityPrice * blockLength < capPriceTemp) = offerRP.pos.capacityPrice * blockLength;

			isLower = capPriceTemp < tmpMOListCAPSort.pos.capacityPrice(replaceByMin);

			tmpMOListCAPSort.pos.capacityPrice(replaceByMin' & isLower) = capPriceTemp(isLower);

		else

			tmpMOListCAPSort.pos.capacityPrice(replaceByMin) ...

				= min(tmpMOListCAPSort.pos.capacityPrice(replaceByMin));

		end

		

		

		% Replace Cacacity Prices by the last price, that was substituted

		tmpMOListCAPSort.pos.capacityPrice(replaceByMin) ...

			= min(tmpMOListCAPSort.pos.capacityPrice(replaceByMin));

		

		% Replace corresponding Energy Prices, not exceeding the lowest energy

		% price

		if offerRP.pos.energyPrice < min(tmpMOListCAPSort.pos.energyPrice(replaceByMin,1))

			tmpMOListCAPSort.pos.energyPrice(replaceByMin) ...

				= min(tmpMOListCAPSort.pos.energyPrice(replaceByMin,1));

		else

			tmpMOListCAPSort.pos.energyPrice(replaceByMin) ...

				= offerRP.pos.energyPrice;

		end

		

	end

	

	% Sort Merrit-Order List by the highest Energy Price

	try

		[MOList_altered(iMOList).pos.capacityPrice, MOList_altered(iMOList).pos.capacity, ...

			MOList_altered(iMOList).pos.capacityCum, MOList_altered(iMOList).pos.energyPrice, ...

			MOList_altered(iMOList).pos.isWindTendered] ...

			= Economic_Impact.sortMOListNRGPrice(tmpMOListCAPSort.pos.capacityPrice, ...

			tmpMOListCAPSort.pos.capacity, tmpMOListCAPSort.pos.capacityCum, ...

			tmpMOListCAPSort.pos.energyPrice,tmpMOListCAPSort.pos.isWindTendered);

	catch

		pause(1)

	end

	% 	% Write Time Vector to Merrit-Order List

	% 	MOList_altered(iMOList).pos.time ...

	% 		= tmpMOList.pos.time;

	

	% Recreate cumulated capacity, that was changed due to reorganizing the

	% Merrit-Order List

	

	MOList_altered(iMOList).pos.capacityCum(1,1)...

		= MOList_altered(iMOList).pos.capacity(1,1);

	

	for iCapCum=2:length(MOList_altered(iMOList).pos.capacityCum)

		MOList_altered(iMOList).pos.capacityCum(iCapCum,1)...

			= MOList_altered(iMOList).pos.capacityCum(iCapCum-1,1)...

			+ MOList_altered(iMOList).pos.capacity(iCapCum,1);

	end

	

	% End Positive---

	

	% Generate offerRP for Min scenario

	offerRP_Min.pos.capacity = offerRP.pos.capacity;

	if ~isnan(offerRP_Min.pos.capacity) && offerRP_Min.pos.capacity ~= 0

		if offerRP.pos.capacityPrice * blockLength > min(tmpMOListCAPSort.pos.capacityPrice(replaceByMin))

			offerRP_Min.pos.capacityPrice = min(capPriceTemp(isLower));

		else

			offerRP_Min.pos.capacityPrice = min(tmpMOListCAPSort.pos.capacityPrice(replaceByMin)) / blockLength;

		end

		offerRP_Min.pos.energyPrice = min(tmpMOListCAPSort.pos.energyPrice(replaceByMin));

		if isempty(offerRP_Min.pos.capacityPrice)

			offerRP_Min.pos.capacityPrice = nan;

			offerRP_Min.pos.energyPrice = nan;

		end

	elseif offerRP_Min.pos.capacity == 0

		offerRP_Min.pos.capacityPrice = 0;

		offerRP_Min.pos.energyPrice = 0;

	else

		offerRP_Min.pos.capacityPrice = nan;

		offerRP_Min.pos.energyPrice = nan;

	end

	

	% Negative Bids--

	

	% Sort Merrit-Order List by the highest Capacity Price

	tmpMOListCAPSort.neg = Economic_Impact.sortMOListCAPPrice(tmpMOList.neg.capacityPrice, ...

		tmpMOList.neg.capacity, tmpMOList.neg.capacityCum, ...

		tmpMOList.neg.energyPrice);

	

	tmpMOListCAPSort.neg.isWindTendered = false(size(tmpMOListCAPSort.neg.capacity));

	

	% Replace Values with Offers

	discountOfferRPCapacity = offerRP.neg.capacity;

	iReplace = 1;

	replaceByMin = false;

	

	while discountOfferRPCapacity > 0

		if iReplace > length(tmpMOListCAPSort.neg.capacity)

			break;

		end

		

		replaceByMin(iReplace) = true;

		

		discountOfferRPCapacity = discountOfferRPCapacity ...

			- tmpMOListCAPSort.neg.capacity(iReplace,1);

		

		% Flag bid as bid from wind

		tmpMOListCAPSort.neg.isWindTendered(iReplace,1) ...

			= true;

		

		iReplace = iReplace+1;

		

	end

	

	if any(replaceByMin)

		

		% Amount of replaced Energy

		reducedCap.neg = reducedCap.neg + ...

			sum(tmpMOListCAPSort.neg.capacity(replaceByMin,1))*blockLength;

		

		% Replace Cacacity Prices by the last price, that was substituted,

		% if offer is higher than replaced cap-price from MOL then the cap

		% price is used

		if offerRP.neg.capacityPrice * blockLength > min(tmpMOListCAPSort.neg.capacityPrice(replaceByMin))

			capPriceTemp = tmpMOListCAPSort.neg.capacityPrice(replaceByMin);

			capPriceTemp(offerRP.neg.capacityPrice * blockLength < capPriceTemp) = offerRP.neg.capacityPrice * blockLength;

			isLower = capPriceTemp < tmpMOListCAPSort.neg.capacityPrice(replaceByMin);

			tmpMOListCAPSort.neg.capacityPrice(replaceByMin' & isLower) = capPriceTemp(isLower);			

		else

			tmpMOListCAPSort.neg.capacityPrice(replaceByMin) ...

				= min(tmpMOListCAPSort.neg.capacityPrice(replaceByMin));

		end

		% Replace corresponding Energy Prices, not exceeding the lowest energy

		% price

		if offerRP.neg.energyPrice < min(tmpMOListCAPSort.neg.energyPrice(replaceByMin,1))

			tmpMOListCAPSort.neg.energyPrice(replaceByMin) ...

				= min(tmpMOListCAPSort.neg.energyPrice(replaceByMin,1));

		else

			tmpMOListCAPSort.neg.energyPrice(replaceByMin) ...

				= offerRP.neg.energyPrice;

		end

		

	end

	

	% Sort Merrit-Order List by the highest Energy Price

	try

		[MOList_altered(iMOList).neg.capacityPrice, MOList_altered(iMOList).neg.capacity, ...

			MOList_altered(iMOList).neg.capacityCum, MOList_altered(iMOList).neg.energyPrice, ...

			MOList_altered(iMOList).neg.isWindTendered] ...

			= Economic_Impact.sortMOListNRGPrice(tmpMOListCAPSort.neg.capacityPrice, ...

			tmpMOListCAPSort.neg.capacity, tmpMOListCAPSort.neg.capacityCum, ...

			tmpMOListCAPSort.neg.energyPrice,tmpMOListCAPSort.neg.isWindTendered);

	catch

		pause(1)

	end

	% 	% Write Time Vector to Merrit-Order List

	% 	MOList_altered(iMOList).neg.time ...

	% 		= tmpMOList.neg.time;

	

	% Recreate cumulated capacity, that was changed due to reorganizing the

	% Merrit-Order List

	MOList_altered(iMOList).neg.capacityCum(1,1)...

		= MOList_altered(iMOList).neg.capacity(1,1);

	

	for iCapCum=2:length(MOList_altered(iMOList).neg.capacityCum)

		MOList_altered(iMOList).neg.capacityCum(iCapCum,1)...

			= MOList_altered(iMOList).neg.capacityCum(iCapCum-1,1)...

			+ MOList_altered(iMOList).neg.capacity(iCapCum,1);

	end

	

	% End Negative---

	

	% Generate offerRP for Min scenario

	offerRP_Min.neg.capacity = offerRP.neg.capacity;

	if ~isnan(offerRP_Min.neg.capacity) && offerRP_Min.neg.capacity ~= 0

		if offerRP.neg.capacityPrice * blockLength > min(tmpMOListCAPSort.neg.capacityPrice(replaceByMin))

			offerRP_Min.neg.capacityPrice = min(capPriceTemp(isLower));

		else

			offerRP_Min.neg.capacityPrice = min(tmpMOListCAPSort.neg.capacityPrice(replaceByMin)) / blockLength;

		end

		offerRP_Min.neg.energyPrice = min(tmpMOListCAPSort.neg.energyPrice(replaceByMin));

		if isempty(offerRP_Min.neg.capacityPrice)

			offerRP_Min.neg.capacityPrice = nan;

			offerRP_Min.neg.energyPrice = nan;

		end

	elseif offerRP_Min.neg.capacity == 0

		offerRP_Min.neg.capacityPrice = 0;

		offerRP_Min.neg.energyPrice = 0;

	else

		offerRP_Min.neg.capacityPrice = nan;

		offerRP_Min.neg.energyPrice = nan;

	end

	

	% Create new end Time due to block restrictions

	if iMOList == 1

		if datenum(MOList_altered(iMOList).start) ...

				< datenum(startTime);

			

			oldMOStart = MOList_altered(iMOList).start;

			MOList_altered(iMOList).start = startTime;

		else

			oldMOStart = MOList_altered(iMOList).start;

		end

		

	else

		oldMOStart = MOList_altered(iMOList).start;

	end

	

	if iMOList == size(MOList,2)

		

		if datenum(MOList_altered(iMOList).end) ...

				> datenum(endTime) + 1/24/3600;

			

			oldMOEnd = MOList_altered(iMOList).end;

			MOList_altered(iMOList).end = endTime;

		else

			oldMOEnd = MOList_altered(iMOList).end;

		end

		

	else

		oldMOEnd = MOList_altered(iMOList).end;

	end

	

	lengthOld = datenum(oldMOEnd) - datenum(oldMOStart);

	

	lengthNew = datenum(MOList_altered(iMOList).end) ...

		- datenum(MOList_altered(iMOList).start);

	

	

	

	MOList_altered(iMOList).pos.capacityPrice ...

		= MOList_altered(iMOList).pos.capacityPrice ...

		* (lengthNew/lengthOld);

	

	MOList_altered(iMOList).neg.capacityPrice ...

		= MOList_altered(iMOList).neg.capacityPrice ...

		* (lengthNew/lengthOld);

	

	

	

	% End Replacement--

	

	

end

function moOut = getMOSelect(moIn, startTime, endTime)

startTime = roundn(startTime,-9);

endTime = roundn(endTime,-9);

moStart = roundn(([moIn.start])',-9);

moEnd= roundn(([moIn.end])',-9);

moOut = moIn(find(moStart <= startTime,1,'last'):find(moEnd >= endTime,1,'first'));

Functions/+Offer_ControlReserve/calcBlockOffer.m

function [offerRP] = calcBlockOffer(DA_Forec, ID_Forec, RPP, actualFeedIn, DA_Forec_Prob, ID_Forec_Prob, DA_MarketPrice, ID_MarketPrice, startTime, endTime, userInput, opts)

%

% Function calculates the possible offer of a stochastic unit based on

% probabilistic forecast under the German EEG. Two different offers are

% calculated. One for the concept of available active power (concept

% developed @ IWES) and the other one for the balance control mechanism

% which is the current method to deliver control reserve.

%

% The expected inputs are:

% DA_Forec:			[struct]

%					time: [n x 1]

%					data: [n x 1]

% ID_Forec:			[struct]

%					time: [n x 1]

%					data: [n x 1]

% RPP:				[struct]

%					time: [n x 6]

%					data: [n x 1]

% actualFeedIn:		[struct]

%					time: [n x 1]

%					data: [n x 1]

% DA_MarketPrice:	[struct]

%					price: [n x 1]

%					time: [n x 6]

% ID_MarketPrice:	[struct]

%					lastPrice: [n x 1]

%					averagePrice: [n x 1]

%					lowPrice: [n x 1]

%					highPrice: [n x 1]

%					time: [n x 6]

% timeFrame:		[struct]

%					startTime(datevec-format)

%					endTime(datevec-format)

% userInput:		[struct] with following variables: securityLevel,

%					leadTimeRP, productLength, percentPosRP, percentNegRP, installedCapacity

%

% v1.0 (21.05.2012) by Malte Jansen @ Fraunhofer IWES

%% Solve datenum problem on function call

DA_Forec.time = roundn(DA_Forec.time,-9);

ID_Forec.time = roundn(ID_Forec.time,-9);

actualFeedIn.time = roundn(actualFeedIn.time,-9);

DA_Forec_Prob.time = roundn(DA_Forec_Prob.time,-9);

ID_Forec_Prob.time = roundn(ID_Forec_Prob.time,-9);

DA_MarketPrice.time = roundn(DA_MarketPrice.time,-9);

ID_MarketPrice.time = roundn(ID_MarketPrice.time,-9);

RPP.time = roundn(RPP.time,-9);

startTime = roundn(startTime,-9);

endTime = roundn(endTime,-9);

%% Offerable amount on a DA Basis

offerableRP.data = DA_Forec_Prob.data(:,DA_Forec_Prob.securityLevel == userInput.securityLevel);

offerableRP.time = DA_Forec_Prob.time;

offerableRP.data = offerableRP.data(find(offerableRP.time >= startTime,1,'first'):find(offerableRP.time < endTime,1,'last'),:);

offerableRP.time = offerableRP.time(find(offerableRP.time >= startTime,1,'first'):find(offerableRP.time < endTime,1,'last'),:);

% Replace NaNs with 0

offerableRP.data(isnan(offerableRP.data)) = 0;

%% Offerable amount on a ID Basis

secureIDCapacity.data = ID_Forec_Prob.data(:,ID_Forec_Prob.securityLevel == userInput.securityLevel);

secureIDCapacity.time = ID_Forec_Prob.time;

secureIDCapacity.data = secureIDCapacity.data(find(secureIDCapacity.time >= startTime,1,'first'):find(secureIDCapacity.time < endTime,1,'last'),:);

secureIDCapacity.time = secureIDCapacity.time(find(secureIDCapacity.time >= startTime,1,'first'):find(secureIDCapacity.time < endTime,1,'last'),:);

% Replace NaNs with 0

secureIDCapacity.data(isnan(secureIDCapacity.data)) = 0;

%% Selection actual Feed-in

selectionActualFeedIn.data = actualFeedIn.data(find(actualFeedIn.time < startTime,1,'last')+1:find(actualFeedIn.time < endTime,1,'last'),:);

selectionActualFeedIn.time = actualFeedIn.time(find(actualFeedIn.time < startTime,1,'last')+1:find(actualFeedIn.time < endTime,1,'last'),:);

selectionActualFeedIn.data = actualFeedIn.data(find(actualFeedIn.time >= startTime,1,'first'):find(actualFeedIn.time < endTime,1,'last'),:);

selectionActualFeedIn.time = actualFeedIn.time(find(actualFeedIn.time >= startTime,1,'first'):find(actualFeedIn.time < endTime,1,'last'),:);

%% Calculate Income EPEX [DA & ID] under EEG Framework

% that would have been generated if the CVPP only had taken part on the

% power echange markets

% incomeEPEX = calcIncomeEPEX(actualFeedIn, DA_Forec, ID_Forec, DA_MarketPrice,...

% 	ID_MarketPrice, RPP, startTime, endTime);

% No deviation from ID will be considered

if opts.noBalPrice

	ID_Forec_noDev = ID_Forec;

	ID_Forec_noDev.data = ID_Forec.data(:,1); % 1h Forecast

else

	ID_Forec_noDev = actualFeedIn;

end

incomeEPEX = Offer_ControlReserve.calcIncomeEPEX_new(ID_Forec_noDev, DA_Forec, ID_Forec, DA_MarketPrice,...

	ID_MarketPrice, RPP, startTime, endTime);

[incomeEEG, resultFIT, resultMarketPremium] = ...

	Offer_ControlReserve.calcIncomeEEG_new(actualFeedIn.time, actualFeedIn.data, ...

	DA_MarketPrice.time, DA_MarketPrice.price, startTime, endTime, opts.feedInTariff);

potID = secureIDCapacity.data;

%% Calculation of Capacity % Energy Prices in the Available Active Power Scenario

offerRP.AAP...

	= Offer_ControlReserve.calcOfferPriceAAP(DA_Forec, DA_MarketPrice, ID_Forec, ID_MarketPrice,...

	RPP, actualFeedIn, startTime, endTime, incomeEPEX, incomeEEG, ...

	offerableRP.data, secureIDCapacity.data, resultFIT, ...

	userInput.percentPosRP, userInput.percentNegRP, userInput.installedCapacity, opts);

%% Calculation of Capacity % Energy Prices in the Balance-Control Scenario

offerRP.BC...

	= Offer_ControlReserve.calcOfferPriceBC(DA_Forec, DA_MarketPrice, ID_Forec, ID_MarketPrice,...

	RPP, actualFeedIn, startTime, endTime, incomeEPEX, incomeEEG, ...

	offerableRP.data, secureIDCapacity.data, resultFIT, ...

	userInput.percentPosRP, userInput.percentNegRP, userInput.installedCapacity, opts);

%% Calculation of Capacity % Energy Prices in the Balance-Control Scenario with reduced Intraday capacity in the intraday part

offerRP.BCred...

	= Offer_ControlReserve.calcOfferPriceBCredOfferID(DA_Forec, DA_MarketPrice, ID_Forec, ID_MarketPrice,...

	RPP, actualFeedIn, startTime, endTime, incomeEPEX, incomeEEG, ...

	offerableRP.data, secureIDCapacity.data, resultFIT, ...

	userInput.percentPosRP, userInput.percentNegRP, userInput.installedCapacity, opts);

%% Write Time Series to array

offerRP.timeSeries.time				= selectionActualFeedIn.time;

offerRP.timeSeries.secureDACap		= offerableRP.data;

offerRP.timeSeries.secureIDCap		= secureIDCapacity.data;

offerRP.timeSeries.feedIn			= selectionActualFeedIn.data;

offerRP.potID						= potID;

Functions/+Offer_ControlReserve/calcBlockOfferControllable.m

function [offerRPControllable] = calcBlockOfferControllable(MoList, DA_MarketPrice, startTime, endTime, userInput, opts)

%

% Function calculates the possible offer of a stochastic unit based on

% probabilistic forecast under the German EEG. Two different offers are

% calculated. One for the concept of available active power (concept

% developed @ IWES) and the other one for the balance control mechanism

% which is the current method to deliver control reserve.

%

% The expected inputs are:

% DA_MarketPrice:	[struct]

%					price: [n x 1]

%					time: [n x 6]

% timeFrame:		[struct]

%					startTime(datevec-format)

%					endTime(datevec-format)

% userInput:		[struct] with following variables: securityLevel,

%					leadTimeRP, productLength, percentPosRP, percentNegRP, installedCapacity

%

% v1.0 (21.05.2012) by Malte Jansen @ Fraunhofer IWES

%% HT/LT Determination

determinationHTNT = datevec((endTime - floor(startTime)))

hoursHTNT = determinationHTNT(:,4);

if hoursHTNT < 8 | hoursHTNT >= 20

	isHT = false;

else

	isHT = true;

end

	

%% Calculation of capacity

if opts.isFlexible

	if isHT

		offerRPControllable.neg.capacity = userInput.installedCapacity;

		offerRPControllable.pos.capacity = nan;

	else

		offerRPControllable.neg.capacity = nan;

		offerRPControllable.pos.capacity = userInput.installedCapacity;

	end

else

	offerRPControllable.neg.capacity = userInput.installedCapacity;

	offerRPControllable.pos.capacity = nan;

end

%% Calculation of capacity price

MoSelect = getMOSelect(MoList,startTime,endTime);

% Sort Mo by cap price

for iMo = 1 : length(MoSelect)

	

	[MoSelect(iMo).pos] = ...

		Economic_Impact.sortMOListCAPPrice_New(MoSelect(iMo).pos.capacityPrice, ...

		MoSelect(iMo).pos.capacity,MoSelect(iMo).pos.capacityCum,MoSelect(iMo).pos.energyPrice);

	

	[MoSelect(iMo).neg] = ...

		Economic_Impact.sortMOListCAPPrice_New(MoSelect(iMo).neg.capacityPrice, ...

		MoSelect(iMo).neg.capacity,MoSelect(iMo).neg.capacityCum,MoSelect(iMo).neg.energyPrice);

	

end

if opts.isFlexible

	if isHT

		offerRPControllable.neg.capacityPrice = MoSelect.neg.capacityPrice(find(MoSelect.neg.capacityCum <= MoSelect.neg.capacityCum(end) - offerRPControllable.neg.capacity,1,'last'));

		offerRPControllable.pos.capacityPrice = nan;

	else

		offerRPControllable.neg.capacityPrice = nan;

		offerRPControllable.pos.capacityPrice = MoSelect.pos.capacityPrice(find(MoSelect.pos.capacityCum <= MoSelect.pos.capacityCum(end) - offerRPControllable.neg.capacity,1,'last'));

	end

else

	offerRPControllable.neg.capacityPrice = MoSelect.neg.capacityPrice(find(MoSelect.neg.capacityCum <= MoSelect.neg.capacityCum(end) - offerRPControllable.neg.capacity,1,'last'));

	offerRPControllable.pos.capacityPrice = nan;

end

%% Calculation of energy price

if opts.isFlexible

	if isHT

		offerRPControllable.neg.energyPrice = 49.41;

		offerRPControllable.pos.energyPrice = nan;

	else

		

	end

elseif ~opts.isFlexible

	energyPrices = 14.5*10 - DA_MarketPrice.price;

	offerRPControllable.neg.energyPrice = nanmean(energyPrices(find(DA_MarketPrice.time >= startTime & DA_MarketPrice.time <= endTime)));

	offerRPControllable.pos.energyPrice = nan;

end

%% Calculation of Capacity % Energy Prices in the Available Active Power Scenario

offerRP.AAP = offerRPControllable;

%% Calculation of Capacity % Energy Prices in the Balance-Control Scenario

offerRP.BC = offerRPControllable;

%% Calculation of Capacity % Energy Prices in the Balance-Control Scenario with reduced Intraday capacity in the intraday part

offerRP.BCred = offerRPControllable;

%% Write Time Series to array

offerRP.timeSeries.time				= DA_MarketPrice.time(find(DA_MarketPrice.time >= startTime & DA_MarketPrice.time <= endTime));

offerRP.timeSeries.secureDACap		= repmat(userInput.installedCapacity,size(offerRP.timeSeries.time,1),1);

offerRP.timeSeries.secureIDCap		= offerRP.timeSeries.secureDACap;

offerRP.timeSeries.feedIn			= offerRP.timeSeries.secureIDCap;

offerRP.potID						= offerRP.timeSeries.secureIDCap;

function moOut = getMOSelect(moIn, startTime, endTime)

startTime = datenum(startTime);

endTime = datenum(endTime);

moStart = cellfun(@datenum, {moIn.start}');

moEnd = cellfun(@datenum, {moIn.end}');

moOut = moIn(find(moStart <= startTime,1,'last'):find(moEnd > endTime,1,'first'));

Functions/+Offer_ControlReserve/calcBlockOfferControlled.m

function [offerRP] = calcBlockOfferControlled(MoList, DA_MarketPrice, startTime, endTime, userInput, opts)

%

% Function calculates the possible offer of a stochastic unit based on

% probabilistic forecast under the German EEG. Two different offers are

% calculated. One for the concept of available active power (concept

% developed @ IWES) and the other one for the balance control mechanism

% which is the current method to deliver control reserve.

%

% The expected inputs are:

% DA_MarketPrice:	[struct]

%					price: [n x 1]

%					time: [n x 6]

% timeFrame:		[struct]

%					startTime(datevec-format)

%					endTime(datevec-format)

% userInput:		[struct] with following variables: securityLevel,

%					leadTimeRP, productLength, percentPosRP, percentNegRP, installedCapacity

%

% v1.0 (21.05.2012) by Malte Jansen @ Fraunhofer IWES

%% HT/LT Determination

determinationHTNT = datevec((endTime - floor(startTime)));

hoursHTNT = determinationHTNT(:,4);

if hoursHTNT < 8 | hoursHTNT >= 20

	isHT = false;

else

	isHT = true;

end

	

%% Calculation of capacity

if opts.isFlexible

	if isHT

		offerRPControllable.neg.capacity = userInput.installedCapacity;

		offerRPControllable.pos.capacity = nan;

	else

		offerRPControllable.neg.capacity = nan;

		offerRPControllable.pos.capacity = userInput.installedCapacity;

	end

else

	offerRPControllable.neg.capacity = userInput.installedCapacity;

	offerRPControllable.pos.capacity = nan;

end

%% Calculation of capacity price

MoSelect = getMOSelect(MoList,startTime,endTime);

blockLength = Auxiliary_Functions.roundn((endTime - startTime) * 24,-2);

moLength = Auxiliary_Functions.roundn((MoSelect.end - MoSelect.start) * 24,-2);

% Sort Mo by cap price

for iMo = 1 : length(MoSelect)

	

	[MoSelect(iMo).pos] = ...

		Economic_Impact.sortMOListCAPPrice_New(MoSelect(iMo).pos.capacityPrice, ...

		MoSelect(iMo).pos.capacity,MoSelect(iMo).pos.capacityCum,MoSelect(iMo).pos.energyPrice);

	

	[MoSelect(iMo).neg] = ...

		Economic_Impact.sortMOListCAPPrice_New(MoSelect(iMo).neg.capacityPrice, ...

		MoSelect(iMo).neg.capacity,MoSelect(iMo).neg.capacityCum,MoSelect(iMo).neg.energyPrice);

	

end

if opts.isFlexible

	if isHT

		offerRPControllable.neg.capacityPrice = ...

			(MoSelect.neg.capacityPrice(find(MoSelect.neg.capacityCum <= MoSelect.neg.capacityCum(end) ...

			- offerRPControllable.neg.capacity,1,'last'))) / moLength;

		offerRPControllable.pos.capacityPrice = nan;

	else

		offerRPControllable.neg.capacityPrice = nan;

		offerRPControllable.pos.capacityPrice = ...

			(MoSelect.pos.capacityPrice(find(MoSelect.pos.capacityCum <= MoSelect.pos.capacityCum(end) ...

			- offerRPControllable.pos.capacity,1,'last'))) / moLength;

	end

else

	offerRPControllable.neg.capacityPrice = ...

		(MoSelect.neg.capacityPrice(find(MoSelect.neg.capacityCum <= MoSelect.neg.capacityCum(end) ...

		- offerRPControllable.neg.capacity,1,'last'))) / moLength;

	offerRPControllable.pos.capacityPrice = nan;

end

%% Calculation of energy price

if opts.isFlexible

	if isHT

		offerRPControllable.neg.energyPrice = 145;

		offerRPControllable.pos.energyPrice = nan;

	else

		offerRPControllable.neg.energyPrice = nan;

		offerRPControllable.pos.energyPrice = 17.77;

	end

elseif ~opts.isFlexible

% 	energyPrices = 14.5*10 - DA_MarketPrice.price;

	offerRPControllable.neg.energyPrice = 145; %nanmean(energyPrices(DA_MarketPrice.time >= startTime & DA_MarketPrice.time <= endTime));

	offerRPControllable.pos.energyPrice = nan;

end

%% Calculation of Capacity % Energy Prices in the Available Active Power Scenario

offerRP.AAP = offerRPControllable;

%% Calculation of Capacity % Energy Prices in the Balance-Control Scenario

offerRP.BC = offerRPControllable;

offerRP.BC.pos.lostEnergy = 0;

offerRP.BC.neg.lostEnergy = 0;

offerRP.BC.pos.lostEnergyTimeSeries = zeros(size(DA_MarketPrice.time(DA_MarketPrice.time >= startTime & DA_MarketPrice.time <= endTime),1),1);

offerRP.BC.neg.lostEnergyTimeSeries = offerRP.BC.pos.lostEnergyTimeSeries;

%% Calculation of Capacity % Energy Prices in the Balance-Control Scenario with reduced Intraday capacity in the intraday part

offerRP.BCred = offerRPControllable;

offerRP.BCred.pos.lostEnergy = 0;

offerRP.BCred.neg.lostEnergy = 0;

offerRP.BCred.pos.lostEnergyTimeSeries = zeros(size(DA_MarketPrice.time(DA_MarketPrice.time >= startTime & DA_MarketPrice.time <= endTime),1),1);

offerRP.BCred.neg.lostEnergyTimeSeries = offerRP.BCred.pos.lostEnergyTimeSeries;

offerRP.BCred.pos.factorReduction = offerRP.BCred.neg.lostEnergyTimeSeries;

offerRP.BCred.neg.factorReduction = offerRP.BCred.neg.lostEnergyTimeSeries;

%% Write Time Series to array

offerRP.timeSeries.time				= DA_MarketPrice.time(DA_MarketPrice.time >= startTime & DA_MarketPrice.time <= endTime);

offerRP.timeSeries.secureDACap		= repmat(userInput.installedCapacity,size(offerRP.timeSeries.time,1),1);

offerRP.timeSeries.secureIDCap		= offerRP.timeSeries.secureDACap;

offerRP.timeSeries.feedIn			= offerRP.timeSeries.secureIDCap;

offerRP.potID						= offerRP.timeSeries.secureIDCap;

function moOut = getMOSelect(moIn, startTime, endTime)

startTime = datenum(startTime);

endTime = datenum(endTime);

moStart = cellfun(@datenum, {moIn.start}');

moEnd = cellfun(@datenum, {moIn.end}');

moOut = moIn(find(moStart <= startTime,1,'last'):find(moEnd > endTime,1,'first'));

Functions/+Economic_Impact/calcCapacityCost.m

function [capacityCostTotal,capacityCostNeg,capacityCostPos] = calcCapacityCost(MOL, startTime, endTime)

% Calculates the capacity costs of the merit-order lists

%

% Syntax:

% [capacityCostTotal,capacityCostNeg,capacityCostPos] = calcCapacityCost(MOL, startTime, endTime)

% Only MO for given time stamps

MOL = getMOSelect(MOL, startTime, endTime);

% Get index of MOLists

numberMOL = length(MOL);

indexMOL = linspace(1,numberMOL,numberMOL)';

% Create a scaling Factor for Capacity prices, that reflects the given Time

% Frame of the bid. Bids that are shorter than the Merrit-Order-List will

% have a reduced Capacity Price

scaleFactor = ones(numberMOL,1);

for iScale=1:length(indexMOL)

	

	if numberMOL == 1

		scaleFactor = (datenum(endTime) - datenum(startTime)) ...

			/ (datenum(MOL.List1.end) - datenum(MOL.List1.start));

	end

	if numberMOL > 1

		

		if iScale == indexMOL(1,1)

			if startTime > datenum(MOL(iScale).start)

				scaleFactor(iScale,1) ...

					= (datenum(MOL(iScale).end) - datenum(startTime)) ...

					/ (datenum(MOL(iScale).end) - datenum(MOL(iScale).start));

			end

		end

		

		if iScale == indexMOL(numberMOL,1)

			if endTime + 1/24/3600 < datenum(MOL(indexMOL(end)).end)

				scaleFactor(iScale,1) ...

					= (datenum(endTime) - datenum(MOL(indexMOL(end)).start)) ...

					/ (datenum(MOL(indexMOL(end)).end) - datenum(MOL(indexMOL(end)).start));

			end

		end

	end

	counterMOL = indexMOL(iScale,1);

	

end

% Get Capacity Cost from each MO-List

for iList=1:numberMOL

	

	capacityCost(iList,1) = sum(MOL(iList).pos.capacityPrice .* MOL(iList).pos.capacity) / scaleFactor(iList,1);

	capacityCost(iList,2) = sum(MOL(iList).neg.capacityPrice .* MOL(iList).neg.capacity) / scaleFactor(iList,1);

	

end

% Output

capacityCostNeg = nansum(nansum(capacityCost(:,2)));

capacityCostPos = nansum(nansum(capacityCost(:,1)));

capacityCostTotal = nansum(nansum(capacityCost));

function moOut = getMOSelect(moIn, startTime, endTime)

startTime = roundn(startTime,-9);

endTime = roundn(endTime,-9);

moStart = ([moIn.start])';

moEnd = ([moIn.end])';

moOut = moIn(find(moStart <= startTime,1,'last'):find(moEnd >= endTime,1,'first'));

Functions/+Economic_Impact/calcCostReduction.m

function [costReduction, capacityCostReduction, dispatchCostReduction, windActivated]...

	= calcCostReduction(alteredMOL, costOriginal, dispatch, startTime, endTime)

%% Data for given time frame

dispatchStart = find(datenum(dispatch.time) >= datenum(startTime), 1, 'first');

dispatchEnd = find(datenum(dispatch.time) < datenum(endTime), 1, 'last');

selectionDispatch.data = dispatch.data(dispatchStart:dispatchEnd,1);

selectionDispatch.time = datenum(dispatch.time(dispatchStart:dispatchEnd,:));

%% Calculation

capacityCostOriginal = costOriginal.capacity;

capacityCostAltered = Economic_Impact.calcCapacityCost(alteredMOL, startTime, endTime);

dispatchCostOriginal = costOriginal.dispatch;

[dispatchCostAltered,windActivated.isAct,windActivated.cap] = Economic_Impact.calcDispatchCost(selectionDispatch, alteredMOL);

% Downsample to 15-Minute Values

[windActivated.time,windActivated.isAct] = Auxiliary_Functions.downsampleData(selectionDispatch.time,windActivated.isAct,225,'max');

[windActivated.time,windActivated.cap] = Auxiliary_Functions.downsampleData(selectionDispatch.time,windActivated.cap,225,'max');

%% Difference of original Dispatch Costs

dispatchCostReduction = dispatchCostOriginal - dispatchCostAltered;

capacityCostReduction = capacityCostOriginal - capacityCostAltered;

costReduction = (dispatchCostOriginal+capacityCostOriginal)...

	- (dispatchCostAltered+capacityCostAltered);

Functions/+Economic_Impact/calcDispatchCost.m

function [dispatchCost,windActivated,windDispatchedCap,marginalPrice] = calcDispatchCost(dispatch, MOL)

% Calculates the dispatch costs of the control reserve dispatch

%

% Syntax:

% [dispatchCost,windActivated,windDispatchedCap] = calcDispatchCost(dispatch, MOL)

% Get index of MOLists

indexMOL = linspace(1,length(MOL),length(MOL))';

counterMOL = indexMOL(1,1);

dispatchCost = zeros(length(dispatch.data),1);

windActivated = false(length(dispatch.data),1);

windDispatchedCap = nan(length(dispatch.data),1);

marginalPrice = nan(length(dispatch.data),1);

% The dispatch Time Step will be given in hours

dispatchTimeStep = (dispatch.time(2,1) - dispatch.time(1,1))*24;

for iDispatch=1:length(dispatch.time)

	

	% Search MO-List for the dispatch value

	if isfield(MOL(counterMOL), 'end')

		if dispatch.time(iDispatch,1) > datenum(MOL(counterMOL).end)

			counterMOL = counterMOL+1; % Note: This proceeding is only valid as positive and negative MO-List are tendered for the same time frame

		end

		% elseif dispatch.time(iDispatch,1) >= MOL.pos.(['List' num2str(indexMOL(counterMOL+1,1))]).start

		% counterMOL = counterMOL+1; % Note: This proceeding is only valid as positive and negative MO-List are tendered for the same time frame

	end

	% Calculate the dispatch Cost (Pay as Bid)

	if dispatch.data(iDispatch,1) > 0

		[dispatchCost(iDispatch,1),windActivated(iDispatch,1),windDispatchedCap(iDispatch,1),marginalPrice(iDispatch,1)] = ...

			calcDispatchCostPayAsBid(dispatch.data(iDispatch,1),...

			dispatchTimeStep,MOL(counterMOL).pos);

	elseif dispatch.data(iDispatch,1) < 0

		[dispatchCost(iDispatch,1),windActivated(iDispatch,1),windDispatchedCap(iDispatch,1),marginalPrice(iDispatch,1)] = ...

			calcDispatchCostPayAsBid(dispatch.data(iDispatch,1),...

			dispatchTimeStep,MOL(counterMOL).neg);

	else

		dispatchCost(iDispatch,1) = 0;

	end

end

dispatchCost = nansum(dispatchCost);

function [dispatchCost,windDispatched,windDispatchedCap,marginalPrice] = calcDispatchCostPayAsBid(dispatchValue, dispatchTimeFrame, MOL)

	

windDispatched = false;

windDispatchedCap = nan;

if dispatchValue > 0

	

	iMOL = find(MOL.capacityCum >= dispatchValue, 1, 'first');

	if max(MOL.capacityCum) < dispatchValue

		iMOL = size(MOL.capacityCum,1);

		dispatchValue = max(MOL.capacityCum);

	end

	

	if isfield(MOL,'isWindTendered')

		if any(MOL.isWindTendered(1:iMOL))

			capacityMOL = MOL.capacity(1:iMOL);

			windDispatchedCap = nansum(capacityMOL(logical(MOL.isWindTendered(1:iMOL))));

			windDispatched = true;

		end

	end

	

	% Calculate Cost in Pay-as-Bid-Verfahren Mechanism

	dispatchCost = zeros(iMOL,1);

	dispatchDiscount = dispatchValue;

	for iPayAsBid=1:iMOL

		if iPayAsBid == iMOL

			dispatchCost(iPayAsBid,1) = dispatchDiscount * MOL.energyPrice(iPayAsBid,1) * dispatchTimeFrame;

			marginalPrice = MOL.energyPrice(iPayAsBid,1);

		else

			dispatchCost(iPayAsBid,1) = MOL.capacity(iPayAsBid,1) * MOL.energyPrice(iPayAsBid,1) * dispatchTimeFrame;

		end

		dispatchDiscount = dispatchDiscount - MOL.capacity(iPayAsBid,1);

	end

	

end

if dispatchValue < 0

	

	iMOL = find(MOL.capacityCum >= -dispatchValue, 1, 'first');

	if max(MOL.capacityCum) < -dispatchValue

		iMOL = size(MOL.capacityCum,1);

		dispatchValue = -max(MOL.capacityCum);

	end

	

	if isfield(MOL,'isWindTendered')

		if any(MOL.isWindTendered(1:iMOL))

			capacityMOL = MOL.capacity(1:iMOL);

			windDispatchedCap = nansum(capacityMOL(logical(MOL.isWindTendered(1:iMOL))));

			windDispatched = true;

		end

	end

	

	% Calculate Cost in Pay-as-Bid-Verfahren Mechanism

	dispatchCost = zeros(iMOL,1);

	dispatchDiscount = -dispatchValue;

	for iPayAsBid=1:iMOL

		if iPayAsBid == iMOL

			dispatchCost(iPayAsBid,1) = dispatchDiscount * MOL.energyPrice(iPayAsBid,1) * dispatchTimeFrame;

			marginalPrice = MOL.energyPrice(iPayAsBid,1);

		else

			dispatchCost(iPayAsBid,1) = MOL.capacity(iPayAsBid,1) * MOL.energyPrice(iPayAsBid,1) * dispatchTimeFrame;

		end

		dispatchDiscount = dispatchDiscount - MOL.capacity(iPayAsBid,1);

	end

	

end

	

dispatchCost = nansum(dispatchCost);

Functions/+Economic_Impact/calcEcoImpact.m

function [ecoImpact, offerRP_Min, alteredMOList] = calcEcoImpact(dispatchSFC, dispatchTFC, ...

	MoSFC, MoTFC, offerRP, userInput, opts)

% Define Market Type and select data

switch opts.market

	

	case 'SFC'

		moList = MoSFC;

		dispatch = dispatchSFC;

	case 'TFC'

		moList = MoTFC;

		dispatch.data = sum([dispatchTFC.pos dispatchTFC.neg],2);

		dispatch.time = dispatchTFC.time;

	otherwise

		error('no valid market was given');

end

%% Cut Data

% Get Block

block = getBlockTime(userInput, userInput.startTime, userInput.endTime);

% Get Merrit-Order Selection

moList = getMOSelect(moList, userInput.startTime, userInput.endTime);

%% Calcute control reserve costs in the reference scenario

dispatchStart = find(dispatch.time >= userInput.startTime, 1, 'first');

dispatchEnd = find(dispatch.time <= userInput.endTime, 1, 'last');

selectionDispatch.data = dispatch.data(dispatchStart:dispatchEnd,1);

selectionDispatch.time = dispatch.time(dispatchStart:dispatchEnd,:);

costOriginal.capacity = Economic_Impact.calcCapacityCost(moList, userInput.startTime, userInput.endTime);

costOriginal.dispatch = Economic_Impact.calcDispatchCost(selectionDispatch, moList);

%% Calculation of economic impact in the Maximum Scenario

[alteredMOList.MAX, replacedCapSum.max, replacedCap.max]= Economic_Impact.alterMOLists(moList, offerRP, block, 'MAX');

[costReductionAAP_Max, capacityCostReductionAAP_Max, dispatchCostReductionAAP_Max, windActivedAAP_Max]...

	= Economic_Impact.calcCostReduction(alteredMOList.MAX.AAP, costOriginal, dispatch, ...

	userInput.startTime, userInput.endTime);

[costReductionBC_Max, capacityCostReductionBC_Max, dispatchCostReductionBC_Max, windActivedBC_Max]...

	= Economic_Impact.calcCostReduction(alteredMOList.MAX.BC, costOriginal, dispatch, ...

	userInput.startTime, userInput.endTime);

[costReductionBCredOfferID_Max, capacityCostReductionBCredOfferID_Max, dispatchCostReductionBCredOfferID_Max, windActivedBCredOfferID_Max]...

	= Economic_Impact.calcCostReduction(alteredMOList.MAX.BCredOfferID, costOriginal, dispatch, ...

	userInput.startTime, userInput.endTime);

ecoImpact.AAP.Max_DiffSplit.capacity				= capacityCostReductionAAP_Max;

ecoImpact.AAP.Max_DiffSplit.dispatch				= dispatchCostReductionAAP_Max;

ecoImpact.AAP.Max_windActivatedAAP					= windActivedAAP_Max.cap;

ecoImpact.BC.Max_DiffSplit.capacity					= capacityCostReductionBC_Max;

ecoImpact.BC.Max_DiffSplit.dispatch					= dispatchCostReductionBC_Max;

ecoImpact.BC.Max_windActivatedBC					= windActivedBC_Max.cap;

ecoImpact.BCredOfferID.Max_DiffSplit.capacity		= capacityCostReductionBCredOfferID_Max;

ecoImpact.BCredOfferID.Max_DiffSplit.dispatch		= dispatchCostReductionBCredOfferID_Max;

ecoImpact.BCredOfferID.Max_windActivatedBCredOfferID= windActivedBCredOfferID_Max.cap;

%% Calculation of economic impact in the Minimum Scenario

[alteredMOList.MIN, replacedCapSum.min, replacedCap.min, offerRP_Min]= Economic_Impact.alterMOLists(moList, offerRP, block, 'MIN');

[costReductionAAP_Min, capacityCostReductionAAP_Min, dispatchCostReductionAAP_Min, windActivedAAP_Min]...

	= Economic_Impact.calcCostReduction(alteredMOList.MIN.AAP, costOriginal, dispatch, ...

	userInput.startTime, userInput.endTime);

[costReductionBC_Min, capacityCostReductionBC_Min, dispatchCostReductionBC_Min, windActivedBC_Min]...

	= Economic_Impact.calcCostReduction(alteredMOList.MIN.BC, costOriginal, dispatch, ...

	userInput.startTime, userInput.endTime);

[costReductionBCredOfferID_Min, capacityCostReductionBCredOfferID_Min, dispatchCostReductionBCredOfferID_Min, windActivedBCredOfferID_Min]...

	= Economic_Impact.calcCostReduction(alteredMOList.MIN.BCredOfferID, costOriginal, dispatch, ...

	userInput.startTime, userInput.endTime);

ecoImpact.AAP.Min_DiffSplit.capacity				= capacityCostReductionAAP_Min;

ecoImpact.AAP.Min_DiffSplit.dispatch				= dispatchCostReductionAAP_Min;

ecoImpact.AAP.Min_windActivatedAAP					= windActivedAAP_Min.cap;

ecoImpact.BC.Min_DiffSplit.capacity					= capacityCostReductionBC_Min;

ecoImpact.BC.Min_DiffSplit.dispatch					= dispatchCostReductionBC_Min;

ecoImpact.BC.Min_windActivatedBC					= windActivedBC_Min.cap;

ecoImpact.BCredOfferID.Min_DiffSplit.capacity		= capacityCostReductionBCredOfferID_Min;

ecoImpact.BCredOfferID.Min_DiffSplit.dispatch		= dispatchCostReductionBCredOfferID_Min;

ecoImpact.BCredOfferID.Min_windActivatedBCredOfferID= windActivedBCredOfferID_Min.cap;

%% Generate output

% Output original cost structure

ecoImpact.capacityCostOriginal	= costOriginal.capacity;

ecoImpact.dispatchCostOriginal	= costOriginal.dispatch;

% Join to one variable

ecoImpact.AAP.Max				= costReductionAAP_Max;

ecoImpact.AAP.Min				= costReductionAAP_Min;

ecoImpact.BC.Max				= costReductionBC_Max;

ecoImpact.BC.Min				= costReductionBC_Min;

ecoImpact.BCredOfferID.Max		= costReductionBCredOfferID_Max;

ecoImpact.BCredOfferID.Min		= costReductionBCredOfferID_Min;

ecoImpact.replacedCap			= replacedCapSum;

ecoImpact.replacedCapTimeSeries	= replacedCap;

function block = getBlockTime(userInput, startTime, endTime)

% Convert Time Frame to start and end

startTime = datenum(startTime);

endTime = datenum(endTime);

% Create Block Start and End Time

blockStart = zeros(ceil((endTime - startTime)*24 / userInput.productLength),6);

blockStart(1,:) = datevec(datenum(startTime));

blockEnd = zeros(ceil((endTime - startTime)*24 / userInput.productLength),6);

for iTime =1:ceil((endTime - startTime)*24 / userInput.productLength)

	

	

	blockEnd(iTime,:) = datevec(datenum(blockStart(iTime,:)) + userInput.productLength/24 - 1/24/3600);

	blockEnd(iTime,6) = ceil(blockEnd(iTime,6));	

	

	if iTime < ceil((endTime - startTime)*24 / userInput.productLength)

		blockStart(iTime+1,:) = datevec(datenum(blockStart(iTime,:)) + userInput.productLength/24);

		blockStart(iTime+1,6) = ceil(blockStart(iTime+1,6));

	end

end

blockStart = datenum(blockStart);

blockEnd = datenum(blockEnd);

if blockEnd(end,1) < endTime

	blockEnd(end,1) = endTime;

end

block.start = blockStart;

block.end = blockEnd;

function moOut = getMOSelect(moIn, startTime, endTime)

startTime = roundn(startTime,-9);

endTime = roundn(endTime,-9);

moStart = ([moIn.start])';

moEnd = ([moIn.end])';

moOut = moIn(find(moStart <= startTime,1,'last'):find(moEnd >= endTime,1,'first'));

Functions/+Economic_Impact/calcEcoImpactReserveReduction.m

% clear;

% clc;

%

% %% Load

%

% [Prob_Forec_DA, Prob_Forec_ID, actualFeedIn, ecoImpact, error, ...

% 	errorRP, macroEcoImpact, offerRP, simRuns, violation, alteredMOList] = res_loadResults;

%

% %% Options

%

% securityLevel = 99.994;

% productLength = 1;

%

% Pnenn = simRuns(1,1).installedCapacity;

% if strcmp(simRuns(1,1).pool,'Germany')

% 	poolGer = true;

% else

% 	poolGer = false;

% end

%

% indxDataSet = find([simRuns.securityLevel] == securityLevel & [simRuns.productLength] == productLength);

%

% %% Load reserve calc

%

% load('C:\Users\mjansen\Synchronisation\Konferenzen\2013_WIW\simulation_Bedarfsdimensionierung\result_[configMaster_reference]\RESULT_[Statkraft3_configMaster_reference][2012][2012][0001-8760].mat');

% refReserve = result.sY2012;

% load('C:\Users\mjansen\Synchronisation\Konferenzen\2013_WIW\simulation_Bedarfsdimensionierung\result_[configMaster_operating]\RESULT_[Statkraft3_configMaster_operating][2012][2012][0001-8760].mat');

% opReserve = result.sY2012;

%

% %% load other MO List

%

% MOType = 'TFC';

%

% if strcmp(MOType,'TFC')

% 	[moSFC] = loadControlReserve_Secondary_MerritOrder();

% else

% 	[moTFC] = loadControlReserve_Tertiary_MerritOrder();

% end

%

% %% Asign altered MO Lists

%

% if strcmp(MOType,'TFC')

% 	moTFC = alteredMOList(1,indxDataSet).MAX.BC;

% else

% 	moSFC = alteredMOList(1,indxDataSet).MAX.BC;

% end

%

% %% Get capacity prices

%

% resRedSFCPos = abs(refReserve.reserve_sc(1,1) - opReserve.reserve_sc(1,1));

% resRedSFCNeg = abs(refReserve.reserve_sc(1,2) - opReserve.reserve_sc(1,2));

%

% resRedTFCPos = abs(refReserve.reserve_tc(1,1) - opReserve.reserve_tc(1,1));

% resRedTFCNeg = abs(refReserve.reserve_tc(1,2) - opReserve.reserve_tc(1,2));

%

% %% Select MO Lists according to time frame from sim run

%

% moTFC = moTFC([moTFC.start] >= floor(simRuns(1,1).startTime) & [moTFC.end] <= ceil(simRuns(1,1).endTime));

% moSFC = moSFC([moSFC.start] >= floor(simRuns(1,1).startTime) & [moSFC.end] <= ceil(simRuns(1,1).endTime));

%

% %% Sort MO List by capycity Price

%

% moSFC = sortMOCapacityPrice(moSFC);

% moTFC = sortMOCapacityPrice(moTFC);

%% Calculate cost difference on TFC

for iTFC=1:length(moTFC)

	

	capPriceCumPos = moTFC(1,iTFC).pos.capacityPrice(~(moTFC(1,iTFC).pos.capacityCum < (max(moTFC(1,iTFC).pos.capacityCum) - resRedTFCPos))) .* ...

		moTFC(1,iTFC).pos.capacity(~(moTFC(1,iTFC).pos.capacityCum < (max(moTFC(1,iTFC).pos.capacityCum) - resRedTFCPos)));

	if 	sum(moTFC(1,iTFC).pos.capacity(~(moTFC(1,iTFC).pos.capacityCum < (max(moTFC(1,iTFC).pos.capacityCum) - resRedTFCPos)))) ~= resRedTFCPos

		resCapPrice = moTFC(1,iTFC).pos.capacityPrice(find(moTFC(1,iTFC).pos.capacityCum < (max(moTFC(1,iTFC).pos.capacityCum) - resRedTFCPos),1,'last')+1);

		resCap = (resRedTFCPos - sum(moTFC(1,iTFC).pos.capacity(find(moTFC(1,iTFC).pos.capacityCum < (max(moTFC(1,iTFC).pos.capacityCum) - resRedTFCPos),1,'last')+2:end)));

		capPriceCumPos(1,1) = resCapPrice * resCap;

	end

	capRedTFC.Pos(iTFC,1) = sum(capPriceCumPos); %* round((moTFC(1,iTFC).end - moTFC(1,iTFC).start) * 24);

	

	capPriceCumNeg = moTFC(1,iTFC).neg.capacityPrice(~(moTFC(1,iTFC).neg.capacityCum < (max(moTFC(1,iTFC).neg.capacityCum) - resRedTFCNeg))) .* ...

		moTFC(1,iTFC).neg.capacity(~(moTFC(1,iTFC).neg.capacityCum < (max(moTFC(1,iTFC).neg.capacityCum) - resRedTFCNeg)));

	if 	sum(moTFC(1,iTFC).neg.capacity(~(moTFC(1,iTFC).neg.capacityCum < (max(moTFC(1,iTFC).neg.capacityCum) - resRedTFCNeg)))) ~= resRedTFCNeg

		resCapPrice = moTFC(1,iTFC).neg.capacityPrice(find(moTFC(1,iTFC).neg.capacityCum < (max(moTFC(1,iTFC).neg.capacityCum) - resRedTFCNeg),1,'last')+1);

		resCap = (resRedTFCNeg - sum(moTFC(1,iTFC).neg.capacity(find(moTFC(1,iTFC).neg.capacityCum < (max(moTFC(1,iTFC).neg.capacityCum) - resRedTFCNeg),1,'last')+2:end)));

		capPriceCumNeg(1,1) = resCapPrice * resCap;

	end

	capRedTFC.Neg(iTFC,1) = sum(capPriceCumNeg); %* round((moTFC(1,iTFC).end - moTFC(1,iTFC).start) * 24);

	

end

costRedTFC = sum(sum([capRedTFC.Pos,capRedTFC.Neg]));

%% Calculate cost difference on SFC

for iSFC=1:length(moSFC)

	

	capPriceCumPos = moSFC(1,iSFC).pos.capacityPrice(~(moSFC(1,iSFC).pos.capacityCum < (max(moSFC(1,iSFC).pos.capacityCum) - resRedSFCPos))) .* ...

		moSFC(1,iSFC).pos.capacity(~(moSFC(1,iSFC).pos.capacityCum < (max(moSFC(1,iSFC).pos.capacityCum) - resRedSFCPos)));

	if 	sum(moSFC(1,iSFC).pos.capacity(~(moSFC(1,iSFC).pos.capacityCum < (max(moSFC(1,iSFC).pos.capacityCum) - resRedSFCPos)))) ~= resRedSFCPos

		resCapPrice = moSFC(1,iSFC).pos.capacityPrice(find(moSFC(1,iSFC).pos.capacityCum < (max(moSFC(1,iSFC).pos.capacityCum) - resRedSFCPos),1,'last')+1);

		resCap = (resRedSFCPos - sum(moSFC(1,iSFC).pos.capacity(find(moSFC(1,iSFC).pos.capacityCum < (max(moSFC(1,iSFC).pos.capacityCum) - resRedSFCPos),1,'last')+2:end)));

		capPriceCumPos(1,1) = resCapPrice * resCap;

	end

	capRedSFC.Pos(iSFC,1) = sum(capPriceCumPos); %* round((moSFC(1,iSFC).end - moSFC(1,iSFC).start) * 24);

	

	capPriceCumNeg = moSFC(1,iSFC).neg.capacityPrice(~(moSFC(1,iSFC).neg.capacityCum < (max(moSFC(1,iSFC).neg.capacityCum) - resRedSFCNeg))) .* ...

		moSFC(1,iSFC).neg.capacity(~(moSFC(1,iSFC).neg.capacityCum < (max(moSFC(1,iSFC).neg.capacityCum) - resRedSFCNeg)));

	if 	sum(moSFC(1,iSFC).neg.capacity(~(moSFC(1,iSFC).neg.capacityCum < (max(moSFC(1,iSFC).neg.capacityCum) - resRedSFCNeg)))) ~= resRedSFCNeg

		resCapPrice = moSFC(1,iSFC).neg.capacityPrice(find(moSFC(1,iSFC).neg.capacityCum < (max(moSFC(1,iSFC).neg.capacityCum) - resRedSFCNeg),1,'last')+1);

		resCap = (resRedSFCNeg - sum(moSFC(1,iSFC).neg.capacity(find(moSFC(1,iSFC).neg.capacityCum < (max(moSFC(1,iSFC).neg.capacityCum) - resRedSFCNeg),1,'last')+2:end)));

		capPriceCumNeg(1,1) = resCapPrice * resCap;

	end

	capRedSFC.Neg(iSFC,1) = sum(capPriceCumNeg); %* round((moSFC(1,iSFC).end - moSFC(1,iSFC).start) * 24);

	

end

costRedSFC = sum(sum([capRedSFC.Pos,capRedSFC.Neg]));

%% Output

costRed = costRedSFC + costRedTFC;

Functions/+Offer_ControlReserve/calcIncomeEEG.m

function[incomeEEG, resultFIT]= calcIncomeEEG(actualFeedIn, spotPrice, startTime, endTime)

% Function calculates the Income from the German RES-Scheme

%

% Function:

% function[incomeEEG]= calcIncomeEEG(actualFeedIn, spotPrice, startTime, endTime)

%

% actualFeedIn:		struct

% time:		[000000x1 double]	(datenum format)

% data:		[000000x1 double]

% spotPrice:				struct

% price:	[00000x1 double]

% time:	[00000x6 double]	(datevec format)

% startTime:				Time in datevec format

% endTime:						Time in datevec format

%

% For directly sold electricity in the direct marketing option (§33 EEG)

% the operator of Wind Turbines will receive two premiums

%

% 1. Market Premium: The difference between the monthly average Price for

% each hour from the EPEX-Spot Market and the EEG Feed-In-Tariff will be

% paid to the operators, compensating the income losses of due to direct

% marketing

% The Feed-In Tariff is set to:

% FIT:						4.87 €/kWh

% SDL:						0.48 €/kWh

%

% 2. Management Bonus: Operators receive an additional bonus for the

% operation and management cost occuring when selling RE Energy directly to

% the market. Those costs can occur by the need for Balancing Energy or

% Fees for the participation in the market.

% The bonus will decrease over the years:

% in Year 2012:				1.20 €Cent/kWh

% in Year 2013:				1.00 €Cent/kWh

% in Year 2014:				0.85 €Cent/kWh

% from Year 2015:			0.70 €Cent/kWh

%

%

% Last edit: 15.08.2011 by Malte Jansen (Fraunhofer IWES)

%

% See also calcIncomeEPEX

%% Defining Variables

feedInTariffAnfang = 89.3;

feedInTariffGrundVerG = 48.7;

feedInTariff = feedInTariffAnfang;

Systemdienstleisungsbonus = 4.8;

revenueEEG = feedInTariff + Systemdienstleisungsbonus;

managementBonus2012 = 12;

managementBonus2013 = 10;

managementBonus2014 = 8;

managementBonus2015 = 7;

% Find the start Time of the Block in Feed-In data

iActualStart = find(actualFeedIn.time >= startTime, 1, 'first');

iActualEnd = find(actualFeedIn.time > endTime, 1, 'first')-1;

% Bring data to datevec format for comparision

selectionMonthYear = datevec(actualFeedIn.time(iActualStart,1));

%% Calculate monthly average values of Spot prices

% Find the indexes for the Month, of the given input (startTime & endTime)

iActualMonth = find(spotPrice.time >= datenum([selectionMonthYear(:,1:2) [01 00 00 00]]) & spotPrice.time < datenum([selectionMonthYear(:,1) selectionMonthYear(:,2)+1 [01 00 00 00]]));

% Write selected Data to an array

selectedMonthSpot.price = spotPrice.price(iActualMonth(1):iActualMonth(length(iActualMonth)),:);

selectedMonthSpot.time = datevec(spotPrice.time(iActualMonth(1):iActualMonth(length(iActualMonth)),:));

% Sort Data

tmpPrice = zeros(max(selectedMonthSpot.time(:,3)),24);

for i=1:24

	kIndex = 1;

	for iDay=i:24:max(selectedMonthSpot.time(:,3))*24

		

% 		selectedMonthSpot.price(iDay,1)

		

		tmpPrice(kIndex,i) = selectedMonthSpot.price(iDay,1);

		kIndex = kIndex+1;

	end

end

% Calculate Average Value for each month

montlyAverage.price = mean(tmpPrice,1)';

montlyAverage.time = [1:24]';

%% Calculate Market Premium

for i=1:length(montlyAverage.price)

	marketPremium(i,1) = revenueEEG - montlyAverage.price(i,1);

	if marketPremium(i,1)<0

		marketPremium(i,1)=0;

	end

end

%% Income from Market Premium

incomeMarketPremium = nan(iActualEnd-iActualStart+1,1);

lIndex = 1;

for i=iActualStart:iActualEnd

	tmpTime = datevec(actualFeedIn.time(i,1));

	

% 	 marketPremium(tmpTime(:,4),1);

	

	incomeMarketPremium(lIndex,1) = actualFeedIn.data(i,1)/4 * marketPremium(tmpTime(:,4)+1,1);

	lIndex = lIndex+1;

end

	

%% Income from Management-Bonus

incomeManagementBonus = nan(iActualEnd-iActualStart+1,1);

mIndex = 1;

for i=iActualStart:iActualEnd

	if str2double(datestr(startTime,'yyyy')) >= 2015

		incomeManagementBonus(mIndex,1) = actualFeedIn.data(i,1)/4 * managementBonus2015;

		managementBonus = managementBonus2015;

	elseif str2double(datestr(startTime,'yyyy')) >= 2012 && str2double(datestr(startTime,'yyyy')) < 2015

		incomeManagementBonus(mIndex,1) = actualFeedIn.data(i,1)/4 * eval(['managementBonus' num2str(startTime(1,1))]);

		managementBonus = eval(['managementBonus' num2str(startTime(1,1))]);

	else

		incomeManagementBonus(mIndex,1) = actualFeedIn.data(i,1)/4 * managementBonus2012;

		managementBonus = managementBonus2012;

	end

	mIndex = mIndex+1;

end

%% Calculate the resulting FIT

resultFIT = mean(marketPremium) + Systemdienstleisungsbonus + managementBonus;

%% Output

incomeEEG = nansum(incomeManagementBonus) + nansum(incomeMarketPremium);

Functions/+Offer_ControlReserve/calcIncomeEEG_new.m

function[incomeEEG, resultFIT, marketPremium]= calcIncomeEEG_new(actualFeedIn_time, actualFeedIn_data, spotPrice_time, spotPrice_price, startTime, endTime, feedInTariff)

% Function calculates the Income from the German RES-Scheme

%

% Function:

% function[incomeEEG]= calcIncomeEEG(actualFeedIn, spotPrice, startTime, endTime)

%

% actualFeedIn:		struct

% time:		[000000x1 double]	(datenum format)

% data:		[000000x1 double]

% spotPrice:				struct

% price:	[00000x1 double]

% time:	[00000x6 double]	(datevec format)

% startTime:				Time in datevec format

% endTime:						Time in datevec format

%

% For directly sold electricity in the direct marketing option (§33 EEG)

% the operator of Wind Turbines will receive two premiums

%

% 1. Market Premium: The difference between the monthly average Price for

% each hour from the EPEX-Spot Market and the EEG Feed-In-Tariff will be

% paid to the operators, compensating the income losses of due to direct

% marketing

% The Feed-In Tariff is set to:

% FIT:						4.87 €/kWh

% SDL:						0.48 €/kWh

%

% 2. Management Bonus: Operators receive an additional bonus for the

% operation and management cost occuring when selling RE Energy directly to

% the market. Those costs can occur by the need for Balancing Energy or

% Fees for the participation in the market.

% The bonus will decrease over the years:

% in Year 2012:				1.20 €Cent/kWh

% in Year 2013:				1.00 €Cent/kWh

% in Year 2014:				0.85 €Cent/kWh

% from Year 2015:			0.70 €Cent/kWh

%

%

% Last edit: 15.08.2011 by Malte Jansen (Fraunhofer IWES)

%

% See also calcIncomeEPEX

%% Reorganize variables

actualFeedIn.time = actualFeedIn_time;

actualFeedIn.data = actualFeedIn_data;

spotPrice.time= spotPrice_time;

spotPrice.price = spotPrice_price;

%% Time interval of power data

% Calculate Interval

interval_Start = find(actualFeedIn.time <= startTime,1,'last');

interval = Auxiliary_Functions.roundn((actualFeedIn.time(interval_Start+1,1) - actualFeedIn.time(interval_Start,1)) * 24,-8);

%% Defining Variables

feedInTariffAnfang = 89.3;

feedInTariffGrundVerG = 48.7;

% feedInTariff = feedInTariffAnfang;

Systemdienstleisungsbonus = 4.8;

revenueEEG = feedInTariff + Systemdienstleisungsbonus;

managementBonus2012 = 12;

managementBonus2013 = 10;

managementBonus2014 = 8;

managementBonus2015 = 7;

% Find the start Time of the Block in Feed-In data

iActualStart = find(actualFeedIn.time >= startTime, 1, 'first');

iActualEnd = find(actualFeedIn.time > endTime, 1, 'first')-1;

% Bring data to datevec format for comparision

selectionMonthYear = datevec(actualFeedIn.time(iActualStart,1));

%% Calculate monthly average values of Spot prices

% Find the indexes for the Month, of the given input (startTime & endTime)

iActualMonth = ...

	find(spotPrice.time >= datenum([selectionMonthYear(:,1:2) [01 00 00 00]]) ...

	& spotPrice.time < datenum([selectionMonthYear(:,1) selectionMonthYear(:,2)+1 [01 00 00 00]]));

% Write selected Data to an array

montlyAverage.time = [1:24]';

montlyAverage.price = mean(reshape(spotPrice.price(iActualMonth,:),24,[])',1)';

%% Calculate Market Premium

marketPremium = revenueEEG - montlyAverage.price;

%% Income from Market Premium

% old method

incomeMarketPremium = nan(iActualEnd-iActualStart+1,1);

lIndex = 1;

for i=iActualStart:iActualEnd

	tmpTime = datevec(actualFeedIn.time(i,1));

	

% 	 marketPremium(tmpTime(:,4),1);

	

	incomeMarketPremium(lIndex,1) = actualFeedIn.data(i,1)/4 * marketPremium(tmpTime(:,4)+1,1);

	lIndex = lIndex+1;

end

incomeMarketPremium(isnan(incomeMarketPremium)) = 0;

% new method

actualFeedIn_select.time = ...

	datevec(actualFeedIn.time(find(actualFeedIn.time >= startTime,1,'first') ...

	:find(actualFeedIn.time < endTime,1,'last')));

actualFeedIn_select.data = ...

	actualFeedIn.data(find(actualFeedIn.time >= startTime,1,'first'): ...

	find(actualFeedIn.time < endTime,1,'last'));

incomeMarketPremium_new = ...

	actualFeedIn_select.data .* marketPremium(actualFeedIn_select.time(:,4)+1,1) * interval;

incomeMarketPremium_new(isnan(incomeMarketPremium_new)) = 0;

%

% % Compare

% if ~isequal(incomeMarketPremium,incomeMarketPremium_new)

% 	error;

% end

%% Income from Management-Bonus

if startTime(1,1) >= datenum([2015 1 1 0 0 0])

	incomeManagementBonus = ...

		actualFeedIn_select.data * interval * managementBonus2015;

	managementBonus = managementBonus2015;

elseif startTime(1,1) >= datenum([2012 1 1 0 0 0]) && startTime(1,1) < datenum([2015 1 1 0 0 0])

	incomeManagementBonus = ...

		actualFeedIn_select.data * interval * eval(['managementBonus' datestr(startTime,'yyyy')]);

	managementBonus = eval(['managementBonus' datestr(startTime,'yyyy')]);

else

	incomeManagementBonus = ...

		actualFeedIn_select.data * interval * managementBonus2012;

	managementBonus = managementBonus2012;

end

%% Calculate the resulting FIT

resultFIT = mean(marketPremium) + Systemdienstleisungsbonus + managementBonus;

%% Output

incomeEEG = nansum(incomeManagementBonus) + nansum(incomeMarketPremium);

Functions/+Offer_ControlReserve/calcIncomeEPEX.m

function[Income] = calcIncomeEPEX(actualFeedIn, DA_Forec, ID_Forec, DA_MarketPrice, ID_MarketPrice, RPP, startTime, endTime)

% Function computes Forecasts and Feed-In to an income

% on the power exchange

% TODO: Function description is missing

% %% Check variables

% isvector(startTime)

% %% Test!

% % Income = 5;

%% Time interval of power data

% Calculate Interval

intervalDA_Start = find(DA_Forec.time <= startTime,1,'last');

intervalDA = roundn((DA_Forec.time(intervalDA_Start+1,1) - DA_Forec.time(intervalDA_Start,1)) * 24,-8);

intervalID_Start = find(ID_Forec.time <= startTime,1,'last');

intervalID = roundn((ID_Forec.time(intervalID_Start+1,:) - ID_Forec.time(intervalID_Start,:)) * 24,-8);

intervalActual_Start = find(actualFeedIn.time <= startTime,1,'last');

intervalActual = roundn((actualFeedIn.time(intervalActual_Start+1,1) - actualFeedIn.time(intervalActual_Start,1)) * 24,-8);

% Check if data hat the same time interval

if intervalDA ~= intervalID

	error('Power data does not match. Data must be of the same intervals, e.g. 1/4-hour');

elseif intervalDA ~= intervalActual

	error('Power data does not match. Data must be of the same intervals, e.g. 1/4-hour');

elseif intervalID ~= intervalActual

	error('Power data does not match. Data must be of the same intervals, e.g. 1/4-hour');

end

%% Berechnung

%% die gesamte Prognose wird am DA-Markt veräußert

iDAForec = find(DA_Forec.time <= startTime,1,'last');

iPrice = find(DA_MarketPrice.time <= startTime,1,'last');

iData = 1;

while startTime <= DA_Forec.time(iDAForec,1) && endTime > DA_Forec.time(iDAForec,1)

	

	if DA_Forec.time(iDAForec,1) >= DA_MarketPrice.time(iPrice+1,:)

		iPrice = iPrice+1;

	end

	incomeDA(iData,1) = DA_Forec.data(iDAForec,1)*intervalDA*DA_MarketPrice.price(iPrice,1);

	

	iDAForec = iDAForec+1;

	iData = iData+1;

end

%% Die Abweichungen von der DA-Prognose werden im ID-Handel ausgeglichen

iDAForecDA_ID = find(DA_Forec.time <= startTime,1,'last');

iIDForecDA_ID = find(ID_Forec.time <= startTime,1,'last');

iPriceDA_ID = find(ID_MarketPrice.time <= startTime,1,'last');

iDataDA_ID = 1;

while startTime <= DA_Forec.time(iDAForecDA_ID,1) && endTime > DA_Forec.time(iDAForecDA_ID,1)

	

	deviationDA_ID(iDataDA_ID,1) = ID_Forec.data(iIDForecDA_ID,1) - DA_Forec.data(iDAForecDA_ID,1);

	

	if isnan(deviationDA_ID(iDataDA_ID,1))

		deviationDA_ID(iDataDA_ID,1) = 0;

	end

	try

		if ID_Forec.time(iIDForecDA_ID,:) >= ID_MarketPrice.time(iPriceDA_ID+1,:)

			iPriceDA_ID = iPriceDA_ID+1;

		end

	catch

		error('no data');

	end

	incomeID(iDataDA_ID,1) = deviationDA_ID(iDataDA_ID,1)*intervalID*ID_MarketPrice.price(iPriceDA_ID,1);

	

	iIDForecDA_ID = iIDForecDA_ID+1;

	iDAForecDA_ID = iDAForecDA_ID+1;

	iDataDA_ID = iDataDA_ID+1;

end

%% Die Bilanzkreisabweichungen werden berechnet und mit dem AEP verrechnet

iIDForec = find(ID_Forec.time <= startTime,1,'last');

iActual = find(actualFeedIn.time <= startTime,1,'last');

iPrice_RPP = find(RPP.time <= startTime,1,'last');

iData_RPP = 1;

while startTime <= ID_Forec.time(iIDForec,:)...

		&& endTime > ID_Forec.time(iIDForec,:)

	

	deviationID_actual(iData_RPP,1) = actualFeedIn.data(iActual,1) - ID_Forec.data(iIDForec,1);

	if isnan(deviationID_actual(iData_RPP,1))

		deviationID_actual(iData_RPP,1) = 0;

	end

	

	if ID_Forec.time(iIDForec,:) >= RPP.time(iPrice_RPP+1,:)

		iPrice_RPP = iPrice_RPP+1;

	end

	incomeActual(iData_RPP,1) = deviationID_actual(iData_RPP,1)*intervalActual*RPP.data(iPrice_RPP,1);

	

	iIDForec = iIDForec+1;

	iActual = iActual+1;

	iData_RPP = iData_RPP+1;

	if length(ID_Forec.time) < iIDForec

		break

	end

end

%% Cummulate Income from different Market actions

try

	Income = nansum(incomeDA) + nansum(incomeID) + nansum(incomeActual);

catch

	Income = nan;

end

Functions/+Offer_ControlReserve/calcIncomeEPEX_new.m

function[income] = calcIncomeEPEX_new(actualFeedIn, DA_Forec, ID_Forec, DA_MarketPrice, ID_MarketPrice, RPP, startTime, endTime)

% Function computes Forecasts and Feed-In to an income

% on the power exchange

% TODO: Function description is missing

startTime = roundn(startTime,-9);

endTime = roundn(endTime,-9);

%

% DA_Forec.time = datenum(datevec(DA_Forec.time));

% ID_Forec.time = datenum(datevec(ID_Forec.time));

% actualFeedIn.time = datenum(datevec(actualFeedIn.time));

%% Time interval of power data

% Calculate Interval

intervalDA_Start = find(DA_Forec.time <= startTime,1,'last');

intervalDA = Auxiliary_Functions.roundn((DA_Forec.time(intervalDA_Start+1,1) - DA_Forec.time(intervalDA_Start,1)) * 24,-8);

intervalID_Start = find(ID_Forec.time <= startTime,1,'last');

intervalID = Auxiliary_Functions.roundn((ID_Forec.time(intervalID_Start+1,:) - ID_Forec.time(intervalID_Start,:)) * 24,-8);

intervalActual_Start = find(actualFeedIn.time <= startTime,1,'last');

intervalActual = Auxiliary_Functions.roundn((actualFeedIn.time(intervalActual_Start+1,1) - actualFeedIn.time(intervalActual_Start,1)) * 24,-8);

% Check if data hat the same time interval

if intervalDA ~= intervalID

	error('Power data does not match. Data must be of the same intervals, e.g. 1/4-hour');

elseif intervalDA ~= intervalActual

	error('Power data does not match. Data must be of the same intervals, e.g. 1/4-hour');

elseif intervalID ~= intervalActual

	error('Power data does not match. Data must be of the same intervals, e.g. 1/4-hour');

else

	interval = intervalActual;

	interval_inv = round(1/interval);

end

blockLength = round((endTime - startTime)*24);

%% Daten herausschneiden

% actualFeedIn.time = datenum(datevec(actualFeedIn.time));

% ID_Forec.time = datenum(datevec(ID_Forec.time));

% DA_Forec.time = datenum(datevec(DA_Forec.time));

actualFeedIn.time = roundn(actualFeedIn.time,-9);

ID_Forec.time = roundn(ID_Forec.time,-9);

DA_Forec.time = roundn(DA_Forec.time,-9);

[actualFeedIn.time,actualFeedIn.data,DA_Forec.time,DA_Forec.data] = Auxiliary_Functions.getCommonData(actualFeedIn.time,actualFeedIn.data,DA_Forec.time,DA_Forec.data);

[actualFeedIn.time,actualFeedIn.data,ID_Forec.time,ID_Forec.data] = Auxiliary_Functions.getCommonData(actualFeedIn.time,actualFeedIn.data,ID_Forec.time,ID_Forec.data);

[actualFeedIn.time,actualFeedIn.data,DA_Forec.time,DA_Forec.data] = Auxiliary_Functions.getCommonData(actualFeedIn.time,actualFeedIn.data,DA_Forec.time,DA_Forec.data);

DA_Forec_select.time = DA_Forec.time(DA_Forec.time >= startTime & DA_Forec.time < endTime);

DA_Forec_select.data = DA_Forec.data(find(DA_Forec.time >= startTime,1,'first'):find(DA_Forec.time < endTime,1,'last'));

ID_Forec_select.time = ID_Forec.time(find(ID_Forec.time >= startTime,1,'first'):find(ID_Forec.time < endTime,1,'last'));

ID_Forec_select.data = ID_Forec.data(find(ID_Forec.time >= startTime,1,'first'):find(ID_Forec.time < endTime,1,'last'),1);

actualFeedIn_select.time = actualFeedIn.time(find(actualFeedIn.time >= startTime,1,'first'):find(actualFeedIn.time < endTime,1,'last'));

actualFeedIn_select.data = actualFeedIn.data(find(actualFeedIn.time >= startTime,1,'first'):find(actualFeedIn.time < endTime,1,'last'));

%% Die gesamte Prognose wird am DA-Markt veräußert

% Recover datenum error

DA_MarketPrice.time = roundn(DA_MarketPrice.time,-9);

DA_MarketPrice_select.time = ...

	DA_MarketPrice.time(find(DA_MarketPrice.time >= startTime,1,'first') ...

	:find(DA_MarketPrice.time < endTime,1,'last'));

DA_MarketPrice_select.price = ...

	DA_MarketPrice.price(find(DA_MarketPrice.time >= startTime,1,'first')...

	:find(DA_MarketPrice.time < endTime,1,'last'));

DA_MarketPrice_select.time = DA_MarketPrice_select.time(ones(interval_inv * blockLength,1),:);

DA_MarketPrice_select.price = DA_MarketPrice_select.price(ones(interval_inv * blockLength,1),:);

incomeDA = DA_Forec_select.data .* DA_MarketPrice_select.price * interval;

%% Die Abweichungen von der DA-Prognose werden im ID-Handel ausgeglichen

% Recover datenum error

ID_MarketPrice.time = roundn(ID_MarketPrice.time,-9);

ID_MarketPrice_select.time = ...

	ID_MarketPrice.time(find(ID_MarketPrice.time >= startTime,1,'first') ...

	:find(ID_MarketPrice.time < endTime,1,'last'));

ID_MarketPrice_select.price = ...

	ID_MarketPrice.price(find(ID_MarketPrice.time >= startTime,1,'first'): ...

	find(ID_MarketPrice.time < endTime,1,'last'));

ID_MarketPrice_select_new.time = ID_MarketPrice_select.time(ones(interval_inv * blockLength,1),:);

ID_MarketPrice_select_new.price = ID_MarketPrice_select.price(ones(interval_inv * blockLength,1),:);

deviationDA_ID = ID_Forec_select.data - DA_Forec_select.data;

incomeID = deviationDA_ID .* ID_MarketPrice_select_new.price * interval;

%% Die Bilanzkreisabweichungen werden berechnet und mit dem AEP verrechnet

% Recover datenum error

RPP.time = roundn(RPP.time,-9);

RPP_select.time = RPP.time(find(RPP.time >= startTime,1,'first'):find(RPP.time < endTime,1,'last'));

RPP_select.data = RPP.data(find(RPP.time >= startTime,1,'first'):find(RPP.time < endTime,1,'last'));

deviationID_actual = actualFeedIn_select.data - ID_Forec_select.data;

incomeActual = deviationID_actual .* RPP_select.data * interval;

%% Cummulate Income from different Market actions

income = nansum(incomeDA) + nansum(incomeID) + nansum(incomeActual);

Functions/+Economic_Impact/calcMacroEcoImpact.m

function [replaceCost] = calcMacroEcoImpact(offerRP, DA_Forec, ID_Forec, actualFeedIn, ...

	DA_Forec_Wind, ID_Forec_Wind, actualFeedIn_Wind, DA_Forec_PV, ID_Forec_PV, actualFeedIn_PV, ...

	DA_MarketPrice, ID_MarketPrice, loadENTSOE, simRuns, opts)

%

% Calculate the macroeconomic impact of the two different proof mechanisms

%

% The expected inputs are:

% DA_Forec:			[struct]

%					time: [n x 1]

%					data: [n x 1]

% ID_Forec:			[struct]

%					time: [n x 1]

%					data: [n x 1]

% RPP:				[struct]

%					time: [n x 6]

%					data: [n x 1]

% actualFeedIn:		[struct]

%					time: [n x 1]

%					data: [n x 1]

% DA_MarketPrice:	[struct]

%					price: [n x 1]

%					time: [n x 6]

% ID_MarketPrice:	[struct]

%					lastPrice: [n x 1]

%					averagePrice: [n x 1]

%					lowPrice: [n x 1]

%					highPrice: [n x 1]

%					time: [n x 6]

% timeFrame:		[struct]

%					startTime(datevec-format)

%					endTime(datevec-format)

% userInput:		[struct] with following variables: securityLevel,

%					leadTimeRP, productLength, percentPosRP, percentNegRP, installedCapacity

%

% v1.1 (15.07.2013) by Malte Jansen @ Fraunhofer IWES

% v1.1 (30.08.2013) by Malte Jansen @ Fraunhofer IWES: Changes in data

% loading sources

%% Solve datenum problem

DA_Forec.time = roundn(DA_Forec.time,-9);

ID_Forec.time = roundn(ID_Forec.time,-9);

actualFeedIn.time = roundn(actualFeedIn.time,-9);

DA_Forec_Wind.time = roundn(DA_Forec_Wind.time,-9);

ID_Forec_Wind.time = roundn(ID_Forec_Wind.time,-9);

actualFeedIn_Wind.time = roundn(actualFeedIn_Wind.time,-9);

DA_Forec_PV.time = roundn(DA_Forec_PV.time,-9);

ID_Forec_PV.time = roundn(ID_Forec_PV.time,-9);

actualFeedIn_PV.time = roundn(actualFeedIn_PV.time,-9);

DA_MarketPrice.time = roundn(DA_MarketPrice.time,-9);

ID_MarketPrice.time = roundn(ID_MarketPrice.time,-9);

loadENTSOE.time = roundn(loadENTSOE.time,-9);

offerRP.timeSeries.time = roundn(offerRP.timeSeries.time,-9);

%% Presets

% Basis for evaluation

timeSet = 'ID';

% timeSet = 'ID';

% timeSet = 'actual';

% installed Capacity

instCapWind = simRuns(1,1).installedCapacity;

instCapPV = 30000;

%% Upscale Market Prices

[DA_MarketPrice.time,DA_MarketPrice.price,ID_MarketPrice.time,ID_MarketPrice.price] = ...

	Auxiliary_Functions.getCommonData(DA_MarketPrice.time,DA_MarketPrice.price,ID_MarketPrice.time,ID_MarketPrice.price);

% Upscale Market DA prices to 1/4-hour

timeStampNew = (floor(min(DA_MarketPrice.time)):1/96:ceil(max(DA_MarketPrice.time)))';

[DA_MarketPrice.time,DA_MarketPrice.price] = ...

	Auxiliary_Functions.interp2Timestamp(timeStampNew, DA_MarketPrice.time,DA_MarketPrice.price);

% Upscale Market ID prices to 1/4-hour

timeStampNew = (floor(min(ID_MarketPrice.time)):1/96:ceil(max(ID_MarketPrice.time)))';

[ID_MarketPrice.time,ID_MarketPrice.price] = ...

	Auxiliary_Functions.interp2Timestamp(timeStampNew, ID_MarketPrice.time,ID_MarketPrice.price);

% Upscale Entso-E data

timeStampNew = (floor(min(loadENTSOE.time)):1/96:ceil(max(loadENTSOE.time)))';

[loadENTSOE.time,loadENTSOE.data] = ...

	Auxiliary_Functions.interp2Timestamp(timeStampNew, loadENTSOE.time,loadENTSOE.data);

[DA_MarketPrice.time,DA_MarketPrice.price,loadENTSOE.time,loadENTSOE.data] = ...

	Auxiliary_Functions.getCommonData(DA_MarketPrice.time,DA_MarketPrice.price,loadENTSOE.time,loadENTSOE.data);

%% Selection of Data set

if strcmp(timeSet,'DA')

	

	dataWind.time	= DA_Forec_Wind.time;

	dataWind.data	= DA_Forec_Wind.data;

	dataPV.time		= DA_Forec_PV.time;

	dataPV.data		= DA_Forec_PV.data;

	market.time		= DA_MarketPrice.time;

	market.data		= DA_MarketPrice.price;

	

elseif strcmp(timeSet,'actualFeedIn')

	

	dataWind.time	= actualFeedIn_Wind.time;

	dataWind.data	= actualFeedIn_Wind.data;

	dataPV.time		= actualFeedIn_PV.time;

	dataPV.data		= actualFeedIn_PV.data;

	market.time		= ID_MarketPrice.time;

	market.data		= ID_MarketPrice.price;

	

elseif strcmp(timeSet,'ID')

	

	dataWind.time	= ID_Forec_Wind.time;

	dataWind.data	= ID_Forec_Wind.data;

	dataPV.time		= ID_Forec_PV.time;

	dataPV.data		= ID_Forec_PV.data;

	market.time		= ID_MarketPrice.time;

	market.data		= ID_MarketPrice.price;

	

end

%% Get Common Data

[dataWind.time,dataWind.data,dataPV.time,dataPV.data] = ...

	Auxiliary_Functions.getCommonData(dataWind.time,dataWind.data,dataPV.time,dataPV.data);

[dataWind.time,dataWind.data,market_Train.time,market_Train.data] = ...

	Auxiliary_Functions.getCommonData(dataWind.time,dataWind.data,market.time,market.data);

[dataWind.time,dataWind.data,loadENTSOE_Train.time,loadENTSOE_Train.data] = ...

	Auxiliary_Functions.getCommonData(dataWind.time,dataWind.data,loadENTSOE.time,loadENTSOE.data);

[dataWind.time,dataWind.data,dataPV.time,dataPV.data] = ...

	Auxiliary_Functions.getCommonData(dataWind.time,dataWind.data,dataPV.time,dataPV.data);

[dataWind.time,dataWind.data,market_Train.time,market_Train.data] = ...

	Auxiliary_Functions.getCommonData(dataWind.time,dataWind.data,market_Train.time,market_Train.data);

[dataWind.time,dataWind.data,loadENTSOE_Train.time,loadENTSOE_Train.data] = ...

	Auxiliary_Functions.getCommonData(dataWind.time,dataWind.data,loadENTSOE_Train.time,loadENTSOE_Train.data);

[dataWind.time,dataWind.data,dataPV.time,dataPV.data] = ...

	Auxiliary_Functions.getCommonData(dataWind.time,dataWind.data,dataPV.time,dataPV.data);

[market_Train.time,market_Train.data,loadENTSOE_Train.time,loadENTSOE_Train.data] = ...

	Auxiliary_Functions.getCommonData(market_Train.time,market_Train.data,loadENTSOE_Train.time,loadENTSOE_Train.data);

%% Merge data

data_joint.time = dataWind.time;

data_joint.data = (dataWind.data * instCapWind + dataPV.data * instCapPV) ;

%% Calculate residual load

resLoad.time = data_joint.time;

resLoad.data = loadENTSOE_Train.data - data_joint.data;

%% Replace NaNs since functions are unable to handle them

loadENTSOE_numerical.time = loadENTSOE_Train.time(~isnan(loadENTSOE_Train.data) & ~isnan(market_Train.data));

loadENTSOE_numerical.data = loadENTSOE_Train.data(~isnan(loadENTSOE_Train.data) & ~isnan(market_Train.data));

market_numerical.time = market_Train.time(~isnan(loadENTSOE_Train.data) & ~isnan(market_Train.data));

market_numerical.data = market_Train.data(~isnan(loadENTSOE_Train.data) & ~isnan(market_Train.data));

%% Calculate Regression | LOESS

% Steps Loess

nLoess = 15;

% Calculation

[loadENTSOE_loess,market_loess] = Config.loess1d(loadENTSOE_numerical.data,market_numerical.data,nLoess);

%% Calculate Regression | Polynomial

% Steps Polynomial

nPolyMax = 12;

xPoly = loadENTSOE_numerical.data;

yPoly = market_numerical.data;

[~,indUniq,~] = unique(xPoly);

xPoly = xPoly(indUniq);

yPoly = yPoly(indUniq);

extPoly = opts.xTraPolyCrit;

exceedPoly = opts.xCeedPolyCrit;

% Calculation

for iPoly = 1:nPolyMax

	% Polynonmial Fit

	[polynomialFit,S,mu] = polyfit(xPoly,yPoly,iPoly);

	

	% Extend X-Polynome to guarantee monotonous behaviour

	Coeff = floor(log10(max(xPoly)));

	xPolyTarget = unique(sort([floor(min(xPoly) - extPoly * min(xPoly)):Coeff/10:ceil(max(xPoly) + extPoly * min(xPoly)),xPoly']))';

	

	% Get data from fit

	polyfitVal(iPoly).data = sort([xPolyTarget,polyval(polynomialFit,xPolyTarget,S,mu)]);

	

	% Select fitting that is appropriate for data

	select(iPoly,1) = Auxiliary_Functions.ismonotonic(polyfitVal(iPoly).data(:,2),[],'INCREASING');

	select(iPoly,2) = ~any(polyfitVal(iPoly).data(:,2) < min(yPoly) * exceedPoly);

	select(iPoly,3) = ~any(polyfitVal(iPoly).data(:,2) > max(yPoly) * exceedPoly);

	

end

select = all(select,2);

% Polynome with the highest grade is chosen, increasing strictly monotonous

if all(select)

	xSelectPoly = polyfitVal(10).data(:,1);

	ySelectPoly = polyfitVal(10).data(:,2);

else

	xSelectPoly = polyfitVal(find(~select,1,'first')-1).data(:,1);

	ySelectPoly = polyfitVal(find(~select,1,'first')-1).data(:,2);

end

%% Adjust marketprices according to changed availability of wind & pv | Balance Control original

[lostEnergy_BC.time,lostEnergy_BC.data,loadENTSOE_select.time,loadENTSOE_select.data] = ...

	Auxiliary_Functions.getCommonData(offerRP.timeSeries.time,offerRP.timeSeries.lostBC,loadENTSOE.time,loadENTSOE.data);

[market_select.time,market_select.data,loadENTSOE_select.time,loadENTSOE_select.data] = ...

	Auxiliary_Functions.getCommonData(market.time,market.data,loadENTSOE_select.time,loadENTSOE_select.data);

lostEnergy_BC.data = lostEnergy_BC.data * instCapWind;

marketPrice_interp = interp1(xSelectPoly,ySelectPoly,loadENTSOE_select.data);

priceDiff_interp_real = market_select.data - marketPrice_interp;

newSystemLoad_BC = loadENTSOE_select.data - lostEnergy_BC.data;

marketPrice_interp_new = interp1(xSelectPoly,ySelectPoly,newSystemLoad_BC);

marketPrice_new_BC.data = marketPrice_interp_new + priceDiff_interp_real;

priceDiff_BC.time = market_select.time;

priceDiff_BC.data = market_select.data - marketPrice_new_BC.data;

replaceCost.meanPriceDiff_BC = nanmean(priceDiff_BC.data);

% Old Code

% for iPrice=1:length(lostEnergy_BC.data)

% 	

% 	marketPrice_interp(iPrice,1) = interp1(xSelectPoly,ySelectPoly,loadENTSOE_select.data(iPrice,1));

% 	priceDiff_interp_real(iPrice,1) = market_select.data(iPrice,1) - marketPrice_interp(iPrice,1);

% 	newSystemLoad_BC(iPrice,1) = loadENTSOE_select.data(iPrice,1) - lostEnergy_BC.data(iPrice,1);

% 	marketPrice_interp_new(iPrice,1) = interp1(xSelectPoly,ySelectPoly,newSystemLoad_BC(iPrice,1));

% 	marketPrice_new_BC.data(iPrice,1) = marketPrice_interp_new(iPrice,1) + priceDiff_interp_real(iPrice,1);

% 	

% end

%% Adjust marketprices according to changed availability of wind & pv | Balance Control reduced Intraday Capacity

[lostEnergy_BCredOfferID.time,lostEnergy_BCredOfferID.data,loadENTSOE_select.time,loadENTSOE_select.data] = ...

	Auxiliary_Functions.getCommonData(offerRP.timeSeries.time,offerRP.timeSeries.lostBCredOfferID,loadENTSOE.time,loadENTSOE.data);

[market_select.time,market_select.data,loadENTSOE_select.time,loadENTSOE_select.data] = ...

	Auxiliary_Functions.getCommonData(market.time,market.data,loadENTSOE_select.time,loadENTSOE_select.data);

lostEnergy_BCredOfferID.data = lostEnergy_BCredOfferID.data * instCapWind;

marketPrice_interp = interp1(xSelectPoly,ySelectPoly,loadENTSOE_select.data);

priceDiff_interp_real = market_select.data - marketPrice_interp;

newSystemLoad_BCredOfferID = loadENTSOE_select.data - lostEnergy_BCredOfferID.data;

marketPrice_interp_new = interp1(xSelectPoly,ySelectPoly,newSystemLoad_BCredOfferID);

marketPrice_new_BCredOfferID.data = marketPrice_interp_new + priceDiff_interp_real;

priceDiff_BCredOfferID.time = market_select.time;

priceDiff_BCredOfferID.data = market_select.data - marketPrice_new_BCredOfferID.data;

replaceCost.meanPriceDiff_BCredOfferID = nanmean(priceDiff_BCredOfferID.data);

% Old Code

% for iPrice=1:length(lostEnergy_BCredOfferID.data)

% 	

% 	marketPrice_interp(iPrice,1) = interp1(xSelectPoly,ySelectPoly,loadENTSOE_select.data(iPrice,1));

% 	priceDiff_interp_real(iPrice,1) = market_select.data(iPrice,1) - marketPrice_interp(iPrice,1);

% 	newSystemLoad_BCredOfferID(iPrice,1) = loadENTSOE_select.data(iPrice,1) - lostEnergy_BCredOfferID.data(iPrice,1);

% 	marketPrice_interp_new(iPrice,1) = interp1(xSelectPoly,ySelectPoly,newSystemLoad_BCredOfferID(iPrice,1));

% 	marketPrice_new_BCredOfferID.data(iPrice,1) = marketPrice_interp_new(iPrice,1) + priceDiff_interp_real(iPrice,1);

% 	

% end

%% Changes in market price due to less wind energgy in the system

% Original Costs

originalCost_Market = nansum(market_select.data .* loadENTSOE_select.data / 4);

% Changes Costs due to less Wind & PV with BC mechanism

replaceCost.MarketbyAll_BC = originalCost_Market - nansum(marketPrice_new_BC.data .* newSystemLoad_BC / 4);

replaceCost.MarketbyAll_BCredOfferID = originalCost_Market - nansum(marketPrice_new_BCredOfferID.data .* newSystemLoad_BCredOfferID / 4);

%% Substitute wind generation with conventional | Energy market approach

% use new market price

replaceCost.Market_BC = nansum(lostEnergy_BC.data .* marketPrice_new_BC.data) / 4;

replaceCost.Market_BCredOfferID = nansum(lostEnergy_BC.data .* marketPrice_new_BCredOfferID.data) / 4;

% replaceCost.MarketOld_BC = nansum(lostEnergy_BC.data .* market_select.data) / 4;

% replaceCost.MarketOld_BCredOfferID = nansum(lostEnergy_BC.data .* market_select.data) / 4;

%% Substitute wind generation with conventional | Fuel cost approach

costFuel = getFuelCost;

replaceCost.FuelCost_BC = nansum(lostEnergy_BC.data * costFuel) / 4;

replaceCost.FuelCost_BCredOfferID = nansum(lostEnergy_BCredOfferID.data * costFuel) / 4;

%% Plot

getPlot = false;

if getPlot

	% Plot loess

	fig = [];

	

	fig.subplot{1,1}.plot{1}.x = loadENTSOE_numerical.data / 1000;

	fig.subplot{1,1}.plot{1}.y = market_numerical.data;

	fig.subplot{1,1}.plot{1}.style='plot';

	fig.subplot{1,1}.plot{1}.linestyle='none';

	fig.subplot{1,1}.plot{1}.marker_style='.';

	fig.subplot{1,1}.plot{1}.markersize=4;

	fig.subplot{1,1}.plot{1}.color='greyDark';

	

	fig.subplot{1,1}.plot{2}.x = loadENTSOE_loess / 1000;

	fig.subplot{1,1}.plot{2}.y = market_loess;

	fig.subplot{1,1}.plot{2}.style='plot';

	fig.subplot{1,1}.plot{2}.linewidth=4;

	fig.subplot{1,1}.plot{2}.color='Orange';

	

	fig.subplot{1,1}.xlim=[30 90];

	fig.subplot{1,1}.xticks=min(fig.subplot{1,1}.xlim):5:max(fig.subplot{1,1}.xlim);

	fig.subplot{1,1}.ylim=[-150 150];

	fig.subplot{1,1}.yticks=min(fig.subplot{1,1}.ylim):50:max(fig.subplot{1,1}.ylim);

	fig.subplot{1,1}.xlabel='Residual load in GW';

	fig.subplot{1,1}.ylabel='Day-ahead market price in EUR/MWh';

	fig.subplot{1,1}.legend={'Price/Quantity value pairs','n-polynomial regression'};

	fig.subplot{1,1}.legend_orientation = 'vertical';

	

	fig.height=9;

	fig.width_columns=3;

	

	[hFig, hAxes, hPlot] = styleplot(fig,'styleplot_format_PhD','word');

	

	% Plot poly

	fig = [];

	

	fig.subplot{1,1}.plot{1}.x = xPoly / 1000;

	fig.subplot{1,1}.plot{1}.y = yPoly;

	fig.subplot{1,1}.plot{1}.style='plot';

	fig.subplot{1,1}.plot{1}.linestyle='none';

	fig.subplot{1,1}.plot{1}.marker_style='.';

	fig.subplot{1,1}.plot{1}.markersize=4;

	fig.subplot{1,1}.plot{1}.color='greyDark';

	

	fig.subplot{1,1}.plot{2}.x = xSelectPoly / 1000;

	fig.subplot{1,1}.plot{2}.y = ySelectPoly;

	fig.subplot{1,1}.plot{2}.style='plot';

	fig.subplot{1,1}.plot{2}.linewidth=4;

	fig.subplot{1,1}.plot{2}.color='fhgGreen';

	

	fig.subplot{1,1}.xlim=[30 90];

	fig.subplot{1,1}.xticks=min(fig.subplot{1,1}.xlim):5:max(fig.subplot{1,1}.xlim);

	fig.subplot{1,1}.ylim=[-150 150];

	fig.subplot{1,1}.yticks=min(fig.subplot{1,1}.ylim):50:max(fig.subplot{1,1}.ylim);

	fig.subplot{1,1}.xlabel='Residual load in GW';

	fig.subplot{1,1}.ylabel='Day-ahead market price in EUR/MWh';

	fig.subplot{1,1}.legend={'Price/Quantity value pairs','n-polynomial regression'};

	fig.subplot{1,1}.legend_orientation = 'vertical';

	

	fig.height=9;

	fig.width_columns=3;

	

	[hFig, hAxes, hPlot] = styleplot(fig,'styleplot_format_PhD','word');

end

function costFuel = getFuelCost

% Option 1 High Prices: Cost of MWh power plants, all numbers but nuclear based on www.ise.fraunhofer.de/de/veroeffentlichungen/veroeffentlichungen-pdf-dateien/studien-und-konzeptpapiere/studie-stromgestehungskosten-erneuerbare-energien.pdf

% Values used from Abbildung 1 with on page 2 with CO2 costs

nuclear.cost_MWh_el_opt1	= 12.4 * 10; % https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/269888/131217_Electricity_Generation_costs_report_December_2013_Final.pdf

natGas.cost_MWh_el_opt1		= ((7.5 + 9.8) / 2) * 10;

coal.cost_MWh_el_opt1		= ((6.3 + 8.0) / 2) * 10;

lignite.cost_MWh_el_opt1	= ((3.8 + 5.3) / 2) * 10;

% Option 2 Low Prices: Cost of MWh power plants based on http://www.ier.uni-stuttgart.de/publikationen/arbeitsberichte/downloads/Arbeitsbericht_08.pdf

% Values used from Table 5.1 on page 34 in the source wihtout CO2 costs

nuclear.cost_MWh_el_opt2	= 51.6;

natGas.cost_MWh_el_opt2		= 75.1;

coal.cost_MWh_el_opt2		= 47.8;

lignite.cost_MWh_el_opt2	= 36.9;

% Average

nuclear.cost_MWh_el			= (nuclear.cost_MWh_el_opt1 + nuclear.cost_MWh_el_opt2) / 2;

natGas.cost_MWh_el			= (natGas.cost_MWh_el_opt1 + natGas.cost_MWh_el_opt2) / 2;

coal.cost_MWh_el			= (coal.cost_MWh_el_opt1 + coal.cost_MWh_el_opt2) / 2;

lignite.cost_MWh_el			= (lignite.cost_MWh_el_opt1 + lignite.cost_MWh_el_opt2) / 2;

% Installed Capacities Source: http://www.netzentwicklungsplan.de/NEP_2013_Teil_I.pdf

nuclear.instCap				= 12.1;

natGas.instCap				= 26.5;

coal.instCap				= 26.3;

lignite.instCap				= 20.2;

total.instCap				= sum([nuclear.instCap,lignite.instCap,coal.instCap,natGas.instCap]);

% Calculate average fuel costs (€/MWh)

costFuel = nuclear.instCap/total.instCap * nuclear.cost_MWh_el + ...

	natGas.instCap/total.instCap * natGas.cost_MWh_el + coal.instCap/total.instCap * coal.cost_MWh_el + ...

	lignite.instCap/total.instCap * lignite.cost_MWh_el;

Functions/+Offer_ControlReserve/calcOfferPriceAAP.m

function [offerRP] = calcOfferPriceAAP(DA_Forec, DA_MarketPrice,...

	ID_Forec, ID_MarketPrice, RPP, actualFeedIn, startTime, endTime,...

	incomeEPEX, incomeEEG, offerableRP, secureIDCapacity, resultFIT, ...

	percentPosRP, percentNegRP, installedCapacity, opts)

% The Income from available ID Capacity is calculated

% Calculates the difference between solely Spot & ID Market participation

% as an input for the calculation on Regulating Power Markets

%

% Capacity price must cover the income losses from not selling on normal

% power markets

%

%

% The installed capacity is set to 1MW, if no other input is given

%% Solve datenum problem on function call

DA_Forec.time = roundn(DA_Forec.time,-9);

ID_Forec.time = roundn(ID_Forec.time,-9);

actualFeedIn.time = roundn(actualFeedIn.time,-9);

startTime = roundn(startTime,-9);

endTime = roundn(endTime,-9);

%% Check input

% Set installed Capacity to 1 if not given

if ~exist('installedCapacity')

	installedCapacity = 1;

end

if percentPosRP+percentNegRP > 100 || percentPosRP > 100 || percentPosRP < 0 || percentNegRP > 100 || percentNegRP < 0

	error('One cannnot offer more than 100% or less than 0% of Regulating Power');

end

%% Offerable RP upscaled by capacity

offerableRP_upscaled = offerableRP * installedCapacity;

%% Calculate Time Span

blockHours = (datenum(endTime)-datenum(startTime)) * 24;

%% Offering positive Regulating Power

if percentPosRP > 0

	% Calculate Amount of RP offered on RP Power Markets

	regulatingPowerCap.pos = percentPosRP/100 * min(offerableRP);

	pos.capacity = regulatingPowerCap.pos * installedCapacity;

	

	% Calculate the difference in income between solely Spot & ID Market

	% participation and the participation on RP Power Markets

	

	iData_DA_start = find(DA_Forec.time >= datenum(startTime),1,'first');

	iData_DA_end = find(DA_Forec.time > datenum(endTime),1,'first')-1;

	DA_Forec_RP.time(1:length(offerableRP)+2,:) = DA_Forec.time(iData_DA_start-1:iData_DA_end+1,1);

	tmpDA_Forec_RP = DA_Forec.data(iData_DA_start:iData_DA_end) - regulatingPowerCap.pos;

	DA_Forec_RP.data(1:length(offerableRP)+2,1) = [nan; tmpDA_Forec_RP; nan];

% 	DA_Forec_RP.data(1:length(offerableRP)+2,1) = [0; (DA_Forec.data(iData_DA_start:iData_DA_end,1) - regulatingPowerCap.pos); 0];

	iData_ID_start = find(datenum(ID_Forec.time) >= datenum(startTime),1,'first');

	iData_ID_end = find(datenum(ID_Forec.time) > datenum(endTime),1,'first')-1;

	ID_Forec_RP.time(1:length(offerableRP)+2,:) = datenum(ID_Forec.time(iData_ID_start-1:iData_ID_end+1,:));

	tmpID_Forec_RP = ID_Forec.data(iData_ID_start:iData_ID_end,1) - regulatingPowerCap.pos;

	ID_Forec_RP.data(1:length(offerableRP)+2,1) = [nan; tmpID_Forec_RP; nan];

% 	ID_Forec_RP.data(1:length(offerableRP)+2,1) = [0; (ID_Forec.data(iData_ID_start:iData_ID_end,1) - regulatingPowerCap.pos); 0];

	iData_Actual_start = find(actualFeedIn.time >= datenum(startTime),1,'first');

	iData_Actual_end = find(actualFeedIn.time > datenum(endTime),1,'first')-1;

	actualFeedIn_RP.time(1:length(offerableRP)+2,:) = actualFeedIn.time(iData_Actual_start-1:iData_Actual_end+1,1);

% 	actualFeedIn_RP.data = nan(size(actualFeedIn.time(iData_Actual_start:iData_Actual_end,1),1),1);

	indexTarget = 1;

	for indexSource=iData_Actual_start:iData_Actual_end

% 		actualFeedIn_RP.time(indexTarget,1) = actualFeedIn.time(indexSource,1);

		if actualFeedIn.data(indexSource,1) >= secureIDCapacity(indexTarget,1)

			actualFeedIn_RP.data(indexTarget,1) = secureIDCapacity(indexTarget,1);

		elseif actualFeedIn.data(indexSource,1) < secureIDCapacity(indexTarget,1)

			actualFeedIn_RP.data(indexTarget,1) = actualFeedIn.data(indexSource,1);

		else

			actualFeedIn_RP.data(indexTarget,1) = nan;

		end

		indexTarget = indexTarget+1;

	end

	actualFeedIn_RP.data(1:length(offerableRP)+2,1) = [nan; actualFeedIn_RP.data; nan];

% 	actualFeedIn_RP.data(1:length(offerableRP)+2,1) = [0; (actualFeedIn.data(iData_Actual_start:iData_Actual_end,1) - regulatingPowerCap.pos); 0];

	

	clearvars iData* index*;

	

	% Capacity Prices are calculated on the losses of income due to the

	% bidding on the RP Market; The Capacity Prices must be calculated

	% according to the generated income on the DA-Spot Market, the possible

	% additional income on ID-Markets due to a better and more secure

	% forecast will not be included in the Capacity price, due to its

	% underlying uncertainties

	incomeEPEX_RP_new = Offer_ControlReserve.calcIncomeEPEX_new(actualFeedIn_RP, DA_Forec_RP, ID_Forec_RP,...

		DA_MarketPrice, ID_MarketPrice, RPP, startTime, endTime);

	[incomeEEG_RP_new resultFIT, resultMarketPremium] = ...

		Offer_ControlReserve.calcIncomeEEG_new(actualFeedIn_RP.time, actualFeedIn_RP.data, ...

		DA_MarketPrice.time, DA_MarketPrice.price, startTime, endTime, opts.feedInTariff);

	

	CostPosRP_new = incomeEPEX + incomeEEG - (incomeEPEX_RP_new + incomeEEG_RP_new);

	

	% Less income on Power Markets leads to costs for Wind Turbine

	% operators, which is redirected to the Capacacity Prices for

	% Regulating Power

	if pos.capacity > 0

		pos.capacityPrice = CostPosRP_new / blockHours * installedCapacity / pos.capacity;

	else

		pos.capacityPrice = 0;

	end

	if pos.capacityPrice < 0

		pos.capacityPrice = 0;

	end

	

	% Energy Price is only dependent on the cost that occur amongst the

	% dispatch of RP

	pos.energyPrice = -resultFIT;

else

	pos.capacity		= nan;

	pos.capacityPrice	= nan;

	pos.energyPrice		= nan;

	pos.comment			= 'no offer';

end

%% Offering negative Regulating Power

if percentNegRP > 0

	% Calculate Amount of RP offered on RP Power Markets

	regulatingPowerCap.neg = percentNegRP/100 * min(offerableRP);

	neg.capacity = regulatingPowerCap.neg * installedCapacity;

	

	% Calculate the difference between solely Spot & ID Market participation as

	% FIXME: Wird der Fehler zwischen sicherer ID-Prognose und Erzeugung

	% voll über Ausgleichsenergiemechnismus ausgeglichen, oder gilt für die

	% Produktion dann ein anderer Wert in Höhe der ID-Prognose?

	% Negative RP does not generate costs, due to the fact that downward

	% regulation can be offered without any previous regulation. Capacity

	% Prices for negative Reserves are therefore at 0 €/MWh.

	

	CostNegRP = 0;

	

	% Less income on Power Markets leads to costs for Wind Turbine

	% operators, which is redirected to the Capacacity Prices for

	% Regulating Power

	if neg.capacity > 0

		neg.capacityPrice = CostNegRP / blockHours * installedCapacity / neg.capacity;

	else

		neg.capacityPrice = 0;

	end

	if neg.capacityPrice < 0

		neg.capacityPrice = 0;

	end

	

	% Energy Price is only dependent on the cost that occur amongst the

	% dispatch of RP

	neg.energyPrice = resultFIT;

else

	neg.capacity		= nan;

	neg.capacityPrice	= nan;

	neg.energyPrice		= nan;

	neg.comment			= 'no offer';

end

%% Rearrange variables

offerRP.pos = pos;

offerRP.neg = neg;

Functions/+Offer_ControlReserve/calcOfferPriceBC.m

function [offerRP] = calcOfferPriceBC(DA_Forec, DA_MarketPrice,...

	ID_Forec, ID_MarketPrice, RPP, actualFeedIn, startTime, endTime,...

	incomeEPEX, incomeEEG, offerableRP, secureIDCapacity, resultFIT, ...

	percentPosRP, percentNegRP, installedCapacity, opts)

% The Income from available ID Capacity is calculated

% Calculates the difference between solely Spot & ID Market participation

% as an input for the calculation on Regulating Power Markets

%

% Capacity price must cover the income losses from not selling on normal

% power markets

%

%

% The installed capacity is set to 1MW, if no other input is given

%% Solve datenum problem on function call

DA_Forec.time = roundn(DA_Forec.time,-9);

ID_Forec.time = roundn(ID_Forec.time,-9);

actualFeedIn.time = roundn(actualFeedIn.time,-9);

startTime = roundn(startTime,-9);

endTime = roundn(endTime,-9);

%% Check input

% Set installed Capacity to 1 if not given

if ~exist('installedCapacity')

	installedCapacity = 1;

end

if percentPosRP+percentNegRP > 100 || percentPosRP > 100 || percentPosRP < 0 || percentNegRP > 100 || percentNegRP < 0

	error('One cannnot offer more than 100% or less than 0% of Regulating Power');

end

%% Offerable RP upscaled by capacity

offerableRP_upscaled = offerableRP * installedCapacity;

%% Calculate Time Span

blockHours = (datenum(endTime)-datenum(startTime)) * 24;

%% Offering positive Regulating Power

if percentPosRP > 0

	% Calculate Amount of RP offered on RP Power Markets

	regulatingPowerCap.pos = percentPosRP/100 * min(offerableRP);

	pos.capacity = regulatingPowerCap.pos * installedCapacity;

	

	% Calculate the difference in income between solely Spot & ID Market

	% participation and the participation on RP Power Markets

	

	% Negative RP under the Balance Control Mechanism does generate costs

	% due to the fact that unit needs to be leveled down

	

	DA_Forec_RP.time(1:length(offerableRP)+2,:) = DA_Forec.time(find(DA_Forec.time >= datenum(startTime),1,'first')-1:find(DA_Forec.time > datenum(endTime),1,'first')-1+1,1);

	DA_Forec_RP.data = offerableRP - regulatingPowerCap.pos;

	

	ID_Forec_RP.time(1:length(offerableRP)+2,:) = datenum(ID_Forec.time(find(datenum(ID_Forec.time) >= datenum(startTime),1,'first')-1:find(datenum(ID_Forec.time) > datenum(endTime),1,'first')-1+1,:));

	ID_Forec_RP.data = secureIDCapacity - regulatingPowerCap.pos;

	ID_Forec_RP.data(ID_Forec_RP.data < 0) = 0;

	

	actualFeedIn_RP.time(1:length(offerableRP)+2,:) = actualFeedIn.time(find(actualFeedIn.time >= datenum(startTime),1,'first')-1:find(actualFeedIn.time > datenum(endTime),1,'first')-1+1,1);

	actualFeedIn_RP.data = actualFeedIn.data(find(actualFeedIn.time >= datenum(startTime),1,'first'):find(actualFeedIn.time > datenum(endTime),1,'first')-1,1);

	if opts.noBalPrice

		actualFeedIn_RP.data(actualFeedIn_RP.data >= ID_Forec_RP.data) = ID_Forec_RP.data(actualFeedIn_RP.data >= ID_Forec_RP.data);

	end

	

	DA_Forec_RP.data = [nan;DA_Forec_RP.data;nan];

	ID_Forec_RP.data = [nan;ID_Forec_RP.data;nan];

	actualFeedIn_RP.data = [nan;actualFeedIn_RP.data;nan];

	actualFeedIn_RP.data(actualFeedIn_RP.data < 0) = 0;

	% Capacity Prices are calculated on the losses of income due to the

	% bidding on the RP Market; The Capacity Prices must be calculated

	% according to the generated income on the DA-Spot Market, the possible

	% additional income on ID-Markets due to a better and more secure

	% forecast will not be included in the Capacity price, due to its

	% underlying uncertainties

	

	incomeEPEX_RP_new = Offer_ControlReserve.calcIncomeEPEX_new(actualFeedIn_RP, DA_Forec_RP, ID_Forec_RP,...

		DA_MarketPrice, ID_MarketPrice, RPP, startTime, endTime);

	[incomeEEG_RP_new, resultFIT, resultMarketPremium] = ...

		Offer_ControlReserve.calcIncomeEEG_new(actualFeedIn_RP.time, actualFeedIn_RP.data, ...

		DA_MarketPrice.time, DA_MarketPrice.price, startTime, endTime, opts.feedInTariff);

	

	CostPosRP_new = incomeEPEX + incomeEEG - (incomeEPEX_RP_new + incomeEEG_RP_new);

	

	% Alternative method

	if opts.altPriceCalc

		

		% ID Anteil

		ID_RP_new.time = ID_Forec_RP.time(2:end-1);	ID_RP_new.data = ID_Forec_RP.data(2:end-1);

		

		[ID_RP_new.time,ID_RP_new.data,ID_new.time,ID_new.data] = Auxiliary_Functions.getCommonData(ID_RP_new.time,ID_RP_new.data,ID_Forec.time,ID_Forec.data(:,1));

		time_new = Auxiliary_Functions.my_sync_time(15,min(ID_MarketPrice.time),max(ID_MarketPrice.time))';

		[ID_Market_new.time,ID_Market_new.data] = Auxiliary_Functions.interp2Timestamp(time_new, ID_MarketPrice.time,ID_MarketPrice.price);

		[ID_Market_new.time,ID_Market_new.data,ID_new.time,ID_new.data] = Auxiliary_Functions.getCommonData(ID_Market_new.time,ID_Market_new.data,ID_new.time,ID_new.data(:,1));

		

		ID_part = (ID_new.data - ID_RP_new.data) .* (ID_Market_new.data + mean(resultMarketPremium));

		

		% RPP part with average RPP price

% 		[actualFeedIn_avg.time,actualFeedIn_avg.data,RPP_avg.time,RPP_avg.data] = Auxiliary_Functions.getCommonData(actualFeedIn.time,actualFeedIn.data,RPP.time,RPP.data);

		[~,~,RPP_avg.time,RPP_avg.data] = Auxiliary_Functions.getCommonData(ID_new.time,ID_new.data,RPP.time,RPP.data);

		% 		RPP_avg = nanmean(actualFeedIn_avg.data .* RPP_avg.data);

		[act_new.time,act_new.data,ID_new.time,ID_new.data] = Auxiliary_Functions.getCommonData(actualFeedIn_RP.time,actualFeedIn_RP.data,ID_new.time,ID_new.data);

		[RPP_new.time,RPP_new.data,ID_new.time,ID_new.data] = Auxiliary_Functions.getCommonData(RPP.time,RPP.data,ID_new.time,ID_new.data);

		

		act_part = (act_new.data - ID_new.data) * (nanmean(RPP_avg.data) + mean(resultMarketPremium));

		

		% Cost from provision of balance control

		[DA_Forec_RP_new.time,DA_Forec_RP_new.data,~,~] = Auxiliary_Functions.getCommonData(DA_Forec_RP.time,DA_Forec_RP.data,ID_new.time,ID_new.data);

		time_new = Auxiliary_Functions.my_sync_time(15,min(DA_MarketPrice.time),max(DA_MarketPrice.time))';

		[DA_Market_new.time,DA_Market_new.data] = Auxiliary_Functions.interp2Timestamp(time_new, DA_MarketPrice.time,DA_MarketPrice.price);

		[DA_Forec_RP_new.time,DA_Forec_RP_new.data,DA_Market_new.time,DA_Market_new.data] = Auxiliary_Functions.getCommonData(DA_Forec_RP_new.time,DA_Forec_RP_new.data,DA_Market_new.time,DA_Market_new.data);

		downReg = DA_Forec_RP_new.data .* DA_Market_new.data;

		

		% Summing up

		CostPosRP_new = nansum(ID_part) + nansum(act_part) + nansum(downReg);

		CostPosRP_new = CostPosRP_new / 4;

		

	end

	

	% Less income on Power Markets leads to costs for Wind Turbine

	% operators, which is redirected to the Capacacity Prices for

	% Regulating Power

	if pos.capacity > 0

		pos.capacityPrice = CostPosRP_new / blockHours * installedCapacity / pos.capacity;

	else

		pos.capacityPrice = 0;

	end

	if pos.capacityPrice < 0

		pos.capacityPrice = 0;

	end

	

	% Energy Price is only dependent on the cost that occur amongst the

	% dispatch of RP

	

	pos.energyPrice = -resultFIT;

	

	% Amount of downregulated energy

	

	[~, ~, DA_Forec_select.time, DA_Forec_select.data] = ...

		Auxiliary_Functions.getCommonData(DA_Forec_RP.time(2:end-1,1), DA_Forec_RP.data(2:end-1,1), DA_Forec.time, DA_Forec.data);

	

	DA_Forec_secure_select.time = DA_Forec_select.time;

	DA_Forec_secure_select.data = offerableRP;

	

	[~, ~, ID_Forec_select.time, ID_Forec_select.data] = ...

		Auxiliary_Functions.getCommonData(ID_Forec_RP.time(2:end-1,1), ID_Forec_RP.data(2:end-1,1), ID_Forec.time, ID_Forec.data(:,1));

	ID_Forec_secure_select.time = ID_Forec_select.time;

	ID_Forec_secure_select.data = secureIDCapacity;

	

	[~, ~, actualFeedIn_select.time, actualFeedIn_select.data] = ...

		Auxiliary_Functions.getCommonData(actualFeedIn_RP.time(2:end-1,1), actualFeedIn_RP.data(2:end-1,1), actualFeedIn.time, actualFeedIn.data);

	

	shareHour = (actualFeedIn_select.time(end,1) - actualFeedIn_select.time(1,1)+ (actualFeedIn_select.time(2,1) - actualFeedIn_select.time(1,1))) *24 / size(actualFeedIn_select.time,1);

	actualFeedIn_select.data(actualFeedIn_select.data < ID_Forec_secure_select.data) = ID_Forec_secure_select.data(actualFeedIn_select.data < ID_Forec_secure_select.data);

	pos.lostEnergy = sum(actualFeedIn_select.data - ID_Forec_secure_select.data) * shareHour;

	pos.lostEnergyTimeSeries = actualFeedIn_select.data - ID_Forec_secure_select.data;

	

else

	pos.capacity				= nan;

	pos.capacityPrice			= nan;

	pos.energyPrice				= nan;

	pos.lostEnergy				= nan;

	pos.lostEnergyTimeSeries	= nan(size(offerableRP));

	pos.comment					= 'no offer';

end

clearvars iData* DA_Forec_RP ID_Forec_RP actualFeedIn_RP;

%% Offering negative Regulating Power

if percentNegRP > 0

	% Calculate Amount of RP offered on RP Power Markets

	regulatingPowerCap.neg = percentNegRP/100 * min(offerableRP);

	neg.capacity = regulatingPowerCap.neg * installedCapacity;

	

	% Calculate the difference in income between solely Spot & ID Market

	% participation and the participation on RP Power Markets

	

	% Negative RP under the Balance Control Mechanism does generate costs

	% due to the fact that unit needs to be leveled down

	

	DA_Forec_RP.time(1:length(offerableRP)+2,:) = DA_Forec.time(find(DA_Forec.time >= datenum(startTime),1,'first')-1:find(DA_Forec.time > datenum(endTime),1,'first')-1+1,1);

	DA_Forec_RP.data = offerableRP; % - regulatingPowerCap.neg;

	ID_Forec_RP.time(1:length(offerableRP)+2,:) = datenum(ID_Forec.time(find(datenum(ID_Forec.time) >= datenum(startTime),1,'first')-1:find(datenum(ID_Forec.time) > datenum(endTime),1,'first')-1+1,:));

	ID_Forec_RP.data = secureIDCapacity; % - regulatingPowerCap.neg;

	ID_Forec_RP.data(ID_Forec_RP.data < 0) = 0;

	

	actualFeedIn_RP.time(1:length(offerableRP)+2,:) = actualFeedIn.time(find(actualFeedIn.time >= datenum(startTime),1,'first')-1:find(actualFeedIn.time > datenum(endTime),1,'first')-1+1,1);

	actualFeedIn_RP.data = actualFeedIn.data(find(actualFeedIn.time >= datenum(startTime),1,'first'):find(actualFeedIn.time > datenum(endTime),1,'first')-1,1);

	if opts.noBalPrice

		actualFeedIn_RP.data(actualFeedIn_RP.data >= ID_Forec_RP.data) = ID_Forec_RP.data(actualFeedIn_RP.data >= ID_Forec_RP.data);

	end

	

	DA_Forec_RP.data = [nan;DA_Forec_RP.data;nan];

	ID_Forec_RP.data = [nan;ID_Forec_RP.data;nan];

	actualFeedIn_RP.data = [nan;actualFeedIn_RP.data;nan];

	actualFeedIn_RP.data(actualFeedIn_RP.data < 0) = 0;

	

	% Capacity Prices are calculated on the losses of income due to the

	% bidding on the RP Market; The Capacity Prices must be calculated

	% according to the generated income on the DA-Spot Market, the possible

	% additional income on ID-Markets due to a better and more secure

	% forecast will not be included in the Capacity price, due to its

	% underlying uncertainties

	incomeEPEX_RP_new = Offer_ControlReserve.calcIncomeEPEX_new(actualFeedIn_RP, DA_Forec_RP, ID_Forec_RP,...

		DA_MarketPrice, ID_MarketPrice, RPP, startTime, endTime);

	[incomeEEG_RP_new, resultFIT, resultMarketPremium] = ...

		Offer_ControlReserve.calcIncomeEEG_new(actualFeedIn_RP.time, actualFeedIn_RP.data, ...

		DA_MarketPrice.time, DA_MarketPrice.price, startTime, endTime, opts.feedInTariff);

	

	CostPosRP_new = incomeEPEX + incomeEEG - (incomeEPEX_RP_new + incomeEEG_RP_new);

	

	% Alternative method

	if opts.altPriceCalc

		% ID Anteil

		ID_RP_new.time = ID_Forec_RP.time(2:end-1);	ID_RP_new.data = ID_Forec_RP.data(2:end-1);

		

		[ID_RP_new.time,ID_RP_new.data,ID_new.time,ID_new.data] = Auxiliary_Functions.getCommonData(ID_RP_new.time,ID_RP_new.data,ID_Forec.time,ID_Forec.data(:,1));

		time_new = Auxiliary_Functions.my_sync_time(15,min(ID_MarketPrice.time),max(ID_MarketPrice.time))';

		[ID_Market_new.time,ID_Market_new.data] = Auxiliary_Functions.interp2Timestamp(time_new, ID_MarketPrice.time,ID_MarketPrice.price);

		[ID_Market_new.time,ID_Market_new.data,ID_new.time,ID_new.data] = Auxiliary_Functions.getCommonData(ID_Market_new.time,ID_Market_new.data,ID_new.time,ID_new.data(:,1));

		

		ID_part = (ID_new.data - ID_RP_new.data) .* (ID_Market_new.data + mean(resultMarketPremium));

		% RPP part with average RPP price

% 		[actualFeedIn_avg.time,actualFeedIn_avg.data,RPP_avg.time,RPP_avg.data] = Auxiliary_Functions.getCommonData(actualFeedIn.time,actualFeedIn.data,RPP.time,RPP.data);

		[~,~,RPP_avg.time,RPP_avg.data] = Auxiliary_Functions.getCommonData(ID_new.time,ID_new.data,RPP.time,RPP.data);

		% 		RPP_avg = nanmean(actualFeedIn_avg.data .* RPP_avg.data);

		[act_new.time,act_new.data,ID_new.time,ID_new.data] = Auxiliary_Functions.getCommonData(actualFeedIn_RP.time,actualFeedIn_RP.data,ID_new.time,ID_new.data);

		[RPP_new.time,RPP_new.data,ID_new.time,ID_new.data] = Auxiliary_Functions.getCommonData(RPP.time,RPP.data,ID_new.time,ID_new.data);		

		

		act_part = (act_new.data - ID_new.data) * (nanmean(RPP_avg.data) + mean(resultMarketPremium));

		

		% Summing up

		CostPosRP_new = nansum(ID_part) + nansum(act_part);

		CostPosRP_new = CostPosRP_new / 4;

		

	end

	

	% Less income on Power Markets leads to costs for Wind Turbine

	% operators, which is redirected to the Capacacity Prices for

	% Regulating Power

	if neg.capacity > 0

		neg.capacityPrice = CostPosRP_new / blockHours * installedCapacity / neg.capacity;

	else

		neg.capacityPrice = 0;

	end

	if neg.capacityPrice < 0

		neg.capacityPrice = 0;

	end

	

	% Energy Price is only dependent on the cost that occur amongst the

	% dispatch of RP

	

	neg.energyPrice = resultFIT;

	

	% Amount of downregulated energy

	

	[~, ~, DA_Forec_select.time, DA_Forec_select.data] = ...

		Auxiliary_Functions.getCommonData(DA_Forec_RP.time(2:end-1,1), DA_Forec_RP.data(2:end-1,1), DA_Forec.time, DA_Forec.data);

	

	DA_Forec_secure_select.time = DA_Forec_select.time;

	DA_Forec_secure_select.data = offerableRP;

	

	[~, ~, ID_Forec_select.time, ID_Forec_select.data] = ...

		Auxiliary_Functions.getCommonData(ID_Forec_RP.time(2:end-1,1), ID_Forec_RP.data(2:end-1,1), ID_Forec.time, ID_Forec.data(:,1));

	ID_Forec_secure_select.time = ID_Forec_select.time;

	ID_Forec_secure_select.data = secureIDCapacity;

	

	[~, ~, actualFeedIn_select.time, actualFeedIn_select.data] = ...

		Auxiliary_Functions.getCommonData(actualFeedIn_RP.time(2:end-1,1), actualFeedIn_RP.data(2:end-1,1), actualFeedIn.time, actualFeedIn.data);

	

	shareHour = (actualFeedIn_select.time(end,1) - actualFeedIn_select.time(1,1)+ (actualFeedIn_select.time(2,1) - actualFeedIn_select.time(1,1))) *24 / size(actualFeedIn_select.time,1);

	actualFeedIn_select.data(actualFeedIn_select.data < ID_Forec_secure_select.data) = ID_Forec_secure_select.data(actualFeedIn_select.data < ID_Forec_secure_select.data);

	neg.lostEnergy = sum(actualFeedIn_select.data - ID_Forec_secure_select.data) * shareHour;

	neg.lostEnergyTimeSeries = actualFeedIn_select.data - ID_Forec_secure_select.data;

	

else

	neg.capacity				= nan;

	neg.capacityPrice			= nan;

	neg.energyPrice				= nan;

	neg.lostEnergy				= nan;

	neg.lostEnergyTimeSeries	= nan(size(offerableRP));

	neg.comment					= 'no offer';

end

clearvars iData* DA_Forec_RP ID_Forec_RP actualFeedIn_RP;

%% Rearrange variables

offerRP.pos = pos;

offerRP.neg = neg;

Functions/+Offer_ControlReserve/calcOfferPriceBCredOfferID.m

function [offerRP] = calcOfferPriceBCredOfferID(DA_Forec, DA_MarketPrice,...

	ID_Forec, ID_MarketPrice, RPP, actualFeedIn, startTime, endTime,...

	incomeEPEX, incomeEEG, offerableRP, secureIDCapacity, resultFIT, ...

	percentPosRP, percentNegRP, installedCapacity,opts)

% The Income from available ID Capacity is calculated

% Calculates the difference between solely Spot & ID Market participation

% as an input for the calculation on Regulating Power Markets

%

% Capacity price must cover the income losses from not selling on normal

% power markets

%

%

% The installed capacity is set to 1MW, if no other input is given

%% Solve datenum problem on function call

DA_Forec.time = roundn(DA_Forec.time,-9);

ID_Forec.time = roundn(ID_Forec.time,-9);

actualFeedIn.time = roundn(actualFeedIn.time,-9);

startTime = roundn(startTime,-9);

endTime = roundn(endTime,-9);

%% Check input

% Set installed Capacity to 1 if not given

if ~exist('installedCapacity')

	installedCapacity = 1;

end

if percentPosRP+percentNegRP > 100 || percentPosRP > 100 || percentPosRP < 0 || percentNegRP > 100 || percentNegRP < 0

	error('One cannnot offer more than 100% or less than 0% of Regulating Power');

end

%% Offerable RP upscaled by capacity

offerableRP_upscaled = offerableRP * installedCapacity;

%% Calculate Time Span

blockHours = (datenum(endTime)-datenum(startTime)) * 24;

%% Offering positive Regulating Power

if percentPosRP > 0

	% Calculate Amount of RP offered on RP Power Markets

	regulatingPowerCap.pos = percentPosRP/100 * min(offerableRP);

	pos.capacity = regulatingPowerCap.pos * installedCapacity;

	

	% Calculate the difference in income between solely Spot & ID Market

	% participation and the participation on RP Power Markets

	

	% Negative RP under the Balance Control Mechanism does generate costs

	% due to the fact that unit needs to be leveled down

	

	DA_Forec_RP.time(1:length(offerableRP)+2,:) = DA_Forec.time(find(DA_Forec.time >= datenum(startTime),1,'first')-1:find(DA_Forec.time > datenum(endTime),1,'first')-1+1,1);

	DA_Forec_RP.data = offerableRP; %- regulatingPowerCap.pos;

	

	ID_Forec_RP.time(1:length(offerableRP)+2,:) = datenum(ID_Forec.time(find(datenum(ID_Forec.time) >= datenum(startTime),1,'first')-1:find(datenum(ID_Forec.time) > datenum(endTime),1,'first')-1+1,:));

	ID_Forec_RP.data = secureIDCapacity; %- regulatingPowerCap.pos;

	ID_Forec_RP.data(ID_Forec_RP.data < 0) = 0;

	

	% 	actualFeedIn_RP.time(1:length(offerableRP)+2,:) = actualFeedIn.time(find(actualFeedIn.time >= datenum(startTime),1,'first')-1:find(actualFeedIn.time > datenum(endTime),1,'first')-1+1,1);

	% 	actualFeedIn_RP.data = actualFeedIn.data(find(actualFeedIn.time >= datenum(startTime),1,'first'):find(actualFeedIn.time > datenum(endTime),1,'first')-1,1);

	% 	actualFeedIn_RP.data(actualFeedIn_RP.data >= ID_Forec_RP.data) = ID_Forec_RP.data(actualFeedIn_RP.data >= ID_Forec_RP.data);

	

	DA_Forec_RP.data = [nan;DA_Forec_RP.data;nan];

	ID_Forec_RP.data = [nan;ID_Forec_RP.data;nan];

	% 	actualFeedIn_RP.data = [nan;actualFeedIn_RP.data;nan];

	

	[ID_Forec_comm.time,ID_Forec_comm.data,ID_Forec_RP_comm.time,ID_Forec_RP_comm.data] = ...

		Auxiliary_Functions.getCommonData(ID_Forec.time,ID_Forec.data(:,1),ID_Forec_RP.time,ID_Forec_RP.data);

	

	[ID_Forec_comm.time,ID_Forec_comm.data,DA_Forec_comm.time,DA_Forec_comm.data] = ...

		Auxiliary_Functions.getCommonData(ID_Forec_comm.time,ID_Forec_comm.data,DA_Forec.time,DA_Forec.data);

	

	% Factor that decreases the losses

	IDFactor = [nan;ID_Forec_comm.data(2:end-1);nan];

	DAFactor = [nan;DA_Forec_comm.data(2:end-1);nan];

	factor_DA_ID = (IDFactor ./ DAFactor) /2;

	factor_DA_ID(factor_DA_ID > 1) = 1;

	

	% 	[ID_Forec_comm.time,ID_Forec_comm.data,actual_comm.time,actual_comm.data] = ...

	% 		Auxiliary_Functions.getCommonData(ID_Forec_comm.time,ID_Forec_comm.data,actualFeedIn_RP.time,actualFeedIn_RP.data);

	

	ID_Forec_RP.data = factor_DA_ID .* ID_Forec_comm.data + (1-factor_DA_ID) .* ID_Forec_RP_comm.data;

	

	actualFeedIn_RP.time(1:length(offerableRP)+2,:) = actualFeedIn.time(find(actualFeedIn.time >= datenum(startTime),1,'first')-1:find(actualFeedIn.time > datenum(endTime),1,'first')-1+1,1);

	actualFeedIn_RP.data = actualFeedIn.data(find(actualFeedIn.time >= datenum(startTime),1,'first'):find(actualFeedIn.time > datenum(endTime),1,'first')-1,1);

	actualFeedIn_RP.data = [nan;actualFeedIn_RP.data;nan];

	if opts.noBalPrice

		actualFeedIn_RP.data(actualFeedIn_RP.data >= ID_Forec_RP.data) = ID_Forec_RP.data(actualFeedIn_RP.data >= ID_Forec_RP.data);

	end

	actualFeedIn_RP.data(actualFeedIn_RP.data < 0) = 0;

	

	% Capacity Prices are calculated on the losses of income due to the

	% bidding on the RP Market; The Capacity Prices must be calculated

	% according to the generated income on the DA-Spot Market, the possible

	% additional income on ID-Markets due to a better and more secure

	% forecast will not be included in the Capacity price, due to its

	% underlying uncertainties

	

	ID_Forec_RP.data = ID_Forec_RP.data - regulatingPowerCap.pos;

	DA_Forec_RP.data = DA_Forec_RP.data - regulatingPowerCap.pos;

	

	incomeEPEX_RP_new = Offer_ControlReserve.calcIncomeEPEX_new(actualFeedIn_RP, DA_Forec_RP, ID_Forec_RP,...

		DA_MarketPrice, ID_MarketPrice, RPP, startTime, endTime);

	[incomeEEG_RP_new, resultFIT, resultMarketPremium] = ...

		Offer_ControlReserve.calcIncomeEEG_new(actualFeedIn_RP.time, actualFeedIn_RP.data, ...

		DA_MarketPrice.time, DA_MarketPrice.price, startTime, endTime, opts.feedInTariff);

	

	CostPosRP_new = incomeEPEX + incomeEEG - (incomeEPEX_RP_new + incomeEEG_RP_new);

	

	% Alternative method

	if opts.altPriceCalc

		

		% ID Anteil

		ID_RP_new.time = ID_Forec_RP.time(2:end-1);	ID_RP_new.data = ID_Forec_RP.data(2:end-1);

		

		[ID_RP_new.time,ID_RP_new.data,ID_new.time,ID_new.data] = Auxiliary_Functions.getCommonData(ID_RP_new.time,ID_RP_new.data,ID_Forec.time,ID_Forec.data(:,1));

		time_new = Auxiliary_Functions.my_sync_time(15,min(ID_MarketPrice.time),max(ID_MarketPrice.time))';

		[ID_Market_new.time,ID_Market_new.data] = Auxiliary_Functions.interp2Timestamp(time_new, ID_MarketPrice.time,ID_MarketPrice.price);

		[ID_Market_new.time,ID_Market_new.data,ID_new.time,ID_new.data] = Auxiliary_Functions.getCommonData(ID_Market_new.time,ID_Market_new.data,ID_new.time,ID_new.data(:,1));

		

		ID_part = (ID_new.data - ID_RP_new.data) .* (ID_Market_new.data + mean(resultMarketPremium));

		

		% RPP part with average RPP price

% 		[actualFeedIn_avg.time,actualFeedIn_avg.data,RPP_avg.time,RPP_avg.data] = Auxiliary_Functions.getCommonData(actualFeedIn.time,actualFeedIn.data,RPP.time,RPP.data);

		[~,~,RPP_avg.time,RPP_avg.data] = Auxiliary_Functions.getCommonData(ID_new.time,ID_new.data,RPP.time,RPP.data);

		% 		RPP_avg = nanmean(actualFeedIn_avg.data .* RPP_avg.data);

		[act_new.time,act_new.data,ID_new.time,ID_new.data] = Auxiliary_Functions.getCommonData(actualFeedIn_RP.time,actualFeedIn_RP.data,ID_new.time,ID_new.data);

		[RPP_new.time,RPP_new.data,ID_new.time,ID_new.data] = Auxiliary_Functions.getCommonData(RPP.time,RPP.data,ID_new.time,ID_new.data);

		

		act_part = (act_new.data - ID_new.data) * (nanmean(RPP_avg.data) + mean(resultMarketPremium));

		

		% Cost from provision of balance control

		[DA_Forec_RP_new.time,DA_Forec_RP_new.data,~,~] = Auxiliary_Functions.getCommonData(DA_Forec_RP.time,DA_Forec_RP.data,ID_new.time,ID_new.data);

		time_new = Auxiliary_Functions.my_sync_time(15,min(DA_MarketPrice.time),max(DA_MarketPrice.time))';

		[DA_Market_new.time,DA_Market_new.data] = Auxiliary_Functions.interp2Timestamp(time_new, DA_MarketPrice.time,DA_MarketPrice.price);

		[DA_Forec_RP_new.time,DA_Forec_RP_new.data,DA_Market_new.time,DA_Market_new.data] = Auxiliary_Functions.getCommonData(DA_Forec_RP_new.time,DA_Forec_RP_new.data,DA_Market_new.time,DA_Market_new.data);

		downReg = DA_Forec_RP_new.data .* DA_Market_new.data;

		

		% Summing up

		CostPosRP_new = nansum(ID_part) + nansum(act_part) + nansum(downReg);

		CostPosRP_new = CostPosRP_new / 4;

		

	end

	

	% Less income on Power Markets leads to costs for Wind Turbine

	% operators, which is redirected to the Capacacity Prices for

	% Regulating Power

	if pos.capacity > 0

		pos.capacityPrice = CostPosRP_new / blockHours * installedCapacity / pos.capacity;

	else

		pos.capacityPrice = 0;

	end

	if pos.capacityPrice < 0

		pos.capacityPrice = 0;

	end

	

	% Energy Price is only dependent on the cost that occur amongst the

	% dispatch of RP

	

	pos.energyPrice = -resultFIT;

	

	% Amount of downregulated energy

	

	[~, ~, DA_Forec_select.time, DA_Forec_select.data] = ...

		Auxiliary_Functions.getCommonData(DA_Forec_RP.time(2:end-1,1), DA_Forec_RP.data(2:end-1,1), DA_Forec.time, DA_Forec.data);

	

	DA_Forec_secure_select.time = DA_Forec_select.time;

	DA_Forec_secure_select.data = offerableRP;

	

	[ID_Forec_RP.time, ID_Forec_RP.data, ID_Forec_select.time, ID_Forec_select.data] = ...

		Auxiliary_Functions.getCommonData(ID_Forec_RP.time(2:end-1,1), ID_Forec_RP.data(2:end-1,1), ID_Forec.time, ID_Forec.data(:,1));

	ID_Forec_secure_select.time = ID_Forec_select.time;

	% 	ID_Forec_secure_select.data = secureIDCapacity;

	ID_Forec_secure_select.data = ID_Forec_RP.data;

	

	[~, ~, actualFeedIn_select.time, actualFeedIn_select.data] = ...

		Auxiliary_Functions.getCommonData(actualFeedIn_RP.time(2:end-1,1), actualFeedIn_RP.data(2:end-1,1), actualFeedIn.time, actualFeedIn.data);

	

	shareHour = (actualFeedIn_select.time(end,1) - actualFeedIn_select.time(1,1)+ (actualFeedIn_select.time(2,1) - actualFeedIn_select.time(1,1))) *24 / size(actualFeedIn_select.time,1);

	actualFeedIn_select.data(actualFeedIn_select.data < ID_Forec_secure_select.data) = ID_Forec_secure_select.data(actualFeedIn_select.data < ID_Forec_secure_select.data);

	actualFeedIn_select.data = actualFeedIn_select.data - regulatingPowerCap.pos;

	pos.lostEnergy = sum(actualFeedIn_select.data - ID_Forec_secure_select.data) * shareHour;

	pos.lostEnergyTimeSeries = actualFeedIn_select.data - ID_Forec_secure_select.data;

	

	pos.factorReduction = factor_DA_ID(2:end-1,1);

	

else

	pos.capacity				= nan;

	pos.capacityPrice			= nan;

	pos.energyPrice				= nan;

	pos.lostEnergy				= nan;

	pos.lostEnergyTimeSeries	= nan(size(offerableRP));

	pos.factorReduction			= nan(size(offerableRP));

	pos.comment					= 'no offer';

end

clearvars iData* DA_Forec_RP ID_Forec_RP actualFeedIn_RP;

%% Offering negative Regulating Power

if percentNegRP > 0

	% Calculate Amount of RP offered on RP Power Markets

	regulatingPowerCap.neg = percentNegRP/100 * min(offerableRP);

	neg.capacity = regulatingPowerCap.neg * installedCapacity;

	

	% Calculate the difference in income between solely Spot & ID Market

	% participation and the participation on RP Power Markets

	

	% Negative RP under the Balance Control Mechanism does generate costs

	% due to the fact that unit needs to be leveled down

	

	DA_Forec_RP.time(1:length(offerableRP)+2,:) = DA_Forec.time(find(DA_Forec.time >= datenum(startTime),1,'first')-1:find(DA_Forec.time > datenum(endTime),1,'first')-1+1,1);

	DA_Forec_RP.data = offerableRP; % - regulatingPowerCap.neg;

	

	ID_Forec_RP.time(1:length(offerableRP)+2,:) = datenum(ID_Forec.time(find(datenum(ID_Forec.time) >= datenum(startTime),1,'first')-1:find(datenum(ID_Forec.time) > datenum(endTime),1,'first')-1+1,:));

	ID_Forec_RP.data = secureIDCapacity; % - regulatingPowerCap.neg;

	ID_Forec_RP.data(ID_Forec_RP.data < 0) = 0;

	

	% 	actualFeedIn_RP.time(1:length(offerableRP)+2,:) = actualFeedIn.time(find(actualFeedIn.time >= datenum(startTime),1,'first')-1:find(actualFeedIn.time > datenum(endTime),1,'first')-1+1,1);

	% 	actualFeedIn_RP.data = actualFeedIn.data(find(actualFeedIn.time >= datenum(startTime),1,'first'):find(actualFeedIn.time > datenum(endTime),1,'first')-1,1);

	% 	actualFeedIn_RP.data(actualFeedIn_RP.data >= ID_Forec_RP.data) = ID_Forec_RP.data(actualFeedIn_RP.data >= ID_Forec_RP.data);

	%

	DA_Forec_RP.data = [nan;DA_Forec_RP.data;nan];

	ID_Forec_RP.data = [nan;ID_Forec_RP.data;nan];

	% 	actualFeedIn_RP.data = [nan;actualFeedIn_RP.data;nan];

	

	% Factor that decreases the losses

	factor_DA_ID = (DA_Forec_RP.data ./ ID_Forec_RP.data);

	factor_DA_ID(factor_DA_ID > 1) = 1;

	

	[ID_Forec_comm.time,ID_Forec_comm.data,ID_Forec_RP_comm.time,ID_Forec_RP_comm.data] = ...

		Auxiliary_Functions.getCommonData(ID_Forec.time,ID_Forec.data(:,1),ID_Forec_RP.time,ID_Forec_RP.data);

	

	[ID_Forec_comm.time,ID_Forec_comm.data,DA_Forec_comm.time,DA_Forec_comm.data] = ...

		Auxiliary_Functions.getCommonData(ID_Forec_comm.time,ID_Forec_comm.data,DA_Forec.time,DA_Forec.data);

	

	% 	[ID_Forec_comm.time,ID_Forec_comm.data,actual_comm.time,actual_comm.data] = ...

	% 		Auxiliary_Functions.getCommonData(ID_Forec_comm.time,ID_Forec_comm.data,actualFeedIn_RP.time,actualFeedIn_RP.data);

	

	ID_Forec_RP.data = factor_DA_ID .* ID_Forec_RP_comm.data + (1-factor_DA_ID) .* ID_Forec_comm.data;

	

	actualFeedIn_RP.time(1:length(offerableRP)+2,:) = actualFeedIn.time(find(actualFeedIn.time >= datenum(startTime),1,'first')-1:find(actualFeedIn.time > datenum(endTime),1,'first')-1+1,1);

	actualFeedIn_RP.data = actualFeedIn.data(find(actualFeedIn.time >= datenum(startTime),1,'first'):find(actualFeedIn.time > datenum(endTime),1,'first')-1,1);

	actualFeedIn_RP.data = [nan;actualFeedIn_RP.data;nan];

	if opts.noBalPrice

		actualFeedIn_RP.data(actualFeedIn_RP.data >= ID_Forec_RP.data) = ID_Forec_RP.data(actualFeedIn_RP.data >= ID_Forec_RP.data);

	end

	actualFeedIn_RP.data(actualFeedIn_RP.data < 0) = 0;

	

	% Capacity Prices are calculated on the losses of income due to the

	% bidding on the RP Market; The Capacity Prices must be calculated

	% according to the generated income on the DA-Spot Market, the possible

	% additional income on ID-Markets due to a better and more secure

	% forecast will not be included in the Capacity price, due to its

	% underlying uncertainties

	

	incomeEPEX_RP_new = Offer_ControlReserve.calcIncomeEPEX_new(actualFeedIn_RP, DA_Forec_RP, ID_Forec_RP,...

		DA_MarketPrice, ID_MarketPrice, RPP, startTime, endTime);

	[incomeEEG_RP_new, resultFIT, resultMarketPremium] = ...

		Offer_ControlReserve.calcIncomeEEG_new(actualFeedIn_RP.time, actualFeedIn_RP.data, ...

		DA_MarketPrice.time, DA_MarketPrice.price, startTime, endTime, opts.feedInTariff);

	

	CostPosRP_new = incomeEPEX + incomeEEG - (incomeEPEX_RP_new + incomeEEG_RP_new);

	

	% Alternative method

	if opts.altPriceCalc

		

		% ID Anteil

		ID_RP_new.time = ID_Forec_RP.time(2:end-1);	ID_RP_new.data = ID_Forec_RP.data(2:end-1);

		

		[ID_RP_new.time,ID_RP_new.data,ID_new.time,ID_new.data] = Auxiliary_Functions.getCommonData(ID_RP_new.time,ID_RP_new.data,ID_Forec.time,ID_Forec.data(:,1));

		time_new = Auxiliary_Functions.my_sync_time(15,min(ID_MarketPrice.time),max(ID_MarketPrice.time))';

		[ID_Market_new.time,ID_Market_new.data] = Auxiliary_Functions.interp2Timestamp(time_new, ID_MarketPrice.time,ID_MarketPrice.price);

		[ID_Market_new.time,ID_Market_new.data,ID_new.time,ID_new.data] = Auxiliary_Functions.getCommonData(ID_Market_new.time,ID_Market_new.data,ID_new.time,ID_new.data(:,1));

		

		ID_part = (ID_new.data - ID_RP_new.data) .* (ID_Market_new.data + mean(resultMarketPremium));

		

		% RPP part with average RPP price

% 		[actualFeedIn_avg.time,actualFeedIn_avg.data,RPP_avg.time,RPP_avg.data] = Auxiliary_Functions.getCommonData(actualFeedIn.time,actualFeedIn.data,RPP.time,RPP.data);

		[~,~,RPP_avg.time,RPP_avg.data] = Auxiliary_Functions.getCommonData(ID_new.time,ID_new.data,RPP.time,RPP.data);

		% 		RPP_avg = nanmean(actualFeedIn_avg.data .* RPP_avg.data);

		[act_new.time,act_new.data,ID_new.time,ID_new.data] = Auxiliary_Functions.getCommonData(actualFeedIn_RP.time,actualFeedIn_RP.data,ID_new.time,ID_new.data);

		[RPP_new.time,RPP_new.data,ID_new.time,ID_new.data] = Auxiliary_Functions.getCommonData(RPP.time,RPP.data,ID_new.time,ID_new.data);

		

		act_part = (act_new.data - ID_new.data) * (nanmean(RPP_avg.data) + mean(resultMarketPremium));

		

		% Summing up

		CostPosRP_new = nansum(ID_part) + nansum(act_part);

		CostPosRP_new = CostPosRP_new / 4;

		

	end

	

	% Less income on Power Markets leads to costs for Wind Turbine

	% operators, which is redirected to the Capacacity Prices for

	% Regulating Power

	if neg.capacity > 0

		neg.capacityPrice = CostPosRP_new / blockHours * installedCapacity / neg.capacity;

	else

		neg.capacityPrice = 0;

	end

	if neg.capacityPrice < 0

		neg.capacityPrice = 0;

	end

	

	% Energy Price is only dependent on the cost that occur amongst the

	% dispatch of RP

	

	neg.energyPrice = resultFIT;

	

	% Amount of downregulated energy

	

	[~, ~, DA_Forec_select.time, DA_Forec_select.data] = ...

		Auxiliary_Functions.getCommonData(DA_Forec_RP.time(2:end-1,1), DA_Forec_RP.data(2:end-1,1), DA_Forec.time, DA_Forec.data);

	

	DA_Forec_secure_select.time = DA_Forec_select.time;

	DA_Forec_secure_select.data = offerableRP;

	

	[ID_Forec_RP.time, ID_Forec_RP.data, ID_Forec_select.time, ID_Forec_select.data] = ...

		Auxiliary_Functions.getCommonData(ID_Forec_RP.time(2:end-1,1), ID_Forec_RP.data(2:end-1,1), ID_Forec.time, ID_Forec.data(:,1));

	ID_Forec_secure_select.time = ID_Forec_select.time;

	% 	ID_Forec_secure_select.data = secureIDCapacity;

	ID_Forec_secure_select.data = ID_Forec_RP.data;

	

	[~, ~, actualFeedIn_select.time, actualFeedIn_select.data] = ...

		Auxiliary_Functions.getCommonData(actualFeedIn_RP.time(2:end-1,1), actualFeedIn_RP.data(2:end-1,1), actualFeedIn.time, actualFeedIn.data);

	

	shareHour = (actualFeedIn_select.time(end,1) - actualFeedIn_select.time(1,1)+ (actualFeedIn_select.time(2,1) - actualFeedIn_select.time(1,1))) *24 / size(actualFeedIn_select.time,1);

	actualFeedIn_select.data(actualFeedIn_select.data < ID_Forec_secure_select.data) = ID_Forec_secure_select.data(actualFeedIn_select.data < ID_Forec_secure_select.data);

	neg.lostEnergy = sum(actualFeedIn_select.data - ID_Forec_secure_select.data) * shareHour;

	neg.lostEnergyTimeSeries = actualFeedIn_select.data - ID_Forec_secure_select.data;

	

	neg.factorReduction = factor_DA_ID(2:end-1,1);

	

else

	neg.capacity				= nan;

	neg.capacityPrice			= nan;

	neg.energyPrice				= nan;

	neg.lostEnergy				= nan;

	neg.lostEnergyTimeSeries	= nan(size(offerableRP));

	neg.factorReduction			= nan(size(offerableRP));

	neg.comment					= 'no offer';

end

clearvars iData* DA_Forec_RP ID_Forec_RP actualFeedIn_RP;

%% Rearrange variables

offerRP.pos = pos;

offerRP.neg = neg;

Functions/+Offer_ControlReserve/calcRPOffer.m

function [offerRP] = calcRPOffer(DA_Forec, ID_Forec, RPP, actualFeedIn, ...

	DA_Forec_Prob, ID_Forec_Prob, DA_MarketPrice, ID_MarketPrice, userInput, opts)

%% Check Input

if ~isstruct(userInput)

	if isvector(userInput)

		tmpUserInput.securityLevel		= userInput(1,1);

		tmpUserInput.leadTimeRP			= userInput(1,2);

		tmpUserInput.productLength		= userInput(1,3);

		tmpUserInput.percentPosRP		= userInput(1,4);

		tmpUserInput.percentNegRP		= userInput(1,5);

		tmpUserInput.installedCapacity	= userInput(1,6);

		clearvars userInput;

		

		userInput = tmpUserInput;

	else

		error('Invalid user Input data Format');

	end

end

if userInput.productLength > 24

	error('Product length over 24 hours are not considered due to daily tendering');

end

%% Get Block

block = getBlockTime(userInput, userInput.startTime, userInput.endTime);

%% Calcute the Offer within the given time frame and given product length

for iOffer=1:length(block.start)

	

	blockOfferRP = Offer_ControlReserve.calcBlockOffer(DA_Forec, ID_Forec, RPP, actualFeedIn, DA_Forec_Prob, ID_Forec_Prob, ...

		DA_MarketPrice, ID_MarketPrice, block.start(iOffer,1), block.end(iOffer,1), userInput, opts);

	

	offerRP_AAP.pos.capacity(iOffer,1)				= blockOfferRP.AAP.pos.capacity;

	offerRP_AAP.pos.capacityPrice(iOffer,1)			= blockOfferRP.AAP.pos.capacityPrice;

	offerRP_AAP.pos.energyPrice(iOffer,1)			= blockOfferRP.AAP.pos.energyPrice;

	offerRP_AAP.neg.capacity(iOffer,1)				= blockOfferRP.AAP.neg.capacity;

	offerRP_AAP.neg.capacityPrice(iOffer,1)			= blockOfferRP.AAP.neg.capacityPrice;

	offerRP_AAP.neg.energyPrice(iOffer,1)			= blockOfferRP.AAP.neg.energyPrice;

	offerRP_AAP.startTime(iOffer,1)					= block.start(iOffer,1);

	offerRP_AAP.endTime(iOffer,1)					= block.end(iOffer,1);

	

	offerRP_BC.pos.capacity(iOffer,1)				= blockOfferRP.BC.pos.capacity;

	offerRP_BC.pos.capacityPrice(iOffer,1)			= blockOfferRP.BC.pos.capacityPrice;

	offerRP_BC.pos.energyPrice(iOffer,1)			= blockOfferRP.BC.pos.energyPrice;

	offerRP_BC.pos.lostEnergy(iOffer,1)				= blockOfferRP.BC.pos.lostEnergy;

	offerRP_BC.neg.capacity(iOffer,1)				= blockOfferRP.BC.neg.capacity;

	offerRP_BC.neg.capacityPrice(iOffer,1)			= blockOfferRP.BC.neg.capacityPrice;

	offerRP_BC.neg.energyPrice(iOffer,1)			= blockOfferRP.BC.neg.energyPrice;

	offerRP_BC.neg.lostEnergy(iOffer,1)				= blockOfferRP.BC.neg.lostEnergy;

	offerRP_BC.startTime(iOffer,1)					= block.start(iOffer,1);

	offerRP_BC.endTime(iOffer,1)					= block.end(iOffer,1);

	

	offerRP_BCred.pos.capacity(iOffer,1)			= blockOfferRP.BCred.pos.capacity;

	offerRP_BCred.pos.capacityPrice(iOffer,1)		= blockOfferRP.BCred.pos.capacityPrice;

	offerRP_BCred.pos.energyPrice(iOffer,1)			= blockOfferRP.BCred.pos.energyPrice;

	offerRP_BCred.pos.lostEnergy(iOffer,1)			= blockOfferRP.BCred.pos.lostEnergy;

	offerRP_BCred.neg.capacity(iOffer,1)			= blockOfferRP.BCred.neg.capacity;

	offerRP_BCred.neg.capacityPrice(iOffer,1)		= blockOfferRP.BCred.neg.capacityPrice;

	offerRP_BCred.neg.energyPrice(iOffer,1)			= blockOfferRP.BCred.neg.energyPrice;

	offerRP_BCred.neg.lostEnergy(iOffer,1)			= blockOfferRP.BCred.neg.lostEnergy;

	offerRP_BCred.startTime(iOffer,1)				= block.start(iOffer,1);

	offerRP_BCred.endTime(iOffer,1)					= block.end(iOffer,1);	

	

	offerRP_timeSeries.lostBC(:,iOffer)				= ...

		nansum([blockOfferRP.BC.neg.lostEnergyTimeSeries,blockOfferRP.BC.pos.lostEnergyTimeSeries],2);

	offerRP_timeSeries.lostBCredOfferID(:,iOffer)	= ...

		nansum([blockOfferRP.BCred.neg.lostEnergyTimeSeries,blockOfferRP.BCred.pos.lostEnergyTimeSeries],2);

	

	offerRP_timeSeries.factRedIDOffer(:,iOffer,1)	= blockOfferRP.BCred.neg.factorReduction;

	try

	offerRP_timeSeries.feedIn(:,iOffer)				= blockOfferRP.timeSeries.feedIn;

	end

	offerRP_timeSeries.secureDACap(:,iOffer)		= blockOfferRP.timeSeries.secureDACap;

	offerRP_timeSeries.secureIDCap(:,iOffer)		= blockOfferRP.timeSeries.secureIDCap;

	offerRP_timeSeries.time(:,iOffer)				= blockOfferRP.timeSeries.time;

	

end

offerRP.AAP											= offerRP_AAP;

offerRP.BC											= offerRP_BC;

offerRP.BCredOfferID								= offerRP_BCred;

offerRP.timeSeries.time								= reshape(offerRP_timeSeries.time,[],1);

offerRP.timeSeries.feedIn							= reshape(offerRP_timeSeries.feedIn,[],1);

offerRP.timeSeries.secureDACap						= reshape(offerRP_timeSeries.secureDACap,[],1);

offerRP.timeSeries.secureIDCap						= reshape(offerRP_timeSeries.secureIDCap,[],1);

offerRP.timeSeries.lostBC							= reshape(offerRP_timeSeries.lostBC,[],1);

offerRP.timeSeries.lostBCredOfferID					= reshape(offerRP_timeSeries.lostBCredOfferID,[],1);

offerRP.timeSeries.factRedIDOffer					= reshape(offerRP_timeSeries.factRedIDOffer,[],1);

%% Plot Data for data analysis

if opts.subplot

	

	subplot(2,2,1)

	% figure1 = figure();

	plot(DA_Forec.data,actualFeedIn.data,'ob','MarkerSize',2);

	xlabel({'Day-Ahead Forecast Data'});

	ylabel({'Actual Feed-In'});

	

	subplot(2,2,3)

	% figure1 = figure();

	plot(ID_Forec.data(1:35040,1),actualFeedIn.data(35045:70084,1),'og','MarkerSize',2);

	xlabel({'Intraday Forecast Data'});

	ylabel({'Actual Feed-In'});

	

	subplot(2,2,[2 4])

	plot(offerRP.timeSeries.secureDACap);

	hold on;

	plot(offerRP.timeSeries.feedIn,'r');

	ylim([0 1]);

	plot(offerRP.timeSeries.secureIDCap,'g');

	xlabel({'Time'});

	ylabel({'Power (normalized)'});

	hold off;

	

end

if opts.plot

	

	feedIn = plot(offerRP.timeSeries.feedIn,'r');

	hold on;

	secure_DA = plot(offerRP.timeSeries.secureDACap);

	secure_ID = plot(offerRP.timeSeries.secureIDCap,'g');

	

	ymax = ceil(max(max([offerRP.timeSeries.feedIn ...

		offerRP.timeSeries.secureDACap offerRP.timeSeries.secureIDCap]))*10)/10;

	ylim([0 ymax]);

	xlim([1 size(offerRP.timeSeries.time,1)]);	

	

	title('Offer Regulating Power')	

	xlabel({'Time'});

	ylabel({'Power (normalized)'});

	% Fraunhofer colours

	fhgOrange		= [235 106 10]/255;

	fhgBlueGreen	= [37 186 226]/255;

	fhgPetrol		= [0 110 146]/255;

	fhgGreen		= [177 200 0]/255;

		

	set(feedIn,'Color',fhgOrange,'LineWidth',2)

	set(secure_ID,'Color',fhgGreen,'LineWidth',2)

	set(secure_DA,'Color',fhgPetrol,'LineWidth',2)

		

end

function block = getBlockTime(userInput, startTime, endTime)

% Convert Time Frame to start and end

startTime = startTime;

endTime = endTime;

% Create Block Start and End Time

blockStart = zeros(ceil((endTime - startTime)*24 / userInput.productLength),6);

blockStart(1,:) = datevec(datenum(startTime));

blockEnd = zeros(ceil((endTime - startTime)*24 / userInput.productLength),6);

for iTime =1:ceil((endTime - startTime)*24 / userInput.productLength)

	

	

	blockEnd(iTime,:) = datevec(datenum(blockStart(iTime,:)) + userInput.productLength/24 - 1/24/3600);

	blockEnd(iTime,6) = ceil(blockEnd(iTime,6));	

	

	if iTime < ceil((endTime - startTime)*24 / userInput.productLength)

		blockStart(iTime+1,:) = datevec(datenum(blockStart(iTime,:)) + userInput.productLength/24);

		blockStart(iTime+1,6) = ceil(blockStart(iTime+1,6));

	end

end

blockStart = datenum(blockStart);

blockEnd = datenum(blockEnd);

% if blockEnd(end,1) < endTime

% 	blockEnd(end,1) = endTime;

% end

block.start = blockStart;

block.end = blockEnd;

Functions/+Offer_ControlReserve/calcRPOfferControlled.m

function [offerRP] = calcRPOfferControlled(MoSFC,MoTFC,DA_MarketPrice,userInput,opts)

%% Check Input

if ~isstruct(userInput)

	if isvector(userInput)

		tmpUserInput.securityLevel		= userInput(1,1);

		tmpUserInput.leadTimeRP			= userInput(1,2);

		tmpUserInput.productLength		= userInput(1,3);

		tmpUserInput.percentPosRP		= userInput(1,4);

		tmpUserInput.percentNegRP		= userInput(1,5);

		tmpUserInput.installedCapacity	= userInput(1,6);

		clearvars userInput;

		

		userInput = tmpUserInput;

	else

		error('Invalid user Input data Format');

	end

end

if userInput.productLength > 24

	error('Product length over 24 hours are not considered due to daily tendering');

end

%% Select Mo-List for offer

if strcmp(userInput.market,'TFC')

	MoList = MoTFC;

elseif strcmp(userInput.market,'SFC')

	MoList = MoSFC;

end

%% Get Block

block = getBlockTime(userInput, userInput.startTime, userInput.endTime);

%% Calcute the Offer within the given time frame and given product length

for iOffer=1:length(block.start)

	

	blockOfferRP = Offer_ControlReserve.calcBlockOfferControlled(MoList, DA_MarketPrice, block.start(iOffer,1), block.end(iOffer,1), userInput, opts);

	

	offerRP_AAP.pos.capacity(iOffer,1)				= blockOfferRP.AAP.pos.capacity;

	offerRP_AAP.pos.capacityPrice(iOffer,1)			= blockOfferRP.AAP.pos.capacityPrice;

	offerRP_AAP.pos.energyPrice(iOffer,1)			= blockOfferRP.AAP.pos.energyPrice;

	offerRP_AAP.neg.capacity(iOffer,1)				= blockOfferRP.AAP.neg.capacity;

	offerRP_AAP.neg.capacityPrice(iOffer,1)			= blockOfferRP.AAP.neg.capacityPrice;

	offerRP_AAP.neg.energyPrice(iOffer,1)			= blockOfferRP.AAP.neg.energyPrice;

	offerRP_AAP.startTime(iOffer,1)					= block.start(iOffer,1);

	offerRP_AAP.endTime(iOffer,1)					= block.end(iOffer,1);

	

	offerRP_BC.pos.capacity(iOffer,1)				= blockOfferRP.BC.pos.capacity;

	offerRP_BC.pos.capacityPrice(iOffer,1)			= blockOfferRP.BC.pos.capacityPrice;

	offerRP_BC.pos.energyPrice(iOffer,1)			= blockOfferRP.BC.pos.energyPrice;

	offerRP_BC.pos.lostEnergy(iOffer,1)				= blockOfferRP.BC.pos.lostEnergy;

	offerRP_BC.neg.capacity(iOffer,1)				= blockOfferRP.BC.neg.capacity;

	offerRP_BC.neg.capacityPrice(iOffer,1)			= blockOfferRP.BC.neg.capacityPrice;

	offerRP_BC.neg.energyPrice(iOffer,1)			= blockOfferRP.BC.neg.energyPrice;

	offerRP_BC.neg.lostEnergy(iOffer,1)				= blockOfferRP.BC.neg.lostEnergy;

	offerRP_BC.startTime(iOffer,1)					= block.start(iOffer,1);

	offerRP_BC.endTime(iOffer,1)					= block.end(iOffer,1);

	

	offerRP_BCred.pos.capacity(iOffer,1)			= blockOfferRP.BCred.pos.capacity;

	offerRP_BCred.pos.capacityPrice(iOffer,1)		= blockOfferRP.BCred.pos.capacityPrice;

	offerRP_BCred.pos.energyPrice(iOffer,1)			= blockOfferRP.BCred.pos.energyPrice;

	offerRP_BCred.pos.lostEnergy(iOffer,1)			= blockOfferRP.BCred.pos.lostEnergy;

	offerRP_BCred.neg.capacity(iOffer,1)			= blockOfferRP.BCred.neg.capacity;

	offerRP_BCred.neg.capacityPrice(iOffer,1)		= blockOfferRP.BCred.neg.capacityPrice;

	offerRP_BCred.neg.energyPrice(iOffer,1)			= blockOfferRP.BCred.neg.energyPrice;

	offerRP_BCred.neg.lostEnergy(iOffer,1)			= blockOfferRP.BCred.neg.lostEnergy;

	offerRP_BCred.startTime(iOffer,1)				= block.start(iOffer,1);

	offerRP_BCred.endTime(iOffer,1)					= block.end(iOffer,1);	

	

% 	offerRP_timeSeries.lostBC(:,iOffer)				= ...

% 		nansum([blockOfferRP.BC.neg.lostEnergyTimeSeries,blockOfferRP.BC.pos.lostEnergyTimeSeries],2);

% 	offerRP_timeSeries.lostBCredOfferID(:,iOffer)	= ...

% 		nansum([blockOfferRP.BCred.neg.lostEnergyTimeSeries,blockOfferRP.BCred.pos.lostEnergyTimeSeries],2);

% 	

% 	offerRP_timeSeries.factRedIDOffer(:,iOffer,1)	= blockOfferRP.BCred.neg.factorReduction;

% 	offerRP_timeSeries.feedIn(:,iOffer)				= blockOfferRP.timeSeries.feedIn;

% 	offerRP_timeSeries.secureDACap(:,iOffer)		= blockOfferRP.timeSeries.secureDACap;

% 	offerRP_timeSeries.secureIDCap(:,iOffer)		= blockOfferRP.timeSeries.secureIDCap;

% 	offerRP_timeSeries.time(:,iOffer)				= blockOfferRP.timeSeries.time;

	

end

offerRP.AAP											= offerRP_AAP;

offerRP.BC											= offerRP_BC;

offerRP.BCredOfferID								= offerRP_BCred;

% offerRP.timeSeries.time								= reshape(offerRP_timeSeries.time,[],1);

% offerRP.timeSeries.feedIn							= reshape(offerRP_timeSeries.feedIn,[],1);

% offerRP.timeSeries.secureDACap						= reshape(offerRP_timeSeries.secureDACap,[],1);

% offerRP.timeSeries.secureIDCap						= reshape(offerRP_timeSeries.secureIDCap,[],1);

% offerRP.timeSeries.lostBC							= reshape(offerRP_timeSeries.lostBC,[],1);

% offerRP.timeSeries.lostBCredOfferID					= reshape(offerRP_timeSeries.lostBCredOfferID,[],1);

% offerRP.timeSeries.factRedIDOffer					= reshape(offerRP_timeSeries.factRedIDOffer,[],1);

%% Plot Data for data analysis

if opts.subplot

	

	subplot(2,2,1)

	% figure1 = figure();

	plot(DA_Forec.data,actualFeedIn.data,'ob','MarkerSize',2);

	xlabel({'Day-Ahead Forecast Data'});

	ylabel({'Actual Feed-In'});

	

	subplot(2,2,3)

	% figure1 = figure();

	plot(ID_Forec.data(1:35040,1),actualFeedIn.data(35045:70084,1),'og','MarkerSize',2);

	xlabel({'Intraday Forecast Data'});

	ylabel({'Actual Feed-In'});

	

	subplot(2,2,[2 4])

	plot(offerRP.timeSeries.secureDACap);

	hold on;

	plot(offerRP.timeSeries.feedIn,'r');

	ylim([0 1]);

	plot(offerRP.timeSeries.secureIDCap,'g');

	xlabel({'Time'});

	ylabel({'Power (normalized)'});

	hold off;

	

end

if opts.plot

	

	feedIn = plot(offerRP.timeSeries.feedIn,'r');

	hold on;

	secure_DA = plot(offerRP.timeSeries.secureDACap);

	secure_ID = plot(offerRP.timeSeries.secureIDCap,'g');

	

	ymax = ceil(max(max([offerRP.timeSeries.feedIn ...

		offerRP.timeSeries.secureDACap offerRP.timeSeries.secureIDCap]))*10)/10;

	ylim([0 ymax]);

	xlim([1 size(offerRP.timeSeries.time,1)]);	

	

	title('Offer Regulating Power')	

	xlabel({'Time'});

	ylabel({'Power (normalized)'});

	% Fraunhofer colours

	fhgOrange		= [235 106 10]/255;

	fhgBlueGreen	= [37 186 226]/255;

	fhgPetrol		= [0 110 146]/255;

	fhgGreen		= [177 200 0]/255;

		

	set(feedIn,'Color',fhgOrange,'LineWidth',2)

	set(secure_ID,'Color',fhgGreen,'LineWidth',2)

	set(secure_DA,'Color',fhgPetrol,'LineWidth',2)

		

end

function block = getBlockTime(userInput, startTime, endTime)

% Convert Time Frame to start and end

startTime = startTime;

endTime = endTime;

% Create Block Start and End Time

blockStart = zeros(ceil((endTime - startTime)*24 / userInput.productLength),6);

blockStart(1,:) = datevec(datenum(startTime));

blockEnd = zeros(ceil((endTime - startTime)*24 / userInput.productLength),6);

for iTime =1:ceil((endTime - startTime)*24 / userInput.productLength)

	

	

	blockEnd(iTime,:) = datevec(datenum(blockStart(iTime,:)) + userInput.productLength/24 - 1/24/3600);

	blockEnd(iTime,6) = ceil(blockEnd(iTime,6));	

	

	if iTime < ceil((endTime - startTime)*24 / userInput.productLength)

		blockStart(iTime+1,:) = datevec(datenum(blockStart(iTime,:)) + userInput.productLength/24);

		blockStart(iTime+1,6) = ceil(blockStart(iTime+1,6));

	end

end

blockStart = datenum(blockStart);

blockEnd = datenum(blockEnd);

% if blockEnd(end,1) < endTime

% 	blockEnd(end,1) = endTime;

% end

block.start = blockStart;

block.end = blockEnd;

Functions/+Probabilistic_Forecast/calcSecureForecastKDE.m

function [fc_prob_data, fc_prob_time] = calcSecureForecastKDE(Forec_time, Forec_data, actualFeedIn_time, actualFeedIn_data, securityLevel, startTime, endTime, opts)

% This function generates probabilistic forecasts for given security levels

%

% This function calculates the forecast of the possible power production

% for a given security level depending in the forecast the actual feed-in

%

% [fc_prob_data fc_prob_time] = calcSecureForecastTimeSeries(Forec_data, Forec_time, actualFeedIn_data, actualFeedIn_time, securityLevel, startTime, endTime, opts)

%

% The parameters are:

% Forec_data		: Forecast values

% Forec_time		: Forecast time stamp (datenum)

% actualFeedIn_data	: actual feed-in values

% actualFeedIn_time	: actual feed-in time stamp

% securityLevel		: desired security levels (1xn matrix)

% startTime			: datenum

% endTime			: datemum

% opts				: structs with fields smooth and preError Plese

% number of smoothed values	: double (1 is non-smoothed)

% number of preErrors (these will determine whether pre errors are used for

%

% v1 (15.08.2012) by Malte Jansen @ Fraunhofer IWES

% v1.1 (13.11.2013) by Malte Jansen @ Fraunhofer IWES: Bugfix

% v1.2 (01.09.2015) by Malte Jansen @ Fraunhofer IWES: Added variable for

% exclusion time in the KDE to account for better separation of test and

% training data

% Solve datenum problem on function call

Forec_time = datenum(datevec(Forec_time));

actualFeedIn_time = datenum(datevec(actualFeedIn_time));

days = linspace(floor(startTime),floor(endTime),(floor(endTime)-floor(startTime))+1)';

% Create equidistant time stamp

dataTimeStamp_Forec = ...

	linspace(floor(min(Forec_time)),ceil(max(Forec_time)),(ceil(max(Forec_time))-floor(min(Forec_time)))*round(1/(Forec_time(2,1)-Forec_time(1,1)))+1)';

dataTimeStamp_Forec = dataTimeStamp_Forec(1:end-1,1);

dataTimeStamp_FeedIn = ...

	linspace(floor(min(actualFeedIn_time)),ceil(max(actualFeedIn_time)),(ceil(max(actualFeedIn_time))-floor(min(actualFeedIn_time)))*round(1/(actualFeedIn_time(2,1)-actualFeedIn_time(1,1)))+1)';

dataTimeStamp_FeedIn = dataTimeStamp_FeedIn(1:end-1,1);

% Sync Data to equidistant time stamp

[Forec_time, Forec_data] = ...

	Auxiliary_Functions.syncData2Timestamp(dataTimeStamp_Forec,Forec_time,Forec_data);

[actualFeedIn_time, actualFeedIn_data] = ...

	Auxiliary_Functions.syncData2Timestamp(dataTimeStamp_FeedIn,actualFeedIn_time,actualFeedIn_data);

% Get Common Data

[Forec_time, Forec_data, actualFeedIn_time, actualFeedIn_data] = Auxiliary_Functions.getCommonData(Forec_time, Forec_data, actualFeedIn_time, actualFeedIn_data);

for iProbFC=1:length(days)

	dayFrame(iProbFC).startTime = days(iProbFC,1);

	dayFrame(iProbFC).endTime = days(iProbFC,1)+1;

end

prob = tic;

%% Calculate probabilistic forecasts

% Distributed Computing

if matlabpool('size') ~= 0

	parfor iProbFC=1:length(days)

		

		addpath(genpath('/home/mjansen/MATLAB_Functions/'));

		

		[probForecast(iProbFC).data, probForecast(iProbFC).time] ...

			= calcSecureForecast(Forec_time, Forec_data, actualFeedIn_time, actualFeedIn_data, dayFrame(iProbFC), securityLevel, opts);

		

	end

end

% Non-distributed Computing

if matlabpool('size') == 0

	for iProbFC=1:length(days)

		

		[probForecast(iProbFC).data, probForecast(iProbFC).time] ...

			= calcSecureForecast(Forec_time, Forec_data, actualFeedIn_time, actualFeedIn_data, dayFrame(iProbFC), securityLevel, opts);

		

	end

end

%% Rearrange variables

fc_prob_data = probForecast(1).data;

fc_prob_time = probForecast(1).time;

for iProbFC=2:length(days)

	fc_prob_data = [fc_prob_data; probForecast(iProbFC).data];

	fc_prob_time = [fc_prob_time; probForecast(iProbFC).time];

end

calctime = toc(prob);

fprintf(['Calculation Time of probabilistic forecast was: ' num2str(calctime) ' seconds \n']);

function [fcSecure_data, fcSecure_time] = calcSecureForecast(fcInput_time, fcInput_data, actualFeedIn_time, actualFeedIn_data, timeFrame, securityLevel, opts)

% This function is supposed to predict the possible power production for a

% given security level depending on the Day-Ahead forecast the actual

% feed-in, the lead-time and the productLength

%

% The parameters are

% securityLevel:	The desired security level of the power forecast

% Forec:			Forecast of power production

% actualFeedIn:		The actual feed in, as a time series corresponding the

%					DA forecast

% startTime:		Given start time of the Block

% endTime:			Given end time of the Block

%

% v1 (01.02.2012) by Malte Jansen @ Fraunhofer IWES

% v2 (25.07.2012) by Malte Jansen @ Fraunhofer IWES

% v2.1 (18.04.2013) by Malte Jansen @ Fraunhofer IWES, merged in one

% m-file, expanded usable data

%% Convert Time Frame to start and end

startTime = timeFrame.startTime;

endTime = timeFrame.endTime;

%% Rearrange data

fcInput.data = fcInput_data;

fcInput.time = fcInput_time;

actualFeedIn.data = actualFeedIn_data;

actualFeedIn.time = actualFeedIn_time;

% Convert Security Level

securityLevelGaussKDE = 1-securityLevel/100;

% Number of Pre-Errors

if isfield(opts,'preError')

	nPE = opts.preError;

else

	nPE = 0;

end

% Number of Steps for the Smoothing of Results

if isfield(opts,'smooth')

	nSmth = opts.smooth;

else

	nSmth = 1;

end

%% Create Kernel Data

% % OLD CODE

% % As input only data from the past can be used, otherwise the error would

% % have a representation in itself

% selectActualFeedIn.data	= actualFeedIn.data(actualFeedIn.time < datenum(startTime)-2,1);

% selecFcInput.data		= fcInput.data(fcInput.time < datenum(startTime)-2,1);

%

% [krnI krnT] = getKernelData(selectActualFeedIn, selecFcInput, nPE);

% Only data from that doesn't have have a representation in itself can be

% used. Data is used that is -2/+14 days away from the calculated point for

% the forecast

lowerBorder = 2;

upperBorder = 14;

selectActualFeedIn.data	= [actualFeedIn.data(actualFeedIn.time < datenum(startTime)-lowerBorder,1); actualFeedIn.data(actualFeedIn.time > datenum(startTime)+upperBorder,1)];

selecFcInput.data		= [fcInput.data(fcInput.time < datenum(startTime)-lowerBorder,1); fcInput.data(fcInput.time > datenum(startTime)+upperBorder,1)];

% Delete Nans and Zeros

selectActualFeedIn_noNan.data = selectActualFeedIn.data(~any(isnan([selectActualFeedIn.data,selecFcInput.data]),2),:);

selecFcInput_noNan.data = selecFcInput.data(~any(isnan([selectActualFeedIn.data,selecFcInput.data]),2),:);

selectActualFeedIn_noZero.data = selectActualFeedIn_noNan.data(~all([selectActualFeedIn_noNan.data,selecFcInput_noNan.data] == 0,2));

selecFcInput_noZero.data = selecFcInput_noNan.data(~all([selectActualFeedIn_noNan.data,selecFcInput_noNan.data] == 0,2));

selectActualFeedIn.data = selectActualFeedIn_noZero.data;

selecFcInput.data = selecFcInput_noZero.data;

% Kernel data

[krnI, krnT] = getKernelData(selectActualFeedIn, selecFcInput, nPE);

% % Alternative

% selectActualFeedIn2.data	= actualFeedIn.data(actualFeedIn.time < datenum(startTime)-2,1);

% selecFcInput2.data		= fcInput.data(fcInput.time < datenum(startTime)-2,1);

%

% [krnI2, krnT2] = getKernelData(selectActualFeedIn2, selecFcInput2, nPE);

%

% selectActualFeedIn3.data	= actualFeedIn.data(actualFeedIn.time > datenum(startTime)+2,1);

% selecFcInput3.data		= fcInput.data(fcInput.time > datenum(startTime)+2,1);

%

% [krnI3 krnT3] = getKernelData(selectActualFeedIn3, selecFcInput3, nPE);

%

% krnI4 = [krnI2; krnI3];

% krnT4 = [krnT3; krnT3];

%% Create Simulation Data

[simI] = getSimulationData(actualFeedIn, fcInput, nPE, startTime, endTime);

%% Define Options for condGaussKDE

opts.pdf = false;

opts.simTWidth_stdDev = 25;

opts.simTWidth_nVal = 1000;

opts.waitbar = false;

%% Calculation

p = Probabilistic_Forecast.condGaussKDEn(krnI, krnT, simI, opts);

feedIn_low = zeros(size(simI,1),size(securityLevelGaussKDE,2));

for i = 1:size(simI,1)

	y = [0 p.cdf(i,:) 1];

	x = [-Inf p.simTRange(i,:) +Inf];

	[y,pos,~] = unique(y);

	x = x(1,pos);

% 	y = p.cdf(i,:);

% 	x = p.simTRange(i,:);

	

	try

		fcErr_low(i,:) = interp1(y,x,securityLevelGaussKDE);

		feedIn_low(i,:) = simI(i,1) + fcErr_low(i,:);

	catch error

		feedIn_low(i,:) = 0;

		warning('WarnTests:convertTest', ...

			['Secure Forecast between ' datestr(startTime) ' and ' ...

			datestr(endTime) ' at ' datestr(startTime) ' ' datestr(i*24/size(simI,1)/24,'HH:MM') ' could not be generated \n ==> 0 was used instead']);

	end

	

end

% Replace Values < 0

feedIn_low(feedIn_low < 0) = 0;

fcSecure.data = feedIn_low;

% Create Output

fcSecure_data = Auxiliary_Functions.smoothTimeSeries(fcSecure.data,nSmth);

fcSecure_time = actualFeedIn.time(find(actualFeedIn.time >= datenum(startTime), 1, 'first'):find(actualFeedIn.time < datenum(endTime), 1, 'last'));

function [krnI, krnT] = getKernelData(actualFeedIn, fcInput, nPE)

% Calculate Forecast Errors

fcError = actualFeedIn.data - fcInput.data(:,1);

ival = ~isnan(fcError);

for iIval=1:length(ival)

	ivalRow(iIval,1) = all(ival(iIval,:));

end

% Use only valid data

fcInput = fcInput.data(ival,1);

fcError = fcError(ival,:);

% Creat nPE Pre-Errors

for iPE = 1:nPE

 fcError(:,1+iPE) = circshift(fcError(:,iPE),[1 0]);

end

% Startdata without Pre-Errors

fcInput = fcInput(1+nPE:end,:);

fcError = fcError(1+nPE:end,:);

% plot(fcInput.data,fcError.data,'ob','MarkerSize',2);

% Input-Daten für CondGaussKDEn

krnI = [fcInput fcError(:,2:end)];

krnT = fcError(:,1);

function [simI] = getSimulationData(actualFeedIn, fcInput, nPE, startTime, endTime)

% Calculate Forecast Errors

fcError.data = actualFeedIn.data - fcInput.data(:,1);

fcError.data(isnan(fcError.data)) = 0;

fcError.time = actualFeedIn.time;

% Creat nPE Pre-Errors

for iPE = 1:nPE

 fcError.data(:,1+iPE) = circshift(fcError.data(:,iPE),[1 0]);

end

% Write Data to simI Array

indexStart = find(fcInput.time >= datenum(startTime), 1, 'first');

indexEnd = find(fcInput.time < datenum(endTime), 1, 'last');

simI = fcInput.data(indexStart:indexEnd);

if size(simI,1) == 1

	simI = simI';

end

% Catch NaNs

indexIsNan= isnan(simI);

if indexIsNan(1,1)

	simI(1,1) = 0;

elseif indexIsNan(end,1)

	simI(end,1) = 0;

end

for iIsNan=2:length(simI)-1

	if isnan(simI(iIsNan,1))

		simI(iIsNan,1) = mean([simI(iIsNan-1,1) simI(iIsNan+1,1)]);

	end

end

indexStart = find(fcError.time >= datenum(startTime), 1, 'first');

indexEnd = find(fcError.time < datenum(endTime), 1, 'last');

simI(:,2:nPE+1) = fcError.data(indexStart:indexEnd,2:end);

Functions/+Probabilistic_Forecast/calcSecureForecastKDE_independentTrain.m

function [fc_prob_data, fc_prob_time] = calcSecureForecastKDE_independentTrain(Forec_time, Forec_data, ...

	actualFeedIn_time, actualFeedIn_data, ...

	Forec_Train_time, Forec_Train_data, actualFeedIn_Train_time, actualFeedIn_Train_data, ...

	securityLevel, startTime, endTime, opts)

% This function generates probabilistic forecasts for given security levels

%

% This function calculates the forecast of the possible power production

% for a given security level depending in the forecast the actual feed-in

%

% [fc_prob_data fc_prob_time] = calcSecureForecastTimeSeries(Forec_data, Forec_time, actualFeedIn_data, actualFeedIn_time, securityLevel, startTime, endTime, opts)

%

% The parameters are:

% Forec_data		: Forecast values

% Forec_time		: Forecast time stamp (datenum)

% actualFeedIn_data	: actual feed-in values

% actualFeedIn_time	: actual feed-in time stamp

% securityLevel		: desired security levels (1xn matrix)

% startTime			: datenum

% endTime			: datemum

% opts				: structs with fields smooth and preError Plese

% number of smoothed values	: double (1 is non-smoothed)

% number of preErrors (these will determine whether pre errors are used for

%

% v1 (15.08.2012) by Malte Jansen @ Fraunhofer IWES

% v1.1 (13.11.2013) by Malte Jansen @ Fraunhofer IWES: Bugfix

% v1.2 (01.09.2015) by Malte Jansen @ Fraunhofer IWES: Added variable for

% exclusion time in the KDE to account for better separation of test and

% training data

%% Prepare Calculation

% Solve datenum problem on function call

Forec_time = datenum(datevec(Forec_time));

Forec_Train_time = datenum(datevec(Forec_Train_time));

actualFeedIn_time = datenum(datevec(actualFeedIn_time));

actualFeedIn_Train_time = datenum(datevec(actualFeedIn_Train_time));

% Get the data the days. Only whole days are calculated so data must be

% extrapolated

days = (floor(startTime):1:ceil(endTime))'; % New and faster Code

for iProbFC=1:length(days)

	dayFrame(iProbFC).startTime = days(iProbFC,1);

	dayFrame(iProbFC).endTime = days(iProbFC,1)+1;

end

% Create equidistant time stamp

dataTimeStamp_Forec_Train = (floor(min(Forec_Train_time)):1/96:ceil(max(Forec_Train_time)))';

dataTimeStamp_FeedIn_Train = (floor(min(actualFeedIn_Train_time)):1/96:ceil(max(actualFeedIn_Train_time)))';

if min(Forec_time) > min([dayFrame.startTime])

	dataStart_Forec = min([dayFrame.startTime]);

else

	dataStart_Forec = min(Forec_time);

end

if max(Forec_time) < max([dayFrame.endTime])

	dataEnd = max([dayFrame.endTime]);

else

	dataEnd = max(Forec_time);

end

if min(actualFeedIn_time) > min([dayFrame.startTime])

	dataStart_Act = min([dayFrame.startTime]);

else

	dataStart_Act = min(actualFeedIn_time);

end

if max(actualFeedIn_time) < max([dayFrame.endTime])

	dataEnd_Act = max([dayFrame.endTime]);

else

	dataEnd_Act = max(actualFeedIn_time);

end

dataTimeStamp_Forec = (floor(dataStart_Forec):1/96:ceil(dataEnd))';

dataTimeStamp_FeedIn = (floor(dataStart_Act):1/96:ceil(dataEnd_Act))';

% Sync Data to equidistant time stamp

[Forec_time, Forec_data] = ...

	Auxiliary_Functions.syncData2Timestamp(dataTimeStamp_Forec,Forec_time,Forec_data);

[Forec_Train_time, Forec_Train_data] = ...

	Auxiliary_Functions.syncData2Timestamp(dataTimeStamp_Forec_Train,Forec_Train_time,Forec_Train_data);

[actualFeedIn_time, actualFeedIn_data] = ...

	Auxiliary_Functions.syncData2Timestamp(dataTimeStamp_FeedIn,actualFeedIn_time,actualFeedIn_data);

[actualFeedIn_Train_time, actualFeedIn_Train_data] = ...

	Auxiliary_Functions.syncData2Timestamp(dataTimeStamp_FeedIn_Train,actualFeedIn_Train_time,actualFeedIn_Train_data);

% Get Common Data

[Forec_time, Forec_data, actualFeedIn_time, actualFeedIn_data] = ...

	Auxiliary_Functions.getCommonData(Forec_time, Forec_data, actualFeedIn_time, actualFeedIn_data);

[Forec_Train_time, Forec_Train_data, actualFeedIn_Train_time, actualFeedIn_Train_data] = ...

	Auxiliary_Functions.getCommonData(Forec_Train_time, Forec_Train_data, actualFeedIn_Train_time, actualFeedIn_Train_data);

prob = tic;

%% Calculate probabilistic forecasts

% Catch parpool version problem

if opts.showWarnings

	disp('Checking for matlab pool')

end

distcompversion=ver('distcomp');

if ~isempty(distcompversion)

 if (str2double(distcompversion.Version)<6.3)

 poolsize = matlabpool('size');

 else

 poolobj = gcp('nocreate'); % If no pool, do not create new one.

 if isempty(poolobj)

 poolsize = 0;

 else

 poolsize = poolobj.NumWorkers;

 end

 end

end

clear distcompversion

if opts.showWarnings

	disp('Checking complete')

end

% Distributed Computing

if poolsize ~= 0

	if opts.showWarnings

		disp('Parallel computing')

	end

	parfor iProbFC=1:length(days)

		

		addpath(genpath('/home/mjansen/MATLAB_Functions/'));

		

		[probForecast(iProbFC).data, probForecast(iProbFC).time] ...

			= calcSecureForecast(Forec_time, Forec_data, actualFeedIn_time, actualFeedIn_data, ...

			Forec_Train_time, Forec_Train_data, actualFeedIn_Train_time, actualFeedIn_Train_data, dayFrame(iProbFC), securityLevel, opts);

		

	end

end

% Non-distributed Computing

if poolsize == 0

	

	if opts.showWarnings

		disp('Single core calculation')

	end

	

	for iProbFC=1:length(days)

		

		[probForecast(iProbFC).data, probForecast(iProbFC).time] ...

			= calcSecureForecast(Forec_time, Forec_data, actualFeedIn_time, actualFeedIn_data, ...

			Forec_Train_time, Forec_Train_data, actualFeedIn_Train_time, actualFeedIn_Train_data, dayFrame(iProbFC), securityLevel, opts);

		

	end

end

%% Rearrange variables

fc_prob_data = probForecast(1).data;

fc_prob_time = probForecast(1).time;

for iProbFC = 2:length(days)

	fc_prob_data = [fc_prob_data; probForecast(iProbFC).data];

	fc_prob_time = [fc_prob_time; probForecast(iProbFC).time];

end

%% Create Output

if opts.smoothFC

	factorSmth = (opts.smooth * 2) - 1;

	dataTMP = fc_prob_data;

	fc_prob_data = reshape(smooth(fc_prob_data,factorSmth,'moving'),size(fc_prob_data,1),[]);

	fc_prob_data(1,:) = dataTMP(1,:);

	fc_prob_data(end,:) = dataTMP(end,:);

end

%% Cut to given time stamp

fc_prob_data = fc_prob_data(fc_prob_time >= startTime & fc_prob_time <= endTime,:);

fc_prob_time = fc_prob_time(fc_prob_time >= startTime & fc_prob_time <= endTime);

% check for same length

if size(fc_prob_data,1) ~= size(fc_prob_data,1)

	warning('error in data output length')

end

	

calctime = toc(prob);

fprintf(['[' datestr(now) ']:\t' 'Calculation Time of probabilistic forecast was ' num2str(calctime/60) ' minutes \n'])

function [fcSecure_data, fcSecure_time] = calcSecureForecast(fcTarget_time, fcTarget_data, actTarget_time, actTarget_data, fcInput_time, fcInput_data, actualFeedIn_time, actualFeedIn_data, timeFrame, securityLevel, opts)

% This function is supposed to predict the possible power production for a

% given security level depending on the Day-Ahead forecast the actual

% feed-in, the lead-time and the productLength

%

% The parameters are

% securityLevel:	The desired security level of the power forecast

% Forec:			Forecast of power production

% actualFeedIn:		The actual feed in, as a time series corresponding the

%					DA forecast

% startTime:		Given start time of the Block

% endTime:			Given end time of the Block

%

% v1 (01.02.2012) by Malte Jansen @ Fraunhofer IWES

% v2 (25.07.2012) by Malte Jansen @ Fraunhofer IWES

% v2.1 (18.04.2013) by Malte Jansen @ Fraunhofer IWES, merged in one

% m-file, expanded usable data

%% Convert Time Frame to start and end

startTime = timeFrame.startTime;

endTime = timeFrame.endTime;

%% Rearrange data

fcTarget.data = fcTarget_data;

fcTarget.time = fcTarget_time;

actTarget.data = actTarget_data;

actTarget.time = actTarget_time;

fcTrain.data = fcInput_data;

fcTrain.time = fcInput_time;

actTrain.data = actualFeedIn_data;

actTrain.time = actualFeedIn_time;

% Convert Security Level

securityLevelGaussKDE = 1-securityLevel/100;

% Number of Pre-Errors

if isfield(opts,'preError')

	nPE = opts.preError;

else

	nPE = 0;

end

% Number of Steps for the Smoothing of Results

if isfield(opts,'smooth')

	nSmth = opts.smooth;

else

	nSmth = 1;

end

%% Create Kernel Data

% % OLD CODE

% % As input only data from the past can be used, otherwise the error would

% % have a representation in itself

% selectActualFeedIn.data	= actualFeedIn.data(actualFeedIn.time < datenum(startTime)-2,1);

% selecFcInput.data		= fcInput.data(fcInput.time < datenum(startTime)-2,1);

%

% [krnI krnT] = getKernelData(selectActualFeedIn, selecFcInput, nPE);

% Only data from that doesn't have have a representation in itself can be

% used. Data is used that is -2/+14 days away from the calculated point for

% the forecast

lowerBorder = 2;

upperBorder = 14;

selectActTrain.data	= [actTrain.data(actTrain.time < (datenum(startTime)-lowerBorder),1); actTrain.data(actTrain.time > (datenum(startTime)+upperBorder),1)];

selecFcTrain.data = [fcTrain.data(fcTrain.time < (datenum(startTime)-lowerBorder),1); fcTrain.data(fcTrain.time > (datenum(startTime)+upperBorder),1)];

% Delete Nans and Zeros

selectActualFeedIn_noNan.data = selectActTrain.data(~any(isnan([selectActTrain.data,selecFcTrain.data]),2),:);

selecFcInput_noNan.data = selecFcTrain.data(~any(isnan([selectActTrain.data,selecFcTrain.data]),2),:);

selectActualFeedIn_noZero.data = selectActualFeedIn_noNan.data(~all([selectActualFeedIn_noNan.data,selecFcInput_noNan.data] == 0,2));

selecFcInput_noZero.data = selecFcInput_noNan.data(~all([selectActualFeedIn_noNan.data,selecFcInput_noNan.data] == 0,2));

selectActTrain.data = selectActualFeedIn_noZero.data;

selecFcTrain.data = selecFcInput_noZero.data;

% Kernel data

[krnI, krnT] = getKernelData(selectActTrain, selecFcTrain, nPE);

if opts.showWarnings

	disp('Kernel data created')

end

% % Alternative

% selectActualFeedIn2.data	= actualFeedIn.data(actualFeedIn.time < datenum(startTime)-2,1);

% selecFcInput2.data		= fcInput.data(fcInput.time < datenum(startTime)-2,1);

%

% [krnI2, krnT2] = getKernelData(selectActualFeedIn2, selecFcInput2, nPE);

%

% selectActualFeedIn3.data	= actualFeedIn.data(actualFeedIn.time > datenum(startTime)+2,1);

% selecFcInput3.data		= fcInput.data(fcInput.time > datenum(startTime)+2,1);

%

% [krnI3 krnT3] = getKernelData(selectActualFeedIn3, selecFcInput3, nPE);

%

% krnI4 = [krnI2; krnI3];

% krnT4 = [krnT3; krnT3];

%% Create Simulation Data

[simI] = getSimulationData(actTarget, fcTarget, nPE, startTime, endTime);

if opts.showWarnings

	disp('Simulation data created')

end

%% Define Options for condGaussKDE

opts.pdf = true;

opts.simTWidth_stdDev = 15;

opts.simTWidth_nVal = 500;

opts.waitbar = false;

%% Calculation

if opts.showWarnings

	disp('Starting calculation of p')

end

p = Probabilistic_Forecast.condGaussKDEn(krnI, krnT, simI, opts);

if opts.showWarnings

	disp('Calculation of p finished')

end

feedIn_low = zeros(size(simI,1),size(securityLevelGaussKDE,2));

for i = 1:size(simI,1)

	y = [0 p.cdf(i,:) 1];

	x = [-Inf p.simTRange(i,:) +Inf];

	[y,pos,~] = unique(y);

	x = x(1,pos);

% 	y = p.cdf(i,:);

% 	x = p.simTRange(i,:);

	

	try

		fcErr_low(i,:) = interp1(y,x,securityLevelGaussKDE);

		feedIn_low(i,:) = simI(i,1) + fcErr_low(i,:);

	catch error

		feedIn_low(i,:) = nan;

		if opts.showWarnings

			warning('WarnTests:convertTest', ...

				[datestr(now, 'yyyy/mm/dd HH:MM:SS') ': Secure Forecast between ' datestr(startTime) ' and ' ...

				datestr(endTime) ' at ' datestr(startTime) ' ' datestr(i*24/size(simI,1)/24,'HH:MM') ' could not be generated \n ==> NaN was used instead']);

		end

	end

	

end

% Replace Values < 0

feedIn_low(feedIn_low < 0) = 0;

fcSecure_data = feedIn_low;

fcSecure_time = actTrain.time(find(actTrain.time >= datenum(startTime), 1, 'first'):find(actTrain.time < datenum(endTime), 1, 'last'));

if size(fcSecure_time,1) ~= size(fcSecure_data,1)

	fcSecure_time = (startTime:1/length(fcSecure_data):endTime-1/length(fcSecure_data))';

end

function [krnI, krnT] = getKernelData(actualFeedIn, fcInput, nPE)

% Calculate Forecast Errors

fcError = actualFeedIn.data - fcInput.data(:,1);

ival = ~isnan(fcError);

for iIval=1:length(ival)

	ivalRow(iIval,1) = all(ival(iIval,:));

end

% Use only valid data

fcInput = fcInput.data(ival,1);

fcError = fcError(ival,:);

% Creat nPE Pre-Errors

for iPE = 1:nPE

 fcError(:,1+iPE) = circshift(fcError(:,iPE),[1 0]);

end

% Startdata without Pre-Errors

fcInput = fcInput(1+nPE:end,:);

fcError = fcError(1+nPE:end,:);

% plot(fcInput.data,fcError.data,'ob','MarkerSize',2);

% Input-Daten für CondGaussKDEn

krnI = [fcInput fcError(:,2:end)];

krnT = fcError(:,1);

function [simI] = getSimulationData(actualFeedIn, fcInput, nPE, startTime, endTime)

% Calculate Forecast Errors

fcError.data = actualFeedIn.data - fcInput.data(:,1);

fcError.data(isnan(fcError.data)) = 0;

fcError.time = actualFeedIn.time;

% Creat nPE Pre-Errors

for iPE = 1:nPE

 fcError.data(:,1+iPE) = circshift(fcError.data(:,iPE),[1 0]);

end

% Write Data to simI Array

indexStart = find(fcInput.time >= datenum(startTime), 1, 'first');

indexEnd = find(fcInput.time < datenum(endTime), 1, 'last');

simI = fcInput.data(indexStart:indexEnd);

if size(simI,1) == 1

	simI = simI';

end

% Catch NaNs

indexIsNan= isnan(simI);

if indexIsNan(1,1)

	simI(1,1) = 0;

elseif indexIsNan(end,1)

	simI(end,1) = 0;

end

for iIsNan=2:length(simI)-1

	if isnan(simI(iIsNan,1))

		simI(iIsNan,1) = mean([simI(iIsNan-1,1) simI(iIsNan+1,1)]);

	end

end

indexStart = find(fcError.time >= datenum(startTime), 1, 'first');

indexEnd = find(fcError.time < datenum(endTime), 1, 'last');

simI(:,2:nPE+1) = fcError.data(indexStart:indexEnd,2:end);

function y = nanmean(x,dim)

% FORMAT: Y = NANMEAN(X,DIM)

%

% Average or mean value ignoring NaNs

if isempty(x)

	y = NaN;

	return

end

if nargin < 2

	dim = min(find(size(x)~=1));

	if isempty(dim)

		dim = 1;

	end

end

% Replace NaNs with zeros.

nans = isnan(x);

x(isnan(x)) = 0;

% denominator

count = size(x,dim) - sum(nans,dim);

% Protect against a all NaNs in one dimension

i = find(count==0);

count(i) = ones(size(i));

y = sum(x,dim)./count;

y(i) = i + NaN;

Functions/+Probabilistic_Forecast/calcSecureForecastKDE_newDefinition.m

function [fc_prob_data, fc_prob_time] = calcSecureForecastKDE_newDefinition(Forec_data, Forec_time, actualFeedIn_data, actualFeedIn_time, securityLevel, startTime, endTime, opts)

% This function generates probabilistic forecasts for given security levels

%

% This function calculates the forecast of the possible power production

% for a given security level depending in the forecast the actual feed-in

%

% [fc_prob_data fc_prob_time] = calcSecureForecastTimeSeries(Forec_data, Forec_time, actualFeedIn_data, actualFeedIn_time, securityLevel, startTime, endTime, opts)

%

% The parameters are:

% Forec_data		: Forecast values

% Forec_time		: Forecast time stamp (datenum)

% actualFeedIn_data	: actual feed-in values

% actualFeedIn_time	: actual feed-in time stamp

% securityLevel		: desired security levels (1xn matrix)

% startTime			: datenum

% endTime			: datemum

% opts				: structs with fields smooth, preError and

% reliabilityTSO

% number of smoothed values	: bool (1 is non-smoothed)

% number of preErrors (these will determine whether pre errors are used for

% statistically dependent analysis: bool (0 is independent)

% reliabilityTSO : bool (1 true, default is 0)

%

% v1 (15.08.2012) by Malte Jansen @ Fraunhofer IWES

% v2 (22.08.2012) by Malte Jansen @ Fraunhofer IWES, added optional

% definition of security

days = linspace(floor(startTime),ceil(endTime),(ceil(endTime)-floor(startTime))+1)';

% Create equidistant time stamp

dataTimeStamp_Forec = ...

	linspace(floor(min(Forec_time)),ceil(max(Forec_time)),(ceil(max(Forec_time))-floor(min(Forec_time)))*round(1/(Forec_time(2,1)-Forec_time(1,1)))+1)';

dataTimeStamp_Forec = dataTimeStamp_Forec(1:end-1,1);

dataTimeStamp_FeedIn = ...

	linspace(floor(min(actualFeedIn_time)),ceil(max(actualFeedIn_time)),(ceil(max(actualFeedIn_time))-floor(min(actualFeedIn_time)))*round(1/(actualFeedIn_time(2,1)-actualFeedIn_time(1,1)))+1)';

dataTimeStamp_FeedIn = dataTimeStamp_FeedIn(1:end-1,1);

% Sync Data to equidistant time stamp

[Forec_time, Forec_data] = ...

	Auxiliary_Functions.syncData2Timestamp(dataTimeStamp_Forec,Forec_time,Forec_data);

[actualFeedIn_time, actualFeedIn_data] = ...

	Auxiliary_Functions.syncData2Timestamp(dataTimeStamp_FeedIn,actualFeedIn_time,actualFeedIn_data);

% Get Common Data

[Forec_time, Forec_data, actualFeedIn_time, actualFeedIn_data] = Auxiliary_Functions.getCommonData(Forec_time, Forec_data, actualFeedIn_time, actualFeedIn_data);

for iProbFC=1:length(days)

	dayFrame(iProbFC).startTime = days(iProbFC,1);

	dayFrame(iProbFC).endTime = days(iProbFC,1)+1;

end

tic;

%% Calculate probabilistic forecasts

% Distributed Computing

if matlabpool('size') ~= 0

	parfor iProbFC=1:length(days)

		

		addpath(genpath('/home/mjansen/MATLAB_Functions/'));

		

		[probForecast(iProbFC).data, probForecast(iProbFC).time] ...

			= calcSecureForecast(Forec_time, Forec_data, actualFeedIn_time, actualFeedIn_data, dayFrame(iProbFC), securityLevel, opts);

		

	end

end

% Non-distributed Computing

if matlabpool('size') == 0

	for iProbFC=1:length(days)

		

		[probForecast(iProbFC).data, probForecast(iProbFC).time] ...

			= calcSecureForecast(Forec_time, Forec_data, actualFeedIn_time, actualFeedIn_data, dayFrame(iProbFC), securityLevel, opts);

	end

end

%% Rearrange variables

fc_prob_data = probForecast(1).data;

fc_prob_time = probForecast(1).time;

for iProbFC=2:length(days)

	fc_prob_data = [fc_prob_data; probForecast(iProbFC).data];

	fc_prob_time = [fc_prob_time; probForecast(iProbFC).time];

end

calctime = toc;

fprintf(['Calculation Time of probabilistic forecast was: ' num2str(calctime) ' seconds \n']);

function [fcSecure_data, fcSecure_time] = calcSecureForecast(fcInput_time, fcInput_data, actualFeedIn_time, actualFeedIn_data, timeFrame, securityLevel, opts)

% This function is supposed to predict the possible power production for a

% given security level depending on the Day-Ahead forecast the actual

% feed-in, the lead-time and the productLength

%

% The parameters are

% securityLevel:	The desired security level of the power forecast

% Forec:			Forecast of power production

% actualFeedIn:		The actual feed in, as a time series corresponding the

%					DA forecast

% startTime:		Given start time of the Block

% endTime:			Given end time of the Block

%

% v1 (01.02.2012) by Malte Jansen @ Fraunhofer IWES

% v2 (25.07.2012) by Malte Jansen @ Fraunhofer IWES

% v2.1 (18.04.2013) by Malte Jansen @ Fraunhofer IWES, merged in one

% m-file, expanded usable data

% v3 (22.05.2013) by Malte Jansen @ Fraunhofer IWES, added TSO reliability

% definition as an option

%% Convert Time Frame to start and end

startTime = timeFrame.startTime;

endTime = timeFrame.endTime;

%% Rearrange data

fcInput.data = fcInput_data;

fcInput.time = fcInput_time;

actualFeedIn.data = actualFeedIn_data;

actualFeedIn.time = actualFeedIn_time;

% Convert Security Level

securityLevelGaussKDE = 1-securityLevel/100;

% Number of Pre-Errors

if isfield(opts,'preError')

	nPE = opts.preError;

else

	nPE = 0;

end

% Number of Steps for the Smoothing of Results

if isfield(opts,'smooth')

	nSmth = opts.smooth;

else

	nSmth = 1;

end

% Number of Steps for the Smoothing of Results

if isfield(opts,'reliabilityTSO')

	relDefTSO = opts.reliabilityTSO;

else

	relDefTSO = 0;

end

%% Create Kernel Data

% % OLD CODE

% % As input only data from the past can be used, otherwise the error would

% % have a representation in itself

% selectActualFeedIn.data	= actualFeedIn.data(actualFeedIn.time < datenum(startTime)-2,1);

% selecFcInput.data		= fcInput.data(fcInput.time < datenum(startTime)-2,1);

%

% [krnI krnT] = getKernelData(selectActualFeedIn, selecFcInput, nPE);

% Only data from that doesn't have have a representation in itself can be

% used. Data is used that is +- 2 days away from the calculated point for

% the forecast

selectActualFeedIn.data	= [actualFeedIn.data(actualFeedIn.time < datenum(startTime)-2,1); actualFeedIn.data(actualFeedIn.time > datenum(startTime)+2,1)];

selecFcInput.data		= [fcInput.data(fcInput.time < datenum(startTime)-2,1); fcInput.data(fcInput.time > datenum(startTime)+2,1)];

[krnI, krnT] = getKernelData(selectActualFeedIn, selecFcInput, nPE);

% % Alternative

% selectActualFeedIn2.data	= actualFeedIn.data(actualFeedIn.time < datenum(startTime)-2,1);

% selecFcInput2.data		= fcInput.data(fcInput.time < datenum(startTime)-2,1);

%

% [krnI2, krnT2] = getKernelData(selectActualFeedIn2, selecFcInput2, nPE);

%

% selectActualFeedIn3.data	= actualFeedIn.data(actualFeedIn.time > datenum(startTime)+2,1);

% selecFcInput3.data		= fcInput.data(fcInput.time > datenum(startTime)+2,1);

%

% [krnI3 krnT3] = getKernelData(selectActualFeedIn3, selecFcInput3, nPE);

%

% krnI4 = [krnI2; krnI3];

% krnT4 = [krnT3; krnT3];

%% Create Simulation Data

[simI] = getSimulationData(actualFeedIn, fcInput, nPE, startTime, endTime);

%% Define Options for condGaussKDE

opts.pdf = true;

opts.simTWidth_stdDev = 15;

opts.simTWidth_nVal = 500;

opts.waitbar = false;

%% Calculation

p = condGaussKDEn(krnI, krnT, simI, opts);

feedIn_low = zeros(size(simI,1),size(securityLevelGaussKDE,2));

for i = 1:size(simI,1)

	yCDF = [0 p.cdf(i,:) 1];

	xVal = [-Inf p.simTRange(i,:) +Inf];

	[yCDF,pos,~] = unique(yCDF);

	xVal = xVal(1,pos);

	

	try

		fcErr_low(i,:) = interp1(yCDF,xVal,securityLevelGaussKDE);

		feedIn_low(i,:) = simI(i,1) + fcErr_low(i,:);

		KDEfail = false;

	catch

		feedIn_low(i,:) = 0;

		KDEfail = true;

		warning('WarnTests:convertTest', ...

			['secure Forecast between ' datestr(startTime) ' and ' ...

			datestr(endTime) ' could not be generated \n ==> 0 was used instead']);

	end

	

	% New Definition (probably incorrect)

	

% 	if relDefTSO & ~KDEfail

% 		

% 		yPDF = [0 p.pdf(i,:) 0];

% 		yPDF = yPDF(1,pos);

% 		Ws = yPDF/sum(yPDF);

% 		

% 		P = xVal + simI(i,1);

% 		

% 		for iProb = 1:length(feedIn_low(i,:))

% 			

% 			Pvor = feedIn_low(i,iProb);

% 			

% 			% New definition

% 			Wtarget = (Pvor + P) .* Ws ./ Pvor;

% 			

% 			% Delete values < 0, which occur due to calculation

% 			% inacurracy (needs testing)

% 			Wtarget(Wtarget<0) = 0;

% 			

% 			% Delete NaN

% 			Wtarget(isnan(Wtarget)) = 0;

% 			

% 			% normalize

% 			Wtarget = Wtarget / sum(Wtarget);

% 			

% 			% Create CDF

% 			WtargetCDF = cumsum(Wtarget);

% 			

% 			% Find value for security level

% 			WsNew = WtargetCDF(find(WtargetCDF < securityLevelGaussKDE(1,iProb),1,'last'): ...

% 				find(WtargetCDF > securityLevelGaussKDE(1,iProb),1,'first'));

% 			

% 			valWsNew = P(find(WtargetCDF < securityLevelGaussKDE(1,iProb),1,'last'): ...

% 				find(WtargetCDF > securityLevelGaussKDE(1,iProb),1,'first'));

% 			

% 			feedIn_low(i,iProb) = interp1(WsNew,valWsNew,securityLevelGaussKDE(1,iProb));

% 			

% 		end

% 	end

	

	% New Definition (As proposed by Markus Speckmann)

	

	if relDefTSO & ~KDEfail

		

		try

			secLevelPvor = 0:0.01:1;

			fcErr_low_Pvor(i,:) = interp1(yCDF,xVal,secLevelPvor);

			Pvor(i,:) = simI(i,1) + fcErr_low_Pvor(i,:);

			KDEfail = false;

		catch

			Pvor(i,:) = 0;

			KDEfail = true;

			warning('WarnTests:convertTest', ...

				['secure Forecast between ' datestr(startTime) ' and ' ...

				datestr(endTime) ' could not be generated \n ==> 0 was used instead']);

		end

		

		yPDF = [0 p.pdf(i,:) 0];

		yPDF = yPDF(1,pos);

		Ws = yPDF/sum(yPDF);

		

		P = xVal + simI(i,1);

		

		for iProb = 1:length(Pvor(i,:))

			

			Pvor = Pvor(i,iProb);

			

			% New definition

			Wtarget = (Pvor - P) .* Ws ./ Pvor;

			

			% Delete values < 0, which occur due to calculation

			% inacurracy (needs testing)

			Wtarget(Wtarget<0) = 0;

			

			% Delete NaN

			Wtarget(isnan(Wtarget)) = 0;

			

			% normalize

			Wtarget = Wtarget / sum(Wtarget);

			

			% Create CDF

			WtargetCDF = cumsum(Wtarget);

			

			% Find value for security level

			WsNew = WtargetCDF(find(WtargetCDF < securityLevelGaussKDE(1,iProb),1,'last'): ...

				find(WtargetCDF > securityLevelGaussKDE(1,iProb),1,'first'));

			

			valWsNew = P(find(WtargetCDF < securityLevelGaussKDE(1,iProb),1,'last'): ...

				find(WtargetCDF > securityLevelGaussKDE(1,iProb),1,'first'));

			

			Pvor_neu(i,iProb) = interp1(WsNew,valWsNew,securityLevelGaussKDE(1,iProb));

			

		end

	end

	

end

% Replace Values < 0

feedIn_low(feedIn_low < 0) = 0;

fcSecure.data = feedIn_low;

% Create Output

fcSecure_data = Auxiliary_Functions.smoothTimeSeries(fcSecure.data,nSmth);

fcSecure_time = actualFeedIn.time(find(actualFeedIn.time >= datenum(startTime), 1, 'first'):find(actualFeedIn.time < datenum(endTime), 1, 'last'));

% function [feedIn_low_New] = reliabilityTSO(p,xVal,simI,feedIn_low,securityLevelGaussKDE)

%

% % New Code

%

% yPDF = [0 p.pdf(i,:) 0];

% yPDF = yPDF(1,pos);

% yPDF = yPDF/sum(yPDF);

%

% xNew = xVal + simI;

%

% P = xNew;

%

% Ws = yPDF(i,:);

%

% for iProb = 1:length(feedIn_low(i,:))

% 	

% 	Pvor = feedIn_low(i,iProb);

% 	

% 	% New definition

% 	Wtarget = (Pvor + P) .* Ws ./ Pvor;

% 	

% 	% Delete values < 0, which occur due to calculation

% 	% inacurracy (needs testing)

% 	Wtarget(Wtarget<0) = 0;

% 	

% 	% Delete NaN

% 	Wtarget(isnan(Wtarget)) = 0;

% 	

% 	% normalize

% 	Wtarget = Wtarget / sum(Wtarget);

% 	

% 	% Create CDF

% 	WtargetCDF = cumsum(Wtarget);

% 	

% 	% Find value for security level

% 	WsNew = WtargetCDF(find(WtargetCDF < securityLevelGaussKDE(1,iProb),1,'last'): ...

% 		find(WtargetCDF > securityLevelGaussKDE(1,iProb),1,'first'));

% 	

% 	valWsNew = P(find(WtargetCDF < securityLevelGaussKDE(1,iProb),1,'last'): ...

% 		find(WtargetCDF > securityLevelGaussKDE(1,iProb),1,'first'));

% 	

% 	feedIn_low_New(i,iProb) = interp1(WsNew,valWsNew,securityLevelGaussKDE(1,iProb));

% 	

% end

function [krnI, krnT] = getKernelData(actualFeedIn, fcInput, nPE)

% Calculate Forecast Errors

fcError = actualFeedIn.data - fcInput.data(:,1);

ival = ~isnan(fcError);

for iIval=1:length(ival)

	ivalRow(iIval,1) = all(ival(iIval,:));

end

% Use only valid data

fcInput = fcInput.data(ival,1);

fcError = fcError(ival,:);

% Creat nPE Pre-Errors

for iPE = 1:nPE

 fcError(:,1+iPE) = circshift(fcError(:,iPE),[1 0]);

end

% Startdata without Pre-Errors

fcInput = fcInput(1+nPE:end,:);

fcError = fcError(1+nPE:end,:);

% plot(fcInput.data,fcError.data,'ob','MarkerSize',2);

% Input-Daten für CondGaussKDEn

krnI = [fcInput fcError(:,2:end)];

krnT = fcError(:,1);

function [simI] = getSimulationData(actualFeedIn, fcInput, nPE, startTime, endTime)

% Calculate Forecast Errors

fcError.data = actualFeedIn.data - fcInput.data(:,1);

fcError.data(isnan(fcError.data)) = 0;

fcError.time = actualFeedIn.time;

% Creat nPE Pre-Errors

for iPE = 1:nPE

 fcError.data(:,1+iPE) = circshift(fcError.data(:,iPE),[1 0]);

end

% Write Data to simI Array

indexStart = find(fcInput.time >= datenum(startTime), 1, 'first');

indexEnd = find(fcInput.time < datenum(endTime), 1, 'last');

simI = fcInput.data(indexStart:indexEnd);

if size(simI,1) == 1

	simI = simI';

end

% Catch NaNs

indexIsNan= isnan(simI);

if indexIsNan(1,1)

	simI(1,1) = 0;

elseif indexIsNan(end,1)

	simI(end,1) = 0;

end

for iIsNan=2:length(simI)-1

	if isnan(simI(iIsNan,1))

		simI(iIsNan,1) = mean([simI(iIsNan-1,1) simI(iIsNan+1,1)]);

	end

end

indexStart = find(fcError.time >= datenum(startTime), 1, 'first');

indexEnd = find(fcError.time < datenum(endTime), 1, 'last');

simI(:,2:nPE+1) = fcError.data(indexStart:indexEnd,2:end);

Functions/+Economic_Impact/calc_ForecastMarketVolume_2020_2030.m

clear;

clc;

%% Load data

[time,~,capCost_SFC,capCost_TFC] = loadAncillaryServiceCost;

[demandCR] = loadControlReserve_Demand;

%% Reserve demand

allData = demandCR.time >= datenum([2007 12 1]);

demandCR.total.neg = demandCR.tertiary.neg(allData) + demandCR.secondary.neg(allData);

demandCR.total.pos = demandCR.tertiary.pos(allData) + demandCR.secondary.pos(allData);

demandCR.time = demandCR.time(allData);

demandCR.total.sum = nanmean([abs(demandCR.total.neg) demandCR.total.pos],2);

[yearsDemand,~] = datevec(demandCR.time);

yearsDemandUniq = unique(yearsDemand);

for iYear = 1:length(yearsDemandUniq)

	

	indexYear = yearsDemand == yearsDemandUniq(iYear);

	annualAVG.time(iYear,1) = datenum([yearsDemandUniq(iYear) 1 1]);

	annualAVG.data(iYear,1) = nanmean(demandCR.total.sum(indexYear));

	

end

annualAVG.time = [datenum([(2004:2006)' ones(3,2)]);annualAVG.time];

annualAVG.data = [repmat(annualAVG.data(1),3,1);annualAVG.data];

%% Cumulate costs and relate to market size

yearsOrig = (2004:2014)';

yearsOrigNum = datenum([yearsOrig ones(size(yearsOrig,1),2)]);

capCostTotal = capCost_SFC' + capCost_TFC';

% Adjust market cost by reserve demand

capCostTotalDemandAdjust = (capCostTotal' ./ annualAVG.data(1:end-1) * annualAVG.data(end-1))';

%% % Fit (requires curve fitting tool box)

% fit(yearsOrig,capCostTotal','exp1')

%% EXP1 without demand adjustments

% General model Exp1:

% ans(x) = a*exp(b*x)

% Coefficients (with 95% confidence bounds):

a = 2.843e+52; %(-1.956e+54, 2.013e+54)

b = -0.05696; %(-0.09172, -0.0222)

%

% Goodness of fit:

% SSE: 7.52e+04

% R-square: 0.6324

% Adjusted R-square: 0.4749

% RMSE: 103.7

years = (2000:2035)';

x = years;

yWithout = a*exp(b*x);

%% EXP1 with demand adjustments

% General model Exp1:

% f(x) = a*exp(b*x)

% Coefficients (with 95% confidence bounds):

a = 1.246e+36; %(-7.422e+37, 7.671e+37)

b = -0.03825; %(-0.06842, -0.00808)

%

% Goodness of fit:

% SSE: 4.912e+04

% R-square: 0.5006

% Adjusted R-square: 0.4451

% RMSE: 73.88

yWith = a*exp(b*x);

%% Plot

fig = [];

fig.subplot{1,1}.plot{1}.x = yearsOrig;

fig.subplot{1,1}.plot{1}.y = capCostTotal;

fig.subplot{1,1}.plot{1}.style='plot';

fig.subplot{1,1}.plot{1}.color='x3';

fig.subplot{1,1}.plot{1}.linestyle='.';

fig.subplot{1,1}.plot{1}.markerstyle='x';

fig.subplot{1,1}.plot{1}.markersize=10;

fig.subplot{1,1}.plot{2}.x = yearsOrig;

fig.subplot{1,1}.plot{2}.y = capCostTotalDemandAdjust;

fig.subplot{1,1}.plot{2}.style='plot';

fig.subplot{1,1}.plot{2}.color='x15';

fig.subplot{1,1}.plot{2}.linestyle='.';

fig.subplot{1,1}.plot{2}.markerstyle='x';

fig.subplot{1,1}.plot{2}.markersize=10;

fig.subplot{1,1}.plot{3}.x = x;

fig.subplot{1,1}.plot{3}.y = yWithout;

fig.subplot{1,1}.plot{3}.style='plot';

fig.subplot{1,1}.plot{3}.color='x2';

fig.subplot{1,1}.plot{4}.x = x;

fig.subplot{1,1}.plot{4}.y = yWith;

fig.subplot{1,1}.plot{4}.style='plot';

fig.subplot{1,1}.plot{4}.color='x14';

fig.subplot{1,1}.plot{5}.x = [2020 2030 2020 2030];

fig.subplot{1,1}.plot{5}.y = [yWithout([21 31]);yWith([21 31])];

fig.subplot{1,1}.plot{5}.style='plot';

fig.subplot{1,1}.plot{5}.color='greyDark';

fig.subplot{1,1}.plot{5}.linestyle='.';

fig.subplot{1,1}.plot{5}.markerstyle='x';

fig.subplot{1,1}.plot{5}.markersize=10;

% Plot axes properties

xLimVal = [2003 2031];

fig.subplot{1,1}.xlim=xLimVal;

yLimVal = [0 800];

fig.subplot{1,1}.ylim=yLimVal;

% Title subplots

% fig.subplot{1,1}.title=['Interpolation of market development']; % optionaler Titel

% Axes labeling

fig.subplot{1,1}.xlabel='Year';

fig.subplot{1,1}.ylabel='Total capacity market volume (SCR and TCR) in mio. EUR';

fig.subplot{1,1}.legend={'Total capacity market volume', ...

	'Demand adjusted total capacity market volume', ...

	'Exponential fit: y = 2.843e+52*exp(-0.05696*x)', ...

	'Exponential fit with demand adjustment: y = 1.246e+36*exp(-0.03825*x)', ...

	'Extrapolated data for 2020/2030'};

% fig.subplot{1,1}.xticks=fig.subplot{1,1}.plot{1}.x;

% fig.subplot{1,1}.xticklabels=[2010,2011,2012,2013,2014];

fig.subplot{1,1}.yticks=min(yLimVal):100:max(yLimVal);

fig.height=12;

fig.width_columns=3;

[hFig, hAxes, hPlot] = styleplot(fig,'styleplot_format_PhD','word');

% Save results

marketVolFC.time = [2020 2030];

marketVolFC.data = reshape(fig.subplot{1,1}.plot{5}.y,2,2);

marketVolFC.info = 'first data set without demand adjustment, second data set with adjustments';

save('C:\Users\mjansen\Synchronisation\mjansen auf User_Artemis(R)\Dissertation\Data\marketVolFC.mat','marketVolFC');

Functions/+Economic_Impact/calc_welfareGain_avgMarketShare.m

clear;

clc;

%% Options

%% Load

preDefineDataSet = ([117:135]);

for iDataSet = 1:length(preDefineDataSet)

	

	[~, ~, ...

		~, DataSet(iDataSet).ecoImpact, ...

		~, ~, ...

		~, ~, ...

		~, DataSet(iDataSet).offerRP_Min, ...

		DataSet(iDataSet).simRuns, ~, ...

		~, DataSet(iDataSet).info] ...

		= res_loadResults_noMOL('D:\Ergebnisse REBal',preDefineDataSet(iDataSet));

	

% 	[Prob_Forec_DA, Prob_Forec_ID, actualFeedIn, ecoImpact, ecoImpactTFC, error, ...

% 		errorRP, macroEcoImpact, offerRP, offerRP_Min, simRuns, violation, alteredMOList, infoRuns] = res_loadResults_noMOL('D:\Ergebnisse REBal',preDefineDataSet(iDataSet));

	

	runSetYear = regexp(DataSet(iDataSet).info.runSetName,'_','split');

	GenType{iDataSet} = runSetYear{1};

	PoolType{iDataSet} = runSetYear{2};

	Type{iDataSet} = [runSetYear{1:2}];

	for iYear = 1:length(runSetYear)

		try

			if ~isnan(str2double(runSetYear{iYear}))

				timeStampYear(iDataSet) = datenum([str2double(runSetYear{iYear}) 1 1]);

			end

		end

	end

	

end

% % Select only valid datasets

% invalidDS = false(size(DataSet));

% for iDS = 1:length(DataSet)

% 	if length(DataSet(iDS).offerRP_Min) == 1

% 		invalidDS(iDS) = isnan(DataSet(iDS).offerRP_Min);

% 	end

% end

% DataSet = DataSet(~invalidDS);

% timeStampYear = timeStampYear(~invalidDS);

% GenType = GenType(~invalidDS);

% PoolType = PoolType(~invalidDS);

% Type = Type(~invalidDS);

%% Other Vars

% Define Order

TypeAll = sort(unique([Type]));

genTypeAll = unique([GenType]);

poolTypeAll = unique([PoolType]);

[timeStampYearVec,~] = datevec(timeStampYear');

[years,~] = datevec(sort(unique(timeStampYear)));

secLevelAll = sort(unique([DataSet(1).simRuns.securityLevel]));

% secLevelAll = secLevelAll([1 6]); % Show on those security levels

prodLengthAll = sort(unique([DataSet(1).simRuns.productLength]));

% prodLengthAll = prodLengthAll([1 3 5]); % Show on those security levels

genTypeNumber = 1; % 1 for Wind 30 GW, 2 for wind 1GW and so on

%% Get DataSet for secondary positive

market = 'SFC';

neg = 100;

for iSec = 1:length(secLevelAll)

	

	secLevel = secLevelAll(iSec);

	for iPL = 1:length(prodLengthAll)

		

		productLength = prodLengthAll(iPL);

		

		for iDS = 1:length(DataSet)

			indexA = strcmp({DataSet(iDS).simRuns.market},market);

			indexB = [DataSet(iDS).simRuns.percentPosRP] == neg;

			indexC = [DataSet(iDS).simRuns.productLength] == productLength;

			indexD = [DataSet(iDS).simRuns.securityLevel] == secLevel;

			indexAll = indexA & indexB & indexC & indexD;

			

			costSavPot = [];

			costSavPot_Cap = [];

			costSavPot_En = [];

			

			costSavPot(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max;

							

			addIncome_perCapInst(:,1) ...

				= costSavPot(:,1) ...

				/ DataSet(iDS).simRuns(indexAll).installedCapacity;

			

			costSavPot_Cap(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.capacity;

							

			costSavPot_En(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.dispatch;

			

			costOrig(timeStampYearVec(iDS)-2009,1) = ...

				DataSet(iDS).ecoImpact(indexAll).capacityCostOriginal ...

				+ DataSet(iDS).ecoImpact(indexAll).dispatchCostOriginal;

			

			costCapOrig(timeStampYearVec(iDS)-2009,1) = ...

				DataSet(iDS).ecoImpact(indexAll).capacityCostOriginal;

				

			costEngOrig(timeStampYearVec(iDS)-2009,1) = ...

				+ DataSet(iDS).ecoImpact(indexAll).dispatchCostOriginal;

			

			if strcmp(Type(iDS),'OnWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,1) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,1) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,1) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,1) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OnWindWF')

				CSTotal(timeStampYearVec(iDS)-2009,2) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,2) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,2) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,2) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OfWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,3) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,3) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,3) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,3) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVBRD')

				CSTotal(timeStampYearVec(iDS)-2009,4) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,4) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,4) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,4) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVPVF')

				CSTotal(timeStampYearVec(iDS)-2009,5) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,5) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,5) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,5) = addIncome_perCapInst;

			end

			

		end

	

	CSTotal(CSTotal == 0) = nan;

	CSCap(CSCap == 0) = nan;

	CSEn(CSEn == 0) = nan;

	CSPerGW(CSPerGW == 0) = nan;

	secLevelStructPosSFC(iSec,iPL).CSTotal = CSTotal;

	secLevelStructPosSFC(iSec,iPL).CSCap = CSCap;

	secLevelStructPosSFC(iSec,iPL).CSEn = CSEn;

	secLevelStructPosSFC(iSec,iPL).CSPerGW = CSPerGW;

	end	

end

% Consolidate data

% OnWindBRD is 1

TotalPosSFC = secLevelStructPosSFC(1,1).CSCap;

costMult = reshape(repmat(costCapOrig(:,1),size(secLevelStructPosSFC(1,1).CSCap,1),[]),[],size(secLevelStructPosSFC(1,1).CSCap,1));

TotalPosSFC = secLevelStructPosSFC(1,1).CSCap ./ costMult;

%% Get DataSet for secondary negative

market = 'SFC';

neg = 100;

for iSec = 1:length(secLevelAll)

	

	secLevel = secLevelAll(iSec);

	for iPL = 1:length(prodLengthAll)

		

		productLength = prodLengthAll(iPL);

		

		for iDS = 1:length(DataSet)

			indexA = strcmp({DataSet(iDS).simRuns.market},market);

			indexB = [DataSet(iDS).simRuns.percentNegRP] == neg;

			indexC = [DataSet(iDS).simRuns.productLength] == productLength;

			indexD = [DataSet(iDS).simRuns.securityLevel] == secLevel;

			indexAll = indexA & indexB & indexC & indexD;

			

			costSavPot = [];

			costSavPot_Cap = [];

			costSavPot_En = [];

			

			costSavPot(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max;

							

			addIncome_perCapInst(:,1) ...

				= costSavPot(:,1) ...

				/ DataSet(iDS).simRuns(indexAll).installedCapacity;

			

			costSavPot_Cap(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.capacity;

							

			costSavPot_En(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.dispatch;

							

			if strcmp(Type(iDS),'OnWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,1) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,1) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,1) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,1) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OnWindWF')

				CSTotal(timeStampYearVec(iDS)-2009,2) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,2) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,2) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,2) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OfWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,3) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,3) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,3) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,3) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVBRD')

				CSTotal(timeStampYearVec(iDS)-2009,4) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,4) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,4) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,4) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVPVF')

				CSTotal(timeStampYearVec(iDS)-2009,5) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,5) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,5) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,5) = addIncome_perCapInst;

			end

			

		end

	

	CSTotal(CSTotal == 0) = nan;

	CSCap(CSCap == 0) = nan;

	CSEn(CSEn == 0) = nan;

	CSPerGW(CSPerGW == 0) = nan;

	secLevelStructNegSFC(iSec,iPL).CSTotal = CSTotal;

	secLevelStructNegSFC(iSec,iPL).CSCap = CSCap;

	secLevelStructNegSFC(iSec,iPL).CSEn = CSEn;	

	secLevelStructNegSFC(iSec,iPL).CSPerGW = CSPerGW;	

	end	

end

% Consolidate data

% OnWindBRD is 1

TotalNegSFC = secLevelStructNegSFC(1,1).CSCap;

% costMult = reshape(repmat(costCapOrig(:,1),size(secLevelStructNegSFC(1,1).CSCap,1),[]),[],size(secLevelStructNegSFC(1,1).CSCap,1));

TotalNegSFC = secLevelStructNegSFC(1,1).CSCap ./ costMult;

%% Get DataSet for tertiary positive

market = 'TFC';

neg = 100;

for iSec = 1:length(secLevelAll)

	

	secLevel = secLevelAll(iSec);

	for iPL = 1:length(prodLengthAll)

		

		productLength = prodLengthAll(iPL);

		

		for iDS = 1:length(DataSet)

			indexA = strcmp({DataSet(iDS).simRuns.market},market);

			indexB = [DataSet(iDS).simRuns.percentPosRP] == neg;

			indexC = [DataSet(iDS).simRuns.productLength] == productLength;

			indexD = [DataSet(iDS).simRuns.securityLevel] == secLevel;

			indexAll = indexA & indexB & indexC & indexD;

			

			costSavPot = [];

			costSavPot_Cap = [];

			costSavPot_En = [];

			

			costSavPot(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max;

							

			addIncome_perCapInst(:,1) ...

				= costSavPot(:,1) ...

				/ DataSet(iDS).simRuns(indexAll).installedCapacity;

			

			costSavPot_Cap(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.capacity;

							

			costSavPot_En(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.dispatch;

			

			costOrig(timeStampYearVec(iDS)-2009,2) = ...

				DataSet(iDS).ecoImpact(indexAll).capacityCostOriginal ...

				+ DataSet(iDS).ecoImpact(indexAll).dispatchCostOriginal;

			

			costCapOrig(timeStampYearVec(iDS)-2009,2) = ...

				DataSet(iDS).ecoImpact(indexAll).capacityCostOriginal;

				

			costEngOrig(timeStampYearVec(iDS)-2009,2) = ...

				+ DataSet(iDS).ecoImpact(indexAll).dispatchCostOriginal;

			

			if strcmp(Type(iDS),'OnWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,1) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,1) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,1) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,1) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OnWindWF')

				CSTotal(timeStampYearVec(iDS)-2009,2) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,2) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,2) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,2) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OfWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,3) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,3) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,3) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,3) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVBRD')

				CSTotal(timeStampYearVec(iDS)-2009,4) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,4) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,4) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,4) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVPVF')

				CSTotal(timeStampYearVec(iDS)-2009,5) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,5) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,5) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,5) = addIncome_perCapInst;

			end

			

		end

	

	CSTotal(CSTotal == 0) = nan;

	CSCap(CSCap == 0) = nan;

	CSEn(CSEn == 0) = nan;

	CSPerGW(CSPerGW == 0) = nan;

	secLevelStructPosTFC(iSec,iPL).CSTotal = CSTotal;

	secLevelStructPosTFC(iSec,iPL).CSCap = CSCap;

	secLevelStructPosTFC(iSec,iPL).CSEn = CSEn;	

	secLevelStructPosTFC(iSec,iPL).CSPerGW = CSPerGW;	

	end	

end

% Consolidate data

% OnWindBRD is 1

TotalPosTFC = secLevelStructPosTFC(1,1).CSCap;

costMult = reshape(repmat(costCapOrig(:,2),size(secLevelStructPosTFC(1,1).CSCap,1),[]),[],size(secLevelStructPosTFC(1,1).CSCap,1));

TotalPosTFC = secLevelStructPosTFC(1,1).CSCap ./ costMult;

%% Get DataSet for tertiary negative

market = 'TFC';

neg = 100;

for iSec = 1:length(secLevelAll)

	

	secLevel = secLevelAll(iSec);

	for iPL = 1:length(prodLengthAll)

		

		productLength = prodLengthAll(iPL);

		

		for iDS = 1:length(DataSet)

			indexA = strcmp({DataSet(iDS).simRuns.market},market);

			indexB = [DataSet(iDS).simRuns.percentNegRP] == neg;

			indexC = [DataSet(iDS).simRuns.productLength] == productLength;

			indexD = [DataSet(iDS).simRuns.securityLevel] == secLevel;

			indexAll = indexA & indexB & indexC & indexD;

			

			costSavPot = [];

			costSavPot_Cap = [];

			costSavPot_En = [];

			

			costSavPot(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max;

							

			addIncome_perCapInst(:,1) ...

				= costSavPot(:,1) ...

				/ DataSet(iDS).simRuns(indexAll).installedCapacity;

			

			costSavPot_Cap(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.capacity;

							

			costSavPot_En(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.dispatch;

							

			if strcmp(Type(iDS),'OnWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,1) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,1) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,1) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,1) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OnWindWF')

				CSTotal(timeStampYearVec(iDS)-2009,2) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,2) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,2) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,2) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OfWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,3) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,3) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,3) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,3) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVBRD')

				CSTotal(timeStampYearVec(iDS)-2009,4) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,4) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,4) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,4) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVPVF')

				CSTotal(timeStampYearVec(iDS)-2009,5) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,5) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,5) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,5) = addIncome_perCapInst;

			end

			

		end

	

	CSTotal(CSTotal == 0) = nan;

	CSCap(CSCap == 0) = nan;

	CSEn(CSEn == 0) = nan;

	CSPerGW(CSPerGW == 0) = nan;

	secLevelStructNegTFC(iSec,iPL).CSTotal = CSTotal;

	secLevelStructNegTFC(iSec,iPL).CSCap = CSCap;

	secLevelStructNegTFC(iSec,iPL).CSEn = CSEn;	

	secLevelStructNegTFC(iSec,iPL).CSPerGW = CSPerGW;	

	end	

end

% Consolidate data

% OnWindBRD is 1

TotalNegTFC = secLevelStructNegTFC(1,1).CSCap;

% costMult = reshape(repmat(costCapOrig(:,2),size(secLevelStructPosTFC(1,1).CSCap,1),[]),[],size(secLevelStructPosTFC(1,1).CSCap,1));

TotalNegTFC = secLevelStructNegTFC(1,1).CSCap ./ costMult;

%% Rearrange data

% % load intermediary

% load('C:\Users\mjansen\Synchronisation\mjansen auf User_Artemis(R)\Dissertation\Data\sharesLoadedData.mat')

[timeAS,~,capCost_SFC,capCost_TFC] = loadAncillaryServiceCost;

timeAS_select = timeAS(timeAS >= datenum([2010 1 1]) & timeAS < datenum([2015 1 1]));

capCost_SFC_select = capCost_SFC(timeAS >= datenum([2010 1 1]) & timeAS < datenum([2015 1 1])) * 1000000;

capCost_TFC_select = capCost_TFC(timeAS >= datenum([2010 1 1]) & timeAS < datenum([2015 1 1])) * 1000000;

capCost_select = capCost_SFC_select + capCost_TFC_select;

for iSecurity = 1:size(secLevelStructNegSFC,1)

	for iProductLength = 1:size(secLevelStructNegSFC,2)

		

		

		shareSFC = secLevelStructNegSFC(iSecurity,iProductLength).CSCap(:,1) ./ capCost_SFC_select;

		shareTFC = secLevelStructNegTFC(iSecurity,iProductLength).CSCap(:,1) ./ capCost_TFC_select;

		shareMEANyears_Wind{iSecurity,iProductLength} = (shareSFC + shareTFC) / 2;

		shareMEAN_Wind(iSecurity,iProductLength) = nanmean(shareMEANyears_Wind{iSecurity,iProductLength});

		

		shareSFC = secLevelStructNegSFC(iSecurity,iProductLength).CSCap(:,4) ./ capCost_SFC_select;

		shareTFC = secLevelStructNegTFC(iSecurity,iProductLength).CSCap(:,4) ./ capCost_TFC_select;

		shareMEANyears_PV{iSecurity,iProductLength} = (shareSFC + shareTFC) / 2;

		shareMEAN_PV(iSecurity,iProductLength) = nanmean(shareMEANyears_PV{iSecurity,iProductLength});

		

	end

end

% %% Plot

% plot(shareMEANyears_Wind{1,1})

% hold on

% plot(shareMEANyears_Wind{2,1})

% plot(shareMEANyears_Wind{3,1})

% plot(shareMEANyears_Wind{4,1})

% plot(shareMEANyears_Wind{5,1})

%

% plot(shareMEANyears_Wind{1,2})

% hold on

% plot(shareMEANyears_Wind{2,2})

% plot(shareMEANyears_Wind{3,2})

% plot(shareMEANyears_Wind{4,2})

% plot(shareMEANyears_Wind{5,2})

%

% plot(shareMEANyears_Wind{1,6})

% hold on

% plot(shareMEANyears_Wind{2,6})

% plot(shareMEANyears_Wind{3,6})

% plot(shareMEANyears_Wind{4,6})

% plot(shareMEANyears_Wind{5,6})

%% Plot with styleplot

fig = [];

% fhgCol = getFHGColors;

% Wind farms

colorsWind = {'x4','x3','x2','x26','x27','x28'};

for iPlotWind = 1:6

	fig.subplot{1,1}.plot{iPlotWind}.x = (1:7);

	fig.subplot{1,1}.plot{iPlotWind}.y = shareMEAN_Wind(:,iPlotWind)' * 100;

	fig.subplot{1,1}.plot{iPlotWind}.style='plot';

	fig.subplot{1,1}.plot{iPlotWind}.color=colorsWind{iPlotWind};

	% fig.subplot{1,1}.plot{iPlotWind}.linestyle='-';

	% fig.subplot{1,1}.plot{iPlotWind}.markerstyle='x';

	% fig.subplot{1,1}.plot{iPlotWind}.markersize=14;

end

% PV Systems

colorsPV = {'x20','x19','x18','x14','x15','x16'};

for iPlotPV = 1:6

	fig.subplot{1,1}.plot{iPlotPV+6}.x = (1:7);

	fig.subplot{1,1}.plot{iPlotPV+6}.y = shareMEAN_PV(:,iPlotPV)' * 100;

	fig.subplot{1,1}.plot{iPlotPV+6}.style='plot';

	fig.subplot{1,1}.plot{iPlotPV+6}.color=colorsPV{iPlotPV};

	% fig.subplot{1,1}.plot{iPlotWind}.linestyle='-';

	% fig.subplot{1,1}.plot{iPlotWind}.markerstyle='x';

	% fig.subplot{1,1}.plot{iPlotWind}.markersize=14;

end

% Plot axes properties

xLimVal = [1 7];

fig.subplot{1,1}.xlim=xLimVal;

yLimVal = [0 60];

fig.subplot{1,1}.ylim=yLimVal;

fig.subplot{1,1}.yticks=min(yLimVal):10:max(yLimVal);

% Title subplots

% fig.subplot{1,1}.title=['2010']; % optionaler Titel

% Axes labeling

fig.subplot{1,1}.xlabel='Level of reliability';

fig.subplot{1,1}.ylabel='Ratio of welfare gain to total capacity market value in %';

fig.subplot{1,1}.legend={'1h product length wind farms', ...

	'2h product length wind farms', ...

	'4h product length wind farms', ...

	'8h product length wind farms', ...

	'12h product length wind farms', ...

	'24h product length wind farms', ...

	'1h product length PV systems', ...

	'2h product length PV systems', ...

	'4h product length PV systems', ...

	'8h product length PV systems', ...

	'12h product length PV systems', ...

	'24h product length PV systems'};

% fig.subplot{1,1}.legend_orientation = 'horizontal';

% fig.subplot{1,1}.xticks= 1:;

fig.subplot{1,1}.xticklabels={'95%','99%','99.5%', ...

	'99.9%','99.99%','99.994%','99.999%'};

% fig.subplot{1,1}.xdatetick_format='yyyy';

fig.height=15;

fig.width_columns=3;

[hFig, hAxes, hPlot] = styleplot(fig,'styleplot_format_PhD','word');

% Save data

meanShares.Wind = shareMEAN_Wind;

meanShares.PV = shareMEAN_PV;

meanShares.secLevel = secLevelAll';

meanShares.prodLength = prodLengthAll';

save('C:\Users\mjansen\Synchronisation\mjansen auf User_Artemis(R)\Dissertation\Data\meanShares.mat','meanShares');

%% Save

path = 'C:\Users\mjansen\Synchronisation\mjansen auf User_Artemis(R)\Dissertation\Dissertation\Figures\6 Economic impact of fluctuating RES on the power system level\';

name = ['Fig6-8_welfareGain_avgMarketShares'];

saveas(gcf,[path name '.fig']);

save([path name '_data.mat'],'fig');

Functions/+Economic_Impact/calc_welfareGain_forecast_loadData.m

% clear;

% clc;

% %% Options

%

%

% %% Load

%

% preDefineDataSet = ([123:141]);

%

% for iDataSet = 1:length(preDefineDataSet)

% 	

% 	[~, ~, ...

% 		~, DataSet(iDataSet).ecoImpact, ...

% 		~, ~, ...

% 		~, ~, ...

% 		~, DataSet(iDataSet).offerRP_Min, ...

% 		DataSet(iDataSet).simRuns, ~, ...

% 		~, DataSet(iDataSet).info] ...

% 		= res_loadResults_noMOL('D:\Ergebnisse REBal',preDefineDataSet(iDataSet));

% 	

% % 	[Prob_Forec_DA, Prob_Forec_ID, actualFeedIn, ecoImpact, ecoImpactTFC, error, ...

% % 		errorRP, macroEcoImpact, offerRP, offerRP_Min, simRuns, violation, alteredMOList, infoRuns] = res_loadResults_noMOL('D:\Ergebnisse REBal',preDefineDataSet(iDataSet));

% 	

% 	runSetYear = regexp(DataSet(iDataSet).info.runSetName,'_','split');

% 	GenType{iDataSet} = runSetYear{1};

% 	PoolType{iDataSet} = runSetYear{2};

% 	Type{iDataSet} = [runSetYear{1:2}];

% 	for iYear = 1:length(runSetYear)

% 		try

% 			if ~isnan(str2double(runSetYear{iYear}))

% 				timeStampYear(iDataSet) = datenum([str2double(runSetYear{iYear}) 1 1]);

% 			end

% 		end

% 	end

% 	

% end

%

% % % Select only valid datasets

% % invalidDS = false(size(DataSet));

% % for iDS = 1:length(DataSet)

% % 	if length(DataSet(iDS).offerRP_Min) == 1

% % 		invalidDS(iDS) = isnan(DataSet(iDS).offerRP_Min);

% % 	end

% % end

% % DataSet = DataSet(~invalidDS);

% % timeStampYear = timeStampYear(~invalidDS);

% % GenType = GenType(~invalidDS);

% % PoolType = PoolType(~invalidDS);

% % Type = Type(~invalidDS);

%% Other Vars

% Define Order

TypeAll = sort(unique([Type]));

genTypeAll = unique([GenType]);

poolTypeAll = unique([PoolType]);

[timeStampYearVec,~] = datevec(timeStampYear');

[years,~] = datevec(sort(unique(timeStampYear)));

secLevelAll = sort(unique([DataSet(1).simRuns.securityLevel]));

secLevelAll = secLevelAll([6]); % Show on those security levels

prodLengthAll = sort(unique([DataSet(1).simRuns.productLength]));

prodLengthAll = prodLengthAll([1]); % Show on those security levels

genTypeNumber = 1; % 1 for Wind 30 GW, 2 for wind 1GW and so on

%% Get DataSet for secondary positive

productLength = 1;

market = 'SFC';

neg = 100;

for iSec = 1:length(secLevelAll)

	

	secLevel = secLevelAll(iSec);

	for iPL = 1:length(prodLengthAll)

		

		productLength = prodLengthAll(iPL);

		

		for iDS = 1:length(DataSet)

			indexA = strcmp({DataSet(iDS).simRuns.market},market);

			indexB = [DataSet(iDS).simRuns.percentPosRP] == neg;

			indexC = [DataSet(iDS).simRuns.productLength] == productLength;

			indexD = [DataSet(iDS).simRuns.securityLevel] == secLevel;

			indexAll = indexA & indexB & indexC & indexD;

			costSavPot_Cap = [];

			costSavPot_Cap(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.capacity;

			

			if strcmp(Type(iDS),'OnWindBRD')

				CSCap(timeStampYearVec(iDS)-2009,1) = costSavPot_Cap;

			elseif strcmp(Type(iDS),'OnWindWF')

				CSCap(timeStampYearVec(iDS)-2009,2) = costSavPot_Cap;

			elseif strcmp(Type(iDS),'OfWindBRD')

				CSCap(timeStampYearVec(iDS)-2009,3) = costSavPot_Cap;

			elseif strcmp(Type(iDS),'PVBRD')

				CSCap(timeStampYearVec(iDS)-2009,4) = costSavPot_Cap;

			elseif strcmp(Type(iDS),'PVPVF')

				CSCap(timeStampYearVec(iDS)-2009,5) = costSavPot_Cap;

			end

			

		end

	CSCap(CSCap == 0) = nan;

	secLevelStructPosSFC(iSec,iPL).CSCap = CSCap;

	end	

end

TotalPosSFC = secLevelStructPosSFC(1,1).CSCap;

%% Get DataSet for secondary negative

productLength = 1;

market = 'SFC';

neg = 100;

for iSec = 1:length(secLevelAll)

	

	secLevel = secLevelAll(iSec);

	for iPL = 1:length(prodLengthAll)

		

		productLength = prodLengthAll(iPL);

		

		for iDS = 1:length(DataSet)

			indexA = strcmp({DataSet(iDS).simRuns.market},market);

			indexB = [DataSet(iDS).simRuns.percentNegRP] == neg;

			indexC = [DataSet(iDS).simRuns.productLength] == productLength;

			indexD = [DataSet(iDS).simRuns.securityLevel] == secLevel;

			indexAll = indexA & indexB & indexC & indexD;

			

			costSavPot_Cap = [];

			costSavPot_Cap(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.capacity;

							

			if strcmp(Type(iDS),'OnWindBRD')

				CSCap(timeStampYearVec(iDS)-2009,1) = costSavPot_Cap;

			elseif strcmp(Type(iDS),'OnWindWF')

				CSCap(timeStampYearVec(iDS)-2009,2) = costSavPot_Cap;

			elseif strcmp(Type(iDS),'OfWindBRD')

				CSCap(timeStampYearVec(iDS)-2009,3) = costSavPot_Cap;

			elseif strcmp(Type(iDS),'PVBRD')

				CSCap(timeStampYearVec(iDS)-2009,4) = costSavPot_Cap;

			elseif strcmp(Type(iDS),'PVPVF')

				CSCap(timeStampYearVec(iDS)-2009,5) = costSavPot_Cap;

			end

			

		end

		

	CSCap(CSCap == 0) = nan;

	secLevelStructNegSFC(iSec,iPL).CSCap = CSCap;

	end	

end

TotalNegSFC = secLevelStructNegSFC(1,1).CSCap;

%% Get DataSet for tertiary positive

productLength = 1;

market = 'TFC';

neg = 100;

for iSec = 1:length(secLevelAll)

	

	secLevel = secLevelAll(iSec);

	for iPL = 1:length(prodLengthAll)

		

		productLength = prodLengthAll(iPL);

		

		for iDS = 1:length(DataSet)

			indexA = strcmp({DataSet(iDS).simRuns.market},market);

			indexB = [DataSet(iDS).simRuns.percentPosRP] == neg;

			indexC = [DataSet(iDS).simRuns.productLength] == productLength;

			indexD = [DataSet(iDS).simRuns.securityLevel] == secLevel;

			indexAll = indexA & indexB & indexC & indexD;

			

			costSavPot_Cap = [];

			costSavPot_Cap(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.capacity;

			if strcmp(Type(iDS),'OnWindBRD')

				CSCap(timeStampYearVec(iDS)-2009,1) = costSavPot_Cap;

			elseif strcmp(Type(iDS),'OnWindWF')

				CSCap(timeStampYearVec(iDS)-2009,2) = costSavPot_Cap;

			elseif strcmp(Type(iDS),'OfWindBRD')

				CSCap(timeStampYearVec(iDS)-2009,3) = costSavPot_Cap;

			elseif strcmp(Type(iDS),'PVBRD')

				CSCap(timeStampYearVec(iDS)-2009,4) = costSavPot_Cap;

			elseif strcmp(Type(iDS),'PVPVF')

				CSCap(timeStampYearVec(iDS)-2009,5) = costSavPot_Cap;

			end

			

		end

	

	CSCap(CSCap == 0) = nan;

	secLevelStructPosTFC(iSec,iPL).CSCap = CSCap;

	end	

end

TotalPosTFC = secLevelStructPosTFC(1,1).CSCap;

%% Get DataSet for tertiary negative

productLength = 1;

market = 'TFC';

neg = 100;

for iSec = 1:length(secLevelAll)

	

	secLevel = secLevelAll(iSec);

	for iPL = 1:length(prodLengthAll)

		

		productLength = prodLengthAll(iPL);

		

		for iDS = 1:length(DataSet)

			indexA = strcmp({DataSet(iDS).simRuns.market},market);

			indexB = [DataSet(iDS).simRuns.percentNegRP] == neg;

			indexC = [DataSet(iDS).simRuns.productLength] == productLength;

			indexD = [DataSet(iDS).simRuns.securityLevel] == secLevel;

			indexAll = indexA & indexB & indexC & indexD;

			costSavPot_Cap = [];

			costSavPot_Cap(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.capacity;

							

			if strcmp(Type(iDS),'OnWindBRD')

				CSCap(timeStampYearVec(iDS)-2009,1) = costSavPot_Cap;

			elseif strcmp(Type(iDS),'OnWindWF')

				CSCap(timeStampYearVec(iDS)-2009,2) = costSavPot_Cap;

			elseif strcmp(Type(iDS),'OfWindBRD')

				CSCap(timeStampYearVec(iDS)-2009,3) = costSavPot_Cap;

			elseif strcmp(Type(iDS),'PVBRD')

				CSCap(timeStampYearVec(iDS)-2009,4) = costSavPot_Cap;

			elseif strcmp(Type(iDS),'PVPVF')

				CSCap(timeStampYearVec(iDS)-2009,5) = costSavPot_Cap;

			end

			

		end

	CSCap(CSCap == 0) = nan;

	secLevelStructNegTFC(iSec,iPL).CSCap = CSCap;

	end	

end

TotalNegTFC = secLevelStructNegTFC(1,1).CSCap;

%% Rearrange data

NegTFC.time = datenum([(2010:2014)' repmat([1 1 0 0 0],5,1)]);

NegTFC.data = TotalNegTFC * 100;

PosTFC.time = datenum([(2010:2014)' repmat([1 1 0 0 0],5,1)]);

PosTFC.data = TotalPosTFC * 100;

NegSFC.time = datenum([(2010:2014)' repmat([1 1 0 0 0],5,1)]);

NegSFC.data = TotalNegSFC * 100;

PosSFC.time = datenum([(2010:2014)' repmat([1 1 0 0 0],5,1)]);

PosSFC.data = TotalPosSFC * 100;

%% Clean weather data

[Wind.time,Wind.data] = loadWind_BRD_feedIn;

% Select yearly values

[yearWind,~] = datevec(Wind.time);

yearWindUniq = unique(yearWind(:,1));

for iYearSel = 1:length(yearWindUniq)

	yearIndx = yearWindUniq(iYearSel) == yearWind;

	

	timeSel = Wind.time(yearIndx);

	dataSel = Wind.data(yearIndx);

	

	timeSel = timeSel(~isnan(dataSel));

	dataSel = dataSel(~isnan(dataSel));

	

	length(dataSel);

	

	share(iYearSel) = sum(dataSel) / length(dataSel);

	

end

flHoursWind.data = share';

flHoursWind.time = datenum([yearWindUniq ones(size(yearWindUniq,1),2)]);

flHoursWind.data = flHoursWind.data(2:end,1);

flHoursWind.time = flHoursWind.time(2:end,1);

flHoursWind.avg = mean(flHoursWind.data);

flHoursWind.mtplr = (flHoursWind.avg-flHoursWind.data) / flHoursWind.avg + 1;

flHoursWind.dataFLHnorm = flHoursWind.data .* flHoursWind.mtplr;

%% Clean weather data

[PV.time,PV.data] = loadPV_BRD_feedIn;

% Select yearly values

[yearPV,~] = datevec(PV.time);

yearPVUniq = unique(yearPV(:,1));

for iYearSel = 1:length(yearPVUniq)

	yearIndx = yearPVUniq(iYearSel) == yearPV;

	

	timeSel = PV.time(yearIndx);

	dataSel = PV.data(yearIndx);

	

	timeSel = timeSel(~isnan(dataSel));

	dataSel = dataSel(~isnan(dataSel));

	

	length(dataSel);

	

	share(iYearSel) = sum(dataSel) / length(dataSel);

	

end

flHoursPV.data = share';

flHoursPV.time = datenum([yearPVUniq ones(size(yearPVUniq,1),2)]);

flHoursPV.data = flHoursPV.data(2:end,1);

flHoursPV.time = flHoursPV.time(2:end,1);

flHoursPV.avg = mean(flHoursPV.data);

flHoursPV.mtplr = (flHoursPV.avg-flHoursPV.data) / flHoursPV.avg + 1;

flHoursPV.dataFLHnorm = flHoursPV.data .* flHoursPV.mtplr;

%% Calculate capacity costs for positive and negative markets

moTFC = loadControlReserve_Tertiary_MerritOrder;

moSFC = loadControlReserve_Secondary_MerritOrder;

timeYears = (2009:2014)';

timeYearsMO = datenum([[timeYears;max(timeYears)+1] ones(size(timeYears,1)+1,2)]);

for iCapCost = 1:length(timeYears)

	

	[~,capCostSFCNeg(iCapCost),capCostSFCPos(iCapCost)] ...

		= Economic_Impact.calcCapacityCost(moSFC,timeYearsMO(iCapCost),timeYearsMO(iCapCost+1));

	

	[~,capCostTFCNeg(iCapCost),capCostTFCPos(iCapCost)] ...

		= Economic_Impact.calcCapacityCost(moTFC,timeYearsMO(iCapCost),timeYearsMO(iCapCost+1));

end

%% Correlate market size with welfare gain

capCostSFCTotal = capCostSFCNeg + capCostSFCPos;

capCostTFCTotal = capCostTFCNeg + capCostTFCPos;

capCostTotal = capCostSFCTotal + capCostTFCTotal;

% Share wind

shareSFCWind = TotalNegSFC(1:end,1)' ./ capCostSFCTotal(2:end) .* flHoursWind.mtplr(2:end)';

shareTFCWind = TotalNegTFC(1:end,1)' ./ capCostTFCTotal(2:end) .* flHoursWind.mtplr(2:end)';

shareMeanWind = nanmean([shareSFCWind;shareTFCWind],1);

avgShareWind = nanmean(shareMeanWind);

% Share PV

shareSFCPV = TotalNegSFC(1:end,4)' ./ capCostSFCTotal(2:end);

shareTFCPV = TotalNegTFC(1:end,4)' ./ capCostTFCTotal(2:end);

shareMeanPV = nanmean([shareSFCPV;shareTFCPV],1);

avgSharePV = nanmean(shareMeanPV);

%% Plot

plot((2010:2014)', log((capCostSFCNeg + capCostTFCNeg)'))

plot(capCostSFCNeg + capCostTFCNeg)

b = regress((2010:2014)',(capCostSFCNeg + capCostTFCNeg)')

fit

NegSFC

capCostTFCNeg

Functions/+Economic_Impact/calc_welfareGain_TotalNumbers.m

clear;

clc;

%% Load data

load('C:\Users\mjansen\Synchronisation\mjansen auf User_Artemis(R)\Dissertation\Data\marketVolFC.mat')

load('C:\Users\mjansen\Synchronisation\mjansen auf User_Artemis(R)\Dissertation\Data\meanShares.mat')

%% Calculate welfare gain

% Without demand adjustments

welGain2020.Wind = marketVolFC.data(1,1) .* meanShares.Wind;

welGain2020.PV = marketVolFC.data(1,1) .* meanShares.PV;

welGain2030.Wind = marketVolFC.data(2,1) .* meanShares.Wind;

welGain2030.PV = marketVolFC.data(2,1) .* meanShares.PV;

% With demand adjustments

welGainDemanAdj2020.Wind = marketVolFC.data(1,2) .* meanShares.Wind;

welGainDemanAdj2020.PV = marketVolFC.data(1,2) .* meanShares.PV;

welGainDemanAdj2030.Wind = marketVolFC.data(2,2) .* meanShares.Wind;

welGainDemanAdj2030.PV = marketVolFC.data(2,2) .* meanShares.PV;

%% Plot

secLevel = 6;

prodLength = 1;

% One hour ahead and 99.994% and no adjustment

data1(1,1) = welGain2020.Wind(secLevel,prodLength);

data1(2,1) = welGain2030.Wind(secLevel,prodLength);

data1(1,3) = welGain2020.PV(secLevel,prodLength);

data1(2,3) = welGain2030.PV(secLevel,prodLength);

% One hour ahead and 99.994% and adjustment

data1(1,2) = welGainDemanAdj2020.Wind(secLevel,prodLength);

data1(2,2) = welGainDemanAdj2030.Wind(secLevel,prodLength);

data1(1,4) = welGainDemanAdj2020.PV(secLevel,prodLength);	

data1(2,4) = welGainDemanAdj2030.PV(secLevel,prodLength);

prodLength = 3;

% One hour ahead and 99.994% and no adjustment

data2(1,1) = welGain2020.Wind(secLevel,prodLength);

data2(2,1) = welGain2030.Wind(secLevel,prodLength);

data2(1,3) = welGain2020.PV(secLevel,prodLength);

data2(2,3) = welGain2030.PV(secLevel,prodLength);

% One hour ahead and 99.994% and adjustment

data2(1,2) = welGainDemanAdj2020.Wind(secLevel,prodLength);

data2(2,2) = welGainDemanAdj2030.Wind(secLevel,prodLength);

data2(1,4) = welGainDemanAdj2020.PV(secLevel,prodLength);

data2(2,4) = welGainDemanAdj2030.PV(secLevel,prodLength);

prodLength = 5;

% One hour ahead and 99.994% and no adjustment

data3(1,1) = welGain2020.Wind(secLevel,prodLength);

data3(2,1) = welGain2030.Wind(secLevel,prodLength);

data3(1,3) = welGain2020.PV(secLevel,prodLength);

data3(2,3) = welGain2030.PV(secLevel,prodLength);

% One hour ahead and 99.994% and adjustment

data3(1,2) = welGainDemanAdj2020.Wind(secLevel,prodLength);

data3(2,2) = welGainDemanAdj2030.Wind(secLevel,prodLength);

data3(1,4) = welGainDemanAdj2020.PV(secLevel,prodLength);

data3(2,4) = welGainDemanAdj2030.PV(secLevel,prodLength);

%% Plot with styleplot

fig = [];

% Define data sets

fig.subplot{1,1}.plot{1}.x = 1:size(data1,1);

fig.subplot{1,1}.plot{1}.y = data1;

fig.subplot{1,1}.plot{1}.style='bar';

fig.subplot{1,1}.plot{1}.barlayout='grouped';

fig.subplot{1,1}.plot{1}.barcolor={'x2','x3','x18','x19'}; % Overwrite the color property

% Define data sets

fig.subplot{1,2}.plot{1}.x = 1:size(data2,1);

fig.subplot{1,2}.plot{1}.y = data2;

fig.subplot{1,2}.plot{1}.style='bar';

fig.subplot{1,2}.plot{1}.barlayout='grouped';

fig.subplot{1,2}.plot{1}.barcolor={'x2','x3','x18','x19'}; % Overwrite the color property

% Define data sets

fig.subplot{1,3}.plot{1}.x = 1:size(data3,1);

fig.subplot{1,3}.plot{1}.y = data3;

fig.subplot{1,3}.plot{1}.style='bar';

fig.subplot{1,3}.plot{1}.barlayout='grouped';

fig.subplot{1,3}.plot{1}.barcolor={'x2','x3','x18','x19'}; % Overwrite the color property

% Plot properties

fig.subplot{1,1}.xlim=[0.5 2.5];

fig.subplot{1,1}.xticks=1:2;

fig.subplot{1,1}.xticklabels={'2020','2030'};

fig.subplot{1,1}.ylim=[0 200];

fig.subplot{1,1}.title=['Product length: 1 hour']; % optionaler Titel

fig.subplot{1,1}.xlabel='Year';

fig.subplot{1,1}.ylabel='Forecasted welfare gain in mio. EUR';

fig.subplot{1,1}.legend={'Wind farms', ...

	'Demand adjusted wind farms', 'PV systems', ...

	'Demand adjusted PV systems',};

fig.subplot{1,2}.xlim=fig.subplot{1,1}.xlim;

fig.subplot{1,2}.xticks=fig.subplot{1,1}.xticks;

fig.subplot{1,2}.xticklabels=fig.subplot{1,1}.xticklabels;

fig.subplot{1,2}.ylim=fig.subplot{1,1}.ylim;

fig.subplot{1,2}.title=['Product length: 4 hours']; % optionaler Titel

fig.subplot{1,2}.xlabel=fig.subplot{1,1}.xlabel;

fig.subplot{1,2}.ylabel=fig.subplot{1,1}.ylabel;

fig.subplot{1,3}.xlim=fig.subplot{1,1}.xlim;

fig.subplot{1,3}.xticks=fig.subplot{1,1}.xticks;

fig.subplot{1,3}.xticklabels=fig.subplot{1,1}.xticklabels;

fig.subplot{1,3}.ylim=fig.subplot{1,1}.ylim;

fig.subplot{1,3}.title=['Product length: 12 hours']; % optionaler Titel

fig.subplot{1,3}.xlabel=fig.subplot{1,1}.xlabel;

fig.subplot{1,3}.ylabel=fig.subplot{1,1}.ylabel;

fig.height=12;

fig.width_columns=3;

[hFig, hAxes, hPlot] = styleplot(fig,'styleplot_format_PhD','word');

Functions/+Economic_Impact/checkStartEndMOList.m

numberMOList = length(fieldnames(MOList.AAP.neg));

for i=1:numberMOList

	

disp([['List' num2str(i)] ' Start: ' datestr(MOList.AAP.neg.(['List' num2str(i)]).start, 'dd.mm.yyyy HH:MM:SS')]);

disp([['List' num2str(i)] ' End : ' datestr(MOList.AAP.neg.(['List' num2str(i)]).end, 'dd.mm.yyyy HH:MM:SS')]);

disp(' ')

end

Functions/+Probabilistic_Forecast/condGaussKDEn.m

function p = condGaussKDEn(krnI,krnT,simI,opts)

% Multivariate Conditional Gaussian Kernel Density Estimation

%

% Usage: p = CondGaussKDEn(krnI,krnT,simI,[opts]) returns an estimate of the

%		probability density function (pdf) and the cumulative distribution

%		function (cdf) for conditional data simI in a range for the target

%		variable (simT) given by opts.simTRange or alternatively in the area

%		[E +/- opts.simTWidth_stdDev*stdDev] with opts.simTWidth_nVar interim

%		values

%

% Input data:	krnI, krnT: (n,d-1), (n,1) kernel input data for estimation

%							(real observed data)

%							krnT =target variable (variable to be analysed)

%				simI: (s,d-1) locations to estimate p.E, p.Var, p.stdDev for target

%					 variable

%				opts: (struct) optional settings:

%					 opts.simTRange (s,t) values for 'target' to estimate

%								pdf/cdf for each dataset of simI

%								(standard setting = min(krnT):max(krnT)/100 values)

%								!if opts.simTRange is a row-vector, the range

%								will be used for each dataset of simI!

%					 opts.simTWidth_stdDev (1,1) +/-width (in standard-deviation

%								of simT) around expected value as range for simT

%					 opts.simTWidth_nVal (1,1) number of interim values in

%								simT-interval (default = 100)

%					 opts.h (1,d) manually setting of kernels' bandwidths

%					 opts.pdf true/false-switch for calculation of pdf

%							 (standard setting =true)

%					 opts.cdf true/false-switch for calculation of cdf

%							 (standard setting =true)

%					 opts.progressBar struct for creating ProgressBar-object

%							 (waitbar/progress-display)

%

% Output data:	p.dim: (1,1) number of dimensions of kernel-data (d, see above)

%				p.h: (1,d) thumb bandwidth for input data kernels

%				p.E: (s,1) expected value of the variable 'target' for simI(s,:)

%				p.Var: (s,1) variance of the variable 'target' for simI(s,:)

%				p.stdDev: (s,1) standard deviation of the variable 'target' for simI(s,:)

%				p.simTRange: (s,t) =simTRange for p.pdf/p.cdf

%				p.pdf: (s,t) pdf for simI(s,:), p.simTRange(s,t)

%				p.cdf: (s,t) cdf for simI(s,:), p.simTRange(s,t)

%

%				(rows,colums) = size of matrices:

%						d: number of dimensions/variables of kernel-data

%						n: size of kernel-data

%						s: number of locations for simulation

%						t: number of values for target variable

%

% Hints: - use either opts.simTRange OR opts.simTWidth_stdDev/opts.simTWidth_nVal

%		 if both given, opts.simTRange will be preferred

%

% See also: hist, histc, ksdensity, ecdf, cdfplot, ecdfhist

%

%

% V2.0 by Yi Cao at Cranfield University on 8th Apil 2010

% V3.0 (Conditionality) by André Baier Fraunhofer IWES on 04.07.2011

% V4.0 (Multivariate input data) by Rainer Schwinn Fraunhofer IWES on 25.08.2011

% 2016-04-14: some comments on bandwidth added (rsch, Fraunhofer IWES)

%

% general.svnRevisionlog; % log m-file revision

%--

calcPDF = true;

calcCDF = true;

simTWidthIsGiven = false;

showBar = false;

% Check input and output

narginchk(3,4);

nargoutchk(0,1);

if size(krnT,2)~=1

 error('krnT is not a column vector!');

end

if size(krnI,1)~=size(krnT,1)

 error('krnI and krnT must be of the same length!');

end

if size(krnI,2)~=size(simI,2)

 error('krnI and simI must be of the same width!');

end

if nargin==4&& isstruct(opts)

	options = fieldnames(opts);

	if(any(ismember(options,'simTRange')))

		simTRange = opts.simTRange;

	end

	if(any(ismember(options,'h')))

		h = opts.h;

	end

	if(any(ismember(options,'pdf')))

		calcPDF = opts.pdf;

	end

	if(any(ismember(options,'cdf')))

		calcCDF = opts.cdf;

	end

	if(any(ismember(options,'simTWidth_stdDev')))

		simTWidth_stdDev = opts.simTWidth_stdDev(1);

		if(any(ismember(options,'simTWidth_nVal')))

			simTWidth_nVal = opts.simTWidth_nVal(1);

		else

			simTWidth_nVal = 100;

		end

		if exist('simTRange','var')

			warning('simTRange and simTWidth are given simultaneously. Only simTRange is used');

		else

			simTWidthIsGiven = true;

		end

	end

	if(any(ismember(options,'progressBar')))

		showBar = true;

	end

elseif nargin==4

	error('opts must be a struct!')

end

if exist('simTRange','var')&& size(simTRange,1)~=size(simI,1)&& size(simTRange,1)~=1

	error('opts.simTRange must have the same number of rows as simI or be a row vector!');

end

Krn = [krnI,krnT];

[nKrn,ndim] = size(Krn);

nSimI = size(simI,1);

if ~exist('h','var')

	% rule of thumb bandwidth suggested by Bowman and Azzalini (1997) p.31 & 32

% 	s = std(Krn); % simple standard deviation as bandwidth estimator

	s = median(abs(Krn-repmat(median(Krn),nKrn,1)),1)/0.6745; % median absolute deviation estimator (more robust against extreme values)

	

 h = s*(4/((ndim+2)*nKrn))^(1/(ndim+4));

end

if simTWidthIsGiven

	simTRange = zeros(nSimI,simTWidth_nVal);

elseif ~exist('simTRange','var')

	simTRange = linspace(min(krnT)-3*h(ndim),max(krnT)+3*h(ndim),100);

end

if size(simTRange,1)==1 % repeat simTRange if only a row-vector

	simTRange = simTRange(ones(1,nSimI),:);

end

nSimT = size(simTRange,2);

% simplified Gaussian kernel function and its 1-dim integral

kerf = @(z) exp(-0.5*z);

ckerf = @(z) erfc(-z/sqrt(2))/2;

% if showBar

% 	progressBar = general.ProgressBar(opts.progressBar); % open waitbar/progress-display

% end

for iSimI = 1:nSimI

	

	if showBar

		progressBar.update((iSimI-1)/nSimI) % update waitbar/progress-display

	end

	

 zI = (simI(iSimI+zeros(nKrn,1),:)-krnI)./h(ones(nKrn,1),1:ndim-1);

 kerfI = kerf(sum(zI.^2,2));

 kerfISum = sum(kerfI);

 p.E(iSimI,1) = Krn(:,ndim)'*kerfI/kerfISum;

 p.Var(iSimI,1) = (Krn(:,ndim).^2+h(ndim)^2-2*Krn(:,ndim)*p.E(iSimI,1)+p.E(iSimI,1)^2)'*kerfI/kerfISum;

	p.stdDev(iSimI,1) = sqrt(p.Var(iSimI,1));

	if calcPDF|| calcCDF

		kerfI = kerfI(:,ones(nSimT,1));

		if simTWidthIsGiven

			simTRange(iSimI,:) = linspace(p.E(iSimI,1)-simTWidth_stdDev*p.stdDev(iSimI,1),...

									p.E(iSimI,1)+simTWidth_stdDev*p.stdDev(iSimI,1),nSimT);

		end

		zT = (simTRange(iSimI+zeros(1,nKrn),:)-krnT(:,ones(1,nSimT)))./h(ndim);

		if calcPDF

			kerfT = kerf(zT.^2);

			p.pdf(iSimI,:) = sum(kerfI.*kerfT,1)/(kerfISum*h(ndim)*sqrt(2*pi));

		end

		if calcCDF

			ckerfT = ckerf(zT);

			p.cdf(iSimI,:) = sum(kerfI.*ckerfT,1)/kerfISum;

		end

	end

end

% if showBar

% 	progressBar.close % close waitbar/progress-display

% end

% hand over variables

p.h = h;

p.dim = ndim;

p.simI = simI;

if calcPDF|| calcCDF

	p.simTRange = simTRange;

end

Functions/+Config/config_OffWind_BRD_20100101_20101231.m

%% Get SimRuns for Setup

% Define calculation parameters

simRunsTMP.securityLevel = [95,99,99.5,99.9,99.99,99.994,99.999];

simRunsTMP.leadTimeRP = 24;

simRunsTMP.productLenght = [1,2,4,8,12,24];

simRunsTMP.percentPosRP = [0,50,100];

simRunsTMP.percentNegRP = [100,50,0];

simRunsTMP.installedCap = 1000;

simRunsTMP.startTime = datenum([2010 1 2 0 0 0]);

% simRunsTMP.endTime = simRunsTMP.startTime+3;

simRunsTMP.endTime = datenum([2010 12 31 23 59 59]);

simRunsTMP.market = {'TFC','SFC'};

simRunsTMP.pool = 'Germany';

simRunsTMP.combinationsRuns = allcomb(simRunsTMP.securityLevel,simRunsTMP.leadTimeRP,...

	simRunsTMP.productLenght,simRunsTMP.percentPosRP,simRunsTMP.percentNegRP, ...

	simRunsTMP.installedCap);

simRunsTMP.combinationsRuns = ...

	simRunsTMP.combinationsRuns(([simRunsTMP.combinationsRuns(:,4)] ...

	+ [simRunsTMP.combinationsRuns(:,5)]) == 100,:);

for iMarket = 1:length(simRunsTMP.market)

	for iCalcRun=1:size(simRunsTMP.combinationsRuns,1)

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).securityLevel = simRunsTMP.combinationsRuns(iCalcRun,1);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).leadTimeRP = simRunsTMP.combinationsRuns(iCalcRun,2);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).productLength =simRunsTMP.combinationsRuns(iCalcRun,3);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).percentPosRP = simRunsTMP.combinationsRuns(iCalcRun,4);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).percentNegRP = simRunsTMP.combinationsRuns(iCalcRun,5);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).installedCapacity = simRunsTMP.combinationsRuns(iCalcRun,6);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).startTime = simRunsTMP.startTime;

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).endTime = simRunsTMP.endTime;

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).market = simRunsTMP.market{iMarket};

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).pool = simRunsTMP.pool;

	end

end

clear simRunsTMP iMarket iCalcRun

%% Options for the Loading of Data

% Define which forecasts shall be loaded (not assigned yet)

optsLoad.genType				= 'Offshore Wind'; % Valid options: Onshore Wind, Offshore Wind, PV

optsLoad.persistencyGenType		= true; % For the loaded portfolio

optsLoad.fcHorizon				= 1; % Forecast horizon in hours

optsLoad.persistencyWind		= true; % For the entire German portfolio

optsLoad.persistencyPV			= true; % For the entire German portfolio

optsLoad.cut					= false; % Main forecast data is cut is true

optsLoad.cutStart				= datenum([2012 3 1 0 0 0]) - 2; % Time to start cut data, if no value than maximum according to time frame

optsLoad.cutEnd					= datenum([2014 1 1 0 0 0]) + 2; % Time to end cut data, if no value than minimum according to time frame

optsLoad.separateTrainingData	= true; % Limits the training data for the probabilistic forecast

optsLoad.startTrainingData		= datenum([2010 1 2 0 0 0]);

optsLoad.endTrainingData		= datenum([2011 12 30 0 0 0]);

%% Load Data

[DA_MarketPrice, ID_MarketPrice, RPP, dispatchSFC, dispatchTFC, ...

	MoSFC, MoTFC, actualFeedIn, DA_Forec, ID_Forec, ...

	actualFeedIn_Wind, DA_Forec_Wind, ID_Forec_Wind, ...

	DA_Forec_PV, ID_Forec_PV, actualFeedIn_PV, loadENTSOE] ...

	= Config.loadData('D:', simRuns, optsLoad);

%% Technology dependent variables

optsOffer.feedInTariff			= 150; % €/MWh (Anfangsvergütung)

%% Cut data

if optsLoad.separateTrainingData

	

	% DA

	DA_Forec_Train.data = DA_Forec.data(DA_Forec.time >= optsLoad.startTrainingData	 & DA_Forec.time < optsLoad.endTrainingData);

	DA_Forec_Train.time = DA_Forec.time(DA_Forec.time >= optsLoad.startTrainingData	 & DA_Forec.time < optsLoad.endTrainingData);

	DA_Forec_Train.info = DA_Forec.info;

	% ID

	ID_Forec_Train.data = ID_Forec.data(ID_Forec.time >= optsLoad.startTrainingData	 & ID_Forec.time < optsLoad.endTrainingData);

	ID_Forec_Train.time = ID_Forec.time(ID_Forec.time >= optsLoad.startTrainingData	 & ID_Forec.time < optsLoad.endTrainingData);

	ID_Forec_Train.info = ID_Forec.info;

	% Actual

	actualFeedIn_Train.data = actualFeedIn.data(actualFeedIn.time >= optsLoad.startTrainingData	 & actualFeedIn.time < optsLoad.endTrainingData);

	actualFeedIn_Train.time = actualFeedIn.time(actualFeedIn.time >= optsLoad.startTrainingData	 & actualFeedIn.time < optsLoad.endTrainingData);

	actualFeedIn_Train.info = actualFeedIn.info;

	

else

	

	actualFeedIn_Train = actualFeedIn;

	DA_Forec_Train = DA_Forec;

	ID_Forec_Train = ID_Forec;

	

end

%% Cut data

if optsLoad.cut

	

	if isempty(optsLoad.cutStart)

		optsLoad.cutStart = userInput.startTime;

	end

	if isempty(optsLoad.cutEnd)

		optsLoad.cutEnd = userInput.endTime;

	end

	

	% DA

	DA_Forec.data = DA_Forec.data(DA_Forec.time >= optsLoad.cutStart & DA_Forec.time < optsLoad.cutEnd);

	DA_Forec.time = DA_Forec.time(DA_Forec.time >= optsLoad.cutStart & DA_Forec.time < optsLoad.cutEnd);

	% ID

	ID_Forec.data = ID_Forec.data(ID_Forec.time >= optsLoad.cutStart & ID_Forec.time < optsLoad.cutEnd);

	ID_Forec.time = ID_Forec.time(ID_Forec.time >= optsLoad.cutStart & ID_Forec.time < optsLoad.cutEnd);

	% Actual

	actualFeedIn.data = actualFeedIn.data(actualFeedIn.time >= optsLoad.cutStart & actualFeedIn.time < optsLoad.cutEnd);

	actualFeedIn.time = actualFeedIn.time(actualFeedIn.time >= optsLoad.cutStart & actualFeedIn.time < optsLoad.cutEnd);

	

end

%% Cluster run variables

jobNameCluster = 'OfWind_BRD_2010';

Functions/+Config/config_OffWind_BRD_20110101_20111231.m

%% Get SimRuns for Setup

% Define calculation parameters

simRunsTMP.securityLevel = [95,99,99.5,99.9,99.99,99.994,99.999];

simRunsTMP.leadTimeRP = 24;

simRunsTMP.productLenght = [1,2,4,8,12,24];

simRunsTMP.percentPosRP = [0,50,100];

simRunsTMP.percentNegRP = [100,50,0];

simRunsTMP.installedCap = 1000;

simRunsTMP.startTime = datenum([2011 1 1 0 0 0]);

% simRunsTMP.endTime = simRunsTMP.startTime+3;

simRunsTMP.endTime = datenum([2011 12 30 23 59 59]);

simRunsTMP.market = {'TFC','SFC'};

simRunsTMP.pool = 'Germany';

simRunsTMP.combinationsRuns = allcomb(simRunsTMP.securityLevel,simRunsTMP.leadTimeRP,...

	simRunsTMP.productLenght,simRunsTMP.percentPosRP,simRunsTMP.percentNegRP, ...

	simRunsTMP.installedCap);

simRunsTMP.combinationsRuns = ...

	simRunsTMP.combinationsRuns(([simRunsTMP.combinationsRuns(:,4)] ...

	+ [simRunsTMP.combinationsRuns(:,5)]) == 100,:);

for iMarket = 1:length(simRunsTMP.market)

	for iCalcRun=1:size(simRunsTMP.combinationsRuns,1)

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).securityLevel = simRunsTMP.combinationsRuns(iCalcRun,1);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).leadTimeRP = simRunsTMP.combinationsRuns(iCalcRun,2);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).productLength =simRunsTMP.combinationsRuns(iCalcRun,3);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).percentPosRP = simRunsTMP.combinationsRuns(iCalcRun,4);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).percentNegRP = simRunsTMP.combinationsRuns(iCalcRun,5);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).installedCapacity = simRunsTMP.combinationsRuns(iCalcRun,6);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).startTime = simRunsTMP.startTime;

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).endTime = simRunsTMP.endTime;

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).market = simRunsTMP.market{iMarket};

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).pool = simRunsTMP.pool;

	end

end

clear simRunsTMP iMarket iCalcRun

%% Options for the Loading of Data

% Define which forecasts shall be loaded (not assigned yet)

optsLoad.genType				= 'Offshore Wind'; % Valid options: Onshore Wind, Offshore Wind, PV

optsLoad.persistencyGenType		= true; % For the loaded portfolio

optsLoad.fcHorizon				= 1; % Forecast horizon in hours

optsLoad.persistencyWind		= true; % For the entire German portfolio

optsLoad.persistencyPV			= true; % For the entire German portfolio

optsLoad.cut					= false; % Main forecast data is cut is true

optsLoad.cutStart				= datenum([2012 3 1 0 0 0]) - 2; % Time to start cut data, if no value than maximum according to time frame

optsLoad.cutEnd					= datenum([2014 1 1 0 0 0]) + 2; % Time to end cut data, if no value than minimum according to time frame

optsLoad.separateTrainingData	= true; % Limits the training data for the probabilistic forecast

optsLoad.startTrainingData		= datenum([2010 1 2 0 0 0]);

optsLoad.endTrainingData		= datenum([2011 12 30 0 0 0]);

%% Load Data

[DA_MarketPrice, ID_MarketPrice, RPP, dispatchSFC, dispatchTFC, ...

	MoSFC, MoTFC, actualFeedIn, DA_Forec, ID_Forec, ...

	actualFeedIn_Wind, DA_Forec_Wind, ID_Forec_Wind, ...

	DA_Forec_PV, ID_Forec_PV, actualFeedIn_PV, loadENTSOE] ...

	= Config.loadData('D:', simRuns, optsLoad);

%% Technology dependent variables

optsOffer.feedInTariff			= 150; % €/MWh (Anfangsvergütung)

%% Cut data

if optsLoad.separateTrainingData

	

	% DA

	DA_Forec_Train.data = DA_Forec.data(DA_Forec.time >= optsLoad.startTrainingData	 & DA_Forec.time < optsLoad.endTrainingData);

	DA_Forec_Train.time = DA_Forec.time(DA_Forec.time >= optsLoad.startTrainingData	 & DA_Forec.time < optsLoad.endTrainingData);

	DA_Forec_Train.info = DA_Forec.info;

	% ID

	ID_Forec_Train.data = ID_Forec.data(ID_Forec.time >= optsLoad.startTrainingData	 & ID_Forec.time < optsLoad.endTrainingData);

	ID_Forec_Train.time = ID_Forec.time(ID_Forec.time >= optsLoad.startTrainingData	 & ID_Forec.time < optsLoad.endTrainingData);

	ID_Forec_Train.info = ID_Forec.info;

	% Actual

	actualFeedIn_Train.data = actualFeedIn.data(actualFeedIn.time >= optsLoad.startTrainingData	 & actualFeedIn.time < optsLoad.endTrainingData);

	actualFeedIn_Train.time = actualFeedIn.time(actualFeedIn.time >= optsLoad.startTrainingData	 & actualFeedIn.time < optsLoad.endTrainingData);

	actualFeedIn_Train.info = actualFeedIn.info;

	

else

	

	actualFeedIn_Train = actualFeedIn;

	DA_Forec_Train = DA_Forec;

	ID_Forec_Train = ID_Forec;

	

end

%% Cut data

if optsLoad.cut

	

	if isempty(optsLoad.cutStart)

		optsLoad.cutStart = userInput.startTime;

	end

	if isempty(optsLoad.cutEnd)

		optsLoad.cutEnd = userInput.endTime;

	end

	

	% DA

	DA_Forec.data = DA_Forec.data(DA_Forec.time >= optsLoad.cutStart & DA_Forec.time < optsLoad.cutEnd);

	DA_Forec.time = DA_Forec.time(DA_Forec.time >= optsLoad.cutStart & DA_Forec.time < optsLoad.cutEnd);

	% ID

	ID_Forec.data = ID_Forec.data(ID_Forec.time >= optsLoad.cutStart & ID_Forec.time < optsLoad.cutEnd);

	ID_Forec.time = ID_Forec.time(ID_Forec.time >= optsLoad.cutStart & ID_Forec.time < optsLoad.cutEnd);

	% Actual

	actualFeedIn.data = actualFeedIn.data(actualFeedIn.time >= optsLoad.cutStart & actualFeedIn.time < optsLoad.cutEnd);

	actualFeedIn.time = actualFeedIn.time(actualFeedIn.time >= optsLoad.cutStart & actualFeedIn.time < optsLoad.cutEnd);

	

end

%% Cluster run variables

jobNameCluster = 'OfWind_BRD_2011';

Functions/+Config/config_OffWind_BRD_20130101_20131231.m

%% Get SimRuns for Setup

% Define calculation parameters

simRunsTMP.securityLevel = [95,99,99.5,99.9,99.99,99.994,99.999];

simRunsTMP.leadTimeRP = 24;

simRunsTMP.productLenght = [1,2,4,8,12,24];

simRunsTMP.percentPosRP = [0,50,100];

simRunsTMP.percentNegRP = [100,50,0];

simRunsTMP.installedCap = 1000;

simRunsTMP.startTime = datenum([2013 1 2 0 0 0]);

% simRunsTMP.endTime = simRunsTMP.startTime+24;

simRunsTMP.endTime = datenum([2013 12 31 23 59 59]);

simRunsTMP.market = {'TFC','SFC'};

simRunsTMP.pool = 'Germany';

simRunsTMP.combinationsRuns = allcomb(simRunsTMP.securityLevel,simRunsTMP.leadTimeRP,...

	simRunsTMP.productLenght,simRunsTMP.percentPosRP,simRunsTMP.percentNegRP, ...

	simRunsTMP.installedCap);

simRunsTMP.combinationsRuns = ...

	simRunsTMP.combinationsRuns(([simRunsTMP.combinationsRuns(:,4)] ...

	+ [simRunsTMP.combinationsRuns(:,5)]) == 100,:);

for iMarket = 1:length(simRunsTMP.market)

	for iCalcRun=1:size(simRunsTMP.combinationsRuns,1)

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).securityLevel = simRunsTMP.combinationsRuns(iCalcRun,1);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).leadTimeRP = simRunsTMP.combinationsRuns(iCalcRun,2);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).productLength =simRunsTMP.combinationsRuns(iCalcRun,3);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).percentPosRP = simRunsTMP.combinationsRuns(iCalcRun,4);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).percentNegRP = simRunsTMP.combinationsRuns(iCalcRun,5);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).installedCapacity = simRunsTMP.combinationsRuns(iCalcRun,6);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).startTime = simRunsTMP.startTime;

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).endTime = simRunsTMP.endTime;

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).market = simRunsTMP.market{iMarket};

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).pool = simRunsTMP.pool;

	end

end

clear simRunsTMP iMarket iCalcRun

%% Options for the Loading of Data

% Define which forecasts shall be loaded (not assigned yet)

optsLoad.genType				= 'Offshore Wind'; % Valid options: Onshore Wind, Offshore Wind, PV

optsLoad.persistencyGenType		= true; % For the loaded portfolio

optsLoad.fcHorizon				= 1; % Forecast horizon in hours

optsLoad.persistencyWind		= true; % For the entire German portfolio

optsLoad.persistencyPV			= true; % For the entire German portfolio

optsLoad.cut					= false; % Main forecast data is cut is true

optsLoad.cutStart				= datenum([2012 3 1 0 0 0]) - 2; % Time to start cut data, if no value than maximum according to time frame

optsLoad.cutEnd					= datenum([2014 1 1 0 0 0]) + 2; % Time to end cut data, if no value than minimum according to time frame

optsLoad.separateTrainingData	= true; % Limits the training data for the probabilistic forecast

optsLoad.startTrainingData		= datenum([2010 1 2 0 0 0]);

optsLoad.endTrainingData		= datenum([2011 12 30 0 0 0]);

%% Load Data

[DA_MarketPrice, ID_MarketPrice, RPP, dispatchSFC, dispatchTFC, ...

	MoSFC, MoTFC, actualFeedIn, DA_Forec, ID_Forec, ...

	actualFeedIn_Wind, DA_Forec_Wind, ID_Forec_Wind, ...

	DA_Forec_PV, ID_Forec_PV, actualFeedIn_PV, loadENTSOE] ...

	= Config.loadData('D:', simRuns, optsLoad);

%% Technology dependent variables

optsOffer.feedInTariff			= 150; % €/MWh (Anfangsvergütung)

%% Cut data

if optsLoad.separateTrainingData

	

	% DA

	DA_Forec_Train.data = DA_Forec.data(DA_Forec.time >= optsLoad.startTrainingData	 & DA_Forec.time < optsLoad.endTrainingData);

	DA_Forec_Train.time = DA_Forec.time(DA_Forec.time >= optsLoad.startTrainingData	 & DA_Forec.time < optsLoad.endTrainingData);

	DA_Forec_Train.info = DA_Forec.info;

	% ID

	ID_Forec_Train.data = ID_Forec.data(ID_Forec.time >= optsLoad.startTrainingData	 & ID_Forec.time < optsLoad.endTrainingData);

	ID_Forec_Train.time = ID_Forec.time(ID_Forec.time >= optsLoad.startTrainingData	 & ID_Forec.time < optsLoad.endTrainingData);

	ID_Forec_Train.info = ID_Forec.info;

	% Actual

	actualFeedIn_Train.data = actualFeedIn.data(actualFeedIn.time >= optsLoad.startTrainingData	 & actualFeedIn.time < optsLoad.endTrainingData);

	actualFeedIn_Train.time = actualFeedIn.time(actualFeedIn.time >= optsLoad.startTrainingData	 & actualFeedIn.time < optsLoad.endTrainingData);

	actualFeedIn_Train.info = actualFeedIn.info;

	

else

	

	actualFeedIn_Train = actualFeedIn;

	DA_Forec_Train = DA_Forec;

	ID_Forec_Train = ID_Forec;

	

end

%% Cut data

if optsLoad.cut

	

	if isempty(optsLoad.cutStart)

		optsLoad.cutStart = userInput.startTime;

	end

	if isempty(optsLoad.cutEnd)

		optsLoad.cutEnd = userInput.endTime;

	end

	

	% DA

	DA_Forec.data = DA_Forec.data(DA_Forec.time >= optsLoad.cutStart & DA_Forec.time < optsLoad.cutEnd);

	DA_Forec.time = DA_Forec.time(DA_Forec.time >= optsLoad.cutStart & DA_Forec.time < optsLoad.cutEnd);

	% ID

	ID_Forec.data = ID_Forec.data(ID_Forec.time >= optsLoad.cutStart & ID_Forec.time < optsLoad.cutEnd);

	ID_Forec.time = ID_Forec.time(ID_Forec.time >= optsLoad.cutStart & ID_Forec.time < optsLoad.cutEnd);

	% Actual

	actualFeedIn.data = actualFeedIn.data(actualFeedIn.time >= optsLoad.cutStart & actualFeedIn.time < optsLoad.cutEnd);

	actualFeedIn.time = actualFeedIn.time(actualFeedIn.time >= optsLoad.cutStart & actualFeedIn.time < optsLoad.cutEnd);

	

end

%% Cluster run variables

jobNameCluster = 'OfWind_BRD_2013';

Functions/+Config/config_OffWind_BRD_20140101_20141231.m

%% Get SimRuns for Setup

% Define calculation parameters

simRunsTMP.securityLevel = [95,99,99.5,99.9,99.99,99.994,99.999];

simRunsTMP.leadTimeRP = 24;

simRunsTMP.productLenght = [1,2,4,8,12,24];

simRunsTMP.percentPosRP = [0,50,100];

simRunsTMP.percentNegRP = [100,50,0];

simRunsTMP.installedCap = 1000;

simRunsTMP.startTime = datenum([2014 1 1 0 0 0]);

% simRunsTMP.endTime = simRunsTMP.startTime+3;

simRunsTMP.endTime = datenum([2014 12 31 23 59 59]);

simRunsTMP.market = {'TFC','SFC'};

simRunsTMP.pool = 'Germany';

simRunsTMP.combinationsRuns = allcomb(simRunsTMP.securityLevel,simRunsTMP.leadTimeRP,...

	simRunsTMP.productLenght,simRunsTMP.percentPosRP,simRunsTMP.percentNegRP, ...

	simRunsTMP.installedCap);

simRunsTMP.combinationsRuns = ...

	simRunsTMP.combinationsRuns(([simRunsTMP.combinationsRuns(:,4)] ...

	+ [simRunsTMP.combinationsRuns(:,5)]) == 100,:);

for iMarket = 1:length(simRunsTMP.market)

	for iCalcRun=1:size(simRunsTMP.combinationsRuns,1)

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).securityLevel = simRunsTMP.combinationsRuns(iCalcRun,1);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).leadTimeRP = simRunsTMP.combinationsRuns(iCalcRun,2);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).productLength =simRunsTMP.combinationsRuns(iCalcRun,3);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).percentPosRP = simRunsTMP.combinationsRuns(iCalcRun,4);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).percentNegRP = simRunsTMP.combinationsRuns(iCalcRun,5);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).installedCapacity = simRunsTMP.combinationsRuns(iCalcRun,6);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).startTime = simRunsTMP.startTime;

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).endTime = simRunsTMP.endTime;

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).market = simRunsTMP.market{iMarket};

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).pool = simRunsTMP.pool;

	end

end

clear simRunsTMP iMarket iCalcRun

%% Options for the Loading of Data

% Define which forecasts shall be loaded (not assigned yet)

optsLoad.genType				= 'Offshore Wind'; % Valid options: Onshore Wind, Offshore Wind, PV

optsLoad.persistencyGenType		= true; % For the loaded portfolio

optsLoad.fcHorizon				= 1; % Forecast horizon in hours

optsLoad.persistencyWind		= true; % For the entire German portfolio

optsLoad.persistencyPV			= true; % For the entire German portfolio

optsLoad.cut					= false; % Main forecast data is cut is true

optsLoad.cutStart				= datenum([2012 3 1 0 0 0]) - 2; % Time to start cut data, if no value than maximum according to time frame

optsLoad.cutEnd					= datenum([2014 1 1 0 0 0]) + 2; % Time to end cut data, if no value than minimum according to time frame

optsLoad.separateTrainingData	= true; % Limits the training data for the probabilistic forecast

optsLoad.startTrainingData		= datenum([2010 1 2 0 0 0]);

optsLoad.endTrainingData		= datenum([2011 12 30 0 0 0]);

%% Load Data

[DA_MarketPrice, ID_MarketPrice, RPP, dispatchSFC, dispatchTFC, ...

	MoSFC, MoTFC, actualFeedIn, DA_Forec, ID_Forec, ...

	actualFeedIn_Wind, DA_Forec_Wind, ID_Forec_Wind, ...

	DA_Forec_PV, ID_Forec_PV, actualFeedIn_PV, loadENTSOE] ...

	= Config.loadData('D:', simRuns, optsLoad);

%% Technology dependent variables

optsOffer.feedInTariff			= 150; % €/MWh (Anfangsvergütung)

%% Cut data

if optsLoad.separateTrainingData

	

	% DA

	DA_Forec_Train.data = DA_Forec.data(DA_Forec.time >= optsLoad.startTrainingData	 & DA_Forec.time < optsLoad.endTrainingData);

	DA_Forec_Train.time = DA_Forec.time(DA_Forec.time >= optsLoad.startTrainingData	 & DA_Forec.time < optsLoad.endTrainingData);

	DA_Forec_Train.info = DA_Forec.info;

	% ID

	ID_Forec_Train.data = ID_Forec.data(ID_Forec.time >= optsLoad.startTrainingData	 & ID_Forec.time < optsLoad.endTrainingData);

	ID_Forec_Train.time = ID_Forec.time(ID_Forec.time >= optsLoad.startTrainingData	 & ID_Forec.time < optsLoad.endTrainingData);

	ID_Forec_Train.info = ID_Forec.info;

	% Actual

	actualFeedIn_Train.data = actualFeedIn.data(actualFeedIn.time >= optsLoad.startTrainingData	 & actualFeedIn.time < optsLoad.endTrainingData);

	actualFeedIn_Train.time = actualFeedIn.time(actualFeedIn.time >= optsLoad.startTrainingData	 & actualFeedIn.time < optsLoad.endTrainingData);

	actualFeedIn_Train.info = actualFeedIn.info;

	

else

	

	actualFeedIn_Train = actualFeedIn;

	DA_Forec_Train = DA_Forec;

	ID_Forec_Train = ID_Forec;

	

end

%% Cut data

if optsLoad.cut

	

	if isempty(optsLoad.cutStart)

		optsLoad.cutStart = userInput.startTime;

	end

	if isempty(optsLoad.cutEnd)

		optsLoad.cutEnd = userInput.endTime;

	end

	

	% DA

	DA_Forec.data = DA_Forec.data(DA_Forec.time >= optsLoad.cutStart & DA_Forec.time < optsLoad.cutEnd);

	DA_Forec.time = DA_Forec.time(DA_Forec.time >= optsLoad.cutStart & DA_Forec.time < optsLoad.cutEnd);

	% ID

	ID_Forec.data = ID_Forec.data(ID_Forec.time >= optsLoad.cutStart & ID_Forec.time < optsLoad.cutEnd);

	ID_Forec.time = ID_Forec.time(ID_Forec.time >= optsLoad.cutStart & ID_Forec.time < optsLoad.cutEnd);

	% Actual

	actualFeedIn.data = actualFeedIn.data(actualFeedIn.time >= optsLoad.cutStart & actualFeedIn.time < optsLoad.cutEnd);

	actualFeedIn.time = actualFeedIn.time(actualFeedIn.time >= optsLoad.cutStart & actualFeedIn.time < optsLoad.cutEnd);

	

end

%% Cluster run variables

jobNameCluster = 'OfWind_BRD_2014';

Functions/+Config/config_OnWind_BRD_20100101_20101231.m

%% Get SimRuns for Setup

% Define calculation parameters

simRunsTMP.securityLevel = [95,99,99.5,99.9,99.99,99.994,99.999];

simRunsTMP.leadTimeRP = 24;

simRunsTMP.productLenght = [1,2,4,8,12,24];

simRunsTMP.percentPosRP = [0,50,100];

simRunsTMP.percentNegRP = [100,50,0];

simRunsTMP.installedCap = 30000;

simRunsTMP.startTime = datenum([2010 1 1 0 0 0]);

% simRunsTMP.endTime = simRunsTMP.startTime+91;%14;

simRunsTMP.endTime = datenum([2010 12 31 23 59 59]);

simRunsTMP.market = {'TFC','SFC'};

simRunsTMP.pool = 'Germany';

simRunsTMP.combinationsRuns = allcomb(simRunsTMP.securityLevel,simRunsTMP.leadTimeRP,...

	simRunsTMP.productLenght,simRunsTMP.percentPosRP,simRunsTMP.percentNegRP, ...

	simRunsTMP.installedCap);

simRunsTMP.combinationsRuns = ...

	simRunsTMP.combinationsRuns(([simRunsTMP.combinationsRuns(:,4)] ...

	+ [simRunsTMP.combinationsRuns(:,5)]) == 100,:);

for iMarket = 1:length(simRunsTMP.market)

	for iCalcRun=1:size(simRunsTMP.combinationsRuns,1)

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).securityLevel = simRunsTMP.combinationsRuns(iCalcRun,1);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).leadTimeRP = simRunsTMP.combinationsRuns(iCalcRun,2);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).productLength =simRunsTMP.combinationsRuns(iCalcRun,3);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).percentPosRP = simRunsTMP.combinationsRuns(iCalcRun,4);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).percentNegRP = simRunsTMP.combinationsRuns(iCalcRun,5);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).installedCapacity = simRunsTMP.combinationsRuns(iCalcRun,6);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).startTime = simRunsTMP.startTime;

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).endTime = simRunsTMP.endTime;

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).market = simRunsTMP.market{iMarket};

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).pool = simRunsTMP.pool;

	end

end

clear simRunsTMP iMarket iCalcRun

%% Options for the Loading of Data

% Define which forecasts shall be loaded (not assigned yet)

optsLoad.genType				= 'Onshore Wind'; % Valid options: Onshore Wind, Offshore Wind, PV

optsLoad.persistencyGenType		= true; % For the loaded portfolio

optsLoad.fcHorizon				= 1; % Forecast horizon in hours

optsLoad.persistencyWind		= true; % For the entire German portfolio

optsLoad.persistencyPV			= true; % For the entire German portfolio

optsLoad.cut					= false; % Main forecast data is cut is true

optsLoad.cutStart				= datenum([2012 3 1 0 0 0]) - 2; % Time to start cut data, if no value than maximum according to time frame

optsLoad.cutEnd					= datenum([2014 1 1 0 0 0]) + 2; % Time to end cut data, if no value than minimum according to time frame

optsLoad.separateTrainingData	= false; % Limits the training data for the probabilistic forecast

optsLoad.startTrainingData		= datenum([2010 1 1 0 0 0]);

optsLoad.endTrainingData		= datenum([2010 12 30 0 0 0]);

%% Load Data

[DA_MarketPrice, ID_MarketPrice, RPP, dispatchSFC, dispatchTFC, ...

	MoSFC, MoTFC, actualFeedIn, DA_Forec, ID_Forec, ...

	actualFeedIn_Wind, DA_Forec_Wind, ID_Forec_Wind, ...

	DA_Forec_PV, ID_Forec_PV, actualFeedIn_PV, loadENTSOE] ...

	= Config.loadData('D:', simRuns, optsLoad);

%% Technology dependent variables

optsOffer.feedInTariff			= 89.5; % €/MWh

%% Cut data

if optsLoad.separateTrainingData

	

	% DA

	DA_Forec_Train.data = DA_Forec.data(DA_Forec.time >= optsLoad.startTrainingData	 & DA_Forec.time < optsLoad.endTrainingData);

	DA_Forec_Train.time = DA_Forec.time(DA_Forec.time >= optsLoad.startTrainingData	 & DA_Forec.time < optsLoad.endTrainingData);

	DA_Forec_Train.info = DA_Forec.info;

	% ID

	ID_Forec_Train.data = ID_Forec.data(ID_Forec.time >= optsLoad.startTrainingData	 & ID_Forec.time < optsLoad.endTrainingData);

	ID_Forec_Train.time = ID_Forec.time(ID_Forec.time >= optsLoad.startTrainingData	 & ID_Forec.time < optsLoad.endTrainingData);

	ID_Forec_Train.info = ID_Forec.info;

	% Actual

	actualFeedIn_Train.data = actualFeedIn.data(actualFeedIn.time >= optsLoad.startTrainingData	 & actualFeedIn.time < optsLoad.endTrainingData);

	actualFeedIn_Train.time = actualFeedIn.time(actualFeedIn.time >= optsLoad.startTrainingData	 & actualFeedIn.time < optsLoad.endTrainingData);

	actualFeedIn_Train.info = actualFeedIn.info;

	

else

	

	actualFeedIn_Train = actualFeedIn;

	DA_Forec_Train = DA_Forec;

	ID_Forec_Train = ID_Forec;

	

end

%% Cut data

if optsLoad.cut

	

	if isempty(optsLoad.cutStart)

		optsLoad.cutStart = userInput.startTime;

	end

	if isempty(optsLoad.cutEnd)

		optsLoad.cutEnd = userInput.endTime;

	end

	

	% DA

	DA_Forec.data = DA_Forec.data(DA_Forec.time >= optsLoad.cutStart & DA_Forec.time < optsLoad.cutEnd);

	DA_Forec.time = DA_Forec.time(DA_Forec.time >= optsLoad.cutStart & DA_Forec.time < optsLoad.cutEnd);

	% ID

	ID_Forec.data = ID_Forec.data(ID_Forec.time >= optsLoad.cutStart & ID_Forec.time < optsLoad.cutEnd);

	ID_Forec.time = ID_Forec.time(ID_Forec.time >= optsLoad.cutStart & ID_Forec.time < optsLoad.cutEnd);

	% Actual

	actualFeedIn.data = actualFeedIn.data(actualFeedIn.time >= optsLoad.cutStart & actualFeedIn.time < optsLoad.cutEnd);

	actualFeedIn.time = actualFeedIn.time(actualFeedIn.time >= optsLoad.cutStart & actualFeedIn.time < optsLoad.cutEnd);

	

end

%% Cluster run variables

jobNameCluster = 'OnWind_BRD_2010';

Functions/+Config/config_OnWind_BRD_20110101_20111231.m

%% Get SimRuns for Setup

% Define calculation parameters

simRunsTMP.securityLevel = [95,99,99.5,99.9,99.99,99.994,99.999];

simRunsTMP.leadTimeRP = 24;

simRunsTMP.productLenght = [1,2,4,8,12,24];

simRunsTMP.percentPosRP = [0,50,100];

simRunsTMP.percentNegRP = [100,50,0];

simRunsTMP.installedCap = 30000;

simRunsTMP.startTime = datenum([2011 1 1 0 0 0]);

% simRunsTMP.endTime = simRunsTMP.startTime+4;

simRunsTMP.endTime = datenum([2011 12 31 23 59 59]);

simRunsTMP.market = {'TFC','SFC'};

simRunsTMP.pool = 'Germany';

simRunsTMP.combinationsRuns = allcomb(simRunsTMP.securityLevel,simRunsTMP.leadTimeRP,...

	simRunsTMP.productLenght,simRunsTMP.percentPosRP,simRunsTMP.percentNegRP, ...

	simRunsTMP.installedCap);

simRunsTMP.combinationsRuns = ...

	simRunsTMP.combinationsRuns(([simRunsTMP.combinationsRuns(:,4)] ...

	+ [simRunsTMP.combinationsRuns(:,5)]) == 100,:);

for iMarket = 1:length(simRunsTMP.market)

	for iCalcRun=1:size(simRunsTMP.combinationsRuns,1)

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).securityLevel = simRunsTMP.combinationsRuns(iCalcRun,1);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).leadTimeRP = simRunsTMP.combinationsRuns(iCalcRun,2);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).productLength =simRunsTMP.combinationsRuns(iCalcRun,3);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).percentPosRP = simRunsTMP.combinationsRuns(iCalcRun,4);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).percentNegRP = simRunsTMP.combinationsRuns(iCalcRun,5);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).installedCapacity = simRunsTMP.combinationsRuns(iCalcRun,6);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).startTime = simRunsTMP.startTime;

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).endTime = simRunsTMP.endTime;

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).market = simRunsTMP.market{iMarket};

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).pool = simRunsTMP.pool;

	end

end

clear simRunsTMP iMarket iCalcRun

%% Options for the Loading of Data

% Define which forecasts shall be loaded (not assigned yet)

optsLoad.genType				= 'Onshore Wind'; % Valid options: Onshore Wind, Offshore Wind, PV

optsLoad.persistencyGenType		= true; % For the loaded portfolio

optsLoad.fcHorizon				= 1; % Forecast horizon in hours

optsLoad.persistencyWind		= true; % For the entire German portfolio

optsLoad.persistencyPV			= true; % For the entire German portfolio

optsLoad.cut					= false; % Main forecast data is cut is true

optsLoad.cutStart				= datenum([2012 3 1 0 0 0]) - 2; % Time to start cut data, if no value than maximum according to time frame

optsLoad.cutEnd					= datenum([2014 1 1 0 0 0]) + 2; % Time to end cut data, if no value than minimum according to time frame

optsLoad.separateTrainingData	= false; % Limits the training data for the probabilistic forecast

optsLoad.startTrainingData		= datenum([2010 1 1 0 0 0]);

optsLoad.endTrainingData		= datenum([2010 12 30 0 0 0]);

%% Load Data

[DA_MarketPrice, ID_MarketPrice, RPP, dispatchSFC, dispatchTFC, ...

	MoSFC, MoTFC, actualFeedIn, DA_Forec, ID_Forec, ...

	actualFeedIn_Wind, DA_Forec_Wind, ID_Forec_Wind, ...

	DA_Forec_PV, ID_Forec_PV, actualFeedIn_PV, loadENTSOE] ...

	= Config.loadData('D:', simRuns, optsLoad);

%% Technology dependent variables

optsOffer.feedInTariff			= 89.5; % €/MWh

%% Cut data

if optsLoad.separateTrainingData

	

	% DA

	DA_Forec_Train.data = DA_Forec.data(DA_Forec.time >= optsLoad.startTrainingData	 & DA_Forec.time < optsLoad.endTrainingData);

	DA_Forec_Train.time = DA_Forec.time(DA_Forec.time >= optsLoad.startTrainingData	 & DA_Forec.time < optsLoad.endTrainingData);

	DA_Forec_Train.info = DA_Forec.info;

	% ID

	ID_Forec_Train.data = ID_Forec.data(ID_Forec.time >= optsLoad.startTrainingData	 & ID_Forec.time < optsLoad.endTrainingData);

	ID_Forec_Train.time = ID_Forec.time(ID_Forec.time >= optsLoad.startTrainingData	 & ID_Forec.time < optsLoad.endTrainingData);

	ID_Forec_Train.info = ID_Forec.info;

	% Actual

	actualFeedIn_Train.data = actualFeedIn.data(actualFeedIn.time >= optsLoad.startTrainingData	 & actualFeedIn.time < optsLoad.endTrainingData);

	actualFeedIn_Train.time = actualFeedIn.time(actualFeedIn.time >= optsLoad.startTrainingData	 & actualFeedIn.time < optsLoad.endTrainingData);

	actualFeedIn_Train.info = actualFeedIn.info;

	

else

	

	actualFeedIn_Train = actualFeedIn;

	DA_Forec_Train = DA_Forec;

	ID_Forec_Train = ID_Forec;

	

end

%% Cut data

if optsLoad.cut

	

	if isempty(optsLoad.cutStart)

		optsLoad.cutStart = userInput.startTime;

	end

	if isempty(optsLoad.cutEnd)

		optsLoad.cutEnd = userInput.endTime;

	end

	

	% DA

	DA_Forec.data = DA_Forec.data(DA_Forec.time >= optsLoad.cutStart & DA_Forec.time < optsLoad.cutEnd);

	DA_Forec.time = DA_Forec.time(DA_Forec.time >= optsLoad.cutStart & DA_Forec.time < optsLoad.cutEnd);

	% ID

	ID_Forec.data = ID_Forec.data(ID_Forec.time >= optsLoad.cutStart & ID_Forec.time < optsLoad.cutEnd);

	ID_Forec.time = ID_Forec.time(ID_Forec.time >= optsLoad.cutStart & ID_Forec.time < optsLoad.cutEnd);

	% Actual

	actualFeedIn.data = actualFeedIn.data(actualFeedIn.time >= optsLoad.cutStart & actualFeedIn.time < optsLoad.cutEnd);

	actualFeedIn.time = actualFeedIn.time(actualFeedIn.time >= optsLoad.cutStart & actualFeedIn.time < optsLoad.cutEnd);

	

end

%% Cluster run variables

jobNameCluster = 'OnWind_BRD_2011';

Functions/+Config/config_OnWind_BRD_20120101_20121231.m

%% Get SimRuns for Setup

% Define calculation parameters

simRunsTMP.securityLevel = [95,99,99.5,99.9,99.99,99.994,99.999];

simRunsTMP.leadTimeRP = 24;

simRunsTMP.productLenght = [1,2,4,8,12,24];

simRunsTMP.percentPosRP = [0,50,100];

simRunsTMP.percentNegRP = [100,50,0];

simRunsTMP.installedCap = 30000;

simRunsTMP.startTime = datenum([2012 1 1 0 0 0]);

% simRunsTMP.endTime = simRunsTMP.startTime+31;

simRunsTMP.endTime = datenum([2012 12 31 23 59 59]);

simRunsTMP.market = {'TFC','SFC'};

simRunsTMP.pool = 'Germany';

simRunsTMP.combinationsRuns = allcomb(simRunsTMP.securityLevel,simRunsTMP.leadTimeRP,...

	simRunsTMP.productLenght,simRunsTMP.percentPosRP,simRunsTMP.percentNegRP, ...

	simRunsTMP.installedCap);

simRunsTMP.combinationsRuns = ...

	simRunsTMP.combinationsRuns(([simRunsTMP.combinationsRuns(:,4)] ...

	+ [simRunsTMP.combinationsRuns(:,5)]) == 100,:);

for iMarket = 1:length(simRunsTMP.market)

	for iCalcRun=1:size(simRunsTMP.combinationsRuns,1)

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).securityLevel = simRunsTMP.combinationsRuns(iCalcRun,1);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).leadTimeRP = simRunsTMP.combinationsRuns(iCalcRun,2);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).productLength =simRunsTMP.combinationsRuns(iCalcRun,3);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).percentPosRP = simRunsTMP.combinationsRuns(iCalcRun,4);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).percentNegRP = simRunsTMP.combinationsRuns(iCalcRun,5);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).installedCapacity = simRunsTMP.combinationsRuns(iCalcRun,6);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).startTime = simRunsTMP.startTime;

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).endTime = simRunsTMP.endTime;

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).market = simRunsTMP.market{iMarket};

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).pool = simRunsTMP.pool;

	end

end

clear simRunsTMP iMarket iCalcRun

%% Options for the Loading of Data

% Define which forecasts shall be loaded (not assigned yet)

optsLoad.genType				= 'Onshore Wind'; % Valid options: Onshore Wind, Offshore Wind, PV

optsLoad.persistencyGenType		= true; % For the loaded portfolio

optsLoad.fcHorizon				= 1; % Forecast horizon in hours

optsLoad.persistencyWind		= true; % For the entire German portfolio

optsLoad.persistencyPV			= true; % For the entire German portfolio

optsLoad.cut					= false; % Main forecast data is cut is true

optsLoad.cutStart				= datenum([2012 3 1 0 0 0]) - 2; % Time to start cut data, if no value than maximum according to time frame

optsLoad.cutEnd					= datenum([2014 1 1 0 0 0]) + 2; % Time to end cut data, if no value than minimum according to time frame

optsLoad.separateTrainingData	= false; % Limits the training data for the probabilistic forecast

optsLoad.startTrainingData		= datenum([2010 1 1 0 0 0]);

optsLoad.endTrainingData		= datenum([2010 12 30 0 0 0]);

%% Load Data

[DA_MarketPrice, ID_MarketPrice, RPP, dispatchSFC, dispatchTFC, ...

	MoSFC, MoTFC, actualFeedIn, DA_Forec, ID_Forec, ...

	actualFeedIn_Wind, DA_Forec_Wind, ID_Forec_Wind, ...

	DA_Forec_PV, ID_Forec_PV, actualFeedIn_PV, loadENTSOE] ...

	= Config.loadData('D:', simRuns, optsLoad);

%% Technology dependent variables

optsOffer.feedInTariff			= 89.5; % €/MWh

%% Cut data

if optsLoad.separateTrainingData

	

	% DA

	DA_Forec_Train.data = DA_Forec.data(DA_Forec.time >= optsLoad.startTrainingData	 & DA_Forec.time < optsLoad.endTrainingData);

	DA_Forec_Train.time = DA_Forec.time(DA_Forec.time >= optsLoad.startTrainingData	 & DA_Forec.time < optsLoad.endTrainingData);

	DA_Forec_Train.info = DA_Forec.info;

	% ID

	ID_Forec_Train.data = ID_Forec.data(ID_Forec.time >= optsLoad.startTrainingData	 & ID_Forec.time < optsLoad.endTrainingData);

	ID_Forec_Train.time = ID_Forec.time(ID_Forec.time >= optsLoad.startTrainingData	 & ID_Forec.time < optsLoad.endTrainingData);

	ID_Forec_Train.info = ID_Forec.info;

	% Actual

	actualFeedIn_Train.data = actualFeedIn.data(actualFeedIn.time >= optsLoad.startTrainingData	 & actualFeedIn.time < optsLoad.endTrainingData);

	actualFeedIn_Train.time = actualFeedIn.time(actualFeedIn.time >= optsLoad.startTrainingData	 & actualFeedIn.time < optsLoad.endTrainingData);

	actualFeedIn_Train.info = actualFeedIn.info;

	

else

	

	actualFeedIn_Train = actualFeedIn;

	DA_Forec_Train = DA_Forec;

	ID_Forec_Train = ID_Forec;

	

end

%% Cut data

if optsLoad.cut

	

	if isempty(optsLoad.cutStart)

		optsLoad.cutStart = userInput.startTime;

	end

	if isempty(optsLoad.cutEnd)

		optsLoad.cutEnd = userInput.endTime;

	end

	

	% DA

	DA_Forec.data = DA_Forec.data(DA_Forec.time >= optsLoad.cutStart & DA_Forec.time < optsLoad.cutEnd);

	DA_Forec.time = DA_Forec.time(DA_Forec.time >= optsLoad.cutStart & DA_Forec.time < optsLoad.cutEnd);

	% ID

	ID_Forec.data = ID_Forec.data(ID_Forec.time >= optsLoad.cutStart & ID_Forec.time < optsLoad.cutEnd);

	ID_Forec.time = ID_Forec.time(ID_Forec.time >= optsLoad.cutStart & ID_Forec.time < optsLoad.cutEnd);

	% Actual

	actualFeedIn.data = actualFeedIn.data(actualFeedIn.time >= optsLoad.cutStart & actualFeedIn.time < optsLoad.cutEnd);

	actualFeedIn.time = actualFeedIn.time(actualFeedIn.time >= optsLoad.cutStart & actualFeedIn.time < optsLoad.cutEnd);

	

end

%% Cluster run variables

jobNameCluster = 'OnWind_BRD_2012';

Functions/+Config/config_OnWind_BRD_20130101_20131231.m

%% Get SimRuns for Setup

% Define calculation parameters

simRunsTMP.securityLevel = [95,99,99.5,99.9,99.99,99.994,99.999];

simRunsTMP.leadTimeRP = 24;

simRunsTMP.productLenght = [1,2,4,8,12,24];

simRunsTMP.percentPosRP = [0,50,100];

simRunsTMP.percentNegRP = [100,50,0];

simRunsTMP.installedCap = 30000;

simRunsTMP.startTime = datenum([2013 1 1 0 0 0]);

% simRunsTMP.endTime = simRunsTMP.startTime+31;

simRunsTMP.endTime = datenum([2013 12 31 23 59 59]);

simRunsTMP.market = {'TFC','SFC'};

simRunsTMP.pool = 'Germany';

simRunsTMP.combinationsRuns = allcomb(simRunsTMP.securityLevel,simRunsTMP.leadTimeRP,...

	simRunsTMP.productLenght,simRunsTMP.percentPosRP,simRunsTMP.percentNegRP, ...

	simRunsTMP.installedCap);

simRunsTMP.combinationsRuns = ...

	simRunsTMP.combinationsRuns(([simRunsTMP.combinationsRuns(:,4)] ...

	+ [simRunsTMP.combinationsRuns(:,5)]) == 100,:);

for iMarket = 1:length(simRunsTMP.market)

	for iCalcRun=1:size(simRunsTMP.combinationsRuns,1)

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).securityLevel = simRunsTMP.combinationsRuns(iCalcRun,1);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).leadTimeRP = simRunsTMP.combinationsRuns(iCalcRun,2);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).productLength =simRunsTMP.combinationsRuns(iCalcRun,3);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).percentPosRP = simRunsTMP.combinationsRuns(iCalcRun,4);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).percentNegRP = simRunsTMP.combinationsRuns(iCalcRun,5);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).installedCapacity = simRunsTMP.combinationsRuns(iCalcRun,6);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).startTime = simRunsTMP.startTime;

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).endTime = simRunsTMP.endTime;

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).market = simRunsTMP.market{iMarket};

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).pool = simRunsTMP.pool;

	end

end

clear simRunsTMP iMarket iCalcRun

%% Options for the Loading of Data

% Define which forecasts shall be loaded (not assigned yet)

optsLoad.genType				= 'Onshore Wind'; % Valid options: Onshore Wind, Offshore Wind, PV

optsLoad.persistencyGenType		= true; % For the loaded portfolio

optsLoad.fcHorizon				= 1; % Forecast horizon in hours

optsLoad.persistencyWind		= true; % For the entire German portfolio

optsLoad.persistencyPV			= true; % For the entire German portfolio

optsLoad.cut					= false; % Main forecast data is cut is true

optsLoad.cutStart				= datenum([2012 3 1 0 0 0]) - 2; % Time to start cut data, if no value than maximum according to time frame

optsLoad.cutEnd					= datenum([2014 1 1 0 0 0]) + 2; % Time to end cut data, if no value than minimum according to time frame

optsLoad.separateTrainingData	= false; % Limits the training data for the probabilistic forecast

optsLoad.startTrainingData		= datenum([2010 1 1 0 0 0]);

optsLoad.endTrainingData		= datenum([2010 12 30 0 0 0]);

%% Load Data

[DA_MarketPrice, ID_MarketPrice, RPP, dispatchSFC, dispatchTFC, ...

	MoSFC, MoTFC, actualFeedIn, DA_Forec, ID_Forec, ...

	actualFeedIn_Wind, DA_Forec_Wind, ID_Forec_Wind, ...

	DA_Forec_PV, ID_Forec_PV, actualFeedIn_PV, loadENTSOE] ...

	= Config.loadData('D:', simRuns, optsLoad);

%% Technology dependent variables

optsOffer.feedInTariff			= 89.5; % €/MWh

%% Cut data

if optsLoad.separateTrainingData

	

	% DA

	DA_Forec_Train.data = DA_Forec.data(DA_Forec.time >= optsLoad.startTrainingData	 & DA_Forec.time < optsLoad.endTrainingData);

	DA_Forec_Train.time = DA_Forec.time(DA_Forec.time >= optsLoad.startTrainingData	 & DA_Forec.time < optsLoad.endTrainingData);

	DA_Forec_Train.info = DA_Forec.info;

	% ID

	ID_Forec_Train.data = ID_Forec.data(ID_Forec.time >= optsLoad.startTrainingData	 & ID_Forec.time < optsLoad.endTrainingData);

	ID_Forec_Train.time = ID_Forec.time(ID_Forec.time >= optsLoad.startTrainingData	 & ID_Forec.time < optsLoad.endTrainingData);

	ID_Forec_Train.info = ID_Forec.info;

	% Actual

	actualFeedIn_Train.data = actualFeedIn.data(actualFeedIn.time >= optsLoad.startTrainingData	 & actualFeedIn.time < optsLoad.endTrainingData);

	actualFeedIn_Train.time = actualFeedIn.time(actualFeedIn.time >= optsLoad.startTrainingData	 & actualFeedIn.time < optsLoad.endTrainingData);

	actualFeedIn_Train.info = actualFeedIn.info;

	

else

	

	actualFeedIn_Train = actualFeedIn;

	DA_Forec_Train = DA_Forec;

	ID_Forec_Train = ID_Forec;

	

end

%% Cut data

if optsLoad.cut

	

	if isempty(optsLoad.cutStart)

		optsLoad.cutStart = userInput.startTime;

	end

	if isempty(optsLoad.cutEnd)

		optsLoad.cutEnd = userInput.endTime;

	end

	

	% DA

	DA_Forec.data = DA_Forec.data(DA_Forec.time >= optsLoad.cutStart & DA_Forec.time < optsLoad.cutEnd);

	DA_Forec.time = DA_Forec.time(DA_Forec.time >= optsLoad.cutStart & DA_Forec.time < optsLoad.cutEnd);

	% ID

	ID_Forec.data = ID_Forec.data(ID_Forec.time >= optsLoad.cutStart & ID_Forec.time < optsLoad.cutEnd);

	ID_Forec.time = ID_Forec.time(ID_Forec.time >= optsLoad.cutStart & ID_Forec.time < optsLoad.cutEnd);

	% Actual

	actualFeedIn.data = actualFeedIn.data(actualFeedIn.time >= optsLoad.cutStart & actualFeedIn.time < optsLoad.cutEnd);

	actualFeedIn.time = actualFeedIn.time(actualFeedIn.time >= optsLoad.cutStart & actualFeedIn.time < optsLoad.cutEnd);

	

end

%% Cluster run variables

jobNameCluster = 'OnWind_BRD_2013';

Functions/+Config/config_OnWind_BRD_20140101_20141231.m

%% Get SimRuns for Setup

% Define calculation parameters

simRunsTMP.securityLevel = [95,99,99.5,99.9,99.99,99.994,99.999];

simRunsTMP.leadTimeRP = 24;

simRunsTMP.productLenght = [1,2,4,8,12,24];

simRunsTMP.percentPosRP = [0,50,100];

simRunsTMP.percentNegRP = [100,50,0];

simRunsTMP.installedCap = 30000;

simRunsTMP.startTime = datenum([2014 1 1 0 0 0]);

% simRunsTMP.endTime = simRunsTMP.startTime+6;

simRunsTMP.endTime = datenum([2014 12 30 23 59 59]);

simRunsTMP.market = {'TFC','SFC'};

simRunsTMP.pool = 'Germany';

simRunsTMP.combinationsRuns = allcomb(simRunsTMP.securityLevel,simRunsTMP.leadTimeRP,...

	simRunsTMP.productLenght,simRunsTMP.percentPosRP,simRunsTMP.percentNegRP, ...

	simRunsTMP.installedCap);

simRunsTMP.combinationsRuns = ...

	simRunsTMP.combinationsRuns(([simRunsTMP.combinationsRuns(:,4)] ...

	+ [simRunsTMP.combinationsRuns(:,5)]) == 100,:);

for iMarket = 1:length(simRunsTMP.market)

	for iCalcRun=1:size(simRunsTMP.combinationsRuns,1)

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).securityLevel = simRunsTMP.combinationsRuns(iCalcRun,1);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).leadTimeRP = simRunsTMP.combinationsRuns(iCalcRun,2);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).productLength =simRunsTMP.combinationsRuns(iCalcRun,3);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).percentPosRP = simRunsTMP.combinationsRuns(iCalcRun,4);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).percentNegRP = simRunsTMP.combinationsRuns(iCalcRun,5);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).installedCapacity = simRunsTMP.combinationsRuns(iCalcRun,6);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).startTime = simRunsTMP.startTime;

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).endTime = simRunsTMP.endTime;

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).market = simRunsTMP.market{iMarket};

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).pool = simRunsTMP.pool;

	end

end

clear simRunsTMP iMarket iCalcRun

%% Options for the Loading of Data

% Define which forecasts shall be loaded (not assigned yet)

optsLoad.genType				= 'Onshore Wind'; % Valid options: Onshore Wind, Offshore Wind, PV

optsLoad.persistencyGenType		= true; % For the loaded portfolio

optsLoad.fcHorizon				= 1; % Forecast horizon in hours

optsLoad.persistencyWind		= true; % For the entire German portfolio

optsLoad.persistencyPV			= true; % For the entire German portfolio

optsLoad.cut					= false; % Main forecast data is cut is true

optsLoad.cutStart				= datenum([2012 3 1 0 0 0]) - 2; % Time to start cut data, if no value than maximum according to time frame

optsLoad.cutEnd					= datenum([2014 1 1 0 0 0]) + 2; % Time to end cut data, if no value than minimum according to time frame

optsLoad.separateTrainingData	= false; % Limits the training data for the probabilistic forecast

optsLoad.startTrainingData		= datenum([2010 1 1 0 0 0]);

optsLoad.endTrainingData		= datenum([2010 12 30 0 0 0]);

%% Load Data

[DA_MarketPrice, ID_MarketPrice, RPP, dispatchSFC, dispatchTFC, ...

	MoSFC, MoTFC, actualFeedIn, DA_Forec, ID_Forec, ...

	actualFeedIn_Wind, DA_Forec_Wind, ID_Forec_Wind, ...

	DA_Forec_PV, ID_Forec_PV, actualFeedIn_PV, loadENTSOE] ...

	= Config.loadData('D:', simRuns, optsLoad);

%% Technology dependent variables

optsOffer.feedInTariff			= 89.5; % €/MWh

%% Cut data

if optsLoad.separateTrainingData

	

	% DA

	DA_Forec_Train.data = DA_Forec.data(DA_Forec.time >= optsLoad.startTrainingData	 & DA_Forec.time < optsLoad.endTrainingData);

	DA_Forec_Train.time = DA_Forec.time(DA_Forec.time >= optsLoad.startTrainingData	 & DA_Forec.time < optsLoad.endTrainingData);

	DA_Forec_Train.info = DA_Forec.info;

	% ID

	ID_Forec_Train.data = ID_Forec.data(ID_Forec.time >= optsLoad.startTrainingData	 & ID_Forec.time < optsLoad.endTrainingData);

	ID_Forec_Train.time = ID_Forec.time(ID_Forec.time >= optsLoad.startTrainingData	 & ID_Forec.time < optsLoad.endTrainingData);

	ID_Forec_Train.info = ID_Forec.info;

	% Actual

	actualFeedIn_Train.data = actualFeedIn.data(actualFeedIn.time >= optsLoad.startTrainingData	 & actualFeedIn.time < optsLoad.endTrainingData);

	actualFeedIn_Train.time = actualFeedIn.time(actualFeedIn.time >= optsLoad.startTrainingData	 & actualFeedIn.time < optsLoad.endTrainingData);

	actualFeedIn_Train.info = actualFeedIn.info;

	

else

	

	actualFeedIn_Train = actualFeedIn;

	DA_Forec_Train = DA_Forec;

	ID_Forec_Train = ID_Forec;

	

end

%% Cut data

if optsLoad.cut

	

	if isempty(optsLoad.cutStart)

		optsLoad.cutStart = userInput.startTime;

	end

	if isempty(optsLoad.cutEnd)

		optsLoad.cutEnd = userInput.endTime;

	end

	

	% DA

	DA_Forec.data = DA_Forec.data(DA_Forec.time >= optsLoad.cutStart & DA_Forec.time < optsLoad.cutEnd);

	DA_Forec.time = DA_Forec.time(DA_Forec.time >= optsLoad.cutStart & DA_Forec.time < optsLoad.cutEnd);

	% ID

	ID_Forec.data = ID_Forec.data(ID_Forec.time >= optsLoad.cutStart & ID_Forec.time < optsLoad.cutEnd);

	ID_Forec.time = ID_Forec.time(ID_Forec.time >= optsLoad.cutStart & ID_Forec.time < optsLoad.cutEnd);

	% Actual

	actualFeedIn.data = actualFeedIn.data(actualFeedIn.time >= optsLoad.cutStart & actualFeedIn.time < optsLoad.cutEnd);

	actualFeedIn.time = actualFeedIn.time(actualFeedIn.time >= optsLoad.cutStart & actualFeedIn.time < optsLoad.cutEnd);

	

end

%% Cluster run variables

jobNameCluster = 'OnWind_BRD_2014';

Functions/+Config/config_OnWind_WF_20100101_20101231.m

%% Get SimRuns for Setup

% Define calculation parameters

simRunsTMP.securityLevel = [95,99,99.5,99.9,99.99,99.994,99.999];

simRunsTMP.leadTimeRP = 24;

simRunsTMP.productLenght = [1,2,4,8,12,24];

simRunsTMP.percentPosRP = [0,50,100];

simRunsTMP.percentNegRP = [100,50,0];

simRunsTMP.installedCap = 1000;

simRunsTMP.startTime = datenum([2010 1 1 0 0 0]);

% simRunsTMP.endTime = simRunsTMP.startTime+1;

simRunsTMP.endTime = datenum([2010 12 31 23 59 59]);

simRunsTMP.market = {'TFC','SFC'};

simRunsTMP.pool = 'Pool';

simRunsTMP.combinationsRuns = allcomb(simRunsTMP.securityLevel,simRunsTMP.leadTimeRP,...

	simRunsTMP.productLenght,simRunsTMP.percentPosRP,simRunsTMP.percentNegRP, ...

	simRunsTMP.installedCap);

simRunsTMP.combinationsRuns = ...

	simRunsTMP.combinationsRuns(([simRunsTMP.combinationsRuns(:,4)] ...

	+ [simRunsTMP.combinationsRuns(:,5)]) == 100,:);

for iMarket = 1:length(simRunsTMP.market)

	for iCalcRun=1:size(simRunsTMP.combinationsRuns,1)

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).securityLevel = simRunsTMP.combinationsRuns(iCalcRun,1);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).leadTimeRP = simRunsTMP.combinationsRuns(iCalcRun,2);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).productLength =simRunsTMP.combinationsRuns(iCalcRun,3);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).percentPosRP = simRunsTMP.combinationsRuns(iCalcRun,4);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).percentNegRP = simRunsTMP.combinationsRuns(iCalcRun,5);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).installedCapacity = simRunsTMP.combinationsRuns(iCalcRun,6);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).startTime = simRunsTMP.startTime;

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).endTime = simRunsTMP.endTime;

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).market = simRunsTMP.market{iMarket};

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).pool = simRunsTMP.pool;

	end

end

clear simRunsTMP iMarket iCalcRun

%% Options for the Loading of Data

% Define which forecasts shall be loaded (not assigned yet)

optsLoad.genType				= 'Onshore Wind'; % Valid options: Onshore Wind, Offshore Wind, PV

optsLoad.persistencyGenType		= true; % For the loaded portfolio

optsLoad.fcHorizon				= 1; % Forecast horizon in hours

optsLoad.persistencyWind		= true; % For the entire German portfolio

optsLoad.persistencyPV			= true; % For the entire German portfolio

optsLoad.cut					= false; % Main forecast data is cut is true

optsLoad.cutStart				= datenum([2012 3 1 0 0 0]) - 2; % Time to start cut data, if no value than maximum according to time frame

optsLoad.cutEnd					= datenum([2014 1 1 0 0 0]) + 2; % Time to end cut data, if no value than minimum according to time frame

optsLoad.separateTrainingData	= true; % Limits the training data for the probabilistic forecast

optsLoad.startTrainingData		= datenum([2007 1 2 0 0 0]);

optsLoad.endTrainingData		= datenum([2010 12 30 0 0 0]);

%% Load Data

[DA_MarketPrice, ID_MarketPrice, RPP, dispatchSFC, dispatchTFC, ...

	MoSFC, MoTFC, actualFeedIn, DA_Forec, ID_Forec, ...

	actualFeedIn_Wind, DA_Forec_Wind, ID_Forec_Wind, ...

	DA_Forec_PV, ID_Forec_PV, actualFeedIn_PV, loadENTSOE] ...

	= Config.loadData('D:', simRuns, optsLoad);

%% Technology dependent variables

optsOffer.feedInTariff			= 89.5; % €/MWh

%% Cut data

if optsLoad.separateTrainingData

	

	% DA

	DA_Forec_Train.data = DA_Forec.data(DA_Forec.time >= optsLoad.startTrainingData	 & DA_Forec.time < optsLoad.endTrainingData);

	DA_Forec_Train.time = DA_Forec.time(DA_Forec.time >= optsLoad.startTrainingData	 & DA_Forec.time < optsLoad.endTrainingData);

% 	DA_Forec_Train.info = DA_Forec.info;

	% ID

	ID_Forec_Train.data = ID_Forec.data(ID_Forec.time >= optsLoad.startTrainingData	 & ID_Forec.time < optsLoad.endTrainingData);

	ID_Forec_Train.time = ID_Forec.time(ID_Forec.time >= optsLoad.startTrainingData	 & ID_Forec.time < optsLoad.endTrainingData);

% 	ID_Forec_Train.info = ID_Forec.info;

	% Actual

	actualFeedIn_Train.data = actualFeedIn.data(actualFeedIn.time >= optsLoad.startTrainingData	 & actualFeedIn.time < optsLoad.endTrainingData);

	actualFeedIn_Train.time = actualFeedIn.time(actualFeedIn.time >= optsLoad.startTrainingData	 & actualFeedIn.time < optsLoad.endTrainingData);

% 	actualFeedIn_Train.info = actualFeedIn.info;

	

else

	

	actualFeedIn_Train = actualFeedIn;

	DA_Forec_Train = DA_Forec;

	ID_Forec_Train = ID_Forec;

	

end

%% Cut data

if optsLoad.cut

	

	if isempty(optsLoad.cutStart)

		optsLoad.cutStart = userInput.startTime;

	end

	if isempty(optsLoad.cutEnd)

		optsLoad.cutEnd = userInput.endTime;

	end

	

	% DA

	DA_Forec.data = DA_Forec.data(DA_Forec.time >= optsLoad.cutStart & DA_Forec.time < optsLoad.cutEnd);

	DA_Forec.time = DA_Forec.time(DA_Forec.time >= optsLoad.cutStart & DA_Forec.time < optsLoad.cutEnd);

	% ID

	ID_Forec.data = ID_Forec.data(ID_Forec.time >= optsLoad.cutStart & ID_Forec.time < optsLoad.cutEnd);

	ID_Forec.time = ID_Forec.time(ID_Forec.time >= optsLoad.cutStart & ID_Forec.time < optsLoad.cutEnd);

	% Actual

	actualFeedIn.data = actualFeedIn.data(actualFeedIn.time >= optsLoad.cutStart & actualFeedIn.time < optsLoad.cutEnd);

	actualFeedIn.time = actualFeedIn.time(actualFeedIn.time >= optsLoad.cutStart & actualFeedIn.time < optsLoad.cutEnd);

	

end

%% Cluster run variables

jobNameCluster = 'OnWind_WF_2010';

Functions/+Config/config_OnWind_WF_20120101_20121231.m

%% Get SimRuns for Setup

% Define calculation parameters

simRunsTMP.securityLevel = [95,99,99.5,99.9,99.99,99.994,99.999];

simRunsTMP.leadTimeRP = 24;

simRunsTMP.productLenght = [1,2,4,8,12,24];

simRunsTMP.percentPosRP = [0,50,100];

simRunsTMP.percentNegRP = [100,50,0];

simRunsTMP.installedCap = 1000;

simRunsTMP.startTime = datenum([2012 1 1 0 0 0]);

% simRunsTMP.endTime = simRunsTMP.startTime+1;

simRunsTMP.endTime = datenum([2012 12 31 23 59 59]);

simRunsTMP.market = {'TFC','SFC'};

simRunsTMP.pool = 'Pool';

simRunsTMP.combinationsRuns = allcomb(simRunsTMP.securityLevel,simRunsTMP.leadTimeRP,...

	simRunsTMP.productLenght,simRunsTMP.percentPosRP,simRunsTMP.percentNegRP, ...

	simRunsTMP.installedCap);

simRunsTMP.combinationsRuns = ...

	simRunsTMP.combinationsRuns(([simRunsTMP.combinationsRuns(:,4)] ...

	+ [simRunsTMP.combinationsRuns(:,5)]) == 100,:);

for iMarket = 1:length(simRunsTMP.market)

	for iCalcRun=1:size(simRunsTMP.combinationsRuns,1)

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).securityLevel = simRunsTMP.combinationsRuns(iCalcRun,1);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).leadTimeRP = simRunsTMP.combinationsRuns(iCalcRun,2);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).productLength =simRunsTMP.combinationsRuns(iCalcRun,3);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).percentPosRP = simRunsTMP.combinationsRuns(iCalcRun,4);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).percentNegRP = simRunsTMP.combinationsRuns(iCalcRun,5);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).installedCapacity = simRunsTMP.combinationsRuns(iCalcRun,6);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).startTime = simRunsTMP.startTime;

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).endTime = simRunsTMP.endTime;

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).market = simRunsTMP.market{iMarket};

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).pool = simRunsTMP.pool;

	end

end

clear simRunsTMP iMarket iCalcRun

%% Options for the Loading of Data

% Define which forecasts shall be loaded (not assigned yet)

optsLoad.genType				= 'Onshore Wind'; % Valid options: Onshore Wind, Offshore Wind, PV

optsLoad.persistencyGenType		= true; % For the loaded portfolio

optsLoad.fcHorizon				= 1; % Forecast horizon in hours

optsLoad.persistencyWind		= true; % For the entire German portfolio

optsLoad.persistencyPV			= true; % For the entire German portfolio

optsLoad.cut					= false; % Main forecast data is cut is true

optsLoad.cutStart				= datenum([2012 3 1 0 0 0]) - 2; % Time to start cut data, if no value than maximum according to time frame

optsLoad.cutEnd					= datenum([2014 1 1 0 0 0]) + 2; % Time to end cut data, if no value than minimum according to time frame

optsLoad.separateTrainingData	= true; % Limits the training data for the probabilistic forecast

optsLoad.startTrainingData		= datenum([2007 1 2 0 0 0]);

optsLoad.endTrainingData		= datenum([2010 12 30 0 0 0]);

%% Load Data

[DA_MarketPrice, ID_MarketPrice, RPP, dispatchSFC, dispatchTFC, ...

	MoSFC, MoTFC, actualFeedIn, DA_Forec, ID_Forec, ...

	actualFeedIn_Wind, DA_Forec_Wind, ID_Forec_Wind, ...

	DA_Forec_PV, ID_Forec_PV, actualFeedIn_PV, loadENTSOE] ...

	= Config.loadData('D:', simRuns, optsLoad);

%% Technology dependent variables

optsOffer.feedInTariff			= 89.5; % €/MWh

%% Cut data

if optsLoad.separateTrainingData

	

	% DA

	DA_Forec_Train.data = DA_Forec.data(DA_Forec.time >= optsLoad.startTrainingData	 & DA_Forec.time < optsLoad.endTrainingData);

	DA_Forec_Train.time = DA_Forec.time(DA_Forec.time >= optsLoad.startTrainingData	 & DA_Forec.time < optsLoad.endTrainingData);

% 	DA_Forec_Train.info = DA_Forec.info;

	% ID

	ID_Forec_Train.data = ID_Forec.data(ID_Forec.time >= optsLoad.startTrainingData	 & ID_Forec.time < optsLoad.endTrainingData);

	ID_Forec_Train.time = ID_Forec.time(ID_Forec.time >= optsLoad.startTrainingData	 & ID_Forec.time < optsLoad.endTrainingData);

% 	ID_Forec_Train.info = ID_Forec.info;

	% Actual

	actualFeedIn_Train.data = actualFeedIn.data(actualFeedIn.time >= optsLoad.startTrainingData	 & actualFeedIn.time < optsLoad.endTrainingData);

	actualFeedIn_Train.time = actualFeedIn.time(actualFeedIn.time >= optsLoad.startTrainingData	 & actualFeedIn.time < optsLoad.endTrainingData);

% 	actualFeedIn_Train.info = actualFeedIn.info;

	

else

	

	actualFeedIn_Train = actualFeedIn;

	DA_Forec_Train = DA_Forec;

	ID_Forec_Train = ID_Forec;

	

end

%% Cut data

if optsLoad.cut

	

	if isempty(optsLoad.cutStart)

		optsLoad.cutStart = userInput.startTime;

	end

	if isempty(optsLoad.cutEnd)

		optsLoad.cutEnd = userInput.endTime;

	end

	

	% DA

	DA_Forec.data = DA_Forec.data(DA_Forec.time >= optsLoad.cutStart & DA_Forec.time < optsLoad.cutEnd);

	DA_Forec.time = DA_Forec.time(DA_Forec.time >= optsLoad.cutStart & DA_Forec.time < optsLoad.cutEnd);

	% ID

	ID_Forec.data = ID_Forec.data(ID_Forec.time >= optsLoad.cutStart & ID_Forec.time < optsLoad.cutEnd);

	ID_Forec.time = ID_Forec.time(ID_Forec.time >= optsLoad.cutStart & ID_Forec.time < optsLoad.cutEnd);

	% Actual

	actualFeedIn.data = actualFeedIn.data(actualFeedIn.time >= optsLoad.cutStart & actualFeedIn.time < optsLoad.cutEnd);

	actualFeedIn.time = actualFeedIn.time(actualFeedIn.time >= optsLoad.cutStart & actualFeedIn.time < optsLoad.cutEnd);

	

end

%% Cluster run variables

jobNameCluster = 'OnWind_WF_2012';

Functions/+Config/config_OnWind_WF_20130101_20131231.m

%% Get SimRuns for Setup

% Define calculation parameters

simRunsTMP.securityLevel = [95,99,99.5,99.9,99.99,99.994,99.999];

simRunsTMP.leadTimeRP = 24;

simRunsTMP.productLenght = [1,2,4,8,12,24];

simRunsTMP.percentPosRP = [0,50,100];

simRunsTMP.percentNegRP = [100,50,0];

simRunsTMP.installedCap = 1000;

simRunsTMP.startTime = datenum([2013 1 1 0 0 0]);

% simRunsTMP.endTime = simRunsTMP.startTime+1;

simRunsTMP.endTime = datenum([2013 12 31 23 59 59]);

simRunsTMP.market = {'TFC','SFC'};

simRunsTMP.pool = 'Pool';

simRunsTMP.combinationsRuns = allcomb(simRunsTMP.securityLevel,simRunsTMP.leadTimeRP,...

	simRunsTMP.productLenght,simRunsTMP.percentPosRP,simRunsTMP.percentNegRP, ...

	simRunsTMP.installedCap);

simRunsTMP.combinationsRuns = ...

	simRunsTMP.combinationsRuns(([simRunsTMP.combinationsRuns(:,4)] ...

	+ [simRunsTMP.combinationsRuns(:,5)]) == 100,:);

for iMarket = 1:length(simRunsTMP.market)

	for iCalcRun=1:size(simRunsTMP.combinationsRuns,1)

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).securityLevel = simRunsTMP.combinationsRuns(iCalcRun,1);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).leadTimeRP = simRunsTMP.combinationsRuns(iCalcRun,2);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).productLength =simRunsTMP.combinationsRuns(iCalcRun,3);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).percentPosRP = simRunsTMP.combinationsRuns(iCalcRun,4);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).percentNegRP = simRunsTMP.combinationsRuns(iCalcRun,5);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).installedCapacity = simRunsTMP.combinationsRuns(iCalcRun,6);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).startTime = simRunsTMP.startTime;

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).endTime = simRunsTMP.endTime;

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).market = simRunsTMP.market{iMarket};

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).pool = simRunsTMP.pool;

	end

end

clear simRunsTMP iMarket iCalcRun

%% Options for the Loading of Data

% Define which forecasts shall be loaded (not assigned yet)

optsLoad.genType				= 'Onshore Wind'; % Valid options: Onshore Wind, Offshore Wind, PV

optsLoad.persistencyGenType		= true; % For the loaded portfolio

optsLoad.fcHorizon				= 1; % Forecast horizon in hours

optsLoad.persistencyWind		= true; % For the entire German portfolio

optsLoad.persistencyPV			= true; % For the entire German portfolio

optsLoad.cut					= false; % Main forecast data is cut is true

optsLoad.cutStart				= datenum([2012 3 1 0 0 0]) - 2; % Time to start cut data, if no value than maximum according to time frame

optsLoad.cutEnd					= datenum([2014 1 1 0 0 0]) + 2; % Time to end cut data, if no value than minimum according to time frame

optsLoad.separateTrainingData	= true; % Limits the training data for the probabilistic forecast

optsLoad.startTrainingData		= datenum([2007 1 2 0 0 0]);

optsLoad.endTrainingData		= datenum([2010 12 30 0 0 0]);

%% Load Data

[DA_MarketPrice, ID_MarketPrice, RPP, dispatchSFC, dispatchTFC, ...

	MoSFC, MoTFC, actualFeedIn, DA_Forec, ID_Forec, ...

	actualFeedIn_Wind, DA_Forec_Wind, ID_Forec_Wind, ...

	DA_Forec_PV, ID_Forec_PV, actualFeedIn_PV, loadENTSOE] ...

	= Config.loadData('D:', simRuns, optsLoad);

%% Technology dependent variables

optsOffer.feedInTariff			= 89.5; % €/MWh

%% Cut data

if optsLoad.separateTrainingData

	

	% DA

	DA_Forec_Train.data = DA_Forec.data(DA_Forec.time >= optsLoad.startTrainingData	 & DA_Forec.time < optsLoad.endTrainingData);

	DA_Forec_Train.time = DA_Forec.time(DA_Forec.time >= optsLoad.startTrainingData	 & DA_Forec.time < optsLoad.endTrainingData);

% 	DA_Forec_Train.info = DA_Forec.info;

	% ID

	ID_Forec_Train.data = ID_Forec.data(ID_Forec.time >= optsLoad.startTrainingData	 & ID_Forec.time < optsLoad.endTrainingData);

	ID_Forec_Train.time = ID_Forec.time(ID_Forec.time >= optsLoad.startTrainingData	 & ID_Forec.time < optsLoad.endTrainingData);

% 	ID_Forec_Train.info = ID_Forec.info;

	% Actual

	actualFeedIn_Train.data = actualFeedIn.data(actualFeedIn.time >= optsLoad.startTrainingData	 & actualFeedIn.time < optsLoad.endTrainingData);

	actualFeedIn_Train.time = actualFeedIn.time(actualFeedIn.time >= optsLoad.startTrainingData	 & actualFeedIn.time < optsLoad.endTrainingData);

% 	actualFeedIn_Train.info = actualFeedIn.info;

	

else

	

	actualFeedIn_Train = actualFeedIn;

	DA_Forec_Train = DA_Forec;

	ID_Forec_Train = ID_Forec;

	

end

%% Cut data

if optsLoad.cut

	

	if isempty(optsLoad.cutStart)

		optsLoad.cutStart = userInput.startTime;

	end

	if isempty(optsLoad.cutEnd)

		optsLoad.cutEnd = userInput.endTime;

	end

	

	% DA

	DA_Forec.data = DA_Forec.data(DA_Forec.time >= optsLoad.cutStart & DA_Forec.time < optsLoad.cutEnd);

	DA_Forec.time = DA_Forec.time(DA_Forec.time >= optsLoad.cutStart & DA_Forec.time < optsLoad.cutEnd);

	% ID

	ID_Forec.data = ID_Forec.data(ID_Forec.time >= optsLoad.cutStart & ID_Forec.time < optsLoad.cutEnd);

	ID_Forec.time = ID_Forec.time(ID_Forec.time >= optsLoad.cutStart & ID_Forec.time < optsLoad.cutEnd);

	% Actual

	actualFeedIn.data = actualFeedIn.data(actualFeedIn.time >= optsLoad.cutStart & actualFeedIn.time < optsLoad.cutEnd);

	actualFeedIn.time = actualFeedIn.time(actualFeedIn.time >= optsLoad.cutStart & actualFeedIn.time < optsLoad.cutEnd);

	

end

%% Cluster run variables

jobNameCluster = 'OnWind_WF_2013';

Functions/+Config/config_OnWind_WF_20140101_20141231.m

%% Get SimRuns for Setup

% Define calculation parameters

simRunsTMP.securityLevel = [95,99,99.5,99.9,99.99,99.994,99.999];

simRunsTMP.leadTimeRP = 24;

simRunsTMP.productLenght = [1,2,4,8,12,24];

simRunsTMP.percentPosRP = [0,50,100];

simRunsTMP.percentNegRP = [100,50,0];

simRunsTMP.installedCap = 1000;

simRunsTMP.startTime = datenum([2014 1 1 0 0 0]);

% simRunsTMP.endTime = simRunsTMP.startTime+1;

simRunsTMP.endTime = datenum([2014 12 20 23 59 59]);

simRunsTMP.market = {'TFC','SFC'};

simRunsTMP.pool = 'Pool';

simRunsTMP.combinationsRuns = allcomb(simRunsTMP.securityLevel,simRunsTMP.leadTimeRP,...

	simRunsTMP.productLenght,simRunsTMP.percentPosRP,simRunsTMP.percentNegRP, ...

	simRunsTMP.installedCap);

simRunsTMP.combinationsRuns = ...

	simRunsTMP.combinationsRuns(([simRunsTMP.combinationsRuns(:,4)] ...

	+ [simRunsTMP.combinationsRuns(:,5)]) == 100,:);

for iMarket = 1:length(simRunsTMP.market)

	for iCalcRun=1:size(simRunsTMP.combinationsRuns,1)

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).securityLevel = simRunsTMP.combinationsRuns(iCalcRun,1);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).leadTimeRP = simRunsTMP.combinationsRuns(iCalcRun,2);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).productLength =simRunsTMP.combinationsRuns(iCalcRun,3);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).percentPosRP = simRunsTMP.combinationsRuns(iCalcRun,4);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).percentNegRP = simRunsTMP.combinationsRuns(iCalcRun,5);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).installedCapacity = simRunsTMP.combinationsRuns(iCalcRun,6);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).startTime = simRunsTMP.startTime;

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).endTime = simRunsTMP.endTime;

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).market = simRunsTMP.market{iMarket};

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).pool = simRunsTMP.pool;

	end

end

clear simRunsTMP iMarket iCalcRun

%% Options for the Loading of Data

% Define which forecasts shall be loaded (not assigned yet)

optsLoad.genType				= 'Onshore Wind'; % Valid options: Onshore Wind, Offshore Wind, PV

optsLoad.persistencyGenType		= true; % For the loaded portfolio

optsLoad.fcHorizon				= 1; % Forecast horizon in hours

optsLoad.persistencyWind		= true; % For the entire German portfolio

optsLoad.persistencyPV			= true; % For the entire German portfolio

optsLoad.cut					= false; % Main forecast data is cut is true

optsLoad.cutStart				= datenum([2012 3 1 0 0 0]) - 2; % Time to start cut data, if no value than maximum according to time frame

optsLoad.cutEnd					= datenum([2014 1 1 0 0 0]) + 2; % Time to end cut data, if no value than minimum according to time frame

optsLoad.separateTrainingData	= true; % Limits the training data for the probabilistic forecast

optsLoad.startTrainingData		= datenum([2007 1 2 0 0 0]);

optsLoad.endTrainingData		= datenum([2010 12 30 0 0 0]);

%% Load Data

[DA_MarketPrice, ID_MarketPrice, RPP, dispatchSFC, dispatchTFC, ...

	MoSFC, MoTFC, actualFeedIn, DA_Forec, ID_Forec, ...

	actualFeedIn_Wind, DA_Forec_Wind, ID_Forec_Wind, ...

	DA_Forec_PV, ID_Forec_PV, actualFeedIn_PV, loadENTSOE] ...

	= Config.loadData('D:', simRuns, optsLoad);

%% Technology dependent variables

optsOffer.feedInTariff			= 89.5; % €/MWh

%% Cut data

if optsLoad.separateTrainingData

	

	% DA

	DA_Forec_Train.data = DA_Forec.data(DA_Forec.time >= optsLoad.startTrainingData	 & DA_Forec.time < optsLoad.endTrainingData);

	DA_Forec_Train.time = DA_Forec.time(DA_Forec.time >= optsLoad.startTrainingData	 & DA_Forec.time < optsLoad.endTrainingData);

% 	DA_Forec_Train.info = DA_Forec.info;

	% ID

	ID_Forec_Train.data = ID_Forec.data(ID_Forec.time >= optsLoad.startTrainingData	 & ID_Forec.time < optsLoad.endTrainingData);

	ID_Forec_Train.time = ID_Forec.time(ID_Forec.time >= optsLoad.startTrainingData	 & ID_Forec.time < optsLoad.endTrainingData);

% 	ID_Forec_Train.info = ID_Forec.info;

	% Actual

	actualFeedIn_Train.data = actualFeedIn.data(actualFeedIn.time >= optsLoad.startTrainingData	 & actualFeedIn.time < optsLoad.endTrainingData);

	actualFeedIn_Train.time = actualFeedIn.time(actualFeedIn.time >= optsLoad.startTrainingData	 & actualFeedIn.time < optsLoad.endTrainingData);

% 	actualFeedIn_Train.info = actualFeedIn.info;

	

else

	

	actualFeedIn_Train = actualFeedIn;

	DA_Forec_Train = DA_Forec;

	ID_Forec_Train = ID_Forec;

	

end

%% Cut data

if optsLoad.cut

	

	if isempty(optsLoad.cutStart)

		optsLoad.cutStart = userInput.startTime;

	end

	if isempty(optsLoad.cutEnd)

		optsLoad.cutEnd = userInput.endTime;

	end

	

	% DA

	DA_Forec.data = DA_Forec.data(DA_Forec.time >= optsLoad.cutStart & DA_Forec.time < optsLoad.cutEnd);

	DA_Forec.time = DA_Forec.time(DA_Forec.time >= optsLoad.cutStart & DA_Forec.time < optsLoad.cutEnd);

	% ID

	ID_Forec.data = ID_Forec.data(ID_Forec.time >= optsLoad.cutStart & ID_Forec.time < optsLoad.cutEnd);

	ID_Forec.time = ID_Forec.time(ID_Forec.time >= optsLoad.cutStart & ID_Forec.time < optsLoad.cutEnd);

	% Actual

	actualFeedIn.data = actualFeedIn.data(actualFeedIn.time >= optsLoad.cutStart & actualFeedIn.time < optsLoad.cutEnd);

	actualFeedIn.time = actualFeedIn.time(actualFeedIn.time >= optsLoad.cutStart & actualFeedIn.time < optsLoad.cutEnd);

	

end

%% Cluster run variables

jobNameCluster = 'OnWind_WF_2014';

Functions/+Config/config_PV_BRD_20100601_20101231.m

%% Get SimRuns for Setup

% Define calculation parameters

simRunsTMP.securityLevel = [95,99,99.5,99.9,99.99,99.994,99.999];

simRunsTMP.leadTimeRP = 24;

simRunsTMP.productLenght = [1,2,4,8,12,24];

simRunsTMP.percentPosRP = [0,50,100];

simRunsTMP.percentNegRP = [100,50,0];

simRunsTMP.installedCap = 30000;

simRunsTMP.startTime = datenum([2010 6 2 0 0 0]);

% simRunsTMP.endTime = simRunsTMP.startTime+1;

simRunsTMP.endTime = datenum([2010 12 31 23 59 59]);

simRunsTMP.market = {'TFC','SFC'};

simRunsTMP.pool = 'Germany';

simRunsTMP.combinationsRuns = allcomb(simRunsTMP.securityLevel,simRunsTMP.leadTimeRP,...

	simRunsTMP.productLenght,simRunsTMP.percentPosRP,simRunsTMP.percentNegRP, ...

	simRunsTMP.installedCap);

simRunsTMP.combinationsRuns = ...

	simRunsTMP.combinationsRuns(([simRunsTMP.combinationsRuns(:,4)] ...

	+ [simRunsTMP.combinationsRuns(:,5)]) == 100,:);

for iMarket = 1:length(simRunsTMP.market)

	for iCalcRun=1:size(simRunsTMP.combinationsRuns,1)

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).securityLevel = simRunsTMP.combinationsRuns(iCalcRun,1);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).leadTimeRP = simRunsTMP.combinationsRuns(iCalcRun,2);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).productLength =simRunsTMP.combinationsRuns(iCalcRun,3);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).percentPosRP = simRunsTMP.combinationsRuns(iCalcRun,4);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).percentNegRP = simRunsTMP.combinationsRuns(iCalcRun,5);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).installedCapacity = simRunsTMP.combinationsRuns(iCalcRun,6);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).startTime = simRunsTMP.startTime;

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).endTime = simRunsTMP.endTime;

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).market = simRunsTMP.market{iMarket};

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).pool = simRunsTMP.pool;

	end

end

clear simRunsTMP iMarket iCalcRun

%% Options for the Loading of Data

% Define which forecasts shall be loaded (not assigned yet)

optsLoad.genType				= 'PV'; % Valid options: Onshore Wind, Offshore Wind, PV

optsLoad.persistencyGenType		= true; % For the loaded portfolio

optsLoad.fcHorizon				= 1; % Forecast horizon in hours

optsLoad.persistencyWind		= true; % For the entire German portfolio

optsLoad.persistencyPV			= true; % For the entire German portfolio

optsLoad.cut					= false; % Main forecast data is cut is true

optsLoad.cutStart				= datenum([2012 3 1 0 0 0]) - 2; % Time to start cut data, if no value than maximum according to time frame

optsLoad.cutEnd					= datenum([2014 1 1 0 0 0]) + 2; % Time to end cut data, if no value than minimum according to time frame

optsLoad.separateTrainingData	= false; % Limits the training data for the probabilistic forecast

optsLoad.startTrainingData		= datenum([2010 1 1 0 0 0]);

optsLoad.endTrainingData		= datenum([2010 12 30 0 0 0]);

%% Load Data

[DA_MarketPrice, ID_MarketPrice, RPP, dispatchSFC, dispatchTFC, ...

	MoSFC, MoTFC, actualFeedIn, DA_Forec, ID_Forec, ...

	actualFeedIn_Wind, DA_Forec_Wind, ID_Forec_Wind, ...

	DA_Forec_PV, ID_Forec_PV, actualFeedIn_PV, loadENTSOE] ...

	= Config.loadData('D:', simRuns, optsLoad);

%% Technology dependent variables

optsOffer.feedInTariff			= 90; % €/MWh (Annahme)

%% Cut data

if optsLoad.separateTrainingData

	

	% DA

	DA_Forec_Train.data = DA_Forec.data(DA_Forec.time >= optsLoad.startTrainingData	 & DA_Forec.time < optsLoad.endTrainingData);

	DA_Forec_Train.time = DA_Forec.time(DA_Forec.time >= optsLoad.startTrainingData	 & DA_Forec.time < optsLoad.endTrainingData);

	DA_Forec_Train.info = DA_Forec.info;

	% ID

	ID_Forec_Train.data = ID_Forec.data(ID_Forec.time >= optsLoad.startTrainingData	 & ID_Forec.time < optsLoad.endTrainingData);

	ID_Forec_Train.time = ID_Forec.time(ID_Forec.time >= optsLoad.startTrainingData	 & ID_Forec.time < optsLoad.endTrainingData);

	ID_Forec_Train.info = ID_Forec.info;

	% Actual

	actualFeedIn_Train.data = actualFeedIn.data(actualFeedIn.time >= optsLoad.startTrainingData	 & actualFeedIn.time < optsLoad.endTrainingData);

	actualFeedIn_Train.time = actualFeedIn.time(actualFeedIn.time >= optsLoad.startTrainingData	 & actualFeedIn.time < optsLoad.endTrainingData);

	actualFeedIn_Train.info = actualFeedIn.info;

	

else

	

	actualFeedIn_Train = actualFeedIn;

	DA_Forec_Train = DA_Forec;

	ID_Forec_Train = ID_Forec;

	

end

%% Cut data

if optsLoad.cut

	

	if isempty(optsLoad.cutStart)

		optsLoad.cutStart = userInput.startTime;

	end

	if isempty(optsLoad.cutEnd)

		optsLoad.cutEnd = userInput.endTime;

	end

	

	% DA

	DA_Forec.data = DA_Forec.data(DA_Forec.time >= optsLoad.cutStart & DA_Forec.time < optsLoad.cutEnd);

	DA_Forec.time = DA_Forec.time(DA_Forec.time >= optsLoad.cutStart & DA_Forec.time < optsLoad.cutEnd);

	% ID

	ID_Forec.data = ID_Forec.data(ID_Forec.time >= optsLoad.cutStart & ID_Forec.time < optsLoad.cutEnd);

	ID_Forec.time = ID_Forec.time(ID_Forec.time >= optsLoad.cutStart & ID_Forec.time < optsLoad.cutEnd);

	% Actual

	actualFeedIn.data = actualFeedIn.data(actualFeedIn.time >= optsLoad.cutStart & actualFeedIn.time < optsLoad.cutEnd);

	actualFeedIn.time = actualFeedIn.time(actualFeedIn.time >= optsLoad.cutStart & actualFeedIn.time < optsLoad.cutEnd);

	

end

%% Cluster run variables

jobNameCluster = 'PV_BRD_2010';

Functions/+Config/config_PV_BRD_20110101_20111231.m

%% Get SimRuns for Setup

% Define calculation parameters

simRunsTMP.securityLevel = [95,99,99.5,99.9,99.99,99.994,99.999];

simRunsTMP.leadTimeRP = 24;

simRunsTMP.productLenght = [1,2,4,8,12,24];

simRunsTMP.percentPosRP = [0,50,100];

simRunsTMP.percentNegRP = [100,50,0];

simRunsTMP.installedCap = 30000;

simRunsTMP.startTime = datenum([2011 1 1 0 0 0]);

% simRunsTMP.endTime = simRunsTMP.startTime+1;

simRunsTMP.endTime = datenum([2011 12 31 23 59 59]);

simRunsTMP.market = {'TFC','SFC'};

simRunsTMP.pool = 'Germany';

simRunsTMP.combinationsRuns = allcomb(simRunsTMP.securityLevel,simRunsTMP.leadTimeRP,...

	simRunsTMP.productLenght,simRunsTMP.percentPosRP,simRunsTMP.percentNegRP, ...

	simRunsTMP.installedCap);

simRunsTMP.combinationsRuns = ...

	simRunsTMP.combinationsRuns(([simRunsTMP.combinationsRuns(:,4)] ...

	+ [simRunsTMP.combinationsRuns(:,5)]) == 100,:);

for iMarket = 1:length(simRunsTMP.market)

	for iCalcRun=1:size(simRunsTMP.combinationsRuns,1)

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).securityLevel = simRunsTMP.combinationsRuns(iCalcRun,1);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).leadTimeRP = simRunsTMP.combinationsRuns(iCalcRun,2);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).productLength =simRunsTMP.combinationsRuns(iCalcRun,3);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).percentPosRP = simRunsTMP.combinationsRuns(iCalcRun,4);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).percentNegRP = simRunsTMP.combinationsRuns(iCalcRun,5);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).installedCapacity = simRunsTMP.combinationsRuns(iCalcRun,6);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).startTime = simRunsTMP.startTime;

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).endTime = simRunsTMP.endTime;

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).market = simRunsTMP.market{iMarket};

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).pool = simRunsTMP.pool;

	end

end

clear simRunsTMP iMarket iCalcRun

%% Options for the Loading of Data

% Define which forecasts shall be loaded (not assigned yet)

optsLoad.genType				= 'PV'; % Valid options: Onshore Wind, Offshore Wind, PV

optsLoad.persistencyGenType		= true; % For the loaded portfolio

optsLoad.fcHorizon				= 1; % Forecast horizon in hours

optsLoad.persistencyWind		= true; % For the entire German portfolio

optsLoad.persistencyPV			= true; % For the entire German portfolio

optsLoad.cut					= false; % Main forecast data is cut is true

optsLoad.cutStart				= datenum([2012 3 1 0 0 0]) - 2; % Time to start cut data, if no value than maximum according to time frame

optsLoad.cutEnd					= datenum([2014 1 1 0 0 0]) + 2; % Time to end cut data, if no value than minimum according to time frame

optsLoad.separateTrainingData	= false; % Limits the training data for the probabilistic forecast

optsLoad.startTrainingData		= datenum([2010 1 1 0 0 0]);

optsLoad.endTrainingData		= datenum([2010 12 30 0 0 0]);

%% Load Data

[DA_MarketPrice, ID_MarketPrice, RPP, dispatchSFC, dispatchTFC, ...

	MoSFC, MoTFC, actualFeedIn, DA_Forec, ID_Forec, ...

	actualFeedIn_Wind, DA_Forec_Wind, ID_Forec_Wind, ...

	DA_Forec_PV, ID_Forec_PV, actualFeedIn_PV, loadENTSOE] ...

	= Config.loadData('D:', simRuns, optsLoad);

%% Technology dependent variables

optsOffer.feedInTariff			= 90; % €/MWh (Annahme)

%% Cut data

if optsLoad.separateTrainingData

	

	% DA

	DA_Forec_Train.data = DA_Forec.data(DA_Forec.time >= optsLoad.startTrainingData	 & DA_Forec.time < optsLoad.endTrainingData);

	DA_Forec_Train.time = DA_Forec.time(DA_Forec.time >= optsLoad.startTrainingData	 & DA_Forec.time < optsLoad.endTrainingData);

	DA_Forec_Train.info = DA_Forec.info;

	% ID

	ID_Forec_Train.data = ID_Forec.data(ID_Forec.time >= optsLoad.startTrainingData	 & ID_Forec.time < optsLoad.endTrainingData);

	ID_Forec_Train.time = ID_Forec.time(ID_Forec.time >= optsLoad.startTrainingData	 & ID_Forec.time < optsLoad.endTrainingData);

	ID_Forec_Train.info = ID_Forec.info;

	% Actual

	actualFeedIn_Train.data = actualFeedIn.data(actualFeedIn.time >= optsLoad.startTrainingData	 & actualFeedIn.time < optsLoad.endTrainingData);

	actualFeedIn_Train.time = actualFeedIn.time(actualFeedIn.time >= optsLoad.startTrainingData	 & actualFeedIn.time < optsLoad.endTrainingData);

	actualFeedIn_Train.info = actualFeedIn.info;

	

else

	

	actualFeedIn_Train = actualFeedIn;

	DA_Forec_Train = DA_Forec;

	ID_Forec_Train = ID_Forec;

	

end

%% Cut data

if optsLoad.cut

	

	if isempty(optsLoad.cutStart)

		optsLoad.cutStart = userInput.startTime;

	end

	if isempty(optsLoad.cutEnd)

		optsLoad.cutEnd = userInput.endTime;

	end

	

	% DA

	DA_Forec.data = DA_Forec.data(DA_Forec.time >= optsLoad.cutStart & DA_Forec.time < optsLoad.cutEnd);

	DA_Forec.time = DA_Forec.time(DA_Forec.time >= optsLoad.cutStart & DA_Forec.time < optsLoad.cutEnd);

	% ID

	ID_Forec.data = ID_Forec.data(ID_Forec.time >= optsLoad.cutStart & ID_Forec.time < optsLoad.cutEnd);

	ID_Forec.time = ID_Forec.time(ID_Forec.time >= optsLoad.cutStart & ID_Forec.time < optsLoad.cutEnd);

	% Actual

	actualFeedIn.data = actualFeedIn.data(actualFeedIn.time >= optsLoad.cutStart & actualFeedIn.time < optsLoad.cutEnd);

	actualFeedIn.time = actualFeedIn.time(actualFeedIn.time >= optsLoad.cutStart & actualFeedIn.time < optsLoad.cutEnd);

	

end

%% Cluster run variables

jobNameCluster = 'PV_BRD_2011';

Functions/+Config/config_PV_BRD_20120101_20121231.m

%% Get SimRuns for Setup

% Define calculation parameters

simRunsTMP.securityLevel = [95,99,99.5,99.9,99.99,99.994,99.999];

simRunsTMP.leadTimeRP = 24;

simRunsTMP.productLenght = [1,2,4,8,12,24];

simRunsTMP.percentPosRP = [0,50,100];

simRunsTMP.percentNegRP = [100,50,0];

simRunsTMP.installedCap = 30000;

simRunsTMP.startTime = datenum([2012 1 1 0 0 0]);

% simRunsTMP.endTime = simRunsTMP.startTime+1;

simRunsTMP.endTime = datenum([2012 12 31 23 59 59]);

simRunsTMP.market = {'TFC','SFC'};

simRunsTMP.pool = 'Germany';

simRunsTMP.combinationsRuns = allcomb(simRunsTMP.securityLevel,simRunsTMP.leadTimeRP,...

	simRunsTMP.productLenght,simRunsTMP.percentPosRP,simRunsTMP.percentNegRP, ...

	simRunsTMP.installedCap);

simRunsTMP.combinationsRuns = ...

	simRunsTMP.combinationsRuns(([simRunsTMP.combinationsRuns(:,4)] ...

	+ [simRunsTMP.combinationsRuns(:,5)]) == 100,:);

for iMarket = 1:length(simRunsTMP.market)

	for iCalcRun=1:size(simRunsTMP.combinationsRuns,1)

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).securityLevel = simRunsTMP.combinationsRuns(iCalcRun,1);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).leadTimeRP = simRunsTMP.combinationsRuns(iCalcRun,2);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).productLength =simRunsTMP.combinationsRuns(iCalcRun,3);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).percentPosRP = simRunsTMP.combinationsRuns(iCalcRun,4);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).percentNegRP = simRunsTMP.combinationsRuns(iCalcRun,5);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).installedCapacity = simRunsTMP.combinationsRuns(iCalcRun,6);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).startTime = simRunsTMP.startTime;

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).endTime = simRunsTMP.endTime;

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).market = simRunsTMP.market{iMarket};

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).pool = simRunsTMP.pool;

	end

end

clear simRunsTMP iMarket iCalcRun

%% Options for the Loading of Data

% Define which forecasts shall be loaded (not assigned yet)

optsLoad.genType				= 'PV'; % Valid options: Onshore Wind, Offshore Wind, PV

optsLoad.persistencyGenType		= true; % For the loaded portfolio

optsLoad.fcHorizon				= 1; % Forecast horizon in hours

optsLoad.persistencyWind		= true; % For the entire German portfolio

optsLoad.persistencyPV			= true; % For the entire German portfolio

optsLoad.cut					= false; % Main forecast data is cut is true

optsLoad.cutStart				= datenum([2012 3 1 0 0 0]) - 2; % Time to start cut data, if no value than maximum according to time frame

optsLoad.cutEnd					= datenum([2014 1 1 0 0 0]) + 2; % Time to end cut data, if no value than minimum according to time frame

optsLoad.separateTrainingData	= false; % Limits the training data for the probabilistic forecast

optsLoad.startTrainingData		= datenum([2010 1 1 0 0 0]);

optsLoad.endTrainingData		= datenum([2010 12 30 0 0 0]);

%% Load Data

[DA_MarketPrice, ID_MarketPrice, RPP, dispatchSFC, dispatchTFC, ...

	MoSFC, MoTFC, actualFeedIn, DA_Forec, ID_Forec, ...

	actualFeedIn_Wind, DA_Forec_Wind, ID_Forec_Wind, ...

	DA_Forec_PV, ID_Forec_PV, actualFeedIn_PV, loadENTSOE] ...

	= Config.loadData('D:', simRuns, optsLoad);

%% Technology dependent variables

optsOffer.feedInTariff			= 90; % €/MWh (Annahme)

%% Cut data

if optsLoad.separateTrainingData

	

	% DA

	DA_Forec_Train.data = DA_Forec.data(DA_Forec.time >= optsLoad.startTrainingData	 & DA_Forec.time < optsLoad.endTrainingData);

	DA_Forec_Train.time = DA_Forec.time(DA_Forec.time >= optsLoad.startTrainingData	 & DA_Forec.time < optsLoad.endTrainingData);

	DA_Forec_Train.info = DA_Forec.info;

	% ID

	ID_Forec_Train.data = ID_Forec.data(ID_Forec.time >= optsLoad.startTrainingData	 & ID_Forec.time < optsLoad.endTrainingData);

	ID_Forec_Train.time = ID_Forec.time(ID_Forec.time >= optsLoad.startTrainingData	 & ID_Forec.time < optsLoad.endTrainingData);

	ID_Forec_Train.info = ID_Forec.info;

	% Actual

	actualFeedIn_Train.data = actualFeedIn.data(actualFeedIn.time >= optsLoad.startTrainingData	 & actualFeedIn.time < optsLoad.endTrainingData);

	actualFeedIn_Train.time = actualFeedIn.time(actualFeedIn.time >= optsLoad.startTrainingData	 & actualFeedIn.time < optsLoad.endTrainingData);

	actualFeedIn_Train.info = actualFeedIn.info;

	

else

	

	actualFeedIn_Train = actualFeedIn;

	DA_Forec_Train = DA_Forec;

	ID_Forec_Train = ID_Forec;

	

end

%% Cut data

if optsLoad.cut

	

	if isempty(optsLoad.cutStart)

		optsLoad.cutStart = userInput.startTime;

	end

	if isempty(optsLoad.cutEnd)

		optsLoad.cutEnd = userInput.endTime;

	end

	

	% DA

	DA_Forec.data = DA_Forec.data(DA_Forec.time >= optsLoad.cutStart & DA_Forec.time < optsLoad.cutEnd);

	DA_Forec.time = DA_Forec.time(DA_Forec.time >= optsLoad.cutStart & DA_Forec.time < optsLoad.cutEnd);

	% ID

	ID_Forec.data = ID_Forec.data(ID_Forec.time >= optsLoad.cutStart & ID_Forec.time < optsLoad.cutEnd);

	ID_Forec.time = ID_Forec.time(ID_Forec.time >= optsLoad.cutStart & ID_Forec.time < optsLoad.cutEnd);

	% Actual

	actualFeedIn.data = actualFeedIn.data(actualFeedIn.time >= optsLoad.cutStart & actualFeedIn.time < optsLoad.cutEnd);

	actualFeedIn.time = actualFeedIn.time(actualFeedIn.time >= optsLoad.cutStart & actualFeedIn.time < optsLoad.cutEnd);

	

end

%% Cluster run variables

jobNameCluster = 'PV_BRD_2012';

Functions/+Config/config_PV_BRD_20130101_20131231.m

%% Get SimRuns for Setup

% Define calculation parameters

simRunsTMP.securityLevel = [95,99,99.5,99.9,99.99,99.994,99.999];

simRunsTMP.leadTimeRP = 24;

simRunsTMP.productLenght = [1,2,4,8,12,24];

simRunsTMP.percentPosRP = [0,50,100];

simRunsTMP.percentNegRP = [100,50,0];

simRunsTMP.installedCap = 30000;

simRunsTMP.startTime = datenum([2013 1 1 0 0 0]);

simRunsTMP.endTime = simRunsTMP.startTime+1;

simRunsTMP.endTime = datenum([2013 12 31 23 59 59]);

simRunsTMP.market = {'TFC','SFC'};

simRunsTMP.pool = 'Germany';

simRunsTMP.combinationsRuns = allcomb(simRunsTMP.securityLevel,simRunsTMP.leadTimeRP,...

	simRunsTMP.productLenght,simRunsTMP.percentPosRP,simRunsTMP.percentNegRP, ...

	simRunsTMP.installedCap);

simRunsTMP.combinationsRuns = ...

	simRunsTMP.combinationsRuns(([simRunsTMP.combinationsRuns(:,4)] ...

	+ [simRunsTMP.combinationsRuns(:,5)]) == 100,:);

for iMarket = 1:length(simRunsTMP.market)

	for iCalcRun=1:size(simRunsTMP.combinationsRuns,1)

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).securityLevel = simRunsTMP.combinationsRuns(iCalcRun,1);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).leadTimeRP = simRunsTMP.combinationsRuns(iCalcRun,2);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).productLength =simRunsTMP.combinationsRuns(iCalcRun,3);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).percentPosRP = simRunsTMP.combinationsRuns(iCalcRun,4);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).percentNegRP = simRunsTMP.combinationsRuns(iCalcRun,5);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).installedCapacity = simRunsTMP.combinationsRuns(iCalcRun,6);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).startTime = simRunsTMP.startTime;

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).endTime = simRunsTMP.endTime;

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).market = simRunsTMP.market{iMarket};

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).pool = simRunsTMP.pool;

	end

end

clear simRunsTMP iMarket iCalcRun

%% Options for the Loading of Data

% Define which forecasts shall be loaded (not assigned yet)

optsLoad.genType				= 'PV'; % Valid options: Onshore Wind, Offshore Wind, PV

optsLoad.persistencyGenType		= true; % For the loaded portfolio

optsLoad.fcHorizon				= 1; % Forecast horizon in hours

optsLoad.persistencyWind		= true; % For the entire German portfolio

optsLoad.persistencyPV			= true; % For the entire German portfolio

optsLoad.cut					= false; % Main forecast data is cut is true

optsLoad.cutStart				= datenum([2012 3 1 0 0 0]) - 2; % Time to start cut data, if no value than maximum according to time frame

optsLoad.cutEnd					= datenum([2014 1 1 0 0 0]) + 2; % Time to end cut data, if no value than minimum according to time frame

optsLoad.separateTrainingData	= false; % Limits the training data for the probabilistic forecast

optsLoad.startTrainingData		= datenum([2010 1 1 0 0 0]);

optsLoad.endTrainingData		= datenum([2010 12 30 0 0 0]);

%% Load Data

[DA_MarketPrice, ID_MarketPrice, RPP, dispatchSFC, dispatchTFC, ...

	MoSFC, MoTFC, actualFeedIn, DA_Forec, ID_Forec, ...

	actualFeedIn_Wind, DA_Forec_Wind, ID_Forec_Wind, ...

	DA_Forec_PV, ID_Forec_PV, actualFeedIn_PV, loadENTSOE] ...

	= Config.loadData('D:', simRuns, optsLoad);

%% Technology dependent variables

optsOffer.feedInTariff			= 90; % €/MWh (Annahme)

%% Cut data

if optsLoad.separateTrainingData

	

	% DA

	DA_Forec_Train.data = DA_Forec.data(DA_Forec.time >= optsLoad.startTrainingData	 & DA_Forec.time < optsLoad.endTrainingData);

	DA_Forec_Train.time = DA_Forec.time(DA_Forec.time >= optsLoad.startTrainingData	 & DA_Forec.time < optsLoad.endTrainingData);

	DA_Forec_Train.info = DA_Forec.info;

	% ID

	ID_Forec_Train.data = ID_Forec.data(ID_Forec.time >= optsLoad.startTrainingData	 & ID_Forec.time < optsLoad.endTrainingData);

	ID_Forec_Train.time = ID_Forec.time(ID_Forec.time >= optsLoad.startTrainingData	 & ID_Forec.time < optsLoad.endTrainingData);

	ID_Forec_Train.info = ID_Forec.info;

	% Actual

	actualFeedIn_Train.data = actualFeedIn.data(actualFeedIn.time >= optsLoad.startTrainingData	 & actualFeedIn.time < optsLoad.endTrainingData);

	actualFeedIn_Train.time = actualFeedIn.time(actualFeedIn.time >= optsLoad.startTrainingData	 & actualFeedIn.time < optsLoad.endTrainingData);

	actualFeedIn_Train.info = actualFeedIn.info;

	

else

	

	actualFeedIn_Train = actualFeedIn;

	DA_Forec_Train = DA_Forec;

	ID_Forec_Train = ID_Forec;

	

end

%% Cut data

if optsLoad.cut

	

	if isempty(optsLoad.cutStart)

		optsLoad.cutStart = userInput.startTime;

	end

	if isempty(optsLoad.cutEnd)

		optsLoad.cutEnd = userInput.endTime;

	end

	

	% DA

	DA_Forec.data = DA_Forec.data(DA_Forec.time >= optsLoad.cutStart & DA_Forec.time < optsLoad.cutEnd);

	DA_Forec.time = DA_Forec.time(DA_Forec.time >= optsLoad.cutStart & DA_Forec.time < optsLoad.cutEnd);

	% ID

	ID_Forec.data = ID_Forec.data(ID_Forec.time >= optsLoad.cutStart & ID_Forec.time < optsLoad.cutEnd);

	ID_Forec.time = ID_Forec.time(ID_Forec.time >= optsLoad.cutStart & ID_Forec.time < optsLoad.cutEnd);

	% Actual

	actualFeedIn.data = actualFeedIn.data(actualFeedIn.time >= optsLoad.cutStart & actualFeedIn.time < optsLoad.cutEnd);

	actualFeedIn.time = actualFeedIn.time(actualFeedIn.time >= optsLoad.cutStart & actualFeedIn.time < optsLoad.cutEnd);

	

end

%% Cluster run variables

jobNameCluster = 'PV_BRD_2013';

Functions/+Config/config_PV_BRD_20140101_20141231.m

%% Get SimRuns for Setup

% Define calculation parameters

simRunsTMP.securityLevel = [95,99,99.5,99.9,99.99,99.994,99.999];

simRunsTMP.leadTimeRP = 24;

simRunsTMP.productLenght = [1,2,4,8,12,24];

simRunsTMP.percentPosRP = [0,50,100];

simRunsTMP.percentNegRP = [100,50,0];

simRunsTMP.installedCap = 30000;

simRunsTMP.startTime = datenum([2014 1 1 0 0 0]);

% simRunsTMP.endTime = simRunsTMP.startTime+1;

simRunsTMP.endTime = datenum([2014 12 30 23 59 59]);

simRunsTMP.market = {'TFC','SFC'};

simRunsTMP.pool = 'Germany';

simRunsTMP.combinationsRuns = allcomb(simRunsTMP.securityLevel,simRunsTMP.leadTimeRP,...

	simRunsTMP.productLenght,simRunsTMP.percentPosRP,simRunsTMP.percentNegRP, ...

	simRunsTMP.installedCap);

simRunsTMP.combinationsRuns = ...

	simRunsTMP.combinationsRuns(([simRunsTMP.combinationsRuns(:,4)] ...

	+ [simRunsTMP.combinationsRuns(:,5)]) == 100,:);

for iMarket = 1:length(simRunsTMP.market)

	for iCalcRun=1:size(simRunsTMP.combinationsRuns,1)

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).securityLevel = simRunsTMP.combinationsRuns(iCalcRun,1);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).leadTimeRP = simRunsTMP.combinationsRuns(iCalcRun,2);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).productLength =simRunsTMP.combinationsRuns(iCalcRun,3);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).percentPosRP = simRunsTMP.combinationsRuns(iCalcRun,4);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).percentNegRP = simRunsTMP.combinationsRuns(iCalcRun,5);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).installedCapacity = simRunsTMP.combinationsRuns(iCalcRun,6);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).startTime = simRunsTMP.startTime;

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).endTime = simRunsTMP.endTime;

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).market = simRunsTMP.market{iMarket};

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).pool = simRunsTMP.pool;

	end

end

clear simRunsTMP iMarket iCalcRun

%% Options for the Loading of Data

% Define which forecasts shall be loaded (not assigned yet)

optsLoad.genType				= 'PV'; % Valid options: Onshore Wind, Offshore Wind, PV

optsLoad.persistencyGenType		= true; % For the loaded portfolio

optsLoad.fcHorizon				= 1; % Forecast horizon in hours

optsLoad.persistencyWind		= true; % For the entire German portfolio

optsLoad.persistencyPV			= true; % For the entire German portfolio

optsLoad.cut					= false; % Main forecast data is cut is true

optsLoad.cutStart				= datenum([2012 3 1 0 0 0]) - 2; % Time to start cut data, if no value than maximum according to time frame

optsLoad.cutEnd					= datenum([2014 1 1 0 0 0]) + 2; % Time to end cut data, if no value than minimum according to time frame

optsLoad.separateTrainingData	= false; % Limits the training data for the probabilistic forecast

optsLoad.startTrainingData		= datenum([2010 1 1 0 0 0]);

optsLoad.endTrainingData		= datenum([2010 12 30 0 0 0]);

%% Load Data

[DA_MarketPrice, ID_MarketPrice, RPP, dispatchSFC, dispatchTFC, ...

	MoSFC, MoTFC, actualFeedIn, DA_Forec, ID_Forec, ...

	actualFeedIn_Wind, DA_Forec_Wind, ID_Forec_Wind, ...

	DA_Forec_PV, ID_Forec_PV, actualFeedIn_PV, loadENTSOE] ...

	= Config.loadData('D:', simRuns, optsLoad);

%% Technology dependent variables

optsOffer.feedInTariff			= 90; % €/MWh (Annahme)

%% Cut data

if optsLoad.separateTrainingData

	

	% DA

	DA_Forec_Train.data = DA_Forec.data(DA_Forec.time >= optsLoad.startTrainingData	 & DA_Forec.time < optsLoad.endTrainingData);

	DA_Forec_Train.time = DA_Forec.time(DA_Forec.time >= optsLoad.startTrainingData	 & DA_Forec.time < optsLoad.endTrainingData);

	DA_Forec_Train.info = DA_Forec.info;

	% ID

	ID_Forec_Train.data = ID_Forec.data(ID_Forec.time >= optsLoad.startTrainingData	 & ID_Forec.time < optsLoad.endTrainingData);

	ID_Forec_Train.time = ID_Forec.time(ID_Forec.time >= optsLoad.startTrainingData	 & ID_Forec.time < optsLoad.endTrainingData);

	ID_Forec_Train.info = ID_Forec.info;

	% Actual

	actualFeedIn_Train.data = actualFeedIn.data(actualFeedIn.time >= optsLoad.startTrainingData	 & actualFeedIn.time < optsLoad.endTrainingData);

	actualFeedIn_Train.time = actualFeedIn.time(actualFeedIn.time >= optsLoad.startTrainingData	 & actualFeedIn.time < optsLoad.endTrainingData);

	actualFeedIn_Train.info = actualFeedIn.info;

	

else

	

	actualFeedIn_Train = actualFeedIn;

	DA_Forec_Train = DA_Forec;

	ID_Forec_Train = ID_Forec;

	

end

%% Cut data

if optsLoad.cut

	

	if isempty(optsLoad.cutStart)

		optsLoad.cutStart = userInput.startTime;

	end

	if isempty(optsLoad.cutEnd)

		optsLoad.cutEnd = userInput.endTime;

	end

	

	% DA

	DA_Forec.data = DA_Forec.data(DA_Forec.time >= optsLoad.cutStart & DA_Forec.time < optsLoad.cutEnd);

	DA_Forec.time = DA_Forec.time(DA_Forec.time >= optsLoad.cutStart & DA_Forec.time < optsLoad.cutEnd);

	% ID

	ID_Forec.data = ID_Forec.data(ID_Forec.time >= optsLoad.cutStart & ID_Forec.time < optsLoad.cutEnd);

	ID_Forec.time = ID_Forec.time(ID_Forec.time >= optsLoad.cutStart & ID_Forec.time < optsLoad.cutEnd);

	% Actual

	actualFeedIn.data = actualFeedIn.data(actualFeedIn.time >= optsLoad.cutStart & actualFeedIn.time < optsLoad.cutEnd);

	actualFeedIn.time = actualFeedIn.time(actualFeedIn.time >= optsLoad.cutStart & actualFeedIn.time < optsLoad.cutEnd);

	

end

%% Cluster run variables

jobNameCluster = 'PV_BRD_2014';

Functions/+Config/config_PV_PVF_20130101_20131231.m

%% Get SimRuns for Setup

% Define calculation parameters

simRunsTMP.securityLevel = [95,99,99.5,99.9,99.99,99.994,99.999];

simRunsTMP.leadTimeRP = 24;

simRunsTMP.productLenght = [1,2,4,8,12,24];

simRunsTMP.percentPosRP = [0,50,100];

simRunsTMP.percentNegRP = [100,50,0];

simRunsTMP.installedCap = 1000;

simRunsTMP.startTime = datenum([2013 1 1 0 0 0]);

% simRunsTMP.endTime = simRunsTMP.startTime+1;

simRunsTMP.endTime = datenum([2013 12 31 23 59 59]);

simRunsTMP.market = {'TFC','SFC'};

simRunsTMP.pool = 'Pool';

simRunsTMP.combinationsRuns = allcomb(simRunsTMP.securityLevel,simRunsTMP.leadTimeRP,...

	simRunsTMP.productLenght,simRunsTMP.percentPosRP,simRunsTMP.percentNegRP, ...

	simRunsTMP.installedCap);

simRunsTMP.combinationsRuns = ...

	simRunsTMP.combinationsRuns(([simRunsTMP.combinationsRuns(:,4)] ...

	+ [simRunsTMP.combinationsRuns(:,5)]) == 100,:);

for iMarket = 1:length(simRunsTMP.market)

	for iCalcRun=1:size(simRunsTMP.combinationsRuns,1)

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).securityLevel = simRunsTMP.combinationsRuns(iCalcRun,1);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).leadTimeRP = simRunsTMP.combinationsRuns(iCalcRun,2);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).productLength =simRunsTMP.combinationsRuns(iCalcRun,3);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).percentPosRP = simRunsTMP.combinationsRuns(iCalcRun,4);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).percentNegRP = simRunsTMP.combinationsRuns(iCalcRun,5);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).installedCapacity = simRunsTMP.combinationsRuns(iCalcRun,6);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).startTime = simRunsTMP.startTime;

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).endTime = simRunsTMP.endTime;

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).market = simRunsTMP.market{iMarket};

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).pool = simRunsTMP.pool;

	end

end

clear simRunsTMP iMarket iCalcRun

%% Options for the Loading of Data

% Define which forecasts shall be loaded (not assigned yet)

optsLoad.genType				= 'PV'; % Valid options: Onshore Wind, Offshore Wind, PV

optsLoad.persistencyGenType		= true; % For the loaded portfolio

optsLoad.fcHorizon				= 1; % Forecast horizon in hours

optsLoad.persistencyWind		= true; % For the entire German portfolio

optsLoad.persistencyPV			= true; % For the entire German portfolio

optsLoad.cut					= false; % Main forecast data is cut is true

optsLoad.cutStart				= datenum([2012 3 1 0 0 0]) - 2; % Time to start cut data, if no value than maximum according to time frame

optsLoad.cutEnd					= datenum([2014 1 1 0 0 0]) + 2; % Time to end cut data, if no value than minimum according to time frame

optsLoad.separateTrainingData	= true; % Limits the training data for the probabilistic forecast

optsLoad.startTrainingData		= datenum([2014 1 1 0 0 0]);

optsLoad.endTrainingData		= datenum([2014 12 30 0 0 0]);

%% Load Data

[DA_MarketPrice, ID_MarketPrice, RPP, dispatchSFC, dispatchTFC, ...

	MoSFC, MoTFC, actualFeedIn, DA_Forec, ID_Forec, ...

	actualFeedIn_Wind, DA_Forec_Wind, ID_Forec_Wind, ...

	DA_Forec_PV, ID_Forec_PV, actualFeedIn_PV, loadENTSOE] ...

	= Config.loadData('D:', simRuns, optsLoad);

%% Technology dependent variables

optsOffer.feedInTariff			= 90; % €/MWh (Annahme)

%% Cut data

if optsLoad.separateTrainingData

	

	% DA

	DA_Forec_Train.data = DA_Forec.data(DA_Forec.time >= optsLoad.startTrainingData	 & DA_Forec.time < optsLoad.endTrainingData);

	DA_Forec_Train.time = DA_Forec.time(DA_Forec.time >= optsLoad.startTrainingData	 & DA_Forec.time < optsLoad.endTrainingData);

	DA_Forec_Train.info = DA_Forec.info;

	% ID

	ID_Forec_Train.data = ID_Forec.data(ID_Forec.time >= optsLoad.startTrainingData	 & ID_Forec.time < optsLoad.endTrainingData);

	ID_Forec_Train.time = ID_Forec.time(ID_Forec.time >= optsLoad.startTrainingData	 & ID_Forec.time < optsLoad.endTrainingData);

	ID_Forec_Train.info = ID_Forec.info;

	% Actual

	actualFeedIn_Train.data = actualFeedIn.data(actualFeedIn.time >= optsLoad.startTrainingData	 & actualFeedIn.time < optsLoad.endTrainingData);

	actualFeedIn_Train.time = actualFeedIn.time(actualFeedIn.time >= optsLoad.startTrainingData	 & actualFeedIn.time < optsLoad.endTrainingData);

	actualFeedIn_Train.info = actualFeedIn.info;

	

else

	

	actualFeedIn_Train = actualFeedIn;

	DA_Forec_Train = DA_Forec;

	ID_Forec_Train = ID_Forec;

	

end

%% Cut data

if optsLoad.cut

	

	if isempty(optsLoad.cutStart)

		optsLoad.cutStart = userInput.startTime;

	end

	if isempty(optsLoad.cutEnd)

		optsLoad.cutEnd = userInput.endTime;

	end

	

	% DA

	DA_Forec.data = DA_Forec.data(DA_Forec.time >= optsLoad.cutStart & DA_Forec.time < optsLoad.cutEnd);

	DA_Forec.time = DA_Forec.time(DA_Forec.time >= optsLoad.cutStart & DA_Forec.time < optsLoad.cutEnd);

	% ID

	ID_Forec.data = ID_Forec.data(ID_Forec.time >= optsLoad.cutStart & ID_Forec.time < optsLoad.cutEnd);

	ID_Forec.time = ID_Forec.time(ID_Forec.time >= optsLoad.cutStart & ID_Forec.time < optsLoad.cutEnd);

	% Actual

	actualFeedIn.data = actualFeedIn.data(actualFeedIn.time >= optsLoad.cutStart & actualFeedIn.time < optsLoad.cutEnd);

	actualFeedIn.time = actualFeedIn.time(actualFeedIn.time >= optsLoad.cutStart & actualFeedIn.time < optsLoad.cutEnd);

	

end

%% Cluster run variables

jobNameCluster = 'PV_PVF_2013';

Functions/+Config/config_PV_PVF_20140101_20141231.m

%% Get SimRuns for Setup

% Define calculation parameters

simRunsTMP.securityLevel = [95,99,99.5,99.9,99.99,99.994,99.999];

simRunsTMP.leadTimeRP = 24;

simRunsTMP.productLenght = [1,2,4,8,12,24];

simRunsTMP.percentPosRP = [0,50,100];

simRunsTMP.percentNegRP = [100,50,0];

simRunsTMP.installedCap = 1000;

simRunsTMP.startTime = datenum([2014 1 1 0 0 0]);

% simRunsTMP.endTime = simRunsTMP.startTime+1;

simRunsTMP.endTime = datenum([2014 12 31 23 59 59]);

simRunsTMP.market = {'TFC','SFC'};

simRunsTMP.pool = 'Pool';

simRunsTMP.combinationsRuns = allcomb(simRunsTMP.securityLevel,simRunsTMP.leadTimeRP,...

	simRunsTMP.productLenght,simRunsTMP.percentPosRP,simRunsTMP.percentNegRP, ...

	simRunsTMP.installedCap);

simRunsTMP.combinationsRuns = ...

	simRunsTMP.combinationsRuns(([simRunsTMP.combinationsRuns(:,4)] ...

	+ [simRunsTMP.combinationsRuns(:,5)]) == 100,:);

for iMarket = 1:length(simRunsTMP.market)

	for iCalcRun=1:size(simRunsTMP.combinationsRuns,1)

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).securityLevel = simRunsTMP.combinationsRuns(iCalcRun,1);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).leadTimeRP = simRunsTMP.combinationsRuns(iCalcRun,2);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).productLength =simRunsTMP.combinationsRuns(iCalcRun,3);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).percentPosRP = simRunsTMP.combinationsRuns(iCalcRun,4);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).percentNegRP = simRunsTMP.combinationsRuns(iCalcRun,5);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).installedCapacity = simRunsTMP.combinationsRuns(iCalcRun,6);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).startTime = simRunsTMP.startTime;

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).endTime = simRunsTMP.endTime;

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).market = simRunsTMP.market{iMarket};

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).pool = simRunsTMP.pool;

	end

end

clear simRunsTMP iMarket iCalcRun

%% Options for the Loading of Data

% Define which forecasts shall be loaded (not assigned yet)

optsLoad.genType				= 'PV'; % Valid options: Onshore Wind, Offshore Wind, PV

optsLoad.persistencyGenType		= true; % For the loaded portfolio

optsLoad.fcHorizon				= 1; % Forecast horizon in hours

optsLoad.persistencyWind		= true; % For the entire German portfolio

optsLoad.persistencyPV			= true; % For the entire German portfolio

optsLoad.cut					= false; % Main forecast data is cut is true

optsLoad.cutStart				= datenum([2012 3 1 0 0 0]) - 2; % Time to start cut data, if no value than maximum according to time frame

optsLoad.cutEnd					= datenum([2014 1 1 0 0 0]) + 2; % Time to end cut data, if no value than minimum according to time frame

optsLoad.separateTrainingData	= true; % Limits the training data for the probabilistic forecast

optsLoad.startTrainingData		= datenum([2014 1 1 0 0 0]);

optsLoad.endTrainingData		= datenum([2014 12 30 0 0 0]);

%% Load Data

[DA_MarketPrice, ID_MarketPrice, RPP, dispatchSFC, dispatchTFC, ...

	MoSFC, MoTFC, actualFeedIn, DA_Forec, ID_Forec, ...

	actualFeedIn_Wind, DA_Forec_Wind, ID_Forec_Wind, ...

	DA_Forec_PV, ID_Forec_PV, actualFeedIn_PV, loadENTSOE] ...

	= Config.loadData('D:', simRuns, optsLoad);

%% Technology dependent variables

optsOffer.feedInTariff			= 90; % €/MWh (Annahme)

%% Cut data

if optsLoad.separateTrainingData

	

	% DA

	DA_Forec_Train.data = DA_Forec.data(DA_Forec.time >= optsLoad.startTrainingData	 & DA_Forec.time < optsLoad.endTrainingData);

	DA_Forec_Train.time = DA_Forec.time(DA_Forec.time >= optsLoad.startTrainingData	 & DA_Forec.time < optsLoad.endTrainingData);

	DA_Forec_Train.info = DA_Forec.info;

	% ID

	ID_Forec_Train.data = ID_Forec.data(ID_Forec.time >= optsLoad.startTrainingData	 & ID_Forec.time < optsLoad.endTrainingData);

	ID_Forec_Train.time = ID_Forec.time(ID_Forec.time >= optsLoad.startTrainingData	 & ID_Forec.time < optsLoad.endTrainingData);

	ID_Forec_Train.info = ID_Forec.info;

	% Actual

	actualFeedIn_Train.data = actualFeedIn.data(actualFeedIn.time >= optsLoad.startTrainingData	 & actualFeedIn.time < optsLoad.endTrainingData);

	actualFeedIn_Train.time = actualFeedIn.time(actualFeedIn.time >= optsLoad.startTrainingData	 & actualFeedIn.time < optsLoad.endTrainingData);

	actualFeedIn_Train.info = actualFeedIn.info;

	

else

	

	actualFeedIn_Train = actualFeedIn;

	DA_Forec_Train = DA_Forec;

	ID_Forec_Train = ID_Forec;

	

end

%% Cut data

if optsLoad.cut

	

	if isempty(optsLoad.cutStart)

		optsLoad.cutStart = userInput.startTime;

	end

	if isempty(optsLoad.cutEnd)

		optsLoad.cutEnd = userInput.endTime;

	end

	

	% DA

	DA_Forec.data = DA_Forec.data(DA_Forec.time >= optsLoad.cutStart & DA_Forec.time < optsLoad.cutEnd);

	DA_Forec.time = DA_Forec.time(DA_Forec.time >= optsLoad.cutStart & DA_Forec.time < optsLoad.cutEnd);

	% ID

	ID_Forec.data = ID_Forec.data(ID_Forec.time >= optsLoad.cutStart & ID_Forec.time < optsLoad.cutEnd);

	ID_Forec.time = ID_Forec.time(ID_Forec.time >= optsLoad.cutStart & ID_Forec.time < optsLoad.cutEnd);

	% Actual

	actualFeedIn.data = actualFeedIn.data(actualFeedIn.time >= optsLoad.cutStart & actualFeedIn.time < optsLoad.cutEnd);

	actualFeedIn.time = actualFeedIn.time(actualFeedIn.time >= optsLoad.cutStart & actualFeedIn.time < optsLoad.cutEnd);

	

end

%% Cluster run variables

jobNameCluster = 'PV_PVF_2014';

Functions/+Config/config_TestData.m

%% Get SimRuns for Setup

% Define calculation parameters

simRunsTMP.securityLevel = [99,99.994];

simRunsTMP.leadTimeRP = 24;

simRunsTMP.productLenght = [1,4];

simRunsTMP.percentPosRP = [0,100];

simRunsTMP.percentNegRP = [100,0];

simRunsTMP.installedCap = 30000;

simRunsTMP.startTime = datenum([2014 1 1 0 0 0]);

% simRunsTMP.endTime = simRunsTMP.startTime+6;

simRunsTMP.endTime = datenum([2014 1 14 23 59 59]);

simRunsTMP.market = {'TFC','SFC'};

simRunsTMP.pool = 'Germany';

simRunsTMP.combinationsRuns = allcomb(simRunsTMP.securityLevel,simRunsTMP.leadTimeRP,...

	simRunsTMP.productLenght,simRunsTMP.percentPosRP,simRunsTMP.percentNegRP, ...

	simRunsTMP.installedCap);

simRunsTMP.combinationsRuns = ...

	simRunsTMP.combinationsRuns(([simRunsTMP.combinationsRuns(:,4)] ...

	+ [simRunsTMP.combinationsRuns(:,5)]) == 100,:);

for iMarket = 1:length(simRunsTMP.market)

	for iCalcRun=1:size(simRunsTMP.combinationsRuns,1)

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).securityLevel = simRunsTMP.combinationsRuns(iCalcRun,1);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).leadTimeRP = simRunsTMP.combinationsRuns(iCalcRun,2);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).productLength =simRunsTMP.combinationsRuns(iCalcRun,3);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).percentPosRP = simRunsTMP.combinationsRuns(iCalcRun,4);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).percentNegRP = simRunsTMP.combinationsRuns(iCalcRun,5);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).installedCapacity = simRunsTMP.combinationsRuns(iCalcRun,6);

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).startTime = simRunsTMP.startTime;

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).endTime = simRunsTMP.endTime;

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).market = simRunsTMP.market{iMarket};

		simRuns(1,iCalcRun + (iMarket-1) * size(simRunsTMP.combinationsRuns,1)).pool = simRunsTMP.pool;

	end

end

clear simRunsTMP iMarket iCalcRun

%% Options for the Loading of Data

% Define which forecasts shall be loaded (not assigned yet)

optsLoad.genType				= 'Onshore Wind'; % Valid options: Onshore Wind, Offshore Wind, PV

optsLoad.persistencyGenType		= true; % For the loaded portfolio

optsLoad.fcHorizon				= 1; % Forecast horizon in hours

optsLoad.persistencyWind		= true; % For the entire German portfolio

optsLoad.persistencyPV			= true; % For the entire German portfolio

optsLoad.cut					= true; % Main forecast data is cut is true

optsLoad.cutStart				= datenum([2014 1 1 0 0 0]) - 2; % Time to start cut data, if no value than maximum according to time frame

optsLoad.cutEnd					= datenum([2014 1 15 0 0 0]) + 2; % Time to end cut data, if no value than minimum according to time frame

optsLoad.separateTrainingData	= true; % Limits the training data for the probabilistic forecast

optsLoad.startTrainingData		= datenum([2013 1 1 0 0 0]);

optsLoad.endTrainingData		= datenum([2013 12 30 0 0 0]);

%% Load Data

[DA_MarketPrice, ID_MarketPrice, RPP, dispatchSFC, dispatchTFC, ...

	MoSFC, MoTFC, actualFeedIn, DA_Forec, ID_Forec, ...

	actualFeedIn_Wind, DA_Forec_Wind, ID_Forec_Wind, ...

	DA_Forec_PV, ID_Forec_PV, actualFeedIn_PV, loadENTSOE] ...

	= Config.loadData('D:', simRuns, optsLoad);

%% Technology dependent variables

optsOffer.feedInTariff			= 89.5; % €/MWh

%% Cut data

if optsLoad.separateTrainingData

	

	% DA

	DA_Forec_Train.data = DA_Forec.data(DA_Forec.time >= optsLoad.startTrainingData	 & DA_Forec.time < optsLoad.endTrainingData);

	DA_Forec_Train.time = DA_Forec.time(DA_Forec.time >= optsLoad.startTrainingData	 & DA_Forec.time < optsLoad.endTrainingData);

	DA_Forec_Train.info = DA_Forec.info;

	% ID

	ID_Forec_Train.data = ID_Forec.data(ID_Forec.time >= optsLoad.startTrainingData	 & ID_Forec.time < optsLoad.endTrainingData);

	ID_Forec_Train.time = ID_Forec.time(ID_Forec.time >= optsLoad.startTrainingData	 & ID_Forec.time < optsLoad.endTrainingData);

	ID_Forec_Train.info = ID_Forec.info;

	% Actual

	actualFeedIn_Train.data = actualFeedIn.data(actualFeedIn.time >= optsLoad.startTrainingData	 & actualFeedIn.time < optsLoad.endTrainingData);

	actualFeedIn_Train.time = actualFeedIn.time(actualFeedIn.time >= optsLoad.startTrainingData	 & actualFeedIn.time < optsLoad.endTrainingData);

	actualFeedIn_Train.info = actualFeedIn.info;

	

else

	

	actualFeedIn_Train = actualFeedIn;

	DA_Forec_Train = DA_Forec;

	ID_Forec_Train = ID_Forec;

	

end

%% Cut data

if optsLoad.cut

	

	if isempty(optsLoad.cutStart)

		optsLoad.cutStart = userInput.startTime;

	end

	if isempty(optsLoad.cutEnd)

		optsLoad.cutEnd = userInput.endTime;

	end

	

	% DA

	DA_Forec.data = DA_Forec.data(DA_Forec.time >= optsLoad.cutStart & DA_Forec.time < optsLoad.cutEnd);

	DA_Forec.time = DA_Forec.time(DA_Forec.time >= optsLoad.cutStart & DA_Forec.time < optsLoad.cutEnd);

	% ID

	ID_Forec.data = ID_Forec.data(ID_Forec.time >= optsLoad.cutStart & ID_Forec.time < optsLoad.cutEnd);

	ID_Forec.time = ID_Forec.time(ID_Forec.time >= optsLoad.cutStart & ID_Forec.time < optsLoad.cutEnd);

	% Actual

	actualFeedIn.data = actualFeedIn.data(actualFeedIn.time >= optsLoad.cutStart & actualFeedIn.time < optsLoad.cutEnd);

	actualFeedIn.time = actualFeedIn.time(actualFeedIn.time >= optsLoad.cutStart & actualFeedIn.time < optsLoad.cutEnd);

	

	% DA PV

	DA_Forec_PV.data = DA_Forec_PV.data(DA_Forec_PV.time >= optsLoad.cutStart & DA_Forec_PV.time < optsLoad.cutEnd);

	DA_Forec_PV.time = DA_Forec_PV.time(DA_Forec_PV.time >= optsLoad.cutStart & DA_Forec_PV.time < optsLoad.cutEnd);

	% ID PV

	ID_Forec_PV.data = ID_Forec_PV.data(ID_Forec_PV.time >= optsLoad.cutStart & ID_Forec_PV.time < optsLoad.cutEnd);

	ID_Forec_PV.time = ID_Forec_PV.time(ID_Forec_PV.time >= optsLoad.cutStart & ID_Forec_PV.time < optsLoad.cutEnd);

	% Actual PV

	actualFeedIn_PV.data = actualFeedIn_PV.data(actualFeedIn_PV.time >= optsLoad.cutStart & actualFeedIn_PV.time < optsLoad.cutEnd);

	actualFeedIn_PV.time = actualFeedIn_PV.time(actualFeedIn_PV.time >= optsLoad.cutStart & actualFeedIn_PV.time < optsLoad.cutEnd);

	% DA Wind

	DA_Forec_Wind.data = DA_Forec_Wind.data(DA_Forec_Wind.time >= optsLoad.cutStart & DA_Forec_Wind.time < optsLoad.cutEnd);

	DA_Forec_Wind.time = DA_Forec_Wind.time(DA_Forec_Wind.time >= optsLoad.cutStart & DA_Forec_Wind.time < optsLoad.cutEnd);

	% ID Wind

	ID_Forec_Wind.data = ID_Forec_Wind.data(ID_Forec_Wind.time >= optsLoad.cutStart & ID_Forec_Wind.time < optsLoad.cutEnd);

	ID_Forec_Wind.time = ID_Forec_Wind.time(ID_Forec_Wind.time >= optsLoad.cutStart & ID_Forec_Wind.time < optsLoad.cutEnd);

	% Actual Wind

	actualFeedIn_Wind.data = actualFeedIn_Wind.data(actualFeedIn_Wind.time >= optsLoad.cutStart & actualFeedIn_Wind.time < optsLoad.cutEnd);

	actualFeedIn_Wind.time = actualFeedIn_Wind.time(actualFeedIn_Wind.time >= optsLoad.cutStart & actualFeedIn_Wind.time < optsLoad.cutEnd);

	

	% DA MarketPrice

	DA_MarketPrice.price = DA_MarketPrice.price(DA_MarketPrice.time >= optsLoad.cutStart & DA_MarketPrice.time < optsLoad.cutEnd);

	DA_MarketPrice.time = DA_MarketPrice.time(DA_MarketPrice.time >= optsLoad.cutStart & DA_MarketPrice.time < optsLoad.cutEnd);

	% ID MarketPrice

	ID_MarketPrice.price = ID_MarketPrice.price(ID_MarketPrice.time >= optsLoad.cutStart & ID_MarketPrice.time < optsLoad.cutEnd);

	ID_MarketPrice.time = ID_MarketPrice.time(ID_MarketPrice.time >= optsLoad.cutStart & ID_MarketPrice.time < optsLoad.cutEnd);

	% SFC dispatch

	dispatchSFC.data = dispatchSFC.data(dispatchSFC.time >= optsLoad.cutStart & dispatchSFC.time < optsLoad.cutEnd);

	dispatchSFC.time = dispatchSFC.time(dispatchSFC.time >= optsLoad.cutStart & dispatchSFC.time < optsLoad.cutEnd);

	% TFC dispatch

	dispatchTFC.pos = dispatchTFC.pos(dispatchTFC.time >= optsLoad.cutStart & dispatchTFC.time < optsLoad.cutEnd);

	dispatchTFC.neg = dispatchTFC.neg(dispatchTFC.time >= optsLoad.cutStart & dispatchTFC.time < optsLoad.cutEnd);

	dispatchTFC.time = dispatchTFC.time(dispatchTFC.time >= optsLoad.cutStart & dispatchTFC.time < optsLoad.cutEnd);

	% RRP (reBAP)

	RPP.data = RPP.data(RPP.time >= optsLoad.cutStart & RPP.time < optsLoad.cutEnd);

	RPP.time = RPP.time(RPP.time >= optsLoad.cutStart & RPP.time < optsLoad.cutEnd);

	

	% load ENTSO-E

	loadENTSOE.data = loadENTSOE.data(loadENTSOE.time >= optsLoad.cutStart & loadENTSOE.time < optsLoad.cutEnd);

	loadENTSOE.time = loadENTSOE.time(loadENTSOE.time >= optsLoad.cutStart & loadENTSOE.time < optsLoad.cutEnd);

	

	% moSFC

	MoSFC = MoSFC([MoSFC.start]' >= optsLoad.cutStart & [MoSFC.end]' < optsLoad.cutEnd);

	% moTFC

	MoTFC = MoTFC([MoTFC.start]' >= optsLoad.cutStart & [MoTFC.end]' < optsLoad.cutEnd);

		

end

%% Cluster run variables

jobNameCluster = 'OnWind_BRD_2014';

Functions/Results_Evaluation/create_styleplot_format.m

% format for word

format.word.width = [4.13, 8.65, 13.18, 17.7]; % width of figure in cm for different numbers of columns

format.word.width_columns = 3; % number of columns which determine the width of the figure

format.word.height = 12; % height of figure in cm

format.word.fontweight = 'normal'; % fontweight of labels and legend

format.word.fontsize = 8; % fontsize of labels and legend

format.word.fontname = 'Calibri'; % fontname of labels and legend

format.word.fontsize_title = 10; % fontsize of title

format.word.fontname_title = 'Calibri'; % fontname of title

format.word.fontweight_title = 'bold'; % fontweight of title

format.word.color = {'x35','x28', 'x16', 'x34', 'x23'}; % order of colors for plots in one subplot, every color be varied in three shades (100 %, 70 %, 40 %) first

format.word.linewidth = 2; % linewidth for plots

format.word.linestyle = '-'; % linestyle for plots

format.word.marker = 'off'; % marker 'on' or 'off' for normal plot / style plot

format.word.marker_style = '.'; % style of markers

format.word.markersize = 6; % size of markers

format.word.margin_hor = 0.4; % horizontal margin to edges in cm

format.word.margin_ver = 0.4; % vertical margin to edges in cm

format.word.background_color = [1 1 1]; % lightblue: [212/255, 230/255, 244/255] hellgrau: [225/255, 227/255, 227/255] beige: [254/255, 239/255, 214/255]

format.word.ygrid = 'on';

% format for word wide

format.wordwide.width = [8.13, 12.65, 17.18, 21.7]; % width of figure in cm for different numbers of columns

format.wordwide.width_columns = 3; % number of columns which determine the width of the figure

format.wordwide.height = 12; % height of figure in cm

format.wordwide.fontweight = 'normal'; % fontweight of labels and legend

format.wordwide.fontsize = 8; % fontsize of labels and legend

format.wordwide.fontname = 'Calibri'; % fontname of labels and legend

format.wordwide.fontsize_title = 10; % fontsize of title

format.wordwide.fontname_title = 'Calibri'; % fontname of title

format.wordwide.fontweight_title = 'bold'; % fontweight of title

format.wordwide.color = {'x35','x28', 'x16', 'x34', 'x23'}; % order of colors for plots in one subplot, every color be varied in three shades (100 %, 70 %, 40 %) first

format.wordwide.linewidth = 2; % linewidth for plots

format.wordwide.linestyle = '-'; % linestyle for plots

format.wordwide.marker = 'off'; % marker 'on' or 'off' for normal plot / style plot

format.wordwide.marker_style = '.'; % style of markers

format.wordwide.markersize = 6; % size of markers

format.wordwide.margin_hor = 0.4; % horizontal margin to edges in cm

format.wordwide.margin_ver = 0.4; % vertical margin to edges in cm

format.wordwide.background_color = [1 1 1]; % lightblue: [212/255, 230/255, 244/255] hellgrau: [225/255, 227/255, 227/255] beige: [254/255, 239/255, 214/255]

format.wordwide.ygrid = 'on';

% format for power point presentations

format.ppp.width = [11, 22.84]; % width of figure in cm for different numbers of columns

format.ppp.width_columns = 2; % number of columns which determine the width of the figure

format.ppp.height = 10; % height of figure in cm

format.ppp.fontweight = 'normal'; % fontweight of labels and legend

format.ppp.fontsize = 14; % fontsize of labels and legend

format.ppp.fontname = 'Calibri'; % fontname of labels and legend

format.ppp.fontsize_title = 14; % fontsize of title

format.ppp.fontname_title = 'Calibri'; % fontname of title

format.ppp.fontweight_title = 'bold'; % fontweight of title

format.ppp.color = {'x35','x28', 'x16', 'x34', 'x23'}; % order of colors for plots in one subplot, every color be varied in three shades (100 %, 70 %, 40 %) first

format.ppp.linewidth = 2; % linewidth for plots

format.ppp.linestyle = '-'; % linestyle for plots

format.ppp.marker = 'off'; % marker 'on' or 'off' for normal plot / style plot

format.ppp.marker_style = '.'; % style of markers

format.ppp.markersize = 6; % size of markers

format.ppp.margin_hor = 0.4; % horizontal margin to edges in cm

format.ppp.margin_ver = 0.4; % vertical margin to edges in cm

format.ppp.background_color = [1 1 1]; % lightblue: [212/255, 230/255, 244/255] hellgrau: [225/255, 227/255, 227/255] beige: [254/255, 239/255, 214/255]

format.ppp.ygrid = 'on';

save('styleplot_format_PhD.mat','format')

commonFunctions/downsampleData.m

function [timeOut,dataOut] = downsampleData(timeIn,dataIn,timeSteps,method)

% This function downsamples a given data set. The data resolution is

% reduced by downsampling. to achieve different results choose one of the

% given options

%

% [timeOut,dataOut] = downsampleData(timeIn,dataIn,timeSteps, method)

%

% Input:

% timeIn: Original time series (datenum) with size n x 1

% dataIn: Origian data set with size m x n

% timeSteps: Number of time steps that should be reduced. A value of 'A'

% will reduce the number of data points by 'A'. Scalars only

% method: method for the downsampling. The options 'mean, 'sum', max',

% 'min' and 'spot' will be accepted as strings. Default is 'mean'.

%

% v1.0 (24/07/2012): Malte Jansen, Fraunhofer IWES, Kassel

% v1.1 (20/08/2012): Malte Jansen, Fraunhofer IWES, Kassel: Options for

% methods added

% v1.2 (01/07/2013): Malte Jansen, Fraunhofer IWES, Kassel: Bugfix

% v1.3 (01/07/2013): Malte Jansen, Fraunhofer IWES, Kassel: Added Options

% for annual downsampling and weighted averages

% v1.4 (26/02/2015): Malte Jansen, Fraunhofer IWES, Kassel: Added check of

% input variables

%

% see also: interp2Timestamp

%% Check input variables

% Method

if nargin < 4

	method = 'mean';

end

% Input variabel sizes

if size(timeIn,1) ~= size(dataIn,1)

	error('Invalid Input data: Vectors must have the same length')

end

% if size(timeIn,1)

% 	error('Invalid Input data: Time vector must not be wider than 1')

% end

%% Values of data at each time step

if length(timeSteps)>1

	

	% catch out of range

	yearsTimeIn = datevec(timeIn);

	yearsTimeIn = yearsTimeIn(:,1);

	if min(timeSteps) < min(yearsTimeIn) || max(timeSteps) < max(yearsTimeIn)

		warning('The years given do not match the data set')

	end

	

	for iYear = timeSteps(1):timeSteps(end)

		

		isYear = yearsTimeIn == iYear;

		dataOutRaw = dataIn(isYear,:);

		timeOut(iYear-timeSteps(1)+1,1) = datenum([iYear 1 1]);

		

		if strcmp(method,'mean')

			

			if size(dataOutRaw,2) > 1

				dataOut(iYear-timeSteps(1)+1,1) = nansum(dataOutRaw(:,1) .* dataOutRaw(:,2)) / nansum(dataOutRaw(:,2));

			else

				dataOut(iYear-timeSteps(1)+1,1) = nanmean(dataOutRaw);

			end

		end

		

		if strcmp(method,'sum')

			dataOut(iYear-timeSteps(1)+1,1) = nansum(dataOutRaw);

		end

		

		if strcmp(method,'max')

			dataOut(iYear-timeSteps(1)+1,1) = nanmax(dataOutRaw);

		end

		

		if strcmp(method,'min')

			dataOut(iYear-timeSteps(1)+1,1) = nanmin(dataOutRaw);

		end

		

		if strcmp(method,'spot')

			dataOut(iYear-timeSteps(1)+1,1) = dataOutRaw(1,1);

		end

		

	end

else

	% Select Time Stamp

	timeOut = zeros(ceil(length(timeIn)/timeSteps),1);

	for iTime=1:timeSteps:length(timeIn)

		timeOut(ceil(iTime/timeSteps),1) = timeIn(iTime,1);

	end

	

	

	dataOut = zeros(ceil(length(dataIn)/timeSteps),size(dataIn,2));

	

	dataInFitted = nan(ceil(length(dataIn)/timeSteps)*timeSteps,size(dataIn,2));

	dataInFitted(1:length(dataIn),:) = dataIn;

	

	if strcmp(method,'mean')

		for iTime=1:timeSteps:length(timeIn)-1

			dataOut(ceil(iTime/timeSteps),:) = nanmean(dataInFitted(iTime:iTime+timeSteps-1,:));

		end

	end

	

	if strcmp(method,'sum')

		for iTime=1:timeSteps:length(timeIn)-1

			dataOut(ceil(iTime/timeSteps),:) = nansum(dataInFitted(iTime:iTime+timeSteps-1,:));

		end

	end

	

	if strcmp(method,'max')

		for iTime=1:timeSteps:length(timeIn)-1

			dataOut(ceil(iTime/timeSteps),:) = nanmax(dataInFitted(iTime:iTime+timeSteps-1,:));

		end

	end

	

	if strcmp(method,'min')

		for iTime=1:timeSteps:length(timeIn)-1

			dataOut(ceil(iTime/timeSteps),:) = nanmin(dataInFitted(iTime:iTime+timeSteps-1,:));

		end

	end

	

	if strcmp(method,'spot')

		for iTime=1:timeSteps:length(timeIn)-1

			dataOut(ceil(iTime/timeSteps),:) = dataInFitted(iTime,:);

		end

	end

end

Functions/+Auxiliary_Functions/downsampleData.m

function [timeOut,dataOut] = downsampleData(timeIn,dataIn,timeSteps,method)

% This function downsamples a given data set. The data resolution is

% reduced by downsampling. to achieve different results choose one of the

% given options

%

% [timeOut,dataOut] = downsampleData(timeIn,dataIn,timeSteps, method)

%

% Input:

% timeIn: Original time series (datenum) with size n x 1

% dataIn: Origian data set with size m x n

% timeSteps: Number of time steps that should be reduced. A value of 'A'

% will reduce the number of data points by 'A'. Scalars only

% method: method for the downsampling. The options 'mean, 'sum', max',

% 'min' and 'spot' will be accepted as strings. Default is 'mean'.

%

% v1.0 (24/07/2012): Malte Jansen, Fraunhofer IWES, Kassel

% v1.1 (20/08/2012): Malte Jansen, Fraunhofer IWES, Kassel: Options for

% methods added

% v1.2 (01/07/2013): Malte Jansen, Fraunhofer IWES, Kassel: Bugfix

% v1.3 (01/07/2013): Malte Jansen, Fraunhofer IWES, Kassel: Added Options

% for annual downsampling and weighted averages

% v1.4 (26/02/2015): Malte Jansen, Fraunhofer IWES, Kassel: Added check of

% input variables

%

% see also: interp2Timestamp

%% Check input variables

% Method

if nargin < 4

	method = 'mean';

end

% Input variabel sizes

if size(timeIn,1) ~= size(dataIn,1)

	error('Invalid Input data: Vectors must have the same length')

end

% if size(timeIn,1)

% 	error('Invalid Input data: Time vector must not be wider than 1')

% end

%% Values of data at each time step

if length(timeSteps)>1

	

	% catch out of range

	yearsTimeIn = datevec(timeIn);

	yearsTimeIn = yearsTimeIn(:,1);

	if min(timeSteps) < min(yearsTimeIn) || max(timeSteps) < max(yearsTimeIn)

		warning('The years given do not match the data set')

	end

	

	for iYear = timeSteps(1):timeSteps(end)

		

		isYear = yearsTimeIn == iYear;

		dataOutRaw = dataIn(isYear,:);

		timeOut(iYear-timeSteps(1)+1,1) = datenum([iYear 1 1]);

		

		if strcmp(method,'mean')

			

			if size(dataOutRaw,2) > 1

				dataOut(iYear-timeSteps(1)+1,1) = nansum(dataOutRaw(:,1) .* dataOutRaw(:,2)) / nansum(dataOutRaw(:,2));

			else

				dataOut(iYear-timeSteps(1)+1,1) = nanmean(dataOutRaw);

			end

		end

		

		if strcmp(method,'sum')

			dataOut(iYear-timeSteps(1)+1,1) = nansum(dataOutRaw);

		end

		

		if strcmp(method,'max')

			dataOut(iYear-timeSteps(1)+1,1) = nanmax(dataOutRaw);

		end

		

		if strcmp(method,'min')

			dataOut(iYear-timeSteps(1)+1,1) = nanmin(dataOutRaw);

		end

		

		if strcmp(method,'spot')

			dataOut(iYear-timeSteps(1)+1,1) = dataOutRaw(1,1);

		end

		

	end

else

	% Select Time Stamp

	timeOut = zeros(ceil(length(timeIn)/timeSteps),1);

	for iTime=1:timeSteps:length(timeIn)

		timeOut(ceil(iTime/timeSteps),1) = timeIn(iTime,1);

	end

	

	

	dataOut = zeros(ceil(length(dataIn)/timeSteps),size(dataIn,2));

	

	dataInFitted = nan(ceil(length(dataIn)/timeSteps)*timeSteps,size(dataIn,2));

	dataInFitted(1:length(dataIn),:) = dataIn;

	

	if strcmp(method,'mean')

		for iTime=1:timeSteps:length(timeIn)-1

			dataOut(ceil(iTime/timeSteps),:) = nanmean(dataInFitted(iTime:iTime+timeSteps-1,:));

		end

	end

	

	if strcmp(method,'sum')

		for iTime=1:timeSteps:length(timeIn)-1

			dataOut(ceil(iTime/timeSteps),:) = nansum(dataInFitted(iTime:iTime+timeSteps-1,:));

		end

	end

	

	if strcmp(method,'max')

		for iTime=1:timeSteps:length(timeIn)-1

			dataOut(ceil(iTime/timeSteps),:) = nanmax(dataInFitted(iTime:iTime+timeSteps-1,:));

		end

	end

	

	if strcmp(method,'min')

		for iTime=1:timeSteps:length(timeIn)-1

			dataOut(ceil(iTime/timeSteps),:) = nanmin(dataInFitted(iTime:iTime+timeSteps-1,:));

		end

	end

	

	if strcmp(method,'spot')

		for iTime=1:timeSteps:length(timeIn)-1

			dataOut(ceil(iTime/timeSteps),:) = dataInFitted(iTime,:);

		end

	end

end

commonFunctions/getCommonData.m

function [timeOut1, dataOut1, timeOut2, dataOut2] = getCommonData(timeIn1, dataIn1, timeIn2, dataIn2)

% This functions extracts the common data according to the timestamp

%

% Data must have the same resolution of the data

%

% [timeOut1, dataOut1, timeOut2, dataOut2] = getCommonData(timeIn1, dataIn1, timeIn2, dataIn2)

%

% Inputs:

% timeIn1 = time vector (datenum) of set 1

% dataIn1 = data of set 1

% timeIn2 = time vector (datenum) of set 2

% dataIn2 = data of set 2

%

% Outputs:

% timeOut1 = selected time vector (datenum) set 1

% dataOut1 = selected data of set 1

% timeOut2 = time vector (datenum) of data set 2 (is equal to timeOut1)

% dataOut2 = selected selected data of set 2

% Solve datenum problem

% timeIn1 = datenum(datevec(timeIn1));

% timeIn2 = datenum(datevec(timeIn2));

if getMatlabVersionNumber >= 9

 timeIn1 = round(timeIn1,9);

 timeIn2 = round(timeIn2,9);

else

 timeIn1 = roundn(timeIn1,-9);

 timeIn2 = roundn(timeIn2,-9);

end

% Selection

dataStart		= max(min(timeIn2),min(timeIn1));

dataEnd			= min(max(timeIn2),max(timeIn1));

indexStart_1	= find(timeIn1 >= dataStart,1,'first');

indexStart_2	= find(timeIn2 >= dataStart,1,'first');

indexEnd_1		= find(timeIn1 <= dataEnd,1,'last');

indexEnd_2		= find(timeIn2 <= dataEnd,1,'last');

timeOut1		= timeIn1(indexStart_1:indexEnd_1);

dataOut1		= dataIn1(indexStart_1:indexEnd_1,:);

timeOut2		= timeIn2(indexStart_2:indexEnd_2);

dataOut2		= dataIn2(indexStart_2:indexEnd_2,:);

function x = getMatlabVersionNumber

% Return the matlab version number for the running Matlab instance

%

% Syntax: [x] = getMatlabVersionNumber

productInfo = ver;

for k = 1:length(productInfo)

 if regexp(productInfo(k).Name,'MATLAB')

 x = str2double(productInfo(k).Version);

 end

end

Functions/+Auxiliary_Functions/getCommonData.m

function [timeOut1, dataOut1, timeOut2, dataOut2] = getCommonData(timeIn1, dataIn1, timeIn2, dataIn2)

% This functions extracts the common data according to the timestamp

%

% Data must have the same resolution of the data

%

% [timeOut1, dataOut1, timeOut2, dataOut2] = getCommonData(timeIn1, dataIn1, timeIn2, dataIn2)

%

% Inputs:

% timeIn1 = time vector (datenum) of set 1

% dataIn1 = data of set 1

% timeIn2 = time vector (datenum) of set 2

% dataIn2 = data of set 2

%

% Outputs:

% timeOut1 = selected time vector (datenum) set 1

% dataOut1 = selected data of set 1

% timeOut2 = time vector (datenum) of data set 2 (is equal to timeOut1)

% dataOut2 = selected selected data of set 2

% Solve datenum problem

% timeIn1 = datenum(datevec(timeIn1));

% timeIn2 = datenum(datevec(timeIn2));

if getMatlabVersionNumber >= 9

 timeIn1 = round(timeIn1,9);

 timeIn2 = round(timeIn2,9);

else

 timeIn1 = roundn(timeIn1,-9);

 timeIn2 = roundn(timeIn2,-9);

end

% Selection

dataStart		= max(min(timeIn2),min(timeIn1));

dataEnd			= min(max(timeIn2),max(timeIn1));

indexStart_1	= find(timeIn1 >= dataStart,1,'first');

indexStart_2	= find(timeIn2 >= dataStart,1,'first');

indexEnd_1		= find(timeIn1 <= dataEnd,1,'last');

indexEnd_2		= find(timeIn2 <= dataEnd,1,'last');

timeOut1		= timeIn1(indexStart_1:indexEnd_1);

dataOut1		= dataIn1(indexStart_1:indexEnd_1,:);

timeOut2		= timeIn2(indexStart_2:indexEnd_2);

dataOut2		= dataIn2(indexStart_2:indexEnd_2,:);

function x = getMatlabVersionNumber

% Return the matlab version number for the running Matlab instance

%

% Syntax: [x] = getMatlabVersionNumber

productInfo = ver;

for k = 1:length(productInfo)

 if regexp(productInfo(k).Name,'MATLAB')

 x = str2double(productInfo(k).Version);

 end

end

commonFunctions/getFHGColors.m

function fhg = getFHGColors()

fhg.x1 = [212 230 244]/255;

fhg.x2 = [136 188 226]/255;

fhg.x3 = [31 130 192]/255;

fhg.x4 = [0 90 148]/255;

fhg.x5 = [0 52 107]/255;

fhg.x6 = [199 193 222]/255;

fhg.x7 = [144 133 186]/255;

fhg.x8 = [57 55 139]/255;

fhg.purple = [57 55 139]/255;

fhg.x9 = [41 40 106]/255;

fhg.x10 = [226 0 26]/255;

fhg.red = [226 0 26]/255;

fhg.x11 = [158 28 34]/255;

fhg.x12 = [119 28 44]/255;

fhg.x13 = [254 234 201]/255;

fhg.x14 = [251 203 140]/255;

fhg.x15 = [242 148 0]/255;

fhg.x16 = [235 106 10]/255;

fhg.Orange = [235 106 10]/255;

fhg.x17 = [255 250 209]/255;

fhg.x18 = [255 243 129]/255;

fhg.x19 = [255 220 0]/255;

fhg.x20 = [253 195 0]/255;

fhg.darkYellow = [253 195 0]/255;

fhg.x21 = [238 239 177]/255;

fhg.x22 = [209 221 130]/255;

fhg.x23 = [177 200 0]/255;

fhg.Green = [177 200 0]/255;

fhg.x24 = [143 164 2]/255;

fhg.x25 = [106 115 65]/255;

fhg.x26 = [180 220 211]/255;

fhg.x27 = [109 191 169]/255;

fhg.x28 = [23 156 125]/255;

fhg.fhgGreen = [23 156 125]/255;

fhg.x29 = [215 225 201]/255;

fhg.x30 = [203 175 115]/255;

fhg.x31 = [70 41 21]/255;

fhg.x32 = [76 99 111]/255;

fhg.x33 = [51 184 202]/255;

fhg.BlueGreen = [51 184 202]/255;

fhg.x34 = [37 186 226]/255;

fhg.x35 = [0 110 146]/255;

fhg.Petrol = [0 110 146]/255;

fhg.x36 = [199 202 204]/255;

fhg.greyLight2 = [199 202 204]/255*1.2;

fhg.greyLight = [199 202 204]/255*1.1;

fhg.grey = [199 202 204]/255;

fhg.greyDark = [199 202 204]/255*0.9;

fhg.greyDark2 = [199 202 204]/255*0.8;

fhg.greyDark3 = [199 202 204]/255*0.7;

fhg.greyDark4 = [199 202 204]/255*0.6;

fhg.greyDark5 = [199 202 204]/255*0.5;

fhg.greyDark6 = [199 202 204]/255*0.4;

fhg.greyDark7 = [199 202 204]/255*0.3;

fhg.greyDark8 = [199 202 204]/255*0.2;

fhg.greyDark9 = [199 202 204]/255*0.1;

fhg.grey = [199 202 204]/255;

fhg.greyDark = [199 202 204]/255*0.9;

fhg.x37 = [199 202 204]/255*1.25;

fhg.x38 = [199 202 204]/255*0.75;

fhg.white = [255 255 255] / 255;

fhg.black = [0 0 0] / 255;

Functions/+Auxiliary_Functions/getFHGColors.m

function fhg = getFHGColors()

fhg.x1 = [212 230 244]/255;

fhg.x2 = [136 188 226]/255;

fhg.x3 = [31 130 192]/255;

fhg.x4 = [0 90 148]/255;

fhg.x5 = [0 52 107]/255;

fhg.x6 = [199 193 222]/255;

fhg.x7 = [144 133 186]/255;

fhg.x8 = [57 55 139]/255;

fhg.purple = [57 55 139]/255;

fhg.x9 = [41 40 106]/255;

fhg.x10 = [226 0 26]/255;

fhg.red = [226 0 26]/255;

fhg.x11 = [158 28 34]/255;

fhg.x12 = [119 28 44]/255;

fhg.x13 = [254 234 201]/255;

fhg.x14 = [251 203 140]/255;

fhg.x15 = [242 148 0]/255;

fhg.x16 = [235 106 10]/255;

fhg.Orange = [235 106 10]/255;

fhg.x17 = [255 250 209]/255;

fhg.x18 = [255 243 129]/255;

fhg.x19 = [255 220 0]/255;

fhg.x20 = [253 195 0]/255;

fhg.darkYellow = [253 195 0]/255;

fhg.x21 = [238 239 177]/255;

fhg.x22 = [209 221 130]/255;

fhg.x23 = [177 200 0]/255;

fhg.Green = [177 200 0]/255;

fhg.x24 = [143 164 2]/255;

fhg.x25 = [106 115 65]/255;

fhg.x26 = [180 220 211]/255;

fhg.x27 = [109 191 169]/255;

fhg.x28 = [23 156 125]/255;

fhg.fhgGreen = [23 156 125]/255;

fhg.x29 = [215 225 201]/255;

fhg.x30 = [203 175 115]/255;

fhg.x31 = [70 41 21]/255;

fhg.x32 = [76 99 111]/255;

fhg.x33 = [51 184 202]/255;

fhg.BlueGreen = [51 184 202]/255;

fhg.x34 = [37 186 226]/255;

fhg.x35 = [0 110 146]/255;

fhg.Petrol = [0 110 146]/255;

fhg.x36 = [199 202 204]/255;

fhg.greyLight2 = [199 202 204]/255*1.2;

fhg.greyLight = [199 202 204]/255*1.1;

fhg.grey = [199 202 204]/255;

fhg.greyDark = [199 202 204]/255*0.9;

fhg.greyDark2 = [199 202 204]/255*0.8;

fhg.greyDark3 = [199 202 204]/255*0.7;

fhg.greyDark4 = [199 202 204]/255*0.6;

fhg.greyDark5 = [199 202 204]/255*0.5;

fhg.greyDark6 = [199 202 204]/255*0.4;

fhg.greyDark7 = [199 202 204]/255*0.3;

fhg.greyDark8 = [199 202 204]/255*0.2;

fhg.greyDark9 = [199 202 204]/255*0.1;

fhg.grey = [199 202 204]/255;

fhg.greyDark = [199 202 204]/255*0.9;

fhg.x37 = [199 202 204]/255*1.25;

fhg.x38 = [199 202 204]/255*0.75;

fhg.white = [255 255 255] / 255;

fhg.black = [0 0 0] / 255;

commonFunctions/getfilenames.m

function filenames = getfilenames(varargin)

%---GETFILENAMES Returns a cell array of all files matching the

%---wildcard expression

%---"refiles" beginning in the root folder "root". Includes subdirectories

%---Example: mfiles = getfilenames('c:\','*.m') will return all .m files

%---on C drive to the cell array "mfiles".

%

%---If one argument, just a list of returned subfolders.

%---Example: mfiles = getfilenames('c:\') will return all subfolders recursively

%---in the root

root = varargin{1};

if nargin==2,

 refiles = varargin{2};

else

 refiles = [];

end

%---Note: Never tested on a Unix Box.

%---Joe Burgel, General Motors, 8/2002

%---Updated 3/2009 to include folder functionality and removed cd's

%---Updated 5/2009 to extend usage to Mac (and possibly/probably Linux)

filenames = cell(1,100);

i=0;

if ispc

 wildcard='*.*';

elseif ismac

 wildcard='';

end

AllFiles = dir(fullfile(root, wildcard)); %--Everything in this

%---folder, including directories

if ~isempty(refiles),

 MyFiles = dir(fullfile(root , refiles)); %--The files we need in this folder

 %---Build a list of all the files matching the regular expression in

 %---this folder

 for k=1:length(MyFiles)

 if ~MyFiles(k).isdir

 i=i+1;

 if i > length(filenames)

 filenames=[filenames cell(1,100)];

 end

 filenames{i} = fullfile(root, MyFiles(k).name);

 end

 end

else

 MyFiles = dir(root); %--All objects in this folder

 for k=1:length(MyFiles)

 if MyFiles(k).isdir,

 if ~(strcmp(MyFiles(k).name,'.')||strcmp(MyFiles(k).name,'..'))

 i=i+1;

 if i > length(filenames)

 filenames=[filenames cell(1,100)];

 end

 filenames{i} = fullfile(root, MyFiles(k).name);

 end

 end

 end

end

filenames=filenames(1:i);

%---Do a recursive call of this function for every sub directory of this folder

for k=1:length(AllFiles)

 if AllFiles(k).isdir

 ThisFolder = fullfile(root, AllFiles(k).name);

 if ~(strcmp(AllFiles(k).name,'.')||strcmp(AllFiles(k).name,'..'))

 if ~isempty(refiles)

 filenames = [filenames ...

 getfilenames(ThisFolder,refiles)];

 else

 filenames = [filenames ...

 getfilenames(ThisFolder)];

 end

 end

 end

end

Functions/+Auxiliary_Functions/getfilenames.m

function filenames = getfilenames(varargin)

%---GETFILENAMES Returns a cell array of all files matching the

%---wildcard expression

%---"refiles" beginning in the root folder "root". Includes subdirectories

%---Example: mfiles = getfilenames('c:\','*.m') will return all .m files

%---on C drive to the cell array "mfiles".

%

%---If one argument, just a list of returned subfolders.

%---Example: mfiles = getfilenames('c:\') will return all subfolders recursively

%---in the root

root = varargin{1};

if nargin==2,

 refiles = varargin{2};

else

 refiles = [];

end

%---Note: Never tested on a Unix Box.

%---Joe Burgel, General Motors, 8/2002

%---Updated 3/2009 to include folder functionality and removed cd's

%---Updated 5/2009 to extend usage to Mac (and possibly/probably Linux)

filenames = cell(1,100);

i=0;

if ispc

 wildcard='*.*';

elseif ismac

 wildcard='';

end

AllFiles = dir(fullfile(root, wildcard)); %--Everything in this

%---folder, including directories

if ~isempty(refiles),

 MyFiles = dir(fullfile(root , refiles)); %--The files we need in this folder

 %---Build a list of all the files matching the regular expression in

 %---this folder

 for k=1:length(MyFiles)

 if ~MyFiles(k).isdir

 i=i+1;

 if i > length(filenames)

 filenames=[filenames cell(1,100)];

 end

 filenames{i} = fullfile(root, MyFiles(k).name);

 end

 end

else

 MyFiles = dir(root); %--All objects in this folder

 for k=1:length(MyFiles)

 if MyFiles(k).isdir,

 if ~(strcmp(MyFiles(k).name,'.')||strcmp(MyFiles(k).name,'..'))

 i=i+1;

 if i > length(filenames)

 filenames=[filenames cell(1,100)];

 end

 filenames{i} = fullfile(root, MyFiles(k).name);

 end

 end

 end

end

filenames=filenames(1:i);

%---Do a recursive call of this function for every sub directory of this folder

for k=1:length(AllFiles)

 if AllFiles(k).isdir

 ThisFolder = fullfile(root, AllFiles(k).name);

 if ~(strcmp(AllFiles(k).name,'.')||strcmp(AllFiles(k).name,'..'))

 if ~isempty(refiles)

 filenames = [filenames ...

 getfilenames(ThisFolder,refiles)];

 else

 filenames = [filenames ...

 getfilenames(ThisFolder)];

 end

 end

 end

end

commonFunctions/getMatlabVersionNumber.m

function x = getMatlabVersionNumber

% Return the matlab version number for the running Matlab instance

%

% Syntax: [x] = getMatlabVersionNumber

productInfo = ver;

for k = 1:length(productInfo)

 if strcmp(productInfo(k).Name,'MATLAB')

 x = str2double(productInfo(k).Version);

 end

end

Functions/+Auxiliary_Functions/getMatlabVersionNumber.m

function x = getMatlabVersionNumber

% Return the matlab version number for the running Matlab instance

%

% Syntax: [x] = getMatlabVersionNumber

productInfo = ver;

for k = 1:length(productInfo)

 if strcmp(productInfo(k).Name,'MATLAB')

 x = str2double(productInfo(k).Version);

 end

end

commonFunctions/interp2Timestamp.m

function [timeStampNew, dataNew_final] = interp2Timestamp(timeStampNew, timeStampOld, dataOld, method)

% This function interpolates values in missing timestamps

%

%

% [timeStampNew, dataNew] = interp2Timestamp(timeStampNew, timeStampOld, dataOld, method)

%

% Input:

% timeStampNew: target time stamp (datenum), for interpolation

% timeStampOld: original timestamp of the data(datenum)

% dataOld: Set of data that will be interpolated

% method: Method applied for interpolation, options are 'linear','nearest',

% 'spline','pchip', default is 'linear'

%

% Output:

% timeStampNew: new generated time stamp (datenum); no change

% within the function

% dataNew: interpolated set of data

%

% v1.0 (25.07.2012): Malte Jansen, Fraunhofer IWES, Kassel

% v1.1 (29.11.2012): Malte Jansen, Fraunhofer IWES, Kassel

% added behaviour that preserves the nans

% v1.2 (29.11.2012): Malte Jansen, Fraunhofer IWES, added options that are

% available in matlab-function interp1

%

% see also: downsampleData

if nargin < 4

	method = 'linear';

end

% Solve datenum problem

% timeIn1 = datenum(datevec(timeIn1));

% timeIn2 = datenum(datevec(timeIn2));

if getMatlabVersionNumber >= 9

 timeStampOld = round(timeStampOld,10);

 timeStampNew = round(timeStampNew,10);

else

 timeStampOld = roundn(timeStampOld,-10);

 timeStampNew = roundn(timeStampNew,-10);

end

%% Assign Data to Time Stamps

% Get only unique values

[~, ind] = unique(timeStampOld);

timeStampOld_uniq = timeStampOld(ind,:);

dataOld_unique = dataOld(ind,:);

% Comparision of the old and the new time stamp / Determination of

% interpolation steps

if getMatlabVersionNumber >= 9

	commonStartTime = round(max(min(timeStampNew),min(timeStampOld_uniq)),10);

	commonEndTime = round(min(max(timeStampNew),max(timeStampOld_uniq)),10);

else

	commonStartTime = roundn(max(min(timeStampNew),min(timeStampOld_uniq)),-10);

	commonEndTime = roundn(min(max(timeStampNew),max(timeStampOld_uniq)),-10);

end

% commonTimeNew = timeStampNew(find(commonStartTime == timeStampNew):find(commonEndTime == timeStampNew));

% commonTimeOld = timeStampOld_uniq(find(commonStartTime == timeStampOld_uniq):find(commonEndTime == timeStampOld_uniq));

% Old deprecated code, since available solution is not found on occasion

commonTimeNew = timeStampNew(find(commonStartTime == timeStampNew):find(ismember(datevec(timeStampNew),datevec(commonEndTime),'rows')));

commonTimeOld = timeStampOld_uniq(find(commonStartTime == timeStampOld_uniq):find(ismember(datevec(timeStampOld_uniq),datevec(commonEndTime),'rows')));

timeStep = round(length(timeStampNew) / sum(ismember(timeStampNew,timeStampOld_uniq)));

timeStepNew = commonTimeNew(2) - commonTimeNew(1);

timeStepOld = commonTimeOld(2) - commonTimeOld(1);

% Adjust time Stamp for interpolation

timeStampOld_shift = timeStampOld_uniq + (2 * (timeStepNew / timeStepOld) / 24);

% Assign to time stamp

if strcmp(method,'linear')

	dataNew_interp = interp1(timeStampOld_shift,dataOld_unique,timeStampNew,'linear');

	

elseif strcmp(method,'nearest')

	dataNew_interp = interp1(timeStampOld_shift,dataOld_unique,timeStampNew,'nearest');

	

elseif strcmp(method,'spline')

	dataNew_interp = interp1(timeStampOld_shift,dataOld_unique,timeStampNew,'spline');

	

elseif strcmp(method,'pchip')

	dataNew_interp = interp1(timeStampOld_shift,dataOld_unique,timeStampNew,'pchip');

	

end

% % Manual replication

% timeOld_synt = nan(ceil(size(timeStampNew,1)/timeStep)*timeStep,1);

% timeOld_synt(1:size(timeStampNew,1),1) = timeStampNew;

% timeOld_synt = reshape(timeOld_synt,timeStep,[])';

% [timeStampOld,dataOld] = syncData2Timestamp(timeOld_synt(:,1),timeStampOld_uniq,dataOld_unique);

% for iResh=1:size(dataOld,2)

% 	dataNew_steps(:,iResh) = reshape(repmat(dataOld(:,iResh),1,4)',1,[]);

% end

%

% % Merge data

% dataNew_tmp = dataNew_steps(1:size(dataNew_interp,1),:);

dataNew_final = dataNew_interp;

% dataNew_final(isnan(dataNew_final)&~isnan(dataNew_tmp)) = dataNew_tmp(isnan(dataNew_final)&~isnan(dataNew_tmp));

Functions/+Auxiliary_Functions/interp2Timestamp.m

function [timeStampNew, dataNew_final] = interp2Timestamp(timeStampNew, timeStampOld, dataOld, method)

% This function interpolates values in missing timestamps

%

%

% [timeStampNew, dataNew] = interp2Timestamp(timeStampNew, timeStampOld, dataOld, method)

%

% Input:

% timeStampNew: target time stamp (datenum), for interpolation

% timeStampOld: original timestamp of the data(datenum)

% dataOld: Set of data that will be interpolated

% method: Method applied for interpolation, options are 'linear','nearest',

% 'spline','pchip', default is 'linear'

%

% Output:

% timeStampNew: new generated time stamp (datenum); no change

% within the function

% dataNew: interpolated set of data

%

% v1.0 (25.07.2012): Malte Jansen, Fraunhofer IWES, Kassel

% v1.1 (29.11.2012): Malte Jansen, Fraunhofer IWES, Kassel

% added behaviour that preserves the nans

% v1.2 (29.11.2012): Malte Jansen, Fraunhofer IWES, added options that are

% available in matlab-function interp1

%

% see also: downsampleData

if nargin < 4

	method = 'linear';

end

% Solve datenum problem

% timeIn1 = datenum(datevec(timeIn1));

% timeIn2 = datenum(datevec(timeIn2));

if getMatlabVersionNumber >= 9

 timeStampOld = round(timeStampOld,10);

 timeStampNew = round(timeStampNew,10);

else

 timeStampOld = roundn(timeStampOld,-10);

 timeStampNew = roundn(timeStampNew,-10);

end

%% Assign Data to Time Stamps

% Get only unique values

[~, ind] = unique(timeStampOld);

timeStampOld_uniq = timeStampOld(ind,:);

dataOld_unique = dataOld(ind,:);

% Comparision of the old and the new time stamp / Determination of

% interpolation steps

if getMatlabVersionNumber >= 9

	commonStartTime = round(max(min(timeStampNew),min(timeStampOld_uniq)),10);

	commonEndTime = round(min(max(timeStampNew),max(timeStampOld_uniq)),10);

else

	commonStartTime = roundn(max(min(timeStampNew),min(timeStampOld_uniq)),-10);

	commonEndTime = roundn(min(max(timeStampNew),max(timeStampOld_uniq)),-10);

end

% commonTimeNew = timeStampNew(find(commonStartTime == timeStampNew):find(commonEndTime == timeStampNew));

% commonTimeOld = timeStampOld_uniq(find(commonStartTime == timeStampOld_uniq):find(commonEndTime == timeStampOld_uniq));

% Old deprecated code, since available solution is not found on occasion

commonTimeNew = timeStampNew(find(commonStartTime == timeStampNew):find(ismember(datevec(timeStampNew),datevec(commonEndTime),'rows')));

commonTimeOld = timeStampOld_uniq(find(commonStartTime == timeStampOld_uniq):find(ismember(datevec(timeStampOld_uniq),datevec(commonEndTime),'rows')));

timeStep = round(length(timeStampNew) / sum(ismember(timeStampNew,timeStampOld_uniq)));

timeStepNew = commonTimeNew(2) - commonTimeNew(1);

timeStepOld = commonTimeOld(2) - commonTimeOld(1);

% Adjust time Stamp for interpolation

timeStampOld_shift = timeStampOld_uniq + (2 * (timeStepNew / timeStepOld) / 24);

% Assign to time stamp

if strcmp(method,'linear')

	dataNew_interp = interp1(timeStampOld_shift,dataOld_unique,timeStampNew,'linear');

	

elseif strcmp(method,'nearest')

	dataNew_interp = interp1(timeStampOld_shift,dataOld_unique,timeStampNew,'nearest');

	

elseif strcmp(method,'spline')

	dataNew_interp = interp1(timeStampOld_shift,dataOld_unique,timeStampNew,'spline');

	

elseif strcmp(method,'pchip')

	dataNew_interp = interp1(timeStampOld_shift,dataOld_unique,timeStampNew,'pchip');

	

end

% % Manual replication

% timeOld_synt = nan(ceil(size(timeStampNew,1)/timeStep)*timeStep,1);

% timeOld_synt(1:size(timeStampNew,1),1) = timeStampNew;

% timeOld_synt = reshape(timeOld_synt,timeStep,[])';

% [timeStampOld,dataOld] = syncData2Timestamp(timeOld_synt(:,1),timeStampOld_uniq,dataOld_unique);

% for iResh=1:size(dataOld,2)

% 	dataNew_steps(:,iResh) = reshape(repmat(dataOld(:,iResh),1,4)',1,[]);

% end

%

% % Merge data

% dataNew_tmp = dataNew_steps(1:size(dataNew_interp,1),:);

dataNew_final = dataNew_interp;

% dataNew_final(isnan(dataNew_final)&~isnan(dataNew_tmp)) = dataNew_tmp(isnan(dataNew_final)&~isnan(dataNew_tmp));

commonFunctions/ismonotonic.m

function monotonic = ismonotonic(x, strict, direction, dim)

% ISMONOTONIC(X) returns a boolean value indicating whether or not a vector is monotonic.

% By default, ISMONOTONIC returns true for non-strictly monotonic vectors,

% and both monotonic increasing and monotonic decreasing vectors. For

% matrices and N-D arrays, ISMONOTONIC returns a value for each column in

% X.

%

% ISMONOTONIC(X, 1) works as above, but only returns true when X is

% strictly monotonically increasing, or strictly monotonically decreasing.

%

% ISMONOTONIC(X, 0) works as ISMONOTONIC(X).

%

% ISMONOTONIC(X, [], 'INCREASING') works as above, but returns true only

% when X is monotonically increasing.

%

% ISMONOTONIC(X, [], 'DECREASING') works as above, but returns true only

% when X is monotonically decreasing.

%

% ISMONOTONIC(X, [], 'EITHER') works as ISMONOTONIC(X, []).

%

% ISMONOTONIC(X, [], [], DIM) works as above, but along dimension DIM.

%

% NOTE: Third input variable is case insensitive, and partial matching is

% used, so 'd' would be recognised as 'DECREASING' etc..

%

% EXAMPLE:

% x = [1:4; 6:-2:2 3]

% ismonotonic(x)

% ismonotonic(x, [], 'i')

% ismonotonic(x, [], [], 2)

%

% x =

% 1 2 3 4

% 6 4 2 3

% ans =

% 1 1 1 1

% ans =

% 1 1 0 0

% ans =

% 1

% 0

%

% SEE ALSO: is*

%

% $ Author: Richie Cotton $ $ Date: 2010/01/20 $ $ Version: 1.2 $

%% Basic error checking & default setup

if ~isreal(x) || ~isnumeric(x)

 warning('ismonotonic:badXValue', ...

 'The array to be tested is not real and numeric. Unexpected behaviour may occur.');

end

if nargin < 2 || isempty(strict)

 strict = false;

end

if nargin < 3 || isempty(direction)

 direction = 'either';

end

% Accept partial matching for direction

lendir = length(direction);

if strncmpi(direction, 'increasing', lendir)

 testIncreasing = true;

 testDecreasing = false;

elseif strncmpi(direction, 'decreasing', lendir)

 testIncreasing = false;

 testDecreasing = true;

elseif strncmpi(direction, 'either', lendir)

 testIncreasing = true;

 testDecreasing = true;

else

 warning('ismonotonic:badDirection', ...

 'The string entered for direction has not been recognised, reverting to ''either''.');

 testIncreasing = true;

 testDecreasing = true;

end

if nargin < 4 || isempty(dim)

 dim = find(size(x) ~= 1, 1);

 if isempty(dim)

 dim = 1;

 end

end

%% Test for monotonic increasing

if testIncreasing

 if strict

 comparison = @gt;

 else

 comparison = @ge;

 end

 monotonicAscending = all(comparison(diff(x, [], dim), 0), dim);

else

 monotonicAscending = false;

end

%% Test for monotonic decreasing

if testDecreasing

 if strict

 fhComparison = @lt;

 else

 fhComparison = @le;

 end

 monotonicDescending = all(fhComparison(diff(x, [], dim), 0), dim);

else

 monotonicDescending = false;

end

monotonic = monotonicAscending | monotonicDescending;

Functions/+Auxiliary_Functions/ismonotonic.m

function monotonic = ismonotonic(x, strict, direction, dim)

% ISMONOTONIC(X) returns a boolean value indicating whether or not a vector is monotonic.

% By default, ISMONOTONIC returns true for non-strictly monotonic vectors,

% and both monotonic increasing and monotonic decreasing vectors. For

% matrices and N-D arrays, ISMONOTONIC returns a value for each column in

% X.

%

% ISMONOTONIC(X, 1) works as above, but only returns true when X is

% strictly monotonically increasing, or strictly monotonically decreasing.

%

% ISMONOTONIC(X, 0) works as ISMONOTONIC(X).

%

% ISMONOTONIC(X, [], 'INCREASING') works as above, but returns true only

% when X is monotonically increasing.

%

% ISMONOTONIC(X, [], 'DECREASING') works as above, but returns true only

% when X is monotonically decreasing.

%

% ISMONOTONIC(X, [], 'EITHER') works as ISMONOTONIC(X, []).

%

% ISMONOTONIC(X, [], [], DIM) works as above, but along dimension DIM.

%

% NOTE: Third input variable is case insensitive, and partial matching is

% used, so 'd' would be recognised as 'DECREASING' etc..

%

% EXAMPLE:

% x = [1:4; 6:-2:2 3]

% ismonotonic(x)

% ismonotonic(x, [], 'i')

% ismonotonic(x, [], [], 2)

%

% x =

% 1 2 3 4

% 6 4 2 3

% ans =

% 1 1 1 1

% ans =

% 1 1 0 0

% ans =

% 1

% 0

%

% SEE ALSO: is*

%

% $ Author: Richie Cotton $ $ Date: 2010/01/20 $ $ Version: 1.2 $

%% Basic error checking & default setup

if ~isreal(x) || ~isnumeric(x)

 warning('ismonotonic:badXValue', ...

 'The array to be tested is not real and numeric. Unexpected behaviour may occur.');

end

if nargin < 2 || isempty(strict)

 strict = false;

end

if nargin < 3 || isempty(direction)

 direction = 'either';

end

% Accept partial matching for direction

lendir = length(direction);

if strncmpi(direction, 'increasing', lendir)

 testIncreasing = true;

 testDecreasing = false;

elseif strncmpi(direction, 'decreasing', lendir)

 testIncreasing = false;

 testDecreasing = true;

elseif strncmpi(direction, 'either', lendir)

 testIncreasing = true;

 testDecreasing = true;

else

 warning('ismonotonic:badDirection', ...

 'The string entered for direction has not been recognised, reverting to ''either''.');

 testIncreasing = true;

 testDecreasing = true;

end

if nargin < 4 || isempty(dim)

 dim = find(size(x) ~= 1, 1);

 if isempty(dim)

 dim = 1;

 end

end

%% Test for monotonic increasing

if testIncreasing

 if strict

 comparison = @gt;

 else

 comparison = @ge;

 end

 monotonicAscending = all(comparison(diff(x, [], dim), 0), dim);

else

 monotonicAscending = false;

end

%% Test for monotonic decreasing

if testDecreasing

 if strict

 fhComparison = @lt;

 else

 fhComparison = @le;

 end

 monotonicDescending = all(fhComparison(diff(x, [], dim), 0), dim);

else

 monotonicDescending = false;

end

monotonic = monotonicAscending | monotonicDescending;

Functions/+Offer_ControlReserve/limitRPOfferMarket.m

function [offerRPMarketLimit] = limitRPOfferMarket(offerRPMarketLimit,simRuns,optsOffer)

% Bid size

if optsOffer.minBidSize

	

	offerRPMarketLimit.AAP.neg.capacity(offerRPMarketLimit.AAP.neg.capacity < optsOffer.minBidSize) = 0;

	offerRPMarketLimit.AAP.pos.capacity(offerRPMarketLimit.AAP.pos.capacity < optsOffer.minBidSize) = 0;

	offerRPMarketLimit.BC.neg.capacity(offerRPMarketLimit.BC.neg.capacity < optsOffer.minBidSize) = 0;

	offerRPMarketLimit.BC.pos.capacity(offerRPMarketLimit.BC.pos.capacity < optsOffer.minBidSize) = 0;

	offerRPMarketLimit.BCredOfferID.neg.capacity(offerRPMarketLimit.BCredOfferID.neg.capacity < optsOffer.minBidSize) = 0;

	offerRPMarketLimit.BCredOfferID.pos.capacity(offerRPMarketLimit.BCredOfferID.pos.capacity < optsOffer.minBidSize) = 0;

	

end

% Weekdaily tender

if optsOffer.weekDailyTender

	

	noOffer = weekday(floor(offerRPMarketLimit.AAP.startTime) - 1) == 1 | weekday(floor(offerRPMarketLimit.AAP.startTime) - 1) == 7;

	

	offerRPMarketLimit.AAP.neg.capacity(noOffer) = 0;

	offerRPMarketLimit.AAP.pos.capacity(noOffer) = 0;

	offerRPMarketLimit.BC.neg.capacity(noOffer) = 0;

	offerRPMarketLimit.BC.pos.capacity(noOffer) = 0;

	offerRPMarketLimit.BCredOfferID.neg.capacity(noOffer) = 0;

	offerRPMarketLimit.BCredOfferID.pos.capacity(noOffer) = 0;

	

end

% Proof Schedule

if optsOffer.proofSched

	

	offerRPMarketLimit.AAP.neg.capacity(~isnan(offerRPMarketLimit.AAP.neg.capacity)) = 0;

	offerRPMarketLimit.AAP.neg.capacity(~isnan(offerRPMarketLimit.AAP.neg.capacity)) = 0;

	

end

% Symmetric Bid

if optsOffer.symmetricBid

	if simRuns.percentNegRP ~= simRuns.percentPosRP

		

		offerRPMarketLimit.AAP.neg.capacity(:) = 0;

		offerRPMarketLimit.AAP.pos.capacity(:) = 0;

		offerRPMarketLimit.BC.neg.capacity(:) = 0;

		offerRPMarketLimit.BC.pos.capacity(:) = 0;

		offerRPMarketLimit.BCredOfferID.neg.capacity(:) = 0;

		offerRPMarketLimit.BCredOfferID.pos.capacity(:) = 0;

		

	end

end

% Restricions by market volumes

if optsOffer.limitMarket

	

	offerRPMarketLimit.AAP.neg.capacity(offerRPMarketLimit.AAP.neg.capacity > optsOffer.limitMarketNegative) = optsOffer.limitMarketNegative;

	offerRPMarketLimit.AAP.pos.capacity(offerRPMarketLimit.AAP.pos.capacity > optsOffer.limitMarketPositive) = optsOffer.limitMarketPositive;

	offerRPMarketLimit.BC.neg.capacity(offerRPMarketLimit.BC.neg.capacity > optsOffer.limitMarketNegative) = optsOffer.limitMarketNegative;

	offerRPMarketLimit.BC.pos.capacity(offerRPMarketLimit.BC.pos.capacity > optsOffer.limitMarketPositive) = optsOffer.limitMarketPositive;

	offerRPMarketLimit.BCredOfferID.neg.capacity(offerRPMarketLimit.BCredOfferID.neg.capacity > optsOffer.limitMarketNegative) = optsOffer.limitMarketNegative;

	offerRPMarketLimit.BCredOfferID.pos.capacity(offerRPMarketLimit.BCredOfferID.pos.capacity > optsOffer.limitMarketPositive) = optsOffer.limitMarketPositive;

	

end

offerRPMarketLimit.AAP.neg.capacityPrice(offerRPMarketLimit.AAP.neg.capacity == 0) = 0;

offerRPMarketLimit.AAP.pos.capacityPrice(offerRPMarketLimit.AAP.pos.capacity == 0) = 0;

offerRPMarketLimit.BC.neg.capacityPrice(offerRPMarketLimit.BC.neg.capacity == 0) = 0;

offerRPMarketLimit.BC.pos.capacityPrice(offerRPMarketLimit.BC.pos.capacity == 0) = 0;

offerRPMarketLimit.BCredOfferID.neg.capacityPrice(offerRPMarketLimit.BCredOfferID.neg.capacity == 0) = 0;

offerRPMarketLimit.BCredOfferID.pos.capacityPrice(offerRPMarketLimit.BCredOfferID.pos.capacity == 0) = 0;

offerRPMarketLimit.AAP.neg.energyPrice(offerRPMarketLimit.AAP.neg.capacity == 0) = 0;

offerRPMarketLimit.AAP.pos.energyPrice(offerRPMarketLimit.AAP.pos.capacity == 0) = 0;

offerRPMarketLimit.BC.neg.energyPrice(offerRPMarketLimit.BC.neg.capacity == 0) = 0;

offerRPMarketLimit.BC.pos.energyPrice(offerRPMarketLimit.BC.pos.capacity == 0) = 0;

offerRPMarketLimit.BCredOfferID.neg.energyPrice(offerRPMarketLimit.BCredOfferID.neg.capacity == 0) = 0;

offerRPMarketLimit.BCredOfferID.pos.energyPrice(offerRPMarketLimit.BCredOfferID.pos.capacity == 0) = 0;

offerRPMarketLimit.AAP.neg.lostEnergy(offerRPMarketLimit.AAP.neg.capacity == 0) = 0;

offerRPMarketLimit.AAP.pos.lostEnergy(offerRPMarketLimit.AAP.pos.capacity == 0) = 0;

offerRPMarketLimit.BC.neg.lostEnergy(offerRPMarketLimit.BC.neg.capacity == 0) = 0;

offerRPMarketLimit.BC.pos.lostEnergy(offerRPMarketLimit.BC.pos.capacity == 0) = 0;

offerRPMarketLimit.BCredOfferID.neg.lostEnergy(offerRPMarketLimit.BCredOfferID.neg.capacity == 0) = 0;

offerRPMarketLimit.BCredOfferID.pos.lostEnergy(offerRPMarketLimit.BCredOfferID.pos.capacity == 0) = 0;

Functions/+Config/loess1d.m

function [ui,y_fit] = loess1d(u, y, n)

%loess1d loess local regression

% [ui,yi] = loess1d(u,v,y,n)

% u vectors of the independed variables

% y vector of the dependend variable

% n resolution of the solution

m = length(u);

x_min = min(u);

x_max = max(u);

dx = (x_max-x_min)/(n-1);

x = x_min:dx:x_max;

h = dx*2;

A = [ones(m,1) u];

y_fit = zeros(n,1);

for i = 1:n

 w = TriCubeWeight(abs(u - x(i))/h);

 % w = SphericalKernel(x(10),u,h);

 a = lscov(A,y,w);

 y_fit(i) = a(1)+x(i)*a(2);

end

ui = x;

end

function [w] = TriCubeWeight(x)

%TriCubeWeight tri cube weight function

% Detailed explanation goes here

x = x(:);

x = abs(x);

w = (1-x.^3).^3.*(0<=x & x<=1)+...

 +0.*(x>1);

end

Functions/+Config/loess2d.m

function [ui,vi,y_fit] = loess2d(u_,v_,y, n)

%loess2d loess local regression

% [ui,vi,yi] = loess2d(u,v,y,n)

% u, v two vectors of the independed variables

% y vector of the dependend variable

% n resolution of the solution

m = length(u_);

u_min = min(u_);

u_max = max(u_);

v_min = min(v_);

v_max = max(v_);

u = (u_-u_min)/(u_max-u_min);

v = (v_-v_min)/(v_max-v_min);

dx = 1/(n-1);

xi = 0:dx:1;

h = dx*5;

A = [ones(m,1) u v];

y_fit = zeros(n);

for i = 1:n

 for j = 1:n

 % spherical kernel

 d = sqrt((u-xi(i)).^2+(v-xi(j)).^2);

 w = TriCubeWeight(d/h);

 a = lscov(A,y,w);

 y_fit(j,i) = a(1)+a(2)*xi(i)+a(3)*xi(j);

 end

end

ui = xi * (u_max-u_min)+u_min;

vi = xi * (v_max-v_min)+v_min;

[ui,vi] = meshgrid(ui,vi);

end

function [w] = TriCubeWeight(x)

%TriCubeWeight tri cube weight function

% Detailed explanation goes here

x = x(:);

x = abs(x);

w = (1-x.^3).^3.*(0<=x & x<=1)+...

 +0.*(x>1);

end

commonFunctions/nanmax.m

function [y,idx] = nanmax(a,dim,b)
% FORMAT: [Y,IDX] = NANMAX(A,DIM,[B])
%
% Maximum ignoring NaNs
%
% This function enhances the functionality of NANMAX as distributed in
% the MATLAB Statistics Toolbox and is meant as a replacement (hence the
% identical name).
%
% If fact NANMAX simply rearranges the input arguments to MAX because
% MAX already ignores NaNs.
%
% NANMAX(A,DIM) calculates the maximum of A along the dimension DIM of
% the N-D array X. If DIM is omitted NANMAX calculates the maximum along
% the first non-singleton dimension of X.
%
% NANMAX(A,[],B) returns the minimum of the N-D arrays A and B. A and
% B must be of the same size.
%
% Comparing two matrices in a particular dimension is not supported,
% e.g. NANMAX(A,2,B) is invalid.
%
% [Y,IDX] = NANMAX(X,DIM) returns the index to the maximum in IDX.
%
% Similar replacements exist for NANMIN, NANMEAN, NANSTD, NANMEDIAN and
% NANSUM which are all part of the NaN-suite.
%
% See also MAX

% ---
% author: Jan Gläscher
% affiliation: Neuroimage Nord, University of Hamburg, Germany
% email: glaescher@uke.uni-hamburg.de
%
% $Revision: 1.1 $ $Date: 2004/07/15 22:42:11 $

if nargin < 1
	error('Requires at least one input argument')
end

if nargin == 1
	if nargout > 1
		[y,idx] = max(a);
	else
		y = max(a);
	end
elseif nargin == 2
	if nargout > 1
		[y,idx] = max(a,[],dim);
	else
		y = max(a,[],dim);
	end
elseif nargin == 3
	if ~isempty(dim)
		error('Comparing two matrices along a particular dimension is not supported')
	else
		if nargout > 1
			[y,idx] = max(a,b);
		else
			y = max(a,b);
		end
	end
elseif nargin > 3
	error('Too many input arguments.')
end

% $Id: nanmax.m,v 1.1 2004/07/15 22:42:11 glaescher Exp glaescher $

Functions/+Auxiliary_Functions/nanmax.m

function [y,idx] = nanmax(a,dim,b)
% FORMAT: [Y,IDX] = NANMAX(A,DIM,[B])
%
% Maximum ignoring NaNs
%
% This function enhances the functionality of NANMAX as distributed in
% the MATLAB Statistics Toolbox and is meant as a replacement (hence the
% identical name).
%
% If fact NANMAX simply rearranges the input arguments to MAX because
% MAX already ignores NaNs.
%
% NANMAX(A,DIM) calculates the maximum of A along the dimension DIM of
% the N-D array X. If DIM is omitted NANMAX calculates the maximum along
% the first non-singleton dimension of X.
%
% NANMAX(A,[],B) returns the minimum of the N-D arrays A and B. A and
% B must be of the same size.
%
% Comparing two matrices in a particular dimension is not supported,
% e.g. NANMAX(A,2,B) is invalid.
%
% [Y,IDX] = NANMAX(X,DIM) returns the index to the maximum in IDX.
%
% Similar replacements exist for NANMIN, NANMEAN, NANSTD, NANMEDIAN and
% NANSUM which are all part of the NaN-suite.
%
% See also MAX

% ---
% author: Jan Gläscher
% affiliation: Neuroimage Nord, University of Hamburg, Germany
% email: glaescher@uke.uni-hamburg.de
%
% $Revision: 1.1 $ $Date: 2004/07/15 22:42:11 $

if nargin < 1
	error('Requires at least one input argument')
end

if nargin == 1
	if nargout > 1
		[y,idx] = max(a);
	else
		y = max(a);
	end
elseif nargin == 2
	if nargout > 1
		[y,idx] = max(a,[],dim);
	else
		y = max(a,[],dim);
	end
elseif nargin == 3
	if ~isempty(dim)
		error('Comparing two matrices along a particular dimension is not supported')
	else
		if nargout > 1
			[y,idx] = max(a,b);
		else
			y = max(a,b);
		end
	end
elseif nargin > 3
	error('Too many input arguments.')
end

% $Id: nanmax.m,v 1.1 2004/07/15 22:42:11 glaescher Exp glaescher $

commonFunctions/nanmean.m

function y = nanmean(x,dim)
% FORMAT: Y = NANMEAN(X,DIM)
%
% Average or mean value ignoring NaNs
%
% This function enhances the functionality of NANMEAN as distributed in
% the MATLAB Statistics Toolbox and is meant as a replacement (hence the
% identical name).
%
% NANMEAN(X,DIM) calculates the mean along any dimension of the N-D
% array X ignoring NaNs. If DIM is omitted NANMEAN averages along the
% first non-singleton dimension of X.
%
% Similar replacements exist for NANSTD, NANMEDIAN, NANMIN, NANMAX, and
% NANSUM which are all part of the NaN-suite.
%
% See also MEAN

% ---
% author: Jan Gläscher
% affiliation: Neuroimage Nord, University of Hamburg, Germany
% email: glaescher@uke.uni-hamburg.de
%
% $Revision: 1.1 $ $Date: 2004/07/15 22:42:13 $

if isempty(x)
	y = NaN;
	return
end

if nargin < 2
	dim = min(find(size(x)~=1));
	if isempty(dim)
		dim = 1;
	end
end

% Replace NaNs with zeros.
nans = isnan(x);
x(isnan(x)) = 0;

% denominator
count = size(x,dim) - sum(nans,dim);

% Protect against a all NaNs in one dimension
i = find(count==0);
count(i) = ones(size(i));

y = sum(x,dim)./count;
y(i) = i + NaN;

% $Id: nanmean.m,v 1.1 2004/07/15 22:42:13 glaescher Exp glaescher $

Functions/+Auxiliary_Functions/nanmean.m

function y = nanmean(x,dim)
% FORMAT: Y = NANMEAN(X,DIM)
%
% Average or mean value ignoring NaNs
%
% This function enhances the functionality of NANMEAN as distributed in
% the MATLAB Statistics Toolbox and is meant as a replacement (hence the
% identical name).
%
% NANMEAN(X,DIM) calculates the mean along any dimension of the N-D
% array X ignoring NaNs. If DIM is omitted NANMEAN averages along the
% first non-singleton dimension of X.
%
% Similar replacements exist for NANSTD, NANMEDIAN, NANMIN, NANMAX, and
% NANSUM which are all part of the NaN-suite.
%
% See also MEAN

% ---
% author: Jan Gläscher
% affiliation: Neuroimage Nord, University of Hamburg, Germany
% email: glaescher@uke.uni-hamburg.de
%
% $Revision: 1.1 $ $Date: 2004/07/15 22:42:13 $

if isempty(x)
	y = NaN;
	return
end

if nargin < 2
	dim = min(find(size(x)~=1));
	if isempty(dim)
		dim = 1;
	end
end

% Replace NaNs with zeros.
nans = isnan(x);
x(isnan(x)) = 0;

% denominator
count = size(x,dim) - sum(nans,dim);

% Protect against a all NaNs in one dimension
i = find(count==0);
count(i) = ones(size(i));

y = sum(x,dim)./count;
y(i) = i + NaN;

% $Id: nanmean.m,v 1.1 2004/07/15 22:42:13 glaescher Exp glaescher $

commonFunctions/nanmin.m

function [y,idx] = nanmin(a,dim,b)
% FORMAT: [Y,IDX] = NANMIN(A,DIM,[B])
%
% Minimum ignoring NaNs
%
% This function enhances the functionality of NANMIN as distributed in
% the MATLAB Statistics Toolbox and is meant as a replacement (hence the
% identical name).
%
% If fact NANMIN simply rearranges the input arguments to MIN because
% MIN already ignores NaNs.
%
% NANMIN(A,DIM) calculates the minimum of A along the dimension DIM of
% the N-D array X. If DIM is omitted NANMIN calculates the minimum along
% the first non-singleton dimension of X.
%
% NANMIN(A,[],B) returns the minimum of the N-D arrays A and B. A and
% B must be of the same size.
%
% Comparing two matrices in a particular dimension is not supported,
% e.g. NANMIN(A,2,B) is invalid.
%
% [Y,IDX] = NANMIN(X,DIM) returns the index to the minimum in IDX.
%
% Similar replacements exist for NANMAX, NANMEAN, NANSTD, NANMEDIAN and
% NANSUM which are all part of the NaN-suite.
%
% See also MIN

% ---
% author: Jan Gläscher
% affiliation: Neuroimage Nord, University of Hamburg, Germany
% email: glaescher@uke.uni-hamburg.de
%
% $Revision: 1.1 $ $Date: 2004/07/15 22:42:14 $

if nargin < 1
	error('Requires at least one input argument')
end

if nargin == 1
	if nargout > 1
		[y,idx] = min(a);
	else
		y = min(a);
	end
elseif nargin == 2
	if nargout > 1
		[y,idx] = min(a,[],dim);
	else
		y = min(a,[],dim);
	end
elseif nargin == 3
	if ~isempty(dim)
		error('Comparing two matrices along a particular dimension is not supported')
	else
		if nargout > 1
			[y,idx] = min(a,b);
		else
			y = min(a,b);
		end
	end
elseif nargin > 3
	error('Too many input arguments.')
end

% $Id: nanmin.m,v 1.1 2004/07/15 22:42:14 glaescher Exp glaescher $

Functions/+Auxiliary_Functions/nanmin.m

function [y,idx] = nanmin(a,dim,b)
% FORMAT: [Y,IDX] = NANMIN(A,DIM,[B])
%
% Minimum ignoring NaNs
%
% This function enhances the functionality of NANMIN as distributed in
% the MATLAB Statistics Toolbox and is meant as a replacement (hence the
% identical name).
%
% If fact NANMIN simply rearranges the input arguments to MIN because
% MIN already ignores NaNs.
%
% NANMIN(A,DIM) calculates the minimum of A along the dimension DIM of
% the N-D array X. If DIM is omitted NANMIN calculates the minimum along
% the first non-singleton dimension of X.
%
% NANMIN(A,[],B) returns the minimum of the N-D arrays A and B. A and
% B must be of the same size.
%
% Comparing two matrices in a particular dimension is not supported,
% e.g. NANMIN(A,2,B) is invalid.
%
% [Y,IDX] = NANMIN(X,DIM) returns the index to the minimum in IDX.
%
% Similar replacements exist for NANMAX, NANMEAN, NANSTD, NANMEDIAN and
% NANSUM which are all part of the NaN-suite.
%
% See also MIN

% ---
% author: Jan Gläscher
% affiliation: Neuroimage Nord, University of Hamburg, Germany
% email: glaescher@uke.uni-hamburg.de
%
% $Revision: 1.1 $ $Date: 2004/07/15 22:42:14 $

if nargin < 1
	error('Requires at least one input argument')
end

if nargin == 1
	if nargout > 1
		[y,idx] = min(a);
	else
		y = min(a);
	end
elseif nargin == 2
	if nargout > 1
		[y,idx] = min(a,[],dim);
	else
		y = min(a,[],dim);
	end
elseif nargin == 3
	if ~isempty(dim)
		error('Comparing two matrices along a particular dimension is not supported')
	else
		if nargout > 1
			[y,idx] = min(a,b);
		else
			y = min(a,b);
		end
	end
elseif nargin > 3
	error('Too many input arguments.')
end

% $Id: nanmin.m,v 1.1 2004/07/15 22:42:14 glaescher Exp glaescher $

commonFunctions/nansum.m

function y = nansum(x,dim)
% FORMAT: Y = NANSUM(X,DIM)
%
% Sum of values ignoring NaNs
%
% This function enhances the functionality of NANSUM as distributed in
% the MATLAB Statistics Toolbox and is meant as a replacement (hence the
% identical name).
%
% NANSUM(X,DIM) calculates the mean along any dimension of the N-D array
% X ignoring NaNs. If DIM is omitted NANSUM averages along the first
% non-singleton dimension of X.
%
% Similar replacements exist for NANMEAN, NANSTD, NANMEDIAN, NANMIN, and
% NANMAX which are all part of the NaN-suite.
%
% See also SUM

% ---
% author: Jan Gläscher
% affiliation: Neuroimage Nord, University of Hamburg, Germany
% email: glaescher@uke.uni-hamburg.de
%
% $Revision: 1.2 $ $Date: 2005/06/13 12:14:38 $

if isempty(x)
	y = [];
	return
end

if nargin < 2
	dim = min(find(size(x)~=1));
	if isempty(dim)
		dim = 1;
	end
end

% Replace NaNs with zeros.
nans = isnan(x);
x(isnan(x)) = 0;

% Protect against all NaNs in one dimension
count = size(x,dim) - sum(nans,dim);
i = find(count==0);

y = sum(x,dim);
y(i) = NaN;

% $Id: nansum.m,v 1.2 2005/06/13 12:14:38 glaescher Exp glaescher $

Functions/+Auxiliary_Functions/nansum.m

function y = nansum(x,dim)
% FORMAT: Y = NANSUM(X,DIM)
%
% Sum of values ignoring NaNs
%
% This function enhances the functionality of NANSUM as distributed in
% the MATLAB Statistics Toolbox and is meant as a replacement (hence the
% identical name).
%
% NANSUM(X,DIM) calculates the mean along any dimension of the N-D array
% X ignoring NaNs. If DIM is omitted NANSUM averages along the first
% non-singleton dimension of X.
%
% Similar replacements exist for NANMEAN, NANSTD, NANMEDIAN, NANMIN, and
% NANMAX which are all part of the NaN-suite.
%
% See also SUM

% ---
% author: Jan Gläscher
% affiliation: Neuroimage Nord, University of Hamburg, Germany
% email: glaescher@uke.uni-hamburg.de
%
% $Revision: 1.2 $ $Date: 2005/06/13 12:14:38 $

if isempty(x)
	y = [];
	return
end

if nargin < 2
	dim = min(find(size(x)~=1));
	if isempty(dim)
		dim = 1;
	end
end

% Replace NaNs with zeros.
nans = isnan(x);
x(isnan(x)) = 0;

% Protect against all NaNs in one dimension
count = size(x,dim) - sum(nans,dim);
i = find(count==0);

y = sum(x,dim);
y(i) = NaN;

% $Id: nansum.m,v 1.2 2005/06/13 12:14:38 glaescher Exp glaescher $

Functions/+Economic_Impact/plotMerritOrderList.m

function plotMerritOrderList(MOList)

% Plot the Merrit Order List a a given time using the bar command

%

% Input variables:

% MOList:

% time: [------x6 double]

% energyPrice: [------x1 double]

% capacityPrice: [------x1 double]

% capacity: [------x1 double]

% capacityCum: [------x1 double]

% 	

% Last edit: 11.04.2012; Malte Jansen @ Fraunhofer IWES, Kassel

countDataSet = 1;

countPrice = 1;

for k=1:length(MOList.capacity)

	for i=1:MOList.capacity(k,1)

		energyPrice(countPrice,countDataSet) = MOList.energyPrice(k,1);

		countPrice = countPrice+1;

		

	end

	countDataSet = countDataSet+1;

end

figure1 = gcf;

colormap('winter');

axes1 = axes('Parent',figure1);

box(axes1,'on');

% xlim(axes1,[0 length(energyPrice)]);

% hold(axes1,'all');

bar(energyPrice,'BarWidth',150,'Parent',axes1);

ylabel({'Energy Price in €/MWh'},'FontName','Frutiger 45');

xlabel({'Capacity in MW'});

function MOListOut = getMOList(MOListIn, startTime)

merritStart = find(datenum(MOListIn.time) >= datenum(startTime), 1, 'first');

iMOSelect = merritStart;

counterMO = 1;

k = 1;

% Define the Start of MO-List

MOListOut.start = datenum(MOListIn.time(iMOSelect,:));

try

	while datenum(MOListIn.time(iMOSelect,:)) == datenum(MOListIn.time(merritStart,:))

		

		MOListOut.capacity(k,1) = MOListIn.capacity(iMOSelect,1);

		MOListOut.capacityCum(k,1) = MOListIn.capacityCum(iMOSelect,1);

		MOListOut.capacityPrice(k,1) = MOListIn.capacityPrice(iMOSelect,1);

		MOListOut.energyPrice(k,1) = MOListIn.energyPrice(iMOSelect,1);

		

		k = k+1;

		iMOSelect = iMOSelect+1;

		

	end

catch

	warning('End of Merrit-Order-List')

	iMOSelect = iMOSelect-1;

% 	MOList.(['List_' num2str(counterMO)]).end = datenum([startTime(1,1:2) startTime(1,3)+1 0 0 0]);

end

% Define the End of MO-List

MOListOut.end = datenum(MOListIn.time(iMOSelect,:));

Functions/+Probabilistic_Forecast/ProgressBar.m

classdef ProgressBar < handle

	% class to open, update and close waitbars/progress-displays in command

	% window or textfile

	%

	%

	% Author: Rainer Schwinn, Fraunhofer IWES e.V.

	% Date created: 14.08.2012

	% Last change: 14.08.2012

	%

	

	properties

		displayType

		waitbarText

		waitbarID

		

		startTime

		updateIntervall

		lastUpdate

		lastText

		

		filename

		

		isClosed = false;

	end

	

	

	%% PUBLIC ---

	methods (Access = public)

		

		% CONSTRUCTOR--

		function obj = ProgressBar(progressBarOpts)

			% constructor for ProgressBar objects

			%

			% Usage: obj = ProgressBar(displayType,waitbarText)

			%

			% Input: progressBarOpts: string containing waitbarText or

			%		 struct containing:

			%		 .waitbarText (opt.): waitbar text displayed in waitbar

			%		 .displayType (opt.): output device {'waitbar';'cwd';'file'}

			%							 waitbar: matlab-waitbar

			%							 cwd: command window (default)

			%							 file: ascii-file

			%		 .filename (opt.): filename of ascii-file

			%

			%

			% Output: ProgressBar-object

			%	

			% Hints: - displayType can contain several output devices to

			%		 do output on several devices simultaneously

			%		 - control-characters for waitbar (e.g. subscipt by '_')

			%		 are fully disabled

			%

			%

			% Author: Rainer Schwinn, Fraunhofer IWES e.V.

			% Date created: 09.08.2012

			% Last change: 09.08.2012

			%

					

			% set update-intervalls

			obj.updateIntervall.waitbar = datenum(0,0,0,0,0,0.5);

			obj.updateIntervall.cwd = datenum(0,0,0,0,0,1);

			obj.updateIntervall.file = datenum(0,0,0,0,0,5);

			

			% check input

			if ~exist('progressBarOpts','var')

				progressBarOpts = struct; % empty struct

				

			elseif ~isstruct(progressBarOpts)

				progressBarOpts.waitbarText = progressBarOpts; % if no struct, take input as waitbar-text

			end

			

			if ~isfield(progressBarOpts,'waitbarText')

				fn = dbstack('-completenames'); % get list of invoking functions

				if size(fn,1)==1

					% if no invoking function => no text

					obj.waitbarText = '';

				else

					% set name of invoking function as waitbarText

					fn = fn(2).file;

					obj.waitbarText = fn(find((fn=='\')|(fn=='/'),1,'last')+1:find(fn=='.',1,'last')-1);

				end		

			else

				obj.waitbarText = progressBarOpts.waitbarText;

			end

			

			if ~isfield(progressBarOpts,'displayType')

				obj.displayType = 'cwd'; % default

			elseif ~isempty(setdiff(progressBarOpts.displayType,{'waitbar';'cwd';'file'}))

				error('displayType must be ''waitbar'', ''cwd'' or ''file''')

			else

				obj.displayType = progressBarOpts.displayType;

			end

			

			if any(strcmp(obj.displayType,'file')) % check for filename

				if ~isfield(progressBarOpts,'filename')

					error('filename not defined in progressBarOpts')

				else

					obj.filename = progressBarOpts.filename;

				end

			end

			

			obj.startTime = now;

			obj.lastUpdate.waitbar = 0; % set to 0 to execute first update

			obj.lastUpdate.cwd = 0;

			obj.lastUpdate.file = 0;

			

			obj.lastText.waitbar = ''; % set last text to ''

			obj.lastText.cwd = '';

			obj.lastText.file = '';

			

			obj.update(0); % create waitbar/progressbar

		end

		

		% ---

		function update(obj,progress)

			% function to update waitbar/progress-display

			%

			% Usage: update(obj,progress)

			%

			% Input: obj: previously created ProgressBar-object

			%		 progress: calculation progress between [0..1]

			%

			% Output: -

			%	

			%

			% Author: Rainer Schwinn, Fraunhofer IWES e.V.

			% Date created: 09.08.2012

			% Last change: 09.08.2012

			%			

			

			% check if obj has already been closed

			if obj.isClosed

				warning('ProgressBar-object has already been closed')

				return

			end

			

			% create display-text-string

			if progress==0

				remTimeStr = 'remaining time is --:--:--';

			else

				remTimeStr = ['remaining time is ' Probabilistic_Forecast.ProgressBar.getTimeStr((now-obj.startTime)*(1-progress)/progress)];

			end

			progrStr = num2str(progress*100,'%01.1f');

			if isempty(obj.waitbarText)

				txt = '';

			else

				txt = [obj.waitbarText ': '];

			end

			txt = [txt '[' char(32*ones(1,5-numel(progrStr))) progrStr '%] - ' remTimeStr];

			% matlab waitbar

			if any(strcmp(obj.displayType,'waitbar'))&& ((now-obj.lastUpdate.waitbar)>obj.updateIntervall.waitbar|| progress==1)

				% disable control-characters for display in waitbar

				txtWB = strrep(txt,'\','\\');

				txtWB = strrep(txtWB,'_','_');

				

				if isempty(obj.waitbarID)

					obj.waitbarID = waitbar(0,[' ' txtWB ' ']); % create waitbar at first call

				else

					waitbar(progress,obj.waitbarID,[' ' txtWB ' ']);	

				end

				obj.lastUpdate.waitbar = now;

				obj.lastText.waitbar = txt; % remember last text

			end

			% command window

			txtFPr = strrep(txt,'\','\\'); % disable control-characters for display with fprint

			txtFPr = strrep(txtFPr,'%','%%');

			

			if any(strcmp(obj.displayType,'cwd'))&& ((now-obj.lastUpdate.cwd)>obj.updateIntervall.cwd|| progress==1)

				fprintf(1,[char(8*ones(1,numel(obj.lastText.cwd))) txtFPr]); % backspaces to remove old text, '%' must be '%%' in fprint-usage

				obj.lastUpdate.cwd = now;

				obj.lastText.cwd = txt; % remember last text for clearing

			end

			% file output

			if any(strcmp(obj.displayType,'file'))&& ((now-obj.lastUpdate.file)>obj.updateIntervall.file|| progress==1)

				if ~exist(obj.filename,'file')

					fmode = 'w'; % create new file for writing

				else

					fmode = 'r+'; % reading/writing

				end

				fid = fopen(obj.filename,fmode); % open textfile

				if fid>=3

					fseek(fid,-numel(obj.lastText.file),'eof'); % backspaces to remove old text

					fprintf(fid,txtFPr); % '%' must be '%%' in fprint-usage

					fprintf(1,char(32*ones(1,numel(obj.lastText.file)-numel(txt)))); % delete last characters with spaces

					fclose(fid); % close file to make changes readable

					obj.lastUpdate.file = now;

					obj.lastText.file = txt; % remember last text for clearing

				end

			end

		end

		

		% ---

		function close(obj)

			% function to close waitbar/progress-display

			%

			% Usage: close(obj)

			%

			% Input: obj: previously created ProgressBar-object

			%

			% Output: -

			%	

			%

			% Author: Rainer Schwinn, Fraunhofer IWES e.V.

			% Date created: 09.08.2012

			% Last change: 09.08.2012

			%			

			

			if ~obj.isClosed % close just one time

				obj.update(1) % show 100%

				

				% show elapsed-time-string in cwd/file

				elapsTimeStr = ['elapsed time is ' Probabilistic_Forecast.ProgressBar.getTimeStr(now-obj.startTime)];

				if isempty(obj.waitbarText)

					txt = '';

				else

					txt = [obj.waitbarText ': '];

				end

				txt = [txt '[100.0%] - ' elapsTimeStr]; % fix-sized format

				

				% matlab waitbar

				if any(strcmp(obj.displayType,'waitbar'))

					close(obj.waitbarID)	

				end

				% command window			

				txtFPr = strrep(txt,'\','\\'); % disable control-characters for display with fprint

				txtFPr = strrep(txtFPr,'%','%%');

			

				if any(strcmp(obj.displayType,'cwd'))

					fprintf(1,[char(8*ones(1,numel(obj.lastText.cwd))) txtFPr char(10)]); % new line

					obj.lastText.cwd = txt;

				end

				% file output

				if any(strcmp(obj.displayType,'file'))

					fid = fopen(obj.filename,'r+');

					if fid>=3

						fseek(fid,-numel(obj.lastText.file),'eof'); % backspaces to remove old text

						fprintf(fid,[txtFPr char(32*ones(1,numel(obj.lastText.file)-numel(txt))) char([13,10])]); % new line

						fclose(fid);

					end

					obj.lastText.file = txt;

				end

			end

			obj.isClosed = true;

		end		

		

	end

		

	

	%% PUBLIC ---

	methods (Access = private, Static)

			

		% ---

		function timeStr = getTimeStr(numTime)

			% function to create time string from numeric time

			%		

			

			if numTime>1

				dayStr = [num2str(floor(numTime)) 'd '];

			else

				dayStr = '';

			end

			timeStr = [dayStr datestr(numTime,'HH:MM:SS')];			

		end

		

	end

	

end

REBal_initiliasationBatch.m

clear;

clc;

%% PhD Calculations Runs

addpath(genpath(pwd))

addpath(genpath([pwd '\commonFunctions']))

% Load test data

load('testData.mat')

% Correspondig Config Script

% loadData.m is not included in the script, you must generate your own.

% Config.config_TestData % (uncomment this line)

%% Use this code to start the calculation runs for each year and pool type

% loadData.m is not included in the scrupt, you must generate your own.

% Config.config_OnWind_BRD_20100101_20101231

% Config.config_OnWind_BRD_20110101_20111231

% Config.config_OnWind_BRD_20120101_20121231

% Config.config_OnWind_BRD_20130101_20131231

% Config.config_OnWind_BRD_20140101_20141231

%

% Config.config_OnWind_WF_20100101_20101231

% Config.config_OnWind_WF_20120101_20121231

% Config.config_OnWind_WF_20130101_20131231

% Config.config_OnWind_WF_20140101_20141231

%

% Config.config_OffWind_BRD_20100101_20101231

% Config.config_OffWind_BRD_20110101_20111231

% Config.config_OffWind_BRD_20130101_20131231

% Config.config_OffWind_BRD_20140101_20141231

%

% Config.config_PV_BRD_20100601_20101231

% Config.config_PV_BRD_20110101_20111231

% Config.config_PV_BRD_20120101_20121231

% Config.config_PV_BRD_20130101_20131231

% Config.config_PV_BRD_20140101_20141231

%

% Config.config_PV_PVF_20130101_20131231

% Config.config_PV_PVF_20140101_20141231

%% Define options for paths

deli='\';

dirRoot = pwd; % Change to the path where REBal is located

dirRes = [dirRoot deli 'Results'];

addpath(genpath(dirRoot))

%% Start of calculation

profile on

REBal_main

profile viewer

REBal_main.m

%%

% Start in Batch %

%%

% Load Data from directory

if ~ispc

	load('/home/mjansen/REBal/Data/REBal_variables_common.mat')

	load(['/home/mjansen/REBal/Data/' fileName])

	% 	load('/home/mjansen/REBal/Data/REBal_variables')

	disp(['loading of ' fileName ' finished'])

end

%% Calculation

ticStart = tic;

%% Part I: Probabilistic Forecast

% TODO: Implement TSO definition

if optsOffer.isStochastic

	for iSec=1:length(simRuns)

		securityLevel(iSec) = simRuns(iSec).securityLevel;

	end

	Prob_Forec_DA.securityLevel = sort(unique(securityLevel));

	Prob_Forec_ID.securityLevel = sort(unique(securityLevel));

	[Prob_Forec_DA.data, Prob_Forec_DA.time] = ...

		Probabilistic_Forecast.calcSecureForecastKDE_independentTrain(DA_Forec.time, DA_Forec.data, ...

		actualFeedIn.time, actualFeedIn.data, DA_Forec_Train.time, DA_Forec_Train.data, actualFeedIn_Train.time, actualFeedIn_Train.data, ...

		Prob_Forec_DA.securityLevel, simRuns(1).startTime, simRuns(1).endTime, optsProbForecDA);

	[Prob_Forec_ID.data, Prob_Forec_ID.time] = ...

		Probabilistic_Forecast.calcSecureForecastKDE_independentTrain(ID_Forec.time, ID_Forec.data, ...

		actualFeedIn.time, actualFeedIn.data, ID_Forec_Train.time, ID_Forec_Train.data, actualFeedIn_Train.time, actualFeedIn_Train.data, ...

		Prob_Forec_ID.securityLevel, simRuns(1).startTime, simRuns(1).endTime, optsProbForecID);

end

%% Part II: Calculate Offers for Reserve market by the generators

if optsOffer.isStochastic

	

	% Option 1: Calculate Offers from fluctuating RES generators (e.g. Wind & Solar)

	for iCalcRun = 1:size(simRuns,2)

		

		disp(['Starting Offer Calculation Run No ' num2str(iCalcRun)])

		

		offerRP(iCalcRun) = Offer_ControlReserve.calcRPOffer(DA_Forec, ID_Forec, RPP, actualFeedIn, ...

			Prob_Forec_DA, Prob_Forec_ID, DA_MarketPrice, ID_MarketPrice, ...

			simRuns(iCalcRun), optsOffer);

		

		disp(['Finished Offer Calculation Run No ' num2str(iCalcRun)])

		

	end

	

else

	

	% Option 2: Calculate Offers from Controllable Sources (e.g. Biogas)

	for iCalcRun = 1:size(simRuns,2)

		

		offerRP(iCalcRun) = Offer_ControlReserve.calcRPOfferControlled(MoSFC,MoTFC,DA_MarketPrice,simRuns(1,iCalcRun),optsOffer);

		

	end

	

end

if optsOffer.realMarket

	

	for iCalcRun = 1:size(simRuns,2)

		

		[offerRP(iCalcRun)] ...

			= Offer_ControlReserve.limitRPOfferMarket(offerRP(iCalcRun), ...

			simRuns(iCalcRun),optsOffer);

		

	end

	

end

fprintf(['[' datestr(now) ']:\t' 'Calculation of offers finished \n']);

%% Part III: Economic Impacts

% Impact on Market / Market

for iCalcRun = 1:size(simRuns,2)

	

	disp(['Starting Economic Impact Run No ' num2str(iCalcRun)])

	

	[ecoImpact(iCalcRun), offerRP_Min(iCalcRun), ~] ...

		= Economic_Impact.calcEcoImpact(dispatchSFC, dispatchTFC, ...

		MoSFC, MoTFC, offerRP(iCalcRun), ...

		simRuns(iCalcRun), simRuns(iCalcRun));

	

	disp(['Finished Economic Impact Run No ' num2str(iCalcRun)])

	

end

fprintf(['[' datestr(now) ']:\t' 'Calculation of economic impact finished \n']);

%% Part V: Macroeconomic Impact

for iCalcRun = 1:size(simRuns,2)

	

	disp(['Starting Macro-Economic Impact Run No ' num2str(iCalcRun)])

	

	[macroEcoImpact(iCalcRun)] = ...

		Economic_Impact.calcMacroEcoImpact(offerRP(iCalcRun), DA_Forec, ID_Forec, actualFeedIn, ...

		DA_Forec_Wind, ID_Forec_Wind, actualFeedIn_Wind, DA_Forec_PV, ID_Forec_PV, actualFeedIn_PV, ...

		DA_MarketPrice, ID_MarketPrice, loadENTSOE, simRuns(iCalcRun),optsMacroImpact);

	

	disp(['Finished Macro-Economic Impact Run No ' num2str(iCalcRun)])

	

end

fprintf(['[' datestr(now) ']:\t' 'Calculation of macro economic impact finished \n']);

%% Save Results

Config.saveResults

%%%

% Finish on Cluster %

%%%

Functions/Results_Evaluation/resPhD_additionalIncome_negative_secondary.m

clear;

clc;

%% Options

productLength = 1;

%% Load

preDefineDataSet = ([117:135]);

for iDataSet = 1:length(preDefineDataSet)

	

	[~, ~, ...

		~, DataSet(iDataSet).ecoImpact, ...

		~, ~, ...

		~, ~, ...

		~, DataSet(iDataSet).offerRP_Min, ...

		DataSet(iDataSet).simRuns, ~, ...

		~, DataSet(iDataSet).info] ...

		= res_loadResults_noMOL('D:\Ergebnisse REBal',preDefineDataSet(iDataSet));

	

% 	[Prob_Forec_DA, Prob_Forec_ID, actualFeedIn, ecoImpact, ecoImpactTFC, error, ...

% 		errorRP, macroEcoImpact, offerRP, offerRP_Min, simRuns, violation, alteredMOList, infoRuns] = res_loadResults_noMOL('D:\Ergebnisse REBal',preDefineDataSet(iDataSet));

	

	runSetYear = regexp(DataSet(iDataSet).info.runSetName,'_','split');

	GenType{iDataSet} = runSetYear{1};

	PoolType{iDataSet} = runSetYear{2};

	Type{iDataSet} = [runSetYear{1:2}];

	for iYear = 1:length(runSetYear)

		try

			if ~isnan(str2double(runSetYear{iYear}))

				timeStampYear(iDataSet) = datenum([str2double(runSetYear{iYear}) 1 1]);

			end

		end

	end

	

end

% Select only valid datasets

invalidDS = false(size(DataSet));

for iDS = 1:length(DataSet)

	if length(DataSet(iDS).offerRP_Min) == 1

		invalidDS(iDS) = isnan(DataSet(iDS).offerRP_Min);

	end

end

DataSet = DataSet(~invalidDS);

timeStampYear = timeStampYear(~invalidDS);

GenType = GenType(~invalidDS);

PoolType = PoolType(~invalidDS);

Type = Type(~invalidDS);

%% Other Vars

% Define Order

TypeAll = sort(unique([Type]));

genTypeAll = unique([GenType]);

poolTypeAll = unique([PoolType]);

[timeStampYearVec,~] = datevec(timeStampYear');

[years,~] = datevec(sort(unique(timeStampYear)));

secLevelAll = sort(unique([DataSet(1).simRuns.securityLevel]));

secLevelAll = secLevelAll([1 6]); % Show on those security levels

prodLengthAll = sort(unique([DataSet(1).simRuns.productLength]));

prodLengthAll = prodLengthAll([1 3 5]); % Show on those security levels

%% Get DataSet

productLength = 1;

market = 'SFC';

neg = 100;

for iSec = 1:length(secLevelAll)

	

	secLevel = secLevelAll(iSec);

	for iPL = 1:length(prodLengthAll)

		

		productLength = prodLengthAll(iPL);

		

		for iDS = 1:length(DataSet)

			

			

			

			indexA = strcmp({DataSet(iDS).simRuns.market},market);

			indexB = [DataSet(iDS).simRuns.percentNegRP] == neg;

			indexC = [DataSet(iDS).simRuns.productLength] == productLength;

			indexD = [DataSet(iDS).simRuns.securityLevel] == secLevel;

			indexAll = indexA & indexB & indexC & indexD;

			

			addIncome = [];

			addIncome_Cap = [];

			addIncome_En = [];

			addIncome_perCapInst = [];

			

			addIncome(:,1) ...

				= abs(DataSet(iDS).ecoImpact(indexAll).AAP.Max ...

				- DataSet(iDS).ecoImpact(indexAll).AAP.Min);

			

			addIncome_perCapInst(:,1) ...

				= addIncome(:,1) ...

				/ DataSet(iDS).simRuns(indexAll).installedCapacity;		

			

			addIncome_Cap(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.capacity ...

				- DataSet(iDS).ecoImpact(indexAll).AAP.Min_DiffSplit.capacity;

			

			addIncome_En(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.dispatch ...

				- DataSet(iDS).ecoImpact(indexAll).AAP.Min_DiffSplit.dispatch;

			

			if strcmp(Type(iDS),'OnWindBRD')

				additionalIncomeTotal(timeStampYearVec(iDS)-2009,1) = addIncome;

				additionalIncomeCap(timeStampYearVec(iDS)-2009,1) = addIncome_Cap;

				additionalIncomeEn(timeStampYearVec(iDS)-2009,1) = addIncome_En;

				additionalIncomePerGW(timeStampYearVec(iDS)-2009,1) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OnWindWF')

				additionalIncomeTotal(timeStampYearVec(iDS)-2009,2) = addIncome;

				additionalIncomeCap(timeStampYearVec(iDS)-2009,2) = addIncome_Cap;

				additionalIncomeEn(timeStampYearVec(iDS)-2009,2) = addIncome_En;

				additionalIncomePerGW(timeStampYearVec(iDS)-2009,2) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OfWindBRD')

				additionalIncomeTotal(timeStampYearVec(iDS)-2009,3) = addIncome;

				additionalIncomeCap(timeStampYearVec(iDS)-2009,3) = addIncome_Cap;

				additionalIncomeEn(timeStampYearVec(iDS)-2009,3) = addIncome_En;

				additionalIncomePerGW(timeStampYearVec(iDS)-2009,3) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVBRD')

				additionalIncomeTotal(timeStampYearVec(iDS)-2009,4) = addIncome;

				additionalIncomeCap(timeStampYearVec(iDS)-2009,4) = addIncome_Cap;

				additionalIncomeEn(timeStampYearVec(iDS)-2009,4) = addIncome_En;

				additionalIncomePerGW(timeStampYearVec(iDS)-2009,4) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVPVF')

				additionalIncomeTotal(timeStampYearVec(iDS)-2009,5) = addIncome;

				additionalIncomeCap(timeStampYearVec(iDS)-2009,5) = addIncome_Cap;

				additionalIncomeEn(timeStampYearVec(iDS)-2009,5) = addIncome_En;

				additionalIncomePerGW(timeStampYearVec(iDS)-2009,5) = addIncome_perCapInst;

			end

			

		end

	

	additionalIncomeTotal(additionalIncomeTotal == 0) = nan;

	additionalIncomeCap(additionalIncomeCap == 0) = nan;

	additionalIncomeEn(additionalIncomeEn == 0) = nan;

	additionalIncomePerGW(additionalIncomePerGW == 0) = nan;

	secLevelStruct(iSec,iPL).addIncome = additionalIncomeTotal;

	secLevelStruct(iSec,iPL).addIncomeCap = additionalIncomeCap;

	secLevelStruct(iSec,iPL).addIncomeEn = additionalIncomeEn;	

	secLevelStruct(iSec,iPL).addIncomePerGW = additionalIncomePerGW;

	end	

end

%% Consolidate data

dataOneHour = secLevelStruct(2,1).addIncome(1:5,:) / 1000000;

dataFourHour = secLevelStruct(2,2).addIncome(1:5,:) / 1000000;

dataTwelveHour = secLevelStruct(2,3).addIncome(1:5,:) / 1000000;

dataOneHour95 = secLevelStruct(1,1).addIncome(1:5,:) / 1000000;

dataFourHour95 = secLevelStruct(1,2).addIncome(1:5,:) / 1000000;

dataTwelveHour95 = secLevelStruct(1,3).addIncome(1:5,:) / 1000000;

% % Include if data should be based on per GW

% dataOneHour = secLevelStruct(2,1).addIncomePerGW(1:5,:) / 1000;

% dataFourHour = secLevelStruct(2,2).addIncomePerGW(1:5,:) / 1000;

% dataTwelveHour = secLevelStruct(2,3).addIncomePerGW(1:5,:) / 1000;

%

% dataOneHour95 = secLevelStruct(1,1).addIncomePerGW(1:5,:) / 1000;

% dataFourHour95 = secLevelStruct(1,2).addIncomePerGW(1:5,:) / 1000;

% dataTwelveHour95 = secLevelStruct(1,3).addIncomePerGW(1:5,:) / 1000;

% Values for bars

dataValTXT_OneHour = num2cell(dataOneHour);

textFormat = cell(size(dataValTXT_OneHour));

textFormat(:) = {'%0.1f'};

dataValTXT_OneHour = cellfun(@num2str,dataValTXT_OneHour,textFormat,'UniformOutput',0);

for i = 1:size(dataOneHour,1)

	for j = 1:size(dataValTXT_OneHour,1)

		if strcmp(dataValTXT_OneHour(i,j),'NaN')

			dataValTXT_OneHour{i,j} = [];

		end

	end

end

dataValTXT_FourHour = num2cell(dataFourHour);

textFormat = cell(size(dataValTXT_FourHour));

textFormat(:) = {'%0.1f'};

dataValTXT_FourHour = cellfun(@num2str,dataValTXT_FourHour,textFormat,'UniformOutput',0);

for i = 1:size(dataFourHour,1)

	for j = 1:size(dataValTXT_FourHour,1)

		if strcmp(dataValTXT_FourHour(i,j),'NaN')

			dataValTXT_FourHour{i,j} = [];

		end

	end

end

dataValTXT_TwelveHour = num2cell(dataTwelveHour);

textFormat = cell(size(dataValTXT_TwelveHour));

textFormat(:) = {'%0.1f'};

dataValTXT_TwelveHour = cellfun(@num2str,dataValTXT_TwelveHour,textFormat,'UniformOutput',0);

for i = 1:size(dataTwelveHour,1)

	for j = 1:size(dataValTXT_TwelveHour,1)

		if strcmp(dataValTXT_TwelveHour(i,j),'NaN')

			dataValTXT_TwelveHour{i,j} = [];

		end

	end

end

%% Plot with styleplot

fig = [];

% First Data Set %%

% Define data sets

fig.subplot{1,1}.plot{1}.x = 1:size(dataOneHour95,2);

fig.subplot{1,1}.plot{1}.y = dataOneHour95;

fig.subplot{1,1}.plot{1}.style='bar';

fig.subplot{1,1}.plot{1}.barlayout='grouped';

fig.subplot{1,1}.plot{1}.barcolor={'x2','x34','x27','x19','x14'}; % Overwrite the color property

fig.subplot{1,1}.plot{2}.x = 1:size(dataOneHour,2);

fig.subplot{1,1}.plot{2}.y = dataOneHour;

fig.subplot{1,1}.plot{2}.style='bar';

fig.subplot{1,1}.plot{2}.barlayout='grouped';

fig.subplot{1,1}.plot{2}.barcolor={'x3','x35','x28','x20','x15'}; % Overwrite the color property

fig.subplot{1,1}.plot{2}.text=dataValTXT_OneHour; % Must be the same size as the data

fig.subplot{1,2}.plot{1}.x = 1:size(dataFourHour95,2);

fig.subplot{1,2}.plot{1}.y = dataFourHour95;

fig.subplot{1,2}.plot{1}.style='bar';

fig.subplot{1,2}.plot{1}.barlayout='grouped';

fig.subplot{1,2}.plot{1}.barcolor={'x2','x34','x27','x19','x14'}; % Overwrite the color property

fig.subplot{1,2}.plot{2}.x = 1:size(dataFourHour,2);

fig.subplot{1,2}.plot{2}.y = dataFourHour;

fig.subplot{1,2}.plot{2}.style='bar';

fig.subplot{1,2}.plot{2}.barlayout='grouped';

fig.subplot{1,2}.plot{2}.barcolor={'x3','x35','x28','x20','x15'}; % Overwrite the color property

fig.subplot{1,2}.plot{2}.text=dataValTXT_FourHour; % Must be the same size as the data

fig.subplot{1,3}.plot{1}.x = 1:size(dataTwelveHour95,2);

fig.subplot{1,3}.plot{1}.y = dataTwelveHour95;

fig.subplot{1,3}.plot{1}.style='bar';

fig.subplot{1,3}.plot{1}.barlayout='grouped';

fig.subplot{1,3}.plot{1}.barcolor={'x2','x34','x27','x19','x14'}; % Overwrite the color property

fig.subplot{1,3}.plot{2}.x = 1:size(dataTwelveHour,2);

fig.subplot{1,3}.plot{2}.y = dataTwelveHour;

fig.subplot{1,3}.plot{2}.style='bar';

fig.subplot{1,3}.plot{2}.barlayout='grouped';

fig.subplot{1,3}.plot{2}.barcolor={'x3','x35','x28','x20','x15'}; % Overwrite the color property

fig.subplot{1,3}.plot{2}.text=dataValTXT_TwelveHour; % Must be the same size as the data

% Plot axes properties

xLimVal = [0.5 5.5];

fig.subplot{1,1}.xlim=xLimVal;

fig.subplot{1,2}.xlim=xLimVal;

fig.subplot{1,3}.xlim=xLimVal;

yLimVal = [0 180];

fig.subplot{1,1}.ylim=yLimVal;

fig.subplot{1,2}.ylim=yLimVal;

fig.subplot{1,3}.ylim=yLimVal;

% Title subplots

fig.subplot{1,1}.title=['Product length: One hour']; % optionaler Titel

fig.subplot{1,2}.title=['Product length: Four hours']; % optionaler Titel

fig.subplot{1,3}.title=['Product length: Twelve hours']; % optionaler Titel

% Axes labeling

fig.subplot{1,1}.xlabel='Year';

fig.subplot{1,2}.xlabel='Year';

fig.subplot{1,3}.xlabel='Year';

fig.subplot{1,1}.ylabel='Additional income in mio. EUR';

fig.subplot{1,2}.ylabel='Additional income in mio. EUR';

fig.subplot{1,3}.ylabel='Additional income in mio. EUR';

fig.subplot{1,1}.legend={'Onshore Wind 30 GW Germany 95%', ...

	'Onshore Wind 1 GW Pool negative capacity bids 95%', ...

	'Offshore Wind 1 GW Germany negative capacity bids 95%', ...

	'Photovoltaic Systems 30 GW Germany negative capacity bids 95%', ...

	'Photovoltaic Systems 1 GW Pool negative capacity bids 95%', ...

	'Onshore Wind 30 GW Germany 99.994%', ...

	'Onshore Wind 1 GW Pool 99.994%', ...

	'Offshore Wind 1 GW Germany 99.994%', ...

	'Photovoltaic Systems 30 GW Germany 99.994%', ...

	'Photovoltaic Systems 1 GW Pool 99.994%'};

fig.subplot{1,1}.xticks=fig.subplot{1,1}.plot{1}.x;

fig.subplot{1,1}.xticklabels=[2010,2011,2012,2013,2014];

fig.subplot{1,1}.yticks=min(yLimVal):20:max(yLimVal);

fig.subplot{1,2}.xticks=fig.subplot{1,2}.plot{1}.x;

fig.subplot{1,2}.xticklabels=[2010,2011,2012,2013,2014];

fig.subplot{1,2}.yticks=min(yLimVal):20:max(yLimVal);

fig.subplot{1,3}.xticks=fig.subplot{1,3}.plot{1}.x;

fig.subplot{1,3}.xticklabels=[2010,2011,2012,2013,2014];

fig.subplot{1,3}.yticks=min(yLimVal):20:max(yLimVal);

fig.height=18;

fig.width_columns=3;

[hFig, hAxes, hPlot] = styleplot(fig,'styleplot_format_PhD','wordwide');

%% Save

% path = 'C:\Users\mjansen\Synchronisation\mjansen auf User_Artemis(R)\Dissertation\Dissertation\Figures\5 Economics of fluctuating RES in the control reserve markets\';

% name = 'Fig5-23_addIncome_negSec_1h_4h_12h';

% saveas(gcf,[path name '.fig']);

% save([path name '_data.mat'],'fig');

Functions/Results_Evaluation/resPhD_additionalIncome_negative_secondary_AAP_Scatter.m

% clear;

% clc;

% %% Options

% productLength = 1;

%

% %% Load

%

% preDefineDataSet = ([117:135]);

%

% for iDataSet = 1:length(preDefineDataSet)

% 	

% 	[~, ~, ...

% 		~, ~, ...

% 		~, ~, ...

% 		~, ~, ...

% 		DataSet(iDataSet).offerRP, DataSet(iDataSet).offerRP_Min, ...

% 		DataSet(iDataSet).simRuns, ~, ...

% 		~, DataSet(iDataSet).info] ...

% 		= res_loadResults_noMOL('D:\Ergebnisse REBal',preDefineDataSet(iDataSet));

% 	

% % 	[Prob_Forec_DA, Prob_Forec_ID, actualFeedIn, ecoImpact, ecoImpactTFC, error, ...

% % 		errorRP, macroEcoImpact, offerRP, offerRP_Min, simRuns, violation, alteredMOList, infoRuns] = res_loadResults_noMOL('D:\Ergebnisse REBal',preDefineDataSet(iDataSet));

% 	

% 	runSetYear = regexp(DataSet(iDataSet).info.runSetName,'_','split');

% 	GenType{iDataSet} = runSetYear{1};

% 	PoolType{iDataSet} = runSetYear{2};

% 	Type{iDataSet} = [runSetYear{1:2}];

% 	for iYear = 1:length(runSetYear)

% 		try

% 			if ~isnan(str2double(runSetYear{iYear}))

% 				timeStampYear(iDataSet) = datenum([str2double(runSetYear{iYear}) 1 1]);

% 			end

% 		end

% 	end

% 	

% end

%

% % Select only valid datasets

% invalidDS = false(size(DataSet));

% for iDS = 1:length(DataSet)

% 	if length(DataSet(iDS).offerRP_Min) == 1

% 		invalidDS(iDS) = isnan(DataSet(iDS).offerRP_Min);

% 	end

% end

% DataSet = DataSet(~invalidDS);

% timeStampYear = timeStampYear(~invalidDS);

% GenType = GenType(~invalidDS);

% PoolType = PoolType(~invalidDS);

% Type = Type(~invalidDS);

%% Other Vars

% Define Order

TypeAll = sort(unique([Type]));

genTypeAll = unique([GenType]);

poolTypeAll = unique([PoolType]);

[timeStampYearVec,~] = datevec(timeStampYear');

[years,~] = datevec(sort(unique(timeStampYear)));

secLevelAll = sort(unique([DataSet(1).simRuns.securityLevel]));

secLevelAll = secLevelAll([1,6]); % Show on those security levels

prodLengthAll = sort(unique([DataSet(1).simRuns.productLength]));

prodLengthAll = prodLengthAll([3]); % Show on those security levels

%% Get DataSet

productLength = 1;

market = 'SFC';

neg = 100;

for iSec = 1:length(secLevelAll)

	

	secLevel = secLevelAll(iSec);

	for iPL = 1:length(prodLengthAll)

		

		productLength = prodLengthAll(iPL);

		

		for iDS = 1:length(DataSet)

			

			

			

			indexA = strcmp({DataSet(iDS).simRuns.market},market);

			indexB = [DataSet(iDS).simRuns.percentNegRP] == neg;

			indexC = [DataSet(iDS).simRuns.productLength] == productLength;

			indexD = [DataSet(iDS).simRuns.securityLevel] == secLevel;

			indexAll = indexA & indexB & indexC & indexD;

			

			cap = [];

			capPrice = [];

			

% 			cap(:,1) ...

% 				= DataSet(iDS).offerRP(indexAll).AAP.neg.capacity ...

% 				/ DataSet(iDS).simRuns(indexAll).installedCapacity;

			cap(:,1) ...

				= DataSet(iDS).offerRP_Min(indexAll).AAP.neg.capacity;

			

			capPrice(:,1) ...

				= DataSet(iDS).offerRP_Min(indexAll).AAP.neg.capacityPrice;	

			

			if strcmp(Type(iDS),'OnWindBRD')

				additionalIncomeCap{timeStampYearVec(iDS)-2009,1} = cap;

				additionalIncomeCapPrice{timeStampYearVec(iDS)-2009,1} = capPrice;

			elseif strcmp(Type(iDS),'OnWindWF')

				additionalIncomeCap{timeStampYearVec(iDS)-2009,2} = cap;

				additionalIncomeCapPrice{timeStampYearVec(iDS)-2009,2} = capPrice;

			elseif strcmp(Type(iDS),'OfWindBRD')

				additionalIncomeCap{timeStampYearVec(iDS)-2009,3} = cap;

				additionalIncomeCapPrice{timeStampYearVec(iDS)-2009,3} = capPrice;

			elseif strcmp(Type(iDS),'PVBRD')

				additionalIncomeCap{timeStampYearVec(iDS)-2009,4} = cap;

				additionalIncomeCapPrice{timeStampYearVec(iDS)-2009,4} = capPrice;

			elseif strcmp(Type(iDS),'PVPVF')

				additionalIncomeCap{timeStampYearVec(iDS)-2009,5} = cap;

				additionalIncomeCapPrice{timeStampYearVec(iDS)-2009,5} = capPrice;

			end

			

		end

	

% 	additionalIncomeCap(additionalIncomeCap == 0) = nan;

% 	additionalIncomeCapPrice(additionalIncomeCapPrice == 0) = nan;

	secLevelStruct(iSec,iPL).Cap = additionalIncomeCap;

	secLevelStruct(iSec,iPL).CapPrice= additionalIncomeCapPrice;

	end	

end

%% Consolidate data

for iPL = 1:size(secLevelStruct,2)

	

	for iSec = 1:size(secLevelStruct,1)

		

		CapJoint_Wind30(:,iSec) = [secLevelStruct(iSec,iPL).Cap{1,1};secLevelStruct(iSec,iPL).Cap{2,1}; ...

			secLevelStruct(iSec,iPL).Cap{3,1};secLevelStruct(iSec,iPL).Cap{4,1}; ...

			secLevelStruct(iSec,iPL).Cap{5,1}];

		

		CapPriceJoint_Wind30(:,iSec) = [secLevelStruct(iSec,iPL).CapPrice{1,1};secLevelStruct(iSec,iPL).CapPrice{2,1}; ...

			secLevelStruct(iSec,iPL).CapPrice{3,1};secLevelStruct(iSec,iPL).CapPrice{4,1}; ...

			secLevelStruct(iSec,iPL).CapPrice{5,1}];

		CapJoint_OffWind30(:,iSec) = [secLevelStruct(iSec,iPL).Cap{1,3};secLevelStruct(iSec,iPL).Cap{2,3}; ...

			secLevelStruct(iSec,iPL).Cap{3,3};secLevelStruct(iSec,iPL).Cap{4,3}; ...

			secLevelStruct(iSec,iPL).Cap{5,3}];

		

		CapPriceJoint_OffWind30(:,iSec) = [secLevelStruct(iSec,iPL).CapPrice{1,3};secLevelStruct(iSec,iPL).CapPrice{2,3}; ...

			secLevelStruct(iSec,iPL).CapPrice{3,3};secLevelStruct(iSec,iPL).CapPrice{4,3}; ...

			secLevelStruct(iSec,iPL).CapPrice{5,3}];

		

		CapJoint_PV30(:,iSec) = [secLevelStruct(iSec,iPL).Cap{1,4};secLevelStruct(iSec,iPL).Cap{2,4}; ...

			secLevelStruct(iSec,iPL).Cap{3,4};secLevelStruct(iSec,iPL).Cap{4,4}; ...

			secLevelStruct(iSec,iPL).Cap{5,4}];

		

		CapPriceJoint_PV30(:,iSec) = [secLevelStruct(iSec,iPL).CapPrice{1,4};secLevelStruct(iSec,iPL).CapPrice{2,4}; ...

			secLevelStruct(iSec,iPL).CapPrice{3,4};secLevelStruct(iSec,iPL).CapPrice{4,4}; ...

			secLevelStruct(iSec,iPL).CapPrice{5,4}];

		

	end

	

end

% loglog(CapJoint_Wind30(:,1),CapPriceJoint_Wind30(:,1),'x','color','g')

% loglog(CapJoint_Wind30(:,2),CapPriceJoint_Wind30(:,2),'x','color','r')

% loglog(CapJoint_PV30(:,1),CapPriceJoint_PV30(:,1),'x','color','y')

% loglog(CapJoint_PV30(:,2),CapPriceJoint_PV30(:,2),'x','color','m')

%% Plot with styleplot

fig = [];

% Define data sets

fig.subplot{1,1}.plot{1}.x = CapJoint_Wind30(:,1);

fig.subplot{1,1}.plot{1}.y = CapPriceJoint_Wind30(:,1);

fig.subplot{1,1}.plot{1}.style='loglog';

fig.subplot{1,1}.plot{1}.linestyle='none';

fig.subplot{1,1}.plot{1}.markerstyle = '.';

fig.subplot{1,1}.plot{1}.markersize = 2;

fig.subplot{1,1}.plot{1}.color='x3';

fig.subplot{1,1}.plot{2}.x = CapJoint_Wind30(:,2);

fig.subplot{1,1}.plot{2}.y = CapPriceJoint_Wind30(:,2);

fig.subplot{1,1}.plot{2}.style='loglog';

fig.subplot{1,1}.plot{2}.linestyle='none';

fig.subplot{1,1}.plot{2}.markerstyle = '.';

fig.subplot{1,1}.plot{2}.markersize = 2;

fig.subplot{1,1}.plot{2}.color='x2';

fig.subplot{1,1}.plot{3}.x = CapJoint_PV30(:,1);

fig.subplot{1,1}.plot{3}.y = CapPriceJoint_PV30(:,1);

fig.subplot{1,1}.plot{3}.style='loglog';

fig.subplot{1,1}.plot{3}.linestyle='none';

fig.subplot{1,1}.plot{3}.markerstyle = '.';

fig.subplot{1,1}.plot{3}.markersize = 2;

fig.subplot{1,1}.plot{3}.color='x20';

fig.subplot{1,1}.plot{4}.x = CapJoint_PV30(:,2);

fig.subplot{1,1}.plot{4}.y = CapPriceJoint_PV30(:,2);

fig.subplot{1,1}.plot{4}.style='loglog';

fig.subplot{1,1}.plot{4}.linestyle='none';

fig.subplot{1,1}.plot{4}.markerstyle = '.';

fig.subplot{1,1}.plot{4}.markersize = 2;

fig.subplot{1,1}.plot{4}.color='x19';

% fig.subplot{1,1}.plot{5}.x = CapJoint_PV30(:,1);

% fig.subplot{1,1}.plot{5}.y = CapPriceJoint_PV30(:,1);

% fig.subplot{1,1}.plot{5}.style='loglog';

% fig.subplot{1,1}.plot{5}.linestyle='none';

% fig.subplot{1,1}.plot{5}.markerstyle = '.';

% fig.subplot{1,1}.plot{5}.markersize = 2;

% fig.subplot{1,1}.plot{5}.color='x28';

%

% fig.subplot{1,1}.plot{6}.x = CapJoint_OffWind30(:,2);

% fig.subplot{1,1}.plot{6}.y = CapPriceJoint_OffWind30(:,2);

% fig.subplot{1,1}.plot{6}.style='loglog';

% fig.subplot{1,1}.plot{6}.linestyle='none';

% fig.subplot{1,1}.plot{6}.markerstyle = '.';

% fig.subplot{1,1}.plot{6}.markersize = 2;

% fig.subplot{1,1}.plot{6}.color='x27';

% Plot axes properties

fig.subplot{1,1}.xgrid = 'on';

xLimVal = [100 20000];

fig.subplot{1,1}.xlim=xLimVal;

yLimVal = [1 1000];

fig.subplot{1,1}.ylim=yLimVal;

% % Title subplots

fig.subplot{1,1}.title=['Negative secondary']; % optionaler Titel

% Axes labeling

fig.subplot{1,1}.xlabel='Offerable cacacity in MW';

fig.subplot{1,1}.ylabel='Capacity price in EUR/MW/h';

fig.subplot{1,1}.legend={'Onshore Wind 30 GW Germany 95%', ...

	'Onshore Wind 30 GW Germany 99.994%', ...

	'Photovoltaic Sytems 30 GW Germany 95%', ...

	'Photovoltaic Sytems 30 GW Germany 99.994%'};

fig.height=12;

fig.width_columns=2;

[hFig, hAxes, hPlot] = styleplot(fig,'styleplot_format_PhD','word');

%% Save

path = 'C:\Users\mjansen\Synchronisation\mjansen auf User_Artemis(R)\Dissertation\Dissertation\Figures\5 Economics of fluctuating RES in the control reserve markets\';

name = 'Fig5-17_profitMax_negSec_AAP_Scatter_top_left';

saveas(gcf,[path name '.fig']);

save([path name '_data.mat'],'fig');

Functions/Results_Evaluation/resPhD_additionalIncome_negative_secondary_BC_Scatter.m

% clear;

% clc;

% %% Options

% productLength = 1;

%

% %% Load

%

% preDefineDataSet = ([123:141]);

%

% for iDataSet = 1:length(preDefineDataSet)

% 	

% 	[~, ~, ...

% 		~, ~, ...

% 		~, ~, ...

% 		~, ~, ...

% 		DataSet(iDataSet).offerRP, ~, ...

% 		DataSet(iDataSet).simRuns, ~, ...

% 		~, DataSet(iDataSet).info] ...

% 		= res_loadResults_noMOL('D:\Ergebnisse REBal',preDefineDataSet(iDataSet));

% 	

% % 	[Prob_Forec_DA, Prob_Forec_ID, actualFeedIn, ecoImpact, ecoImpactTFC, error, ...

% % 		errorRP, macroEcoImpact, offerRP, offerRP_Min, simRuns, violation, alteredMOList, infoRuns] = res_loadResults_noMOL('D:\Ergebnisse REBal',preDefineDataSet(iDataSet));

% 	

% 	runSetYear = regexp(DataSet(iDataSet).info.runSetName,'_','split');

% 	GenType{iDataSet} = runSetYear{1};

% 	PoolType{iDataSet} = runSetYear{2};

% 	Type{iDataSet} = [runSetYear{1:2}];

% 	for iYear = 1:length(runSetYear)

% 		try

% 			if ~isnan(str2double(runSetYear{iYear}))

% 				timeStampYear(iDataSet) = datenum([str2double(runSetYear{iYear}) 1 1]);

% 			end

% 		end

% 	end

% 	

% end

% % Select only valid datasets

% invalidDS = false(size(DataSet));

% for iDS = 1:length(DataSet)

% 	if length(DataSet(iDS).offerRP_Min) == 1

% 		invalidDS(iDS) = isnan(DataSet(iDS).offerRP_Min);

% 	end

% end

% DataSet = DataSet(~invalidDS);

% timeStampYear = timeStampYear(~invalidDS);

% GenType = GenType(~invalidDS);

% PoolType = PoolType(~invalidDS);

% Type = Type(~invalidDS);

%% Other Vars

% Define Order

TypeAll = sort(unique([Type]));

genTypeAll = unique([GenType]);

poolTypeAll = unique([PoolType]);

[timeStampYearVec,~] = datevec(timeStampYear');

[years,~] = datevec(sort(unique(timeStampYear)));

secLevelAll = sort(unique([DataSet(1).simRuns.securityLevel]));

secLevelAll = secLevelAll([1 6]); % Show on those security levels

prodLengthAll = sort(unique([DataSet(1).simRuns.productLength]));

prodLengthAll = prodLengthAll([1]); % Show on those security levels

%% Get DataSet

productLength = 1;

market = 'SFC';

neg = 100;

for iSec = 1:length(secLevelAll)

	

	secLevel = secLevelAll(iSec);

	for iPL = 1:length(prodLengthAll)

		

		productLength = prodLengthAll(iPL);

		

		for iDS = 1:length(DataSet)

			

			

			

			indexA = strcmp({DataSet(iDS).simRuns.market},market);

			indexB = [DataSet(iDS).simRuns.percentNegRP] == neg;

			indexC = [DataSet(iDS).simRuns.productLength] == productLength;

			indexD = [DataSet(iDS).simRuns.securityLevel] == secLevel;

			indexAll = indexA & indexB & indexC & indexD;

			

			cap = [];

			capPrice = [];

			

% 			cap(:,1) ...

% 				= DataSet(iDS).offerRP(indexAll).BC.neg.capacity ...

% 				/ DataSet(iDS).simRuns(indexAll).installedCapacity;

			cap(:,1) ...

				= DataSet(iDS).offerRP_Min(indexAll).BC.neg.capacity;

			

			capPrice(:,1) ...

				= DataSet(iDS).offerRP_Min(indexAll).BC.neg.capacityPrice;	

			

			if strcmp(Type(iDS),'OnWindBRD')

				additionalIncomeCap{timeStampYearVec(iDS)-2009,1} = cap;

				additionalIncomeCapPrice{timeStampYearVec(iDS)-2009,1} = capPrice;

			elseif strcmp(Type(iDS),'OnWindWF')

				additionalIncomeCap{timeStampYearVec(iDS)-2009,2} = cap;

				additionalIncomeCapPrice{timeStampYearVec(iDS)-2009,2} = capPrice;

			elseif strcmp(Type(iDS),'OfWindBRD')

				additionalIncomeCap{timeStampYearVec(iDS)-2009,3} = cap;

				additionalIncomeCapPrice{timeStampYearVec(iDS)-2009,3} = capPrice;

			elseif strcmp(Type(iDS),'PVBRD')

				additionalIncomeCap{timeStampYearVec(iDS)-2009,4} = cap;

				additionalIncomeCapPrice{timeStampYearVec(iDS)-2009,4} = capPrice;

			elseif strcmp(Type(iDS),'PVPVF')

				additionalIncomeCap{timeStampYearVec(iDS)-2009,5} = cap;

				additionalIncomeCapPrice{timeStampYearVec(iDS)-2009,5} = capPrice;

			end

			

		end

	

% 	additionalIncomeCap(additionalIncomeCap == 0) = nan;

% 	additionalIncomeCapPrice(additionalIncomeCapPrice == 0) = nan;

	secLevelStruct(iSec,iPL).Cap = additionalIncomeCap;

	secLevelStruct(iSec,iPL).CapPrice= additionalIncomeCapPrice;

	end	

end

%% Consolidate data

for iPL = 1:size(secLevelStruct,2)

	

	for iSec = 1:size(secLevelStruct,1)

		

		CapJoint_Wind30(:,iSec) = [secLevelStruct(iSec,iPL).Cap{1,1};secLevelStruct(iSec,iPL).Cap{2,1}; ...

			secLevelStruct(iSec,iPL).Cap{3,1};secLevelStruct(iSec,iPL).Cap{4,1}; ...

			secLevelStruct(iSec,iPL).Cap{5,1}];

		

		CapPriceJoint_Wind30(:,iSec) = [secLevelStruct(iSec,iPL).CapPrice{1,1};secLevelStruct(iSec,iPL).CapPrice{2,1}; ...

			secLevelStruct(iSec,iPL).CapPrice{3,1};secLevelStruct(iSec,iPL).CapPrice{4,1}; ...

			secLevelStruct(iSec,iPL).CapPrice{5,1}];

		CapJoint_OffWind30(:,iSec) = [secLevelStruct(iSec,iPL).Cap{1,3};secLevelStruct(iSec,iPL).Cap{2,3}; ...

			secLevelStruct(iSec,iPL).Cap{3,3};secLevelStruct(iSec,iPL).Cap{4,3}; ...

			secLevelStruct(iSec,iPL).Cap{5,3}];

		

		CapPriceJoint_OffWind30(:,iSec) = [secLevelStruct(iSec,iPL).CapPrice{1,3};secLevelStruct(iSec,iPL).CapPrice{2,3}; ...

			secLevelStruct(iSec,iPL).CapPrice{3,3};secLevelStruct(iSec,iPL).CapPrice{4,3}; ...

			secLevelStruct(iSec,iPL).CapPrice{5,3}];

		

		CapJoint_PV30(:,iSec) = [secLevelStruct(iSec,iPL).Cap{1,4};secLevelStruct(iSec,iPL).Cap{2,4}; ...

			secLevelStruct(iSec,iPL).Cap{3,4};secLevelStruct(iSec,iPL).Cap{4,4}; ...

			secLevelStruct(iSec,iPL).Cap{5,4}];

		

		CapPriceJoint_PV30(:,iSec) = [secLevelStruct(iSec,iPL).CapPrice{1,4};secLevelStruct(iSec,iPL).CapPrice{2,4}; ...

			secLevelStruct(iSec,iPL).CapPrice{3,4};secLevelStruct(iSec,iPL).CapPrice{4,4}; ...

			secLevelStruct(iSec,iPL).CapPrice{5,4}];

		

	end

	

end

% loglog(CapJoint_Wind30(:,1),CapPriceJoint_Wind30(:,1),'x','color','g')

% loglog(CapJoint_Wind30(:,2),CapPriceJoint_Wind30(:,2),'x','color','r')

% loglog(CapJoint_PV30(:,1),CapPriceJoint_PV30(:,1),'x','color','y')

% loglog(CapJoint_PV30(:,2),CapPriceJoint_PV30(:,2),'x','color','m')

%% Plot with styleplot

fig = [];

% Define data sets

fig.subplot{1,1}.plot{1}.x = CapJoint_Wind30(:,1);

fig.subplot{1,1}.plot{1}.y = CapPriceJoint_Wind30(:,1);

fig.subplot{1,1}.plot{1}.style='loglog';

fig.subplot{1,1}.plot{1}.linestyle='none';

fig.subplot{1,1}.plot{1}.markerstyle = '.';

fig.subplot{1,1}.plot{1}.markersize = 2;

fig.subplot{1,1}.plot{1}.color='x3';

fig.subplot{1,1}.plot{2}.x = CapJoint_Wind30(:,2);

fig.subplot{1,1}.plot{2}.y = CapPriceJoint_Wind30(:,2);

fig.subplot{1,1}.plot{2}.style='loglog';

fig.subplot{1,1}.plot{2}.linestyle='none';

fig.subplot{1,1}.plot{2}.markerstyle = '.';

fig.subplot{1,1}.plot{2}.markersize = 2;

fig.subplot{1,1}.plot{2}.color='x2';

fig.subplot{1,1}.plot{3}.x = CapJoint_PV30(:,1);

fig.subplot{1,1}.plot{3}.y = CapPriceJoint_PV30(:,1);

fig.subplot{1,1}.plot{3}.style='loglog';

fig.subplot{1,1}.plot{3}.linestyle='none';

fig.subplot{1,1}.plot{3}.markerstyle = '.';

fig.subplot{1,1}.plot{3}.markersize = 2;

fig.subplot{1,1}.plot{3}.color='x20';

fig.subplot{1,1}.plot{4}.x = CapJoint_PV30(:,2);

fig.subplot{1,1}.plot{4}.y = CapPriceJoint_PV30(:,2);

fig.subplot{1,1}.plot{4}.style='loglog';

fig.subplot{1,1}.plot{4}.linestyle='none';

fig.subplot{1,1}.plot{4}.markerstyle = '.';

fig.subplot{1,1}.plot{4}.markersize = 2;

fig.subplot{1,1}.plot{4}.color='x19';

% fig.subplot{1,1}.plot{5}.x = CapJoint_PV30(:,1);

% fig.subplot{1,1}.plot{5}.y = CapPriceJoint_PV30(:,1);

% fig.subplot{1,1}.plot{5}.style='loglog';

% fig.subplot{1,1}.plot{5}.linestyle='none';

% fig.subplot{1,1}.plot{5}.markerstyle = '.';

% fig.subplot{1,1}.plot{5}.markersize = 2;

% fig.subplot{1,1}.plot{5}.color='x28';

%

% fig.subplot{1,1}.plot{6}.x = CapJoint_OffWind30(:,2);

% fig.subplot{1,1}.plot{6}.y = CapPriceJoint_OffWind30(:,2);

% fig.subplot{1,1}.plot{6}.style='loglog';

% fig.subplot{1,1}.plot{6}.linestyle='none';

% fig.subplot{1,1}.plot{6}.markerstyle = '.';

% fig.subplot{1,1}.plot{6}.markersize = 2;

% fig.subplot{1,1}.plot{6}.color='x27';

% Plot axes properties

fig.subplot{1,1}.xgrid = 'on';

xLimVal = [100 20000];

fig.subplot{1,1}.xlim=xLimVal;

yLimVal = [1 1000];

fig.subplot{1,1}.ylim=yLimVal;

% % Title subplots

fig.subplot{1,1}.title=['Negative secondary']; % optionaler Titel

% Axes labeling

fig.subplot{1,1}.xlabel='Offerable cacacity in MW';

fig.subplot{1,1}.ylabel='Capacity price in EUR/MW/h';

fig.subplot{1,1}.legend={'Onshore Wind 30 GW Germany 95%', ...

	'Onshore Wind 30 GW Germany 99.994%', ...

	'Photovoltaic Sytems 30 GW Germany 95%', ...

	'Photovoltaic Sytems 30 GW Germany 99.994%'};

fig.height=12;

fig.width_columns=2;

[hFig, hAxes, hPlot] = styleplot(fig,'styleplot_format_PhD','word');

Functions/Results_Evaluation/resPhD_additionalIncome_negative_secondary_simpleExecSum.m

% clear;

% clc;

% %% Options

% productLength = 1;

%

% %% Load

%

% preDefineDataSet = ([117:135]);

%

% for iDataSet = 1:length(preDefineDataSet)

% 	

% 	[~, ~, ...

% 		~, DataSet(iDataSet).ecoImpact, ...

% 		~, ~, ...

% 		~, ~, ...

% 		~, DataSet(iDataSet).offerRP_Min, ...

% 		DataSet(iDataSet).simRuns, ~, ...

% 		~, DataSet(iDataSet).info] ...

% 		= res_loadResults_noMOL('D:\Ergebnisse REBal',preDefineDataSet(iDataSet));

% 	

% % 	[Prob_Forec_DA, Prob_Forec_ID, actualFeedIn, ecoImpact, ecoImpactTFC, error, ...

% % 		errorRP, macroEcoImpact, offerRP, offerRP_Min, simRuns, violation, alteredMOList, infoRuns] = res_loadResults_noMOL('D:\Ergebnisse REBal',preDefineDataSet(iDataSet));

% 	

% 	runSetYear = regexp(DataSet(iDataSet).info.runSetName,'_','split');

% 	GenType{iDataSet} = runSetYear{1};

% 	PoolType{iDataSet} = runSetYear{2};

% 	Type{iDataSet} = [runSetYear{1:2}];	

% 	for iYear = 1:length(runSetYear)

% 		try

% 			if ~isnan(str2double(runSetYear{iYear}))

% 				timeStampYear(iDataSet) = datenum([str2double(runSetYear{iYear}) 1 1]);

% 			end

% 		end

% 	end

% 	

% end

%

% % % Select only valid datasets

% % invalidDS = false(size(DataSet));

% % for iDS = 1:length(DataSet)

% % 	if length(DataSet(iDS).offerRP_Min) == 1

% % 		invalidDS(iDS) = isnan(DataSet(iDS).offerRP_Min);

% % 	end

% % end

% % DataSet = DataSet(~invalidDS);

% % timeStampYear = timeStampYear(~invalidDS);

% % GenType = GenType(~invalidDS);

% % PoolType = PoolType(~invalidDS);

% % Type = Type(~invalidDS);

%% Other Vars

% Define Order

TypeAll = sort(unique([Type]));

genTypeAll = unique([GenType]);

poolTypeAll = unique([PoolType]);

[timeStampYearVec,~] = datevec(timeStampYear');

[years,~] = datevec(sort(unique(timeStampYear)));

secLevelAll = sort(unique([DataSet(1).simRuns.securityLevel]));

secLevelAll = secLevelAll([1 6]); % Show on those security levels

prodLengthAll = sort(unique([DataSet(1).simRuns.productLength]));

prodLengthAll = prodLengthAll([1 3 5]); % Show on those security levels

%% Get DataSet

productLength = 4;

market = 'SFC';

neg = 100;

for iSec = 1:length(secLevelAll)

	

	secLevel = secLevelAll(iSec);

	for iPL = 1:length(prodLengthAll)

		

		productLength = prodLengthAll(iPL);

		

		for iDS = 1:length(DataSet)

			

			

			

			indexA = strcmp({DataSet(iDS).simRuns.market},market);

			indexB = [DataSet(iDS).simRuns.percentNegRP] == neg;

			indexC = [DataSet(iDS).simRuns.productLength] == productLength;

			indexD = [DataSet(iDS).simRuns.securityLevel] == secLevel;

			indexAll = indexA & indexB & indexC & indexD;

			

			addIncome = [];

			addIncome_Cap = [];

			addIncome_En = [];

			addIncome_perCapInst = [];

			

			addIncome(:,1) ...

				= abs(DataSet(iDS).ecoImpact(indexAll).AAP.Max ...

				- DataSet(iDS).ecoImpact(indexAll).AAP.Min);

			

			addIncome_perCapInst(:,1) ...

				= addIncome(:,1) ...

				/ DataSet(iDS).simRuns(indexAll).installedCapacity;		

			

			addIncome_Cap(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.capacity ...

				- DataSet(iDS).ecoImpact(indexAll).AAP.Min_DiffSplit.capacity;

			

			addIncome_En(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.dispatch ...

				- DataSet(iDS).ecoImpact(indexAll).AAP.Min_DiffSplit.dispatch;

			

			if strcmp(Type(iDS),'OnWindBRD')

				additionalIncomeTotal(timeStampYearVec(iDS)-2009,1) = addIncome;

				additionalIncomeCap(timeStampYearVec(iDS)-2009,1) = addIncome_Cap;

				additionalIncomeEn(timeStampYearVec(iDS)-2009,1) = addIncome_En;

				additionalIncomePerGW(timeStampYearVec(iDS)-2009,1) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OnWindWF')

				additionalIncomeTotal(timeStampYearVec(iDS)-2009,2) = addIncome;

				additionalIncomeCap(timeStampYearVec(iDS)-2009,2) = addIncome_Cap;

				additionalIncomeEn(timeStampYearVec(iDS)-2009,2) = addIncome_En;

				additionalIncomePerGW(timeStampYearVec(iDS)-2009,2) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OfWindBRD')

				additionalIncomeTotal(timeStampYearVec(iDS)-2009,3) = addIncome;

				additionalIncomeCap(timeStampYearVec(iDS)-2009,3) = addIncome_Cap;

				additionalIncomeEn(timeStampYearVec(iDS)-2009,3) = addIncome_En;

				additionalIncomePerGW(timeStampYearVec(iDS)-2009,3) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVBRD')

				additionalIncomeTotal(timeStampYearVec(iDS)-2009,4) = addIncome;

				additionalIncomeCap(timeStampYearVec(iDS)-2009,4) = addIncome_Cap;

				additionalIncomeEn(timeStampYearVec(iDS)-2009,4) = addIncome_En;

				additionalIncomePerGW(timeStampYearVec(iDS)-2009,4) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVPVF')

				additionalIncomeTotal(timeStampYearVec(iDS)-2009,5) = addIncome;

				additionalIncomeCap(timeStampYearVec(iDS)-2009,5) = addIncome_Cap;

				additionalIncomeEn(timeStampYearVec(iDS)-2009,5) = addIncome_En;

				additionalIncomePerGW(timeStampYearVec(iDS)-2009,5) = addIncome_perCapInst;

			end

			

		end

	

	additionalIncomeTotal(additionalIncomeTotal == 0) = nan;

	additionalIncomeCap(additionalIncomeCap == 0) = nan;

	additionalIncomeEn(additionalIncomeEn == 0) = nan;

	additionalIncomePerGW(additionalIncomePerGW == 0) = nan;

	secLevelStruct(iSec,iPL).addIncome = additionalIncomeTotal;

	secLevelStruct(iSec,iPL).addIncomeCap = additionalIncomeCap;

	secLevelStruct(iSec,iPL).addIncomeEn = additionalIncomeEn;	

	secLevelStruct(iSec,iPL).addIncomePerGW = additionalIncomePerGW;

	end	

end

%% Consolidate data

dataOneHour = secLevelStruct(2,1).addIncome(1:5,:) / 1000000;

dataFourHour = secLevelStruct(2,2).addIncome(1:5,:) / 1000000;

dataTwelveHour = secLevelStruct(2,3).addIncome(1:5,:) / 1000000;

dataOneHour95 = secLevelStruct(1,1).addIncome(1:5,:) / 1000000;

dataFourHour95 = secLevelStruct(1,2).addIncome(1:5,:) / 1000000;

dataTwelveHour95 = secLevelStruct(1,3).addIncome(1:5,:) / 1000000;

% % Include if data should be based on per GW

% dataOneHour = secLevelStruct(2,1).addIncomePerGW(1:5,:) / 1000;

% dataFourHour = secLevelStruct(2,2).addIncomePerGW(1:5,:) / 1000;

% dataTwelveHour = secLevelStruct(2,3).addIncomePerGW(1:5,:) / 1000;

%

% dataOneHour95 = secLevelStruct(1,1).addIncomePerGW(1:5,:) / 1000;

% dataFourHour95 = secLevelStruct(1,2).addIncomePerGW(1:5,:) / 1000;

% dataTwelveHour95 = secLevelStruct(1,3).addIncomePerGW(1:5,:) / 1000;

% Values for bars

dataValTXT_OneHour = num2cell(dataOneHour);

textFormat = cell(size(dataValTXT_OneHour));

textFormat(:) = {'%0.1f'};

dataValTXT_OneHour = cellfun(@num2str,dataValTXT_OneHour,textFormat,'UniformOutput',0);

for i = 1:size(dataOneHour,1)

	for j = 1:size(dataValTXT_OneHour,1)

		if strcmp(dataValTXT_OneHour(i,j),'NaN')

			dataValTXT_OneHour{i,j} = [];

		end

	end

end

dataValTXT_FourHour = num2cell(dataFourHour);

textFormat = cell(size(dataValTXT_FourHour));

textFormat(:) = {'%0.1f'};

dataValTXT_FourHour = cellfun(@num2str,dataValTXT_FourHour,textFormat,'UniformOutput',0);

for i = 1:size(dataFourHour,1)

	for j = 1:size(dataValTXT_FourHour,1)

		if strcmp(dataValTXT_FourHour(i,j),'NaN')

			dataValTXT_FourHour{i,j} = [];

		end

	end

end

dataValTXT_TwelveHour = num2cell(dataTwelveHour);

textFormat = cell(size(dataValTXT_TwelveHour));

textFormat(:) = {'%0.1f'};

dataValTXT_TwelveHour = cellfun(@num2str,dataValTXT_TwelveHour,textFormat,'UniformOutput',0);

for i = 1:size(dataTwelveHour,1)

	for j = 1:size(dataValTXT_TwelveHour,1)

		if strcmp(dataValTXT_TwelveHour(i,j),'NaN')

			dataValTXT_TwelveHour{i,j} = [];

		end

	end

end

%% Plot with styleplot

fig = [];

% First Data Set %%

% Define data sets

% fig.subplot{1,1}.plot{1}.x = 1:size(dataFourHour95,2);

% fig.subplot{1,1}.plot{1}.y = dataFourHour95;

% fig.subplot{1,1}.plot{1}.style='bar';

% fig.subplot{1,1}.plot{1}.barlayout='grouped';

% fig.subplot{1,1}.plot{1}.barcolor={'x2','x34','x27','x19','x14'}; % Overwrite the color property

fig.subplot{1,1}.plot{1}.x = 1:size(dataFourHour,2);

fig.subplot{1,1}.plot{1}.y = dataFourHour;

fig.subplot{1,1}.plot{1}.style='bar';

fig.subplot{1,1}.plot{1}.barlayout='grouped';

fig.subplot{1,1}.plot{1}.barcolor={'x3','x35','x28','x20','x15'}; % Overwrite the color property

% fig.subplot{1,1}.plot{1}.text=dataValTXT_OneHour; % Must be the same size as the data

% fig.subplot{1,2}.plot{1}.x = 1:size(dataFourHour95,2);

% fig.subplot{1,2}.plot{1}.y = dataFourHour95;

% fig.subplot{1,2}.plot{1}.style='bar';

% fig.subplot{1,2}.plot{1}.barlayout='grouped';

% fig.subplot{1,2}.plot{1}.barcolor={'x2','x34','x27','x19','x14'}; % Overwrite the color property

%

% fig.subplot{1,2}.plot{2}.x = 1:size(dataFourHour,2);

% fig.subplot{1,2}.plot{2}.y = dataFourHour;

% fig.subplot{1,2}.plot{2}.style='bar';

% fig.subplot{1,2}.plot{2}.barlayout='grouped';

% fig.subplot{1,2}.plot{2}.barcolor={'x3','x35','x28','x20','x15'}; % Overwrite the color property

% fig.subplot{1,2}.plot{2}.text=dataValTXT_FourHour; % Must be the same size as the data

%

% fig.subplot{1,3}.plot{1}.x = 1:size(dataTwelveHour95,2);

% fig.subplot{1,3}.plot{1}.y = dataTwelveHour95;

% fig.subplot{1,3}.plot{1}.style='bar';

% fig.subplot{1,3}.plot{1}.barlayout='grouped';

% fig.subplot{1,3}.plot{1}.barcolor={'x2','x34','x27','x19','x14'}; % Overwrite the color property

%

% fig.subplot{1,3}.plot{2}.x = 1:size(dataTwelveHour,2);

% fig.subplot{1,3}.plot{2}.y = dataTwelveHour;

% fig.subplot{1,3}.plot{2}.style='bar';

% fig.subplot{1,3}.plot{2}.barlayout='grouped';

% fig.subplot{1,3}.plot{2}.barcolor={'x3','x35','x28','x20','x15'}; % Overwrite the color property

% fig.subplot{1,3}.plot{2}.text=dataValTXT_TwelveHour; % Must be the same size as the data

% Plot axes properties

xLimVal = [0.5 5.5];

fig.subplot{1,1}.xlim=xLimVal;

% fig.subplot{1,2}.xlim=xLimVal;

% fig.subplot{1,3}.xlim=xLimVal;

yLimVal = [0 80];

fig.subplot{1,1}.ylim=yLimVal;

% fig.subplot{1,2}.ylim=yLimVal;

% fig.subplot{1,3}.ylim=yLimVal;

% Title subplots

fig.subplot{1,1}.title=['Negative secondary | Four hours | 99.994%']; % optionaler Titel

% fig.subplot{1,2}.title=['Product length: Four hours']; % optionaler Titel

% fig.subplot{1,3}.title=['Product length: Twelve hours']; % optionaler Titel

% Axes labeling

fig.subplot{1,1}.xlabel='Year';

% fig.subplot{1,2}.xlabel='Year';

% fig.subplot{1,3}.xlabel='Year';

fig.subplot{1,1}.ylabel='Additional income in mio. EUR';

% fig.subplot{1,2}.ylabel='Additional income in mio. EUR';

% fig.subplot{1,3}.ylabel='Additional income in mio. EUR';

fig.subplot{1,1}.legend={'Onshore Wind 30 GW Germany', ...

	'Onshore Wind 1 GW Pool', ...

	'Offshore Wind 1 GW Germany', ...

	'Photovoltaic Systems 30 GW Germany', ...

	'Photovoltaic Systems 1 GW Pool'};

fig.subplot{1,1}.xticks=fig.subplot{1,1}.plot{1}.x;

fig.subplot{1,1}.xticklabels=[2010,2011,2012,2013,2014];

fig.subplot{1,1}.yticks=min(yLimVal):20:max(yLimVal);

% fig.subplot{1,2}.xticks=fig.subplot{1,2}.plot{1}.x;

% fig.subplot{1,2}.xticklabels=[2010,2011,2012,2013,2014];

% fig.subplot{1,2}.yticks=min(yLimVal):10:max(yLimVal);

% fig.subplot{1,3}.xticks=fig.subplot{1,3}.plot{1}.x;

% fig.subplot{1,3}.xticklabels=[2010,2011,2012,2013,2014];

% fig.subplot{1,3}.yticks=min(yLimVal):10:max(yLimVal);

fig.height=8;

fig.width_columns=3;

[hFig, hAxes, hPlot] = styleplot(fig,'styleplot_format_PhD','wordwide');

Functions/Results_Evaluation/resPhD_additionalIncome_negative_tertiary.m

% clear;

% clc;

% %% Options

% productLength = 1;

%

% %% Load

%

% preDefineDataSet = ([117:135]);

%

% for iDataSet = 1:length(preDefineDataSet)

% 	

% 	[~, ~, ...

% 		~, DataSet(iDataSet).ecoImpact, ...

% 		~, ~, ...

% 		~, ~, ...

% 		~, DataSet(iDataSet).offerRP_Min, ...

% 		DataSet(iDataSet).simRuns, ~, ...

% 		~, DataSet(iDataSet).info] ...

% 		= res_loadResults_noMOL('D:\Ergebnisse REBal',preDefineDataSet(iDataSet));

% 	

% % 	[Prob_Forec_DA, Prob_Forec_ID, actualFeedIn, ecoImpact, ecoImpactTFC, error, ...

% % 		errorRP, macroEcoImpact, offerRP, offerRP_Min, simRuns, violation, alteredMOList, infoRuns] = res_loadResults_noMOL('D:\Ergebnisse REBal',preDefineDataSet(iDataSet));

% 	

% 	runSetYear = regexp(DataSet(iDataSet).info.runSetName,'_','split');

% 	GenType{iDataSet} = runSetYear{1};

% 	PoolType{iDataSet} = runSetYear{2};

% 	Type{iDataSet} = [runSetYear{1:2}];

% 	for iYear = 1:length(runSetYear)

% 		try

% 			if ~isnan(str2double(runSetYear{iYear}))

% 				timeStampYear(iDataSet) = datenum([str2double(runSetYear{iYear}) 1 1]);

% 			end

% 		end

% 	end

% 	

% end

%

% % % Select only valid datasets

% % invalidDS = false(size(DataSet));

% % for iDS = 1:length(DataSet)

% % 	if length(DataSet(iDS).offerRP_Min) == 1

% % 		invalidDS(iDS) = isnan(DataSet(iDS).offerRP_Min);

% % 	end

% % end

% % DataSet = DataSet(~invalidDS);

% % timeStampYear = timeStampYear(~invalidDS);

% % GenType = GenType(~invalidDS);

% % PoolType = PoolType(~invalidDS);

% % Type = Type(~invalidDS);

%% Other Vars

% Define Order

TypeAll = sort(unique([Type]));

genTypeAll = unique([GenType]);

poolTypeAll = unique([PoolType]);

[timeStampYearVec,~] = datevec(timeStampYear');

[years,~] = datevec(sort(unique(timeStampYear)));

secLevelAll = sort(unique([DataSet(1).simRuns.securityLevel]));

secLevelAll = secLevelAll([1 6]); % Show on those security levels

prodLengthAll = sort(unique([DataSet(1).simRuns.productLength]));

prodLengthAll = prodLengthAll([1 3 5]); % Show on those security levels

%% Get DataSet

productLength = 1;

market = 'TFC';

neg = 100;

for iSec = 1:length(secLevelAll)

	

	secLevel = secLevelAll(iSec);

	for iPL = 1:length(prodLengthAll)

		

		productLength = prodLengthAll(iPL);

		

		for iDS = 1:length(DataSet)

			

			

			

			indexA = strcmp({DataSet(iDS).simRuns.market},market);

			indexB = [DataSet(iDS).simRuns.percentNegRP] == neg;

			indexC = [DataSet(iDS).simRuns.productLength] == productLength;

			indexD = [DataSet(iDS).simRuns.securityLevel] == secLevel;

			indexAll = indexA & indexB & indexC & indexD;

			

			addIncome = [];

			addIncome_Cap = [];

			addIncome_En = [];

			addIncome_perCapInst = [];

			

			addIncome(:,1) ...

				= abs(DataSet(iDS).ecoImpact(indexAll).AAP.Max ...

				- DataSet(iDS).ecoImpact(indexAll).AAP.Min);

			

			addIncome_perCapInst(:,1) ...

				= addIncome(:,1) ...

				/ DataSet(iDS).simRuns(indexAll).installedCapacity;		

			

			addIncome_Cap(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.capacity ...

				- DataSet(iDS).ecoImpact(indexAll).AAP.Min_DiffSplit.capacity;

			

			addIncome_En(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.dispatch ...

				- DataSet(iDS).ecoImpact(indexAll).AAP.Min_DiffSplit.dispatch;

			

			if strcmp(Type(iDS),'OnWindBRD')

				additionalIncomeTotal(timeStampYearVec(iDS)-2009,1) = addIncome;

				additionalIncomeCap(timeStampYearVec(iDS)-2009,1) = addIncome_Cap;

				additionalIncomeEn(timeStampYearVec(iDS)-2009,1) = addIncome_En;

				additionalIncomePerGW(timeStampYearVec(iDS)-2009,1) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OnWindWF')

				additionalIncomeTotal(timeStampYearVec(iDS)-2009,2) = addIncome;

				additionalIncomeCap(timeStampYearVec(iDS)-2009,2) = addIncome_Cap;

				additionalIncomeEn(timeStampYearVec(iDS)-2009,2) = addIncome_En;

				additionalIncomePerGW(timeStampYearVec(iDS)-2009,2) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OfWindBRD')

				additionalIncomeTotal(timeStampYearVec(iDS)-2009,3) = addIncome;

				additionalIncomeCap(timeStampYearVec(iDS)-2009,3) = addIncome_Cap;

				additionalIncomeEn(timeStampYearVec(iDS)-2009,3) = addIncome_En;

				additionalIncomePerGW(timeStampYearVec(iDS)-2009,3) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVBRD')

				additionalIncomeTotal(timeStampYearVec(iDS)-2009,4) = addIncome;

				additionalIncomeCap(timeStampYearVec(iDS)-2009,4) = addIncome_Cap;

				additionalIncomeEn(timeStampYearVec(iDS)-2009,4) = addIncome_En;

				additionalIncomePerGW(timeStampYearVec(iDS)-2009,4) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVPVF')

				additionalIncomeTotal(timeStampYearVec(iDS)-2009,5) = addIncome;

				additionalIncomeCap(timeStampYearVec(iDS)-2009,5) = addIncome_Cap;

				additionalIncomeEn(timeStampYearVec(iDS)-2009,5) = addIncome_En;

				additionalIncomePerGW(timeStampYearVec(iDS)-2009,5) = addIncome_perCapInst;

			end

			

		end

	

	additionalIncomeTotal(additionalIncomeTotal == 0) = nan;

	additionalIncomeCap(additionalIncomeCap == 0) = nan;

	additionalIncomeEn(additionalIncomeEn == 0) = nan;

	additionalIncomePerGW(additionalIncomePerGW == 0) = nan;

	secLevelStruct(iSec,iPL).addIncome = additionalIncomeTotal;

	secLevelStruct(iSec,iPL).addIncomeCap = additionalIncomeCap;

	secLevelStruct(iSec,iPL).addIncomeEn = additionalIncomeEn;	

	secLevelStruct(iSec,iPL).addIncomePerGW = additionalIncomePerGW;

	end	

end

%% Consolidate data

dataOneHour = secLevelStruct(2,1).addIncome(1:5,:) / 1000000;

dataFourHour = secLevelStruct(2,2).addIncome(1:5,:) / 1000000;

dataTwelveHour = secLevelStruct(2,3).addIncome(1:5,:) / 1000000;

dataOneHour95 = secLevelStruct(1,1).addIncome(1:5,:) / 1000000;

dataFourHour95 = secLevelStruct(1,2).addIncome(1:5,:) / 1000000;

dataTwelveHour95 = secLevelStruct(1,3).addIncome(1:5,:) / 1000000;

% % Include if data should be based on per GW

% dataOneHour = secLevelStruct(2,1).addIncomePerGW(1:5,:) / 1000;

% dataFourHour = secLevelStruct(2,2).addIncomePerGW(1:5,:) / 1000;

% dataTwelveHour = secLevelStruct(2,3).addIncomePerGW(1:5,:) / 1000;

%

% dataOneHour95 = secLevelStruct(1,1).addIncomePerGW(1:5,:) / 1000;

% dataFourHour95 = secLevelStruct(1,2).addIncomePerGW(1:5,:) / 1000;

% dataTwelveHour95 = secLevelStruct(1,3).addIncomePerGW(1:5,:) / 1000;

% Values for bars

dataValTXT_OneHour = num2cell(dataOneHour);

textFormat = cell(size(dataValTXT_OneHour));

textFormat(:) = {'%0.1f'};

dataValTXT_OneHour = cellfun(@num2str,dataValTXT_OneHour,textFormat,'UniformOutput',0);

for i = 1:size(dataOneHour,1)

	for j = 1:size(dataValTXT_OneHour,1)

		if strcmp(dataValTXT_OneHour(i,j),'NaN')

			dataValTXT_OneHour{i,j} = [];

		end

	end

end

dataValTXT_FourHour = num2cell(dataFourHour);

textFormat = cell(size(dataValTXT_FourHour));

textFormat(:) = {'%0.1f'};

dataValTXT_FourHour = cellfun(@num2str,dataValTXT_FourHour,textFormat,'UniformOutput',0);

for i = 1:size(dataFourHour,1)

	for j = 1:size(dataValTXT_FourHour,1)

		if strcmp(dataValTXT_FourHour(i,j),'NaN')

			dataValTXT_FourHour{i,j} = [];

		end

	end

end

dataValTXT_TwelveHour = num2cell(dataTwelveHour);

textFormat = cell(size(dataValTXT_TwelveHour));

textFormat(:) = {'%0.1f'};

dataValTXT_TwelveHour = cellfun(@num2str,dataValTXT_TwelveHour,textFormat,'UniformOutput',0);

for i = 1:size(dataTwelveHour,1)

	for j = 1:size(dataValTXT_TwelveHour,1)

		if strcmp(dataValTXT_TwelveHour(i,j),'NaN')

			dataValTXT_TwelveHour{i,j} = [];

		end

	end

end

%% Plot with styleplot

fig = [];

% First Data Set %%

% Define data sets

fig.subplot{1,1}.plot{1}.x = 1:size(dataOneHour95,2);

fig.subplot{1,1}.plot{1}.y = dataOneHour95;

fig.subplot{1,1}.plot{1}.style='bar';

fig.subplot{1,1}.plot{1}.barlayout='grouped';

fig.subplot{1,1}.plot{1}.barcolor={'x2','x34','x27','x19','x14'}; % Overwrite the color property

fig.subplot{1,1}.plot{2}.x = 1:size(dataOneHour,2);

fig.subplot{1,1}.plot{2}.y = dataOneHour;

fig.subplot{1,1}.plot{2}.style='bar';

fig.subplot{1,1}.plot{2}.barlayout='grouped';

fig.subplot{1,1}.plot{2}.barcolor={'x3','x35','x28','x20','x15'}; % Overwrite the color property

fig.subplot{1,1}.plot{2}.text=dataValTXT_OneHour; % Must be the same size as the data

fig.subplot{1,2}.plot{1}.x = 1:size(dataFourHour95,2);

fig.subplot{1,2}.plot{1}.y = dataFourHour95;

fig.subplot{1,2}.plot{1}.style='bar';

fig.subplot{1,2}.plot{1}.barlayout='grouped';

fig.subplot{1,2}.plot{1}.barcolor={'x2','x34','x27','x19','x14'}; % Overwrite the color property

fig.subplot{1,2}.plot{2}.x = 1:size(dataFourHour,2);

fig.subplot{1,2}.plot{2}.y = dataFourHour;

fig.subplot{1,2}.plot{2}.style='bar';

fig.subplot{1,2}.plot{2}.barlayout='grouped';

fig.subplot{1,2}.plot{2}.barcolor={'x3','x35','x28','x20','x15'}; % Overwrite the color property

fig.subplot{1,2}.plot{2}.text=dataValTXT_FourHour; % Must be the same size as the data

fig.subplot{1,3}.plot{1}.x = 1:size(dataTwelveHour95,2);

fig.subplot{1,3}.plot{1}.y = dataTwelveHour95;

fig.subplot{1,3}.plot{1}.style='bar';

fig.subplot{1,3}.plot{1}.barlayout='grouped';

fig.subplot{1,3}.plot{1}.barcolor={'x2','x34','x27','x19','x14'}; % Overwrite the color property

fig.subplot{1,3}.plot{2}.x = 1:size(dataTwelveHour,2);

fig.subplot{1,3}.plot{2}.y = dataTwelveHour;

fig.subplot{1,3}.plot{2}.style='bar';

fig.subplot{1,3}.plot{2}.barlayout='grouped';

fig.subplot{1,3}.plot{2}.barcolor={'x3','x35','x28','x20','x15'}; % Overwrite the color property

fig.subplot{1,3}.plot{2}.text=dataValTXT_TwelveHour; % Must be the same size as the data

% Plot axes properties

xLimVal = [0.5 5.5];

fig.subplot{1,1}.xlim=xLimVal;

fig.subplot{1,2}.xlim=xLimVal;

fig.subplot{1,3}.xlim=xLimVal;

yLimVal = [0 50];

fig.subplot{1,1}.ylim=yLimVal;

fig.subplot{1,2}.ylim=yLimVal;

fig.subplot{1,3}.ylim=yLimVal;

% Title subplots

fig.subplot{1,1}.title=['Product length: One hour']; % optionaler Titel

fig.subplot{1,2}.title=['Product length: Four hours']; % optionaler Titel

fig.subplot{1,3}.title=['Product length: Twelve hours']; % optionaler Titel

% Axes labeling

fig.subplot{1,1}.xlabel='Year';

fig.subplot{1,2}.xlabel='Year';

fig.subplot{1,3}.xlabel='Year';

fig.subplot{1,1}.ylabel='Additional income in mio. EUR';

fig.subplot{1,2}.ylabel='Additional income in mio. EUR';

fig.subplot{1,3}.ylabel='Additional income in mio. EUR';

fig.subplot{1,1}.legend={'Onshore Wind 30 GW Germany 95%', ...

	'Onshore Wind 1 GW Pool negative capacity bids 95%', ...

	'Offshore Wind 1 GW Germany negative capacity bids 95%', ...

	'Photovoltaic Sytems 30 GW Germany negative capacity bids 95%', ...

	'Photovoltaic Sytems 1 GW Pool negative capacity bids 95%', ...

	'Onshore Wind 30 GW Germany 99.994%', ...

	'Onshore Wind 1 GW Pool 99.994%', ...

	'Offshore Wind 1 GW Germany 99.994%', ...

	'Photovoltaic Sytems 30 GW Germany 99.994%', ...

	'Photovoltaic Sytems 1 GW Pool 99.994%'};

fig.subplot{1,1}.xticks=fig.subplot{1,1}.plot{1}.x;

fig.subplot{1,1}.xticklabels=[2010,2011,2012,2013,2014];

fig.subplot{1,1}.yticks=min(yLimVal):10:max(yLimVal);

fig.subplot{1,2}.xticks=fig.subplot{1,2}.plot{1}.x;

fig.subplot{1,2}.xticklabels=[2010,2011,2012,2013,2014];

fig.subplot{1,2}.yticks=min(yLimVal):10:max(yLimVal);

fig.subplot{1,3}.xticks=fig.subplot{1,3}.plot{1}.x;

fig.subplot{1,3}.xticklabels=[2010,2011,2012,2013,2014];

fig.subplot{1,3}.yticks=min(yLimVal):10:max(yLimVal);

fig.height=18;

fig.width_columns=3;

[hFig, hAxes, hPlot] = styleplot(fig,'styleplot_format_PhD','wordwide');

%% Save

path = 'C:\Users\mjansen\Synchronisation\mjansen auf User_Artemis(R)\Dissertation\Dissertation\Figures\5 Economics of fluctuating RES in the control reserve markets\';

name = 'Fig5-25_addIncome_negTer_1h_4h_12h';

saveas(gcf,[path name '.fig']);

save([path name '_data.mat'],'fig');

Functions/Results_Evaluation/resPhD_additionalIncome_negative_tertiary_AAP_Scatter.m

% clear;

% clc;

% %% Options

% productLength = 1;

%

% %% Load

%

% preDefineDataSet = ([117:135]);

%

% for iDataSet = 1:length(preDefineDataSet)

% 	

% 	[~, ~, ...

% 		~, ~, ...

% 		~, ~, ...

% 		~, ~, ...

% 		DataSet(iDataSet).offerRP, DataSet(iDataSet).offerRP_Min, ...

% 		DataSet(iDataSet).simRuns, ~, ...

% 		~, DataSet(iDataSet).info] ...

% 		= res_loadResults_noMOL('D:\Ergebnisse REBal',preDefineDataSet(iDataSet));

% 	

% % 	[Prob_Forec_DA, Prob_Forec_ID, actualFeedIn, ecoImpact, ecoImpactTFC, error, ...

% % 		errorRP, macroEcoImpact, offerRP, offerRP_Min, simRuns, violation, alteredMOList, infoRuns] = res_loadResults_noMOL('D:\Ergebnisse REBal',preDefineDataSet(iDataSet));

% 	

% 	runSetYear = regexp(DataSet(iDataSet).info.runSetName,'_','split');

% 	GenType{iDataSet} = runSetYear{1};

% 	PoolType{iDataSet} = runSetYear{2};

% 	Type{iDataSet} = [runSetYear{1:2}];

% 	for iYear = 1:length(runSetYear)

% 		try

% 			if ~isnan(str2double(runSetYear{iYear}))

% 				timeStampYear(iDataSet) = datenum([str2double(runSetYear{iYear}) 1 1]);

% 			end

% 		end

% 	end

% 	

% end

%

% % Select only valid datasets

% invalidDS = false(size(DataSet));

% for iDS = 1:length(DataSet)

% 	if length(DataSet(iDS).offerRP_Min) == 1

% 		invalidDS(iDS) = isnan(DataSet(iDS).offerRP_Min);

% 	end

% end

% DataSet = DataSet(~invalidDS);

% timeStampYear = timeStampYear(~invalidDS);

% GenType = GenType(~invalidDS);

% PoolType = PoolType(~invalidDS);

% Type = Type(~invalidDS);

%% Other Vars

% Define Order

TypeAll = sort(unique([Type]));

genTypeAll = unique([GenType]);

poolTypeAll = unique([PoolType]);

[timeStampYearVec,~] = datevec(timeStampYear');

[years,~] = datevec(sort(unique(timeStampYear)));

secLevelAll = sort(unique([DataSet(1).simRuns.securityLevel]));

secLevelAll = secLevelAll([1 6]); % Show on those security levels

prodLengthAll = sort(unique([DataSet(1).simRuns.productLength]));

prodLengthAll = prodLengthAll([1]); % Show on those security levels

%% Get DataSet

productLength = 1;

market = 'TFC';

neg = 100;

for iSec = 1:length(secLevelAll)

	

	secLevel = secLevelAll(iSec);

	for iPL = 1:length(prodLengthAll)

		

		productLength = prodLengthAll(iPL);

		

		for iDS = 1:length(DataSet)

			

			

			

			indexA = strcmp({DataSet(iDS).simRuns.market},market);

			indexB = [DataSet(iDS).simRuns.percentNegRP] == neg;

			indexC = [DataSet(iDS).simRuns.productLength] == productLength;

			indexD = [DataSet(iDS).simRuns.securityLevel] == secLevel;

			indexAll = indexA & indexB & indexC & indexD;

			

			cap = [];

			capPrice = [];

			

% 			cap(:,1) ...

% 				= DataSet(iDS).offerRP(indexAll).AAP.neg.capacity ...

% 				/ DataSet(iDS).simRuns(indexAll).installedCapacity;

			cap(:,1) ...

				= DataSet(iDS).offerRP_Min(indexAll).AAP.neg.capacity;

			

			capPrice(:,1) ...

				= DataSet(iDS).offerRP_Min(indexAll).AAP.neg.capacityPrice;	

			

			if strcmp(Type(iDS),'OnWindBRD')

				additionalIncomeCap{timeStampYearVec(iDS)-2009,1} = cap;

				additionalIncomeCapPrice{timeStampYearVec(iDS)-2009,1} = capPrice;

			elseif strcmp(Type(iDS),'OnWindWF')

				additionalIncomeCap{timeStampYearVec(iDS)-2009,2} = cap;

				additionalIncomeCapPrice{timeStampYearVec(iDS)-2009,2} = capPrice;

			elseif strcmp(Type(iDS),'OfWindBRD')

				additionalIncomeCap{timeStampYearVec(iDS)-2009,3} = cap;

				additionalIncomeCapPrice{timeStampYearVec(iDS)-2009,3} = capPrice;

			elseif strcmp(Type(iDS),'PVBRD')

				additionalIncomeCap{timeStampYearVec(iDS)-2009,4} = cap;

				additionalIncomeCapPrice{timeStampYearVec(iDS)-2009,4} = capPrice;

			elseif strcmp(Type(iDS),'PVPVF')

				additionalIncomeCap{timeStampYearVec(iDS)-2009,5} = cap;

				additionalIncomeCapPrice{timeStampYearVec(iDS)-2009,5} = capPrice;

			end

			

		end

	

% 	additionalIncomeCap(additionalIncomeCap == 0) = nan;

% 	additionalIncomeCapPrice(additionalIncomeCapPrice == 0) = nan;

	secLevelStruct(iSec,iPL).Cap = additionalIncomeCap;

	secLevelStruct(iSec,iPL).CapPrice= additionalIncomeCapPrice;

	end	

end

%% Consolidate data

for iPL = 1:size(secLevelStruct,2)

	

	for iSec = 1:size(secLevelStruct,1)

		

		CapJoint_Wind30(:,iSec) = [secLevelStruct(iSec,iPL).Cap{1,1};secLevelStruct(iSec,iPL).Cap{2,1}; ...

			secLevelStruct(iSec,iPL).Cap{3,1};secLevelStruct(iSec,iPL).Cap{4,1}; ...

			secLevelStruct(iSec,iPL).Cap{5,1}];

		

		CapPriceJoint_Wind30(:,iSec) = [secLevelStruct(iSec,iPL).CapPrice{1,1};secLevelStruct(iSec,iPL).CapPrice{2,1}; ...

			secLevelStruct(iSec,iPL).CapPrice{3,1};secLevelStruct(iSec,iPL).CapPrice{4,1}; ...

			secLevelStruct(iSec,iPL).CapPrice{5,1}];

		CapJoint_OffWind30(:,iSec) = [secLevelStruct(iSec,iPL).Cap{1,3};secLevelStruct(iSec,iPL).Cap{2,3}; ...

			secLevelStruct(iSec,iPL).Cap{3,3};secLevelStruct(iSec,iPL).Cap{4,3}; ...

			secLevelStruct(iSec,iPL).Cap{5,3}];

		

		CapPriceJoint_OffWind30(:,iSec) = [secLevelStruct(iSec,iPL).CapPrice{1,3};secLevelStruct(iSec,iPL).CapPrice{2,3}; ...

			secLevelStruct(iSec,iPL).CapPrice{3,3};secLevelStruct(iSec,iPL).CapPrice{4,3}; ...

			secLevelStruct(iSec,iPL).CapPrice{5,3}];

		

		CapJoint_PV30(:,iSec) = [secLevelStruct(iSec,iPL).Cap{1,4};secLevelStruct(iSec,iPL).Cap{2,4}; ...

			secLevelStruct(iSec,iPL).Cap{3,4};secLevelStruct(iSec,iPL).Cap{4,4}; ...

			secLevelStruct(iSec,iPL).Cap{5,4}];

		

		CapPriceJoint_PV30(:,iSec) = [secLevelStruct(iSec,iPL).CapPrice{1,4};secLevelStruct(iSec,iPL).CapPrice{2,4}; ...

			secLevelStruct(iSec,iPL).CapPrice{3,4};secLevelStruct(iSec,iPL).CapPrice{4,4}; ...

			secLevelStruct(iSec,iPL).CapPrice{5,4}];

		

	end

	

end

% loglog(CapJoint_Wind30(:,1),CapPriceJoint_Wind30(:,1),'x','color','g')

% loglog(CapJoint_Wind30(:,2),CapPriceJoint_Wind30(:,2),'x','color','r')

% loglog(CapJoint_PV30(:,1),CapPriceJoint_PV30(:,1),'x','color','y')

% loglog(CapJoint_PV30(:,2),CapPriceJoint_PV30(:,2),'x','color','m')

%% Plot with styleplot

fig = [];

% Define data sets

fig.subplot{1,1}.plot{1}.x = CapJoint_Wind30(:,1);

fig.subplot{1,1}.plot{1}.y = CapPriceJoint_Wind30(:,1);

fig.subplot{1,1}.plot{1}.style='loglog';

fig.subplot{1,1}.plot{1}.linestyle='none';

fig.subplot{1,1}.plot{1}.markerstyle = '.';

fig.subplot{1,1}.plot{1}.markersize = 2;

fig.subplot{1,1}.plot{1}.color='x3';

fig.subplot{1,1}.plot{2}.x = CapJoint_Wind30(:,2);

fig.subplot{1,1}.plot{2}.y = CapPriceJoint_Wind30(:,2);

fig.subplot{1,1}.plot{2}.style='loglog';

fig.subplot{1,1}.plot{2}.linestyle='none';

fig.subplot{1,1}.plot{2}.markerstyle = '.';

fig.subplot{1,1}.plot{2}.markersize = 2;

fig.subplot{1,1}.plot{2}.color='x2';

fig.subplot{1,1}.plot{3}.x = CapJoint_PV30(:,1);

fig.subplot{1,1}.plot{3}.y = CapPriceJoint_PV30(:,1);

fig.subplot{1,1}.plot{3}.style='loglog';

fig.subplot{1,1}.plot{3}.linestyle='none';

fig.subplot{1,1}.plot{3}.markerstyle = '.';

fig.subplot{1,1}.plot{3}.markersize = 2;

fig.subplot{1,1}.plot{3}.color='x20';

fig.subplot{1,1}.plot{4}.x = CapJoint_PV30(:,2);

fig.subplot{1,1}.plot{4}.y = CapPriceJoint_PV30(:,2);

fig.subplot{1,1}.plot{4}.style='loglog';

fig.subplot{1,1}.plot{4}.linestyle='none';

fig.subplot{1,1}.plot{4}.markerstyle = '.';

fig.subplot{1,1}.plot{4}.markersize = 2;

fig.subplot{1,1}.plot{4}.color='x19';

% fig.subplot{1,1}.plot{5}.x = CapJoint_PV30(:,1);

% fig.subplot{1,1}.plot{5}.y = CapPriceJoint_PV30(:,1);

% fig.subplot{1,1}.plot{5}.style='loglog';

% fig.subplot{1,1}.plot{5}.linestyle='none';

% fig.subplot{1,1}.plot{5}.markerstyle = '.';

% fig.subplot{1,1}.plot{5}.markersize = 2;

% fig.subplot{1,1}.plot{5}.color='x28';

%

% fig.subplot{1,1}.plot{6}.x = CapJoint_OffWind30(:,2);

% fig.subplot{1,1}.plot{6}.y = CapPriceJoint_OffWind30(:,2);

% fig.subplot{1,1}.plot{6}.style='loglog';

% fig.subplot{1,1}.plot{6}.linestyle='none';

% fig.subplot{1,1}.plot{6}.markerstyle = '.';

% fig.subplot{1,1}.plot{6}.markersize = 2;

% fig.subplot{1,1}.plot{6}.color='x27';

% Plot axes properties

fig.subplot{1,1}.xgrid = 'on';

xLimVal = [100 20000];

fig.subplot{1,1}.xlim=xLimVal;

yLimVal = [1 1000];

fig.subplot{1,1}.ylim=yLimVal;

% % Title subplots

fig.subplot{1,1}.title=['Negative tertiary']; % optionaler Titel

% Axes labeling

fig.subplot{1,1}.xlabel='Offerable cacacity in MW';

fig.subplot{1,1}.ylabel='Capacity price in EUR/MW/h';

fig.subplot{1,1}.legend={'Onshore Wind 30 GW Germany 95%', ...

	'Onshore Wind 30 GW Germany 99.994%', ...

	'Photovoltaic Sytems 30 GW Germany 95%', ...

	'Photovoltaic Sytems 30 GW Germany 99.994%'};

fig.height=12;

fig.width_columns=2;

[hFig, hAxes, hPlot] = styleplot(fig,'styleplot_format_PhD','word');

%% Save

path = 'C:\Users\mjansen\Synchronisation\mjansen auf User_Artemis(R)\Dissertation\Dissertation\Figures\5 Economics of fluctuating RES in the control reserve markets\';

name = 'Fig5-17_profitMax_negTer_AAP_Scatter_top_right';

saveas(gcf,[path name '.fig']);

save([path name '_data.mat'],'fig');

Functions/Results_Evaluation/resPhD_additionalIncome_negative_tertiary_BC_Scatter.m

% clear;

% clc;

% %% Options

% productLength = 1;

%

% %% Load

%

% preDefineDataSet = ([123:141]);

%

% for iDataSet = 1:length(preDefineDataSet)

% 	

% 	[~, ~, ...

% 		~, ~, ...

% 		~, ~, ...

% 		~, ~, ...

% 		DataSet(iDataSet).offerRP, ~, ...

% 		DataSet(iDataSet).simRuns, ~, ...

% 		~, DataSet(iDataSet).info] ...

% 		= res_loadResults_noMOL('D:\Ergebnisse REBal',preDefineDataSet(iDataSet));

% 	

% % 	[Prob_Forec_DA, Prob_Forec_ID, actualFeedIn, ecoImpact, ecoImpactTFC, error, ...

% % 		errorRP, macroEcoImpact, offerRP, offerRP_Min, simRuns, violation, alteredMOList, infoRuns] = res_loadResults_noMOL('D:\Ergebnisse REBal',preDefineDataSet(iDataSet));

% 	

% 	runSetYear = regexp(DataSet(iDataSet).info.runSetName,'_','split');

% 	GenType{iDataSet} = runSetYear{1};

% 	PoolType{iDataSet} = runSetYear{2};

% 	Type{iDataSet} = [runSetYear{1:2}];

% 	for iYear = 1:length(runSetYear)

% 		try

% 			if ~isnan(str2double(runSetYear{iYear}))

% 				timeStampYear(iDataSet) = datenum([str2double(runSetYear{iYear}) 1 1]);

% 			end

% 		end

% 	end

% 	

% end

% % Select only valid datasets

% invalidDS = false(size(DataSet));

% for iDS = 1:length(DataSet)

% 	if length(DataSet(iDS).offerRP_Min) == 1

% 		invalidDS(iDS) = isnan(DataSet(iDS).offerRP_Min);

% 	end

% end

% DataSet = DataSet(~invalidDS);

% timeStampYear = timeStampYear(~invalidDS);

% GenType = GenType(~invalidDS);

% PoolType = PoolType(~invalidDS);

% Type = Type(~invalidDS);

%% Other Vars

% Define Order

TypeAll = sort(unique([Type]));

genTypeAll = unique([GenType]);

poolTypeAll = unique([PoolType]);

[timeStampYearVec,~] = datevec(timeStampYear');

[years,~] = datevec(sort(unique(timeStampYear)));

secLevelAll = sort(unique([DataSet(1).simRuns.securityLevel]));

secLevelAll = secLevelAll([1 6]); % Show on those security levels

prodLengthAll = sort(unique([DataSet(1).simRuns.productLength]));

prodLengthAll = prodLengthAll([1]); % Show on those security levels

%% Get DataSet

productLength = 1;

market = 'TFC';

neg = 100;

for iSec = 1:length(secLevelAll)

	

	secLevel = secLevelAll(iSec);

	for iPL = 1:length(prodLengthAll)

		

		productLength = prodLengthAll(iPL);

		

		for iDS = 1:length(DataSet)

			

			

			

			indexA = strcmp({DataSet(iDS).simRuns.market},market);

			indexB = [DataSet(iDS).simRuns.percentNegRP] == neg;

			indexC = [DataSet(iDS).simRuns.productLength] == productLength;

			indexD = [DataSet(iDS).simRuns.securityLevel] == secLevel;

			indexAll = indexA & indexB & indexC & indexD;

			

			cap = [];

			capPrice = [];

			

% 			cap(:,1) ...

% 				= DataSet(iDS).offerRP(indexAll).BC.neg.capacity ...

% 				/ DataSet(iDS).simRuns(indexAll).installedCapacity;

			cap(:,1) ...

				= DataSet(iDS).offerRP_Min(indexAll).BC.neg.capacity;

			

			capPrice(:,1) ...

				= DataSet(iDS).offerRP_Min(indexAll).BC.neg.capacityPrice;	

			

			if strcmp(Type(iDS),'OnWindBRD')

				additionalIncomeCap{timeStampYearVec(iDS)-2009,1} = cap;

				additionalIncomeCapPrice{timeStampYearVec(iDS)-2009,1} = capPrice;

			elseif strcmp(Type(iDS),'OnWindWF')

				additionalIncomeCap{timeStampYearVec(iDS)-2009,2} = cap;

				additionalIncomeCapPrice{timeStampYearVec(iDS)-2009,2} = capPrice;

			elseif strcmp(Type(iDS),'OfWindBRD')

				additionalIncomeCap{timeStampYearVec(iDS)-2009,3} = cap;

				additionalIncomeCapPrice{timeStampYearVec(iDS)-2009,3} = capPrice;

			elseif strcmp(Type(iDS),'PVBRD')

				additionalIncomeCap{timeStampYearVec(iDS)-2009,4} = cap;

				additionalIncomeCapPrice{timeStampYearVec(iDS)-2009,4} = capPrice;

			elseif strcmp(Type(iDS),'PVPVF')

				additionalIncomeCap{timeStampYearVec(iDS)-2009,5} = cap;

				additionalIncomeCapPrice{timeStampYearVec(iDS)-2009,5} = capPrice;

			end

			

		end

	

% 	additionalIncomeCap(additionalIncomeCap == 0) = nan;

% 	additionalIncomeCapPrice(additionalIncomeCapPrice == 0) = nan;

	secLevelStruct(iSec,iPL).Cap = additionalIncomeCap;

	secLevelStruct(iSec,iPL).CapPrice= additionalIncomeCapPrice;

	end	

end

%% Consolidate data

for iPL = 1:size(secLevelStruct,2)

	

	for iSec = 1:size(secLevelStruct,1)

		

		CapJoint_Wind30(:,iSec) = [secLevelStruct(iSec,iPL).Cap{1,1};secLevelStruct(iSec,iPL).Cap{2,1}; ...

			secLevelStruct(iSec,iPL).Cap{3,1};secLevelStruct(iSec,iPL).Cap{4,1}; ...

			secLevelStruct(iSec,iPL).Cap{5,1}];

		

		CapPriceJoint_Wind30(:,iSec) = [secLevelStruct(iSec,iPL).CapPrice{1,1};secLevelStruct(iSec,iPL).CapPrice{2,1}; ...

			secLevelStruct(iSec,iPL).CapPrice{3,1};secLevelStruct(iSec,iPL).CapPrice{4,1}; ...

			secLevelStruct(iSec,iPL).CapPrice{5,1}];

		CapJoint_OffWind30(:,iSec) = [secLevelStruct(iSec,iPL).Cap{1,3};secLevelStruct(iSec,iPL).Cap{2,3}; ...

			secLevelStruct(iSec,iPL).Cap{3,3};secLevelStruct(iSec,iPL).Cap{4,3}; ...

			secLevelStruct(iSec,iPL).Cap{5,3}];

		

		CapPriceJoint_OffWind30(:,iSec) = [secLevelStruct(iSec,iPL).CapPrice{1,3};secLevelStruct(iSec,iPL).CapPrice{2,3}; ...

			secLevelStruct(iSec,iPL).CapPrice{3,3};secLevelStruct(iSec,iPL).CapPrice{4,3}; ...

			secLevelStruct(iSec,iPL).CapPrice{5,3}];

		

		CapJoint_PV30(:,iSec) = [secLevelStruct(iSec,iPL).Cap{1,4};secLevelStruct(iSec,iPL).Cap{2,4}; ...

			secLevelStruct(iSec,iPL).Cap{3,4};secLevelStruct(iSec,iPL).Cap{4,4}; ...

			secLevelStruct(iSec,iPL).Cap{5,4}];

		

		CapPriceJoint_PV30(:,iSec) = [secLevelStruct(iSec,iPL).CapPrice{1,4};secLevelStruct(iSec,iPL).CapPrice{2,4}; ...

			secLevelStruct(iSec,iPL).CapPrice{3,4};secLevelStruct(iSec,iPL).CapPrice{4,4}; ...

			secLevelStruct(iSec,iPL).CapPrice{5,4}];

		

	end

	

end

% loglog(CapJoint_Wind30(:,1),CapPriceJoint_Wind30(:,1),'x','color','g')

% loglog(CapJoint_Wind30(:,2),CapPriceJoint_Wind30(:,2),'x','color','r')

% loglog(CapJoint_PV30(:,1),CapPriceJoint_PV30(:,1),'x','color','y')

% loglog(CapJoint_PV30(:,2),CapPriceJoint_PV30(:,2),'x','color','m')

%% Plot with styleplot

fig = [];

% Define data sets

fig.subplot{1,1}.plot{1}.x = CapJoint_Wind30(:,1);

fig.subplot{1,1}.plot{1}.y = CapPriceJoint_Wind30(:,1);

fig.subplot{1,1}.plot{1}.style='loglog';

fig.subplot{1,1}.plot{1}.linestyle='none';

fig.subplot{1,1}.plot{1}.markerstyle = '.';

fig.subplot{1,1}.plot{1}.markersize = 2;

fig.subplot{1,1}.plot{1}.color='x3';

fig.subplot{1,1}.plot{2}.x = CapJoint_Wind30(:,2);

fig.subplot{1,1}.plot{2}.y = CapPriceJoint_Wind30(:,2);

fig.subplot{1,1}.plot{2}.style='loglog';

fig.subplot{1,1}.plot{2}.linestyle='none';

fig.subplot{1,1}.plot{2}.markerstyle = '.';

fig.subplot{1,1}.plot{2}.markersize = 2;

fig.subplot{1,1}.plot{2}.color='x2';

fig.subplot{1,1}.plot{3}.x = CapJoint_PV30(:,1);

fig.subplot{1,1}.plot{3}.y = CapPriceJoint_PV30(:,1);

fig.subplot{1,1}.plot{3}.style='loglog';

fig.subplot{1,1}.plot{3}.linestyle='none';

fig.subplot{1,1}.plot{3}.markerstyle = '.';

fig.subplot{1,1}.plot{3}.markersize = 2;

fig.subplot{1,1}.plot{3}.color='x20';

fig.subplot{1,1}.plot{4}.x = CapJoint_PV30(:,2);

fig.subplot{1,1}.plot{4}.y = CapPriceJoint_PV30(:,2);

fig.subplot{1,1}.plot{4}.style='loglog';

fig.subplot{1,1}.plot{4}.linestyle='none';

fig.subplot{1,1}.plot{4}.markerstyle = '.';

fig.subplot{1,1}.plot{4}.markersize = 2;

fig.subplot{1,1}.plot{4}.color='x19';

% fig.subplot{1,1}.plot{5}.x = CapJoint_PV30(:,1);

% fig.subplot{1,1}.plot{5}.y = CapPriceJoint_PV30(:,1);

% fig.subplot{1,1}.plot{5}.style='loglog';

% fig.subplot{1,1}.plot{5}.linestyle='none';

% fig.subplot{1,1}.plot{5}.markerstyle = '.';

% fig.subplot{1,1}.plot{5}.markersize = 2;

% fig.subplot{1,1}.plot{5}.color='x28';

%

% fig.subplot{1,1}.plot{6}.x = CapJoint_OffWind30(:,2);

% fig.subplot{1,1}.plot{6}.y = CapPriceJoint_OffWind30(:,2);

% fig.subplot{1,1}.plot{6}.style='loglog';

% fig.subplot{1,1}.plot{6}.linestyle='none';

% fig.subplot{1,1}.plot{6}.markerstyle = '.';

% fig.subplot{1,1}.plot{6}.markersize = 2;

% fig.subplot{1,1}.plot{6}.color='x27';

% Plot axes properties

fig.subplot{1,1}.xgrid = 'on';

xLimVal = [100 20000];

fig.subplot{1,1}.xlim=xLimVal;

yLimVal = [1 1000];

fig.subplot{1,1}.ylim=yLimVal;

% % Title subplots

fig.subplot{1,1}.title=['Negative tertiary']; % optionaler Titel

% Axes labeling

fig.subplot{1,1}.xlabel='Offerable cacacity in MW';

fig.subplot{1,1}.ylabel='Capacity price in EUR/MW/h';

fig.subplot{1,1}.legend={'Onshore Wind 30 GW Germany 95%', ...

	'Onshore Wind 30 GW Germany 99.994%', ...

	'Photovoltaic Sytems 30 GW Germany 95%', ...

	'Photovoltaic Sytems 30 GW Germany 99.994%'};

fig.height=12;

fig.width_columns=2;

[hFig, hAxes, hPlot] = styleplot(fig,'styleplot_format_PhD','word');

Functions/Results_Evaluation/resPhD_additionalIncome_negative_tertiary_simpleExecSum.m

% clear;

% clc;

% %% Options

% productLength = 1;

%

% %% Load

%

% preDefineDataSet = ([117:135]);

%

% for iDataSet = 1:length(preDefineDataSet)

% 	

% 	[~, ~, ...

% 		~, DataSet(iDataSet).ecoImpact, ...

% 		~, ~, ...

% 		~, ~, ...

% 		~, DataSet(iDataSet).offerRP_Min, ...

% 		DataSet(iDataSet).simRuns, ~, ...

% 		~, DataSet(iDataSet).info] ...

% 		= res_loadResults_noMOL('D:\Ergebnisse REBal',preDefineDataSet(iDataSet));

% 	

% % 	[Prob_Forec_DA, Prob_Forec_ID, actualFeedIn, ecoImpact, ecoImpactTFC, error, ...

% % 		errorRP, macroEcoImpact, offerRP, offerRP_Min, simRuns, violation, alteredMOList, infoRuns] = res_loadResults_noMOL('D:\Ergebnisse REBal',preDefineDataSet(iDataSet));

% 	

% 	runSetYear = regexp(DataSet(iDataSet).info.runSetName,'_','split');

% 	GenType{iDataSet} = runSetYear{1};

% 	PoolType{iDataSet} = runSetYear{2};

% 	Type{iDataSet} = [runSetYear{1:2}];

% 	for iYear = 1:length(runSetYear)

% 		try

% 			if ~isnan(str2double(runSetYear{iYear}))

% 				timeStampYear(iDataSet) = datenum([str2double(runSetYear{iYear}) 1 1]);

% 			end

% 		end

% 	end

% 	

% end

%

% % % Select only valid datasets

% % invalidDS = false(size(DataSet));

% % for iDS = 1:length(DataSet)

% % 	if length(DataSet(iDS).offerRP_Min) == 1

% % 		invalidDS(iDS) = isnan(DataSet(iDS).offerRP_Min);

% % 	end

% % end

% % DataSet = DataSet(~invalidDS);

% % timeStampYear = timeStampYear(~invalidDS);

% % GenType = GenType(~invalidDS);

% % PoolType = PoolType(~invalidDS);

% % Type = Type(~invalidDS);

%% Other Vars

% Define Order

TypeAll = sort(unique([Type]));

genTypeAll = unique([GenType]);

poolTypeAll = unique([PoolType]);

[timeStampYearVec,~] = datevec(timeStampYear');

[years,~] = datevec(sort(unique(timeStampYear)));

secLevelAll = sort(unique([DataSet(1).simRuns.securityLevel]));

secLevelAll = secLevelAll([1 6]); % Show on those security levels

prodLengthAll = sort(unique([DataSet(1).simRuns.productLength]));

prodLengthAll = prodLengthAll([1 3 5]); % Show on those security levels

%% Get DataSet

productLength = 4;

market = 'TFC';

neg = 100;

for iSec = 1:length(secLevelAll)

	

	secLevel = secLevelAll(iSec);

	for iPL = 1:length(prodLengthAll)

		

		productLength = prodLengthAll(iPL);

		

		for iDS = 1:length(DataSet)

			

			

			

			indexA = strcmp({DataSet(iDS).simRuns.market},market);

			indexB = [DataSet(iDS).simRuns.percentNegRP] == neg;

			indexC = [DataSet(iDS).simRuns.productLength] == productLength;

			indexD = [DataSet(iDS).simRuns.securityLevel] == secLevel;

			indexAll = indexA & indexB & indexC & indexD;

			

			addIncome = [];

			addIncome_Cap = [];

			addIncome_En = [];

			addIncome_perCapInst = [];

			

			addIncome(:,1) ...

				= abs(DataSet(iDS).ecoImpact(indexAll).AAP.Max ...

				- DataSet(iDS).ecoImpact(indexAll).AAP.Min);

			

			addIncome_perCapInst(:,1) ...

				= addIncome(:,1) ...

				/ DataSet(iDS).simRuns(indexAll).installedCapacity;		

			

			addIncome_Cap(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.capacity ...

				- DataSet(iDS).ecoImpact(indexAll).AAP.Min_DiffSplit.capacity;

			

			addIncome_En(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.dispatch ...

				- DataSet(iDS).ecoImpact(indexAll).AAP.Min_DiffSplit.dispatch;

			

			if strcmp(Type(iDS),'OnWindBRD')

				additionalIncomeTotal(timeStampYearVec(iDS)-2009,1) = addIncome;

				additionalIncomeCap(timeStampYearVec(iDS)-2009,1) = addIncome_Cap;

				additionalIncomeEn(timeStampYearVec(iDS)-2009,1) = addIncome_En;

				additionalIncomePerGW(timeStampYearVec(iDS)-2009,1) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OnWindWF')

				additionalIncomeTotal(timeStampYearVec(iDS)-2009,2) = addIncome;

				additionalIncomeCap(timeStampYearVec(iDS)-2009,2) = addIncome_Cap;

				additionalIncomeEn(timeStampYearVec(iDS)-2009,2) = addIncome_En;

				additionalIncomePerGW(timeStampYearVec(iDS)-2009,2) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OfWindBRD')

				additionalIncomeTotal(timeStampYearVec(iDS)-2009,3) = addIncome;

				additionalIncomeCap(timeStampYearVec(iDS)-2009,3) = addIncome_Cap;

				additionalIncomeEn(timeStampYearVec(iDS)-2009,3) = addIncome_En;

				additionalIncomePerGW(timeStampYearVec(iDS)-2009,3) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVBRD')

				additionalIncomeTotal(timeStampYearVec(iDS)-2009,4) = addIncome;

				additionalIncomeCap(timeStampYearVec(iDS)-2009,4) = addIncome_Cap;

				additionalIncomeEn(timeStampYearVec(iDS)-2009,4) = addIncome_En;

				additionalIncomePerGW(timeStampYearVec(iDS)-2009,4) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVPVF')

				additionalIncomeTotal(timeStampYearVec(iDS)-2009,5) = addIncome;

				additionalIncomeCap(timeStampYearVec(iDS)-2009,5) = addIncome_Cap;

				additionalIncomeEn(timeStampYearVec(iDS)-2009,5) = addIncome_En;

				additionalIncomePerGW(timeStampYearVec(iDS)-2009,5) = addIncome_perCapInst;

			end

			

		end

	

	additionalIncomeTotal(additionalIncomeTotal == 0) = nan;

	additionalIncomeCap(additionalIncomeCap == 0) = nan;

	additionalIncomeEn(additionalIncomeEn == 0) = nan;

	additionalIncomePerGW(additionalIncomePerGW == 0) = nan;

	secLevelStruct(iSec,iPL).addIncome = additionalIncomeTotal;

	secLevelStruct(iSec,iPL).addIncomeCap = additionalIncomeCap;

	secLevelStruct(iSec,iPL).addIncomeEn = additionalIncomeEn;	

	secLevelStruct(iSec,iPL).addIncomePerGW = additionalIncomePerGW;

	end	

end

%% Consolidate data

dataOneHour = secLevelStruct(2,1).addIncome(1:5,:) / 1000000;

dataFourHour = secLevelStruct(2,2).addIncome(1:5,:) / 1000000;

dataTwelveHour = secLevelStruct(2,3).addIncome(1:5,:) / 1000000;

dataOneHour95 = secLevelStruct(1,1).addIncome(1:5,:) / 1000000;

dataFourHour95 = secLevelStruct(1,2).addIncome(1:5,:) / 1000000;

dataTwelveHour95 = secLevelStruct(1,3).addIncome(1:5,:) / 1000000;

% % Include if data should be based on per GW

% dataOneHour = secLevelStruct(2,1).addIncomePerGW(1:5,:) / 1000;

% dataFourHour = secLevelStruct(2,2).addIncomePerGW(1:5,:) / 1000;

% dataTwelveHour = secLevelStruct(2,3).addIncomePerGW(1:5,:) / 1000;

%

% dataOneHour95 = secLevelStruct(1,1).addIncomePerGW(1:5,:) / 1000;

% dataFourHour95 = secLevelStruct(1,2).addIncomePerGW(1:5,:) / 1000;

% dataTwelveHour95 = secLevelStruct(1,3).addIncomePerGW(1:5,:) / 1000;

% Values for bars

dataValTXT_OneHour = num2cell(dataOneHour);

textFormat = cell(size(dataValTXT_OneHour));

textFormat(:) = {'%0.1f'};

dataValTXT_OneHour = cellfun(@num2str,dataValTXT_OneHour,textFormat,'UniformOutput',0);

for i = 1:size(dataOneHour,1)

	for j = 1:size(dataValTXT_OneHour,1)

		if strcmp(dataValTXT_OneHour(i,j),'NaN')

			dataValTXT_OneHour{i,j} = [];

		end

	end

end

dataValTXT_FourHour = num2cell(dataFourHour);

textFormat = cell(size(dataValTXT_FourHour));

textFormat(:) = {'%0.1f'};

dataValTXT_FourHour = cellfun(@num2str,dataValTXT_FourHour,textFormat,'UniformOutput',0);

for i = 1:size(dataFourHour,1)

	for j = 1:size(dataValTXT_FourHour,1)

		if strcmp(dataValTXT_FourHour(i,j),'NaN')

			dataValTXT_FourHour{i,j} = [];

		end

	end

end

dataValTXT_TwelveHour = num2cell(dataTwelveHour);

textFormat = cell(size(dataValTXT_TwelveHour));

textFormat(:) = {'%0.1f'};

dataValTXT_TwelveHour = cellfun(@num2str,dataValTXT_TwelveHour,textFormat,'UniformOutput',0);

for i = 1:size(dataTwelveHour,1)

	for j = 1:size(dataValTXT_TwelveHour,1)

		if strcmp(dataValTXT_TwelveHour(i,j),'NaN')

			dataValTXT_TwelveHour{i,j} = [];

		end

	end

end

%% Plot with styleplot

fig = [];

% First Data Set %%

% Define data sets

% fig.subplot{1,1}.plot{1}.x = 1:size(dataFourHour95,2);

% fig.subplot{1,1}.plot{1}.y = dataFourHour95;

% fig.subplot{1,1}.plot{1}.style='bar';

% fig.subplot{1,1}.plot{1}.barlayout='grouped';

% fig.subplot{1,1}.plot{1}.barcolor={'x2','x34','x27','x19','x14'}; % Overwrite the color property

fig.subplot{1,1}.plot{1}.x = 1:size(dataFourHour,2);

fig.subplot{1,1}.plot{1}.y = dataFourHour;

fig.subplot{1,1}.plot{1}.style='bar';

fig.subplot{1,1}.plot{1}.barlayout='grouped';

fig.subplot{1,1}.plot{1}.barcolor={'x3','x35','x28','x20','x15'}; % Overwrite the color property

% fig.subplot{1,1}.plot{1}.text=dataValTXT_OneHour; % Must be the same size as the data

% fig.subplot{1,2}.plot{1}.x = 1:size(dataFourHour95,2);

% fig.subplot{1,2}.plot{1}.y = dataFourHour95;

% fig.subplot{1,2}.plot{1}.style='bar';

% fig.subplot{1,2}.plot{1}.barlayout='grouped';

% fig.subplot{1,2}.plot{1}.barcolor={'x2','x34','x27','x19','x14'}; % Overwrite the color property

%

% fig.subplot{1,2}.plot{2}.x = 1:size(dataFourHour,2);

% fig.subplot{1,2}.plot{2}.y = dataFourHour;

% fig.subplot{1,2}.plot{2}.style='bar';

% fig.subplot{1,2}.plot{2}.barlayout='grouped';

% fig.subplot{1,2}.plot{2}.barcolor={'x3','x35','x28','x20','x15'}; % Overwrite the color property

% fig.subplot{1,2}.plot{2}.text=dataValTXT_FourHour; % Must be the same size as the data

%

% fig.subplot{1,3}.plot{1}.x = 1:size(dataTwelveHour95,2);

% fig.subplot{1,3}.plot{1}.y = dataTwelveHour95;

% fig.subplot{1,3}.plot{1}.style='bar';

% fig.subplot{1,3}.plot{1}.barlayout='grouped';

% fig.subplot{1,3}.plot{1}.barcolor={'x2','x34','x27','x19','x14'}; % Overwrite the color property

%

% fig.subplot{1,3}.plot{2}.x = 1:size(dataTwelveHour,2);

% fig.subplot{1,3}.plot{2}.y = dataTwelveHour;

% fig.subplot{1,3}.plot{2}.style='bar';

% fig.subplot{1,3}.plot{2}.barlayout='grouped';

% fig.subplot{1,3}.plot{2}.barcolor={'x3','x35','x28','x20','x15'}; % Overwrite the color property

% fig.subplot{1,3}.plot{2}.text=dataValTXT_TwelveHour; % Must be the same size as the data

% Plot axes properties

xLimVal = [0.5 5.5];

fig.subplot{1,1}.xlim=xLimVal;

% fig.subplot{1,2}.xlim=xLimVal;

% fig.subplot{1,3}.xlim=xLimVal;

yLimVal = [0 20];

fig.subplot{1,1}.ylim=yLimVal;

% fig.subplot{1,2}.ylim=yLimVal;

% fig.subplot{1,3}.ylim=yLimVal;

% Title subplots

fig.subplot{1,1}.title=['Negative tertiary | Four hours | 99.994%']; % optionaler Titel

% fig.subplot{1,2}.title=['Product length: Four hours']; % optionaler Titel

% fig.subplot{1,3}.title=['Product length: Twelve hours']; % optionaler Titel

% Axes labeling

fig.subplot{1,1}.xlabel='Year';

% fig.subplot{1,2}.xlabel='Year';

% fig.subplot{1,3}.xlabel='Year';

fig.subplot{1,1}.ylabel='Additional income in mio. EUR';

% fig.subplot{1,2}.ylabel='Additional income in mio. EUR';

% fig.subplot{1,3}.ylabel='Additional income in mio. EUR';

% fig.subplot{1,1}.legend={'Onshore Wind 30 GW Germany', ...

% 	'Onshore Wind 1 GW Pool', ...

% 	'Offshore Wind 1 GW Germany', ...

% 	'Photovoltaic Sytems 30 GW Germany', ...

% 	'Photovoltaic Sytems 1 GW Pool'};

fig.subplot{1,1}.xticks=fig.subplot{1,1}.plot{1}.x;

fig.subplot{1,1}.xticklabels=[2010,2011,2012,2013,2014];

fig.subplot{1,1}.yticks=min(yLimVal):5:max(yLimVal);

% fig.subplot{1,2}.xticks=fig.subplot{1,2}.plot{1}.x;

% fig.subplot{1,2}.xticklabels=[2010,2011,2012,2013,2014];

% fig.subplot{1,2}.yticks=min(yLimVal):10:max(yLimVal);

% fig.subplot{1,3}.xticks=fig.subplot{1,3}.plot{1}.x;

% fig.subplot{1,3}.xticklabels=[2010,2011,2012,2013,2014];

% fig.subplot{1,3}.yticks=min(yLimVal):10:max(yLimVal);

fig.height=8;

fig.width_columns=1;

[hFig, hAxes, hPlot] = styleplot(fig,'styleplot_format_PhD','wordwide');

Functions/Results_Evaluation/resPhD_additionalIncome_positive_secondary.m

% % clear;

% clc;

% %% Options

% productLength = 1;

%

% %% Load

%

% preDefineDataSet = ([117:135]);

%

% for iDataSet = 1:length(preDefineDataSet)

% 	

% 	[~, ~, ...

% 		~, DataSet(iDataSet).ecoImpact, ...

% 		~, ~, ...

% 		~, ~, ...

% 		~, DataSet(iDataSet).offerRP_Min, ...

% 		DataSet(iDataSet).simRuns, ~, ...

% 		~, DataSet(iDataSet).info] ...

% 		= res_loadResults_noMOL('D:\Ergebnisse REBal',preDefineDataSet(iDataSet));

% 	

% % 	[Prob_Forec_DA, Prob_Forec_ID, actualFeedIn, ecoImpact, ecoImpactTFC, error, ...

% % 		errorRP, macroEcoImpact, offerRP, offerRP_Min, simRuns, violation, alteredMOList, infoRuns] = res_loadResults_noMOL('D:\Ergebnisse REBal',preDefineDataSet(iDataSet));

% 	

% 	runSetYear = regexp(DataSet(iDataSet).info.runSetName,'_','split');

% 	GenType{iDataSet} = runSetYear{1};

% 	PoolType{iDataSet} = runSetYear{2};

% 	Type{iDataSet} = [runSetYear{1:2}];

% 	for iYear = 1:length(runSetYear)

% 		try

% 			if ~isnan(str2double(runSetYear{iYear}))

% 				timeStampYear(iDataSet) = datenum([str2double(runSetYear{iYear}) 1 1]);

% 			end

% 		end

% 	end

% 	

% end

%

% % % Select only valid datasets

% % invalidDS = false(size(DataSet));

% % for iDS = 1:length(DataSet)

% % 	if length(DataSet(iDS).offerRP_Min) == 1

% % 		invalidDS(iDS) = isnan(DataSet(iDS).offerRP_Min);

% % 	end

% % end

% % DataSet = DataSet(~invalidDS);

% % timeStampYear = timeStampYear(~invalidDS);

% % GenType = GenType(~invalidDS);

% % PoolType = PoolType(~invalidDS);

% % Type = Type(~invalidDS);

%% Other Vars

% Define Order

TypeAll = sort(unique([Type]));

genTypeAll = unique([GenType]);

poolTypeAll = unique([PoolType]);

[timeStampYearVec,~] = datevec(timeStampYear');

[years,~] = datevec(sort(unique(timeStampYear)));

secLevelAll = sort(unique([DataSet(1).simRuns.securityLevel]));

secLevelAll = secLevelAll([1 6]); % Show on those security levels

prodLengthAll = sort(unique([DataSet(1).simRuns.productLength]));

prodLengthAll = prodLengthAll([1 3 5]); % Show on those security levels

%% Get DataSet

productLength = 1;

market = 'SFC';

pos = 100;

for iSec = 1:length(secLevelAll)

	

	secLevel = secLevelAll(iSec);

	for iPL = 1:length(prodLengthAll)

		

		productLength = prodLengthAll(iPL);

		

		for iDS = 1:length(DataSet)

			

			

			

			indexA = strcmp({DataSet(iDS).simRuns.market},market);

			indexB = [DataSet(iDS).simRuns.percentPosRP] == pos;

			indexC = [DataSet(iDS).simRuns.productLength] == productLength;

			indexD = [DataSet(iDS).simRuns.securityLevel] == secLevel;

			indexAll = indexA & indexB & indexC & indexD;

			

			addIncome = [];

			addIncome_Cap = [];

			addIncome_En = [];

			addIncome_perCapInst = [];

			

			addIncome(:,1) ...

				= abs(DataSet(iDS).ecoImpact(indexAll).AAP.Max ...

				- DataSet(iDS).ecoImpact(indexAll).AAP.Min);

			

			addIncome_perCapInst(:,1) ...

				= addIncome(:,1) ...

				/ DataSet(iDS).simRuns(indexAll).installedCapacity;		

			

			addIncome_Cap(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.capacity ...

				- DataSet(iDS).ecoImpact(indexAll).AAP.Min_DiffSplit.capacity;

			

			addIncome_En(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.dispatch ...

				- DataSet(iDS).ecoImpact(indexAll).AAP.Min_DiffSplit.dispatch;

			

			if strcmp(Type(iDS),'OnWindBRD')

				additionalIncomeTotal(timeStampYearVec(iDS)-2009,1) = addIncome;

				additionalIncomeCap(timeStampYearVec(iDS)-2009,1) = addIncome_Cap;

				additionalIncomeEn(timeStampYearVec(iDS)-2009,1) = addIncome_En;

				additionalIncomePerGW(timeStampYearVec(iDS)-2009,1) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OnWindWF')

				additionalIncomeTotal(timeStampYearVec(iDS)-2009,2) = addIncome;

				additionalIncomeCap(timeStampYearVec(iDS)-2009,2) = addIncome_Cap;

				additionalIncomeEn(timeStampYearVec(iDS)-2009,2) = addIncome_En;

				additionalIncomePerGW(timeStampYearVec(iDS)-2009,2) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OfWindBRD')

				additionalIncomeTotal(timeStampYearVec(iDS)-2009,3) = addIncome;

				additionalIncomeCap(timeStampYearVec(iDS)-2009,3) = addIncome_Cap;

				additionalIncomeEn(timeStampYearVec(iDS)-2009,3) = addIncome_En;

				additionalIncomePerGW(timeStampYearVec(iDS)-2009,3) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVBRD')

				additionalIncomeTotal(timeStampYearVec(iDS)-2009,4) = addIncome;

				additionalIncomeCap(timeStampYearVec(iDS)-2009,4) = addIncome_Cap;

				additionalIncomeEn(timeStampYearVec(iDS)-2009,4) = addIncome_En;

				additionalIncomePerGW(timeStampYearVec(iDS)-2009,4) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVPVF')

				additionalIncomeTotal(timeStampYearVec(iDS)-2009,5) = addIncome;

				additionalIncomeCap(timeStampYearVec(iDS)-2009,5) = addIncome_Cap;

				additionalIncomeEn(timeStampYearVec(iDS)-2009,5) = addIncome_En;

				additionalIncomePerGW(timeStampYearVec(iDS)-2009,5) = addIncome_perCapInst;

			end

			

		end

	

	additionalIncomeTotal(additionalIncomeTotal == 0) = nan;

	additionalIncomeCap(additionalIncomeCap == 0) = nan;

	additionalIncomeEn(additionalIncomeEn == 0) = nan;

	additionalIncomePerGW(additionalIncomePerGW == 0) = nan;

	secLevelStruct(iSec,iPL).addIncome = additionalIncomeTotal;

	secLevelStruct(iSec,iPL).addIncomeCap = additionalIncomeCap;

	secLevelStruct(iSec,iPL).addIncomeEn = additionalIncomeEn;	

	secLevelStruct(iSec,iPL).addIncomePerGW = additionalIncomePerGW;

	end	

end

%% Consolidate data

dataOneHour = secLevelStruct(2,1).addIncome(1:5,:) / 1000000;

dataFourHour = secLevelStruct(2,2).addIncome(1:5,:) / 1000000;

dataTwelveHour = secLevelStruct(2,3).addIncome(1:5,:) / 1000000;

dataOneHour95 = secLevelStruct(1,1).addIncome(1:5,:) / 1000000;

dataFourHour95 = secLevelStruct(1,2).addIncome(1:5,:) / 1000000;

dataTwelveHour95 = secLevelStruct(1,3).addIncome(1:5,:) / 1000000;

% % Include if data should be based on per GW

% dataOneHour = secLevelStruct(2,1).addIncomePerGW(1:5,:) / 1000;

% dataFourHour = secLevelStruct(2,2).addIncomePerGW(1:5,:) / 1000;

% dataTwelveHour = secLevelStruct(2,3).addIncomePerGW(1:5,:) / 1000;

%

% dataOneHour95 = secLevelStruct(1,1).addIncomePerGW(1:5,:) / 1000;

% dataFourHour95 = secLevelStruct(1,2).addIncomePerGW(1:5,:) / 1000;

% dataTwelveHour95 = secLevelStruct(1,3).addIncomePerGW(1:5,:) / 1000;

% Values for bars

dataValTXT_OneHour = num2cell(dataOneHour);

textFormat = cell(size(dataValTXT_OneHour));

textFormat(:) = {'%0.1f'};

dataValTXT_OneHour = cellfun(@num2str,dataValTXT_OneHour,textFormat,'UniformOutput',0);

for i = 1:size(dataOneHour,1)

	for j = 1:size(dataValTXT_OneHour,1)

		if strcmp(dataValTXT_OneHour(i,j),'NaN')

			dataValTXT_OneHour{i,j} = [];

		end

	end

end

dataValTXT_FourHour = num2cell(dataFourHour);

textFormat = cell(size(dataValTXT_FourHour));

textFormat(:) = {'%0.1f'};

dataValTXT_FourHour = cellfun(@num2str,dataValTXT_FourHour,textFormat,'UniformOutput',0);

for i = 1:size(dataFourHour,1)

	for j = 1:size(dataValTXT_FourHour,1)

		if strcmp(dataValTXT_FourHour(i,j),'NaN')

			dataValTXT_FourHour{i,j} = [];

		end

	end

end

dataValTXT_TwelveHour = num2cell(dataTwelveHour);

textFormat = cell(size(dataValTXT_TwelveHour));

textFormat(:) = {'%0.1f'};

dataValTXT_TwelveHour = cellfun(@num2str,dataValTXT_TwelveHour,textFormat,'UniformOutput',0);

for i = 1:size(dataTwelveHour,1)

	for j = 1:size(dataValTXT_TwelveHour,1)

		if strcmp(dataValTXT_TwelveHour(i,j),'NaN')

			dataValTXT_TwelveHour{i,j} = [];

		end

	end

end

%% Plot with styleplot

fig = [];

% First Data Set %%

% Define data sets

fig.subplot{1,1}.plot{1}.x = 1:size(dataOneHour95,2);

fig.subplot{1,1}.plot{1}.y = dataOneHour95;

fig.subplot{1,1}.plot{1}.style='bar';

fig.subplot{1,1}.plot{1}.barlayout='grouped';

fig.subplot{1,1}.plot{1}.barcolor={'x2','x34','x27','x19','x14'}; % Overwrite the color property

fig.subplot{1,1}.plot{2}.x = 1:size(dataOneHour,2);

fig.subplot{1,1}.plot{2}.y = dataOneHour;

fig.subplot{1,1}.plot{2}.style='bar';

fig.subplot{1,1}.plot{2}.barlayout='grouped';

fig.subplot{1,1}.plot{2}.barcolor={'x3','x35','x28','x20','x15'}; % Overwrite the color property

fig.subplot{1,1}.plot{2}.text=dataValTXT_OneHour; % Must be the same size as the data

fig.subplot{1,2}.plot{1}.x = 1:size(dataFourHour95,2);

fig.subplot{1,2}.plot{1}.y = dataFourHour95;

fig.subplot{1,2}.plot{1}.style='bar';

fig.subplot{1,2}.plot{1}.barlayout='grouped';

fig.subplot{1,2}.plot{1}.barcolor={'x2','x34','x27','x19','x14'}; % Overwrite the color property

fig.subplot{1,2}.plot{2}.x = 1:size(dataFourHour,2);

fig.subplot{1,2}.plot{2}.y = dataFourHour;

fig.subplot{1,2}.plot{2}.style='bar';

fig.subplot{1,2}.plot{2}.barlayout='grouped';

fig.subplot{1,2}.plot{2}.barcolor={'x3','x35','x28','x20','x15'}; % Overwrite the color property

fig.subplot{1,2}.plot{2}.text=dataValTXT_FourHour; % Must be the same size as the data

fig.subplot{1,3}.plot{1}.x = 1:size(dataTwelveHour95,2);

fig.subplot{1,3}.plot{1}.y = dataTwelveHour95;

fig.subplot{1,3}.plot{1}.style='bar';

fig.subplot{1,3}.plot{1}.barlayout='grouped';

fig.subplot{1,3}.plot{1}.barcolor={'x2','x34','x27','x19','x14'}; % Overwrite the color property

fig.subplot{1,3}.plot{2}.x = 1:size(dataTwelveHour,2);

fig.subplot{1,3}.plot{2}.y = dataTwelveHour;

fig.subplot{1,3}.plot{2}.style='bar';

fig.subplot{1,3}.plot{2}.barlayout='grouped';

fig.subplot{1,3}.plot{2}.barcolor={'x3','x35','x28','x20','x15'}; % Overwrite the color property

fig.subplot{1,3}.plot{2}.text=dataValTXT_TwelveHour; % Must be the same size as the data

% Plot axes properties

xLimVal = [0.5 5.5];

fig.subplot{1,1}.xlim=xLimVal;

fig.subplot{1,2}.xlim=xLimVal;

fig.subplot{1,3}.xlim=xLimVal;

yLimVal = [0 220];

fig.subplot{1,1}.ylim=yLimVal;

fig.subplot{1,2}.ylim=yLimVal;

fig.subplot{1,3}.ylim=yLimVal;

% Title subplots

fig.subplot{1,1}.title=['Product length: One hour']; % optionaler Titel

fig.subplot{1,2}.title=['Product length: Four hours']; % optionaler Titel

fig.subplot{1,3}.title=['Product length: Twelve hours']; % optionaler Titel

% Axes labeling

fig.subplot{1,1}.xlabel='Year';

fig.subplot{1,2}.xlabel='Year';

fig.subplot{1,3}.xlabel='Year';

fig.subplot{1,1}.ylabel='Additional income in mio. EUR';

fig.subplot{1,2}.ylabel='Additional income in mio. EUR';

fig.subplot{1,3}.ylabel='Additional income in mio. EUR';

fig.subplot{1,1}.legend={'Onshore Wind 30 GW Germany 95%', ...

	'Onshore Wind 1 GW Pool 95%', ...

	'Offshore Wind 1 GW Germany 95%', ...

	'Photovoltaic Sytems 30 GW Germany 95%', ...

	'Photovoltaic Sytems 1 GW Pool 95%', ...

	'Onshore Wind 30 GW Germany 99.994%', ...

	'Onshore Wind 1 GW Pool 99.994%', ...

	'Offshore Wind 1 GW Germany 99.994%', ...

	'Photovoltaic Sytems 30 GW Germany 99.994%', ...

	'Photovoltaic Sytems 1 GW Pool 99.994%'};

fig.subplot{1,1}.xticks=fig.subplot{1,1}.plot{1}.x;

fig.subplot{1,1}.xticklabels=[2010,2011,2012,2013,2014];

fig.subplot{1,1}.yticks=min(yLimVal):20:max(yLimVal);

fig.subplot{1,2}.xticks=fig.subplot{1,2}.plot{1}.x;

fig.subplot{1,2}.xticklabels=[2010,2011,2012,2013,2014];

fig.subplot{1,2}.yticks=min(yLimVal):20:max(yLimVal);

fig.subplot{1,3}.xticks=fig.subplot{1,3}.plot{1}.x;

fig.subplot{1,3}.xticklabels=[2010,2011,2012,2013,2014];

fig.subplot{1,3}.yticks=min(yLimVal):20:max(yLimVal);

fig.height=18;

fig.width_columns=3;

[hFig, hAxes, hPlot] = styleplot(fig,'styleplot_format_PhD','wordwide');

%% Save

path = 'C:\Users\mjansen\Synchronisation\mjansen auf User_Artemis(R)\Dissertation\Dissertation\Figures\5 Economics of fluctuating RES in the control reserve markets\';

name = 'Fig5-24_addIncome_posSec_1h_4h_12h';

saveas(gcf,[path name '.fig']);

save([path name '_data.mat'],'fig');

Functions/Results_Evaluation/resPhD_additionalIncome_positive_secondary_AAP_Scatter.m

% clear;

% clc;

% %% Options

% productLength = 1;

%

% %% Load

%

% preDefineDataSet = ([117:135]);

%

% for iDataSet = 1:length(preDefineDataSet)

% 	

% 	[~, ~, ...

% 		~, ~, ...

% 		~, ~, ...

% 		~, ~, ...

% 		DataSet(iDataSet).offerRP, DataSet(iDataSet).offerRP_Min, ...

% 		DataSet(iDataSet).simRuns, ~, ...

% 		~, DataSet(iDataSet).info] ...

% 		= res_loadResults_noMOL('D:\Ergebnisse REBal',preDefineDataSet(iDataSet));

% 	

% % 	[Prob_Forec_DA, Prob_Forec_ID, actualFeedIn, ecoImpact, ecoImpactTFC, error, ...

% % 		errorRP, macroEcoImpact, offerRP, offerRP_Min, simRuns, violation, alteredMOList, infoRuns] = res_loadResults_noMOL('D:\Ergebnisse REBal',preDefineDataSet(iDataSet));

% 	

% 	runSetYear = regexp(DataSet(iDataSet).info.runSetName,'_','split');

% 	GenType{iDataSet} = runSetYear{1};

% 	PoolType{iDataSet} = runSetYear{2};

% 	Type{iDataSet} = [runSetYear{1:2}];

% 	for iYear = 1:length(runSetYear)

% 		try

% 			if ~isnan(str2double(runSetYear{iYear}))

% 				timeStampYear(iDataSet) = datenum([str2double(runSetYear{iYear}) 1 1]);

% 			end

% 		end

% 	end

% 	

% end

%

% % Select only valid datasets

% invalidDS = false(size(DataSet));

% for iDS = 1:length(DataSet)

% 	if length(DataSet(iDS).offerRP_Min) == 1

% 		invalidDS(iDS) = isnan(DataSet(iDS).offerRP_Min);

% 	end

% end

% DataSet = DataSet(~invalidDS);

% timeStampYear = timeStampYear(~invalidDS);

% GenType = GenType(~invalidDS);

% PoolType = PoolType(~invalidDS);

% Type = Type(~invalidDS);

%% Other Vars

% Define Order

TypeAll = sort(unique([Type]));

genTypeAll = unique([GenType]);

poolTypeAll = unique([PoolType]);

[timeStampYearVec,~] = datevec(timeStampYear');

[years,~] = datevec(sort(unique(timeStampYear)));

secLevelAll = sort(unique([DataSet(1).simRuns.securityLevel]));

secLevelAll = secLevelAll([1 6]); % Show on those security levels

prodLengthAll = sort(unique([DataSet(1).simRuns.productLength]));

prodLengthAll = prodLengthAll([1]); % Show on those security levels

%% Get DataSet

productLength = 1;

market = 'SFC';

pos = 100;

for iSec = 1:length(secLevelAll)

	

	secLevel = secLevelAll(iSec);

	for iPL = 1:length(prodLengthAll)

		

		productLength = prodLengthAll(iPL);

		

		for iDS = 1:length(DataSet)

			

			

			

			indexA = strcmp({DataSet(iDS).simRuns.market},market);

			indexB = [DataSet(iDS).simRuns.percentPosRP] == pos;

			indexC = [DataSet(iDS).simRuns.productLength] == productLength;

			indexD = [DataSet(iDS).simRuns.securityLevel] == secLevel;

			indexAll = indexA & indexB & indexC & indexD;

			

			cap = [];

			capPrice = [];

			

% 			cap(:,1) ...

% 				= DataSet(iDS).offerRP(indexAll).AAP.pos.capacity ...

% 				/ DataSet(iDS).simRuns(indexAll).installedCapacity;

			cap(:,1) ...

				= DataSet(iDS).offerRP_Min(indexAll).AAP.pos.capacity;

			

			capPrice(:,1) ...

				= DataSet(iDS).offerRP_Min(indexAll).AAP.pos.capacityPrice;	

			

			if strcmp(Type(iDS),'OnWindBRD')

				additionalIncomeCap{timeStampYearVec(iDS)-2009,1} = cap;

				additionalIncomeCapPrice{timeStampYearVec(iDS)-2009,1} = capPrice;

			elseif strcmp(Type(iDS),'OnWindWF')

				additionalIncomeCap{timeStampYearVec(iDS)-2009,2} = cap;

				additionalIncomeCapPrice{timeStampYearVec(iDS)-2009,2} = capPrice;

			elseif strcmp(Type(iDS),'OfWindBRD')

				additionalIncomeCap{timeStampYearVec(iDS)-2009,3} = cap;

				additionalIncomeCapPrice{timeStampYearVec(iDS)-2009,3} = capPrice;

			elseif strcmp(Type(iDS),'PVBRD')

				additionalIncomeCap{timeStampYearVec(iDS)-2009,4} = cap;

				additionalIncomeCapPrice{timeStampYearVec(iDS)-2009,4} = capPrice;

			elseif strcmp(Type(iDS),'PVPVF')

				additionalIncomeCap{timeStampYearVec(iDS)-2009,5} = cap;

				additionalIncomeCapPrice{timeStampYearVec(iDS)-2009,5} = capPrice;

			end

			

		end

	

% 	additionalIncomeCap(additionalIncomeCap == 0) = nan;

% 	additionalIncomeCapPrice(additionalIncomeCapPrice == 0) = nan;

	secLevelStruct(iSec,iPL).Cap = additionalIncomeCap;

	secLevelStruct(iSec,iPL).CapPrice= additionalIncomeCapPrice;

	end	

end

%% Consolidate data

for iPL = 1:size(secLevelStruct,2)

	

	for iSec = 1:size(secLevelStruct,1)

		

		CapJoint_Wind30(:,iSec) = [secLevelStruct(iSec,iPL).Cap{1,1};secLevelStruct(iSec,iPL).Cap{2,1}; ...

			secLevelStruct(iSec,iPL).Cap{3,1};secLevelStruct(iSec,iPL).Cap{4,1}; ...

			secLevelStruct(iSec,iPL).Cap{5,1}];

		

		CapPriceJoint_Wind30(:,iSec) = [secLevelStruct(iSec,iPL).CapPrice{1,1};secLevelStruct(iSec,iPL).CapPrice{2,1}; ...

			secLevelStruct(iSec,iPL).CapPrice{3,1};secLevelStruct(iSec,iPL).CapPrice{4,1}; ...

			secLevelStruct(iSec,iPL).CapPrice{5,1}];

		CapJoint_OffWind30(:,iSec) = [secLevelStruct(iSec,iPL).Cap{1,3};secLevelStruct(iSec,iPL).Cap{2,3}; ...

			secLevelStruct(iSec,iPL).Cap{3,3};secLevelStruct(iSec,iPL).Cap{4,3}; ...

			secLevelStruct(iSec,iPL).Cap{5,3}];

		

		CapPriceJoint_OffWind30(:,iSec) = [secLevelStruct(iSec,iPL).CapPrice{1,3};secLevelStruct(iSec,iPL).CapPrice{2,3}; ...

			secLevelStruct(iSec,iPL).CapPrice{3,3};secLevelStruct(iSec,iPL).CapPrice{4,3}; ...

			secLevelStruct(iSec,iPL).CapPrice{5,3}];

		

		CapJoint_PV30(:,iSec) = [secLevelStruct(iSec,iPL).Cap{1,4};secLevelStruct(iSec,iPL).Cap{2,4}; ...

			secLevelStruct(iSec,iPL).Cap{3,4};secLevelStruct(iSec,iPL).Cap{4,4}; ...

			secLevelStruct(iSec,iPL).Cap{5,4}];

		

		CapPriceJoint_PV30(:,iSec) = [secLevelStruct(iSec,iPL).CapPrice{1,4};secLevelStruct(iSec,iPL).CapPrice{2,4}; ...

			secLevelStruct(iSec,iPL).CapPrice{3,4};secLevelStruct(iSec,iPL).CapPrice{4,4}; ...

			secLevelStruct(iSec,iPL).CapPrice{5,4}];

		

	end

	

end

% loglog(CapJoint_Wind30(:,1),CapPriceJoint_Wind30(:,1),'x','color','g')

% loglog(CapJoint_Wind30(:,2),CapPriceJoint_Wind30(:,2),'x','color','r')

% loglog(CapJoint_PV30(:,1),CapPriceJoint_PV30(:,1),'x','color','y')

% loglog(CapJoint_PV30(:,2),CapPriceJoint_PV30(:,2),'x','color','m')

%% Plot with styleplot

fig = [];

% Define data sets

fig.subplot{1,1}.plot{1}.x = CapJoint_Wind30(:,1);

fig.subplot{1,1}.plot{1}.y = CapPriceJoint_Wind30(:,1);

fig.subplot{1,1}.plot{1}.style='loglog';

fig.subplot{1,1}.plot{1}.linestyle='none';

fig.subplot{1,1}.plot{1}.markerstyle = '.';

fig.subplot{1,1}.plot{1}.markersize = 2;

fig.subplot{1,1}.plot{1}.color='x3';

fig.subplot{1,1}.plot{2}.x = CapJoint_Wind30(:,2);

fig.subplot{1,1}.plot{2}.y = CapPriceJoint_Wind30(:,2);

fig.subplot{1,1}.plot{2}.style='loglog';

fig.subplot{1,1}.plot{2}.linestyle='none';

fig.subplot{1,1}.plot{2}.markerstyle = '.';

fig.subplot{1,1}.plot{2}.markersize = 2;

fig.subplot{1,1}.plot{2}.color='x2';

fig.subplot{1,1}.plot{3}.x = CapJoint_PV30(:,1);

fig.subplot{1,1}.plot{3}.y = CapPriceJoint_PV30(:,1);

fig.subplot{1,1}.plot{3}.style='loglog';

fig.subplot{1,1}.plot{3}.linestyle='none';

fig.subplot{1,1}.plot{3}.markerstyle = '.';

fig.subplot{1,1}.plot{3}.markersize = 2;

fig.subplot{1,1}.plot{3}.color='x20';

fig.subplot{1,1}.plot{4}.x = CapJoint_PV30(:,2);

fig.subplot{1,1}.plot{4}.y = CapPriceJoint_PV30(:,2);

fig.subplot{1,1}.plot{4}.style='loglog';

fig.subplot{1,1}.plot{4}.linestyle='none';

fig.subplot{1,1}.plot{4}.markerstyle = '.';

fig.subplot{1,1}.plot{4}.markersize = 2;

fig.subplot{1,1}.plot{4}.color='x19';

% fig.subplot{1,1}.plot{5}.x = CapJoint_PV30(:,1);

% fig.subplot{1,1}.plot{5}.y = CapPriceJoint_PV30(:,1);

% fig.subplot{1,1}.plot{5}.style='loglog';

% fig.subplot{1,1}.plot{5}.linestyle='none';

% fig.subplot{1,1}.plot{5}.markerstyle = '.';

% fig.subplot{1,1}.plot{5}.markersize = 2;

% fig.subplot{1,1}.plot{5}.color='x28';

%

% fig.subplot{1,1}.plot{6}.x = CapJoint_OffWind30(:,2);

% fig.subplot{1,1}.plot{6}.y = CapPriceJoint_OffWind30(:,2);

% fig.subplot{1,1}.plot{6}.style='loglog';

% fig.subplot{1,1}.plot{6}.linestyle='none';

% fig.subplot{1,1}.plot{6}.markerstyle = '.';

% fig.subplot{1,1}.plot{6}.markersize = 2;

% fig.subplot{1,1}.plot{6}.color='x27';

% Plot axes properties

fig.subplot{1,1}.xgrid = 'on';

xLimVal = [100 20000];

fig.subplot{1,1}.xlim=xLimVal;

yLimVal = [1 1000];

fig.subplot{1,1}.ylim=yLimVal;

% % Title subplots

fig.subplot{1,1}.title=['Positive secondary']; % optionaler Titel

% Axes labeling

fig.subplot{1,1}.xlabel='Offerable cacacity in MW';

fig.subplot{1,1}.ylabel='Capacity price in EUR/MW/h';

fig.subplot{1,1}.legend={'Onshore Wind 30 GW Germany 95%', ...

	'Onshore Wind 30 GW Germany 99.994%', ...

	'Photovoltaic Sytems 30 GW Germany 95%', ...

	'Photovoltaic Sytems 30 GW Germany 99.994%'};

fig.height=12;

fig.width_columns=2;

[hFig, hAxes, hPlot] = styleplot(fig,'styleplot_format_PhD','word');

%% Save

path = 'C:\Users\mjansen\Synchronisation\mjansen auf User_Artemis(R)\Dissertation\Dissertation\Figures\5 Economics of fluctuating RES in the control reserve markets\';

name = 'Fig5-17_profitMax_posSec_AAP_Scatter_bottom_left';

saveas(gcf,[path name '.fig']);

save([path name '_data.mat'],'fig');

Functions/Results_Evaluation/resPhD_additionalIncome_positive_secondary_BC_Scatter.m

% clear;

% clc;

% %% Options

% productLength = 1;

%

% %% Load

%

% preDefineDataSet = ([123:141]);

%

% for iDataSet = 1:length(preDefineDataSet)

% 	

% 	[~, ~, ...

% 		~, ~, ...

% 		~, ~, ...

% 		~, ~, ...

% 		DataSet(iDataSet).offerRP, ~, ...

% 		DataSet(iDataSet).simRuns, ~, ...

% 		~, DataSet(iDataSet).info] ...

% 		= res_loadResults_noMOL('D:\Ergebnisse REBal',preDefineDataSet(iDataSet));

% 	

% % 	[Prob_Forec_DA, Prob_Forec_ID, actualFeedIn, ecoImpact, ecoImpactTFC, error, ...

% % 		errorRP, macroEcoImpact, offerRP, offerRP_Min, simRuns, violation, alteredMOList, infoRuns] = res_loadResults_noMOL('D:\Ergebnisse REBal',preDefineDataSet(iDataSet));

% 	

% 	runSetYear = regexp(DataSet(iDataSet).info.runSetName,'_','split');

% 	GenType{iDataSet} = runSetYear{1};

% 	PoolType{iDataSet} = runSetYear{2};

% 	Type{iDataSet} = [runSetYear{1:2}];

% 	for iYear = 1:length(runSetYear)

% 		try

% 			if ~isnan(str2double(runSetYear{iYear}))

% 				timeStampYear(iDataSet) = datenum([str2double(runSetYear{iYear}) 1 1]);

% 			end

% 		end

% 	end

% 	

% end

% % Select only valid datasets

% invalidDS = false(size(DataSet));

% for iDS = 1:length(DataSet)

% 	if length(DataSet(iDS).offerRP_Min) == 1

% 		invalidDS(iDS) = isnan(DataSet(iDS).offerRP_Min);

% 	end

% end

% DataSet = DataSet(~invalidDS);

% timeStampYear = timeStampYear(~invalidDS);

% GenType = GenType(~invalidDS);

% PoolType = PoolType(~invalidDS);

% Type = Type(~invalidDS);

%% Other Vars

% Define Order

TypeAll = sort(unique([Type]));

genTypeAll = unique([GenType]);

poolTypeAll = unique([PoolType]);

[timeStampYearVec,~] = datevec(timeStampYear');

[years,~] = datevec(sort(unique(timeStampYear)));

secLevelAll = sort(unique([DataSet(1).simRuns.securityLevel]));

secLevelAll = secLevelAll([1 6]); % Show on those security levels

prodLengthAll = sort(unique([DataSet(1).simRuns.productLength]));

prodLengthAll = prodLengthAll([1]); % Show on those security levels

%% Get DataSet

productLength = 1;

market = 'SFC';

pos = 100;

for iSec = 1:length(secLevelAll)

	

	secLevel = secLevelAll(iSec);

	for iPL = 1:length(prodLengthAll)

		

		productLength = prodLengthAll(iPL);

		

		for iDS = 1:length(DataSet)

			

			

			

			indexA = strcmp({DataSet(iDS).simRuns.market},market);

			indexB = [DataSet(iDS).simRuns.percentPosRP] == pos;

			indexC = [DataSet(iDS).simRuns.productLength] == productLength;

			indexD = [DataSet(iDS).simRuns.securityLevel] == secLevel;

			indexAll = indexA & indexB & indexC & indexD;

			

			cap = [];

			capPrice = [];

			

% 			cap(:,1) ...

% 				= DataSet(iDS).offerRP(indexAll).BC.pos.capacity ...

% 				/ DataSet(iDS).simRuns(indexAll).installedCapacity;

			cap(:,1) ...

				= DataSet(iDS).offerRP_Min(indexAll).BC.pos.capacity;

			

			capPrice(:,1) ...

				= DataSet(iDS).offerRP_Min(indexAll).BC.pos.capacityPrice;	

			

			if strcmp(Type(iDS),'OnWindBRD')

				additionalIncomeCap{timeStampYearVec(iDS)-2009,1} = cap;

				additionalIncomeCapPrice{timeStampYearVec(iDS)-2009,1} = capPrice;

			elseif strcmp(Type(iDS),'OnWindWF')

				additionalIncomeCap{timeStampYearVec(iDS)-2009,2} = cap;

				additionalIncomeCapPrice{timeStampYearVec(iDS)-2009,2} = capPrice;

			elseif strcmp(Type(iDS),'OfWindBRD')

				additionalIncomeCap{timeStampYearVec(iDS)-2009,3} = cap;

				additionalIncomeCapPrice{timeStampYearVec(iDS)-2009,3} = capPrice;

			elseif strcmp(Type(iDS),'PVBRD')

				additionalIncomeCap{timeStampYearVec(iDS)-2009,4} = cap;

				additionalIncomeCapPrice{timeStampYearVec(iDS)-2009,4} = capPrice;

			elseif strcmp(Type(iDS),'PVPVF')

				additionalIncomeCap{timeStampYearVec(iDS)-2009,5} = cap;

				additionalIncomeCapPrice{timeStampYearVec(iDS)-2009,5} = capPrice;

			end

			

		end

	

% 	additionalIncomeCap(additionalIncomeCap == 0) = nan;

% 	additionalIncomeCapPrice(additionalIncomeCapPrice == 0) = nan;

	secLevelStruct(iSec,iPL).Cap = additionalIncomeCap;

	secLevelStruct(iSec,iPL).CapPrice= additionalIncomeCapPrice;

	end	

end

%% Consolidate data

for iPL = 1:size(secLevelStruct,2)

	

	for iSec = 1:size(secLevelStruct,1)

		

		CapJoint_Wind30(:,iSec) = [secLevelStruct(iSec,iPL).Cap{1,1};secLevelStruct(iSec,iPL).Cap{2,1}; ...

			secLevelStruct(iSec,iPL).Cap{3,1};secLevelStruct(iSec,iPL).Cap{4,1}; ...

			secLevelStruct(iSec,iPL).Cap{5,1}];

		

		CapPriceJoint_Wind30(:,iSec) = [secLevelStruct(iSec,iPL).CapPrice{1,1};secLevelStruct(iSec,iPL).CapPrice{2,1}; ...

			secLevelStruct(iSec,iPL).CapPrice{3,1};secLevelStruct(iSec,iPL).CapPrice{4,1}; ...

			secLevelStruct(iSec,iPL).CapPrice{5,1}];

		CapJoint_OffWind30(:,iSec) = [secLevelStruct(iSec,iPL).Cap{1,3};secLevelStruct(iSec,iPL).Cap{2,3}; ...

			secLevelStruct(iSec,iPL).Cap{3,3};secLevelStruct(iSec,iPL).Cap{4,3}; ...

			secLevelStruct(iSec,iPL).Cap{5,3}];

		

		CapPriceJoint_OffWind30(:,iSec) = [secLevelStruct(iSec,iPL).CapPrice{1,3};secLevelStruct(iSec,iPL).CapPrice{2,3}; ...

			secLevelStruct(iSec,iPL).CapPrice{3,3};secLevelStruct(iSec,iPL).CapPrice{4,3}; ...

			secLevelStruct(iSec,iPL).CapPrice{5,3}];

		

		CapJoint_PV30(:,iSec) = [secLevelStruct(iSec,iPL).Cap{1,4};secLevelStruct(iSec,iPL).Cap{2,4}; ...

			secLevelStruct(iSec,iPL).Cap{3,4};secLevelStruct(iSec,iPL).Cap{4,4}; ...

			secLevelStruct(iSec,iPL).Cap{5,4}];

		

		CapPriceJoint_PV30(:,iSec) = [secLevelStruct(iSec,iPL).CapPrice{1,4};secLevelStruct(iSec,iPL).CapPrice{2,4}; ...

			secLevelStruct(iSec,iPL).CapPrice{3,4};secLevelStruct(iSec,iPL).CapPrice{4,4}; ...

			secLevelStruct(iSec,iPL).CapPrice{5,4}];

		

	end

	

end

% loglog(CapJoint_Wind30(:,1),CapPriceJoint_Wind30(:,1),'x','color','g')

% loglog(CapJoint_Wind30(:,2),CapPriceJoint_Wind30(:,2),'x','color','r')

% loglog(CapJoint_PV30(:,1),CapPriceJoint_PV30(:,1),'x','color','y')

% loglog(CapJoint_PV30(:,2),CapPriceJoint_PV30(:,2),'x','color','m')

%% Plot with styleplot

fig = [];

% Define data sets

fig.subplot{1,1}.plot{1}.x = CapJoint_Wind30(:,1);

fig.subplot{1,1}.plot{1}.y = CapPriceJoint_Wind30(:,1);

fig.subplot{1,1}.plot{1}.style='loglog';

fig.subplot{1,1}.plot{1}.linestyle='none';

fig.subplot{1,1}.plot{1}.markerstyle = '.';

fig.subplot{1,1}.plot{1}.markersize = 2;

fig.subplot{1,1}.plot{1}.color='x3';

fig.subplot{1,1}.plot{2}.x = CapJoint_Wind30(:,2);

fig.subplot{1,1}.plot{2}.y = CapPriceJoint_Wind30(:,2);

fig.subplot{1,1}.plot{2}.style='loglog';

fig.subplot{1,1}.plot{2}.linestyle='none';

fig.subplot{1,1}.plot{2}.markerstyle = '.';

fig.subplot{1,1}.plot{2}.markersize = 2;

fig.subplot{1,1}.plot{2}.color='x2';

fig.subplot{1,1}.plot{3}.x = CapJoint_PV30(:,1);

fig.subplot{1,1}.plot{3}.y = CapPriceJoint_PV30(:,1);

fig.subplot{1,1}.plot{3}.style='loglog';

fig.subplot{1,1}.plot{3}.linestyle='none';

fig.subplot{1,1}.plot{3}.markerstyle = '.';

fig.subplot{1,1}.plot{3}.markersize = 2;

fig.subplot{1,1}.plot{3}.color='x20';

fig.subplot{1,1}.plot{4}.x = CapJoint_PV30(:,2);

fig.subplot{1,1}.plot{4}.y = CapPriceJoint_PV30(:,2);

fig.subplot{1,1}.plot{4}.style='loglog';

fig.subplot{1,1}.plot{4}.linestyle='none';

fig.subplot{1,1}.plot{4}.markerstyle = '.';

fig.subplot{1,1}.plot{4}.markersize = 2;

fig.subplot{1,1}.plot{4}.color='x19';

% fig.subplot{1,1}.plot{5}.x = CapJoint_PV30(:,1);

% fig.subplot{1,1}.plot{5}.y = CapPriceJoint_PV30(:,1);

% fig.subplot{1,1}.plot{5}.style='loglog';

% fig.subplot{1,1}.plot{5}.linestyle='none';

% fig.subplot{1,1}.plot{5}.markerstyle = '.';

% fig.subplot{1,1}.plot{5}.markersize = 2;

% fig.subplot{1,1}.plot{5}.color='x28';

%

% fig.subplot{1,1}.plot{6}.x = CapJoint_OffWind30(:,2);

% fig.subplot{1,1}.plot{6}.y = CapPriceJoint_OffWind30(:,2);

% fig.subplot{1,1}.plot{6}.style='loglog';

% fig.subplot{1,1}.plot{6}.linestyle='none';

% fig.subplot{1,1}.plot{6}.markerstyle = '.';

% fig.subplot{1,1}.plot{6}.markersize = 2;

% fig.subplot{1,1}.plot{6}.color='x27';

% Plot axes properties

fig.subplot{1,1}.xgrid = 'on';

xLimVal = [100 20000];

fig.subplot{1,1}.xlim=xLimVal;

yLimVal = [1 10000];

fig.subplot{1,1}.ylim=yLimVal;

% % Title subplots

fig.subplot{1,1}.title=['Positive secondary']; % optionaler Titel

% Axes labeling

fig.subplot{1,1}.xlabel='Offerable cacacity in MW';

fig.subplot{1,1}.ylabel='Capacity price in EUR/MW/h';

fig.subplot{1,1}.legend={'Onshore Wind 30 GW Germany 95%', ...

	'Onshore Wind 30 GW Germany 99.994%', ...

	'Photovoltaic Sytems 30 GW Germany 95%', ...

	'Photovoltaic Sytems 30 GW Germany 99.994%'};

fig.height=12;

fig.width_columns=2;

[hFig, hAxes, hPlot] = styleplot(fig,'styleplot_format_PhD','word');

Functions/Results_Evaluation/resPhD_additionalIncome_positive_tertiary.m

% clear;

% clc;

% %% Options

% productLength = 1;

%

% %% Load

%

% preDefineDataSet = ([117:135]);

%

% for iDataSet = 1:length(preDefineDataSet)

% 	

% 	[~, ~, ...

% 		~, DataSet(iDataSet).ecoImpact, ...

% 		~, ~, ...

% 		~, ~, ...

% 		~, DataSet(iDataSet).offerRP_Min, ...

% 		DataSet(iDataSet).simRuns, ~, ...

% 		~, DataSet(iDataSet).info] ...

% 		= res_loadResults_noMOL('D:\Ergebnisse REBal',preDefineDataSet(iDataSet));

% 	

% % 	[Prob_Forec_DA, Prob_Forec_ID, actualFeedIn, ecoImpact, ecoImpactTFC, error, ...

% % 		errorRP, macroEcoImpact, offerRP, offerRP_Min, simRuns, violation, alteredMOList, infoRuns] = res_loadResults_noMOL('D:\Ergebnisse REBal',preDefineDataSet(iDataSet));

% 	

% 	runSetYear = regexp(DataSet(iDataSet).info.runSetName,'_','split');

% 	GenType{iDataSet} = runSetYear{1};

% 	PoolType{iDataSet} = runSetYear{2};

% 	Type{iDataSet} = [runSetYear{1:2}];

% 	for iYear = 1:length(runSetYear)

% 		try

% 			if ~isnan(str2double(runSetYear{iYear}))

% 				timeStampYear(iDataSet) = datenum([str2double(runSetYear{iYear}) 1 1]);

% 			end

% 		end

% 	end

% 	

% end

%

% % % Select only valid datasets

% % invalidDS = false(size(DataSet));

% % for iDS = 1:length(DataSet)

% % 	if length(DataSet(iDS).offerRP_Min) == 1

% % 		invalidDS(iDS) = isnan(DataSet(iDS).offerRP_Min);

% % 	end

% % end

% % DataSet = DataSet(~invalidDS);

% % timeStampYear = timeStampYear(~invalidDS);

% % GenType = GenType(~invalidDS);

% % PoolType = PoolType(~invalidDS);

% % Type = Type(~invalidDS);

%% Other Vars

% Define Order

TypeAll = sort(unique([Type]));

genTypeAll = unique([GenType]);

poolTypeAll = unique([PoolType]);

[timeStampYearVec,~] = datevec(timeStampYear');

[years,~] = datevec(sort(unique(timeStampYear)));

secLevelAll = sort(unique([DataSet(1).simRuns.securityLevel]));

secLevelAll = secLevelAll([1 6]); % Show on those security levels

prodLengthAll = sort(unique([DataSet(1).simRuns.productLength]));

prodLengthAll = prodLengthAll([1 3 5]); % Show on those security levels

%% Get DataSet

productLength = 1;

market = 'TFC';

pos = 100;

for iSec = 1:length(secLevelAll)

	

	secLevel = secLevelAll(iSec);

	for iPL = 1:length(prodLengthAll)

		

		productLength = prodLengthAll(iPL);

		

		for iDS = 1:length(DataSet)

			

			

			

			indexA = strcmp({DataSet(iDS).simRuns.market},market);

			indexB = [DataSet(iDS).simRuns.percentPosRP] == pos;

			indexC = [DataSet(iDS).simRuns.productLength] == productLength;

			indexD = [DataSet(iDS).simRuns.securityLevel] == secLevel;

			indexAll = indexA & indexB & indexC & indexD;

			

			addIncome = [];

			addIncome_Cap = [];

			addIncome_En = [];

			addIncome_perCapInst = [];

			

			addIncome(:,1) ...

				= abs(DataSet(iDS).ecoImpact(indexAll).AAP.Max ...

				- DataSet(iDS).ecoImpact(indexAll).AAP.Min);

			

			addIncome_perCapInst(:,1) ...

				= addIncome(:,1) ...

				/ DataSet(iDS).simRuns(indexAll).installedCapacity;		

			

			addIncome_Cap(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.capacity ...

				- DataSet(iDS).ecoImpact(indexAll).AAP.Min_DiffSplit.capacity;

			

			addIncome_En(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.dispatch ...

				- DataSet(iDS).ecoImpact(indexAll).AAP.Min_DiffSplit.dispatch;

			

			if strcmp(Type(iDS),'OnWindBRD')

				additionalIncomeTotal(timeStampYearVec(iDS)-2009,1) = addIncome;

				additionalIncomeCap(timeStampYearVec(iDS)-2009,1) = addIncome_Cap;

				additionalIncomeEn(timeStampYearVec(iDS)-2009,1) = addIncome_En;

				additionalIncomePerGW(timeStampYearVec(iDS)-2009,1) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OnWindWF')

				additionalIncomeTotal(timeStampYearVec(iDS)-2009,2) = addIncome;

				additionalIncomeCap(timeStampYearVec(iDS)-2009,2) = addIncome_Cap;

				additionalIncomeEn(timeStampYearVec(iDS)-2009,2) = addIncome_En;

				additionalIncomePerGW(timeStampYearVec(iDS)-2009,2) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OfWindBRD')

				additionalIncomeTotal(timeStampYearVec(iDS)-2009,3) = addIncome;

				additionalIncomeCap(timeStampYearVec(iDS)-2009,3) = addIncome_Cap;

				additionalIncomeEn(timeStampYearVec(iDS)-2009,3) = addIncome_En;

				additionalIncomePerGW(timeStampYearVec(iDS)-2009,3) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVBRD')

				additionalIncomeTotal(timeStampYearVec(iDS)-2009,4) = addIncome;

				additionalIncomeCap(timeStampYearVec(iDS)-2009,4) = addIncome_Cap;

				additionalIncomeEn(timeStampYearVec(iDS)-2009,4) = addIncome_En;

				additionalIncomePerGW(timeStampYearVec(iDS)-2009,4) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVPVF')

				additionalIncomeTotal(timeStampYearVec(iDS)-2009,5) = addIncome;

				additionalIncomeCap(timeStampYearVec(iDS)-2009,5) = addIncome_Cap;

				additionalIncomeEn(timeStampYearVec(iDS)-2009,5) = addIncome_En;

				additionalIncomePerGW(timeStampYearVec(iDS)-2009,5) = addIncome_perCapInst;

			end

			

		end

	

	additionalIncomeTotal(additionalIncomeTotal == 0) = nan;

	additionalIncomeCap(additionalIncomeCap == 0) = nan;

	additionalIncomeEn(additionalIncomeEn == 0) = nan;

	additionalIncomePerGW(additionalIncomePerGW == 0) = nan;

	secLevelStruct(iSec,iPL).addIncome = additionalIncomeTotal;

	secLevelStruct(iSec,iPL).addIncomeCap = additionalIncomeCap;

	secLevelStruct(iSec,iPL).addIncomeEn = additionalIncomeEn;	

	secLevelStruct(iSec,iPL).addIncomePerGW = additionalIncomePerGW;

	end	

end

%% Consolidate data

dataOneHour = secLevelStruct(2,1).addIncome(1:5,:) / 1000000;

dataFourHour = secLevelStruct(2,2).addIncome(1:5,:) / 1000000;

dataTwelveHour = secLevelStruct(2,3).addIncome(1:5,:) / 1000000;

dataOneHour95 = secLevelStruct(1,1).addIncome(1:5,:) / 1000000;

dataFourHour95 = secLevelStruct(1,2).addIncome(1:5,:) / 1000000;

dataTwelveHour95 = secLevelStruct(1,3).addIncome(1:5,:) / 1000000;

% % Include if data should be based on per GW

% dataOneHour = secLevelStruct(2,1).addIncomePerGW(1:5,:) / 1000;

% dataFourHour = secLevelStruct(2,2).addIncomePerGW(1:5,:) / 1000;

% dataTwelveHour = secLevelStruct(2,3).addIncomePerGW(1:5,:) / 1000;

%

% dataOneHour95 = secLevelStruct(1,1).addIncomePerGW(1:5,:) / 1000;

% dataFourHour95 = secLevelStruct(1,2).addIncomePerGW(1:5,:) / 1000;

% dataTwelveHour95 = secLevelStruct(1,3).addIncomePerGW(1:5,:) / 1000;

% Values for bars

dataValTXT_OneHour = num2cell(dataOneHour);

textFormat = cell(size(dataValTXT_OneHour));

textFormat(:) = {'%0.1f'};

dataValTXT_OneHour = cellfun(@num2str,dataValTXT_OneHour,textFormat,'UniformOutput',0);

for i = 1:size(dataOneHour,1)

	for j = 1:size(dataValTXT_OneHour,1)

		if strcmp(dataValTXT_OneHour(i,j),'NaN')

			dataValTXT_OneHour{i,j} = [];

		end

	end

end

dataValTXT_FourHour = num2cell(dataFourHour);

textFormat = cell(size(dataValTXT_FourHour));

textFormat(:) = {'%0.1f'};

dataValTXT_FourHour = cellfun(@num2str,dataValTXT_FourHour,textFormat,'UniformOutput',0);

for i = 1:size(dataFourHour,1)

	for j = 1:size(dataValTXT_FourHour,1)

		if strcmp(dataValTXT_FourHour(i,j),'NaN')

			dataValTXT_FourHour{i,j} = [];

		end

	end

end

dataValTXT_TwelveHour = num2cell(dataTwelveHour);

textFormat = cell(size(dataValTXT_TwelveHour));

textFormat(:) = {'%0.1f'};

dataValTXT_TwelveHour = cellfun(@num2str,dataValTXT_TwelveHour,textFormat,'UniformOutput',0);

for i = 1:size(dataTwelveHour,1)

	for j = 1:size(dataValTXT_TwelveHour,1)

		if strcmp(dataValTXT_TwelveHour(i,j),'NaN')

			dataValTXT_TwelveHour{i,j} = [];

		end

	end

end

%% Plot with styleplot

fig = [];

% First Data Set %%

% Define data sets

fig.subplot{1,1}.plot{1}.x = 1:size(dataOneHour95,2);

fig.subplot{1,1}.plot{1}.y = dataOneHour95;

fig.subplot{1,1}.plot{1}.style='bar';

fig.subplot{1,1}.plot{1}.barlayout='grouped';

fig.subplot{1,1}.plot{1}.barcolor={'x2','x34','x27','x19','x14'}; % Overwrite the color property

fig.subplot{1,1}.plot{2}.x = 1:size(dataOneHour,2);

fig.subplot{1,1}.plot{2}.y = dataOneHour;

fig.subplot{1,1}.plot{2}.style='bar';

fig.subplot{1,1}.plot{2}.barlayout='grouped';

fig.subplot{1,1}.plot{2}.barcolor={'x3','x35','x28','x20','x15'}; % Overwrite the color property

fig.subplot{1,1}.plot{2}.text=dataValTXT_OneHour; % Must be the same size as the data

fig.subplot{1,2}.plot{1}.x = 1:size(dataFourHour95,2);

fig.subplot{1,2}.plot{1}.y = dataFourHour95;

fig.subplot{1,2}.plot{1}.style='bar';

fig.subplot{1,2}.plot{1}.barlayout='grouped';

fig.subplot{1,2}.plot{1}.barcolor={'x2','x34','x27','x19','x14'}; % Overwrite the color property

fig.subplot{1,2}.plot{2}.x = 1:size(dataFourHour,2);

fig.subplot{1,2}.plot{2}.y = dataFourHour;

fig.subplot{1,2}.plot{2}.style='bar';

fig.subplot{1,2}.plot{2}.barlayout='grouped';

fig.subplot{1,2}.plot{2}.barcolor={'x3','x35','x28','x20','x15'}; % Overwrite the color property

fig.subplot{1,2}.plot{2}.text=dataValTXT_FourHour; % Must be the same size as the data

fig.subplot{1,3}.plot{1}.x = 1:size(dataTwelveHour95,2);

fig.subplot{1,3}.plot{1}.y = dataTwelveHour95;

fig.subplot{1,3}.plot{1}.style='bar';

fig.subplot{1,3}.plot{1}.barlayout='grouped';

fig.subplot{1,3}.plot{1}.barcolor={'x2','x34','x27','x19','x14'}; % Overwrite the color property

fig.subplot{1,3}.plot{2}.x = 1:size(dataTwelveHour,2);

fig.subplot{1,3}.plot{2}.y = dataTwelveHour;

fig.subplot{1,3}.plot{2}.style='bar';

fig.subplot{1,3}.plot{2}.barlayout='grouped';

fig.subplot{1,3}.plot{2}.barcolor={'x3','x35','x28','x20','x15'}; % Overwrite the color property

fig.subplot{1,3}.plot{2}.text=dataValTXT_TwelveHour; % Must be the same size as the data

% Plot axes properties

xLimVal = [0.5 5.5];

fig.subplot{1,1}.xlim=xLimVal;

fig.subplot{1,2}.xlim=xLimVal;

fig.subplot{1,3}.xlim=xLimVal;

yLimVal = [0 25];

fig.subplot{1,1}.ylim=yLimVal;

fig.subplot{1,2}.ylim=yLimVal;

fig.subplot{1,3}.ylim=yLimVal;

% Title subplots

fig.subplot{1,1}.title=['Product length: One hour']; % optionaler Titel

fig.subplot{1,2}.title=['Product length: Four hours']; % optionaler Titel

fig.subplot{1,3}.title=['Product length: Twelve hours']; % optionaler Titel

% Axes labeling

fig.subplot{1,1}.xlabel='Year';

fig.subplot{1,2}.xlabel='Year';

fig.subplot{1,3}.xlabel='Year';

fig.subplot{1,1}.ylabel='Additional income in mio. EUR';

fig.subplot{1,2}.ylabel='Additional income in mio. EUR';

fig.subplot{1,3}.ylabel='Additional income in mio. EUR';

fig.subplot{1,1}.legend={'Onshore Wind 30 GW Germany 95%', ...

	'Onshore Wind 1 GW Pool 95%', ...

	'Offshore Wind 1 GW Germany 95%', ...

	'Photovoltaic Sytems 30 GW Germany 95%', ...

	'Photovoltaic Sytems 1 GW Pool 95%', ...

	'Onshore Wind 30 GW Germany 99.994%', ...

	'Onshore Wind 1 GW Pool 99.994%', ...

	'Offshore Wind 1 GW Germany 99.994%', ...

	'Photovoltaic Sytems 30 GW Germany 99.994%', ...

	'Photovoltaic Sytems 1 GW Pool 99.994%'};

fig.subplot{1,1}.xticks=fig.subplot{1,1}.plot{1}.x;

fig.subplot{1,1}.xticklabels=[2010,2011,2012,2013,2014];

fig.subplot{1,1}.yticks=min(yLimVal):5:max(yLimVal);

fig.subplot{1,2}.xticks=fig.subplot{1,2}.plot{1}.x;

fig.subplot{1,2}.xticklabels=[2010,2011,2012,2013,2014];

fig.subplot{1,2}.yticks=min(yLimVal):5:max(yLimVal);

fig.subplot{1,3}.xticks=fig.subplot{1,3}.plot{1}.x;

fig.subplot{1,3}.xticklabels=[2010,2011,2012,2013,2014];

fig.subplot{1,3}.yticks=min(yLimVal):5:max(yLimVal);

fig.height=18;

fig.width_columns=3;

[hFig, hAxes, hPlot] = styleplot(fig,'styleplot_format_PhD','wordwide');

%% Save

path = 'C:\Users\mjansen\Synchronisation\mjansen auf User_Artemis(R)\Dissertation\Dissertation\Figures\5 Economics of fluctuating RES in the control reserve markets\';

name = 'Fig5-26_addIncome_posTer_1h_4h_12h';

saveas(gcf,[path name '.fig']);

save([path name '_data.mat'],'fig');

Functions/Results_Evaluation/resPhD_additionalIncome_positive_tertiary_AAP_Scatter.m

% clear;

% clc;

% %% Options

% productLength = 1;

%

% %% Load

%

% preDefineDataSet = ([117:135]);

%

% for iDataSet = 1:length(preDefineDataSet)

% 	

% 	[~, ~, ...

% 		~, ~, ...

% 		~, ~, ...

% 		~, ~, ...

% 		DataSet(iDataSet).offerRP, DataSet(iDataSet).offerRP_Min, ...

% 		DataSet(iDataSet).simRuns, ~, ...

% 		~, DataSet(iDataSet).info] ...

% 		= res_loadResults_noMOL('D:\Ergebnisse REBal',preDefineDataSet(iDataSet));

% 	

% % 	[Prob_Forec_DA, Prob_Forec_ID, actualFeedIn, ecoImpact, ecoImpactTFC, error, ...

% % 		errorRP, macroEcoImpact, offerRP, offerRP_Min, simRuns, violation, alteredMOList, infoRuns] = res_loadResults_noMOL('D:\Ergebnisse REBal',preDefineDataSet(iDataSet));

% 	

% 	runSetYear = regexp(DataSet(iDataSet).info.runSetName,'_','split');

% 	GenType{iDataSet} = runSetYear{1};

% 	PoolType{iDataSet} = runSetYear{2};

% 	Type{iDataSet} = [runSetYear{1:2}];

% 	for iYear = 1:length(runSetYear)

% 		try

% 			if ~isnan(str2double(runSetYear{iYear}))

% 				timeStampYear(iDataSet) = datenum([str2double(runSetYear{iYear}) 1 1]);

% 			end

% 		end

% 	end

% 	

% end

%

% % Select only valid datasets

% invalidDS = false(size(DataSet));

% for iDS = 1:length(DataSet)

% 	if length(DataSet(iDS).offerRP_Min) == 1

% 		invalidDS(iDS) = isnan(DataSet(iDS).offerRP_Min);

% 	end

% end

% DataSet = DataSet(~invalidDS);

% timeStampYear = timeStampYear(~invalidDS);

% GenType = GenType(~invalidDS);

% PoolType = PoolType(~invalidDS);

% Type = Type(~invalidDS);

%% Other Vars

% Define Order

TypeAll = sort(unique([Type]));

genTypeAll = unique([GenType]);

poolTypeAll = unique([PoolType]);

[timeStampYearVec,~] = datevec(timeStampYear');

[years,~] = datevec(sort(unique(timeStampYear)));

secLevelAll = sort(unique([DataSet(1).simRuns.securityLevel]));

secLevelAll = secLevelAll([1 6]); % Show on those security levels

prodLengthAll = sort(unique([DataSet(1).simRuns.productLength]));

prodLengthAll = prodLengthAll([1]); % Show on those security levels

%% Get DataSet

productLength = 1;

market = 'TFC';

pos = 100;

for iSec = 1:length(secLevelAll)

	

	secLevel = secLevelAll(iSec);

	for iPL = 1:length(prodLengthAll)

		

		productLength = prodLengthAll(iPL);

		

		for iDS = 1:length(DataSet)

			

			

			

			indexA = strcmp({DataSet(iDS).simRuns.market},market);

			indexB = [DataSet(iDS).simRuns.percentPosRP] == pos;

			indexC = [DataSet(iDS).simRuns.productLength] == productLength;

			indexD = [DataSet(iDS).simRuns.securityLevel] == secLevel;

			indexAll = indexA & indexB & indexC & indexD;

			

			cap = [];

			capPrice = [];

			

% 			cap(:,1) ...

% 				= DataSet(iDS).offerRP(indexAll).AAP.pos.capacity ...

% 				/ DataSet(iDS).simRuns(indexAll).installedCapacity;

			cap(:,1) ...

				= DataSet(iDS).offerRP_Min(indexAll).AAP.pos.capacity;

			

			capPrice(:,1) ...

				= DataSet(iDS).offerRP_Min(indexAll).AAP.pos.capacityPrice;	

			

			if strcmp(Type(iDS),'OnWindBRD')

				additionalIncomeCap{timeStampYearVec(iDS)-2009,1} = cap;

				additionalIncomeCapPrice{timeStampYearVec(iDS)-2009,1} = capPrice;

			elseif strcmp(Type(iDS),'OnWindWF')

				additionalIncomeCap{timeStampYearVec(iDS)-2009,2} = cap;

				additionalIncomeCapPrice{timeStampYearVec(iDS)-2009,2} = capPrice;

			elseif strcmp(Type(iDS),'OfWindBRD')

				additionalIncomeCap{timeStampYearVec(iDS)-2009,3} = cap;

				additionalIncomeCapPrice{timeStampYearVec(iDS)-2009,3} = capPrice;

			elseif strcmp(Type(iDS),'PVBRD')

				additionalIncomeCap{timeStampYearVec(iDS)-2009,4} = cap;

				additionalIncomeCapPrice{timeStampYearVec(iDS)-2009,4} = capPrice;

			elseif strcmp(Type(iDS),'PVPVF')

				additionalIncomeCap{timeStampYearVec(iDS)-2009,5} = cap;

				additionalIncomeCapPrice{timeStampYearVec(iDS)-2009,5} = capPrice;

			end

			

		end

	

% 	additionalIncomeCap(additionalIncomeCap == 0) = nan;

% 	additionalIncomeCapPrice(additionalIncomeCapPrice == 0) = nan;

	secLevelStruct(iSec,iPL).Cap = additionalIncomeCap;

	secLevelStruct(iSec,iPL).CapPrice= additionalIncomeCapPrice;

	end	

end

%% Consolidate data

for iPL = 1:size(secLevelStruct,2)

	

	for iSec = 1:size(secLevelStruct,1)

		

		CapJoint_Wind30(:,iSec) = [secLevelStruct(iSec,iPL).Cap{1,1};secLevelStruct(iSec,iPL).Cap{2,1}; ...

			secLevelStruct(iSec,iPL).Cap{3,1};secLevelStruct(iSec,iPL).Cap{4,1}; ...

			secLevelStruct(iSec,iPL).Cap{5,1}];

		

		CapPriceJoint_Wind30(:,iSec) = [secLevelStruct(iSec,iPL).CapPrice{1,1};secLevelStruct(iSec,iPL).CapPrice{2,1}; ...

			secLevelStruct(iSec,iPL).CapPrice{3,1};secLevelStruct(iSec,iPL).CapPrice{4,1}; ...

			secLevelStruct(iSec,iPL).CapPrice{5,1}];

		CapJoint_OffWind30(:,iSec) = [secLevelStruct(iSec,iPL).Cap{1,3};secLevelStruct(iSec,iPL).Cap{2,3}; ...

			secLevelStruct(iSec,iPL).Cap{3,3};secLevelStruct(iSec,iPL).Cap{4,3}; ...

			secLevelStruct(iSec,iPL).Cap{5,3}];

		

		CapPriceJoint_OffWind30(:,iSec) = [secLevelStruct(iSec,iPL).CapPrice{1,3};secLevelStruct(iSec,iPL).CapPrice{2,3}; ...

			secLevelStruct(iSec,iPL).CapPrice{3,3};secLevelStruct(iSec,iPL).CapPrice{4,3}; ...

			secLevelStruct(iSec,iPL).CapPrice{5,3}];

		

		CapJoint_PV30(:,iSec) = [secLevelStruct(iSec,iPL).Cap{1,4};secLevelStruct(iSec,iPL).Cap{2,4}; ...

			secLevelStruct(iSec,iPL).Cap{3,4};secLevelStruct(iSec,iPL).Cap{4,4}; ...

			secLevelStruct(iSec,iPL).Cap{5,4}];

		

		CapPriceJoint_PV30(:,iSec) = [secLevelStruct(iSec,iPL).CapPrice{1,4};secLevelStruct(iSec,iPL).CapPrice{2,4}; ...

			secLevelStruct(iSec,iPL).CapPrice{3,4};secLevelStruct(iSec,iPL).CapPrice{4,4}; ...

			secLevelStruct(iSec,iPL).CapPrice{5,4}];

		

	end

	

end

% loglog(CapJoint_Wind30(:,1),CapPriceJoint_Wind30(:,1),'x','color','g')

% loglog(CapJoint_Wind30(:,2),CapPriceJoint_Wind30(:,2),'x','color','r')

% loglog(CapJoint_PV30(:,1),CapPriceJoint_PV30(:,1),'x','color','y')

% loglog(CapJoint_PV30(:,2),CapPriceJoint_PV30(:,2),'x','color','m')

%% Plot with styleplot

fig = [];

% Define data sets

fig.subplot{1,1}.plot{1}.x = CapJoint_Wind30(:,1);

fig.subplot{1,1}.plot{1}.y = CapPriceJoint_Wind30(:,1);

fig.subplot{1,1}.plot{1}.style='loglog';

fig.subplot{1,1}.plot{1}.linestyle='none';

fig.subplot{1,1}.plot{1}.markerstyle = '.';

fig.subplot{1,1}.plot{1}.markersize = 2;

fig.subplot{1,1}.plot{1}.color='x3';

fig.subplot{1,1}.plot{2}.x = CapJoint_Wind30(:,2);

fig.subplot{1,1}.plot{2}.y = CapPriceJoint_Wind30(:,2);

fig.subplot{1,1}.plot{2}.style='loglog';

fig.subplot{1,1}.plot{2}.linestyle='none';

fig.subplot{1,1}.plot{2}.markerstyle = '.';

fig.subplot{1,1}.plot{2}.markersize = 2;

fig.subplot{1,1}.plot{2}.color='x2';

fig.subplot{1,1}.plot{3}.x = CapJoint_PV30(:,1);

fig.subplot{1,1}.plot{3}.y = CapPriceJoint_PV30(:,1);

fig.subplot{1,1}.plot{3}.style='loglog';

fig.subplot{1,1}.plot{3}.linestyle='none';

fig.subplot{1,1}.plot{3}.markerstyle = '.';

fig.subplot{1,1}.plot{3}.markersize = 2;

fig.subplot{1,1}.plot{3}.color='x20';

fig.subplot{1,1}.plot{4}.x = CapJoint_PV30(:,2);

fig.subplot{1,1}.plot{4}.y = CapPriceJoint_PV30(:,2);

fig.subplot{1,1}.plot{4}.style='loglog';

fig.subplot{1,1}.plot{4}.linestyle='none';

fig.subplot{1,1}.plot{4}.markerstyle = '.';

fig.subplot{1,1}.plot{4}.markersize = 2;

fig.subplot{1,1}.plot{4}.color='x19';

% fig.subplot{1,1}.plot{5}.x = CapJoint_PV30(:,1);

% fig.subplot{1,1}.plot{5}.y = CapPriceJoint_PV30(:,1);

% fig.subplot{1,1}.plot{5}.style='loglog';

% fig.subplot{1,1}.plot{5}.linestyle='none';

% fig.subplot{1,1}.plot{5}.markerstyle = '.';

% fig.subplot{1,1}.plot{5}.markersize = 2;

% fig.subplot{1,1}.plot{5}.color='x28';

%

% fig.subplot{1,1}.plot{6}.x = CapJoint_OffWind30(:,2);

% fig.subplot{1,1}.plot{6}.y = CapPriceJoint_OffWind30(:,2);

% fig.subplot{1,1}.plot{6}.style='loglog';

% fig.subplot{1,1}.plot{6}.linestyle='none';

% fig.subplot{1,1}.plot{6}.markerstyle = '.';

% fig.subplot{1,1}.plot{6}.markersize = 2;

% fig.subplot{1,1}.plot{6}.color='x27';

% Plot axes properties

fig.subplot{1,1}.xgrid = 'on';

xLimVal = [100 20000];

fig.subplot{1,1}.xlim=xLimVal;

yLimVal = [1 1000];

fig.subplot{1,1}.ylim=yLimVal;

% % Title subplots

fig.subplot{1,1}.title=['Positive tertiary']; % optionaler Titel

% Axes labeling

fig.subplot{1,1}.xlabel='Offerable cacacity in MW';

fig.subplot{1,1}.ylabel='Capacity price in EUR/MW/h';

fig.subplot{1,1}.legend={'Onshore Wind 30 GW Germany 95%', ...

	'Onshore Wind 30 GW Germany 99.994%', ...

	'Photovoltaic Sytems 30 GW Germany 95%', ...

	'Photovoltaic Sytems 30 GW Germany 99.994%'};

fig.height=12;

fig.width_columns=2;

[hFig, hAxes, hPlot] = styleplot(fig,'styleplot_format_PhD','word');

%% Save

path = 'C:\Users\mjansen\Synchronisation\mjansen auf User_Artemis(R)\Dissertation\Dissertation\Figures\5 Economics of fluctuating RES in the control reserve markets\';

name = 'Fig5-17_profitMax_posTer_AAP_Scatter_bottom_right';

saveas(gcf,[path name '.fig']);

save([path name '_data.mat'],'fig');

Functions/Results_Evaluation/resPhD_additionalIncome_positive_tertiary_BC_Scatter.m

% clear;

% clc;

% %% Options

% productLength = 1;

%

% %% Load

%

% preDefineDataSet = ([123:141]);

%

% for iDataSet = 1:length(preDefineDataSet)

% 	

% 	[~, ~, ...

% 		~, ~, ...

% 		~, ~, ...

% 		~, ~, ...

% 		DataSet(iDataSet).offerRP, ~, ...

% 		DataSet(iDataSet).simRuns, ~, ...

% 		~, DataSet(iDataSet).info] ...

% 		= res_loadResults_noMOL('D:\Ergebnisse REBal',preDefineDataSet(iDataSet));

% 	

% % 	[Prob_Forec_DA, Prob_Forec_ID, actualFeedIn, ecoImpact, ecoImpactTFC, error, ...

% % 		errorRP, macroEcoImpact, offerRP, offerRP_Min, simRuns, violation, alteredMOList, infoRuns] = res_loadResults_noMOL('D:\Ergebnisse REBal',preDefineDataSet(iDataSet));

% 	

% 	runSetYear = regexp(DataSet(iDataSet).info.runSetName,'_','split');

% 	GenType{iDataSet} = runSetYear{1};

% 	PoolType{iDataSet} = runSetYear{2};

% 	Type{iDataSet} = [runSetYear{1:2}];

% 	for iYear = 1:length(runSetYear)

% 		try

% 			if ~isnan(str2double(runSetYear{iYear}))

% 				timeStampYear(iDataSet) = datenum([str2double(runSetYear{iYear}) 1 1]);

% 			end

% 		end

% 	end

% 	

% end

% % Select only valid datasets

% invalidDS = false(size(DataSet));

% for iDS = 1:length(DataSet)

% 	if length(DataSet(iDS).offerRP_Min) == 1

% 		invalidDS(iDS) = isnan(DataSet(iDS).offerRP_Min);

% 	end

% end

% DataSet = DataSet(~invalidDS);

% timeStampYear = timeStampYear(~invalidDS);

% GenType = GenType(~invalidDS);

% PoolType = PoolType(~invalidDS);

% Type = Type(~invalidDS);

%% Other Vars

% Define Order

TypeAll = sort(unique([Type]));

genTypeAll = unique([GenType]);

poolTypeAll = unique([PoolType]);

[timeStampYearVec,~] = datevec(timeStampYear');

[years,~] = datevec(sort(unique(timeStampYear)));

secLevelAll = sort(unique([DataSet(1).simRuns.securityLevel]));

secLevelAll = secLevelAll([1 6]); % Show on those security levels

prodLengthAll = sort(unique([DataSet(1).simRuns.productLength]));

prodLengthAll = prodLengthAll([1]); % Show on those security levels

%% Get DataSet

productLength = 1;

market = 'TFC';

pos = 100;

for iSec = 1:length(secLevelAll)

	

	secLevel = secLevelAll(iSec);

	for iPL = 1:length(prodLengthAll)

		

		productLength = prodLengthAll(iPL);

		

		for iDS = 1:length(DataSet)

			

			

			

			indexA = strcmp({DataSet(iDS).simRuns.market},market);

			indexB = [DataSet(iDS).simRuns.percentPosRP] == pos;

			indexC = [DataSet(iDS).simRuns.productLength] == productLength;

			indexD = [DataSet(iDS).simRuns.securityLevel] == secLevel;

			indexAll = indexA & indexB & indexC & indexD;

			

			cap = [];

			capPrice = [];

			

% 			cap(:,1) ...

% 				= DataSet(iDS).offerRP(indexAll).BC.pos.capacity ...

% 				/ DataSet(iDS).simRuns(indexAll).installedCapacity;

			cap(:,1) ...

				= DataSet(iDS).offerRP_Min(indexAll).BC.pos.capacity;

			

			capPrice(:,1) ...

				= DataSet(iDS).offerRP_Min(indexAll).BC.pos.capacityPrice;	

			

			if strcmp(Type(iDS),'OnWindBRD')

				additionalIncomeCap{timeStampYearVec(iDS)-2009,1} = cap;

				additionalIncomeCapPrice{timeStampYearVec(iDS)-2009,1} = capPrice;

			elseif strcmp(Type(iDS),'OnWindWF')

				additionalIncomeCap{timeStampYearVec(iDS)-2009,2} = cap;

				additionalIncomeCapPrice{timeStampYearVec(iDS)-2009,2} = capPrice;

			elseif strcmp(Type(iDS),'OfWindBRD')

				additionalIncomeCap{timeStampYearVec(iDS)-2009,3} = cap;

				additionalIncomeCapPrice{timeStampYearVec(iDS)-2009,3} = capPrice;

			elseif strcmp(Type(iDS),'PVBRD')

				additionalIncomeCap{timeStampYearVec(iDS)-2009,4} = cap;

				additionalIncomeCapPrice{timeStampYearVec(iDS)-2009,4} = capPrice;

			elseif strcmp(Type(iDS),'PVPVF')

				additionalIncomeCap{timeStampYearVec(iDS)-2009,5} = cap;

				additionalIncomeCapPrice{timeStampYearVec(iDS)-2009,5} = capPrice;

			end

			

		end

	

% 	additionalIncomeCap(additionalIncomeCap == 0) = nan;

% 	additionalIncomeCapPrice(additionalIncomeCapPrice == 0) = nan;

	secLevelStruct(iSec,iPL).Cap = additionalIncomeCap;

	secLevelStruct(iSec,iPL).CapPrice= additionalIncomeCapPrice;

	end	

end

%% Consolidate data

for iPL = 1:size(secLevelStruct,2)

	

	for iSec = 1:size(secLevelStruct,1)

		

		CapJoint_Wind30(:,iSec) = [secLevelStruct(iSec,iPL).Cap{1,1};secLevelStruct(iSec,iPL).Cap{2,1}; ...

			secLevelStruct(iSec,iPL).Cap{3,1};secLevelStruct(iSec,iPL).Cap{4,1}; ...

			secLevelStruct(iSec,iPL).Cap{5,1}];

		

		CapPriceJoint_Wind30(:,iSec) = [secLevelStruct(iSec,iPL).CapPrice{1,1};secLevelStruct(iSec,iPL).CapPrice{2,1}; ...

			secLevelStruct(iSec,iPL).CapPrice{3,1};secLevelStruct(iSec,iPL).CapPrice{4,1}; ...

			secLevelStruct(iSec,iPL).CapPrice{5,1}];

		CapJoint_OffWind30(:,iSec) = [secLevelStruct(iSec,iPL).Cap{1,3};secLevelStruct(iSec,iPL).Cap{2,3}; ...

			secLevelStruct(iSec,iPL).Cap{3,3};secLevelStruct(iSec,iPL).Cap{4,3}; ...

			secLevelStruct(iSec,iPL).Cap{5,3}];

		

		CapPriceJoint_OffWind30(:,iSec) = [secLevelStruct(iSec,iPL).CapPrice{1,3};secLevelStruct(iSec,iPL).CapPrice{2,3}; ...

			secLevelStruct(iSec,iPL).CapPrice{3,3};secLevelStruct(iSec,iPL).CapPrice{4,3}; ...

			secLevelStruct(iSec,iPL).CapPrice{5,3}];

		

		CapJoint_PV30(:,iSec) = [secLevelStruct(iSec,iPL).Cap{1,4};secLevelStruct(iSec,iPL).Cap{2,4}; ...

			secLevelStruct(iSec,iPL).Cap{3,4};secLevelStruct(iSec,iPL).Cap{4,4}; ...

			secLevelStruct(iSec,iPL).Cap{5,4}];

		

		CapPriceJoint_PV30(:,iSec) = [secLevelStruct(iSec,iPL).CapPrice{1,4};secLevelStruct(iSec,iPL).CapPrice{2,4}; ...

			secLevelStruct(iSec,iPL).CapPrice{3,4};secLevelStruct(iSec,iPL).CapPrice{4,4}; ...

			secLevelStruct(iSec,iPL).CapPrice{5,4}];

		

	end

	

end

% loglog(CapJoint_Wind30(:,1),CapPriceJoint_Wind30(:,1),'x','color','g')

% loglog(CapJoint_Wind30(:,2),CapPriceJoint_Wind30(:,2),'x','color','r')

% loglog(CapJoint_PV30(:,1),CapPriceJoint_PV30(:,1),'x','color','y')

% loglog(CapJoint_PV30(:,2),CapPriceJoint_PV30(:,2),'x','color','m')

%% Plot with styleplot

fig = [];

% Define data sets

fig.subplot{1,1}.plot{1}.x = CapJoint_Wind30(:,1);

fig.subplot{1,1}.plot{1}.y = CapPriceJoint_Wind30(:,1);

fig.subplot{1,1}.plot{1}.style='loglog';

fig.subplot{1,1}.plot{1}.linestyle='none';

fig.subplot{1,1}.plot{1}.markerstyle = '.';

fig.subplot{1,1}.plot{1}.markersize = 2;

fig.subplot{1,1}.plot{1}.color='x3';

fig.subplot{1,1}.plot{2}.x = CapJoint_Wind30(:,2);

fig.subplot{1,1}.plot{2}.y = CapPriceJoint_Wind30(:,2);

fig.subplot{1,1}.plot{2}.style='loglog';

fig.subplot{1,1}.plot{2}.linestyle='none';

fig.subplot{1,1}.plot{2}.markerstyle = '.';

fig.subplot{1,1}.plot{2}.markersize = 2;

fig.subplot{1,1}.plot{2}.color='x2';

fig.subplot{1,1}.plot{3}.x = CapJoint_PV30(:,1);

fig.subplot{1,1}.plot{3}.y = CapPriceJoint_PV30(:,1);

fig.subplot{1,1}.plot{3}.style='loglog';

fig.subplot{1,1}.plot{3}.linestyle='none';

fig.subplot{1,1}.plot{3}.markerstyle = '.';

fig.subplot{1,1}.plot{3}.markersize = 2;

fig.subplot{1,1}.plot{3}.color='x20';

fig.subplot{1,1}.plot{4}.x = CapJoint_PV30(:,2);

fig.subplot{1,1}.plot{4}.y = CapPriceJoint_PV30(:,2);

fig.subplot{1,1}.plot{4}.style='loglog';

fig.subplot{1,1}.plot{4}.linestyle='none';

fig.subplot{1,1}.plot{4}.markerstyle = '.';

fig.subplot{1,1}.plot{4}.markersize = 2;

fig.subplot{1,1}.plot{4}.color='x19';

% fig.subplot{1,1}.plot{5}.x = CapJoint_PV30(:,1);

% fig.subplot{1,1}.plot{5}.y = CapPriceJoint_PV30(:,1);

% fig.subplot{1,1}.plot{5}.style='loglog';

% fig.subplot{1,1}.plot{5}.linestyle='none';

% fig.subplot{1,1}.plot{5}.markerstyle = '.';

% fig.subplot{1,1}.plot{5}.markersize = 2;

% fig.subplot{1,1}.plot{5}.color='x28';

%

% fig.subplot{1,1}.plot{6}.x = CapJoint_OffWind30(:,2);

% fig.subplot{1,1}.plot{6}.y = CapPriceJoint_OffWind30(:,2);

% fig.subplot{1,1}.plot{6}.style='loglog';

% fig.subplot{1,1}.plot{6}.linestyle='none';

% fig.subplot{1,1}.plot{6}.markerstyle = '.';

% fig.subplot{1,1}.plot{6}.markersize = 2;

% fig.subplot{1,1}.plot{6}.color='x27';

% Plot axes properties

fig.subplot{1,1}.xgrid = 'on';

xLimVal = [100 20000];

fig.subplot{1,1}.xlim=xLimVal;

yLimVal = [1 10000];

fig.subplot{1,1}.ylim=yLimVal;

% % Title subplots

fig.subplot{1,1}.title=['Positive tertiary']; % optionaler Titel

% Axes labeling

fig.subplot{1,1}.xlabel='Offerable cacacity in MW';

fig.subplot{1,1}.ylabel='Capacity price in EUR/MW/h';

fig.subplot{1,1}.legend={'Onshore Wind 30 GW Germany 95%', ...

	'Onshore Wind 30 GW Germany 99.994%', ...

	'Photovoltaic Sytems 30 GW Germany 95%', ...

	'Photovoltaic Sytems 30 GW Germany 99.994%'};

fig.height=12;

fig.width_columns=2;

[hFig, hAxes, hPlot] = styleplot(fig,'styleplot_format_PhD','word');

Functions/Results_Evaluation/resPhD_costAncillaryServices.m

clear;

clc;

%% Load

CounterTrad.data = [35.4,87.8,0.1,1.6,nan];

Redispatch.data = [13,41.6,164.8,113.3,nan];

BlackStart.data = [5,7.3,5.2,5.9,nan];

ReactPow.data = [29.6,27,68.3,33,nan];

TransLoss.data = [300.3,317.3,354,332.7,nan];

PFC_cap.data = [106.6,111.8,82.3,85.2,nan];

SFC_cap.data = [505,371.9,267.1,352.9,nan];

TFC_cap.data = [85.2,104.2,67.4,156.1,nan];

SFC_cap_own.data = [502.9,375.0,268.8,359.2,228.0];

TFC_cap_own.data = [88.9,100.2,74.9,157.5,104.2];

SFC_nrg_own.data = [179.6,123.2,359.2,nan,nan];

TFC_nrg_own.data = [162.1,186.6,167.7,80.7,401.5];

CounterTrad.name = 'National & transborder countertrading';

Redispatch.name = 'National & transborder re-dispatch';

BlackStart.name = 'Black start capability';

ReactPow.name = 'Reactive power';

TransLoss.name = 'Transmission losses';

PFC_cap.name = 'Primary control reserve capacity payments';

SFC_cap.name = 'Secondary control reserve capacity payments';

SFC_cap_own.name = 'Tertiary control reserve capacity payments';

TFC_cap_own.name = 'Primary control reserve energy payments';

SFC_nrg_own.name = 'Secondary control reserve energy payments';

TFC_nrg_own.name = 'Tertiary control reserve energy payments';

%% Compile data

tutti = [CounterTrad.data;Redispatch.data;BlackStart.data;ReactPow.data;...

	TransLoss.data;PFC_cap.data;SFC_cap_own.data;TFC_cap_own.data; ...

	SFC_nrg_own.data;TFC_nrg_own.data];

tuttiText = {CounterTrad.name;Redispatch.name;BlackStart.name;ReactPow.name;...

	TransLoss.name;PFC_cap.name;SFC_cap_own.name;TFC_cap_own.name; ...

	SFC_nrg_own.name;TFC_nrg_own.name};

% barh(tutti)

%

% set(gca,'yTickLabel',tuttiText)

%

% legend('2010','2011','2012','2013','2014')

%% Initialize Figure

% fhgColors.greyDark

clearvars fig

% First Data Set %%

fig.subplot{1,1}.plot{1}.x = 1:length(tutti);

fig.subplot{1,1}.plot{1}.y = tutti;

fig.subplot{1,1}.plot{1}.style='barh';

fig.subplot{1,1}.plot{1}.color='x35';

% fig.subplot{1,1}.plot{2}.x = x_in;

% fig.subplot{1,1}.plot{2}.y = cdf;

% fig.subplot{1,1}.plot{2}.style='plot';

% fig.subplot{1,1}.plot{2}.color='x10';

% fig.subplot{1,1}.xlim=[min(actualFeedIn.time)+123 min(actualFeedIn.time)+126];

% fig.subplot{1,1}.ylim=[0 1];

fig.subplot{1,1}.ygrid='off';

fig.subplot{1,1}.xgrid='on';

% fig.subplot{1,1}.title='PV 30 GW Germany'; % optionaler Titel

% fig.subplot{1,1}.xlabel='Time';

% fig.subplot{1,1}.ylabel='Probability';

% fig.subplot{1,1}.zlabel='Time';

fig.subplot{1,1}.legend={'2010','2011','2012','2013','2014'};

% fig.subplot{1,1}.legend_orientation = 'vertical';

% fig.subplot{1,1}.colormap_label='Temperatur Gradient [°C pro h]';

% fig.subplot{1,1}.xdatetick_format='mm/yyyy';

fig.height=9;

fig.width_columns=3;

styleplot(fig,'styleplot\styleplot_format_PhD','word')

Functions/Results_Evaluation/resPhD_costSavingPot.m

clear;

clc;

%% Options

productLength = 1;

%% Load

preDefineDataSet = ([87:104]);

for iDataSet = 1:length(preDefineDataSet)

	

	[~, ~, ...

		~, DataSet(iDataSet).ecoImpact, ...

		~, ~, ...

		~, ~, ...

		~, DataSet(iDataSet).offerRP_Min, ...

		DataSet(iDataSet).simRuns, ~, ...

		~, DataSet(iDataSet).info] ...

		= res_loadResults_noMOL('D:\Ergebnisse REBal',preDefineDataSet(iDataSet));

	

% 	[Prob_Forec_DA, Prob_Forec_ID, actualFeedIn, ecoImpact, ecoImpactTFC, error, ...

% 		errorRP, macroEcoImpact, offerRP, offerRP_Min, simRuns, violation, alteredMOList, infoRuns] = res_loadResults_noMOL('D:\Ergebnisse REBal',preDefineDataSet(iDataSet));

	

	runSetYear = regexp(DataSet(iDataSet).info.runSetName,'_','split');

	GenType{iDataSet} = runSetYear{1};

	PoolType{iDataSet} = runSetYear{2};

	Type{iDataSet} = [runSetYear{1:2}];

	for iYear = 1:length(runSetYear)

		try

			if ~isnan(str2double(runSetYear{iYear}))

				timeStampYear(iDataSet) = datenum([str2double(runSetYear{iYear}) 1 1]);

			end

		end

	end

	

end

% % Select only valid datasets

% invalidDS = false(size(DataSet));

% for iDS = 1:length(DataSet)

% 	if length(DataSet(iDS).offerRP_Min) == 1

% 		invalidDS(iDS) = isnan(DataSet(iDS).offerRP_Min);

% 	end

% end

% DataSet = DataSet(~invalidDS);

% timeStampYear = timeStampYear(~invalidDS);

% GenType = GenType(~invalidDS);

% PoolType = PoolType(~invalidDS);

% Type = Type(~invalidDS);

%% Other Vars

% Define Order

TypeAll = sort(unique([Type]));

genTypeAll = unique([GenType]);

poolTypeAll = unique([PoolType]);

[timeStampYearVec,~] = datevec(timeStampYear');

[years,~] = datevec(sort(unique(timeStampYear)));

secLevelAll = sort(unique([DataSet(1).simRuns.securityLevel]));

secLevelAll = secLevelAll([6]); % Show on those security levels

prodLengthAll = sort(unique([DataSet(1).simRuns.productLength]));

prodLengthAll = prodLengthAll([1]); % Show on those security levels

%% Get DataSet

productLength = 1;

market = 'SFC';

pos = 100;

for iSec = 1:length(secLevelAll)

	

	secLevel = secLevelAll(iSec);

	for iPL = 1:length(prodLengthAll)

		

		productLength = prodLengthAll(iPL);

		

		for iDS = 1:length(DataSet)

			

			

			

			indexA = strcmp({DataSet(iDS).simRuns.market},market);

			indexB = [DataSet(iDS).simRuns.percentPosRP] == pos;

			indexC = [DataSet(iDS).simRuns.productLength] == productLength;

			indexD = [DataSet(iDS).simRuns.securityLevel] == secLevel;

			indexAll = indexA & indexB & indexC & indexD;

			

			addIncome = [];

			addIncome_Cap = [];

			addIncome_En = [];

			

			addIncome(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max ...

				- DataSet(iDS).ecoImpact(indexAll).AAP.Min;

			

			addIncome_perCapInst(:,1) ...

				= addIncome(:,1) ...

				/ DataSet(iDS).simRuns(indexAll).installedCapacity;

			

			addIncome_Cap(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.capacity ...

				- DataSet(iDS).ecoImpact(indexAll).AAP.Min_DiffSplit.capacity;

			

			addIncome_En(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.dispatch ...

				- DataSet(iDS).ecoImpact(indexAll).AAP.Min_DiffSplit.dispatch;

			

			if strcmp(Type(iDS),'OnWindBRD')

				additionalIncomeTotal(timeStampYearVec(iDS)-2009,1) = addIncome;

				additionalIncomeCap(timeStampYearVec(iDS)-2009,1) = addIncome_Cap;

				additionalIncomeEn(timeStampYearVec(iDS)-2009,1) = addIncome_En;

				additionalIncomePerGW(timeStampYearVec(iDS)-2009,1) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OnWindWF')

				additionalIncomeTotal(timeStampYearVec(iDS)-2009,2) = addIncome;

				additionalIncomeCap(timeStampYearVec(iDS)-2009,2) = addIncome_Cap;

				additionalIncomeEn(timeStampYearVec(iDS)-2009,2) = addIncome_En;

				additionalIncomePerGW(timeStampYearVec(iDS)-2009,2) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OfWindBRD')

				additionalIncomeTotal(timeStampYearVec(iDS)-2009,3) = addIncome;

				additionalIncomeCap(timeStampYearVec(iDS)-2009,3) = addIncome_Cap;

				additionalIncomeEn(timeStampYearVec(iDS)-2009,3) = addIncome_En;

				additionalIncomePerGW(timeStampYearVec(iDS)-2009,3) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVBRD')

				additionalIncomeTotal(timeStampYearVec(iDS)-2009,4) = addIncome;

				additionalIncomeCap(timeStampYearVec(iDS)-2009,4) = addIncome_Cap;

				additionalIncomeEn(timeStampYearVec(iDS)-2009,4) = addIncome_En;

				additionalIncomePerGW(timeStampYearVec(iDS)-2009,4) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVPVF')

				additionalIncomeTotal(timeStampYearVec(iDS)-2009,5) = addIncome;

				additionalIncomeCap(timeStampYearVec(iDS)-2009,5) = addIncome_Cap;

				additionalIncomeEn(timeStampYearVec(iDS)-2009,5) = addIncome_En;

				additionalIncomePerGW(timeStampYearVec(iDS)-2009,5) = addIncome_perCapInst;

			end

			

		end

	

	additionalIncomeTotal(additionalIncomeTotal == 0) = nan;

	additionalIncomeCap(additionalIncomeCap == 0) = nan;

	additionalIncomeEn(additionalIncomeEn == 0) = nan;

	additionalIncomePerGW(additionalIncomePerGW == 0) = nan;

	secLevelStruct(iSec,iPL).addIncome = additionalIncomeTotal;

	secLevelStruct(iSec,iPL).addIncomeCap = additionalIncomeCap;

	secLevelStruct(iSec,iPL).addIncomeEn = additionalIncomeEn;	

	secLevelStruct(iSec,iPL).addIncomePerGW = additionalIncomePerGW;	

	end	

end

%% Consolidate data

dataOneHour = secLevelStruct(1,2).addIncome(1:5,:) / 1000000;

dataFourHour = secLevelStruct(2,2).addIncome(1:5,:) / 1000000;

dataTwelveHour = secLevelStruct(2,2).addIncome(1:5,:) / 1000000;

dataOneHour95 = secLevelStruct(1,1).addIncome(1:5,:) / 1000000;

dataFourHour95 = secLevelStruct(1,2).addIncome(1:5,:) / 1000000;

dataTwelveHour95 = secLevelStruct(1,2).addIncome(1:5,:) / 1000000;

% Include if data should be based on per GW

% dataOneHour = secLevelStruct(1,2).addIncomePerGW(1:5,:) / 1000000;

% dataFourHour = secLevelStruct(2,2).addIncomePerGW(1:5,:) / 1000000;

% dataTwelveHour = secLevelStruct(2,2).addIncomePerGW(1:5,:) / 1000000;

%

% dataOneHour95 = secLevelStruct(1,1).addIncomePerGW(1:5,:) / 1000000;

% dataFourHour95 = secLevelStruct(1,2).addIncomePerGW(1:5,:) / 1000000;

% dataTwelveHour95 = secLevelStruct(1,2).addIncomePerGW(1:5,:) / 1000000;

data = [];

for iData = 1:length(secLevelStruct)

	data = [data;secLevelStruct(iData).mean];

end

data = data; % So actually % are plotted rather than decimal numbers

rangeLow = [];

for iData = 1:length(secLevelStruct)

	rangeLow = [rangeLow;secLevelStruct(iData).min];

end

rangeLow = data-rangeLow; % So actually % are plotted rather than decimal numbers

rangeHigh = [];

for iData = 1:length(secLevelStruct)

	rangeHigh = [rangeHigh;secLevelStruct(iData).max];

end

rangeHigh = data-rangeHigh; % So actually % are plotted rather than decimal numbers

errorbarData = [data;rangeLow;rangeHigh];

% % Values for bars

% dataVal = [];

% for iData = 1:length(secLevelStruct)

% 	dataVal = [dataVal;secLevelStruct(iData).lostVal];

% end

% dataVal = dataVal / 1000; % So actually % are plotted rather than decimal numbers

% dataValTXT = num2cell(dataVal);

% textFormat = cell(size(dataValTXT));

% textFormat(:) = {'%0.1f'};

% dataValTXT = cellfun(@num2str,dataValTXT,textFormat,'UniformOutput',0);

%% Plot with styleplot

fig = [];

% First Data Set %%

% Define data sets

fig.subplot{1,1}.plot{1}.x = 1:size(dataOneHour95,2);

fig.subplot{1,1}.plot{1}.y = dataOneHour95;

fig.subplot{1,1}.plot{1}.style='bar';

fig.subplot{1,1}.plot{1}.barlayout='grouped';

fig.subplot{1,1}.plot{1}.barcolor={'x2','x34','x27','x19','x14'}; % Overwrite the color property

% fig.subplot{1,1}.plot{1}.text=dataValTXT; % Must be the same size as the data

fig.subplot{1,1}.plot{2}.x = 1:size(dataOneHour,2);

fig.subplot{1,1}.plot{2}.y = dataOneHour;

fig.subplot{1,1}.plot{2}.style='bar';

fig.subplot{1,1}.plot{2}.barlayout='grouped';

fig.subplot{1,1}.plot{2}.barcolor={'x3','x35','x28','x20','x15'}; % Overwrite the color property

% fig.subplot{1,1}.plot{2}.text=dataValTXT; % Must be the same size as the data

fig.subplot{1,2}.plot{1}.x = 1:size(dataFourHour95,2);

fig.subplot{1,2}.plot{1}.y = dataFourHour95;

fig.subplot{1,2}.plot{1}.style='bar';

fig.subplot{1,2}.plot{1}.barlayout='grouped';

fig.subplot{1,2}.plot{1}.barcolor={'x2','x34','x27','x19','x14'}; % Overwrite the color property

% fig.subplot{1,2}.plot{1}.text=dataValTXT; % Must be the same size as the data

fig.subplot{1,2}.plot{2}.x = 1:size(dataFourHour,2);

fig.subplot{1,2}.plot{2}.y = dataFourHour;

fig.subplot{1,2}.plot{2}.style='bar';

fig.subplot{1,2}.plot{2}.barlayout='grouped';

fig.subplot{1,2}.plot{2}.barcolor={'x3','x35','x28','x20','x15'}; % Overwrite the color property

% fig.subplot{1,2}.plot{2}.text=dataValTXT; % Must be the same size as the data

fig.subplot{1,3}.plot{1}.x = 1:size(dataFourHour95,2);

fig.subplot{1,3}.plot{1}.y = dataFourHour95;

fig.subplot{1,3}.plot{1}.style='bar';

fig.subplot{1,3}.plot{1}.barlayout='grouped';

fig.subplot{1,3}.plot{1}.barcolor={'x2','x34','x27','x19','x14'}; % Overwrite the color property

% fig.subplot{1,3}.plot{1}.text=dataValTXT; % Must be the same size as the data

fig.subplot{1,3}.plot{2}.x = 1:size(dataFourHour,2);

fig.subplot{1,3}.plot{2}.y = dataFourHour;

fig.subplot{1,3}.plot{2}.style='bar';

fig.subplot{1,3}.plot{2}.barlayout='grouped';

fig.subplot{1,3}.plot{2}.barcolor={'x3','x35','x28','x20','x15'}; % Overwrite the color property

% fig.subplot{1,3}.plot{2}.text=dataValTXT; % Must be the same size as the data

% Plot axes properties

xLimVal = [0.5 5.5];

fig.subplot{1,1}.xlim=xLimVal;

fig.subplot{1,2}.xlim=xLimVal;

fig.subplot{1,3}.xlim=xLimVal;

% yLimVal = [0 38*10^1];

% fig.subplot{1,1}.ylim=yLimVal;

% fig.subplot{1,2}.ylim=yLimVal;

% fig.subplot{1,3}.ylim=yLimVal;

% Title subplots

fig.subplot{1,1}.title=['Product length: One hour']; % optionaler Titel

fig.subplot{1,2}.title=['Product length: Four hours']; % optionaler Titel

fig.subplot{1,3}.title=['Product length: Twelve hours']; % optionaler Titel

% Axes labeling

fig.subplot{1,1}.xlabel='Year';

fig.subplot{1,2}.xlabel='Year';

fig.subplot{1,3}.xlabel='Year';

fig.subplot{1,1}.ylabel='Additional income in mio. EUR';

% fig.subplot{1,1}.legend={'Onshore Wind 30 GW Germany 95%', ...

% 	'Onshore Wind 1 GW Pool 95%', ...

% 	'Offshore Wind 1 GW Germany 95%', ...

% 	'Photovoltaic Sytems 30 GW Germany 95%', ...

% 	'Photovoltaic Sytems 1 GW Pool 95%', ...

% 	'Onshore Wind 30 GW Germany 99.994%', ...

% 	'Onshore Wind 1 GW Pool 99.994%', ...

% 	'Offshore Wind 1 GW Germany 99.994%', ...

% 	'Photovoltaic Sytems 30 GW Germany 99.994%', ...

% 	'Photovoltaic Sytems 1 GW Pool 99.994%'};

% fig.subplot{1,1}.legend_orientation = 'vertical';

fig.subplot{1,1}.xticks=fig.subplot{1,1}.plot{1}.x;

fig.subplot{1,1}.xticklabels=[2010,2011,2012,2013,2014];

% fig.subplot{1,1}.yticks=min(yLimVal):20:max(yLimVal);

fig.subplot{1,2}.xticks=fig.subplot{1,2}.plot{1}.x;

fig.subplot{1,2}.xticklabels=[2010,2011,2012,2013,2014];

% fig.subplot{1,2}.yticks=min(yLimVal):20:max(yLimVal);

fig.subplot{1,3}.xticks=fig.subplot{1,3}.plot{1}.x;

fig.subplot{1,3}.xticklabels=[2010,2011,2012,2013,2014];

% fig.subplot{1,3}.yticks=min(yLimVal):20:max(yLimVal);

% fig.subplot{1,1}.xdatetick_format='dd/mm/yyyy';

% fig.subplot{1,1}.xdatetick_rotate=90;

fig.height=15;

fig.width_columns=3;

[hFig, hAxes, hPlot] = styleplot(fig,'styleplot_format_PhD','wordwide');

Functions/Results_Evaluation/resPhD_costSavingPot_AAPMax.m

% clear;

% clc;

% %% Options

% productLength = 1;

%

% %% Load

%

% preDefineDataSet = ([117:135]);

%

% for iDataSet = 1:length(preDefineDataSet)

% 	

% 	[~, ~, ...

% 		~, DataSet(iDataSet).ecoImpact, ...

% 		~, ~, ...

% 		~, ~, ...

% 		~, DataSet(iDataSet).offerRP_Min, ...

% 		DataSet(iDataSet).simRuns, ~, ...

% 		~, DataSet(iDataSet).info] ...

% 		= res_loadResults_noMOL('D:\Ergebnisse REBal',preDefineDataSet(iDataSet));

% 	

% % 	[Prob_Forec_DA, Prob_Forec_ID, actualFeedIn, ecoImpact, ecoImpactTFC, error, ...

% % 		errorRP, macroEcoImpact, offerRP, offerRP_Min, simRuns, violation, alteredMOList, infoRuns] = res_loadResults_noMOL('D:\Ergebnisse REBal',preDefineDataSet(iDataSet));

% 	

% 	runSetYear = regexp(DataSet(iDataSet).info.runSetName,'_','split');

% 	GenType{iDataSet} = runSetYear{1};

% 	PoolType{iDataSet} = runSetYear{2};

% 	Type{iDataSet} = [runSetYear{1:2}];

% 	for iYear = 1:length(runSetYear)

% 		try

% 			if ~isnan(str2double(runSetYear{iYear}))

% 				timeStampYear(iDataSet) = datenum([str2double(runSetYear{iYear}) 1 1]);

% 			end

% 		end

% 	end

% 	

% end

%

% % % Select only valid datasets

% % invalidDS = false(size(DataSet));

% % for iDS = 1:length(DataSet)

% % 	if length(DataSet(iDS).offerRP_Min) == 1

% % 		invalidDS(iDS) = isnan(DataSet(iDS).offerRP_Min);

% % 	end

% % end

% % DataSet = DataSet(~invalidDS);

% % timeStampYear = timeStampYear(~invalidDS);

% % GenType = GenType(~invalidDS);

% % PoolType = PoolType(~invalidDS);

% % Type = Type(~invalidDS);

%% Other Vars

% Define Order

TypeAll = sort(unique([Type]));

genTypeAll = unique([GenType]);

poolTypeAll = unique([PoolType]);

[timeStampYearVec,~] = datevec(timeStampYear');

[years,~] = datevec(sort(unique(timeStampYear)));

secLevelAll = sort(unique([DataSet(1).simRuns.securityLevel]));

secLevelAll = secLevelAll([6]); % Show on those security levels

prodLengthAll = sort(unique([DataSet(1).simRuns.productLength]));

prodLengthAll = prodLengthAll([1]); % Show on those security levels

% prodLengthAll = prodLengthAll([3]); % Show on those security levels

% prodLengthAll = prodLengthAll([5]); % Show on those security levels

genTypeNumber = 5; % 1 for Wind 30 GW, 2 for wind 1GW and so on

%% Get DataSet for secondary positive

market = 'SFC';

neg = 100;

for iSec = 1:length(secLevelAll)

	

	secLevel = secLevelAll(iSec);

	for iPL = 1:length(prodLengthAll)

		

		productLength = prodLengthAll(iPL);

		

		for iDS = 1:length(DataSet)

			indexA = strcmp({DataSet(iDS).simRuns.market},market);

			indexB = [DataSet(iDS).simRuns.percentPosRP] == neg;

			indexC = [DataSet(iDS).simRuns.productLength] == productLength;

			indexD = [DataSet(iDS).simRuns.securityLevel] == secLevel;

			indexAll = indexA & indexB & indexC & indexD;

			

			costSavPot = [];

			costSavPot_Cap = [];

			costSavPot_En = [];

			

			costSavPot(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max;

							

			addIncome_perCapInst(:,1) ...

				= costSavPot(:,1) ...

				/ DataSet(iDS).simRuns(indexAll).installedCapacity;

			

			costSavPot_Cap(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.capacity;

							

			costSavPot_En(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.dispatch;

							

			if strcmp(Type(iDS),'OnWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,1) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,1) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,1) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,1) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OnWindWF')

				CSTotal(timeStampYearVec(iDS)-2009,2) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,2) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,2) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,2) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OfWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,3) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,3) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,3) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,3) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVBRD')

				CSTotal(timeStampYearVec(iDS)-2009,4) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,4) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,4) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,4) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVPVF')

				CSTotal(timeStampYearVec(iDS)-2009,5) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,5) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,5) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,5) = addIncome_perCapInst;

			end

			

		end

	

	CSTotal(CSTotal == 0) = nan;

	CSCap(CSCap == 0) = nan;

	CSEn(CSEn == 0) = nan;

	CSPerGW(CSPerGW == 0) = nan;

	secLevelStructPosSFC(iSec,iPL).CSTotal = CSTotal;

	secLevelStructPosSFC(iSec,iPL).CSCap = CSCap;

	secLevelStructPosSFC(iSec,iPL).CSEn = CSEn;	

	secLevelStructPosSFC(iSec,iPL).CSPerGW = CSPerGW;	

	end	

end

% Consolidate data

% OnWindBRD is 1

TotalPosSFC = secLevelStructPosSFC(1,1).CSTotal(1:5,genTypeNumber);

CapPosSFC = secLevelStructPosSFC(1,1).CSCap(1:5,genTypeNumber);

EngPosSFC = secLevelStructPosSFC(1,1).CSEn(1:5,genTypeNumber);

%% Get DataSet for secondary negative

market = 'SFC';

neg = 100;

for iSec = 1:length(secLevelAll)

	

	secLevel = secLevelAll(iSec);

	for iPL = 1:length(prodLengthAll)

		

		productLength = prodLengthAll(iPL);

		

		for iDS = 1:length(DataSet)

			indexA = strcmp({DataSet(iDS).simRuns.market},market);

			indexB = [DataSet(iDS).simRuns.percentNegRP] == neg;

			indexC = [DataSet(iDS).simRuns.productLength] == productLength;

			indexD = [DataSet(iDS).simRuns.securityLevel] == secLevel;

			indexAll = indexA & indexB & indexC & indexD;

			

			costSavPot = [];

			costSavPot_Cap = [];

			costSavPot_En = [];

			

			costSavPot(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max;

							

			addIncome_perCapInst(:,1) ...

				= costSavPot(:,1) ...

				/ DataSet(iDS).simRuns(indexAll).installedCapacity;

			

			costSavPot_Cap(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.capacity;

							

			costSavPot_En(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.dispatch;

							

			if strcmp(Type(iDS),'OnWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,1) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,1) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,1) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,1) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OnWindWF')

				CSTotal(timeStampYearVec(iDS)-2009,2) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,2) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,2) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,2) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OfWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,3) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,3) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,3) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,3) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVBRD')

				CSTotal(timeStampYearVec(iDS)-2009,4) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,4) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,4) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,4) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVPVF')

				CSTotal(timeStampYearVec(iDS)-2009,5) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,5) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,5) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,5) = addIncome_perCapInst;

			end

			

		end

	

	CSTotal(CSTotal == 0) = nan;

	CSCap(CSCap == 0) = nan;

	CSEn(CSEn == 0) = nan;

	CSPerGW(CSPerGW == 0) = nan;

	secLevelStructNegSFC(iSec,iPL).CSTotal = CSTotal;

	secLevelStructNegSFC(iSec,iPL).CSCap = CSCap;

	secLevelStructNegSFC(iSec,iPL).CSEn = CSEn;	

	secLevelStructNegSFC(iSec,iPL).CSPerGW = CSPerGW;	

	end	

end

% Consolidate data

% OnWindBRD is 1

TotalNegSFC = secLevelStructNegSFC(1,1).CSTotal(1:5,genTypeNumber);

CapNegSFC = secLevelStructNegSFC(1,1).CSCap(1:5,genTypeNumber);

EngNegSFC = secLevelStructNegSFC(1,1).CSEn(1:5,genTypeNumber);

%% Get DataSet for tertiary positive

market = 'TFC';

neg = 100;

for iSec = 1:length(secLevelAll)

	

	secLevel = secLevelAll(iSec);

	for iPL = 1:length(prodLengthAll)

		

		productLength = prodLengthAll(iPL);

		

		for iDS = 1:length(DataSet)

			indexA = strcmp({DataSet(iDS).simRuns.market},market);

			indexB = [DataSet(iDS).simRuns.percentPosRP] == neg;

			indexC = [DataSet(iDS).simRuns.productLength] == productLength;

			indexD = [DataSet(iDS).simRuns.securityLevel] == secLevel;

			indexAll = indexA & indexB & indexC & indexD;

			

			costSavPot = [];

			costSavPot_Cap = [];

			costSavPot_En = [];

			

			costSavPot(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max;

							

			addIncome_perCapInst(:,1) ...

				= costSavPot(:,1) ...

				/ DataSet(iDS).simRuns(indexAll).installedCapacity;

			

			costSavPot_Cap(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.capacity;

							

			costSavPot_En(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.dispatch;

							

			if strcmp(Type(iDS),'OnWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,1) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,1) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,1) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,1) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OnWindWF')

				CSTotal(timeStampYearVec(iDS)-2009,2) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,2) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,2) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,2) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OfWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,3) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,3) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,3) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,3) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVBRD')

				CSTotal(timeStampYearVec(iDS)-2009,4) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,4) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,4) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,4) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVPVF')

				CSTotal(timeStampYearVec(iDS)-2009,5) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,5) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,5) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,5) = addIncome_perCapInst;

			end

			

		end

	

	CSTotal(CSTotal == 0) = nan;

	CSCap(CSCap == 0) = nan;

	CSEn(CSEn == 0) = nan;

	CSPerGW(CSPerGW == 0) = nan;

	secLevelStructPosTFC(iSec,iPL).CSTotal = CSTotal;

	secLevelStructPosTFC(iSec,iPL).CSCap = CSCap;

	secLevelStructPosTFC(iSec,iPL).CSEn = CSEn;	

	secLevelStructPosTFC(iSec,iPL).CSPerGW = CSPerGW;	

	end	

end

% Consolidate data

% OnWindBRD is 1

TotalPosTFC = secLevelStructPosTFC(1,1).CSTotal(1:5,genTypeNumber);

CapPosTFC = secLevelStructPosTFC(1,1).CSCap(1:5,genTypeNumber);

EngPosTFC = secLevelStructPosTFC(1,1).CSEn(1:5,genTypeNumber);

%% Get DataSet for tertiary negative

market = 'TFC';

neg = 100;

for iSec = 1:length(secLevelAll)

	

	secLevel = secLevelAll(iSec);

	for iPL = 1:length(prodLengthAll)

		

		productLength = prodLengthAll(iPL);

		

		for iDS = 1:length(DataSet)

			indexA = strcmp({DataSet(iDS).simRuns.market},market);

			indexB = [DataSet(iDS).simRuns.percentNegRP] == neg;

			indexC = [DataSet(iDS).simRuns.productLength] == productLength;

			indexD = [DataSet(iDS).simRuns.securityLevel] == secLevel;

			indexAll = indexA & indexB & indexC & indexD;

			

			costSavPot = [];

			costSavPot_Cap = [];

			costSavPot_En = [];

			

			costSavPot(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max;

							

			addIncome_perCapInst(:,1) ...

				= costSavPot(:,1) ...

				/ DataSet(iDS).simRuns(indexAll).installedCapacity;

			

			costSavPot_Cap(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.capacity;

							

			costSavPot_En(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.dispatch;

							

			if strcmp(Type(iDS),'OnWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,1) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,1) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,1) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,1) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OnWindWF')

				CSTotal(timeStampYearVec(iDS)-2009,2) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,2) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,2) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,2) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OfWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,3) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,3) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,3) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,3) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVBRD')

				CSTotal(timeStampYearVec(iDS)-2009,4) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,4) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,4) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,4) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVPVF')

				CSTotal(timeStampYearVec(iDS)-2009,5) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,5) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,5) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,5) = addIncome_perCapInst;

			end

			

		end

	

	CSTotal(CSTotal == 0) = nan;

	CSCap(CSCap == 0) = nan;

	CSEn(CSEn == 0) = nan;

	CSPerGW(CSPerGW == 0) = nan;

	secLevelStructNegTFC(iSec,iPL).CSTotal = CSTotal;

	secLevelStructNegTFC(iSec,iPL).CSCap = CSCap;

	secLevelStructNegTFC(iSec,iPL).CSEn = CSEn;	

	secLevelStructNegTFC(iSec,iPL).CSPerGW = CSPerGW;	

	end	

end

% Consolidate data

% OnWindBRD is 1

TotalNegTFC = secLevelStructNegTFC(1,1).CSTotal(1:5,genTypeNumber);

CapNegTFC = secLevelStructNegTFC(1,1).CSCap(1:5,genTypeNumber);

EngNegTFC = secLevelStructNegTFC(1,1).CSEn(1:5,genTypeNumber);

%% Rearrange data

for i = 1:size(TotalNegSFC,1)

	

	yearTot{i} = ([TotalNegSFC(i,:),TotalPosSFC(i,:),TotalNegTFC(i,:),TotalPosTFC(i,:)]) ...

		/ 1000000;

	

	yearInd{i} = ([CapNegSFC(i,:),CapPosSFC(i,:),CapNegTFC(i,:),CapPosTFC(i,:);...

		EngNegSFC(i,:),EngPosSFC(i,:),EngNegTFC(i,:),EngPosTFC(i,:)]') ...

		/ 1000000;

	

end

% % Values for bars

% dataVal = [];

% for iData = 1:length(secLevelStruct)

% 	dataVal = [dataVal;secLevelStruct(iData).lostVal];

% end

% dataVal = dataVal / 1000; % So actually % are plotted rather than decimal numbers

% dataValTXT = num2cell(dataVal);

% textFormat = cell(size(dataValTXT));

% textFormat(:) = {'%0.1f'};

% dataValTXT = cellfun(@num2str,dataValTXT,textFormat,'UniformOutput',0);

%% Define colors

switch genTypeNumber

	case 1

		name = 'OnWind30';

		TotalCol = {'x3'};

		IndCol = {'x2','x1'};

	case 2

		name = 'OnWind1';

		TotalCol = {'x35'};

		IndCol = {'x34','x33'};

	case 3

		name = 'OffWind1';

		TotalCol = {'x28'};

		IndCol = {'x27','x26'};

	case 4

		name = 'PV30';

		TotalCol = {'x20'};

		IndCol = {'x18','x17'};

	case 5

		name = 'PV1';

		TotalCol = {'x15'};

		IndCol = {'x14','x13'};

end

%% Plot with styleplot

fig = [];

% First Data Set %%

% Year 2010

fig.subplot{1,1}.plot{1}.x = 1:size(yearTot{1},2);

fig.subplot{1,1}.plot{1}.y = yearTot{1};

fig.subplot{1,1}.plot{1}.style='bar';

fig.subplot{1,1}.plot{1}.barcolor=TotalCol; % Overwrite the color property

% fig.subplot{1,1}.plot{1}.text=dataValTXT; % Must be the same size as the data

fig.subplot{1,1}.plot{2}.x = 1:size(yearInd{1},1);

fig.subplot{1,1}.plot{2}.y = yearInd{1};

fig.subplot{1,1}.plot{2}.style='bar';

fig.subplot{1,1}.plot{2}.barlayout='grouped';

fig.subplot{1,1}.plot{2}.barcolor=IndCol; % Overwrite the color property

% fig.subplot{1,1}.plot{2}.text=dataValTXT; % Must be the same size as the data

% Year 2011

fig.subplot{1,2}.plot{1}.x = 1:size(yearTot{2},2);

fig.subplot{1,2}.plot{1}.y = yearTot{2};

fig.subplot{1,2}.plot{1}.style='bar';

fig.subplot{1,2}.plot{1}.barcolor=TotalCol; % Overwrite the color property

% fig.subplot{1,2}.plot{1}.text=dataValTXT; % Must be the same size as the data

fig.subplot{1,2}.plot{2}.x = 1:size(yearInd{2},1);

fig.subplot{1,2}.plot{2}.y = yearInd{2};

fig.subplot{1,2}.plot{2}.style='bar';

fig.subplot{1,2}.plot{2}.barlayout='grouped';

fig.subplot{1,2}.plot{2}.barcolor=IndCol; % Overwrite the color property

% fig.subplot{1,1}.plot{2}.text=dataValTXT; % Must be the same size as the data

% Year 2012

fig.subplot{1,3}.plot{1}.x = 1:size(yearTot{3},2);

fig.subplot{1,3}.plot{1}.y = yearTot{3};

fig.subplot{1,3}.plot{1}.style='bar';

fig.subplot{1,3}.plot{1}.barcolor=TotalCol; % Overwrite the color property

% fig.subplot{1,3}.plot{1}.text=dataValTXT; % Must be the same size as the data

fig.subplot{1,3}.plot{2}.x = 1:size(yearInd{3},1);

fig.subplot{1,3}.plot{2}.y = yearInd{3};

fig.subplot{1,3}.plot{2}.style='bar';

fig.subplot{1,3}.plot{2}.barlayout='grouped';

fig.subplot{1,3}.plot{2}.barcolor=IndCol; % Overwrite the color property

% fig.subplot{1,3}.plot{2}.text=dataValTXT; % Must be the same size as the data

% Year 2013

fig.subplot{1,4}.plot{1}.x = 1:size(yearTot{4},2);

fig.subplot{1,4}.plot{1}.y = yearTot{4};

fig.subplot{1,4}.plot{1}.style='bar';

fig.subplot{1,4}.plot{1}.barcolor=TotalCol; % Overwrite the color property

% fig.subplot{1,4}.plot{1}.text=dataValTXT; % Must be the same size as the data

fig.subplot{1,4}.plot{2}.x = 1:size(yearInd{4},1);

fig.subplot{1,4}.plot{2}.y = yearInd{4};

fig.subplot{1,4}.plot{2}.style='bar';

fig.subplot{1,4}.plot{2}.barlayout='grouped';

fig.subplot{1,4}.plot{2}.barcolor=IndCol; % Overwrite the color property

% fig.subplot{1,4}.plot{2}.text=dataValTXT; % Must be the same size as the data

% Year 2014

fig.subplot{1,5}.plot{1}.x = 1:size(yearTot{5},2);

fig.subplot{1,5}.plot{1}.y = yearTot{5};

fig.subplot{1,5}.plot{1}.style='bar';

fig.subplot{1,5}.plot{1}.barcolor=TotalCol; % Overwrite the color property

% fig.subplot{1,5}.plot{1}.text=dataValTXT; % Must be the same size as the data

fig.subplot{1,5}.plot{2}.x = 1:size(yearInd{5},1);

fig.subplot{1,5}.plot{2}.y = yearInd{5};

fig.subplot{1,5}.plot{2}.style='bar';

fig.subplot{1,5}.plot{2}.barlayout='grouped';

fig.subplot{1,5}.plot{2}.barcolor=IndCol; % Overwrite the color property

% fig.subplot{1,5}.plot{2}.text=dataValTXT; % Must be the same size as the data

% Plot axes properties

xLimVal = [0.5 4.5];

fig.subplot{1,1}.xlim=xLimVal;

fig.subplot{1,2}.xlim=xLimVal;

fig.subplot{1,3}.xlim=xLimVal;

fig.subplot{1,4}.xlim=xLimVal;

fig.subplot{1,5}.xlim=xLimVal;

if genTypeNumber == 1

	yLimVal = [-120 120];

	step = 20;

elseif genTypeNumber == 2

	yLimVal = [-2 10];

	step = 2;

elseif genTypeNumber == 3

	yLimVal = [-40 140];

	step = 20;

elseif genTypeNumber == 4

	yLimVal = [-40 40];

	step = 20;

elseif genTypeNumber == 5

	yLimVal = [-2 10];

	step = 2;

else

	yLimVal = [-2 10];

	step = 2;

end

fig.subplot{1,1}.ylim=yLimVal;

fig.subplot{1,2}.ylim=yLimVal;

fig.subplot{1,3}.ylim=yLimVal;

fig.subplot{1,4}.ylim=yLimVal;

fig.subplot{1,5}.ylim=yLimVal;

fig.subplot{1,1}.yticks=min(yLimVal):step:max(yLimVal);

fig.subplot{1,2}.yticks=fig.subplot{1,1}.yticks;

fig.subplot{1,3}.yticks=fig.subplot{1,1}.yticks;

fig.subplot{1,4}.yticks=fig.subplot{1,1}.yticks;

fig.subplot{1,5}.yticks=fig.subplot{1,1}.yticks;

% Title subplots

fig.subplot{1,1}.title=['2010']; % optionaler Titel

fig.subplot{1,2}.title=['2011']; % optionaler Titel

fig.subplot{1,3}.title=['2012']; % optionaler Titel

fig.subplot{1,4}.title=['2013']; % optionaler Titel

fig.subplot{1,5}.title=['2014']; % optionaler Titel

% Axes labeling

% fig.subplot{1,1}.xlabel='Year 2010';

% fig.subplot{1,2}.xlabel='Year 2011';

% fig.subplot{1,3}.xlabel='Year 2012';

% fig.subplot{1,4}.xlabel='Year 2013';

% fig.subplot{1,5}.xlabel='Year 2014';

% fig.subplot{1,1}.ylabel='Saving potential in mio. EUR';

% fig.subplot{1,1}.legend={'Total cost saving potential in mio. EUR', ...

% 	'Capacity cost saving potential in mio. EUR', ...

% 	'Dispatch cost saving potential in mio. EUR'};

% fig.subplot{1,1}.legend_orientation = 'vertical';

fig.subplot{1,1}.xticks=1:4;%[];%fig.subplot{1,1}.plot{1}.x;

fig.subplot{1,1}.xticklabels={'Neg. SCR', ...

	'Pos. SCR', ...

	'Neg. TCR', ...

	'Pos. TCR'};

fig.subplot{1,2}.xticks=fig.subplot{1,1}.xticks;

fig.subplot{1,2}.xticklabels = fig.subplot{1,1}.xticklabels;

fig.subplot{1,3}.xticks=fig.subplot{1,1}.xticks;

fig.subplot{1,3}.xticklabels = fig.subplot{1,1}.xticklabels;

fig.subplot{1,4}.xticks=fig.subplot{1,1}.xticks;

fig.subplot{1,4}.xticklabels = fig.subplot{1,1}.xticklabels;

fig.subplot{1,5}.xticks=fig.subplot{1,1}.xticks;

fig.subplot{1,5}.xticklabels = fig.subplot{1,1}.xticklabels;

% fig.subplot{1,1}.xdatetick_format='dd/mm/yyyy';

fig.subplot{1,1}.xtick_rotate=35;

fig.subplot{1,2}.xtick_rotate=35;

fig.subplot{1,3}.xtick_rotate=35;

fig.subplot{1,4}.xtick_rotate=35;

fig.subplot{1,5}.xtick_rotate=35;

fig.height=7;

fig.width_columns=3;

[hFig, hAxes, hPlot] = styleplot(fig,'styleplot_format_PhD','wordwide');

%% Save

path = 'C:\Users\mjansen\Synchronisation\mjansen auf User_Artemis(R)\Dissertation\Dissertation\Figures\6 Economic impact of fluctuating RES on the power system level\';

name = ['Fig6-1_costSavingPot_AAPMax_' name '_' num2str(productLength) 'h_99_994_top'];

% name = ['Fig6-1_costSavingPot_AAPMax_' name '_1h_99_994_top_legend'];

saveas(gcf,[path name '.fig']);

save([path name '_data.mat'],'fig');

Functions/Results_Evaluation/resPhD_costSavingPot_BCMax.m

% % clear;

% clc;

% %% Options

% productLength = 1;

%

% %% Load

%

% preDefineDataSet = ([123:141]);

%

% for iDataSet = 1:length(preDefineDataSet)

% 	

% 	[~, ~, ...

% 		~, DataSet(iDataSet).ecoImpact, ...

% 		~, ~, ...

% 		~, ~, ...

% 		~, DataSet(iDataSet).offerRP_Min, ...

% 		DataSet(iDataSet).simRuns, ~, ...

% 		~, DataSet(iDataSet).info] ...

% 		= res_loadResults_noMOL('D:\Ergebnisse REBal',preDefineDataSet(iDataSet));

% 	

% % 	[Prob_Forec_DA, Prob_Forec_ID, actualFeedIn, ecoImpact, ecoImpactTFC, error, ...

% % 		errorRP, macroEcoImpact, offerRP, offerRP_Min, simRuns, violation, alteredMOList, infoRuns] = res_loadResults_noMOL('D:\Ergebnisse REBal',preDefineDataSet(iDataSet));

% 	

% 	runSetYear = regexp(DataSet(iDataSet).info.runSetName,'_','split');

% 	GenType{iDataSet} = runSetYear{1};

% 	PoolType{iDataSet} = runSetYear{2};

% 	Type{iDataSet} = [runSetYear{1:2}];

% 	for iYear = 1:length(runSetYear)

% 		try

% 			if ~isnan(str2double(runSetYear{iYear}))

% 				timeStampYear(iDataSet) = datenum([str2double(runSetYear{iYear}) 1 1]);

% 			end

% 		end

% 	end

% 	

% end

%

% % % Select only valid datasets

% % invalidDS = false(size(DataSet));

% % for iDS = 1:length(DataSet)

% % 	if length(DataSet(iDS).offerRP_Min) == 1

% % 		invalidDS(iDS) = isnan(DataSet(iDS).offerRP_Min);

% % 	end

% % end

% % DataSet = DataSet(~invalidDS);

% % timeStampYear = timeStampYear(~invalidDS);

% % GenType = GenType(~invalidDS);

% % PoolType = PoolType(~invalidDS);

% % Type = Type(~invalidDS);

%% Other Vars

% Define Order

TypeAll = sort(unique([Type]));

genTypeAll = unique([GenType]);

poolTypeAll = unique([PoolType]);

[timeStampYearVec,~] = datevec(timeStampYear');

[years,~] = datevec(sort(unique(timeStampYear)));

secLevelAll = sort(unique([DataSet(1).simRuns.securityLevel]));

secLevelAll = secLevelAll([6]); % Show on those security levels

prodLengthAll = sort(unique([DataSet(1).simRuns.productLength]));

prodLengthAll = prodLengthAll([1]); % Show on those security levels

% prodLengthAll = prodLengthAll([3]); % Show on those security levels

% prodLengthAll = prodLengthAll([5]); % Show on those security levels

genTypeNumber = 1; % 1 for Wind 30 GW, 2 for wind 1GW and so on

%% Get DataSet for secondary positive

market = 'SFC';

neg = 100;

for iSec = 1:length(secLevelAll)

	

	secLevel = secLevelAll(iSec);

	for iPL = 1:length(prodLengthAll)

		

		productLength = prodLengthAll(iPL);

		

		for iDS = 1:length(DataSet)

			indexA = strcmp({DataSet(iDS).simRuns.market},market);

			indexB = [DataSet(iDS).simRuns.percentPosRP] == neg;

			indexC = [DataSet(iDS).simRuns.productLength] == productLength;

			indexD = [DataSet(iDS).simRuns.securityLevel] == secLevel;

			indexAll = indexA & indexB & indexC & indexD;

			

			costSavPot = [];

			costSavPot_Cap = [];

			costSavPot_En = [];

			

			costSavPot(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).BC.Max;

							

			addIncome_perCapInst(:,1) ...

				= costSavPot(:,1) ...

				/ DataSet(iDS).simRuns(indexAll).installedCapacity;

			

			costSavPot_Cap(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).BC.Max_DiffSplit.capacity;

							

			costSavPot_En(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).BC.Max_DiffSplit.dispatch;

							

			if strcmp(Type(iDS),'OnWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,1) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,1) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,1) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,1) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OnWindWF')

				CSTotal(timeStampYearVec(iDS)-2009,2) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,2) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,2) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,2) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OfWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,3) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,3) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,3) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,3) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVBRD')

				CSTotal(timeStampYearVec(iDS)-2009,4) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,4) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,4) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,4) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVPVF')

				CSTotal(timeStampYearVec(iDS)-2009,5) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,5) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,5) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,5) = addIncome_perCapInst;

			end

			

		end

	

	CSTotal(CSTotal == 0) = nan;

	CSCap(CSCap == 0) = nan;

	CSEn(CSEn == 0) = nan;

	CSPerGW(CSPerGW == 0) = nan;

	secLevelStructPosSFC(iSec,iPL).CSTotal = CSTotal;

	secLevelStructPosSFC(iSec,iPL).CSCap = CSCap;

	secLevelStructPosSFC(iSec,iPL).CSEn = CSEn;	

	secLevelStructPosSFC(iSec,iPL).CSPerGW = CSPerGW;	

	end	

end

% Consolidate data

% OnWindBRD is 1

TotalPosSFC = secLevelStructPosSFC(1,1).CSTotal(1:5,genTypeNumber);

CapPosSFC = secLevelStructPosSFC(1,1).CSCap(1:5,genTypeNumber);

EngPosSFC = secLevelStructPosSFC(1,1).CSEn(1:5,genTypeNumber);

%% Get DataSet for secondary negative

market = 'SFC';

neg = 100;

for iSec = 1:length(secLevelAll)

	

	secLevel = secLevelAll(iSec);

	for iPL = 1:length(prodLengthAll)

		

		productLength = prodLengthAll(iPL);

		

		for iDS = 1:length(DataSet)

			indexA = strcmp({DataSet(iDS).simRuns.market},market);

			indexB = [DataSet(iDS).simRuns.percentNegRP] == neg;

			indexC = [DataSet(iDS).simRuns.productLength] == productLength;

			indexD = [DataSet(iDS).simRuns.securityLevel] == secLevel;

			indexAll = indexA & indexB & indexC & indexD;

			

			costSavPot = [];

			costSavPot_Cap = [];

			costSavPot_En = [];

			

			costSavPot(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).BC.Max;

							

			addIncome_perCapInst(:,1) ...

				= costSavPot(:,1) ...

				/ DataSet(iDS).simRuns(indexAll).installedCapacity;

			

			costSavPot_Cap(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).BC.Max_DiffSplit.capacity;

							

			costSavPot_En(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).BC.Max_DiffSplit.dispatch;

							

			if strcmp(Type(iDS),'OnWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,1) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,1) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,1) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,1) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OnWindWF')

				CSTotal(timeStampYearVec(iDS)-2009,2) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,2) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,2) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,2) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OfWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,3) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,3) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,3) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,3) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVBRD')

				CSTotal(timeStampYearVec(iDS)-2009,4) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,4) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,4) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,4) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVPVF')

				CSTotal(timeStampYearVec(iDS)-2009,5) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,5) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,5) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,5) = addIncome_perCapInst;

			end

			

		end

	

	CSTotal(CSTotal == 0) = nan;

	CSCap(CSCap == 0) = nan;

	CSEn(CSEn == 0) = nan;

	CSPerGW(CSPerGW == 0) = nan;

	secLevelStructNegSFC(iSec,iPL).CSTotal = CSTotal;

	secLevelStructNegSFC(iSec,iPL).CSCap = CSCap;

	secLevelStructNegSFC(iSec,iPL).CSEn = CSEn;	

	secLevelStructNegSFC(iSec,iPL).CSPerGW = CSPerGW;	

	end	

end

% Consolidate data

% OnWindBRD is 1

TotalNegSFC = secLevelStructNegSFC(1,1).CSTotal(1:5,genTypeNumber);

CapNegSFC = secLevelStructNegSFC(1,1).CSCap(1:5,genTypeNumber);

EngNegSFC = secLevelStructNegSFC(1,1).CSEn(1:5,genTypeNumber);

%% Get DataSet for tertiary positive

market = 'TFC';

neg = 100;

for iSec = 1:length(secLevelAll)

	

	secLevel = secLevelAll(iSec);

	for iPL = 1:length(prodLengthAll)

		

		productLength = prodLengthAll(iPL);

		

		for iDS = 1:length(DataSet)

			indexA = strcmp({DataSet(iDS).simRuns.market},market);

			indexB = [DataSet(iDS).simRuns.percentPosRP] == neg;

			indexC = [DataSet(iDS).simRuns.productLength] == productLength;

			indexD = [DataSet(iDS).simRuns.securityLevel] == secLevel;

			indexAll = indexA & indexB & indexC & indexD;

			

			costSavPot = [];

			costSavPot_Cap = [];

			costSavPot_En = [];

			

			costSavPot(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).BC.Max;

							

			addIncome_perCapInst(:,1) ...

				= costSavPot(:,1) ...

				/ DataSet(iDS).simRuns(indexAll).installedCapacity;

			

			costSavPot_Cap(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).BC.Max_DiffSplit.capacity;

							

			costSavPot_En(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).BC.Max_DiffSplit.dispatch;

							

			if strcmp(Type(iDS),'OnWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,1) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,1) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,1) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,1) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OnWindWF')

				CSTotal(timeStampYearVec(iDS)-2009,2) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,2) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,2) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,2) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OfWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,3) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,3) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,3) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,3) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVBRD')

				CSTotal(timeStampYearVec(iDS)-2009,4) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,4) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,4) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,4) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVPVF')

				CSTotal(timeStampYearVec(iDS)-2009,5) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,5) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,5) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,5) = addIncome_perCapInst;

			end

			

		end

	

	CSTotal(CSTotal == 0) = nan;

	CSCap(CSCap == 0) = nan;

	CSEn(CSEn == 0) = nan;

	CSPerGW(CSPerGW == 0) = nan;

	secLevelStructPosTFC(iSec,iPL).CSTotal = CSTotal;

	secLevelStructPosTFC(iSec,iPL).CSCap = CSCap;

	secLevelStructPosTFC(iSec,iPL).CSEn = CSEn;	

	secLevelStructPosTFC(iSec,iPL).CSPerGW = CSPerGW;	

	end	

end

% Consolidate data

% OnWindBRD is 1

TotalPosTFC = secLevelStructPosTFC(1,1).CSTotal(1:5,genTypeNumber);

CapPosTFC = secLevelStructPosTFC(1,1).CSCap(1:5,genTypeNumber);

EngPosTFC = secLevelStructPosTFC(1,1).CSEn(1:5,genTypeNumber);

%% Get DataSet for tertiary negative

market = 'TFC';

neg = 100;

for iSec = 1:length(secLevelAll)

	

	secLevel = secLevelAll(iSec);

	for iPL = 1:length(prodLengthAll)

		

		productLength = prodLengthAll(iPL);

		

		for iDS = 1:length(DataSet)

			indexA = strcmp({DataSet(iDS).simRuns.market},market);

			indexB = [DataSet(iDS).simRuns.percentNegRP] == neg;

			indexC = [DataSet(iDS).simRuns.productLength] == productLength;

			indexD = [DataSet(iDS).simRuns.securityLevel] == secLevel;

			indexAll = indexA & indexB & indexC & indexD;

			

			costSavPot = [];

			costSavPot_Cap = [];

			costSavPot_En = [];

			

			costSavPot(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).BC.Max;

							

			addIncome_perCapInst(:,1) ...

				= costSavPot(:,1) ...

				/ DataSet(iDS).simRuns(indexAll).installedCapacity;

			

			costSavPot_Cap(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).BC.Max_DiffSplit.capacity;

							

			costSavPot_En(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).BC.Max_DiffSplit.dispatch;

							

			if strcmp(Type(iDS),'OnWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,1) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,1) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,1) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,1) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OnWindWF')

				CSTotal(timeStampYearVec(iDS)-2009,2) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,2) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,2) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,2) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OfWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,3) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,3) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,3) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,3) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVBRD')

				CSTotal(timeStampYearVec(iDS)-2009,4) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,4) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,4) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,4) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVPVF')

				CSTotal(timeStampYearVec(iDS)-2009,5) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,5) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,5) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,5) = addIncome_perCapInst;

			end

			

		end

	

	CSTotal(CSTotal == 0) = nan;

	CSCap(CSCap == 0) = nan;

	CSEn(CSEn == 0) = nan;

	CSPerGW(CSPerGW == 0) = nan;

	secLevelStructNegTFC(iSec,iPL).CSTotal = CSTotal;

	secLevelStructNegTFC(iSec,iPL).CSCap = CSCap;

	secLevelStructNegTFC(iSec,iPL).CSEn = CSEn;	

	secLevelStructNegTFC(iSec,iPL).CSPerGW = CSPerGW;	

	end	

end

% Consolidate data

% OnWindBRD is 1

TotalNegTFC = secLevelStructNegTFC(1,1).CSTotal(1:5,genTypeNumber);

CapNegTFC = secLevelStructNegTFC(1,1).CSCap(1:5,genTypeNumber);

EngNegTFC = secLevelStructNegTFC(1,1).CSEn(1:5,genTypeNumber);

%% Rearrange data

for i = 1:size(TotalNegSFC,1)

	

	yearTot{i} = ([TotalNegSFC(i,:),TotalPosSFC(i,:),TotalNegTFC(i,:),TotalPosTFC(i,:)]) ...

		/ 1000000;

	

	yearInd{i} = ([CapNegSFC(i,:),CapPosSFC(i,:),CapNegTFC(i,:),CapPosTFC(i,:);...

		EngNegSFC(i,:),EngPosSFC(i,:),EngNegTFC(i,:),EngPosTFC(i,:)]') ...

		/ 1000000;

	

end

% % Values for bars

% dataVal = [];

% for iData = 1:length(secLevelStruct)

% 	dataVal = [dataVal;secLevelStruct(iData).lostVal];

% end

% dataVal = dataVal / 1000; % So actually % are plotted rather than decimal numbers

% dataValTXT = num2cell(dataVal);

% textFormat = cell(size(dataValTXT));

% textFormat(:) = {'%0.1f'};

% dataValTXT = cellfun(@num2str,dataValTXT,textFormat,'UniformOutput',0);

%% Define colors

switch genTypeNumber

	case 1

		name = 'OnWind30';

		TotalCol = {'x3'};

		IndCol = {'x2','x1'};

	case 2

		name = 'OnWind1';

		TotalCol = {'x35'};

		IndCol = {'x34','x33'};

	case 3

		name = 'OffWind1';

		TotalCol = {'x28'};

		IndCol = {'x27','x26'};

	case 4

		name = 'PV30';

		TotalCol = {'x20'};

		IndCol = {'x18','x17'};

	case 5

		name = 'PV1';

		TotalCol = {'x15'};

		IndCol = {'x14','x13'};

end

%% Plot with styleplot

fig = [];

% First Data Set %%

% Year 2010

fig.subplot{1,1}.plot{1}.x = 1:size(yearTot{1},2);

fig.subplot{1,1}.plot{1}.y = yearTot{1};

fig.subplot{1,1}.plot{1}.style='bar';

fig.subplot{1,1}.plot{1}.barcolor=TotalCol; % Overwrite the color property

% fig.subplot{1,1}.plot{1}.text=dataValTXT; % Must be the same size as the data

fig.subplot{1,1}.plot{2}.x = 1:size(yearInd{1},1);

fig.subplot{1,1}.plot{2}.y = yearInd{1};

fig.subplot{1,1}.plot{2}.style='bar';

fig.subplot{1,1}.plot{2}.barlayout='grouped';

fig.subplot{1,1}.plot{2}.barcolor=IndCol; % Overwrite the color property

% fig.subplot{1,1}.plot{2}.text=dataValTXT; % Must be the same size as the data

% Year 2011

fig.subplot{1,2}.plot{1}.x = 1:size(yearTot{2},2);

fig.subplot{1,2}.plot{1}.y = yearTot{2};

fig.subplot{1,2}.plot{1}.style='bar';

fig.subplot{1,2}.plot{1}.barcolor=TotalCol; % Overwrite the color property

% fig.subplot{1,2}.plot{1}.text=dataValTXT; % Must be the same size as the data

fig.subplot{1,2}.plot{2}.x = 1:size(yearInd{2},1);

fig.subplot{1,2}.plot{2}.y = yearInd{2};

fig.subplot{1,2}.plot{2}.style='bar';

fig.subplot{1,2}.plot{2}.barlayout='grouped';

fig.subplot{1,2}.plot{2}.barcolor=IndCol; % Overwrite the color property

% fig.subplot{1,1}.plot{2}.text=dataValTXT; % Must be the same size as the data

% Year 2012

fig.subplot{1,3}.plot{1}.x = 1:size(yearTot{3},2);

fig.subplot{1,3}.plot{1}.y = yearTot{3};

fig.subplot{1,3}.plot{1}.style='bar';

fig.subplot{1,3}.plot{1}.barcolor=TotalCol; % Overwrite the color property

% fig.subplot{1,3}.plot{1}.text=dataValTXT; % Must be the same size as the data

fig.subplot{1,3}.plot{2}.x = 1:size(yearInd{3},1);

fig.subplot{1,3}.plot{2}.y = yearInd{3};

fig.subplot{1,3}.plot{2}.style='bar';

fig.subplot{1,3}.plot{2}.barlayout='grouped';

fig.subplot{1,3}.plot{2}.barcolor=IndCol; % Overwrite the color property

% fig.subplot{1,3}.plot{2}.text=dataValTXT; % Must be the same size as the data

% Year 2013

fig.subplot{1,4}.plot{1}.x = 1:size(yearTot{4},2);

fig.subplot{1,4}.plot{1}.y = yearTot{4};

fig.subplot{1,4}.plot{1}.style='bar';

fig.subplot{1,4}.plot{1}.barcolor=TotalCol; % Overwrite the color property

% fig.subplot{1,4}.plot{1}.text=dataValTXT; % Must be the same size as the data

fig.subplot{1,4}.plot{2}.x = 1:size(yearInd{4},1);

fig.subplot{1,4}.plot{2}.y = yearInd{4};

fig.subplot{1,4}.plot{2}.style='bar';

fig.subplot{1,4}.plot{2}.barlayout='grouped';

fig.subplot{1,4}.plot{2}.barcolor=IndCol; % Overwrite the color property

% fig.subplot{1,4}.plot{2}.text=dataValTXT; % Must be the same size as the data

% Year 2014

fig.subplot{1,5}.plot{1}.x = 1:size(yearTot{5},2);

fig.subplot{1,5}.plot{1}.y = yearTot{5};

fig.subplot{1,5}.plot{1}.style='bar';

fig.subplot{1,5}.plot{1}.barcolor=TotalCol; % Overwrite the color property

% fig.subplot{1,5}.plot{1}.text=dataValTXT; % Must be the same size as the data

fig.subplot{1,5}.plot{2}.x = 1:size(yearInd{5},1);

fig.subplot{1,5}.plot{2}.y = yearInd{5};

fig.subplot{1,5}.plot{2}.style='bar';

fig.subplot{1,5}.plot{2}.barlayout='grouped';

fig.subplot{1,5}.plot{2}.barcolor=IndCol; % Overwrite the color property

% fig.subplot{1,5}.plot{2}.text=dataValTXT; % Must be the same size as the data

% Plot axes properties

if genTypeNumber == 1

	yLimVal = [-120 120];

	step = 20;

elseif genTypeNumber == 2

	yLimVal = [-2 10];

	step = 2;

elseif genTypeNumber == 3

	yLimVal = [-40 140];

	step = 20;

elseif genTypeNumber == 4

	yLimVal = [-40 40];

	step = 20;

elseif genTypeNumber == 5

	yLimVal = [-2 10];

	step = 2;

else

	yLimVal = [-2 10];

	step = 2;

end

fig.subplot{1,1}.ylim=yLimVal;

fig.subplot{1,2}.ylim=yLimVal;

fig.subplot{1,3}.ylim=yLimVal;

fig.subplot{1,4}.ylim=yLimVal;

fig.subplot{1,5}.ylim=yLimVal;

fig.subplot{1,1}.yticks=min(yLimVal):step:max(yLimVal);

fig.subplot{1,2}.yticks=fig.subplot{1,1}.yticks;

fig.subplot{1,3}.yticks=fig.subplot{1,1}.yticks;

fig.subplot{1,4}.yticks=fig.subplot{1,1}.yticks;

fig.subplot{1,5}.yticks=fig.subplot{1,1}.yticks;

% Title subplots

fig.subplot{1,1}.title=['2010']; % optionaler Titel

fig.subplot{1,2}.title=['2011']; % optionaler Titel

fig.subplot{1,3}.title=['2012']; % optionaler Titel

fig.subplot{1,4}.title=['2013']; % optionaler Titel

fig.subplot{1,5}.title=['2014']; % optionaler Titel

% Axes labeling

% fig.subplot{1,1}.xlabel='Year 2010';

% fig.subplot{1,2}.xlabel='Year 2011';

% fig.subplot{1,3}.xlabel='Year 2012';

% fig.subplot{1,4}.xlabel='Year 2013';

% fig.subplot{1,5}.xlabel='Year 2014';

% fig.subplot{1,1}.ylabel='Saving potential in mio. EUR';

% fig.subplot{1,1}.legend={'Total cost saving potential in mio. EUR', ...

% 	'Capacity cost saving potential in mio. EUR', ...

% 	'Dispatch cost saving potential in mio. EUR'};

% fig.subplot{1,1}.legend_orientation = 'vertical';

fig.subplot{1,1}.xticks=1:4;%[];%fig.subplot{1,1}.plot{1}.x;

fig.subplot{1,1}.xticklabels={'Neg. SCR', ...

	'Pos. SCR', ...

	'Neg. TCR', ...

	'Pos. TCR'};

fig.subplot{1,2}.xticks=fig.subplot{1,1}.xticks;

fig.subplot{1,2}.xticklabels = fig.subplot{1,1}.xticklabels;

fig.subplot{1,3}.xticks=fig.subplot{1,1}.xticks;

fig.subplot{1,3}.xticklabels = fig.subplot{1,1}.xticklabels;

fig.subplot{1,4}.xticks=fig.subplot{1,1}.xticks;

fig.subplot{1,4}.xticklabels = fig.subplot{1,1}.xticklabels;

fig.subplot{1,5}.xticks=fig.subplot{1,1}.xticks;

fig.subplot{1,5}.xticklabels = fig.subplot{1,1}.xticklabels;

% fig.subplot{1,1}.xdatetick_format='dd/mm/yyyy';

fig.subplot{1,1}.xtick_rotate=35;

fig.subplot{1,2}.xtick_rotate=35;

fig.subplot{1,3}.xtick_rotate=35;

fig.subplot{1,4}.xtick_rotate=35;

fig.subplot{1,5}.xtick_rotate=35;

fig.height=7;

fig.width_columns=3;

[hFig, hAxes, hPlot] = styleplot(fig,'styleplot_format_PhD','wordwide');

%% Save

path = 'C:\Users\mjansen\Synchronisation\mjansen auf User_Artemis(R)\Dissertation\Dissertation\Figures\6 Economic impact of fluctuating RES on the power system level\';

name = ['Fig6-1_costSavingPot_BCMax_' name '_' num2str(productLength) 'h_99_994_middle'];

saveas(gcf,[path name '.fig']);

save([path name '_data.mat'],'fig');

Functions/Results_Evaluation/resPhD_costSavingPot_Min.m

% % clear;

% clc;

% %% Options

% productLength = 1;

%

% %% Load

%

% preDefineDataSet = ([123:141]);

%

% for iDataSet = 1:length(preDefineDataSet)

% 	

% 	[~, ~, ...

% 		~, DataSet(iDataSet).ecoImpact, ...

% 		~, ~, ...

% 		~, ~, ...

% 		~, DataSet(iDataSet).offerRP_Min, ...

% 		DataSet(iDataSet).simRuns, ~, ...

% 		~, DataSet(iDataSet).info] ...

% 		= res_loadResults_noMOL('D:\Ergebnisse REBal',preDefineDataSet(iDataSet));

% 	

% % 	[Prob_Forec_DA, Prob_Forec_ID, actualFeedIn, ecoImpact, ecoImpactTFC, error, ...

% % 		errorRP, macroEcoImpact, offerRP, offerRP_Min, simRuns, violation, alteredMOList, infoRuns] = res_loadResults_noMOL('D:\Ergebnisse REBal',preDefineDataSet(iDataSet));

% 	

% 	runSetYear = regexp(DataSet(iDataSet).info.runSetName,'_','split');

% 	GenType{iDataSet} = runSetYear{1};

% 	PoolType{iDataSet} = runSetYear{2};

% 	Type{iDataSet} = [runSetYear{1:2}];

% 	for iYear = 1:length(runSetYear)

% 		try

% 			if ~isnan(str2double(runSetYear{iYear}))

% 				timeStampYear(iDataSet) = datenum([str2double(runSetYear{iYear}) 1 1]);

% 			end

% 		end

% 	end

% 	

% end

%

% % % Select only valid datasets

% % invalidDS = false(size(DataSet));

% % for iDS = 1:length(DataSet)

% % 	if length(DataSet(iDS).offerRP_Min) == 1

% % 		invalidDS(iDS) = isnan(DataSet(iDS).offerRP_Min);

% % 	end

% % end

% % DataSet = DataSet(~invalidDS);

% % timeStampYear = timeStampYear(~invalidDS);

% % GenType = GenType(~invalidDS);

% % PoolType = PoolType(~invalidDS);

% % Type = Type(~invalidDS);

%% Other Vars

% Define Order

TypeAll = sort(unique([Type]));

genTypeAll = unique([GenType]);

poolTypeAll = unique([PoolType]);

[timeStampYearVec,~] = datevec(timeStampYear');

[years,~] = datevec(sort(unique(timeStampYear)));

secLevelAll = sort(unique([DataSet(1).simRuns.securityLevel]));

secLevelAll = secLevelAll([6]); % Show on those security levels

prodLengthAll = sort(unique([DataSet(1).simRuns.productLength]));

% prodLengthAll = prodLengthAll([1]); % Show on those security levels

% prodLengthAll = prodLengthAll([3]); % Show on those security levels

prodLengthAll = prodLengthAll([5]); % Show on those security levels

genTypeNumber = 5; % 1 for Wind 30 GW, 2 for wind 1GW and so on

%% Get DataSet for secondary positive

market = 'SFC';

neg = 100;

for iSec = 1:length(secLevelAll)

	

	secLevel = secLevelAll(iSec);

	for iPL = 1:length(prodLengthAll)

		

		productLength = prodLengthAll(iPL);

		

		for iDS = 1:length(DataSet)

			indexA = strcmp({DataSet(iDS).simRuns.market},market);

			indexB = [DataSet(iDS).simRuns.percentPosRP] == neg;

			indexC = [DataSet(iDS).simRuns.productLength] == productLength;

			indexD = [DataSet(iDS).simRuns.securityLevel] == secLevel;

			indexAll = indexA & indexB & indexC & indexD;

			

			costSavPot = [];

			costSavPot_Cap = [];

			costSavPot_En = [];

			

			costSavPot(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Min;

							

			addIncome_perCapInst(:,1) ...

				= costSavPot(:,1) ...

				/ DataSet(iDS).simRuns(indexAll).installedCapacity;

			

			costSavPot_Cap(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Min_DiffSplit.capacity;

							

			costSavPot_En(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Min_DiffSplit.dispatch;

							

			if strcmp(Type(iDS),'OnWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,1) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,1) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,1) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,1) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OnWindWF')

				CSTotal(timeStampYearVec(iDS)-2009,2) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,2) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,2) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,2) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OfWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,3) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,3) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,3) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,3) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVBRD')

				CSTotal(timeStampYearVec(iDS)-2009,4) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,4) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,4) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,4) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVPVF')

				CSTotal(timeStampYearVec(iDS)-2009,5) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,5) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,5) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,5) = addIncome_perCapInst;

			end

			

		end

	

	CSTotal(CSTotal == 0) = nan;

	CSCap(CSCap == 0) = nan;

	CSEn(CSEn == 0) = nan;

	CSPerGW(CSPerGW == 0) = nan;

	secLevelStructPosSFC(iSec,iPL).CSTotal = CSTotal;

	secLevelStructPosSFC(iSec,iPL).CSCap = CSCap;

	secLevelStructPosSFC(iSec,iPL).CSEn = CSEn;	

	secLevelStructPosSFC(iSec,iPL).CSPerGW = CSPerGW;	

	end	

end

% Consolidate data

% OnWindBRD is 1

TotalPosSFC = secLevelStructPosSFC(1,1).CSTotal(1:5,genTypeNumber);

CapPosSFC = secLevelStructPosSFC(1,1).CSCap(1:5,genTypeNumber);

EngPosSFC = secLevelStructPosSFC(1,1).CSEn(1:5,genTypeNumber);

%% Get DataSet for secondary negative

market = 'SFC';

neg = 100;

for iSec = 1:length(secLevelAll)

	

	secLevel = secLevelAll(iSec);

	for iPL = 1:length(prodLengthAll)

		

		productLength = prodLengthAll(iPL);

		

		for iDS = 1:length(DataSet)

			indexA = strcmp({DataSet(iDS).simRuns.market},market);

			indexB = [DataSet(iDS).simRuns.percentNegRP] == neg;

			indexC = [DataSet(iDS).simRuns.productLength] == productLength;

			indexD = [DataSet(iDS).simRuns.securityLevel] == secLevel;

			indexAll = indexA & indexB & indexC & indexD;

			

			costSavPot = [];

			costSavPot_Cap = [];

			costSavPot_En = [];

			

			costSavPot(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Min;

							

			addIncome_perCapInst(:,1) ...

				= costSavPot(:,1) ...

				/ DataSet(iDS).simRuns(indexAll).installedCapacity;

			

			costSavPot_Cap(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Min_DiffSplit.capacity;

							

			costSavPot_En(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Min_DiffSplit.dispatch;

							

			if strcmp(Type(iDS),'OnWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,1) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,1) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,1) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,1) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OnWindWF')

				CSTotal(timeStampYearVec(iDS)-2009,2) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,2) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,2) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,2) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OfWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,3) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,3) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,3) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,3) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVBRD')

				CSTotal(timeStampYearVec(iDS)-2009,4) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,4) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,4) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,4) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVPVF')

				CSTotal(timeStampYearVec(iDS)-2009,5) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,5) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,5) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,5) = addIncome_perCapInst;

			end

			

		end

	

	CSTotal(CSTotal == 0) = nan;

	CSCap(CSCap == 0) = nan;

	CSEn(CSEn == 0) = nan;

	CSPerGW(CSPerGW == 0) = nan;

	secLevelStructNegSFC(iSec,iPL).CSTotal = CSTotal;

	secLevelStructNegSFC(iSec,iPL).CSCap = CSCap;

	secLevelStructNegSFC(iSec,iPL).CSEn = CSEn;	

	secLevelStructNegSFC(iSec,iPL).CSPerGW = CSPerGW;	

	end	

end

% Consolidate data

% OnWindBRD is 1

TotalNegSFC = secLevelStructNegSFC(1,1).CSTotal(1:5,genTypeNumber);

CapNegSFC = secLevelStructNegSFC(1,1).CSCap(1:5,genTypeNumber);

EngNegSFC = secLevelStructNegSFC(1,1).CSEn(1:5,genTypeNumber);

%% Get DataSet for tertiary positive

market = 'TFC';

neg = 100;

for iSec = 1:length(secLevelAll)

	

	secLevel = secLevelAll(iSec);

	for iPL = 1:length(prodLengthAll)

		

		productLength = prodLengthAll(iPL);

		

		for iDS = 1:length(DataSet)

			indexA = strcmp({DataSet(iDS).simRuns.market},market);

			indexB = [DataSet(iDS).simRuns.percentPosRP] == neg;

			indexC = [DataSet(iDS).simRuns.productLength] == productLength;

			indexD = [DataSet(iDS).simRuns.securityLevel] == secLevel;

			indexAll = indexA & indexB & indexC & indexD;

			

			costSavPot = [];

			costSavPot_Cap = [];

			costSavPot_En = [];

			

			costSavPot(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Min;

							

			addIncome_perCapInst(:,1) ...

				= costSavPot(:,1) ...

				/ DataSet(iDS).simRuns(indexAll).installedCapacity;

			

			costSavPot_Cap(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Min_DiffSplit.capacity;

							

			costSavPot_En(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Min_DiffSplit.dispatch;

							

			if strcmp(Type(iDS),'OnWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,1) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,1) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,1) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,1) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OnWindWF')

				CSTotal(timeStampYearVec(iDS)-2009,2) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,2) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,2) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,2) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OfWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,3) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,3) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,3) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,3) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVBRD')

				CSTotal(timeStampYearVec(iDS)-2009,4) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,4) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,4) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,4) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVPVF')

				CSTotal(timeStampYearVec(iDS)-2009,5) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,5) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,5) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,5) = addIncome_perCapInst;

			end

			

		end

	

	CSTotal(CSTotal == 0) = nan;

	CSCap(CSCap == 0) = nan;

	CSEn(CSEn == 0) = nan;

	CSPerGW(CSPerGW == 0) = nan;

	secLevelStructPosTFC(iSec,iPL).CSTotal = CSTotal;

	secLevelStructPosTFC(iSec,iPL).CSCap = CSCap;

	secLevelStructPosTFC(iSec,iPL).CSEn = CSEn;	

	secLevelStructPosTFC(iSec,iPL).CSPerGW = CSPerGW;	

	end	

end

% Consolidate data

% OnWindBRD is 1

TotalPosTFC = secLevelStructPosTFC(1,1).CSTotal(1:5,genTypeNumber);

CapPosTFC = secLevelStructPosTFC(1,1).CSCap(1:5,genTypeNumber);

EngPosTFC = secLevelStructPosTFC(1,1).CSEn(1:5,genTypeNumber);

%% Get DataSet for tertiary negative

market = 'TFC';

neg = 100;

for iSec = 1:length(secLevelAll)

	

	secLevel = secLevelAll(iSec);

	for iPL = 1:length(prodLengthAll)

		

		productLength = prodLengthAll(iPL);

		

		for iDS = 1:length(DataSet)

			indexA = strcmp({DataSet(iDS).simRuns.market},market);

			indexB = [DataSet(iDS).simRuns.percentNegRP] == neg;

			indexC = [DataSet(iDS).simRuns.productLength] == productLength;

			indexD = [DataSet(iDS).simRuns.securityLevel] == secLevel;

			indexAll = indexA & indexB & indexC & indexD;

			

			costSavPot = [];

			costSavPot_Cap = [];

			costSavPot_En = [];

			

			costSavPot(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Min;

							

			addIncome_perCapInst(:,1) ...

				= costSavPot(:,1) ...

				/ DataSet(iDS).simRuns(indexAll).installedCapacity;

			

			costSavPot_Cap(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Min_DiffSplit.capacity;

							

			costSavPot_En(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Min_DiffSplit.dispatch;

							

			if strcmp(Type(iDS),'OnWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,1) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,1) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,1) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,1) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OnWindWF')

				CSTotal(timeStampYearVec(iDS)-2009,2) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,2) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,2) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,2) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OfWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,3) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,3) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,3) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,3) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVBRD')

				CSTotal(timeStampYearVec(iDS)-2009,4) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,4) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,4) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,4) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVPVF')

				CSTotal(timeStampYearVec(iDS)-2009,5) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,5) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,5) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,5) = addIncome_perCapInst;

			end

			

		end

	

	CSTotal(CSTotal == 0) = nan;

	CSCap(CSCap == 0) = nan;

	CSEn(CSEn == 0) = nan;

	CSPerGW(CSPerGW == 0) = nan;

	secLevelStructNegTFC(iSec,iPL).CSTotal = CSTotal;

	secLevelStructNegTFC(iSec,iPL).CSCap = CSCap;

	secLevelStructNegTFC(iSec,iPL).CSEn = CSEn;	

	secLevelStructNegTFC(iSec,iPL).CSPerGW = CSPerGW;	

	end	

end

% Consolidate data

% OnWindBRD is 1

TotalNegTFC = secLevelStructNegTFC(1,1).CSTotal(1:5,genTypeNumber);

CapNegTFC = secLevelStructNegTFC(1,1).CSCap(1:5,genTypeNumber);

EngNegTFC = secLevelStructNegTFC(1,1).CSEn(1:5,genTypeNumber);

%% Rearrange data

for i = 1:size(TotalNegSFC,1)

	

	yearTot{i} = ([TotalNegSFC(i,:),TotalPosSFC(i,:),TotalNegTFC(i,:),TotalPosTFC(i,:)]) ...

		/ 1000000;

	

	yearInd{i} = ([CapNegSFC(i,:),CapPosSFC(i,:),CapNegTFC(i,:),CapPosTFC(i,:);...

		EngNegSFC(i,:),EngPosSFC(i,:),EngNegTFC(i,:),EngPosTFC(i,:)]') ...

		/ 1000000;

	

end

% % Values for bars

% dataVal = [];

% for iData = 1:length(secLevelStruct)

% 	dataVal = [dataVal;secLevelStruct(iData).lostVal];

% end

% dataVal = dataVal / 1000; % So actually % are plotted rather than decimal numbers

% dataValTXT = num2cell(dataVal);

% textFormat = cell(size(dataValTXT));

% textFormat(:) = {'%0.1f'};

% dataValTXT = cellfun(@num2str,dataValTXT,textFormat,'UniformOutput',0);

%% Define colors

switch genTypeNumber

	case 1

		name = 'OnWind30';

		TotalCol = {'x3'};

		IndCol = {'x2','x1'};

	case 2

		name = 'OnWind1';

		TotalCol = {'x35'};

		IndCol = {'x34','x33'};

	case 3

		name = 'OffWind1';

		TotalCol = {'x28'};

		IndCol = {'x27','x26'};

	case 4

		name = 'PV30';

		TotalCol = {'x20'};

		IndCol = {'x18','x17'};

	case 5

		name = 'PV1';

		TotalCol = {'x15'};

		IndCol = {'x14','x13'};

end

%% Plot with styleplot

fig = [];

% First Data Set %%

% Year 2010

fig.subplot{1,1}.plot{1}.x = 1:size(yearTot{1},2);

fig.subplot{1,1}.plot{1}.y = yearTot{1};

fig.subplot{1,1}.plot{1}.style='bar';

fig.subplot{1,1}.plot{1}.barcolor=TotalCol; % Overwrite the color property

% fig.subplot{1,1}.plot{1}.text=dataValTXT; % Must be the same size as the data

fig.subplot{1,1}.plot{2}.x = 1:size(yearInd{1},1);

fig.subplot{1,1}.plot{2}.y = yearInd{1};

fig.subplot{1,1}.plot{2}.style='bar';

fig.subplot{1,1}.plot{2}.barlayout='grouped';

fig.subplot{1,1}.plot{2}.barcolor=IndCol; % Overwrite the color property

% fig.subplot{1,1}.plot{2}.text=dataValTXT; % Must be the same size as the data

% Year 2011

fig.subplot{1,2}.plot{1}.x = 1:size(yearTot{2},2);

fig.subplot{1,2}.plot{1}.y = yearTot{2};

fig.subplot{1,2}.plot{1}.style='bar';

fig.subplot{1,2}.plot{1}.barcolor=TotalCol; % Overwrite the color property

% fig.subplot{1,2}.plot{1}.text=dataValTXT; % Must be the same size as the data

fig.subplot{1,2}.plot{2}.x = 1:size(yearInd{2},1);

fig.subplot{1,2}.plot{2}.y = yearInd{2};

fig.subplot{1,2}.plot{2}.style='bar';

fig.subplot{1,2}.plot{2}.barlayout='grouped';

fig.subplot{1,2}.plot{2}.barcolor=IndCol; % Overwrite the color property

% fig.subplot{1,1}.plot{2}.text=dataValTXT; % Must be the same size as the data

% Year 2012

fig.subplot{1,3}.plot{1}.x = 1:size(yearTot{3},2);

fig.subplot{1,3}.plot{1}.y = yearTot{3};

fig.subplot{1,3}.plot{1}.style='bar';

fig.subplot{1,3}.plot{1}.barcolor=TotalCol; % Overwrite the color property

% fig.subplot{1,3}.plot{1}.text=dataValTXT; % Must be the same size as the data

fig.subplot{1,3}.plot{2}.x = 1:size(yearInd{3},1);

fig.subplot{1,3}.plot{2}.y = yearInd{3};

fig.subplot{1,3}.plot{2}.style='bar';

fig.subplot{1,3}.plot{2}.barlayout='grouped';

fig.subplot{1,3}.plot{2}.barcolor=IndCol; % Overwrite the color property

% fig.subplot{1,3}.plot{2}.text=dataValTXT; % Must be the same size as the data

% Year 2013

fig.subplot{1,4}.plot{1}.x = 1:size(yearTot{4},2);

fig.subplot{1,4}.plot{1}.y = yearTot{4};

fig.subplot{1,4}.plot{1}.style='bar';

fig.subplot{1,4}.plot{1}.barcolor=TotalCol; % Overwrite the color property

% fig.subplot{1,4}.plot{1}.text=dataValTXT; % Must be the same size as the data

fig.subplot{1,4}.plot{2}.x = 1:size(yearInd{4},1);

fig.subplot{1,4}.plot{2}.y = yearInd{4};

fig.subplot{1,4}.plot{2}.style='bar';

fig.subplot{1,4}.plot{2}.barlayout='grouped';

fig.subplot{1,4}.plot{2}.barcolor=IndCol; % Overwrite the color property

% fig.subplot{1,4}.plot{2}.text=dataValTXT; % Must be the same size as the data

% Year 2014

fig.subplot{1,5}.plot{1}.x = 1:size(yearTot{5},2);

fig.subplot{1,5}.plot{1}.y = yearTot{5};

fig.subplot{1,5}.plot{1}.style='bar';

fig.subplot{1,5}.plot{1}.barcolor=TotalCol; % Overwrite the color property

% fig.subplot{1,5}.plot{1}.text=dataValTXT; % Must be the same size as the data

fig.subplot{1,5}.plot{2}.x = 1:size(yearInd{5},1);

fig.subplot{1,5}.plot{2}.y = yearInd{5};

fig.subplot{1,5}.plot{2}.style='bar';

fig.subplot{1,5}.plot{2}.barlayout='grouped';

fig.subplot{1,5}.plot{2}.barcolor=IndCol; % Overwrite the color property

% fig.subplot{1,5}.plot{2}.text=dataValTXT; % Must be the same size as the data

% Plot axes properties

xLimVal = [0.5 4.5];

fig.subplot{1,1}.xlim=xLimVal;

fig.subplot{1,2}.xlim=xLimVal;

fig.subplot{1,3}.xlim=xLimVal;

fig.subplot{1,4}.xlim=xLimVal;

fig.subplot{1,5}.xlim=xLimVal;

if genTypeNumber == 1

	yLimVal = [-120 120];

	step = 20;

elseif genTypeNumber == 2

	yLimVal = [-2 10];

	step = 2;

elseif genTypeNumber == 3

	yLimVal = [-40 140];

	step = 20;

elseif genTypeNumber == 4

	yLimVal = [-40 40];

	step = 20;

elseif genTypeNumber == 5

	yLimVal = [-2 10];

	step = 2;

else

	yLimVal = [-2 10];

	step = 2;

end

fig.subplot{1,1}.ylim=yLimVal;

fig.subplot{1,2}.ylim=yLimVal;

fig.subplot{1,3}.ylim=yLimVal;

fig.subplot{1,4}.ylim=yLimVal;

fig.subplot{1,5}.ylim=yLimVal;

fig.subplot{1,1}.yticks=min(yLimVal):step:max(yLimVal);

fig.subplot{1,2}.yticks=fig.subplot{1,1}.yticks;

fig.subplot{1,3}.yticks=fig.subplot{1,1}.yticks;

fig.subplot{1,4}.yticks=fig.subplot{1,1}.yticks;

fig.subplot{1,5}.yticks=fig.subplot{1,1}.yticks;

% Title subplots

fig.subplot{1,1}.title=['2010']; % optionaler Titel

fig.subplot{1,2}.title=['2011']; % optionaler Titel

fig.subplot{1,3}.title=['2012']; % optionaler Titel

fig.subplot{1,4}.title=['2013']; % optionaler Titel

fig.subplot{1,5}.title=['2014']; % optionaler Titel

% Axes labeling

% fig.subplot{1,1}.xlabel='Year 2010';

% fig.subplot{1,2}.xlabel='Year 2011';

% fig.subplot{1,3}.xlabel='Year 2012';

% fig.subplot{1,4}.xlabel='Year 2013';

% fig.subplot{1,5}.xlabel='Year 2014';

% fig.subplot{1,1}.ylabel='Cost saving potential in mio. EUR';

% fig.subplot{1,1}.legend={'Total cost saving potential in mio. EUR', ...

% 	'Capacity cost saving potential in mio. EUR', ...

% 	'Dispatch cost saving potential in mio. EUR'};

% fig.subplot{1,1}.legend_orientation = 'vertical';

fig.subplot{1,1}.xticks=1:4;%[];%fig.subplot{1,1}.plot{1}.x;

fig.subplot{1,1}.xticklabels={'Neg. SCR', ...

	'Pos. SCR', ...

	'Neg. TCR', ...

	'Pos. TCR'};

fig.subplot{1,2}.xticks=fig.subplot{1,1}.xticks;

fig.subplot{1,2}.xticklabels = fig.subplot{1,1}.xticklabels;

fig.subplot{1,3}.xticks=fig.subplot{1,1}.xticks;

fig.subplot{1,3}.xticklabels = fig.subplot{1,1}.xticklabels;

fig.subplot{1,4}.xticks=fig.subplot{1,1}.xticks;

fig.subplot{1,4}.xticklabels = fig.subplot{1,1}.xticklabels;

fig.subplot{1,5}.xticks=fig.subplot{1,1}.xticks;

fig.subplot{1,5}.xticklabels = fig.subplot{1,1}.xticklabels;

% fig.subplot{1,1}.xdatetick_format='dd/mm/yyyy';

fig.subplot{1,1}.xtick_rotate=35;

fig.subplot{1,2}.xtick_rotate=35;

fig.subplot{1,3}.xtick_rotate=35;

fig.subplot{1,4}.xtick_rotate=35;

fig.subplot{1,5}.xtick_rotate=35;

fig.height=7;

fig.width_columns=3;

[hFig, hAxes, hPlot] = styleplot(fig,'styleplot_format_PhD','wordwide');

%% Save

path = 'C:\Users\mjansen\Synchronisation\mjansen auf User_Artemis(R)\Dissertation\Dissertation\Figures\6 Economic impact of fluctuating RES on the power system level\';

name = ['Fig6-1_costSavingPot_Min_' name '_' num2str(productLength) 'h_99_994_bottom'];

saveas(gcf,[path name '.fig']);

save([path name '_data.mat'],'fig');

Functions/Results_Evaluation/resPhD_durCurveDA.m

% clear;

% clc;

% %% Options

% productLength = 1;

% percentNegRP = 100;

% market = 'TFC';

%

% %% Load

%

% preDefineDataSet = ([117:135]);

%

% for iDataSet = 1:length(preDefineDataSet)

% 	

% 	[DataSet(iDataSet).Prob_Forec_DA, DataSet(iDataSet).Prob_Forec_ID, ...

% 		DataSet(iDataSet).actualFeedIn, ~, ...

% 		~, ~, ...

% 		~, ~, ...

% 		DataSet(iDataSet).offerRP, DataSet(iDataSet).offerRP_Min, ...

% 		DataSet(iDataSet).simRuns, ~, ...

% 		~, DataSet(iDataSet).info] ...

% 		= res_loadResults_noMOL('D:\Ergebnisse REBal',preDefineDataSet(iDataSet));

% 	

% % 	[Prob_Forec_DA, Prob_Forec_ID, actualFeedIn, ecoImpact, ecoImpactTFC, error, ...

% % 		errorRP, macroEcoImpact, offerRP, offerRP_Min, simRuns, violation, alteredMOList, infoRuns] = res_loadResults_noMOL('D:\Ergebnisse REBal',preDefineDataSet(iDataSet));

% 	

% 	runSetYear = regexp(DataSet(iDataSet).info.runSetName,'_','split');

% 	GenType{iDataSet} = runSetYear{1};

% 	PoolType{iDataSet} = runSetYear{2};

% 	Type{iDataSet} = [runSetYear{1:2}];

% 	for iYear = 1:length(runSetYear)

% 		try

% 			if ~isnan(str2double(runSetYear{iYear}))

% 				timeStampYear(iDataSet) = datenum([str2double(runSetYear{iYear}) 1 1]);

% 			end

% 		end

% 	end

% 	

% end

%

% %% Other Vars

%

% % Define Order

% TypeAll = sort(unique([Type]));

% genTypeAll = unique([GenType]);

% poolTypeAll = unique([PoolType]);

%

% [timeStampYearVec,~] = datevec(timeStampYear');

% [years,~] = datevec(sort(unique(timeStampYear)));

%

secLevelAll = sort(unique([DataSet(1).simRuns.securityLevel]));

secLevelAll = secLevelAll([1 6]); % Show on those security levels

%% Get DataSet

productLength = 12;

neg = 100;

year = 2014;

for iSec = 1:length(secLevelAll)

	

	secLevel = secLevelAll(iSec);

	

	for iDS = 1:length(DataSet)

		indexA = strcmp({DataSet(iDS).simRuns.market},market);

		indexB = [DataSet(iDS).simRuns.percentNegRP] == neg;

		indexC = [DataSet(iDS).simRuns.productLength] == productLength;

		indexD = [DataSet(iDS).simRuns.securityLevel] == secLevel;

		indexAll = indexA & indexB & indexC & indexD;

		feedInTotal = nansum(DataSet(iDS).offerRP(indexAll).timeSeries.feedIn) .* DataSet(iDS).simRuns(indexAll).installedCapacity / 4;

		

		if strcmp(Type(iDS),'OnWindBRD')

			crTotal{timeStampYearVec(iDS)-2009,1} = sort(DataSet(iDS).offerRP(indexAll).AAP.neg.capacity,'descend') / DataSet(iDS).simRuns(indexAll).installedCapacity * 100; % 100 to get percentages

			crTotal{timeStampYearVec(iDS)-2009,1} = reshape(repmat((crTotal{timeStampYearVec(iDS)-2009,1})',productLength,[]),[],1)

		elseif strcmp(Type(iDS),'OnWindWF')

			crTotal{timeStampYearVec(iDS)-2009,2} = sort(DataSet(iDS).offerRP(indexAll).AAP.neg.capacity,'descend') / DataSet(iDS).simRuns(indexAll).installedCapacity * 100; % 100 to get percentages

			crTotal{timeStampYearVec(iDS)-2009,2} = reshape(repmat((crTotal{timeStampYearVec(iDS)-2009,2})',productLength,[]),[],1)

		elseif strcmp(Type(iDS),'OfWindBRD')

			crTotal{timeStampYearVec(iDS)-2009,3} = sort(DataSet(iDS).offerRP(indexAll).AAP.neg.capacity,'descend') / DataSet(iDS).simRuns(indexAll).installedCapacity * 100; % 100 to get percentages

			crTotal{timeStampYearVec(iDS)-2009,3} = reshape(repmat((crTotal{timeStampYearVec(iDS)-2009,3})',productLength,[]),[],1)

		elseif strcmp(Type(iDS),'PVBRD')

			crTotal{timeStampYearVec(iDS)-2009,4} = sort(DataSet(iDS).offerRP(indexAll).AAP.neg.capacity,'descend') / DataSet(iDS).simRuns(indexAll).installedCapacity * 100; % 100 to get percentages

			crTotal{timeStampYearVec(iDS)-2009,4} = reshape(repmat((crTotal{timeStampYearVec(iDS)-2009,4})',productLength,[]),[],1)

		elseif strcmp(Type(iDS),'PVPVF')

			crTotal{timeStampYearVec(iDS)-2009,5} = sort(DataSet(iDS).offerRP(indexAll).AAP.neg.capacity,'descend') / DataSet(iDS).simRuns(indexAll).installedCapacity * 100; % 100 to get percentages

			crTotal{timeStampYearVec(iDS)-2009,5} = reshape(repmat((crTotal{timeStampYearVec(iDS)-2009,5})',productLength,[]),[],1)

		end

		

	end

	

	secLevelStruct(iSec).potTs = crTotal;

	

end

%% Plot with styleplot

% First Data Set %%

% Define data sets

countData = 1;

fig = [];

% Wind onshore 30GW

for iPlot = 1:length(secLevelStruct)

	

	fig.subplot{1,1}.plot{countData}.x = 1:size(secLevelStruct(iPlot).potTs{year-2009,1},1);

	fig.subplot{1,1}.plot{countData}.y = secLevelStruct(iPlot).potTs{year-2009,1};

	fig.subplot{1,1}.plot{countData}.style='plot';

	fig.subplot{1,1}.plot{countData}.color='x3';

% 	fig.subplot{1,1}.plot{countData}.markerstyle='^';

% 	fig.subplot{1,1}.plot{countData}.markersize=6;

% 	fig.subplot{1,1}.plot{countData}.markerspacing=20;

% 	fig.subplot{1,1}.plot{countData}.markerfacecolor='white';

% 	fig.subplot{1,1}.plot{countData}.markeredgecolor=fig.subplot{1,1}.plot{countData}.color;

	if mod(countData,2) ~= 0

		fig.subplot{1,1}.plot{countData}.linestyle='--';

		

	end

	countData = countData + 1;

	

end

% Wind onshore 1GW

for iPlot = 1:length(secLevelStruct)

	

	fig.subplot{1,1}.plot{countData}.x = 1:size(secLevelStruct(iPlot).potTs{year-2009,2},1);

	fig.subplot{1,1}.plot{countData}.y = secLevelStruct(iPlot).potTs{year-2009,2};

	fig.subplot{1,1}.plot{countData}.style='plot';

	fig.subplot{1,1}.plot{countData}.color='x35';

% 	fig.subplot{1,1}.plot{countData}.markerstyle='+';

% 	fig.subplot{1,1}.plot{countData}.markersize=6;

% 	fig.subplot{1,1}.plot{countData}.markerspacing=20;

% 	fig.subplot{1,1}.plot{countData}.markerfacecolor='white';

% 	fig.subplot{1,1}.plot{countData}.markeredgecolor=fig.subplot{1,1}.plot{countData}.color;

	if mod(countData,2) ~= 0

		fig.subplot{1,1}.plot{countData}.linestyle='--';

	end

	countData = countData + 1;

end

% Wind offshore

for iPlot = 1:length(secLevelStruct)

	

	fig.subplot{1,1}.plot{countData}.x = 1:size(secLevelStruct(iPlot).potTs{year-2009,3},1);

	fig.subplot{1,1}.plot{countData}.y = secLevelStruct(iPlot).potTs{year-2009,3};

	fig.subplot{1,1}.plot{countData}.style='plot';

	fig.subplot{1,1}.plot{countData}.color='x28';

% 	fig.subplot{1,1}.plot{countData}.markerstyle='o';

% 	fig.subplot{1,1}.plot{countData}.markersize=6;

% 	fig.subplot{1,1}.plot{countData}.markerspacing=20;

% 	fig.subplot{1,1}.plot{countData}.markerfacecolor='white';

% 	fig.subplot{1,1}.plot{countData}.markeredgecolor=fig.subplot{1,1}.plot{countData}.color;

	if mod(countData,2) ~= 0

		fig.subplot{1,1}.plot{countData}.linestyle='--';

	end

	countData = countData + 1;

end

% PV 30GW

for iPlot = 1:length(secLevelStruct)

	

	fig.subplot{1,1}.plot{countData}.x = 1:size(secLevelStruct(iPlot).potTs{year-2009,4},1);

	fig.subplot{1,1}.plot{countData}.y = secLevelStruct(iPlot).potTs{year-2009,4};

	fig.subplot{1,1}.plot{countData}.style='plot';

	fig.subplot{1,1}.plot{countData}.color='x20';

% 	fig.subplot{1,1}.plot{countData}.markerstyle='*';

% 	fig.subplot{1,1}.plot{countData}.markersize=6;

% 	fig.subplot{1,1}.plot{countData}.markerspacing=20;

% 	fig.subplot{1,1}.plot{countData}.markerfacecolor='white';

% 	fig.subplot{1,1}.plot{countData}.markeredgecolor=fig.subplot{1,1}.plot{countData}.color;

	if mod(countData,2) ~= 0

		fig.subplot{1,1}.plot{countData}.linestyle='--';

	end

	countData = countData + 1;

end

% PV 1GW

for iPlot = 1:length(secLevelStruct)

	

	fig.subplot{1,1}.plot{countData}.x = 1:size(secLevelStruct(iPlot).potTs{year-2009,5},1);

	fig.subplot{1,1}.plot{countData}.y = secLevelStruct(iPlot).potTs{year-2009,5};

	fig.subplot{1,1}.plot{countData}.style='plot';

	fig.subplot{1,1}.plot{countData}.color='x15';

% 	fig.subplot{1,1}.plot{countData}.markerstyle='d';

% 	fig.subplot{1,1}.plot{countData}.markersize=6;

% 	fig.subplot{1,1}.plot{countData}.markerspacing=20;

% 	fig.subplot{1,1}.plot{countData}.markerfacecolor='white';

% 	fig.subplot{1,1}.plot{countData}.markeredgecolor=fig.subplot{1,1}.plot{countData}.color;

	if mod(countData,2) ~= 0

		fig.subplot{1,1}.plot{countData}.linestyle='--';

	end

	countData = countData + 1;

end

% Plot properties

fig.subplot{1,1}.xlim=[1 8760];

fig.subplot{1,1}.ylim=[0 100];

% fig.subplot{1,1}.title='Year 2014 control reserve potential by fluctuating RES generators based on the probilistic day-ahead forecast'; % optionaler Titel

fig.subplot{1,1}.xlabel='Hours of the year';

fig.subplot{1,1}.ylabel='% of installed capacity';

% fig.subplot{1,1}.zlabel='Time';

fig.subplot{1,1}.legend=...

	{'Onshore Wind 30 GW Germany @95%','Onshore Wind 30 GW Germany @99.994%', ...

	'Onshore Wind 1 GW Pool @95%','Onshore Wind 1 GW Pool @99.994%', ...

	'Offshore Wind 1 GW Germany @95%','Offshore Wind 1 GW Germany @99.994%', ...

	'Photovoltaic Systems 30 GW Pool @95%','Photovoltaic Systems 30 GW Pool @99.994%', ...

	'Photovoltaic Systems 1 GW Germany @95%','Photovoltaic Systems 1 GW Germany @99.994%' };

% fig.subplot{1,1}.legend_orientation = 'vertical';

% fig.subplot{1,1}.colormap_label='Temperatur Gradient [°C pro h]';

fig.subplot{1,1}.xticks=0:1000:8760;

% fig.subplot{1,1}.xticklabels={'95%','99%','99.5%','99.9%','99,99%','99.994%','99.999%'};

% fig.subplot{1,1}.xdatetick_format='dd/mm/yyyy';

% fig.subplot{1,1}.xdatetick_rotate=90;

fig.height=13;

fig.width_columns=3;

[hFig, hAxes, hPlot] = styleplot(fig,'styleplot_format_PhD','wordwide');

%% Save

path = 'C:\Users\mjansen\Synchronisation\mjansen auf User_Artemis(R)\Dissertation\Dissertation\Figures\';

name = ['FigB-21_durCruveDA_' num2str(productLength) 'h'];

saveas(gcf,[path name '.fig']);

save([path name '_data.mat'],'fig');

Functions/Results_Evaluation/resPhD_durCurveID.m

% clear;

% clc;

% %% Options

% productLength = 1;

% percentNegRP = 100;

% market = 'TFC';

%

% %% Load

%

% preDefineDataSet = ([123:141]);

%

% for iDataSet = 1:length(preDefineDataSet)

% 	

% 	[DataSet(iDataSet).Prob_Forec_DA, DataSet(iDataSet).Prob_Forec_ID, ...

% 		DataSet(iDataSet).actualFeedIn, ~, ...

% 		~, ~, ...

% 		~, ~, ...

% 		DataSet(iDataSet).offerRP, DataSet(iDataSet).offerRP_Min, ...

% 		DataSet(iDataSet).simRuns, ~, ...

% 		~, DataSet(iDataSet).info] ...

% 		= res_loadResults_noMOL('D:\Ergebnisse REBal',preDefineDataSet(iDataSet));

% 	

% % 	[Prob_Forec_DA, Prob_Forec_ID, actualFeedIn, ecoImpact, ecoImpactTFC, error, ...

% % 		errorRP, macroEcoImpact, offerRP, offerRP_Min, simRuns, violation, alteredMOList, infoRuns] = res_loadResults_noMOL('D:\Ergebnisse REBal',preDefineDataSet(iDataSet));

% 	

% 	runSetYear = regexp(DataSet(iDataSet).info.runSetName,'_','split');

% 	GenType{iDataSet} = runSetYear{1};

% 	PoolType{iDataSet} = runSetYear{2};

% 	Type{iDataSet} = [runSetYear{1:2}];

% 	for iYear = 1:length(runSetYear)

% 		try

% 			if ~isnan(str2double(runSetYear{iYear}))

% 				timeStampYear(iDataSet) = datenum([str2double(runSetYear{iYear}) 1 1]);

% 			end

% 		end

% 	end

% 	

% end

%% Other Vars

% Define Order

TypeAll = sort(unique([Type]));

genTypeAll = unique([GenType]);

poolTypeAll = unique([PoolType]);

[timeStampYearVec,~] = datevec(timeStampYear');

[years,~] = datevec(sort(unique(timeStampYear)));

secLevelAll = sort(unique([DataSet(1).simRuns.securityLevel]));

secLevelAll = secLevelAll([1 6]); % Show on those security levels

%% Get DataSet

productLength = 1;

market = 'TFC';

neg = 100;

year = 2014;

for iSec = 1:length(secLevelAll)

	

	secLevel = secLevelAll(iSec);

	

	for iDS = 1:length(DataSet)

		indexA = strcmp({DataSet(iDS).simRuns.market},market);

		indexB = [DataSet(iDS).simRuns.percentNegRP] == neg;

		indexC = [DataSet(iDS).simRuns.productLength] == productLength;

		indexD = [DataSet(iDS).simRuns.securityLevel] == secLevel;

		indexAll = indexA & indexB & indexC & indexD;

		feedInTotal = nansum(DataSet(iDS).offerRP(indexAll).timeSeries.feedIn) .* DataSet(iDS).simRuns(indexAll).installedCapacity / 4;

		

		[~,dataSeriesHourly] = downsampleData(DataSet(iDS).offerRP(indexAll).timeSeries.time,DataSet(iDS).offerRP(indexAll).timeSeries.secureIDCap,4,'min');

		

		if strcmp(Type(iDS),'OnWindBRD')

			crTotal{timeStampYearVec(iDS)-2009,1} = sort(minDataSeries(dataSeriesHourly,productLength),'descend') * 100; % 100 to get percentages

		elseif strcmp(Type(iDS),'OnWindWF')

			crTotal{timeStampYearVec(iDS)-2009,2} = sort(minDataSeries(dataSeriesHourly,productLength),'descend') * 100; % 100 to get percentages

		elseif strcmp(Type(iDS),'OfWindBRD')

			crTotal{timeStampYearVec(iDS)-2009,3} = sort(minDataSeries(dataSeriesHourly,productLength),'descend') * 100; % 100 to get percentages

		elseif strcmp(Type(iDS),'PVBRD')

			crTotal{timeStampYearVec(iDS)-2009,4} = sort(minDataSeries(dataSeriesHourly,productLength),'descend') * 100; % 100 to get percentages

		elseif strcmp(Type(iDS),'PVPVF')

			crTotal{timeStampYearVec(iDS)-2009,5} = sort(minDataSeries(dataSeriesHourly,productLength),'descend') * 100; % 100 to get percentages

		end

		

	end

	

	secLevelStruct(iSec).potTs = crTotal;

	

end

%% Plot with styleplot

% First Data Set %%

% Define data sets

countData = 1;

fig = [];

% Wind onshore 30GW

for iPlot = 1:length(secLevelStruct)

	

	fig.subplot{1,1}.plot{countData}.x = 1:size(secLevelStruct(iPlot).potTs{year-2009,1},1);

	fig.subplot{1,1}.plot{countData}.y = secLevelStruct(iPlot).potTs{year-2009,1};

	fig.subplot{1,1}.plot{countData}.style='plot';

	fig.subplot{1,1}.plot{countData}.color='x3';

	if mod(countData,2) ~= 0

		fig.subplot{1,1}.plot{countData}.linestyle='--';

	end

	countData = countData + 1;

	

end

% Wind onshore 1GW

for iPlot = 1:length(secLevelStruct)

	

	fig.subplot{1,1}.plot{countData}.x = 1:size(secLevelStruct(iPlot).potTs{year-2009,2},1);

	fig.subplot{1,1}.plot{countData}.y = secLevelStruct(iPlot).potTs{year-2009,2};

	fig.subplot{1,1}.plot{countData}.style='plot';

	fig.subplot{1,1}.plot{countData}.color='x35';

	if mod(countData,2) ~= 0

		fig.subplot{1,1}.plot{countData}.linestyle='--';

	end

	countData = countData + 1;

end

% Wind offshore

for iPlot = 1:length(secLevelStruct)

	

	fig.subplot{1,1}.plot{countData}.x = 1:size(secLevelStruct(iPlot).potTs{year-2009,3},1);

	fig.subplot{1,1}.plot{countData}.y = secLevelStruct(iPlot).potTs{year-2009,3};

	fig.subplot{1,1}.plot{countData}.style='plot';

	fig.subplot{1,1}.plot{countData}.color='x28';

	if mod(countData,2) ~= 0

		fig.subplot{1,1}.plot{countData}.linestyle='--';

	end

	countData = countData + 1;

end

% PV 30GW

for iPlot = 1:length(secLevelStruct)

	

	fig.subplot{1,1}.plot{countData}.x = 1:size(secLevelStruct(iPlot).potTs{year-2009,4},1);

	fig.subplot{1,1}.plot{countData}.y = secLevelStruct(iPlot).potTs{year-2009,4};

	fig.subplot{1,1}.plot{countData}.style='plot';

	fig.subplot{1,1}.plot{countData}.color='x20';

	if mod(countData,2) ~= 0

		fig.subplot{1,1}.plot{countData}.linestyle='--';

	end

	countData = countData + 1;

end

% PV 1GW

for iPlot = 1:length(secLevelStruct)

	

	fig.subplot{1,1}.plot{countData}.x = 1:size(secLevelStruct(iPlot).potTs{year-2009,5},1);

	fig.subplot{1,1}.plot{countData}.y = secLevelStruct(iPlot).potTs{year-2009,5};

	fig.subplot{1,1}.plot{countData}.style='plot';

	fig.subplot{1,1}.plot{countData}.color='x15';

	if mod(countData,2) ~= 0

		fig.subplot{1,1}.plot{countData}.linestyle='--';

	end

	countData = countData + 1;

end

% Plot properties

fig.subplot{1,1}.xlim=[1 8760];

fig.subplot{1,1}.ylim=[0 100];

% fig.subplot{1,1}.title='Control reserve potential by fluctuating RES generators based on the probilistic one-hour ahead intraday forecast'; % optionaler Titel

fig.subplot{1,1}.xlabel='Hours of the year';

fig.subplot{1,1}.ylabel='% of installed capacity';

% fig.subplot{1,1}.zlabel='Time';

fig.subplot{1,1}.legend=...

	{'Onshore Wind 30 GW Germany @95%','Onshore Wind 30 GW Germany @99.994%', ...

	'Onshore Wind 1 GW Pool @95%','Onshore Wind 1 GW Pool @99.994%', ...

	'Offshore Wind 1 GW Germany @95%','Offshore Wind 1 GW Germany @99.994%', ...

	'Photovoltaic Systems 30 GW Pool @95%','Photovoltaic Systems 30 GW Pool @99.994%', ...

	'Photovoltaic Systems 1 GW Germany @95%','Photovoltaic Systems 1 GW Germany @99.994%' };

% fig.subplot{1,1}.legend_orientation = 'vertical';

% fig.subplot{1,1}.colormap_label='Temperatur Gradient [°C pro h]';

% fig.subplot{1,1}.xticks=fig.subplot{1,1}.plot{1}.x;

% fig.subplot{1,1}.xticklabels={'95%','99%','99.5%','99.9%','99,99%','99.994%','99.999%'};

% fig.subplot{1,1}.xdatetick_format='dd/mm/yyyy';

% fig.subplot{1,1}.xdatetick_rotate=90;

fig.height=13;

fig.width_columns=3;

[hFig, hAxes, hPlot] = styleplot(fig,'styleplot_format_PhD','wordwide');

Functions/Results_Evaluation/resPhD_KDE_pdf.m

% clear;

% clc;

%% Load Data

load('C:\Users\mjansen\Synchronisation\mjansen auf User_Artemis(R)\MATLAB\MatlabRepo\REBal\trunk\p_KDE_highRes_OnWind30GW.mat')

% load('C:\Users\mjansen\Synchronisation\mjansen auf User_Artemis(R)\MATLAB\MatlabRepo\REBal\trunk\p_KDE_highRes_OnWind1GW.mat')

% load('C:\Users\mjansen\Synchronisation\mjansen auf User_Artemis(R)\MATLAB\MatlabRepo\REBal\trunk\p_KDE_highRes_OffWind1GW.mat')

% load('C:\Users\mjansen\Synchronisation\mjansen auf User_Artemis(R)\MATLAB\MatlabRepo\REBal\trunk\p_KDE_highRes_PV30GW.mat')

% load('C:\Users\mjansen\Synchronisation\mjansen auf User_Artemis(R)\MATLAB\MatlabRepo\REBal\trunk\p_KDE_highRes_PV1GW.mat')

%% Select data

X = (repmat(linspace(-1,1,size(p.pdf,2)),size(p.pdf,1),1));

Y = (repmat(linspace(0,1,size(p.pdf,1)),size(p.pdf,2),1))';

Z = p.pdf;

integ = mean(sum(Z,2));

Z = Z / integ;

reduce = 149;

X = X(:,reduce:end-reduce);

Y = Y(:,reduce:end-reduce);

Z = Z(:,reduce:end-reduce);

% integ = sum(sum(Z));

% Z = Z / integ;

%% Plot with styleplot

fig = [];

fhgCol = getFHGColors;

% Define data sets

fig.subplot{1,1}.plot{1}.x = X;

fig.subplot{1,1}.plot{1}.y = Y;

fig.subplot{1,1}.plot{1}.z = Z;

fig.subplot{1,1}.plot{1}.style='surf';

fig.subplot{1,1}.plot{1}.shading='interp';

fig.subplot{1,1}.plot{1}.caxis=[-1.31 12] / integ;

fig.subplot{1,1}.plot{1}.colormap ...

	=[fhgCol.x1;fhgCol.x2;fhgCol.x3;fhgCol.x4;fhgCol.x5; ...

	fhgCol.x19;fhgCol.x20;fhgCol.x26;fhgCol.x27;fhgCol.fhgGreen; ...

];

% Plot axes properties

xLimVal = [min(min(X)) max(max(X))];

fig.subplot{1,1}.xlim=xLimVal;

fig.subplot{1,1}.xticks=-1:0.2:1;

yLimVal = [0 1];

fig.subplot{1,1}.ylim=yLimVal;

fig.subplot{1,1}.yticks=0:0.2:1;

% zLimVal = [0 0];

% fig.subplot{1,1}.zlim=yLimVal;

% fig.subplot{1,1}.zticks=0:0.02:0.14;

%

% % Title subplots

% fig.subplot{1,1}.title='Probabilistic forecast'; % optionaler Titel

% Axes labeling

fig.subplot{1,1}.xlabel='Forecast error';

fig.subplot{1,1}.ylabel='Day-ahead foreacast';

fig.subplot{1,1}.zlabel='Probability density';

fig.subplot{1,1}.xticks=-1:0.2:1;

% fig.subplot{1,1}.xticklabels=[2010,2011,2012,2013,2014];

% fig.subplot{1,1}.yticks=min(yLimVal):5:max(yLimVal);

fig.height=10;

fig.width_columns=3;

[hFig, hAxes, hPlot] = styleplot(fig,'styleplot_format_PhD','word');

Functions/Results_Evaluation/resPhD_KDE_principles.m

clear;

clc;

%% Load

startX(1) = 0;

endX(1) = 200;

noSteps(1) = 1;

meanVal(1) = 55;

data(1).x = startX(1):noSteps(1):endX(1);

data(1).pdf = gauss_kk(data(1).x,meanVal(1),10);

data(1).cdf = cumsum(data(1).pdf);

startX(2) = 0;

endX(2) = 200;

noSteps(2) = 1;

meanVal(2) = 135;

data(2).x = startX(2):noSteps(2):endX(2);

data(2).pdf = gauss_kk(data(2).x,meanVal(2),10);

data(2).cdf = cumsum(data(2).pdf);

startX(3) = 0;

endX(3) = 200;

noSteps(3) = 1;

meanVal(3) = 160;

data(3).x = startX(3):noSteps(3):endX(3);

data(3).pdf = gauss_kk(data(3).x,meanVal(3),10);

data(3).cdf = cumsum(data(3).pdf);

startX(4) = 0;

endX(4) = 200;

noSteps(4) = 1;

meanVal(4) = 90;

data(4).x = startX(4):noSteps(4):endX(4);

data(4).pdf = gauss_kk(data(4).x,meanVal(4),10);

data(4).cdf = cumsum(data(4).pdf);

startX(5) = 0;

endX(5) = 200;

noSteps(5) = 1;

meanVal(5) = 105;

data(5).x = startX(5):noSteps(5):endX(5);

data(5).pdf = gauss_kk(data(5).x,meanVal(5),10);

data(5).cdf = cumsum(data(5).pdf);

startX(6) = 0;

endX(6) = 200;

noSteps(6) = 1;

meanVal(6) = 70;

data(6).x = startX(6):noSteps(6):endX(6);

data(6).pdf = gauss_kk(data(6).x,meanVal(6),10);

data(6).cdf = cumsum(data(6).pdf);

startX(7) = 0;

endX(7) = 200;

noSteps(7) = 1;

meanVal(7) = 95;

data(7).x = startX(7):noSteps(7):endX(7);

data(7).pdf = gauss_kk(data(7).x,meanVal(7),10);

data(7).cdf = cumsum(data(7).pdf);

startX(8) = 0;

endX(8) = 200;

noSteps(8) = 1;

meanVal(8) = 115;

data(8).x = startX(8):noSteps(8):endX(8);

data(8).pdf = gauss_kk(data(8).x,meanVal(8),10);

data(8).cdf = cumsum(data(8).pdf);

startX(9) = 0;

endX(9) = 200;

noSteps(9) = 1;

meanVal(9) = 65;

data(9).x = startX(9):noSteps(9):endX(9);

data(9).pdf = gauss_kk(data(9).x,meanVal(9),10);

data(9).cdf = cumsum(data(9).pdf);

%% Cumulate

dataCum.pdf = sum(reshape([data.pdf],201,[]),2);

% %% TMP plot

% plot(data(1).x,data(1).pdf)

% hold on

% plot(data(2).x,data(2).pdf)

% plot(data(3).x,data(3).pdf)

% plot(data(4).x,data(4).pdf)

% plot(data(5).x,data(5).pdf)

% plot(data(6).x,data(6).pdf)

% plot(data(7).x,data(7).pdf)

% plot(data(8).x,data(8).pdf)

% plot(data(9).x,data(9).pdf)

% plot(data(1).x,dataCum.pdf,'r')

%% Initialize Figure

% fhgColors.

clearvars fig

% First Data Set %%

fig.subplot{1,1}.plot{1}.x = data(1).x;

fig.subplot{1,1}.plot{1}.y = dataCum(1).pdf;

fig.subplot{1,1}.plot{1}.style='plot';

fig.subplot{1,1}.plot{1}.color='x10';

fig.subplot{1,1}.plot{1}.linewidth=2;

fig.subplot{1,1}.plot{2}.x = data(1).x;

fig.subplot{1,1}.plot{2}.y = data(1).pdf;

fig.subplot{1,1}.plot{2}.style='plot';

fig.subplot{1,1}.plot{2}.color='x35';

fig.subplot{1,1}.plot{2}.linewidth=1;

fig.subplot{1,1}.plot{3}.x = data(2).x;

fig.subplot{1,1}.plot{3}.y = data(2).pdf;

fig.subplot{1,1}.plot{3}.style='plot';

fig.subplot{1,1}.plot{3}.color='x35';

fig.subplot{1,1}.plot{3}.linewidth=1;

fig.subplot{1,1}.plot{4}.x = data(3).x;

fig.subplot{1,1}.plot{4}.y = data(3).pdf;

fig.subplot{1,1}.plot{4}.style='plot';

fig.subplot{1,1}.plot{4}.color='x35';

fig.subplot{1,1}.plot{4}.linewidth=1;

fig.subplot{1,1}.plot{5}.x = data(4).x;

fig.subplot{1,1}.plot{5}.y = data(4).pdf;

fig.subplot{1,1}.plot{5}.style='plot';

fig.subplot{1,1}.plot{5}.color='x35';

fig.subplot{1,1}.plot{5}.linewidth=1;

fig.subplot{1,1}.plot{6}.x = data(5).x;

fig.subplot{1,1}.plot{6}.y = data(5).pdf;

fig.subplot{1,1}.plot{6}.style='plot';

fig.subplot{1,1}.plot{6}.color='x35';

fig.subplot{1,1}.plot{6}.linewidth=1;

fig.subplot{1,1}.plot{7}.x = data(6).x;

fig.subplot{1,1}.plot{7}.y = data(6).pdf;

fig.subplot{1,1}.plot{7}.style='plot';

fig.subplot{1,1}.plot{7}.color='x35';

fig.subplot{1,1}.plot{7}.linewidth=1;

fig.subplot{1,1}.plot{8}.x = data(7).x;

fig.subplot{1,1}.plot{8}.y = data(7).pdf;

fig.subplot{1,1}.plot{8}.style='plot';

fig.subplot{1,1}.plot{8}.color='x35';

fig.subplot{1,1}.plot{8}.linewidth=1;

fig.subplot{1,1}.plot{9}.x = data(8).x;

fig.subplot{1,1}.plot{9}.y = data(8).pdf;

fig.subplot{1,1}.plot{9}.style='plot';

fig.subplot{1,1}.plot{9}.color='x35';

fig.subplot{1,1}.plot{9}.linewidth=1;

fig.subplot{1,1}.plot{10}.x = data(9).x;

fig.subplot{1,1}.plot{10}.y = data(9).pdf;

fig.subplot{1,1}.plot{10}.style='plot';

fig.subplot{1,1}.plot{10}.color='x35';

fig.subplot{1,1}.plot{10}.linewidth=1;

% fig.subplot{1,1}.xlim=[min(actualFeedIn.time)+123 min(actualFeedIn.time)+126];

fig.subplot{1,1}.ylim=[0 0.12];

% fig.subplot{1,1}.title='PV 30 GW Germany'; % optionaler Titel

% fig.subplot{1,1}.xlabel='Time';

fig.subplot{1,1}.ylabel='Density';

% fig.subplot{1,1}.zlabel='Time';

fig.subplot{1,1}.legend={'Cumulated probability density function','Individual density functions for random variable'};

fig.subplot{1,1}.legend_orientation = 'vertical';

% fig.subplot{1,1}.colormap_label='Temperatur Gradient [°C pro h]';

% fig.subplot{1,1}.xdatetick_format='mm/yyyy';

fig.height=6;

fig.width_columns=3;

styleplot(fig,'styleplot\styleplot_format_PhD','word')

Functions/Results_Evaluation/resPhD_KDE_principles_bandwidth.m

clear;

clc;

%% Load

bandwidth = 10;

startX(1) = 0;

endX(1) = 200;

noSteps(1) = 1;

meanVal(1) = 55;

data(1).x = startX(1):noSteps(1):endX(1);

data(1).pdf = gauss_kk(data(1).x,meanVal(1),bandwidth);

data(1).cdf = cumsum(data(1).pdf);

startX(2) = 0;

endX(2) = 200;

noSteps(2) = 1;

meanVal(2) = 135;

data(2).x = startX(2):noSteps(2):endX(2);

data(2).pdf = gauss_kk(data(2).x,meanVal(2),bandwidth);

data(2).cdf = cumsum(data(2).pdf);

startX(3) = 0;

endX(3) = 200;

noSteps(3) = 1;

meanVal(3) = 160;

data(3).x = startX(3):noSteps(3):endX(3);

data(3).pdf = gauss_kk(data(3).x,meanVal(3),bandwidth);

data(3).cdf = cumsum(data(3).pdf);

startX(4) = 0;

endX(4) = 200;

noSteps(4) = 1;

meanVal(4) = 90;

data(4).x = startX(4):noSteps(4):endX(4);

data(4).pdf = gauss_kk(data(4).x,meanVal(4),bandwidth);

data(4).cdf = cumsum(data(4).pdf);

startX(5) = 0;

endX(5) = 200;

noSteps(5) = 1;

meanVal(5) = 105;

data(5).x = startX(5):noSteps(5):endX(5);

data(5).pdf = gauss_kk(data(5).x,meanVal(5),bandwidth);

data(5).cdf = cumsum(data(5).pdf);

startX(6) = 0;

endX(6) = 200;

noSteps(6) = 1;

meanVal(6) = 70;

data(6).x = startX(6):noSteps(6):endX(6);

data(6).pdf = gauss_kk(data(6).x,meanVal(6),bandwidth);

data(6).cdf = cumsum(data(6).pdf);

startX(7) = 0;

endX(7) = 200;

noSteps(7) = 1;

meanVal(7) = 95;

data(7).x = startX(7):noSteps(7):endX(7);

data(7).pdf = gauss_kk(data(7).x,meanVal(7),bandwidth);

data(7).cdf = cumsum(data(7).pdf);

startX(8) = 0;

endX(8) = 200;

noSteps(8) = 1;

meanVal(8) = 115;

data(8).x = startX(8):noSteps(8):endX(8);

data(8).pdf = gauss_kk(data(8).x,meanVal(8),bandwidth);

data(8).cdf = cumsum(data(8).pdf);

startX(9) = 0;

endX(9) = 200;

noSteps(9) = 1;

meanVal(9) = 65;

data(9).x = startX(9):noSteps(9):endX(9);

data(9).pdf = gauss_kk(data(9).x,meanVal(9),bandwidth);

data(9).cdf = cumsum(data(9).pdf);

%% Cumulate

dataCum.pdf = sum(reshape([data.pdf],201,[]),2);

% %% TMP plot

% plot(data(1).x,data(1).pdf)

% hold on

% plot(data(2).x,data(2).pdf)

% plot(data(3).x,data(3).pdf)

% plot(data(4).x,data(4).pdf)

% plot(data(5).x,data(5).pdf)

% plot(data(6).x,data(6).pdf)

% plot(data(7).x,data(7).pdf)

% plot(data(8).x,data(8).pdf)

% plot(data(9).x,data(9).pdf)

% plot(data(1).x,dataCum.pdf,'r')

%% Initialize Figure

% fhgColors.

clearvars fig

% First Data Set %%

fig.subplot{1,1}.plot{1}.x = data(1).x;

fig.subplot{1,1}.plot{1}.y = dataCum(1).pdf;

fig.subplot{1,1}.plot{1}.style='plot';

fig.subplot{1,1}.plot{1}.color='x10';

fig.subplot{1,1}.plot{1}.linewidth=3;

fig.subplot{1,1}.plot{2}.x = data(1).x;

fig.subplot{1,1}.plot{2}.y = data(1).pdf;

fig.subplot{1,1}.plot{2}.style='plot';

fig.subplot{1,1}.plot{2}.color='x35';

fig.subplot{1,1}.plot{3}.x = data(2).x;

fig.subplot{1,1}.plot{3}.y = data(2).pdf;

fig.subplot{1,1}.plot{3}.style='plot';

fig.subplot{1,1}.plot{3}.color='x35';

fig.subplot{1,1}.plot{4}.x = data(3).x;

fig.subplot{1,1}.plot{4}.y = data(3).pdf;

fig.subplot{1,1}.plot{4}.style='plot';

fig.subplot{1,1}.plot{4}.color='x35';

fig.subplot{1,1}.plot{5}.x = data(4).x;

fig.subplot{1,1}.plot{5}.y = data(4).pdf;

fig.subplot{1,1}.plot{5}.style='plot';

fig.subplot{1,1}.plot{5}.color='x35';

fig.subplot{1,1}.plot{6}.x = data(5).x;

fig.subplot{1,1}.plot{6}.y = data(5).pdf;

fig.subplot{1,1}.plot{6}.style='plot';

fig.subplot{1,1}.plot{6}.color='x35';

fig.subplot{1,1}.plot{7}.x = data(6).x;

fig.subplot{1,1}.plot{7}.y = data(6).pdf;

fig.subplot{1,1}.plot{7}.style='plot';

fig.subplot{1,1}.plot{7}.color='x35';

fig.subplot{1,1}.plot{8}.x = data(7).x;

fig.subplot{1,1}.plot{8}.y = data(7).pdf;

fig.subplot{1,1}.plot{8}.style='plot';

fig.subplot{1,1}.plot{8}.color='x35';

fig.subplot{1,1}.plot{9}.x = data(8).x;

fig.subplot{1,1}.plot{9}.y = data(8).pdf;

fig.subplot{1,1}.plot{9}.style='plot';

fig.subplot{1,1}.plot{9}.color='x35';

fig.subplot{1,1}.plot{10}.x = data(9).x;

fig.subplot{1,1}.plot{10}.y = data(9).pdf;

fig.subplot{1,1}.plot{10}.style='plot';

fig.subplot{1,1}.plot{10}.color='x35';

fig.subplot{1,1}.plot{2}.linewidth=1;

fig.subplot{1,1}.plot{3}.linewidth=1;

fig.subplot{1,1}.plot{4}.linewidth=1;

fig.subplot{1,1}.plot{5}.linewidth=1;

fig.subplot{1,1}.plot{6}.linewidth=1;

fig.subplot{1,1}.plot{7}.linewidth=1;

fig.subplot{1,1}.plot{8}.linewidth=1;

fig.subplot{1,1}.plot{9}.linewidth=1;

fig.subplot{1,1}.plot{10}.linewidth=1;

% fig.subplot{1,1}.xlim=[min(actualFeedIn.time)+123 min(actualFeedIn.time)+126];

fig.subplot{1,1}.ylim=[0 0.12];

% fig.subplot{1,1}.title='PV 30 GW Germany'; % optionaler Titel

% fig.subplot{1,1}.xlabel='Time';

fig.subplot{1,1}.ylabel='Density';

% fig.subplot{1,1}.zlabel='Time';

fig.subplot{1,1}.legend={'Cumulated probability density function','Individual density functions for random variable'};

fig.subplot{1,1}.legend_orientation = 'vertical';

% fig.subplot{1,1}.colormap_label='Temperatur Gradient [°C pro h]';

% fig.subplot{1,1}.xdatetick_format='mm/yyyy';

fig.height=6;

fig.width_columns=3;

handlePlot = styleplot(fig,'styleplot\styleplot_format_PhD','word');

% uistack(handlePlot(1,1,1),'top')

Functions/Results_Evaluation/resPhD_loadResults_noMOL.m

function [Prob_Forec_DA, Prob_Forec_ID, actualFeedIn, ecoImpact, ecoImpactTFC, error, ...

	errorRP, macroEcoImpact, offerRP, offerRP_Min, simRuns, violation, alteredMOList, info] = res_loadResults_noMOL(directory, dataSet)

% Provide directory and set if available

% Check input variables

if ~exist('directory','var')

	directory = 'D:\Ergebnisse REBal\';

end

% Define result path

dirResults = directory;

%% Define set of Calculations

folderNames = getfilenames(dirResults)';

folderNamesNoPath = regexp(folderNames,'\','split');

for iStruct=1:length(folderNamesNoPath)

	nameDir{iStruct,1} = folderNamesNoPath{iStruct,1}{end};

end

indexNameDir = linspace(1,length(nameDir),length(nameDir))';

fprintf('Please choose one set of Data:\n');

for iName=1:length(nameDir)

	

	name{iName} = sprintf([nameDir{iName}]);

	

end

maxSigns = max(cellfun(@length,name));

for iName=1:length(nameDir)

	while length(name{iName}) <= maxSigns

		name{iName} = sprintf([name{iName} ' ']);

	end

	name{iName} = sprintf([name{iName} '(' num2str(iName) ')']);

end

for iName=1:length(nameDir)

	disp(name{iName});

	

end

delimLn = '-';

maxSignsNew = max(cellfun(@length,name));

while length(delimLn) < maxSignsNew

	delimLn = sprintf([delimLn '-']);

end

disp(delimLn);

if ~exist('dataSet','var')

	calcSet = input(sprintf('Give set of Results: \t \t'));

else

	calcSet = dataSet;

	disp(calcSet);

end

while ~ismember(calcSet,indexNameDir)

	fprintf(2,'*\t Incorrect Input \t\t*\n');

	disp(delimLn);

	calcSet = input(sprintf('Give set of Results (n): \t'));

end

%% Load Set of calc

pathnames = getfilenames([directory '\' nameDir{calcSet}],'*.mat')';

pathnamesSplit = regexp(pathnames,'\','split');

for iStruct=1:length(pathnamesSplit)

	fileNamesSelect{iStruct,1} = pathnamesSplit{iStruct,1}{end};

end

pathOnly = strcat(pathnamesSplit{1,1}(1,1:end-1),'\');

pathData = strcat(pathOnly{:});

omit = strfind(fileNamesSelect,'moList_altered');

keep = cellfun(@isempty,omit);

pathnames = pathnames(keep);

% Get Filenames and Load Data Eco Impact

for iFileNames=1:length(pathnames)

	

	load(pathnames{iFileNames});

	

end

%%

dataArrays = {'Prob_Forec_DA', 'Prob_Forec_ID', 'actualFeedIn', 'ecoImpact', 'ecoImpactTFC', 'error', ...

	'errorRP', 'macroEcoImpact', 'offerRP', 'offerRP_Min', 'simRuns', 'violation', 'alteredMOList'};

for iData = 1:length(dataArrays)

	

	if ~exist(dataArrays{iData},'var')

		eval([dataArrays{iData} ' = nan;'])

	end

	

end

%% Get name

runSetName = pathData(37:end-1);

%% Create Info var

info.pathData = pathData;

info.runSetName = runSetName;

Functions/Results_Evaluation/resPhD_lostEnergy_BC.m

clear;

clc;

%% Options

productLength = 1;

percentNegRP = 100;

market = 'TFC';

%% Load

preDefineDataSet = ([117:135]);

for iDataSet = 1:length(preDefineDataSet)

	

	[~, ~, ...

		~, ~, ...

		~, ~, ...

		~, ~, ...

		DataSet(iDataSet).offerRP, ~, ...

		DataSet(iDataSet).simRuns, ~, ...

		~, DataSet(iDataSet).info] ...

		= res_loadResults_noMOL('D:\Ergebnisse REBal',preDefineDataSet(iDataSet));

	

% 	[Prob_Forec_DA, Prob_Forec_ID, actualFeedIn, ecoImpact, ecoImpactTFC, error, ...

% 		errorRP, macroEcoImpact, offerRP, offerRP_Min, simRuns, violation, alteredMOList, infoRuns] = res_loadResults_noMOL('D:\Ergebnisse REBal',preDefineDataSet(iDataSet));

	

	runSetYear = regexp(DataSet(iDataSet).info.runSetName,'_','split');

	GenType{iDataSet} = runSetYear{1};

	PoolType{iDataSet} = runSetYear{2};

	Type{iDataSet} = [runSetYear{1:2}];

	for iYear = 1:length(runSetYear)

		try

			if ~isnan(str2double(runSetYear{iYear}))

				timeStampYear(iDataSet) = datenum([str2double(runSetYear{iYear}) 1 1])

			end

		end

	end

	

end

%% Other Vars

% Define Order

TypeAll = sort(unique([Type]));

genTypeAll = unique([GenType]);

poolTypeAll = unique([PoolType]);

[timeStampYearVec,~] = datevec(timeStampYear');

[years,~] = datevec(sort(unique(timeStampYear)));

%

secLevelAll = sort(unique([DataSet(1).simRuns.securityLevel]));

% secLevelAll = secLevelAll([1 2 4 6]); % Show on those security levels

%% Get DataSet

productLength = 4;

market = 'TFC';

neg = 100;

for iSec = 1:length(secLevelAll)

	

	secLevel = secLevelAll(iSec);

	

	for iDS = 1:length(DataSet)

		

		indexA = strcmp({DataSet(iDS).simRuns.market},market);

		indexB = [DataSet(iDS).simRuns.percentNegRP] == neg;

		indexC = [DataSet(iDS).simRuns.productLength] == productLength;

		indexD = [DataSet(iDS).simRuns.securityLevel] == secLevel;

		indexAll = indexA & indexB & indexC & indexD;

		

		lost = DataSet(iDS).offerRP(indexAll).timeSeries.lostBCredOfferID;

		offerID = DataSet(iDS).offerRP(indexAll).timeSeries.secureDACap;

		

		offerTSDA ...

			= reshape(repmat(DataSet(iDS).offerRP(indexAll).BCredOfferID.neg.capacity',productLength*4,[]),1,[])' ...

			/ DataSet(iDS).simRuns(indexAll).installedCapacity;

		

		lost(offerTSDA == 0) = 0;

		offerID(offerTSDA == 0) = 0;

		

		lostTotal = nansum(lost) / 4; % 4 four getting hourly values later on

		offerTotal = nansum(offerID) / 4; % 4 four getting hourly values later on

		

		if strcmp(Type(iDS),'OnWindBRD')

			lostVal(timeStampYearVec(iDS)-2009,1) = lostTotal * DataSet(iDS).simRuns(indexAll).installedCapacity;

			shareOfFeed(timeStampYearVec(iDS)-2009,1) = lostTotal/offerTotal;

		elseif strcmp(Type(iDS),'OnWindWF')

			lostVal(timeStampYearVec(iDS)-2009,2) = lostTotal * DataSet(iDS).simRuns(indexAll).installedCapacity;

			shareOfFeed(timeStampYearVec(iDS)-2009,2) = lostTotal/offerTotal;

		elseif strcmp(Type(iDS),'OfWindBRD')

			lostVal(timeStampYearVec(iDS)-2009,3) = lostTotal * DataSet(iDS).simRuns(indexAll).installedCapacity;

			shareOfFeed(timeStampYearVec(iDS)-2009,3) = lostTotal/offerTotal;

		elseif strcmp(Type(iDS),'PVBRD')

			lostVal(timeStampYearVec(iDS)-2009,4) = lostTotal * DataSet(iDS).simRuns(indexAll).installedCapacity;

			shareOfFeed(timeStampYearVec(iDS)-2009,4) = lostTotal/offerTotal;

		elseif strcmp(Type(iDS),'PVPVF')

			lostVal(timeStampYearVec(iDS)-2009,5) = lostTotal * DataSet(iDS).simRuns(indexAll).installedCapacity;

			shareOfFeed(timeStampYearVec(iDS)-2009,5) = lostTotal/offerTotal;

		end

		

	end

	

	

	lostVal(lostVal == 0) = nan;

	shareOfFeed(shareOfFeed == 0) = nan;

	

	secLevelStruct(iSec).lostVale = lostVal;	

	secLevelStruct(iSec).potShare = shareOfFeed;

	

end

%% Consolidate data

for iSec = 1:length(secLevelAll)

	secLevelStruct(iSec).mean = nanmean(secLevelStruct(iSec).potShare,1);

	secLevelStruct(iSec).lostVal = nanmean(secLevelStruct(iSec).lostVale,1);

	secLevelStruct(iSec).max = nanmax(secLevelStruct(iSec).potShare,1);

	secLevelStruct(iSec).min = nanmin(secLevelStruct(iSec).potShare,1);

end

% Old

% data = [secLevelStruct(1).mean;secLevelStruct(2).mean;secLevelStruct(3).mean;secLevelStruct(4).mean] * 100;

data = [];

for iData = 1:length(secLevelStruct)

	data = [data;secLevelStruct(iData).mean];

end

data = data; % So actually % are plotted rather than decimal numbers

rangeLow = [];

for iData = 1:length(secLevelStruct)

	rangeLow = [rangeLow;secLevelStruct(iData).min];

end

rangeLow = data-rangeLow; % So actually % are plotted rather than decimal numbers

rangeHigh = [];

for iData = 1:length(secLevelStruct)

	rangeHigh = [rangeHigh;secLevelStruct(iData).max];

end

rangeHigh = data-rangeHigh; % So actually % are plotted rather than decimal numbers

errorbarData = [data;rangeLow;rangeHigh];

% Values for bars

dataVal = [];

for iData = 1:length(secLevelStruct)

	dataVal = [dataVal;secLevelStruct(iData).lostVal];

end

dataVal = dataVal / 1000; % So actually % are plotted rather than decimal numbers

dataValTXT = num2cell(dataVal);

textFormat = cell(size(dataValTXT));

textFormat(:) = {'%0.1f'};

dataValTXT = cellfun(@num2str,dataValTXT,textFormat,'UniformOutput',0);

for i = 1:size(dataValTXT,1)

	for j = 1:size(dataValTXT,2)

		if strcmp(dataValTXT(i,j),'NaN')

			dataValTXT{i,j} = [];

		end

	end

end

%% Plot with styleplot

fig = [];

% First Data Set %%

% Define data sets

fig.subplot{1,1}.plot{1}.x = 1:size(data,1);

fig.subplot{1,1}.plot{1}.y = data;

fig.subplot{1,1}.plot{1}.style='bar';

fig.subplot{1,1}.plot{1}.barlayout='grouped';

fig.subplot{1,1}.plot{1}.barcolor={'x3','x35','x28','x20','x15'}; % Overwrite the color property

fig.subplot{1,1}.plot{1}.text=dataValTXT; % Must be the same size as the data

fig.subplot{1,1}.plot{2}.x = 1:size(data,1);

fig.subplot{1,1}.plot{2}.y = errorbarData;

fig.subplot{1,1}.plot{2}.style='errorbar';

fig.subplot{1,1}.plot{2}.barlayout='grouped';

fig.subplot{1,1}.plot{2}.color='greyDark';

% fig.subplot{1,1}.plot{2}.barcolor={'x3','x35','x28','x20','x15'};

% Plot properties

% fig.subplot{1,1}.xlim=[datenum('14-Aug-2014') datenum('20-Aug-2014')];

fig.subplot{1,1}.ylim=[0 0.3001];

% fig.subplot{1,1}.title=['Control reserve potential onshore wind 30 GW Germany']; % optionaler Titel

% fig.subplot{1,1}.title=['Mean annual control reserve potential by fluctuating RES generators based on the probilistic intraday forecast']; % optionaler Titel

% fig.subplot{1,1}.title=['Control reserve potential onshore wind 30 GW Germany \newline @' num2str(secLevel) '% and ' num2str(productLength) ' hour product length']; % optionaler Titel

fig.subplot{1,1}.xlabel='Level of reliability';

fig.subplot{1,1}.ylabel='Lost energy in MWh_l_o_s_t/MWh_o_f_f_e_r_e_d';

% fig.subplot{1,1}.zlabel='Time';

fig.subplot{1,1}.legend={'Onshore Wind 30 GW Germany', ...

	'Onshore Wind 1 GW Pool', 'Offshore Wind 1 GW Germany', ...

	'Photovoltaic Systems 30 GW Germany', 'Photovoltaic Systems 1 GW Pool', };

% fig.subplot{1,1}.legend_orientation = 'vertical';

% fig.subplot{1,1}.colormap_label='Temperatur Gradient [°C pro h]';

fig.subplot{1,1}.xticks=fig.subplot{1,1}.plot{1}.x;

fig.subplot{1,1}.xticklabels={'95%','99%','99.5%','99.9%','99.99%','99.994%','99.999%'};

% fig.subplot{1,1}.xdatetick_format='dd/mm/yyyy';

fig.subplot{1,1}.xdatetick_rotate=90;

fig.height=12;

fig.width_columns=3;

[hFig, hAxes, hPlot] = styleplot(fig,'styleplot_format_PhD','word');

%% Save

path = 'C:\Users\mjansen\Synchronisation\mjansen auf User_Artemis(R)\Dissertation\Dissertation\Figures\';

name = ['FigB-24_lostEnergy_' num2str(productLength) 'h'];

saveas(gcf,[path name '.fig']);

save([path name '_data.mat'],'fig');

Functions/Results_Evaluation/resPhD_lostEnergy_BC_Costs.m

% clear;

% clc;

%% Options

productLength = 1;

percentNegRP = 100;

market = 'TFC';

%% Load

preDefineDataSet = ([117:135]);

for iDataSet = 1:length(preDefineDataSet)

	

	[~, ~, ...

		~, ~, ...

		~, ~, ...

		~, DataSet(iDataSet).macroEcoImpact, ...

		DataSet(iDataSet).offerRP, ~, ...

		DataSet(iDataSet).simRuns, ~, ...

		~, DataSet(iDataSet).info] ...

		= res_loadResults_noMOL('D:\Ergebnisse REBal',preDefineDataSet(iDataSet));

	

% 	[Prob_Forec_DA, Prob_Forec_ID, actualFeedIn, ecoImpact, ecoImpactTFC, error, ...

% 		errorRP, macroEcoImpact, offerRP, offerRP_Min, simRuns, violation, alteredMOList, infoRuns] = res_loadResults_noMOL('D:\Ergebnisse REBal',preDefineDataSet(iDataSet));

	

	runSetYear = regexp(DataSet(iDataSet).info.runSetName,'_','split');

	GenType{iDataSet} = runSetYear{1};

	PoolType{iDataSet} = runSetYear{2};

	Type{iDataSet} = [runSetYear{1:2}];

	for iYear = 1:length(runSetYear)

		try

			if ~isnan(str2double(runSetYear{iYear}))

				timeStampYear(iDataSet) = datenum([str2double(runSetYear{iYear}) 1 1]);

			end

		end

	end

	

end

%% Select only valid datasets

% DataSet = DataSetAll;

invalidDS = false(size(DataSet));

for iDS = 1:length(DataSet)

	if ~isfield(DataSet(1,iDS).macroEcoImpact(1, 1),'meanPriceDiff_BC')

		invalidDS(iDS) = true;

	end

end

DataSet = DataSet(~invalidDS);

timeStampYear = timeStampYear(~invalidDS);

GenType = GenType(~invalidDS);

PoolType = PoolType(~invalidDS);

Type = Type(~invalidDS);

%% Other Vars

% Define Order

TypeAll = sort(unique([Type]));

genTypeAll = unique([GenType]);

poolTypeAll = unique([PoolType]);

[timeStampYearVec,~] = datevec(timeStampYear');

[years,~] = datevec(sort(unique(timeStampYear)));

secLevelAll = sort(unique([DataSet(1).simRuns.securityLevel]));

% secLevelAll = secLevelAll([6]); % Show on those security levels

prodLengthAll = sort(unique([DataSet(1).simRuns.productLength]));

prodLengthAll = prodLengthAll([1]); % Show on those security levels

genTypeNumber = 1; % 1 for Wind 30 GW, 2 for wind 1GW and so on

%% Get DataSet for secondary positive

productLength = 1;

market = 'SFC';

neg = 100;

for iSec = 1:length(secLevelAll)

	

	secLevel = secLevelAll(iSec);

	for iPL = 1:length(prodLengthAll)

		

		productLength = prodLengthAll(iPL);

		

		for iDS = 1:length(DataSet)

			

			indexA = strcmp({DataSet(iDS).simRuns.market},market);

			indexB = [DataSet(iDS).simRuns.percentxxPosRP] == neg;

			indexC = [DataSet(iDS).simRuns.productLength] == productLength;

			indexD = [DataSet(iDS).simRuns.securityLevel] == secLevel;

			indexAll = indexA & indexB & indexC & indexD;

			

			FC = [];

			MP = [];

			MP_all = [];

			

			FC(:,1) ...

				= DataSet(iDS).macroEcoImpact(indexAll).FuelCost_BC(:,1);

			

			MP(:,1) ...

				= DataSet(iDS).macroEcoImpact(indexAll).Market_BC;

			

			MP_all(:,1) ...

				= DataSet(iDS).macroEcoImpact(indexAll).MarketbyAll_BC;

			

			priceDiff(:,1) ...

				= DataSet(iDS).macroEcoImpact(indexAll).meanPriceDiff_BC;

			

			if strcmp(Type(iDS),'OnWindBRD')

				FuelCost(timeStampYearVec(iDS)-2009,1) = FC;

				MarketPrice(timeStampYearVec(iDS)-2009,1) = MP;

				Market_All(timeStampYearVec(iDS)-2009,1) = MP_all;

				priceDiff_Market(timeStampYearVec(iDS)-2009,1) = priceDiff;

			elseif strcmp(Type(iDS),'OnWindWF')

				FuelCost(timeStampYearVec(iDS)-2009,2) = FC;

				MarketPrice(timeStampYearVec(iDS)-2009,2) = MP;

				Market_All(timeStampYearVec(iDS)-2009,2) = MP_all;

				priceDiff_Market(timeStampYearVec(iDS)-2009,2) = priceDiff;

			elseif strcmp(Type(iDS),'OfWindBRD')

				FuelCost(timeStampYearVec(iDS)-2009,3) = FC;

				MarketPrice(timeStampYearVec(iDS)-2009,3) = MP;

				Market_All(timeStampYearVec(iDS)-2009,3) = MP_all;

				priceDiff_Market(timeStampYearVec(iDS)-2009,3) = priceDiff;

			elseif strcmp(Type(iDS),'PVBRD')

				FuelCost(timeStampYearVec(iDS)-2009,4) = FC;

				MarketPrice(timeStampYearVec(iDS)-2009,4) = MP;

				Market_All(timeStampYearVec(iDS)-2009,4) = MP_all;

				priceDiff_Market(timeStampYearVec(iDS)-2009,4) = priceDiff;

			elseif strcmp(Type(iDS),'PVPVF')

				FuelCost(timeStampYearVec(iDS)-2009,5) = FC;

				MarketPrice(timeStampYearVec(iDS)-2009,5) = MP;

				Market_All(timeStampYearVec(iDS)-2009,5) = MP_all;

				priceDiff_Market(timeStampYearVec(iDS)-2009,5) = priceDiff;

			end

			

		end

		

		

		FuelCost(FuelCost == 0) = nan;

		MarketPrice(MarketPrice == 0) = nan;

		Market_All(Market_All == 0) = nan;

		priceDiff_Market(priceDiff_Market == 0) = nan;

		

		secLevelStruct(iSec,iPL).FuelCost = FuelCost;

		secLevelStruct(iSec,iPL).MarketPrice = MarketPrice;

		secLevelStruct(iSec,iPL).Market_All = Market_All;

		secLevelStruct(iSec,iPL).priceDiff_Market = priceDiff_Market;

	end

end

% Consolidate data

% OnWindBRD is 1

% TotalPosSFC = secLevelStruct.FuelCost;

%% Consolidate data

for iSec = 1:size(secLevelAll,2)

	secLevelStruct(iSec).meanFuelCost = nanmean(secLevelStruct(iSec).FuelCost,1);

	secLevelStruct(iSec).meanMarketPrice = nanmean(secLevelStruct(iSec).MarketPrice,1);

	secLevelStruct(iSec).meanMarket_All = nanmean(secLevelStruct(iSec).Market_All,1);

	secLevelStruct(iSec).minFuelCost = nanmin(secLevelStruct(iSec).FuelCost,1);

	secLevelStruct(iSec).minMarketPrice = nanmin(secLevelStruct(iSec).MarketPrice,1);

	secLevelStruct(iSec).minMarket_All = nanmin(secLevelStruct(iSec).Market_All,1);

	secLevelStruct(iSec).maxFuelCost = nanmax(secLevelStruct(iSec).FuelCost,1);

	secLevelStruct(iSec).maxMarketPrice = nanmax(secLevelStruct(iSec).MarketPrice,1);

	secLevelStruct(iSec).maxMarket_All = nanmax(secLevelStruct(iSec).Market_All,1);

	

	secLevelStruct(iSec).meanPriceDiff = nanmean(secLevelStruct(iSec).priceDiff_Market,1);

	

end

for iSec = 1:size(secLevelAll,2)

	secLevelStruct(iSec).meanFuelCost = secLevelStruct(iSec).meanFuelCost(:,[1 4]);

	secLevelStruct(iSec).meanMarketPrice = secLevelStruct(iSec).meanMarketPrice(:,[1 4]);

	secLevelStruct(iSec).meanMarket_All = secLevelStruct(iSec).meanMarket_All(:,[1 4]);

	secLevelStruct(iSec).minFuelCost = secLevelStruct(iSec).minFuelCost(:,[1 4]);

	secLevelStruct(iSec).minMarketPrice = secLevelStruct(iSec).minMarketPrice(:,[1 4]);

	secLevelStruct(iSec).minMarket_All = secLevelStruct(iSec).minMarket_All(:,[1 4]);

	secLevelStruct(iSec).maxFuelCost = secLevelStruct(iSec).maxFuelCost(:,[1 4]);

	secLevelStruct(iSec).maxMarketPrice = secLevelStruct(iSec).maxMarketPrice(:,[1 4]);

	secLevelStruct(iSec).maxMarket_All = secLevelStruct(iSec).maxMarket_All(:,[1 4]);

	

	secLevelStruct(iSec).meanPriceDiff = secLevelStruct(iSec).meanPriceDiff(:,[1 4]);

	

end

%% Get Fuel cost data series

dataFC = [];

for iData = 1:length(secLevelStruct)

	dataFC = [dataFC;secLevelStruct(iData).meanFuelCost];

end

dataFC = (dataFC') / 1000000; % So actually % are plotted rather than decimal numbers

rangeLowFC = [];

for iData = 1:length(secLevelStruct)

	rangeLowFC = [rangeLowFC;secLevelStruct(iData).minFuelCost];

end

rangeLowFC = rangeLowFC / 1000000;

rangeLowFC = dataFC-rangeLowFC'; % So actually % are plotted rather than decimal numbers

rangeHighFC = [];

for iData = 1:length(secLevelStruct)

	rangeHighFC = [rangeHighFC;secLevelStruct(iData).maxFuelCost];

end

rangeHighFC = rangeHighFC / 1000000;

rangeHighFC = abs(dataFC-rangeHighFC'); % So actually % are plotted rather than decimal numbers

errorbarDataFCWind = [dataFC(1,:);rangeLowFC(1,:);rangeHighFC(1,:)];

errorbarDataFCPV = [dataFC(2,:);rangeLowFC(2,:);rangeHighFC(2,:)];

%% Get market price based cost data series

dataMP = [];

for iData = 1:length(secLevelStruct)

	dataMP = [dataMP;secLevelStruct(iData).meanMarketPrice];

end

dataMP = (dataMP') / 1000000; % So actually % are plotted rather than decimal numbers

rangeLowMP = [];

for iData = 1:length(secLevelStruct)

	rangeLowMP = [rangeLowMP;secLevelStruct(iData).minMarketPrice];

end

rangeLowMP = rangeLowMP / 1000000;

rangeLowMP = dataMP-rangeLowMP'; % So actually % are plotted rather than decimal numbers

rangeHighMP = [];

for iData = 1:length(secLevelStruct)

	rangeHighMP = [rangeHighMP;secLevelStruct(iData).maxMarketPrice];

end

rangeHighMP = rangeHighMP / 1000000;

rangeHighMP = abs(dataMP-rangeHighMP'); % So actually % are plotted rather than decimal numbers

errorbarDataMPWind = [dataMP(1,:);rangeLowMP(1,:);rangeHighMP(1,:)];

errorbarDataMPPV = [dataMP(2,:);rangeLowMP(2,:);rangeHighMP(2,:)];

%% Get market price based cost data series

dataMP_all = [];

for iData = 1:length(secLevelStruct)

	dataMP_all = [dataMP_all;secLevelStruct(iData).meanMarket_All];

end

dataMP_all = (dataMP_all') / 1000000; % So actually % are plotted rather than decimal numbers

rangeLowMP_all = [];

for iData = 1:length(secLevelStruct)

	rangeLowMP_all = [rangeLowMP_all;secLevelStruct(iData).minMarket_All];

end

rangeLowMP_all = rangeLowMP_all / 1000000;

rangeLowMP_all = dataMP_all-rangeLowMP_all'; % So actually % are plotted rather than decimal numbers

rangeHighMP_all = [];

for iData = 1:length(secLevelStruct)

	rangeHighMP_all = [rangeHighMP_all;secLevelStruct(iData).maxMarket_All];

end

rangeHighMP_all = rangeHighMP_all / 1000000;

rangeHighMP_all = abs(dataMP_all-rangeHighMP_all'); % So actually % are plotted rather than decimal numbers

errorbarDataMP_allWind = [dataMP_all(1,:);rangeLowMP_all(1,:);rangeHighMP_all(1,:)];

errorbarDataMP_allPV = [dataMP_all(2,:);rangeLowMP_all(2,:);rangeHighMP_all(2,:)];

%% Plot with styleplot

fig = [];

% Define data sets

fig.subplot{1,1}.plot{1}.x = 1:size(dataFC(1,:),2);

fig.subplot{1,1}.plot{1}.y = dataFC(1,:);

fig.subplot{1,1}.plot{1}.style='plot';

fig.subplot{1,1}.plot{1}.markerstyle='o';

fig.subplot{1,1}.plot{1}.markerfacecolor='x3';

fig.subplot{1,1}.plot{1}.markersize=5;

fig.subplot{1,1}.plot{1}.linestyle='-';

fig.subplot{1,1}.plot{1}.color='x3';

fig.subplot{1,1}.plot{2}.x = 1:size(dataFC(2,:),2);

fig.subplot{1,1}.plot{2}.y = dataFC(2,:);

fig.subplot{1,1}.plot{2}.style='plot';

fig.subplot{1,1}.plot{2}.markerstyle='o';

fig.subplot{1,1}.plot{2}.markerfacecolor='x20';

fig.subplot{1,1}.plot{2}.markersize=5;

fig.subplot{1,1}.plot{2}.linestyle='-';

fig.subplot{1,1}.plot{2}.color='x20';

fig.subplot{1,1}.plot{3}.x = 1:size(dataMP(1,:),2);

fig.subplot{1,1}.plot{3}.y = dataMP(1,:);

fig.subplot{1,1}.plot{3}.style='plot';

fig.subplot{1,1}.plot{3}.markerstyle='o';

fig.subplot{1,1}.plot{3}.markerfacecolor='x3';

fig.subplot{1,1}.plot{3}.markersize=5;

fig.subplot{1,1}.plot{3}.linestyle='--';

fig.subplot{1,1}.plot{3}.color='x3';

fig.subplot{1,1}.plot{4}.x = 1:size(dataMP(2,:),2);

fig.subplot{1,1}.plot{4}.y = dataMP(2,:);

fig.subplot{1,1}.plot{4}.style='plot';

fig.subplot{1,1}.plot{4}.markerstyle='o';

fig.subplot{1,1}.plot{4}.markerfacecolor='x20';

fig.subplot{1,1}.plot{4}.markersize=5;

fig.subplot{1,1}.plot{4}.linestyle='--';

fig.subplot{1,1}.plot{4}.color='x20';

fig.subplot{1,1}.plot{5}.x = 1:size(dataMP_all(1,:),2);

fig.subplot{1,1}.plot{5}.y = dataMP_all(1,:);

fig.subplot{1,1}.plot{5}.style='plot';

fig.subplot{1,1}.plot{5}.markerstyle='o';

fig.subplot{1,1}.plot{5}.markerfacecolor='greyDark3';

fig.subplot{1,1}.plot{5}.markersize=5;

fig.subplot{1,1}.plot{5}.linestyle='-';

fig.subplot{1,1}.plot{5}.color='greyDark3';

fig.subplot{1,1}.plot{6}.x = 1:size(dataMP_all(2,:),2);

fig.subplot{1,1}.plot{6}.y = dataMP_all(2,:);

fig.subplot{1,1}.plot{6}.style='plot';

fig.subplot{1,1}.plot{6}.markerstyle='o';

fig.subplot{1,1}.plot{6}.markerfacecolor='greyDark';

fig.subplot{1,1}.plot{6}.markersize=5;

fig.subplot{1,1}.plot{6}.linestyle='-';

fig.subplot{1,1}.plot{6}.color='greyDark';

fig.subplot{1,1}.plot{7}.x = (1:size(errorbarDataFCWind,2));

fig.subplot{1,1}.plot{7}.y = reshape(errorbarDataFCWind',[],1);

fig.subplot{1,1}.plot{7}.style='errorbar';

fig.subplot{1,1}.plot{7}.barlayout='grouped';

fig.subplot{1,1}.plot{7}.color='x3';

fig.subplot{1,1}.plot{8}.x = (1:size(errorbarDataFCPV,2));

fig.subplot{1,1}.plot{8}.y = reshape(errorbarDataFCPV',[],1);

fig.subplot{1,1}.plot{8}.style='errorbar';

fig.subplot{1,1}.plot{8}.barlayout='grouped';

fig.subplot{1,1}.plot{8}.color='x20';

fig.subplot{1,1}.plot{9}.x = (1:size(errorbarDataMPWind,2));

fig.subplot{1,1}.plot{9}.y = reshape(errorbarDataMPWind',[],1);

fig.subplot{1,1}.plot{9}.style='errorbar';

fig.subplot{1,1}.plot{9}.barlayout='grouped';

fig.subplot{1,1}.plot{9}.color='x3';

fig.subplot{1,1}.plot{10}.x = (1:size(errorbarDataMPPV,2));

fig.subplot{1,1}.plot{10}.y = reshape(errorbarDataMPPV',[],1);

fig.subplot{1,1}.plot{10}.style='errorbar';

fig.subplot{1,1}.plot{10}.barlayout='grouped';

fig.subplot{1,1}.plot{10}.color='x20';

fig.subplot{1,1}.plot{11}.x = (1:size(errorbarDataMP_allWind,2));

fig.subplot{1,1}.plot{11}.y = reshape(errorbarDataMP_allWind',[],1);

fig.subplot{1,1}.plot{11}.style='errorbar';

fig.subplot{1,1}.plot{11}.barlayout='grouped';

fig.subplot{1,1}.plot{11}.color='greyDark3';

fig.subplot{1,1}.plot{12}.x = (1:size(errorbarDataMP_allPV,2));

fig.subplot{1,1}.plot{12}.y = reshape(errorbarDataMP_allPV',[],1);

fig.subplot{1,1}.plot{12}.style='errorbar';

fig.subplot{1,1}.plot{12}.barlayout='grouped';

fig.subplot{1,1}.plot{12}.color='greyDark';

% % Plot properties

fig.subplot{1,1}.xlim=[0.8 7.2];

fig.subplot{1,1}.ylim=[0 1600];

% fig.subplot{1,1}.title=['Control reserve potential onshore wind 30 GW Germany']; % optionaler Titel

% fig.subplot{1,1}.title=['Mean annual control reserve potential by fluctuating RES generators based on the probilistic intraday forecast']; % optionaler Titel

% fig.subplot{1,1}.title=['Control reserve potential onshore wind 30 GW Germany \newline @' num2str(secLevel) '% and ' num2str(productLength) ' hour product length']; % optionaler Titel

fig.subplot{1,1}.xlabel='Level of reliability';

fig.subplot{1,1}.ylabel='Cost of curtailed energy in mio. EUR/a';

% fig.subplot{1,1}.zlabel='Time';

fig.subplot{1,1}.legend={'Fuel cost based approach Onshore Wind 30GW Germany', ...

	'Fuel cost based approach Photovoltaic Systems 30 GW Germany', ...

	'Market price based approach onshore Wind 30GW Germany', ...

	'Market price based approach Photovoltaic Systems 30 GW Germany', ...

	'Increased electricity costs for all market participants Onshore Wind 30GW Germany', ...

	'Increased electricity costs for all market participants Photovoltaic Systems 30 GW Germany', };

% fig.subplot{1,1}.legend_orientation = 'vertical';

% fig.subplot{1,1}.colormap_label='Temperatur Gradient [°C pro h]';

fig.subplot{1,1}.xticks=fig.subplot{1,1}.plot{1}.x;

fig.subplot{1,1}.xticklabels={'95%','99%','99.5%','99.9%','99.99%','99.994%','99.999%'};

fig.height=14;

fig.width_columns=3;

[hFig, hAxes, hPlot] = styleplot(fig,'styleplot_format_PhD','wordwide');

Functions/Results_Evaluation/resPhD_market_exponFit_forecast_2020_2030_baseData_2004_2014.m

clear;

clc;

%% Load data

% Change path if necessary

[~, ~, raw0_0] = xlsread('D:\AncillaryServiceCost\ancillary_sercive_cost.xlsx','Tabelle1','B5:L5');

[~, ~, raw1_0] = xlsread('D:\AncillaryServiceCost\ancillary_sercive_cost.xlsx','Tabelle1','B7:L8');

raw = [raw0_0;raw1_0;];

CRcost = fliplr(cell2mat(raw));

capCost_TFC = CRcost(1,:);

capCost_SFC = CRcost(2,:);

[demandCR] = loadControlReserve_Demand;

%% Reserve demand

allData = demandCR.time >= datenum([2007 12 1]);

demandCR.total.neg = demandCR.tertiary.neg(allData) + demandCR.secondary.neg(allData);

demandCR.total.pos = demandCR.tertiary.pos(allData) + demandCR.secondary.pos(allData);

demandCR.time = demandCR.time(allData);

demandCR.total.sum = nanmean([abs(demandCR.total.neg) demandCR.total.pos],2);

[yearsDemand,~] = datevec(demandCR.time);

yearsDemandUniq = unique(yearsDemand);

for iYear = 1:length(yearsDemandUniq)

	

	indexYear = yearsDemand == yearsDemandUniq(iYear);

	annualAVG.time(iYear,1) = datenum([yearsDemandUniq(iYear) 1 1]);

	annualAVG.data(iYear,1) = nanmean(demandCR.total.sum(indexYear));

	

end

annualAVG.time = [datenum([(2004:2006)' ones(3,2)]);annualAVG.time];

annualAVG.data = [repmat(annualAVG.data(1),3,1);annualAVG.data];

%% Cumulate costs and relate to market size

yearsOrig = (2004:2014)';

yearsOrigNum = datenum([yearsOrig ones(size(yearsOrig,1),2)]);

capCostTotal = capCost_SFC + capCost_TFC;

% Adjust market cost by reserve demand

capCostTotalDemandAdjust = (capCostTotal' ./ annualAVG.data(1:end-1) * annualAVG.data(end-1))';

%% % Fit (requires curve fitting tool box)

% fit(yearsOrig,capCostTotal','exp1')

%% EXP1 without demand adjustments

% General model Exp1:

% ans(x) = a*exp(b*x)

% Coefficients (with 95% confidence bounds):

a = 2.843e+52; %(-1.956e+54, 2.013e+54)

b = -0.05696; %(-0.09172, -0.0222)

%

% Goodness of fit:

% SSE: 7.52e+04

% R-square: 0.6324

% Adjusted R-square: 0.4749

% RMSE: 103.7

years = (2000:2035)';

x = years;

yWithout = a*exp(b*x);

%% EXP1 with demand adjustments

% General model Exp1:

% f(x) = a*exp(b*x)

% Coefficients (with 95% confidence bounds):

a = 1.246e+36; %(-7.422e+37, 7.671e+37)

b = -0.03825; %(-0.06842, -0.00808)

%

% Goodness of fit:

% SSE: 4.912e+04

% R-square: 0.5006

% Adjusted R-square: 0.4451

% RMSE: 73.88

yWith = a*exp(b*x);

%% Plot

fig = [];

fig.subplot{1,1}.plot{1}.x = yearsOrig;

fig.subplot{1,1}.plot{1}.y = capCostTotal;

fig.subplot{1,1}.plot{1}.style='plot';

fig.subplot{1,1}.plot{1}.color='x3';

fig.subplot{1,1}.plot{1}.linestyle='.';

fig.subplot{1,1}.plot{1}.markerstyle='x';

fig.subplot{1,1}.plot{1}.markersize=10;

fig.subplot{1,1}.plot{2}.x = yearsOrig;

fig.subplot{1,1}.plot{2}.y = capCostTotalDemandAdjust;

fig.subplot{1,1}.plot{2}.style='plot';

fig.subplot{1,1}.plot{2}.color='x15';

fig.subplot{1,1}.plot{2}.linestyle='.';

fig.subplot{1,1}.plot{2}.markerstyle='x';

fig.subplot{1,1}.plot{2}.markersize=10;

fig.subplot{1,1}.plot{3}.x = x;

fig.subplot{1,1}.plot{3}.y = yWithout;

fig.subplot{1,1}.plot{3}.style='plot';

fig.subplot{1,1}.plot{3}.color='x2';

fig.subplot{1,1}.plot{4}.x = x;

fig.subplot{1,1}.plot{4}.y = yWith;

fig.subplot{1,1}.plot{4}.style='plot';

fig.subplot{1,1}.plot{4}.color='x14';

fig.subplot{1,1}.plot{5}.x = [2020 2030 2020 2030];

fig.subplot{1,1}.plot{5}.y = [yWithout([21 31]);yWith([21 31])];

fig.subplot{1,1}.plot{5}.style='plot';

fig.subplot{1,1}.plot{5}.color='greyDark';

fig.subplot{1,1}.plot{5}.linestyle='.';

fig.subplot{1,1}.plot{5}.markerstyle='x';

fig.subplot{1,1}.plot{5}.markersize=10;

% Plot axes properties

xLimVal = [2003 2031];

fig.subplot{1,1}.xlim=xLimVal;

yLimVal = [0 800];

fig.subplot{1,1}.ylim=yLimVal;

% Title subplots

% fig.subplot{1,1}.title=['Interpolation of market development']; % optionaler Titel

% Axes labeling

fig.subplot{1,1}.xlabel='Year';

fig.subplot{1,1}.ylabel='Total capacity market volume (SFC and TFC) in mio. EUR';

fig.subplot{1,1}.legend={'Total capacity market volume', ...

	'Demand adjusted total capacity market volume', ...

	'Exponential fit: y = 2.843e+52*exp(-0.05696*x)', ...

	'Exponential fit with demand adjustment: y = 1.246e+36*exp(-0.03825*x)', ...

	'Extrapolated data for 2020/2030'};

% fig.subplot{1,1}.xticks=fig.subplot{1,1}.plot{1}.x;

% fig.subplot{1,1}.xticklabels=[2010,2011,2012,2013,2014];

fig.subplot{1,1}.yticks=min(yLimVal):100:max(yLimVal);

fig.height=12;

fig.width_columns=3;

[hFig, hAxes, hPlot] = styleplot(fig,'styleplot_format_PhD','word');

%% Save

path = 'C:\Users\mjansen\Synchronisation\mjansen auf User_Artemis(R)\Dissertation\Dissertation\Figures\6 Economic impact of fluctuating RES on the power system level\';

name = ['Fig6-9_marketFC_exptrap_2020_2030'];

saveas(gcf,[path name '.fig']);

save([path name '_data.mat'],'fig');

Functions/Results_Evaluation/resPhD_offerableAmountDA.m

% clear;

% clc;

% %% Options

% productLength = 1;

% percentNegRP = 100;

% market = 'TFC';

%

% %% Load

%

% preDefineDataSet = ([117:135]);

%

% for iDataSet = 1:length(preDefineDataSet)

% 	

% 	[DataSet(iDataSet).Prob_Forec_DA, DataSet(iDataSet).Prob_Forec_ID, ...

% 		DataSet(iDataSet).actualFeedIn, ~, ...

% 		~, ~, ...

% 		~, ~, ...

% 		DataSet(iDataSet).offerRP, ~, ...

% 		DataSet(iDataSet).simRuns, ~, ...

% 		~, DataSet(iDataSet).info] ...

% 		= res_loadResults_noMOL('D:\Ergebnisse REBal',preDefineDataSet(iDataSet));

% 	

% % 	[Prob_Forec_DA, Prob_Forec_ID, actualFeedIn, ecoImpact, ecoImpactTFC, error, ...

% % 		errorRP, macroEcoImpact, offerRP, offerRP_Min, simRuns, violation, alteredMOList, infoRuns] = res_loadResults_noMOL('D:\Ergebnisse REBal',preDefineDataSet(iDataSet));

% 	

% 	runSetYear = regexp(DataSet(iDataSet).info.runSetName,'_','split');

% 	GenType{iDataSet} = runSetYear{1};

% 	PoolType{iDataSet} = runSetYear{2};

% 	Type{iDataSet} = [runSetYear{1:2}];

% 	for iYear = 1:length(runSetYear)

% 		try

% 			if ~isnan(str2double(runSetYear{iYear}))

% 				timeStampYear(iDataSet) = datenum([str2double(runSetYear{iYear}) 1 1])

% 			end

% 		end

% 	end

% 	

% end

%

% %% Other Vars

%

% % Define Order

% TypeAll = sort(unique([Type]));

% genTypeAll = unique([GenType]);

% poolTypeAll = unique([PoolType]);

%

% [timeStampYearVec,~] = datevec(timeStampYear');

% [years,~] = datevec(sort(unique(timeStampYear)));

%

% secLevelAll = sort(unique([DataSet(1).simRuns.securityLevel]));

% % secLevelAll = secLevelAll([1 2 4 6]); % Show on those security levels

%% Get DataSet

productLength = 24;

market = 'TFC';

neg = 100;

for iSec = 1:length(secLevelAll)

	

	secLevel = secLevelAll(iSec);

	

	for iDS = 1:length(DataSet)

		indexA = strcmp({DataSet(1).simRuns.market},market);

		indexB = [DataSet(iDS).simRuns.percentNegRP] == neg;

		indexC = [DataSet(iDS).simRuns.productLength] == productLength;

		indexD = [DataSet(iDS).simRuns.securityLevel] == secLevel;

		indexAll = indexA & indexB & indexC & indexD;

		feedInTotal = nansum(DataSet(iDS).offerRP(indexAll).timeSeries.feedIn) .* DataSet(iDS).simRuns(indexAll).installedCapacity / 4;

		

		if strcmp(Type(iDS),'OnWindBRD')

			crTotal(timeStampYearVec(iDS)-2009,1) = nansum(DataSet(iDS).offerRP(indexAll).AAP.neg.capacity);

			shareOfFeed(timeStampYearVec(iDS)-2009,1) = crTotal(timeStampYearVec(iDS)-2009,1)/feedInTotal;

		elseif strcmp(Type(iDS),'OnWindWF')

			crTotal(timeStampYearVec(iDS)-2009,2) = nansum(DataSet(iDS).offerRP(indexAll).AAP.neg.capacity);

			shareOfFeed(timeStampYearVec(iDS)-2009,2) = crTotal(timeStampYearVec(iDS)-2009,2)/feedInTotal;

		elseif strcmp(Type(iDS),'OfWindBRD')

			crTotal(timeStampYearVec(iDS)-2009,3) = nansum(DataSet(iDS).offerRP(indexAll).AAP.neg.capacity);

			shareOfFeed(timeStampYearVec(iDS)-2009,3) = crTotal(timeStampYearVec(iDS)-2009,3)/feedInTotal;

		elseif strcmp(Type(iDS),'PVBRD')

			crTotal(timeStampYearVec(iDS)-2009,4) = nansum(DataSet(iDS).offerRP(indexAll).AAP.neg.capacity);

			shareOfFeed(timeStampYearVec(iDS)-2009,4) = crTotal(timeStampYearVec(iDS)-2009,4)/feedInTotal;

		elseif strcmp(Type(iDS),'PVPVF')

			crTotal(timeStampYearVec(iDS)-2009,5) = nansum(DataSet(iDS).offerRP(indexAll).AAP.neg.capacity);

			shareOfFeed(timeStampYearVec(iDS)-2009,5) = crTotal(timeStampYearVec(iDS)-2009,5)/feedInTotal;

		end

		

	end

	

	crTotal(crTotal == 0) = nan;

	shareOfFeed(shareOfFeed == 0) = nan;

	

	secLevelStruct(iSec).offerTotal = crTotal;

	secLevelStruct(iSec).potShare = shareOfFeed;

	

end

%% Consolidate data

for iSec = 1:length(secLevelAll)

	secLevelStruct(iSec).mean = nanmean(secLevelStruct(iSec).potShare,1);

	secLevelStruct(iSec).meanVal = nanmean(secLevelStruct(iSec).offerTotal,1);

	secLevelStruct(iSec).max = nanmax(secLevelStruct(iSec).potShare,1);

	secLevelStruct(iSec).min = nanmin(secLevelStruct(iSec).potShare,1);

end

% Old

% data = [secLevelStruct(1).mean;secLevelStruct(2).mean;secLevelStruct(3).mean;secLevelStruct(4).mean] * 100;

data = [];

for iData = 1:length(secLevelStruct)

	data = [data;secLevelStruct(iData).mean];

end

data = data * 100; % So actually % are plotted rather than decimal numbers

rangeLow = [];

for iData = 1:length(secLevelStruct)

	rangeLow = [rangeLow;secLevelStruct(iData).min];

end

rangeLow = data-rangeLow * 100; % So actually % are plotted rather than decimal numbers

rangeHigh = [];

for iData = 1:length(secLevelStruct)

	rangeHigh = [rangeHigh;secLevelStruct(iData).max];

end

rangeHigh = data-rangeHigh * 100; % So actually % are plotted rather than decimal numbers

errorbarData = [data;rangeLow;rangeHigh];

% Values for bars

dataVal = [];

for iData = 1:length(secLevelStruct)

	dataVal = [dataVal;secLevelStruct(iData).meanVal];

end

dataVal = dataVal / 1000000; % So actually % are plotted rather than decimal numbers

dataValTXT = num2cell(dataVal);

textFormat = cell(size(dataValTXT));

textFormat(:) = {'%0.1f'};

dataValTXT = cellfun(@num2str,dataValTXT,textFormat,'UniformOutput',0);

for i = 1:size(dataValTXT,1)

	for j = 1:size(dataValTXT,2)

		if strcmp(dataValTXT(i,j),'NaN')

			dataValTXT{i,j} = [];

		end

	end

end

%% Plot with styleplot

fig = [];

% Define data sets

fig.subplot{1,1}.plot{1}.x = 1:size(data,1);

fig.subplot{1,1}.plot{1}.y = data;

fig.subplot{1,1}.plot{1}.style='bar';

fig.subplot{1,1}.plot{1}.barlayout='grouped';

fig.subplot{1,1}.plot{1}.barcolor={'x3','x35','x28','x20','x15'}; % Overwrite the color property

fig.subplot{1,1}.plot{1}.text=dataValTXT; % Must be the same size as the data

fig.subplot{1,1}.plot{2}.x = 1:size(data,1);

fig.subplot{1,1}.plot{2}.y = errorbarData;

fig.subplot{1,1}.plot{2}.style='errorbar';

fig.subplot{1,1}.plot{2}.barlayout='grouped';

fig.subplot{1,1}.plot{2}.color='greyDark';

% Plot properties

% fig.subplot{1,1}.xlim=[datenum('14-Aug-2014') datenum('20-Aug-2014')];

% fig.subplot{1,1}.ylim=[0 100];

if productLength == 1

	fig.subplot{1,1}.title=['Product length: ' num2str(productLength) ' hour'];

else

	fig.subplot{1,1}.title=['Product length: ' num2str(productLength) ' hours'];

end

% fig.subplot{1,1}.title=['Mean annual control reserve potential by fluctuating RES generators based on the probilistic day-ahead forecast']; % optionaler Titel

% fig.subplot{1,1}.title=['Control reserve potential onshore wind 30 GW Germany \newline @' num2str(secLevel) '% and ' num2str(productLength) ' hour product length']; % optionaler Titel

fig.subplot{1,1}.xlabel='Level of reliability';

fig.subplot{1,1}.ylabel='% of actual feed-in';

% fig.subplot{1,1}.zlabel='Time';

fig.subplot{1,1}.legend={'Onshore Wind 30 GW Germany', ...

	'Onshore Wind 1 GW Pool', 'Offshore Wind 1 GW Germany', ...

	'Photovoltaic Systems 30 GW Germany', 'Photovoltaic Systems 1 GW Pool', };

% fig.subplot{1,1}.legend_orientation = 'vertical';

% fig.subplot{1,1}.colormap_label='Temperatur Gradient [°C pro h]';

fig.subplot{1,1}.xticks=fig.subplot{1,1}.plot{1}.x;

fig.subplot{1,1}.xticklabels={'95%','99%','99.5%','99.9%','99.99%','99.994%','99.999%'};

% fig.subplot{1,1}.xdatetick_format='dd/mm/yyyy';

fig.subplot{1,1}.xdatetick_rotate=90;

fig.height=8;

fig.width_columns=3;

[hFig, hAxes, hPlot] = styleplot(fig,'styleplot_format_PhD','wordwide');

%% Save

path = 'C:\Users\mjansen\Synchronisation\mjansen auf User_Artemis(R)\Dissertation\Dissertation\Figures\';

name = ['FigB-19_potentialsDA_' num2str(productLength) 'h'];

saveas(gcf,[path name '.fig']);

save([path name '_data.mat'],'fig');

Functions/Results_Evaluation/resPhD_offerableAmountID.m

clear;

clc;

%% Options

productLength = 1;

percentNegRP = 100;

market = 'TFC';

%% Load

preDefineDataSet = ([117:135]);

for iDataSet = 1:length(preDefineDataSet)

	

	[~, ~, ...

		~, ~, ...

		~, ~, ...

		~, ~, ...

		DataSet(iDataSet).offerRP, ~, ...

		DataSet(iDataSet).simRuns, ~, ...

		~, DataSet(iDataSet).info] ...

		= res_loadResults_noMOL('D:\Ergebnisse REBal',preDefineDataSet(iDataSet));

	

% 	[Prob_Forec_DA, Prob_Forec_ID, actualFeedIn, ecoImpact, ecoImpactTFC, error, ...

% 		errorRP, macroEcoImpact, offerRP, offerRP_Min, simRuns, violation, alteredMOList, infoRuns] = res_loadResults_noMOL('D:\Ergebnisse REBal',preDefineDataSet(iDataSet));

	

	runSetYear = regexp(DataSet(iDataSet).info.runSetName,'_','split');

	GenType{iDataSet} = runSetYear{1};

	PoolType{iDataSet} = runSetYear{2};

	Type{iDataSet} = [runSetYear{1:2}];

	for iYear = 1:length(runSetYear)

		try

			if ~isnan(str2double(runSetYear{iYear}))

				timeStampYear(iDataSet) = datenum([str2double(runSetYear{iYear}) 1 1])

			end

		end

	end

	

end

%% Other Vars

% Define Order

TypeAll = sort(unique([Type]));

genTypeAll = unique([GenType]);

poolTypeAll = unique([PoolType]);

[timeStampYearVec,~] = datevec(timeStampYear');

[years,~] = datevec(sort(unique(timeStampYear)));

secLevelAll = sort(unique([DataSet(1).simRuns.securityLevel]));

% secLevelAll = secLevelAll([1 2 4 6]); % Show on those security levels

%% Get DataSet

productLength = 1;

market = 'TFC';

neg = 100;

for iSec = 1:length(secLevelAll)

	

	secLevel = secLevelAll(iSec);

	

	for iDS = 1:length(DataSet)

		

		indexA = strcmp({DataSet(iDS).simRuns.market},market);

		indexB = [DataSet(iDS).simRuns.percentNegRP] == neg;

		indexC = [DataSet(iDS).simRuns.productLength] == productLength;

		indexD = [DataSet(iDS).simRuns.securityLevel] == secLevel;

		indexAll = indexA & indexB & indexC & indexD;

		

		offeredID = nansum(DataSet(iDS).offerRP(indexAll).timeSeries.secureIDCap);

		

		offeredIDTotal = nansum(DataSet(iDS).offerRP(indexAll).timeSeries.secureIDCap) ...

			.* DataSet(iDS).simRuns(indexAll).installedCapacity;

		

		totaloffered = nansum(DataSet(iDS).offerRP(indexAll).timeSeries.feedIn);

		

		

		if strcmp(Type(iDS),'OnWindBRD')

			shareOfFeed(timeStampYearVec(iDS)-2009,1) = offeredID/totaloffered;

			offerTotal(timeStampYearVec(iDS)-2009,1) = offeredIDTotal;

		elseif strcmp(Type(iDS),'OnWindWF')

			shareOfFeed(timeStampYearVec(iDS)-2009,2) = offeredID/totaloffered;

			offerTotal(timeStampYearVec(iDS)-2009,2) = offeredIDTotal;

		elseif strcmp(Type(iDS),'OfWindBRD')

			shareOfFeed(timeStampYearVec(iDS)-2009,3) = offeredID/totaloffered;

			offerTotal(timeStampYearVec(iDS)-2009,3) = offeredIDTotal;

		elseif strcmp(Type(iDS),'PVBRD')

			shareOfFeed(timeStampYearVec(iDS)-2009,4) = offeredID/totaloffered;

			offerTotal(timeStampYearVec(iDS)-2009,4) = offeredIDTotal;

		elseif strcmp(Type(iDS),'PVPVF')

			shareOfFeed(timeStampYearVec(iDS)-2009,5) = offeredID/totaloffered;

			offerTotal(timeStampYearVec(iDS)-2009,5) = offeredIDTotal;

		end

		

	end

	

	offerTotal(offerTotal == 0) = nan;

	shareOfFeed(shareOfFeed == 0) = nan;

	

	secLevelStruct(iSec).offerTotal = offerTotal;

	secLevelStruct(iSec).potShare = shareOfFeed;

	

end

%% Consolidate data

for iSec = 1:length(secLevelAll)

	secLevelStruct(iSec).mean = nanmean(secLevelStruct(iSec).potShare,1);

	secLevelStruct(iSec).meanVal = nanmean(secLevelStruct(iSec).offerTotal,1);

	secLevelStruct(iSec).max = nanmax(secLevelStruct(iSec).potShare,1);

	secLevelStruct(iSec).min = nanmin(secLevelStruct(iSec).potShare,1);

end

% Old

% data = [secLevelStruct(1).mean;secLevelStruct(2).mean;secLevelStruct(3).mean;secLevelStruct(4).mean] * 100;

data = [];

for iData = 1:length(secLevelStruct)

	data = [data;secLevelStruct(iData).mean];

end

data = data * 100; % So actually % are plotted rather than decimal numbers

rangeLow = [];

for iData = 1:length(secLevelStruct)

	rangeLow = [rangeLow;secLevelStruct(iData).min];

end

rangeLow = data-rangeLow * 100; % So actually % are plotted rather than decimal numbers

rangeHigh = [];

for iData = 1:length(secLevelStruct)

	rangeHigh = [rangeHigh;secLevelStruct(iData).max];

end

rangeHigh = data-rangeHigh * 100; % So actually % are plotted rather than decimal numbers

errorbarData = [data;rangeLow;rangeHigh];

% Values for bars

dataVal = [];

for iData = 1:length(secLevelStruct)

	dataVal = [dataVal;secLevelStruct(iData).meanVal];

end

dataVal = dataVal / 1000000 / 4; % So actually % are plotted rather than decimal numbers

dataValTXT = num2cell(dataVal);

textFormat = cell(size(dataValTXT));

textFormat(:) = {'%0.1f'};

dataValTXT = cellfun(@num2str,dataValTXT,textFormat,'UniformOutput',0);

for i = 1:size(dataValTXT,1)

	for j = 1:size(dataValTXT,2)

		if strcmp(dataValTXT(i,j),'NaN')

			dataValTXT{i,j} = [];

		end

	end

end

%% Plot with styleplot

fig = [];

% Define data sets

fig.subplot{1,1}.plot{1}.x = 1:size(data,1);

fig.subplot{1,1}.plot{1}.y = data;

fig.subplot{1,1}.plot{1}.style='bar';

fig.subplot{1,1}.plot{1}.barlayout='grouped';

fig.subplot{1,1}.plot{1}.barcolor={'x3','x35','x28','x20','x15'}; % Overwrite the color property

fig.subplot{1,1}.plot{1}.text=dataValTXT; % Must be the same size as the data

fig.subplot{1,1}.plot{2}.x = 1:size(data,1);

fig.subplot{1,1}.plot{2}.y = errorbarData;

fig.subplot{1,1}.plot{2}.style='errorbar';

fig.subplot{1,1}.plot{2}.barlayout='grouped';

fig.subplot{1,1}.plot{2}.color='greyDark';

% Plot properties

% fig.subplot{1,1}.xlim=[datenum('14-Aug-2014') datenum('20-Aug-2014')];

% fig.subplot{1,1}.ylim=[0 100];

if productLength == 1

	fig.subplot{1,1}.title=['Product length: ' num2str(productLength) ' hour'];

else

	fig.subplot{1,1}.title=['Product length: ' num2str(productLength) ' hours'];

end

% fig.subplot{1,1}.title=['Mean annual control reserve potential by fluctuating RES generators based on the probilistic day-ahead forecast']; % optionaler Titel

% fig.subplot{1,1}.title=['Control reserve potential onshore wind 30 GW Germany \newline @' num2str(secLevel) '% and ' num2str(productLength) ' hour product length']; % optionaler Titel

fig.subplot{1,1}.xlabel='Level of reliability';

fig.subplot{1,1}.ylabel='% of actual feed-in';

% fig.subplot{1,1}.zlabel='Time';

fig.subplot{1,1}.legend={'Onshore Wind 30 GW Germany', ...

	'Onshore Wind 1 GW Pool', 'Offshore Wind 1 GW Germany', ...

	'Photovoltaic Systems 30 GW Germany', 'Photovoltaic Systems 1 GW Pool', };

% fig.subplot{1,1}.legend_orientation = 'vertical';

% fig.subplot{1,1}.colormap_label='Temperatur Gradient [°C pro h]';

fig.subplot{1,1}.xticks=fig.subplot{1,1}.plot{1}.x;

fig.subplot{1,1}.xticklabels={'95%','99%','99.5%','99.9%','99.99%','99.994%','99.999%'};

% fig.subplot{1,1}.xdatetick_format='dd/mm/yyyy';

fig.subplot{1,1}.xdatetick_rotate=90;

fig.height=8;

fig.width_columns=3;

[hFig, hAxes, hPlot] = styleplot(fig,'styleplot_format_PhD','wordwide');

Functions/Results_Evaluation/resPhD_oppCostEnergyPrices.m

clear;

clc;

%% Options

productLength = 1;

percentNegRP = 100;

market = 'TFC';

%% Load

preDefineDataSet = ([117:135]);

for iDataSet = 1:length(preDefineDataSet)

	

	[~, ~, ...

		~, ~, ...

		~, ~, ...

		~, ~, ...

		DataSet(iDataSet).offerRP, ~, ...

		DataSet(iDataSet).simRuns, ~, ...

		~, DataSet(iDataSet).info] ...

		= res_loadResults_noMOL('D:\Ergebnisse REBal',preDefineDataSet(iDataSet));

	

% 	[Prob_Forec_DA, Prob_Forec_ID, actualFeedIn, ecoImpact, ecoImpactTFC, error, ...

% 		errorRP, macroEcoImpact, offerRP, offerRP_Min, simRuns, violation, alteredMOList, infoRuns] = res_loadResults_noMOL('D:\Ergebnisse REBal',preDefineDataSet(iDataSet));

	

	runSetYear = regexp(DataSet(iDataSet).info.runSetName,'_','split');

	GenType{iDataSet} = runSetYear{1};

	PoolType{iDataSet} = runSetYear{2};

	Type{iDataSet} = [runSetYear{1:2}];

	for iYear = 1:length(runSetYear)

		try

			if ~isnan(str2double(runSetYear{iYear}))

				timeStampYear(iDataSet) = datenum([str2double(runSetYear{iYear}) 1 1]);

			end

		end

	end

	

end

%% Other Vars

% Define Order

TypeAll = sort(unique([Type]));

genTypeAll = unique([GenType]);

poolTypeAll = unique([PoolType]);

[timeStampYearVec,~] = datevec(timeStampYear');

[years,~] = datevec(sort(unique(timeStampYear)));

secLevelAll = sort(unique([DataSet(1).simRuns.securityLevel]));

% secLevelAll = secLevelAll([6]); % Show on those security levels

%% Get DataSet

productLength = 1;

market = 'TFC';

pos = 100;

neg = 100;

for iSec = 1:length(secLevelAll)

	

	secLevel = secLevelAll(iSec);

	

	for iDS = 1:length(DataSet)

		

		indexA = strcmp({DataSet(iDS).simRuns.market},market);

		indexB = [DataSet(iDS).simRuns.percentPosRP] == pos;

		indexC = [DataSet(iDS).simRuns.productLength] == productLength;

		indexD = [DataSet(iDS).simRuns.securityLevel] == secLevel;

		indexAll = indexA & indexB & indexC & indexD;

		

		offerPricePos = [];

		offerPriceNeg = [];

		

		offerPricePos(:,1) ...

			= DataSet(iDS).offerRP(indexAll).BC.pos.capacity;

		offerPricePos(:,2) ...

			= DataSet(iDS).offerRP(indexAll).BC.pos.capacityPrice;

		offerPricePos(:,3) ...

			= DataSet(iDS).offerRP(indexAll).BC.pos.energyPrice;

		

		% When capacity is 0 then no price

		offerPricePos(offerPricePos(:,1) == 0,3) = nan;

		offerPricePos(offerPricePos(:,1) == 0,2) = nan;

		offerPricePos(offerPricePos(:,1) == 0,1) = nan;

		% When capacity price is below then price 0

% 		offerPriceBC(offerPriceBC(:,2) < 0,2) = 0;

		

% 		sortrows(offerPriceBC,1)

		indexB = [DataSet(iDS).simRuns.percentNegRP] == neg;

		indexAll = indexA & indexB & indexC & indexD;

		offerPriceNeg(:,1) ...

			= DataSet(iDS).offerRP(indexAll).BC.neg.capacity;

		offerPriceNeg(:,2) ...

			= DataSet(iDS).offerRP(indexAll).BC.neg.capacityPrice;

		offerPriceNeg(:,3) ...

			= DataSet(iDS).offerRP(indexAll).BC.neg.energyPrice;

		

		% When capacity is 0 then no price

		offerPriceNeg(offerPriceNeg(:,1) == 0,3) = nan;

		offerPriceNeg(offerPriceNeg(:,1) == 0,2) = nan;

		offerPriceNeg(offerPriceNeg(:,1) == 0,1) = nan;

		% When capacity price is below then price 0

% 		offerPriceAAP(offerPriceAAP(:,2) < 0,2) = 0;

		

% 		sortrows(offerPriceAAP,1)

		

		meanValCapPos = nansum(offerPricePos(:,2) .* offerPricePos(:,1)) ./ nansum(offerPricePos(:,1));

		meanValEnPos = nansum(offerPricePos(:,3) .* offerPricePos(:,1)) ./ nansum(offerPricePos(:,1));

		

		if strcmp(Type(iDS),'OnWindBRD')

			meanCapPricePos(timeStampYearVec(iDS)-2009,1) = meanValCapPos;

			meanEnPricePos(timeStampYearVec(iDS)-2009,1) = meanValEnPos;

		elseif strcmp(Type(iDS),'OnWindWF')

			meanCapPricePos(timeStampYearVec(iDS)-2009,2) = meanValCapPos;

			meanEnPricePos(timeStampYearVec(iDS)-2009,2) = meanValEnPos;

		elseif strcmp(Type(iDS),'OfWindBRD')

			meanCapPricePos(timeStampYearVec(iDS)-2009,3) = meanValCapPos;

			meanEnPricePos(timeStampYearVec(iDS)-2009,3) = meanValEnPos;

		elseif strcmp(Type(iDS),'PVBRD')

			meanCapPricePos(timeStampYearVec(iDS)-2009,4) = meanValCapPos;

			meanEnPricePos(timeStampYearVec(iDS)-2009,4) = meanValEnPos;

		elseif strcmp(Type(iDS),'PVPVF')

			meanCapPricePos(timeStampYearVec(iDS)-2009,5) = meanValCapPos;

			meanEnPricePos(timeStampYearVec(iDS)-2009,5) = meanValEnPos;

		end

		

		

		meanValCapNeg = nansum(offerPriceNeg(:,2) .* offerPriceNeg(:,1)) ./ nansum(offerPriceNeg(:,1));

		meanValEnNeg = nansum(offerPriceNeg(:,3) .* offerPriceNeg(:,1)) ./ nansum(offerPriceNeg(:,1));

		

		if strcmp(Type(iDS),'OnWindBRD')

			meanCapPriceNeg(timeStampYearVec(iDS)-2009,1) = meanValCapNeg;

			meanEnPriceNeg(timeStampYearVec(iDS)-2009,1) = meanValEnNeg;

		elseif strcmp(Type(iDS),'OnWindWF')

			meanCapPriceNeg(timeStampYearVec(iDS)-2009,2) = meanValCapNeg;

			meanEnPriceNeg(timeStampYearVec(iDS)-2009,2) = meanValEnNeg;

		elseif strcmp(Type(iDS),'OfWindBRD')

			meanCapPriceNeg(timeStampYearVec(iDS)-2009,3) = meanValCapNeg;

			meanEnPriceNeg(timeStampYearVec(iDS)-2009,3) = meanValEnNeg;

		elseif strcmp(Type(iDS),'PVBRD')

			meanCapPriceNeg(timeStampYearVec(iDS)-2009,4) = meanValCapNeg;

			meanEnPriceNeg(timeStampYearVec(iDS)-2009,4) = meanValEnNeg;

		elseif strcmp(Type(iDS),'PVPVF')

			meanCapPriceNeg(timeStampYearVec(iDS)-2009,5) = meanValCapNeg;

			meanEnPriceNeg(timeStampYearVec(iDS)-2009,5) = meanValEnNeg;

		end

		

	end

	

	meanCapPricePos(meanCapPricePos == 0) = nan;

	meanEnPricePos(meanEnPricePos == 0) = nan;

	meanCapPriceNeg(meanCapPriceNeg == 0) = nan;

	meanEnPriceNeg(meanEnPriceNeg == 0) = nan;

	

	secLevelStructPos(iSec).meanCapPrice = meanCapPricePos;	

	secLevelStructPos(iSec).meanEnPrice = meanEnPricePos;	

	secLevelStructNeg(iSec).meanCapPrice = meanCapPriceNeg;	

	secLevelStructNeg(iSec).meanEnPrice = meanEnPriceNeg;

	

end

%% Consolidate data

for iSec = 1:length(secLevelAll)

	secLevelStructPos(iSec).mean = nanmean(secLevelStructPos(iSec).meanEnPrice,1);

	secLevelStructPos(iSec).max = nanmax(secLevelStructPos(iSec).meanEnPrice,1);

	secLevelStructPos(iSec).min = nanmin(secLevelStructPos(iSec).meanEnPrice,1);

	secLevelStructNeg(iSec).mean = nanmean(secLevelStructNeg(iSec).meanEnPrice,1);

	secLevelStructNeg(iSec).max = nanmax(secLevelStructNeg(iSec).meanEnPrice,1);

	secLevelStructNeg(iSec).min = nanmin(secLevelStructNeg(iSec).meanEnPrice,1);

end

%% BC Data

dataPos = [];

for iData = 1:length(secLevelStructPos)

	dataPos = [dataPos;secLevelStructPos(iData).mean];

end

dataPos = dataPos; % So actually % are plotted rather than decimal numbers

rangeLowPos = [];

for iData = 1:length(secLevelStructPos)

	rangeLowPos = [rangeLowPos;secLevelStructPos(iData).min];

end

rangeLowPos = dataPos-rangeLowPos; % So actually % are plotted rather than decimal numbers

rangeHighPos = [];

for iData = 1:length(secLevelStructPos)

	rangeHighPos = [rangeHighPos;secLevelStructPos(iData).max];

end

rangeHighPos = dataPos-rangeHighPos; % So actually % are plotted rather than decimal numbers

errorbarDataPos = [dataPos;rangeLowPos;rangeHighPos];

%% AAP data

dataNeg = [];

for iData = 1:length(secLevelStructNeg)

	dataNeg = [dataNeg;secLevelStructNeg(iData).mean];

end

dataNeg = dataNeg; % So actually % are plotted rather than decimal numbers

rangeLowNeg = [];

for iData = 1:length(secLevelStructNeg)

	rangeLowNeg = [rangeLowNeg;secLevelStructNeg(iData).min];

end

rangeLowNeg = dataNeg-rangeLowNeg; % So actually % are plotted rather than decimal numbers

rangeHighNeg = [];

for iData = 1:length(secLevelStructNeg)

	rangeHighNeg = [rangeHighNeg;secLevelStructNeg(iData).max];

end

rangeHighNeg = dataNeg-rangeHighNeg; % So actually % are plotted rather than decimal numbers

errorbarDataNeg = [dataNeg;rangeLowNeg;rangeHighNeg];

% % Values for bars

% dataVal = [];

% for iData = 1:length(secLevelStruct)

% 	dataVal = [dataVal;secLevelStruct(iData).lostVal];

% end

% dataVal = dataVal / 1000; % So actually % are plotted rather than decimal numbers

% dataValTXT = num2cell(dataVal);

% textFormat = cell(size(dataValTXT));

% textFormat(:) = {'%0.1f'};

% dataValTXT = cellfun(@num2str,dataValTXT,textFormat,'UniformOutput',0);

%% Plot with styleplot

% First Data Set %%

fig = [];

% Define data sets

fig.subplot{1,1}.plot{1}.x = 1:size(dataNeg,1);

fig.subplot{1,1}.plot{1}.y = dataNeg;

fig.subplot{1,1}.plot{1}.style='bar';

fig.subplot{1,1}.plot{1}.barlayout='grouped';

fig.subplot{1,1}.plot{1}.barcolor={'x2','x34','x27','x19','x14'}; % Overwrite the color property

% Define data sets

fig.subplot{1,1}.plot{2}.x = 1:size(dataPos,1);

fig.subplot{1,1}.plot{2}.y = dataPos;

fig.subplot{1,1}.plot{2}.style='bar';

fig.subplot{1,1}.plot{2}.barlayout='grouped';

fig.subplot{1,1}.plot{2}.barcolor={'x3','x35','x28','x20','x15'}; % Overwrite the color property

% Error Bar

fig.subplot{1,1}.plot{3}.x = 1:size(dataNeg,1);

fig.subplot{1,1}.plot{3}.y = errorbarDataNeg;

fig.subplot{1,1}.plot{3}.style='errorbar';

fig.subplot{1,1}.plot{3}.barlayout='grouped';

fig.subplot{1,1}.plot{3}.color='red';

% Error Bar

fig.subplot{1,1}.plot{4}.x = 1:size(dataPos,1);

fig.subplot{1,1}.plot{4}.y = errorbarDataPos;

fig.subplot{1,1}.plot{4}.style='errorbar';

fig.subplot{1,1}.plot{4}.barlayout='grouped';

fig.subplot{1,1}.plot{4}.color='greyDark';

% Plot properties

% fig.subplot{1,1}.xlim=[datenum('14-Aug-2014') datenum('20-Aug-2014')];

fig.subplot{1,1}.ylim=[-150 150];

fig.subplot{1,1}.yticks=min(fig.subplot{1,1}.ylim):50:max(fig.subplot{1,1}.ylim);

% fig.subplot{1,1}.title=['Control reserve potential onshore wind 30 GW Germany']; % optionaler Titel

% fig.subplot{1,1}.title=['Mean annual control reserve potential by fluctuating RES generators based on the probilistic intraday forecast']; % optionaler Titel

% fig.subplot{1,1}.title=['Control reserve potential onshore wind 30 GW Germany \newline @' num2str(secLevel) '% and ' num2str(productLength) ' hour product length']; % optionaler Titel

fig.subplot{1,1}.xlabel='Level of reliability';

fig.subplot{1,1}.ylabel='Average energy price bids in EUR/MWh';

% fig.subplot{1,1}.zlabel='Time';

fig.subplot{1,1}.legend={'Onshore Wind 30 GW Germany negative energy dispatch bids', ...

	'Onshore Wind 1 GW Pool negative energy dispatch bids', ...

	'Offshore Wind 1 GW Germany negative energy dispatch bids', ...

	'Photovoltaic Systems 30 GW Germany negative energy dispatch bids', ...

	'Photovoltaic Systems 1 GW Pool negative energy dispatch bids', ...

	'Onshore Wind 30 GW Germany positive energy dispatch bids', ...

	'Onshore Wind 1 GW Pool positive energy dispatch bids', ...

	'Offshore Wind 1 GW Germany positive energy dispatch bids', ...

	'Photovoltaic Systems 30 GW Germany positive energy dispatch bids', ...

	'Photovoltaic Systems 1 GW Pool positive energy dispatch bids'};

% fig.subplot{1,1}.legend_orientation = 'vertical';

% fig.subplot{1,1}.colormap_label='Temperatur Gradient [°C pro h]';

fig.subplot{1,1}.xticks=fig.subplot{1,1}.plot{1}.x;

fig.subplot{1,1}.xticklabels={'95%','99%','99.5%','99.9%','99.99%','99.994%','99.999%'};

% fig.subplot{1,1}.xdatetick_format='dd/mm/yyyy';

fig.subplot{1,1}.xdatetick_rotate=90;

fig.height=15;

fig.width_columns=3;

[hFig, hAxes, hPlot] = styleplot(fig,'styleplot_format_PhD','word');

%% Save

path = 'C:\Users\mjansen\Synchronisation\mjansen auf User_Artemis(R)\Dissertation\Dissertation\Figures\5 Economics of fluctuating RES in the control reserve markets\';

name = 'Fig5-16_oppCost_engPrices_posNegRes_1h';

saveas(gcf,[path name '.fig']);

save([path name '_data.mat'],'fig');

Functions/Results_Evaluation/resPhD_oppCostPricesAAP_Scatter_positive.m

clear;

clc;

%% Options

productLength = 1;

%% Load

preDefineDataSet = ([117:135]);

for iDataSet = 1:length(preDefineDataSet)

	

	[~, ~, ...

		~, ~, ...

		~, ~, ...

		~, ~, ...

		DataSet(iDataSet).offerRP, ~, ...

		DataSet(iDataSet).simRuns, ~, ...

		~, DataSet(iDataSet).info] ...

		= res_loadResults_noMOL('D:\Ergebnisse REBal',preDefineDataSet(iDataSet));

	

% 	[Prob_Forec_DA, Prob_Forec_ID, actualFeedIn, ecoImpact, ecoImpactTFC, error, ...

% 		errorRP, macroEcoImpact, offerRP, offerRP_Min, simRuns, violation, alteredMOList, infoRuns] = res_loadResults_noMOL('D:\Ergebnisse REBal',preDefineDataSet(iDataSet));

	

	runSetYear = regexp(DataSet(iDataSet).info.runSetName,'_','split');

	GenType{iDataSet} = runSetYear{1};

	PoolType{iDataSet} = runSetYear{2};

	Type{iDataSet} = [runSetYear{1:2}];

	for iYear = 1:length(runSetYear)

		try

			if ~isnan(str2double(runSetYear{iYear}))

				timeStampYear(iDataSet) = datenum([str2double(runSetYear{iYear}) 1 1]);

			end

		end

	end

	

end

% % Select only valid datasets

% invalidDS = false(size(DataSet));

% for iDS = 1:length(DataSet)

% 	if length(DataSet(iDS).offerRP_Min) == 1

% 		invalidDS(iDS) = isnan(DataSet(iDS).offerRP_Min);

% 	end

% end

% DataSet = DataSet(~invalidDS);

% timeStampYear = timeStampYear(~invalidDS);

% GenType = GenType(~invalidDS);

% PoolType = PoolType(~invalidDS);

% Type = Type(~invalidDS);

%% Other Vars

% Define Order

TypeAll = sort(unique([Type]));

genTypeAll = unique([GenType]);

poolTypeAll = unique([PoolType]);

[timeStampYearVec,~] = datevec(timeStampYear');

[years,~] = datevec(sort(unique(timeStampYear)));

secLevelAll = sort(unique([DataSet(1).simRuns.securityLevel]));

secLevelAll = secLevelAll([1 6]); % Show on those security levels

prodLengthAll = sort(unique([DataSet(1).simRuns.productLength]));

prodLengthAll = prodLengthAll([1]); % Show on those security levels

%% Get DataSet

productLength = 1;

market = 'SFC';

pos = 100;

for iSec = 1:length(secLevelAll)

	

	secLevel = secLevelAll(iSec);

	for iPL = 1:length(prodLengthAll)

		

		productLength = prodLengthAll(iPL);

		

		for iDS = 1:length(DataSet)

			

			

			

			indexA = strcmp({DataSet(iDS).simRuns.market},market);

			indexB = [DataSet(iDS).simRuns.percentPosRP] == pos;

			indexC = [DataSet(iDS).simRuns.productLength] == productLength;

			indexD = [DataSet(iDS).simRuns.securityLevel] == secLevel;

			indexAll = indexA & indexB & indexC & indexD;

			

			cap = [];

			capPrice = [];

			

% 			cap(:,1) ...

% 				= DataSet(iDS).offerRP(indexAll).AAP.neg.capacity ...

% 				/ DataSet(iDS).simRuns(indexAll).installedCapacity;

			cap(:,1) ...

				= DataSet(iDS).offerRP(indexAll).AAP.pos.capacity;

			

			capPrice(:,1) ...

				= DataSet(iDS).offerRP(indexAll).AAP.pos.capacityPrice;	

			

			if strcmp(Type(iDS),'OnWindBRD')

				additionalIncomeCap{timeStampYearVec(iDS)-2009,1} = cap;

				additionalIncomeCapPrice{timeStampYearVec(iDS)-2009,1} = capPrice;

			elseif strcmp(Type(iDS),'OnWindWF')

				additionalIncomeCap{timeStampYearVec(iDS)-2009,2} = cap;

				additionalIncomeCapPrice{timeStampYearVec(iDS)-2009,2} = capPrice;

			elseif strcmp(Type(iDS),'OfWindBRD')

				additionalIncomeCap{timeStampYearVec(iDS)-2009,3} = cap;

				additionalIncomeCapPrice{timeStampYearVec(iDS)-2009,3} = capPrice;

			elseif strcmp(Type(iDS),'PVBRD')

				additionalIncomeCap{timeStampYearVec(iDS)-2009,4} = cap;

				additionalIncomeCapPrice{timeStampYearVec(iDS)-2009,4} = capPrice;

			elseif strcmp(Type(iDS),'PVPVF')

				additionalIncomeCap{timeStampYearVec(iDS)-2009,5} = cap;

				additionalIncomeCapPrice{timeStampYearVec(iDS)-2009,5} = capPrice;

			end

			

		end

	

% 	additionalIncomeCap(additionalIncomeCap == 0) = nan;

% 	additionalIncomeCapPrice(additionalIncomeCapPrice == 0) = nan;

	secLevelStruct(iSec,iPL).Cap = additionalIncomeCap;

	secLevelStruct(iSec,iPL).CapPrice= additionalIncomeCapPrice;

	end	

end

%% Consolidate data

for iPL = 1:size(secLevelStruct,2)

	

	for iSec = 1:size(secLevelStruct,1)

		

		CapJoint_Wind30(:,iSec) = [secLevelStruct(iSec,iPL).Cap{1,1};secLevelStruct(iSec,iPL).Cap{2,1}; ...

			secLevelStruct(iSec,iPL).Cap{3,1};secLevelStruct(iSec,iPL).Cap{4,1}; ...

			secLevelStruct(iSec,iPL).Cap{5,1}];

		

		CapPriceJoint_Wind30(:,iSec) = [secLevelStruct(iSec,iPL).CapPrice{1,1};secLevelStruct(iSec,iPL).CapPrice{2,1}; ...

			secLevelStruct(iSec,iPL).CapPrice{3,1};secLevelStruct(iSec,iPL).CapPrice{4,1}; ...

			secLevelStruct(iSec,iPL).CapPrice{5,1}];

		CapJoint_OffWind30(:,iSec) = [secLevelStruct(iSec,iPL).Cap{1,3};secLevelStruct(iSec,iPL).Cap{2,3}; ...

			secLevelStruct(iSec,iPL).Cap{3,3};secLevelStruct(iSec,iPL).Cap{4,3}; ...

			secLevelStruct(iSec,iPL).Cap{5,3}];

		

		CapPriceJoint_OffWind30(:,iSec) = [secLevelStruct(iSec,iPL).CapPrice{1,3};secLevelStruct(iSec,iPL).CapPrice{2,3}; ...

			secLevelStruct(iSec,iPL).CapPrice{3,3};secLevelStruct(iSec,iPL).CapPrice{4,3}; ...

			secLevelStruct(iSec,iPL).CapPrice{5,3}];

		

		CapJoint_PV30(:,iSec) = [secLevelStruct(iSec,iPL).Cap{1,4};secLevelStruct(iSec,iPL).Cap{2,4}; ...

			secLevelStruct(iSec,iPL).Cap{3,4};secLevelStruct(iSec,iPL).Cap{4,4}; ...

			secLevelStruct(iSec,iPL).Cap{5,4}];

		

		CapPriceJoint_PV30(:,iSec) = [secLevelStruct(iSec,iPL).CapPrice{1,4};secLevelStruct(iSec,iPL).CapPrice{2,4}; ...

			secLevelStruct(iSec,iPL).CapPrice{3,4};secLevelStruct(iSec,iPL).CapPrice{4,4}; ...

			secLevelStruct(iSec,iPL).CapPrice{5,4}];

		

	end

	

end

% loglog(CapJoint_Wind30(:,1),CapPriceJoint_Wind30(:,1),'x','color','g')

% loglog(CapJoint_Wind30(:,2),CapPriceJoint_Wind30(:,2),'x','color','r')

% loglog(CapJoint_PV30(:,1),CapPriceJoint_PV30(:,1),'x','color','y')

% loglog(CapJoint_PV30(:,2),CapPriceJoint_PV30(:,2),'x','color','m')

%% Plot with styleplot

fig = [];

% Define data sets

fig.subplot{1,1}.plot{1}.x = CapJoint_Wind30(:,1);

fig.subplot{1,1}.plot{1}.y = CapPriceJoint_Wind30(:,1);

fig.subplot{1,1}.plot{1}.style='loglog';

fig.subplot{1,1}.plot{1}.linestyle='none';

fig.subplot{1,1}.plot{1}.markerstyle = '.';

fig.subplot{1,1}.plot{1}.markersize = 2;

fig.subplot{1,1}.plot{1}.color='x3';

fig.subplot{1,1}.plot{2}.x = CapJoint_Wind30(:,2);

fig.subplot{1,1}.plot{2}.y = CapPriceJoint_Wind30(:,2);

fig.subplot{1,1}.plot{2}.style='loglog';

fig.subplot{1,1}.plot{2}.linestyle='none';

fig.subplot{1,1}.plot{2}.markerstyle = '.';

fig.subplot{1,1}.plot{2}.markersize = 2;

fig.subplot{1,1}.plot{2}.color='x2';

fig.subplot{1,1}.plot{3}.x = CapJoint_PV30(:,1);

fig.subplot{1,1}.plot{3}.y = CapPriceJoint_PV30(:,1);

fig.subplot{1,1}.plot{3}.style='loglog';

fig.subplot{1,1}.plot{3}.linestyle='none';

fig.subplot{1,1}.plot{3}.markerstyle = '.';

fig.subplot{1,1}.plot{3}.markersize = 2;

fig.subplot{1,1}.plot{3}.color='x20';

fig.subplot{1,1}.plot{4}.x = CapJoint_PV30(:,2);

fig.subplot{1,1}.plot{4}.y = CapPriceJoint_PV30(:,2);

fig.subplot{1,1}.plot{4}.style='loglog';

fig.subplot{1,1}.plot{4}.linestyle='none';

fig.subplot{1,1}.plot{4}.markerstyle = '.';

fig.subplot{1,1}.plot{4}.markersize = 2;

fig.subplot{1,1}.plot{4}.color='x19';

% fig.subplot{1,1}.plot{5}.x = CapJoint_PV30(:,1);

% fig.subplot{1,1}.plot{5}.y = CapPriceJoint_PV30(:,1);

% fig.subplot{1,1}.plot{5}.style='loglog';

% fig.subplot{1,1}.plot{5}.linestyle='none';

% fig.subplot{1,1}.plot{5}.markerstyle = '.';

% fig.subplot{1,1}.plot{5}.markersize = 2;

% fig.subplot{1,1}.plot{5}.color='x28';

%

% fig.subplot{1,1}.plot{6}.x = CapJoint_OffWind30(:,2);

% fig.subplot{1,1}.plot{6}.y = CapPriceJoint_OffWind30(:,2);

% fig.subplot{1,1}.plot{6}.style='loglog';

% fig.subplot{1,1}.plot{6}.linestyle='none';

% fig.subplot{1,1}.plot{6}.markerstyle = '.';

% fig.subplot{1,1}.plot{6}.markersize = 2;

% fig.subplot{1,1}.plot{6}.color='x27';

% Plot axes properties

fig.subplot{1,1}.xgrid = 'on';

xLimVal = [10 20000];

fig.subplot{1,1}.xlim=xLimVal;

yLimVal = [10 10000];

fig.subplot{1,1}.ylim=yLimVal;

% % Title subplots

% fig.subplot{1,1}.title=['Product length: One hour']; % optionaler Titel

% Axes labeling

fig.subplot{1,1}.xlabel='Offerable cacacity in MW';

fig.subplot{1,1}.ylabel='Capacity price in EUR/MW/h';

fig.subplot{1,1}.legend={'Onshore Wind 30 GW Germany 95%', ...

	'Onshore Wind 30 GW Germany 99.994%', ...

	'Photovoltaic Systems 30 GW Germany 95%', ...

	'Photovoltaic Systems 30 GW Germany 99.994%'};

fig.height=15;

fig.width_columns=3;

[hFig, hAxes, hPlot] = styleplot(fig,'styleplot_format_PhD','wordwide');

%% Save

path = 'C:\Users\mjansen\Synchronisation\mjansen auf User_Artemis(R)\Dissertation\Dissertation\Figures\5 Economics of fluctuating RES in the control reserve markets\';

name = 'FigB-25_opportunityCost_posReserveAAP_Scatter';

saveas(gcf,[path name '.fig']);

save([path name '_data.mat'],'fig');

Functions/Results_Evaluation/resPhD_oppCostPricesBC_Scatter_negative.m

clear;

clc;

%% Options

productLength = 1;

%% Load

preDefineDataSet = ([117:135]);

for iDataSet = 1:length(preDefineDataSet)

	

	[~, ~, ...

		~, ~, ...

		~, ~, ...

		~, ~, ...

		DataSet(iDataSet).offerRP, ~, ...

		DataSet(iDataSet).simRuns, ~, ...

		~, DataSet(iDataSet).info] ...

		= res_loadResults_noMOL('D:\Ergebnisse REBal',preDefineDataSet(iDataSet));

	

% 	[Prob_Forec_DA, Prob_Forec_ID, actualFeedIn, ecoImpact, ecoImpactTFC, error, ...

% 		errorRP, macroEcoImpact, offerRP, offerRP_Min, simRuns, violation, alteredMOList, infoRuns] = res_loadResults_noMOL('D:\Ergebnisse REBal',preDefineDataSet(iDataSet));

	

	runSetYear = regexp(DataSet(iDataSet).info.runSetName,'_','split');

	GenType{iDataSet} = runSetYear{1};

	PoolType{iDataSet} = runSetYear{2};

	Type{iDataSet} = [runSetYear{1:2}];

	for iYear = 1:length(runSetYear)

		try

			if ~isnan(str2double(runSetYear{iYear}))

				timeStampYear(iDataSet) = datenum([str2double(runSetYear{iYear}) 1 1]);

			end

		end

	end

	

end

% % Select only valid datasets

% invalidDS = false(size(DataSet));

% for iDS = 1:length(DataSet)

% 	if length(DataSet(iDS).offerRP_Min) == 1

% 		invalidDS(iDS) = isnan(DataSet(iDS).offerRP_Min);

% 	end

% end

% DataSet = DataSet(~invalidDS);

% timeStampYear = timeStampYear(~invalidDS);

% GenType = GenType(~invalidDS);

% PoolType = PoolType(~invalidDS);

% Type = Type(~invalidDS);

%% Other Vars

% Define Order

TypeAll = sort(unique([Type]));

genTypeAll = unique([GenType]);

poolTypeAll = unique([PoolType]);

[timeStampYearVec,~] = datevec(timeStampYear');

[years,~] = datevec(sort(unique(timeStampYear)));

secLevelAll = sort(unique([DataSet(1).simRuns.securityLevel]));

secLevelAll = secLevelAll([1 6]); % Show on those security levels

prodLengthAll = sort(unique([DataSet(1).simRuns.productLength]));

prodLengthAll = prodLengthAll([3]); % Show on those security levels

%% Get DataSet

productLength = 1;

market = 'SFC';

neg = 100;

for iSec = 1:length(secLevelAll)

	

	secLevel = secLevelAll(iSec);

	for iPL = 1:length(prodLengthAll)

		

		productLength = prodLengthAll(iPL);

		

		for iDS = 1:length(DataSet)

			

			

			

			indexA = strcmp({DataSet(iDS).simRuns.market},market);

			indexB = [DataSet(iDS).simRuns.percentNegRP] == neg;

			indexC = [DataSet(iDS).simRuns.productLength] == productLength;

			indexD = [DataSet(iDS).simRuns.securityLevel] == secLevel;

			indexAll = indexA & indexB & indexC & indexD;

			

			cap = [];

			capPrice = [];

			

% 			cap(:,1) ...

% 				= DataSet(iDS).offerRP(indexAll).BC.neg.capacity ...

% 				/ DataSet(iDS).simRuns(indexAll).installedCapacity;

			cap(:,1) ...

				= DataSet(iDS).offerRP(indexAll).BC.neg.capacity;

			

			capPrice(:,1) ...

				= DataSet(iDS).offerRP(indexAll).BC.neg.capacityPrice;	

			

			if strcmp(Type(iDS),'OnWindBRD')

				additionalIncomeCap{timeStampYearVec(iDS)-2009,1} = cap;

				additionalIncomeCapPrice{timeStampYearVec(iDS)-2009,1} = capPrice;

			elseif strcmp(Type(iDS),'OnWindWF')

				additionalIncomeCap{timeStampYearVec(iDS)-2009,2} = cap;

				additionalIncomeCapPrice{timeStampYearVec(iDS)-2009,2} = capPrice;

			elseif strcmp(Type(iDS),'OfWindBRD')

				additionalIncomeCap{timeStampYearVec(iDS)-2009,3} = cap;

				additionalIncomeCapPrice{timeStampYearVec(iDS)-2009,3} = capPrice;

			elseif strcmp(Type(iDS),'PVBRD')

				additionalIncomeCap{timeStampYearVec(iDS)-2009,4} = cap;

				additionalIncomeCapPrice{timeStampYearVec(iDS)-2009,4} = capPrice;

			elseif strcmp(Type(iDS),'PVPVF')

				additionalIncomeCap{timeStampYearVec(iDS)-2009,5} = cap;

				additionalIncomeCapPrice{timeStampYearVec(iDS)-2009,5} = capPrice;

			end

			

		end

	

% 	additionalIncomeCap(additionalIncomeCap == 0) = nan;

% 	additionalIncomeCapPrice(additionalIncomeCapPrice == 0) = nan;

	secLevelStruct(iSec,iPL).Cap = additionalIncomeCap;

	secLevelStruct(iSec,iPL).CapPrice= additionalIncomeCapPrice;

	end	

end

%% Consolidate data

for iPL = 1:size(secLevelStruct,2)

	

	for iSec = 1:size(secLevelStruct,1)

		

		CapJoint_Wind30(:,iSec) = [secLevelStruct(iSec,iPL).Cap{1,1};secLevelStruct(iSec,iPL).Cap{2,1}; ...

			secLevelStruct(iSec,iPL).Cap{3,1};secLevelStruct(iSec,iPL).Cap{4,1}; ...

			secLevelStruct(iSec,iPL).Cap{5,1}];

		

		CapPriceJoint_Wind30(:,iSec) = [secLevelStruct(iSec,iPL).CapPrice{1,1};secLevelStruct(iSec,iPL).CapPrice{2,1}; ...

			secLevelStruct(iSec,iPL).CapPrice{3,1};secLevelStruct(iSec,iPL).CapPrice{4,1}; ...

			secLevelStruct(iSec,iPL).CapPrice{5,1}];

		CapJoint_OffWind30(:,iSec) = [secLevelStruct(iSec,iPL).Cap{1,3};secLevelStruct(iSec,iPL).Cap{2,3}; ...

			secLevelStruct(iSec,iPL).Cap{3,3};secLevelStruct(iSec,iPL).Cap{4,3}; ...

			secLevelStruct(iSec,iPL).Cap{5,3}];

		

		CapPriceJoint_OffWind30(:,iSec) = [secLevelStruct(iSec,iPL).CapPrice{1,3};secLevelStruct(iSec,iPL).CapPrice{2,3}; ...

			secLevelStruct(iSec,iPL).CapPrice{3,3};secLevelStruct(iSec,iPL).CapPrice{4,3}; ...

			secLevelStruct(iSec,iPL).CapPrice{5,3}];

		

		CapJoint_PV30(:,iSec) = [secLevelStruct(iSec,iPL).Cap{1,4};secLevelStruct(iSec,iPL).Cap{2,4}; ...

			secLevelStruct(iSec,iPL).Cap{3,4};secLevelStruct(iSec,iPL).Cap{4,4}; ...

			secLevelStruct(iSec,iPL).Cap{5,4}];

		

		CapPriceJoint_PV30(:,iSec) = [secLevelStruct(iSec,iPL).CapPrice{1,4};secLevelStruct(iSec,iPL).CapPrice{2,4}; ...

			secLevelStruct(iSec,iPL).CapPrice{3,4};secLevelStruct(iSec,iPL).CapPrice{4,4}; ...

			secLevelStruct(iSec,iPL).CapPrice{5,4}];

		

	end

	

end

% loglog(CapJoint_Wind30(:,1),CapPriceJoint_Wind30(:,1),'x','color','g')

% loglog(CapJoint_Wind30(:,2),CapPriceJoint_Wind30(:,2),'x','color','r')

% loglog(CapJoint_PV30(:,1),CapPriceJoint_PV30(:,1),'x','color','y')

% loglog(CapJoint_PV30(:,2),CapPriceJoint_PV30(:,2),'x','color','m')

%% Plot with styleplot

fig = [];

% Define data sets

fig.subplot{1,1}.plot{1}.x = CapJoint_Wind30(:,1);

fig.subplot{1,1}.plot{1}.y = CapPriceJoint_Wind30(:,1);

fig.subplot{1,1}.plot{1}.style='loglog';

fig.subplot{1,1}.plot{1}.linestyle='none';

fig.subplot{1,1}.plot{1}.markerstyle = '.';

fig.subplot{1,1}.plot{1}.markersize = 2;

fig.subplot{1,1}.plot{1}.color='x3';

fig.subplot{1,1}.plot{2}.x = CapJoint_Wind30(:,2);

fig.subplot{1,1}.plot{2}.y = CapPriceJoint_Wind30(:,2);

fig.subplot{1,1}.plot{2}.style='loglog';

fig.subplot{1,1}.plot{2}.linestyle='none';

fig.subplot{1,1}.plot{2}.markerstyle = '.';

fig.subplot{1,1}.plot{2}.markersize = 2;

fig.subplot{1,1}.plot{2}.color='x2';

fig.subplot{1,1}.plot{3}.x = CapJoint_PV30(:,1);

fig.subplot{1,1}.plot{3}.y = CapPriceJoint_PV30(:,1);

fig.subplot{1,1}.plot{3}.style='loglog';

fig.subplot{1,1}.plot{3}.linestyle='none';

fig.subplot{1,1}.plot{3}.markerstyle = '.';

fig.subplot{1,1}.plot{3}.markersize = 2;

fig.subplot{1,1}.plot{3}.color='x20';

fig.subplot{1,1}.plot{4}.x = CapJoint_PV30(:,2);

fig.subplot{1,1}.plot{4}.y = CapPriceJoint_PV30(:,2);

fig.subplot{1,1}.plot{4}.style='loglog';

fig.subplot{1,1}.plot{4}.linestyle='none';

fig.subplot{1,1}.plot{4}.markerstyle = '.';

fig.subplot{1,1}.plot{4}.markersize = 2;

fig.subplot{1,1}.plot{4}.color='x19';

% fig.subplot{1,1}.plot{5}.x = CapJoint_PV30(:,1);

% fig.subplot{1,1}.plot{5}.y = CapPriceJoint_PV30(:,1);

% fig.subplot{1,1}.plot{5}.style='loglog';

% fig.subplot{1,1}.plot{5}.linestyle='none';

% fig.subplot{1,1}.plot{5}.markerstyle = '.';

% fig.subplot{1,1}.plot{5}.markersize = 2;

% fig.subplot{1,1}.plot{5}.color='x28';

%

% fig.subplot{1,1}.plot{6}.x = CapJoint_OffWind30(:,2);

% fig.subplot{1,1}.plot{6}.y = CapPriceJoint_OffWind30(:,2);

% fig.subplot{1,1}.plot{6}.style='loglog';

% fig.subplot{1,1}.plot{6}.linestyle='none';

% fig.subplot{1,1}.plot{6}.markerstyle = '.';

% fig.subplot{1,1}.plot{6}.markersize = 2;

% fig.subplot{1,1}.plot{6}.color='x27';

% Plot axes properties

fig.subplot{1,1}.xgrid = 'on';

xLimVal = [10 20000];

fig.subplot{1,1}.xlim=xLimVal;

yLimVal = [1 10000];

fig.subplot{1,1}.ylim=yLimVal;

% % Title subplots

% fig.subplot{1,1}.title=['Product length: One hour']; % optionaler Titel

% Axes labeling

fig.subplot{1,1}.xlabel='Offerable cacacity in MW';

fig.subplot{1,1}.ylabel='Capacity price in EUR/MW/h';

fig.subplot{1,1}.legend={'Onshore Wind 30 GW Germany 95%', ...

	'Onshore Wind 30 GW Germany 99.994%', ...

	'Photovoltaic Systems 30 GW Germany 95%', ...

	'Photovoltaic Systems 30 GW Germany 99.994%'};

fig.height=15;

fig.width_columns=3;

[hFig, hAxes, hPlot] = styleplot(fig,'styleplot_format_PhD','wordwide');

%% Save

path = 'C:\Users\mjansen\Synchronisation\mjansen auf User_Artemis(R)\Dissertation\Dissertation\Figures\5 Economics of fluctuating RES in the control reserve markets\';

name = 'Fig5-12_opportunityCost_negReserve_Scatter';

saveas(gcf,[path name '.fig']);

save([path name '_data.mat'],'fig');

Functions/Results_Evaluation/resPhD_oppCostPricesBC_Scatter_positive.m

clear;

clc;

%% Options

productLength = 1;

%% Load

preDefineDataSet = ([117:135]);

for iDataSet = 1:length(preDefineDataSet)

	

	[~, ~, ...

		~, ~, ...

		~, ~, ...

		~, ~, ...

		DataSet(iDataSet).offerRP, ~, ...

		DataSet(iDataSet).simRuns, ~, ...

		~, DataSet(iDataSet).info] ...

		= res_loadResults_noMOL('D:\Ergebnisse REBal',preDefineDataSet(iDataSet));

	

% 	[Prob_Forec_DA, Prob_Forec_ID, actualFeedIn, ecoImpact, ecoImpactTFC, error, ...

% 		errorRP, macroEcoImpact, offerRP, offerRP_Min, simRuns, violation, alteredMOList, infoRuns] = res_loadResults_noMOL('D:\Ergebnisse REBal',preDefineDataSet(iDataSet));

	

	runSetYear = regexp(DataSet(iDataSet).info.runSetName,'_','split');

	GenType{iDataSet} = runSetYear{1};

	PoolType{iDataSet} = runSetYear{2};

	Type{iDataSet} = [runSetYear{1:2}];

	for iYear = 1:length(runSetYear)

		try

			if ~isnan(str2double(runSetYear{iYear}))

				timeStampYear(iDataSet) = datenum([str2double(runSetYear{iYear}) 1 1]);

			end

		end

	end

	

end

% % Select only valid datasets

% invalidDS = false(size(DataSet));

% for iDS = 1:length(DataSet)

% 	if length(DataSet(iDS).offerRP_Min) == 1

% 		invalidDS(iDS) = isnan(DataSet(iDS).offerRP_Min);

% 	end

% end

% DataSet = DataSet(~invalidDS);

% timeStampYear = timeStampYear(~invalidDS);

% GenType = GenType(~invalidDS);

% PoolType = PoolType(~invalidDS);

% Type = Type(~invalidDS);

%% Other Vars

% Define Order

TypeAll = sort(unique([Type]));

genTypeAll = unique([GenType]);

poolTypeAll = unique([PoolType]);

[timeStampYearVec,~] = datevec(timeStampYear');

[years,~] = datevec(sort(unique(timeStampYear)));

secLevelAll = sort(unique([DataSet(1).simRuns.securityLevel]));

secLevelAll = secLevelAll([1 6]); % Show on those security levels

prodLengthAll = sort(unique([DataSet(1).simRuns.productLength]));

prodLengthAll = prodLengthAll([1]); % Show on those security levels

%% Get DataSet

productLength = 1;

market = 'SFC';

pos = 100;

for iSec = 1:length(secLevelAll)

	

	secLevel = secLevelAll(iSec);

	for iPL = 1:length(prodLengthAll)

		

		productLength = prodLengthAll(iPL);

		

		for iDS = 1:length(DataSet)

			

			

			

			indexA = strcmp({DataSet(iDS).simRuns.market},market);

			indexB = [DataSet(iDS).simRuns.percentPosRP] == pos;

			indexC = [DataSet(iDS).simRuns.productLength] == productLength;

			indexD = [DataSet(iDS).simRuns.securityLevel] == secLevel;

			indexAll = indexA & indexB & indexC & indexD;

			

			cap = [];

			capPrice = [];

			

% 			cap(:,1) ...

% 				= DataSet(iDS).offerRP(indexAll).BC.neg.capacity ...

% 				/ DataSet(iDS).simRuns(indexAll).installedCapacity;

			cap(:,1) ...

				= DataSet(iDS).offerRP(indexAll).BC.pos.capacity;

			

			capPrice(:,1) ...

				= DataSet(iDS).offerRP(indexAll).BC.pos.capacityPrice;	

			

			if strcmp(Type(iDS),'OnWindBRD')

				additionalIncomeCap{timeStampYearVec(iDS)-2009,1} = cap;

				additionalIncomeCapPrice{timeStampYearVec(iDS)-2009,1} = capPrice;

			elseif strcmp(Type(iDS),'OnWindWF')

				additionalIncomeCap{timeStampYearVec(iDS)-2009,2} = cap;

				additionalIncomeCapPrice{timeStampYearVec(iDS)-2009,2} = capPrice;

			elseif strcmp(Type(iDS),'OfWindBRD')

				additionalIncomeCap{timeStampYearVec(iDS)-2009,3} = cap;

				additionalIncomeCapPrice{timeStampYearVec(iDS)-2009,3} = capPrice;

			elseif strcmp(Type(iDS),'PVBRD')

				additionalIncomeCap{timeStampYearVec(iDS)-2009,4} = cap;

				additionalIncomeCapPrice{timeStampYearVec(iDS)-2009,4} = capPrice;

			elseif strcmp(Type(iDS),'PVPVF')

				additionalIncomeCap{timeStampYearVec(iDS)-2009,5} = cap;

				additionalIncomeCapPrice{timeStampYearVec(iDS)-2009,5} = capPrice;

			end

			

		end

	

% 	additionalIncomeCap(additionalIncomeCap == 0) = nan;

% 	additionalIncomeCapPrice(additionalIncomeCapPrice == 0) = nan;

	secLevelStruct(iSec,iPL).Cap = additionalIncomeCap;

	secLevelStruct(iSec,iPL).CapPrice= additionalIncomeCapPrice;

	end	

end

%% Consolidate data

for iPL = 1:size(secLevelStruct,2)

	

	for iSec = 1:size(secLevelStruct,1)

		

		CapJoint_Wind30(:,iSec) = [secLevelStruct(iSec,iPL).Cap{1,1};secLevelStruct(iSec,iPL).Cap{2,1}; ...

			secLevelStruct(iSec,iPL).Cap{3,1};secLevelStruct(iSec,iPL).Cap{4,1}; ...

			secLevelStruct(iSec,iPL).Cap{5,1}];

		

		CapPriceJoint_Wind30(:,iSec) = [secLevelStruct(iSec,iPL).CapPrice{1,1};secLevelStruct(iSec,iPL).CapPrice{2,1}; ...

			secLevelStruct(iSec,iPL).CapPrice{3,1};secLevelStruct(iSec,iPL).CapPrice{4,1}; ...

			secLevelStruct(iSec,iPL).CapPrice{5,1}];

		CapJoint_OffWind30(:,iSec) = [secLevelStruct(iSec,iPL).Cap{1,3};secLevelStruct(iSec,iPL).Cap{2,3}; ...

			secLevelStruct(iSec,iPL).Cap{3,3};secLevelStruct(iSec,iPL).Cap{4,3}; ...

			secLevelStruct(iSec,iPL).Cap{5,3}];

		

		CapPriceJoint_OffWind30(:,iSec) = [secLevelStruct(iSec,iPL).CapPrice{1,3};secLevelStruct(iSec,iPL).CapPrice{2,3}; ...

			secLevelStruct(iSec,iPL).CapPrice{3,3};secLevelStruct(iSec,iPL).CapPrice{4,3}; ...

			secLevelStruct(iSec,iPL).CapPrice{5,3}];

		

		CapJoint_PV30(:,iSec) = [secLevelStruct(iSec,iPL).Cap{1,4};secLevelStruct(iSec,iPL).Cap{2,4}; ...

			secLevelStruct(iSec,iPL).Cap{3,4};secLevelStruct(iSec,iPL).Cap{4,4}; ...

			secLevelStruct(iSec,iPL).Cap{5,4}];

		

		CapPriceJoint_PV30(:,iSec) = [secLevelStruct(iSec,iPL).CapPrice{1,4};secLevelStruct(iSec,iPL).CapPrice{2,4}; ...

			secLevelStruct(iSec,iPL).CapPrice{3,4};secLevelStruct(iSec,iPL).CapPrice{4,4}; ...

			secLevelStruct(iSec,iPL).CapPrice{5,4}];

		

	end

	

end

% loglog(CapJoint_Wind30(:,1),CapPriceJoint_Wind30(:,1),'x','color','g')

% loglog(CapJoint_Wind30(:,2),CapPriceJoint_Wind30(:,2),'x','color','r')

% loglog(CapJoint_PV30(:,1),CapPriceJoint_PV30(:,1),'x','color','y')

% loglog(CapJoint_PV30(:,2),CapPriceJoint_PV30(:,2),'x','color','m')

%% Plot with styleplot

fig = [];

% Define data sets

fig.subplot{1,1}.plot{1}.x = CapJoint_Wind30(:,1);

fig.subplot{1,1}.plot{1}.y = CapPriceJoint_Wind30(:,1);

fig.subplot{1,1}.plot{1}.style='loglog';

fig.subplot{1,1}.plot{1}.linestyle='none';

fig.subplot{1,1}.plot{1}.markerstyle = '.';

fig.subplot{1,1}.plot{1}.markersize = 4;

fig.subplot{1,1}.plot{1}.color='x3';

fig.subplot{1,1}.plot{2}.x = CapJoint_Wind30(:,2);

fig.subplot{1,1}.plot{2}.y = CapPriceJoint_Wind30(:,2);

fig.subplot{1,1}.plot{2}.style='loglog';

fig.subplot{1,1}.plot{2}.linestyle='none';

fig.subplot{1,1}.plot{2}.markerstyle = '.';

fig.subplot{1,1}.plot{2}.markersize = 4;

fig.subplot{1,1}.plot{2}.color='x2';

fig.subplot{1,1}.plot{3}.x = CapJoint_PV30(:,1);

fig.subplot{1,1}.plot{3}.y = CapPriceJoint_PV30(:,1);

fig.subplot{1,1}.plot{3}.style='loglog';

fig.subplot{1,1}.plot{3}.linestyle='none';

fig.subplot{1,1}.plot{3}.markerstyle = '.';

fig.subplot{1,1}.plot{3}.markersize = 4;

fig.subplot{1,1}.plot{3}.color='x20';

fig.subplot{1,1}.plot{4}.x = CapJoint_PV30(:,2);

fig.subplot{1,1}.plot{4}.y = CapPriceJoint_PV30(:,2);

fig.subplot{1,1}.plot{4}.style='loglog';

fig.subplot{1,1}.plot{4}.linestyle='none';

fig.subplot{1,1}.plot{4}.markerstyle = '.';

fig.subplot{1,1}.plot{4}.markersize = 4;

fig.subplot{1,1}.plot{4}.color='x19';

% fig.subplot{1,1}.plot{5}.x = CapJoint_PV30(:,1);

% fig.subplot{1,1}.plot{5}.y = CapPriceJoint_PV30(:,1);

% fig.subplot{1,1}.plot{5}.style='loglog';

% fig.subplot{1,1}.plot{5}.linestyle='none';

% fig.subplot{1,1}.plot{5}.markerstyle = '.';

% fig.subplot{1,1}.plot{5}.markersize = 2;

% fig.subplot{1,1}.plot{5}.color='x28';

%

% fig.subplot{1,1}.plot{6}.x = CapJoint_OffWind30(:,2);

% fig.subplot{1,1}.plot{6}.y = CapPriceJoint_OffWind30(:,2);

% fig.subplot{1,1}.plot{6}.style='loglog';

% fig.subplot{1,1}.plot{6}.linestyle='none';

% fig.subplot{1,1}.plot{6}.markerstyle = '.';

% fig.subplot{1,1}.plot{6}.markersize = 2;

% fig.subplot{1,1}.plot{6}.color='x27';

% Plot axes properties

fig.subplot{1,1}.xgrid = 'on';

xLimVal = [10 20000];

fig.subplot{1,1}.xlim=xLimVal;

yLimVal = [10 10000];

fig.subplot{1,1}.ylim=yLimVal;

% % Title subplots

% fig.subplot{1,1}.title=['Product length: One hour']; % optionaler Titel

% Axes labeling

fig.subplot{1,1}.xlabel='Offerable cacacity in MW';

fig.subplot{1,1}.ylabel='Capacity price in EUR/MW/h';

fig.subplot{1,1}.legend={'Onshore Wind 30 GW Germany 95%', ...

	'Onshore Wind 30 GW Germany 99.994%', ...

	'Photovoltaic Sytems 30 GW Germany 95%', ...

	'Photovoltaic Sytems 30 GW Germany 99.994%'};

fig.height=15;

fig.width_columns=3;

[hFig, hAxes, hPlot] = styleplot(fig,'styleplot_format_PhD','wordwide');

%% Save

path = 'C:\Users\mjansen\Synchronisation\mjansen auf User_Artemis(R)\Dissertation\Dissertation\Figures\5 Economics of fluctuating RES in the control reserve markets\';

name = 'Fig5-13_opportunityCost_posReserveBC_Scatter';

saveas(gcf,[path name '.fig']);

save([path name '_data.mat'],'fig');

Functions/Results_Evaluation/resPhD_oppCostPrices_negative.m

clear;

clc;

%% Options

productLength = 1;

percentNegRP = 100;

market = 'TFC';

%% Load

preDefineDataSet = ([117:135]);

for iDataSet = 1:length(preDefineDataSet)

	

	[~, ~, ...

		~, ~, ...

		~, ~, ...

		~, ~, ...

		DataSet(iDataSet).offerRP, ~, ...

		DataSet(iDataSet).simRuns, ~, ...

		~, DataSet(iDataSet).info] ...

		= res_loadResults_noMOL('D:\Ergebnisse REBal',preDefineDataSet(iDataSet));

	

% 	[Prob_Forec_DA, Prob_Forec_ID, actualFeedIn, ecoImpact, ecoImpactTFC, error, ...

% 		errorRP, macroEcoImpact, offerRP, offerRP_Min, simRuns, violation, alteredMOList, infoRuns] = res_loadResults_noMOL('D:\Ergebnisse REBal',preDefineDataSet(iDataSet));

	

	runSetYear = regexp(DataSet(iDataSet).info.runSetName,'_','split');

	GenType{iDataSet} = runSetYear{1};

	PoolType{iDataSet} = runSetYear{2};

	Type{iDataSet} = [runSetYear{1:2}];

	for iYear = 1:length(runSetYear)

		try

			if ~isnan(str2double(runSetYear{iYear}))

				timeStampYear(iDataSet) = datenum([str2double(runSetYear{iYear}) 1 1]);

			end

		end

	end

	

end

%% Other Vars

% Define Order

TypeAll = sort(unique([Type]));

genTypeAll = unique([GenType]);

poolTypeAll = unique([PoolType]);

[timeStampYearVec,~] = datevec(timeStampYear');

[years,~] = datevec(sort(unique(timeStampYear)));

secLevelAll = sort(unique([DataSet(1).simRuns.securityLevel]));

% secLevelAll = secLevelAll([6]); % Show on those security levels

%% Get DataSet

productLength = 1;

market = 'TFC';

neg = 100;

for iSec = 1:length(secLevelAll)

	

	secLevel = secLevelAll(iSec);

	

	for iDS = 1:length(DataSet)

		

		indexA = strcmp({DataSet(iDS).simRuns.market},market);

		indexB = [DataSet(iDS).simRuns.percentNegRP] == neg;

		indexC = [DataSet(iDS).simRuns.productLength] == productLength;

		indexD = [DataSet(iDS).simRuns.securityLevel] == secLevel;

		indexAll = indexA & indexB & indexC & indexD;

		

		offerPriceBC = [];

		offerPriceAAP = [];

		

		offerPriceBC(:,1) ...

			= DataSet(iDS).offerRP(indexAll).BC.neg.capacity;

		offerPriceBC(:,2) ...

			= DataSet(iDS).offerRP(indexAll).BC.neg.capacityPrice;

		offerPriceBC(:,3) ...

			= DataSet(iDS).offerRP(indexAll).BC.neg.energyPrice;

		

		offerPriceBC(offerPriceBC(:,1) == 0,3) = nan;

		offerPriceBC(offerPriceBC(:,1) == 0,2) = nan;

		offerPriceBC(offerPriceBC(:,1) == 0,1) = nan;

% 		sortrows(offerPriceBC,1)

		

		offerPriceAAP(:,1) ...

			= DataSet(iDS).offerRP(indexAll).AAP.neg.capacity;

		offerPriceAAP(:,2) ...

			= DataSet(iDS).offerRP(indexAll).AAP.neg.capacityPrice;

		offerPriceAAP(:,3) ...

			= DataSet(iDS).offerRP(indexAll).AAP.neg.energyPrice;

		

		offerPriceAAP(offerPriceAAP(:,1) == 0,3) = nan;

		offerPriceAAP(offerPriceAAP(:,1) == 0,2) = nan;

		offerPriceAAP(offerPriceAAP(:,1) == 0,1) = nan;

% 		sortrows(offerPriceAAP,1)

		

		meanValCapBC = nansum(offerPriceBC(:,2) .* offerPriceBC(:,1)) ./ nansum(offerPriceBC(:,1));

		meanValEnBC = nansum(offerPriceBC(:,3) .* offerPriceBC(:,1)) ./ nansum(offerPriceBC(:,1));

		

		if strcmp(Type(iDS),'OnWindBRD')

			meanCapPriceBC(timeStampYearVec(iDS)-2009,1) = meanValCapBC;

			meanEnPriceBC(timeStampYearVec(iDS)-2009,1) = meanValEnBC;

		elseif strcmp(Type(iDS),'OnWindWF')

			meanCapPriceBC(timeStampYearVec(iDS)-2009,2) = meanValCapBC;

			meanEnPriceBC(timeStampYearVec(iDS)-2009,2) = meanValEnBC;

		elseif strcmp(Type(iDS),'OfWindBRD')

			meanCapPriceBC(timeStampYearVec(iDS)-2009,3) = meanValCapBC;

			meanEnPriceBC(timeStampYearVec(iDS)-2009,3) = meanValEnBC;

		elseif strcmp(Type(iDS),'PVBRD')

			meanCapPriceBC(timeStampYearVec(iDS)-2009,4) = meanValCapBC;

			meanEnPriceBC(timeStampYearVec(iDS)-2009,4) = meanValEnBC;

		elseif strcmp(Type(iDS),'PVPVF')

			meanCapPriceBC(timeStampYearVec(iDS)-2009,5) = meanValCapBC;

			meanEnPriceBC(timeStampYearVec(iDS)-2009,5) = meanValEnBC;

		end

		

		

		meanValCapAAP = nansum(offerPriceAAP(:,2) .* offerPriceAAP(:,1)) ./ nansum(offerPriceAAP(:,1));

		meanValEnAAP = nansum(offerPriceAAP(:,3) .* offerPriceAAP(:,1)) ./ nansum(offerPriceAAP(:,1));

		

		if strcmp(Type(iDS),'OnWindBRD')

			meanCapPriceAAP(timeStampYearVec(iDS)-2009,1) = meanValCapAAP;

			meanEnPriceAAP(timeStampYearVec(iDS)-2009,1) = meanValEnAAP;

		elseif strcmp(Type(iDS),'OnWindWF')

			meanCapPriceAAP(timeStampYearVec(iDS)-2009,2) = meanValCapAAP;

			meanEnPriceAAP(timeStampYearVec(iDS)-2009,2) = meanValEnAAP;

		elseif strcmp(Type(iDS),'OfWindBRD')

			meanCapPriceAAP(timeStampYearVec(iDS)-2009,3) = meanValCapAAP;

			meanEnPriceAAP(timeStampYearVec(iDS)-2009,3) = meanValEnAAP;

		elseif strcmp(Type(iDS),'PVBRD')

			meanCapPriceAAP(timeStampYearVec(iDS)-2009,4) = meanValCapAAP;

			meanEnPriceAAP(timeStampYearVec(iDS)-2009,4) = meanValEnAAP;

		elseif strcmp(Type(iDS),'PVPVF')

			meanCapPriceAAP(timeStampYearVec(iDS)-2009,5) = meanValCapAAP;

			meanEnPriceAAP(timeStampYearVec(iDS)-2009,5) = meanValEnAAP;

		end

		

	end

	

	meanCapPriceBC(meanCapPriceBC == 0) = nan;

	meanEnPriceBC(meanEnPriceBC == 0) = nan;

	meanCapPriceAAP(meanCapPriceAAP == 0) = nan;

	meanEnPriceAAP(meanEnPriceAAP == 0) = nan;

	

	secLevelStructBC(iSec).meanCapPrice = meanCapPriceBC;	

	secLevelStructBC(iSec).meanEnPrice = meanEnPriceBC;	

	secLevelStructAAP(iSec).meanCapPrice = meanCapPriceAAP;	

	secLevelStructAAP(iSec).meanEnPrice = meanEnPriceAAP;

	

end

%% Consolidate data

for iSec = 1:length(secLevelAll)

	secLevelStructBC(iSec).mean = nanmean(secLevelStructBC(iSec).meanCapPrice,1);

	secLevelStructBC(iSec).max = nanmax(secLevelStructBC(iSec).meanCapPrice,1);

	secLevelStructBC(iSec).min = nanmin(secLevelStructBC(iSec).meanCapPrice,1);

	secLevelStructAAP(iSec).mean = nanmean(secLevelStructAAP(iSec).meanCapPrice,1);

	secLevelStructAAP(iSec).max = nanmax(secLevelStructAAP(iSec).meanCapPrice,1);

	secLevelStructAAP(iSec).min = nanmin(secLevelStructAAP(iSec).meanCapPrice,1);

end

%% BC Data

dataBC = [];

for iData = 1:length(secLevelStructBC)

	dataBC = [dataBC;secLevelStructBC(iData).mean];

end

dataBC = dataBC; % So actually % are plotted rather than decimal numbers

rangeLowBC = [];

for iData = 1:length(secLevelStructBC)

	rangeLowBC = [rangeLowBC;secLevelStructBC(iData).min];

end

rangeLowBC = dataBC-rangeLowBC; % So actually % are plotted rather than decimal numbers

rangeHighBC = [];

for iData = 1:length(secLevelStructBC)

	rangeHighBC = [rangeHighBC;secLevelStructBC(iData).max];

end

rangeHighBC = dataBC-rangeHighBC; % So actually % are plotted rather than decimal numbers

errorbarDataBC = [dataBC;rangeLowBC;rangeHighBC];

%% AAP data

dataAAP = [];

for iData = 1:length(secLevelStructAAP)

	dataAAP = [dataAAP;secLevelStructAAP(iData).mean];

end

dataAAP = dataAAP; % So actually % are plotted rather than decimal numbers

rangeLowAAP = [];

for iData = 1:length(secLevelStructAAP)

	rangeLowAAP = [rangeLowAAP;secLevelStructAAP(iData).min];

end

rangeLowAAP = dataAAP-rangeLowAAP; % So actually % are plotted rather than decimal numbers

rangeHighAAP = [];

for iData = 1:length(secLevelStructAAP)

	rangeHighAAP = [rangeHighAAP;secLevelStructAAP(iData).max];

end

rangeHighAAP = dataAAP-rangeHighAAP; % So actually % are plotted rather than decimal numbers

errorbarDataAAP = [dataAAP;rangeLowAAP;rangeHighAAP];

% % Values for bars

% dataVal = [];

% for iData = 1:length(secLevelStruct)

% 	dataVal = [dataVal;secLevelStruct(iData).lostVal];

% end

% dataVal = dataVal / 1000; % So actually % are plotted rather than decimal numbers

% dataValTXT = num2cell(dataVal);

% textFormat = cell(size(dataValTXT));

% textFormat(:) = {'%0.1f'};

% dataValTXT = cellfun(@num2str,dataValTXT,textFormat,'UniformOutput',0);

%% Plot with styleplot

fig = [];

% Define data sets

fig.subplot{1,1}.plot{1}.x = 1:size(dataBC,1);

fig.subplot{1,1}.plot{1}.y = dataBC;

fig.subplot{1,1}.plot{1}.style='bar';

fig.subplot{1,1}.plot{1}.barlayout='grouped';

fig.subplot{1,1}.plot{1}.barcolor={'x3','x35','x28','x20','x15'}; % Overwrite the color property

% fig.subplot{1,1}.plot{1}.text=dataValTXT; % Must be the same size as the data

% Define data sets

fig.subplot{1,1}.plot{2}.x = 1:size(dataAAP,1);

fig.subplot{1,1}.plot{2}.y = dataAAP;

fig.subplot{1,1}.plot{2}.style='bar';

fig.subplot{1,1}.plot{2}.barlayout='grouped';

fig.subplot{1,1}.plot{2}.barcolor={'x2','x34','x27','x19','x14'}; % Overwrite the color property

% Error Bar

fig.subplot{1,1}.plot{3}.x = 1:size(dataBC,1);

fig.subplot{1,1}.plot{3}.y = errorbarDataBC;

fig.subplot{1,1}.plot{3}.style='errorbar';

fig.subplot{1,1}.plot{3}.barlayout='grouped';

fig.subplot{1,1}.plot{3}.color='greyDark';

% Error Bar

fig.subplot{1,1}.plot{4}.x = 1:size(dataAAP,1);

fig.subplot{1,1}.plot{4}.y = errorbarDataAAP;

fig.subplot{1,1}.plot{4}.style='errorbar';

fig.subplot{1,1}.plot{4}.barlayout='grouped';

fig.subplot{1,1}.plot{4}.color='greyDark';

% Plot properties

% fig.subplot{1,1}.xlim=[datenum('14-Aug-2014') datenum('20-Aug-2014')];

fig.subplot{1,1}.ylim=[0 150];

fig.subplot{1,1}.yticks=min(fig.subplot{1,1}.ylim):25:max(fig.subplot{1,1}.ylim);

% fig.subplot{1,1}.title=['Control reserve potential onshore wind 30 GW Germany']; % optionaler Titel

% fig.subplot{1,1}.title=['Mean annual control reserve potential by fluctuating RES generators based on the probilistic intraday forecast']; % optionaler Titel

% fig.subplot{1,1}.title=['Control reserve potential onshore wind 30 GW Germany \newline @' num2str(secLevel) '% and ' num2str(productLength) ' hour product length']; % optionaler Titel

fig.subplot{1,1}.xlabel='Level of reliability';

fig.subplot{1,1}.ylabel='Average capacity price EUR/MW/h';

% fig.subplot{1,1}.zlabel='Time';

fig.subplot{1,1}.legend={'Onshore Wind 30 GW Germany balance control capacity bids', ...

	'Onshore Wind 1 GW Pool balance control capacity bids', ...

	'Offshore Wind 1 GW Germany balance control capacity bids', ...

	'Photovoltaic Systems 30 GW Germany balance control capacity bids', ...

	'Photovoltaic Systems 1 GW Pool balance control capacity bids', ...

	'Onshore Wind 30 GW Germany available active power capacity bids', ...

	'Onshore Wind 1 GW Pool available active power capacity bids', ...

	'Offshore Wind 1 GW Germany available active power capacity bids', ...

	'Photovoltaic Systems 30 GW Germany available active power capacity bids', ...

	'Photovoltaic Systems 1 GW Pool available active power capacity bids'};

% fig.subplot{1,1}.legend_orientation = 'vertical';

% fig.subplot{1,1}.colormap_label='Temperatur Gradient [°C pro h]';

fig.subplot{1,1}.xticks=fig.subplot{1,1}.plot{1}.x;

fig.subplot{1,1}.xticklabels={'95%','99%','99.5%','99.9%','99.99%','99.994%','99.999%'};

% fig.subplot{1,1}.xdatetick_format='dd/mm/yyyy';

fig.subplot{1,1}.xdatetick_rotate=90;

fig.height=15;

fig.width_columns=3;

[hFig, hAxes, hPlot] = styleplot(fig,'styleplot_format_PhD','word');

%% Save

path = 'C:\Users\mjansen\Synchronisation\mjansen auf User_Artemis(R)\Dissertation\Dissertation\Figures\5 Economics of fluctuating RES in the control reserve markets\';

name = 'Fig5-14_oppCost_capPrices_negRes_1h';

saveas(gcf,[path name '.fig']);

save([path name '_data.mat'],'fig');

Functions/Results_Evaluation/resPhD_oppCostPrices_positive.m

clear;

clc;

%% Options

productLength = 1;

percentNegRP = 100;

market = 'TFC';

%% Load

preDefineDataSet = ([117:135]);

for iDataSet = 1:length(preDefineDataSet)

	

	[~, ~, ...

		~, ~, ...

		~, ~, ...

		~, ~, ...

		DataSet(iDataSet).offerRP, ~, ...

		DataSet(iDataSet).simRuns, ~, ...

		~, DataSet(iDataSet).info] ...

		= res_loadResults_noMOL('D:\Ergebnisse REBal',preDefineDataSet(iDataSet));

	

% 	[Prob_Forec_DA, Prob_Forec_ID, actualFeedIn, ecoImpact, ecoImpactTFC, error, ...

% 		errorRP, macroEcoImpact, offerRP, offerRP_Min, simRuns, violation, alteredMOList, infoRuns] = res_loadResults_noMOL('D:\Ergebnisse REBal',preDefineDataSet(iDataSet));

	

	runSetYear = regexp(DataSet(iDataSet).info.runSetName,'_','split');

	GenType{iDataSet} = runSetYear{1};

	PoolType{iDataSet} = runSetYear{2};

	Type{iDataSet} = [runSetYear{1:2}];

	for iYear = 1:length(runSetYear)

		try

			if ~isnan(str2double(runSetYear{iYear}))

				timeStampYear(iDataSet) = datenum([str2double(runSetYear{iYear}) 1 1]);

			end

		end

	end

	

end

%% Other Vars

% Define Order

TypeAll = sort(unique([Type]));

genTypeAll = unique([GenType]);

poolTypeAll = unique([PoolType]);

[timeStampYearVec,~] = datevec(timeStampYear');

[years,~] = datevec(sort(unique(timeStampYear)));

secLevelAll = sort(unique([DataSet(1).simRuns.securityLevel]));

% secLevelAll = secLevelAll([6]); % Show on those security levels

%% Get DataSet

productLength = 1;

market = 'TFC';

pos = 100;

for iSec = 1:length(secLevelAll)

	

	secLevel = secLevelAll(iSec);

	

	for iDS = 1:length(DataSet)

		

		indexA = strcmp({DataSet(iDS).simRuns.market},market);

		indexB = [DataSet(iDS).simRuns.percentPosRP] == pos;

		indexC = [DataSet(iDS).simRuns.productLength] == productLength;

		indexD = [DataSet(iDS).simRuns.securityLevel] == secLevel;

		indexAll = indexA & indexB & indexC & indexD;

		

		offerPriceBC = [];

		offerPriceAAP = [];

		

		offerPriceBC(:,1) ...

			= DataSet(iDS).offerRP(indexAll).BC.pos.capacity;

		offerPriceBC(:,2) ...

			= DataSet(iDS).offerRP(indexAll).BC.pos.capacityPrice;

		offerPriceBC(:,3) ...

			= DataSet(iDS).offerRP(indexAll).BC.pos.energyPrice;

		

		% When capacity is 0 then no price

		offerPriceBC(offerPriceBC(:,1) == 0,3) = nan;

		offerPriceBC(offerPriceBC(:,1) == 0,2) = nan;

		offerPriceBC(offerPriceBC(:,1) == 0,1) = nan;

		% When capacity price is below then price 0

% 		offerPriceBC(offerPriceBC(:,2) < 0,2) = 0;

		

% 		sortrows(offerPriceBC,1)

		

		offerPriceAAP(:,1) ...

			= DataSet(iDS).offerRP(indexAll).AAP.pos.capacity;

		offerPriceAAP(:,2) ...

			= DataSet(iDS).offerRP(indexAll).AAP.pos.capacityPrice;

		offerPriceAAP(:,3) ...

			= DataSet(iDS).offerRP(indexAll).AAP.pos.energyPrice;

		

		% When capacity is 0 then no price

		offerPriceAAP(offerPriceAAP(:,1) == 0,3) = nan;

		offerPriceAAP(offerPriceAAP(:,1) == 0,2) = nan;

		offerPriceAAP(offerPriceAAP(:,1) == 0,1) = nan;

		% When capacity price is below then price 0

% 		offerPriceAAP(offerPriceAAP(:,2) < 0,2) = 0;

		

% 		sortrows(offerPriceAAP,1)

		

		meanValCapBC = nansum(offerPriceBC(:,2) .* offerPriceBC(:,1)) ./ nansum(offerPriceBC(:,1));

		meanValEnBC = nansum(offerPriceBC(:,3) .* offerPriceBC(:,1)) ./ nansum(offerPriceBC(:,1));

		

		if strcmp(Type(iDS),'OnWindBRD')

			meanCapPriceBC(timeStampYearVec(iDS)-2009,1) = meanValCapBC;

			meanEnPriceBC(timeStampYearVec(iDS)-2009,1) = meanValEnBC;

		elseif strcmp(Type(iDS),'OnWindWF')

			meanCapPriceBC(timeStampYearVec(iDS)-2009,2) = meanValCapBC;

			meanEnPriceBC(timeStampYearVec(iDS)-2009,2) = meanValEnBC;

		elseif strcmp(Type(iDS),'OfWindBRD')

			meanCapPriceBC(timeStampYearVec(iDS)-2009,3) = meanValCapBC;

			meanEnPriceBC(timeStampYearVec(iDS)-2009,3) = meanValEnBC;

		elseif strcmp(Type(iDS),'PVBRD')

			meanCapPriceBC(timeStampYearVec(iDS)-2009,4) = meanValCapBC;

			meanEnPriceBC(timeStampYearVec(iDS)-2009,4) = meanValEnBC;

		elseif strcmp(Type(iDS),'PVPVF')

			meanCapPriceBC(timeStampYearVec(iDS)-2009,5) = meanValCapBC;

			meanEnPriceBC(timeStampYearVec(iDS)-2009,5) = meanValEnBC;

		end

		

		

		meanValCapAAP = nansum(offerPriceAAP(:,2) .* offerPriceAAP(:,1)) ./ nansum(offerPriceAAP(:,1));

		meanValEnAAP = nansum(offerPriceAAP(:,3) .* offerPriceAAP(:,1)) ./ nansum(offerPriceAAP(:,1));

		

		if strcmp(Type(iDS),'OnWindBRD')

			meanCapPriceAAP(timeStampYearVec(iDS)-2009,1) = meanValCapAAP;

			meanEnPriceAAP(timeStampYearVec(iDS)-2009,1) = meanValEnAAP;

		elseif strcmp(Type(iDS),'OnWindWF')

			meanCapPriceAAP(timeStampYearVec(iDS)-2009,2) = meanValCapAAP;

			meanEnPriceAAP(timeStampYearVec(iDS)-2009,2) = meanValEnAAP;

		elseif strcmp(Type(iDS),'OfWindBRD')

			meanCapPriceAAP(timeStampYearVec(iDS)-2009,3) = meanValCapAAP;

			meanEnPriceAAP(timeStampYearVec(iDS)-2009,3) = meanValEnAAP;

		elseif strcmp(Type(iDS),'PVBRD')

			meanCapPriceAAP(timeStampYearVec(iDS)-2009,4) = meanValCapAAP;

			meanEnPriceAAP(timeStampYearVec(iDS)-2009,4) = meanValEnAAP;

		elseif strcmp(Type(iDS),'PVPVF')

			meanCapPriceAAP(timeStampYearVec(iDS)-2009,5) = meanValCapAAP;

			meanEnPriceAAP(timeStampYearVec(iDS)-2009,5) = meanValEnAAP;

		end

		

	end

	

	meanCapPriceBC(meanCapPriceBC == 0) = nan;

	meanEnPriceBC(meanEnPriceBC == 0) = nan;

	meanCapPriceAAP(meanCapPriceAAP == 0) = nan;

	meanEnPriceAAP(meanEnPriceAAP == 0) = nan;

	

	secLevelStructBC(iSec).meanCapPrice = meanCapPriceBC;	

	secLevelStructBC(iSec).meanEnPrice = meanEnPriceBC;	

	secLevelStructAAP(iSec).meanCapPrice = meanCapPriceAAP;	

	secLevelStructAAP(iSec).meanEnPrice = meanEnPriceAAP;

	

end

%% Consolidate data

for iSec = 1:length(secLevelAll)

	secLevelStructBC(iSec).mean = nanmean(secLevelStructBC(iSec).meanCapPrice,1);

	secLevelStructBC(iSec).max = nanmax(secLevelStructBC(iSec).meanCapPrice,1);

	secLevelStructBC(iSec).min = nanmin(secLevelStructBC(iSec).meanCapPrice,1);

	secLevelStructAAP(iSec).mean = nanmean(secLevelStructAAP(iSec).meanCapPrice,1);

	secLevelStructAAP(iSec).max = nanmax(secLevelStructAAP(iSec).meanCapPrice,1);

	secLevelStructAAP(iSec).min = nanmin(secLevelStructAAP(iSec).meanCapPrice,1);

end

%% BC Data

dataBC = [];

for iData = 1:length(secLevelStructBC)

	dataBC = [dataBC;secLevelStructBC(iData).mean];

end

dataBC = dataBC; % So actually % are plotted rather than decimal numbers

rangeLowBC = [];

for iData = 1:length(secLevelStructBC)

	rangeLowBC = [rangeLowBC;secLevelStructBC(iData).min];

end

rangeLowBC = dataBC-rangeLowBC; % So actually % are plotted rather than decimal numbers

rangeHighBC = [];

for iData = 1:length(secLevelStructBC)

	rangeHighBC = [rangeHighBC;secLevelStructBC(iData).max];

end

rangeHighBC = dataBC-rangeHighBC; % So actually % are plotted rather than decimal numbers

errorbarDataBC = [dataBC;rangeLowBC;rangeHighBC];

%% AAP data

dataAAP = [];

for iData = 1:length(secLevelStructAAP)

	dataAAP = [dataAAP;secLevelStructAAP(iData).mean];

end

dataAAP = dataAAP; % So actually % are plotted rather than decimal numbers

rangeLowAAP = [];

for iData = 1:length(secLevelStructAAP)

	rangeLowAAP = [rangeLowAAP;secLevelStructAAP(iData).min];

end

rangeLowAAP = dataAAP-rangeLowAAP; % So actually % are plotted rather than decimal numbers

rangeHighAAP = [];

for iData = 1:length(secLevelStructAAP)

	rangeHighAAP = [rangeHighAAP;secLevelStructAAP(iData).max];

end

rangeHighAAP = dataAAP-rangeHighAAP; % So actually % are plotted rather than decimal numbers

errorbarDataAAP = [dataAAP;rangeLowAAP;rangeHighAAP];

% % Values for bars

% dataVal = [];

% for iData = 1:length(secLevelStruct)

% 	dataVal = [dataVal;secLevelStruct(iData).lostVal];

% end

% dataVal = dataVal / 1000; % So actually % are plotted rather than decimal numbers

% dataValTXT = num2cell(dataVal);

% textFormat = cell(size(dataValTXT));

% textFormat(:) = {'%0.1f'};

% dataValTXT = cellfun(@num2str,dataValTXT,textFormat,'UniformOutput',0);

%% Plot with styleplot

% First Data Set %%

% Define data sets

fig.subplot{1,1}.plot{1}.x = 1:size(dataBC,1);

fig.subplot{1,1}.plot{1}.y = dataBC;

fig.subplot{1,1}.plot{1}.style='bar';

fig.subplot{1,1}.plot{1}.barlayout='grouped';

fig.subplot{1,1}.plot{1}.barcolor={'x3','x35','x28','x20','x15'}; % Overwrite the color property

% fig.subplot{1,1}.plot{1}.text=dataValTXT; % Must be the same size as the data

% Define data sets

fig.subplot{1,1}.plot{2}.x = 1:size(dataAAP,1);

fig.subplot{1,1}.plot{2}.y = dataAAP;

fig.subplot{1,1}.plot{2}.style='bar';

fig.subplot{1,1}.plot{2}.barlayout='grouped';

fig.subplot{1,1}.plot{2}.barcolor={'x2','x34','x27','x19','x14'}; % Overwrite the color property

% Error Bar

fig.subplot{1,1}.plot{3}.x = 1:size(dataBC,1);

fig.subplot{1,1}.plot{3}.y = errorbarDataBC;

fig.subplot{1,1}.plot{3}.style='errorbar';

fig.subplot{1,1}.plot{3}.barlayout='grouped';

fig.subplot{1,1}.plot{3}.color='greyDark';

% Error Bar

fig.subplot{1,1}.plot{4}.x = 1:size(dataAAP,1);

fig.subplot{1,1}.plot{4}.y = errorbarDataAAP;

fig.subplot{1,1}.plot{4}.style='errorbar';

fig.subplot{1,1}.plot{4}.barlayout='grouped';

fig.subplot{1,1}.plot{4}.color='red';

% Plot properties

% fig.subplot{1,1}.xlim=[datenum('14-Aug-2014') datenum('20-Aug-2014')];

fig.subplot{1,1}.ylim=[0 250];

fig.subplot{1,1}.yticks=min(fig.subplot{1,1}.ylim):25:max(fig.subplot{1,1}.ylim);

% fig.subplot{1,1}.title=['Control reserve potential onshore wind 30 GW Germany']; % optionaler Titel

% fig.subplot{1,1}.title=['Mean annual control reserve potential by fluctuating RES generators based on the probilistic intraday forecast']; % optionaler Titel

% fig.subplot{1,1}.title=['Control reserve potential onshore wind 30 GW Germany \newline @' num2str(secLevel) '% and ' num2str(productLength) ' hour product length']; % optionaler Titel

fig.subplot{1,1}.xlabel='Level of reliability';

fig.subplot{1,1}.ylabel='Average capacity price EUR/MW/h';

% fig.subplot{1,1}.zlabel='Time';

fig.subplot{1,1}.legend={'Onshore Wind 30 GW Germany balance control capacity bids', ...

	'Onshore Wind 1 GW Pool balance control capacity bids', ...

	'Offshore Wind 1 GW Germany balance control capacity bids', ...

	'Photovoltaic Systems 30 GW Germany balance control capacity bids', ...

	'Photovoltaic Systems 1 GW Pool balance control capacity bids', ...

	'Onshore Wind 30 GW Germany available active power capacity bids', ...

	'Onshore Wind 1 GW Pool available active power capacity bids', ...

	'Offshore Wind 1 GW Germany available active power capacity bids', ...

	'Photovoltaic Systems 30 GW Germany available active power capacity bids', ...

	'Photovoltaic Systems 1 GW Pool available active power capacity bids'};

% fig.subplot{1,1}.legend_orientation = 'vertical';

% fig.subplot{1,1}.colormap_label='Temperatur Gradient [°C pro h]';

fig.subplot{1,1}.xticks=fig.subplot{1,1}.plot{1}.x;

fig.subplot{1,1}.xticklabels={'95%','99%','99.5%','99.9%','99.99%','99.994%','99.999%'};

% fig.subplot{1,1}.xdatetick_format='dd/mm/yyyy';

fig.subplot{1,1}.xdatetick_rotate=90;

fig.height=15;

fig.width_columns=3;

[hFig, hAxes, hPlot] = styleplot(fig,'styleplot_format_PhD','word');

%% Save

path = 'C:\Users\mjansen\Synchronisation\mjansen auf User_Artemis(R)\Dissertation\Dissertation\Figures\5 Economics of fluctuating RES in the control reserve markets\';

name = 'Fig5-15_oppCost_capPrices_posRes_1h';

saveas(gcf,[path name '.fig']);

save([path name '_data.mat'],'fig');

Functions/Results_Evaluation/resPhD_PDF_CDF.m

clear;

clc;

%% Load

startX = 0;

endX = 100;

mean = mean([startX endX]);

x_in = startX:2:endX;

pdf = gauss_kk(x_in,mean,10);

cdf = cumsum(pdf);

%% Initialize Figure

% fhgColors.greyDark

clearvars fig

% First Data Set %%

fig.subplot{1,1}.plot{1}.x = x_in;

fig.subplot{1,1}.plot{1}.y = pdf;

fig.subplot{1,1}.plot{1}.style='plot';

fig.subplot{1,1}.plot{1}.color='x35';

fig.subplot{1,1}.plot{2}.x = x_in;

fig.subplot{1,1}.plot{2}.y = cdf;

fig.subplot{1,1}.plot{2}.style='plot';

fig.subplot{1,1}.plot{2}.color='x10';

% fig.subplot{1,1}.xlim=[min(actualFeedIn.time)+123 min(actualFeedIn.time)+126];

fig.subplot{1,1}.ylim=[0 1];

% fig.subplot{1,1}.title='PV 30 GW Germany'; % optionaler Titel

% fig.subplot{1,1}.xlabel='Time';

fig.subplot{1,1}.ylabel='Probability';

% fig.subplot{1,1}.zlabel='Time';

fig.subplot{1,1}.legend={'Probability density function (PDF)','Cumulative distribution function (CDF)'};

fig.subplot{1,1}.legend_orientation = 'vertical';

% fig.subplot{1,1}.colormap_label='Temperatur Gradient [°C pro h]';

% fig.subplot{1,1}.xdatetick_format='mm/yyyy';

fig.height=7;

fig.width_columns=3;

styleplot(fig,'styleplot\styleplot_format_PhD','word')

Functions/Results_Evaluation/resPhD_plotFIT.m

clear

clc

%% Create Data

% Large scale PV systems

PV_open.time = [datenum([2004 1 1 0 0 0]);datenum([2005 1 1 0 0 0]); ...

	datenum([2006 1 1 0 0 0]);datenum([2007 1 1 0 0 0]); ...

	datenum([2008 1 1 0 0 0]);datenum([2009 1 1 0 0 0]);...

	datenum([2010 1 1 0 0 0]);datenum([2010 7 1 0 0 0]); ...

	datenum([2010 10 1 0 0 0]);datenum([2011 1 1 0 0 0]); ...

	datenum([2012 1 1 0 0 0]);datenum([2012 4 1 0 0 0]);

	datenum([2012 5 1 0 0 0]);datenum([2012 6 1 0 0 0]);

	datenum([2012 7 1 0 0 0]);datenum([2012 8 1 0 0 0]);

	datenum([2012 9 1 0 0 0]);datenum([2012 10 1 0 0 0]);

	datenum([2012 11 1 0 0 0]);datenum([2012 12 1 0 0 0]);

	datenum([2013 1 1 0 0 0]);datenum([2013 2 1 0 0 0]);

	datenum([2013 3 1 0 0 0]);datenum([2013 4 1 0 0 0]);

	datenum([2013 5 1 0 0 0]);datenum([2013 6 1 0 0 0]);

	datenum([2013 7 1 0 0 0]);datenum([2013 8 1 0 0 0]);

	datenum([2013 9 1 0 0 0]);datenum([2013 10 1 0 0 0]);

	datenum([2013 11 1 0 0 0]);datenum([2013 12 1 0 0 0]);

	datenum([2014 1 1 0 0 0]);datenum([2014 2 1 0 0 0]);

	datenum([2014 3 1 0 0 0]);datenum([2014 4 1 0 0 0]);

	datenum([2014 5 1 0 0 0]);datenum([2014 6 1 0 0 0]);

	datenum([2014 7 1 0 0 0]);datenum([2014 8 1 0 0 0]);

	datenum([2014 9 1 0 0 0]);datenum([2014 10 1 0 0 0]);

	datenum([2014 11 1 0 0 0]);datenum([2014 12 1 0 0 0])];

	

PV_open.data = [45.7;43.42;40.6;37.96;35.49;31.94;28.43;25.02;24.26;21.11;17.94; ...

13.5;13.37;13.23;13.1;12.97;12.84;12.71;12.39;12.08; ...

11.78;11.52;11.27;11.02;10.82;10.63;10.44;10.25;10.06;9.88;9.74;9.61; ...

9.47;9.38;9.28;9.19;9.10;9.01;8.92;8.83;8.79;8.76;8.74;8.72] * 10;

% Wind Onshore: http://www.google.de/imgres?imgurl=http%3A%2F%2Fwindmonitor.iwes.fraunhofer.de%2Fopencms%2Fexport%2Fsites%2Fwindmonitor%2Fimg%2F79_Einspeiseverguetung_EEG_Foerderung_Offshore_Windenergie.jpg&imgrefurl=http%3A%2F%2Fwindmonitor.iwes.fraunhofer.de%2Fwindmonitor_de%2F4_Offshore%2F6_foerderbedingungen%2F1_einspeiseverguetung%2F&h=696&w=1017&tbnid=XGv0d8LlHiB12M%3A&docid=K0vCBO8TkhGVTM&ei=PSYqVvq7CsmisgGZkKtY&tbm=isch&iact=rc&uact=3&dur=571&page=1&start=0&ndsp=25&ved=0CC0QrQMwBWoVChMIus7rr8rYyAIVSZEsCh0ZyAoL

data_Onshore = ...

roundn(reshape([2004;8.71;5.49

2005;8.55;5.39

2006;8.36;5.3

2007;8.2;5.17

2008;8.07;5.07

2009;7.88;4.98

2010;9.09;4.98

2011;9.03;4.91

2012;8.93;4.85

2013;8.84;4.78

2014;8.68;4.72

2015;8.9;4.94

2016;8.87;4.94

2017;8.71;4.85

2018;8.58;4.78

2019;8.48;4.69

2020;8.33;4.63],3,[])',-2);

Wind_onshore.time = datenum([data_Onshore(:,1) ones(length(data_Onshore(:,1)),2)]);

Wind_onshore.data_intitialFIT = data_Onshore(:,2) * 10;

Wind_onshore.data_baseFIT = data_Onshore(:,3) * 10;

% Wind Offshore: http://www.google.de/imgres?imgurl=http%3A%2F%2Fwindmonitor.iwes.fraunhofer.de%2Fopencms%2Fexport%2Fsites%2Fwindmonitor%2Fimg%2F79_Einspeiseverguetung_EEG_Foerderung_Offshore_Windenergie.jpg&imgrefurl=http%3A%2F%2Fwindmonitor.iwes.fraunhofer.de%2Fwindmonitor_de%2F4_Offshore%2F6_foerderbedingungen%2F1_einspeiseverguetung%2F&h=696&w=1017&tbnid=XGv0d8LlHiB12M%3A&docid=K0vCBO8TkhGVTM&ei=PSYqVvq7CsmisgGZkKtY&tbm=isch&iact=rc&uact=3&dur=571&page=1&start=0&ndsp=25&ved=0CC0QrQMwBWoVChMIus7rr8rYyAIVSZEsCh0ZyAoL

data_Offshore = ...

roundn(reshape(...

[2004;nan;6.2

2005;nan;6.2

2006;nan;6.2

2007;nan;6.2

2008;nan;6.1

2009;15;5.9

2010;15;3.5

2011;15;3.5

2012;15;3.5

2013;15;3.5

2014;15;3.5

2015;15.4;3.9

2016;15.4;3.9

2017;15.4;3.9

2018;14.9;3.9

2019;14.9;3.9

2020;14.4;3.9

2021;14.4;3.9]...

,3,[])',-2);

Wind_offshore.time = datenum([data_Offshore(:,1) ones(length(data_Offshore(:,1)),2)]);

Wind_offshore.data_intitialFIT = data_Offshore(:,2) * 10;

Wind_offshore.data_baseFIT = data_Offshore(:,3) * 10;

%% Plot with styleplot

% First Data Set %%

% Define data sets

fig.subplot{1,1}.plot{1}.x = PV_open.time;

fig.subplot{1,1}.plot{1}.y = PV_open.data;

fig.subplot{1,1}.plot{1}.style='stairs';

fig.subplot{1,1}.plot{1}.color='x15';

% fig.subplot{1,1}.plot{1}.linewidth=5;

% fig.subplot{1,1}.plot{1}.linestyle='--';

fig.subplot{1,1}.plot{2}.x = Wind_onshore.time;

fig.subplot{1,1}.plot{2}.y = Wind_onshore.data_intitialFIT;

fig.subplot{1,1}.plot{2}.style='stairs';

fig.subplot{1,1}.plot{2}.color='x3';

fig.subplot{1,1}.plot{3}.x = Wind_onshore.time;

fig.subplot{1,1}.plot{3}.y = Wind_onshore.data_baseFIT;

fig.subplot{1,1}.plot{3}.style='stairs';

fig.subplot{1,1}.plot{3}.color='x3';

fig.subplot{1,1}.plot{3}.linestyle='--';

fig.subplot{1,1}.plot{4}.x = Wind_offshore.time;

fig.subplot{1,1}.plot{4}.y = Wind_offshore.data_intitialFIT;

fig.subplot{1,1}.plot{4}.style='stairs';

fig.subplot{1,1}.plot{4}.color='x28';

fig.subplot{1,1}.plot{5}.x = Wind_offshore.time;

fig.subplot{1,1}.plot{5}.y = Wind_offshore.data_baseFIT;

fig.subplot{1,1}.plot{5}.style='stairs';

fig.subplot{1,1}.plot{5}.color='x28';

fig.subplot{1,1}.plot{5}.linestyle='--';

% Plot properties

fig.subplot{1,1}.xlim=[datenum('01-Jan-2009') datenum('1-Jan-2015')];

fig.subplot{1,1}.ylim=[0 300];

fig.subplot{1,1}.title=['Development of feed-in tariff (FIT) of fluctuating RES']; % optionaler Titel

fig.subplot{1,1}.xlabel='Year';

fig.subplot{1,1}.ylabel='Feed-in tariff in EUR/MWh';

% fig.subplot{1,1}.zlabel='Time';

fig.subplot{1,1}.legend={'Photovoltaic systems open field', ...

	'Onshore wind initial FIT', 'Onshore wind base FIT', ...

	'Offshore wind initial FIT', 'Offshore wind base FIT'};

% fig.subplot{1,1}.legend_orientation = 'vertical';

% fig.subplot{1,1}.colormap_label='Temperatur Gradient [°C pro h]';

fig.subplot{1,1}.yticks= [0:25:300];

fig.subplot{1,1}.xticks= datenum([(2009:2015)' ones(length((2009:2015)),2)]);

fig.subplot{1,1}.xticklabels=datestr(fig.subplot{1,1}.xticks,'yyyy');

% fig.subplot{1,1}.xdatetick_format='dd/mm/yyyy';

fig.subplot{1,1}.xdatetick_rotate=90;

fig.height=12;

fig.width_columns=3;

[hFig, hAxes, hPlot] = styleplot(fig,'styleplot_format_PhD','word');

Functions/Results_Evaluation/resPhD_plot_capSFC_neg.m

clear

clc

%% Create Data

[moSFC,~] = loadControlReserve_Secondary_MerritOrder

% Get data

for iSFC = 1:length(moSFC)

	

	time(iSFC,1) = moSFC(1,iSFC).start;

	

	moLength = moSFC(1,iSFC).end - moSFC(1,iSFC).start;

	

	maxData(iSFC,1) = max(moSFC(1,iSFC).neg.capacityPrice) * moLength;

	minData(iSFC,1) = min(moSFC(1,iSFC).neg.capacityPrice) * moLength;

	

	

	meanData(iSFC,1) = sum(moSFC(1,iSFC).neg.capacityPrice ...

		.* moSFC(1,iSFC).neg.capacity) / sum(moSFC(1,iSFC).neg.capacity)...

		* moLength;

	

	

	moCap = sortMOCapacityPrice(moSFC(1,iSFC));

	cumSumCap = cumsum(moCap.neg.capacity);

	quant025 = max(cumSumCap) * 0.25;

	quant075 = max(cumSumCap) * 0.75;

	quant005 = max(cumSumCap) * 0.05;

	quant095 = max(cumSumCap) * 0.95;

	

	

	x025Data(iSFC,1) = moCap.neg.capacityPrice(find(cumSumCap > quant025,1,'first')) * moLength;

	x075Data(iSFC,1) = moCap.neg.capacityPrice(find(cumSumCap > quant075,1,'first')) * moLength;

	

	x005Data(iSFC,1) = moCap.neg.capacityPrice(find(cumSumCap > quant005,1,'first')) * moLength;

	x095Data(iSFC,1) = moCap.neg.capacityPrice(find(cumSumCap > quant095,1,'first')) * moLength;

	

end

daysAvg = 7;

[timeDown,maxDown] = downsampleData(time,maxData,3*daysAvg,'max');

[timeDown,minDown] = downsampleData(time,minData,3*daysAvg,'min');

[timeDown,meanDown] = downsampleData(time,meanData,3*daysAvg,'mean');

[timeDown,x025DataDown] = downsampleData(time,x025Data,3*daysAvg,'mean');

[timeDown,x075DataDown] = downsampleData(time,x075Data,3*daysAvg,'mean');

[timeDown,x005DataDown] = downsampleData(time,x005Data,3*daysAvg,'mean');

[timeDown,x095DataDown] = downsampleData(time,x095Data,3*daysAvg,'mean');

% Extrapolate to regain xtick information

timeStampNew = (min(timeDown):1:max(timeDown))';

[timeStampNew, mean] = interp2Timestamp(timeStampNew, timeDown, meanDown);

%% Plot with styleplot

fig = [];

% Entire Data Range

fig.subplot{1,1}.plot{1}.x = [timeDown;flipud(timeDown)];

fig.subplot{1,1}.plot{1}.y = [maxDown;flipud(minDown)];

fig.subplot{1,1}.plot{1}.style='area';

fig.subplot{1,1}.plot{1}.color='grey';

% 5% to 95%

fig.subplot{1,1}.plot{2}.x = [timeDown;flipud(timeDown)];

fig.subplot{1,1}.plot{2}.y = [x095DataDown;flipud(x005DataDown)];

fig.subplot{1,1}.plot{2}.style='area';

fig.subplot{1,1}.plot{2}.color='greyDark2';

% 25% to 75%

fig.subplot{1,1}.plot{3}.x = [timeDown;flipud(timeDown)];

fig.subplot{1,1}.plot{3}.y = [x075DataDown;flipud(x025DataDown)];

fig.subplot{1,1}.plot{3}.style='area';

fig.subplot{1,1}.plot{3}.color='greyDark4';

% Capacity weighted average

fig.subplot{1,1}.plot{4}.x = timeStampNew;

fig.subplot{1,1}.plot{4}.y = mean;

fig.subplot{1,1}.plot{4}.style='plot';

fig.subplot{1,1}.plot{4}.color='x35';

% Plot properties

fig.subplot{1,1}.xlim=[datenum([2009 1 1]) datenum([2015 3 1])];

fig.subplot{1,1}.ylim=[0 300];

% fig.subplot{1,1}.title=['Annual frequency of balancing energy price reBAP'];

fig.subplot{1,1}.xlabel='Year';

fig.subplot{1,1}.ylabel='Capacity price in EUR/MW/h';

fig.subplot{1,1}.title='Average capacity prices for negative secondary control reserve';

fig.subplot{1,1}.legend{1}='Complete price range';

fig.subplot{1,1}.legend{2}='5 % to 95 % percentile';

fig.subplot{1,1}.legend{3}='25 % to 75 % percentile';

fig.subplot{1,1}.legend{4}='Capacity weighted average';

fig.subplot{1,1}.xticks=datenum([(2009:2015)' ones(length((2009:2015)'),2)]);

fig.subplot{1,1}.xdatetick_format='yyyy';

fig.height=10;

fig.width_columns=3;

[hFig, hAxes, hPlot] = styleplot(fig,'styleplot_format_PhD','wordwide');

Functions/Results_Evaluation/resPhD_plot_capSFC_pos.m

clear

clc

%% Create Data

[moSFC,~] = loadControlReserve_Secondary_MerritOrder;

% Get data

for iSFC = 1:length(moSFC)

	

	time(iSFC,1) = moSFC(1,iSFC).start;

	

	moLength = moSFC(1,iSFC).end - moSFC(1,iSFC).start;

	

	maxData(iSFC,1) = max(moSFC(1,iSFC).pos.capacityPrice) * moLength;

	minData(iSFC,1) = min(moSFC(1,iSFC).pos.capacityPrice) * moLength;

	

	

	meanData(iSFC,1) = sum(moSFC(1,iSFC).pos.capacityPrice ...

		.* moSFC(1,iSFC).pos.capacity) / sum(moSFC(1,iSFC).pos.capacity)...

		* moLength;

	

	

	moCap = sortMOCapacityPrice(moSFC(1,iSFC));

	cumSumCap = cumsum(moCap.pos.capacity);

	quant025 = max(cumSumCap) * 0.25;

	quant075 = max(cumSumCap) * 0.75;

	quant005 = max(cumSumCap) * 0.05;

	quant095 = max(cumSumCap) * 0.95;

	

	

	x025Data(iSFC,1) = moCap.pos.capacityPrice(find(cumSumCap > quant025,1,'first')) * moLength;

	x075Data(iSFC,1) = moCap.pos.capacityPrice(find(cumSumCap > quant075,1,'first')) * moLength;

	

	x005Data(iSFC,1) = moCap.pos.capacityPrice(find(cumSumCap > quant005,1,'first')) * moLength;

	x095Data(iSFC,1) = moCap.pos.capacityPrice(find(cumSumCap > quant095,1,'first')) * moLength;

	

end

daysAvg = 7;

[timeDown,maxDown] = downsampleData(time,maxData,3*daysAvg,'max');

[timeDown,minDown] = downsampleData(time,minData,3*daysAvg,'min');

[timeDown,meanDown] = downsampleData(time,meanData,3*daysAvg,'mean');

[timeDown,x025DataDown] = downsampleData(time,x025Data,3*daysAvg,'mean');

[timeDown,x075DataDown] = downsampleData(time,x075Data,3*daysAvg,'mean');

[timeDown,x005DataDown] = downsampleData(time,x005Data,3*daysAvg,'mean');

[timeDown,x095DataDown] = downsampleData(time,x095Data,3*daysAvg,'mean');

% Extrapolate to regain xtick information

timeStampNew = (min(timeDown):1:max(timeDown))';

[timeStampNew, mean] = interp2Timestamp(timeStampNew, timeDown, meanDown);

%% Plot with styleplot

fig = [];

% Entire Data Range

fig.subplot{1,1}.plot{1}.x = [timeDown;flipud(timeDown)];

fig.subplot{1,1}.plot{1}.y = [maxDown;flipud(minDown)];

fig.subplot{1,1}.plot{1}.style='area';

fig.subplot{1,1}.plot{1}.color='grey';

% 5% to 95%

fig.subplot{1,1}.plot{2}.x = [timeDown;flipud(timeDown)];

fig.subplot{1,1}.plot{2}.y = [x095DataDown;flipud(x005DataDown)];

fig.subplot{1,1}.plot{2}.style='area';

fig.subplot{1,1}.plot{2}.color='greyDark2';

% 25% to 75%

fig.subplot{1,1}.plot{3}.x = [timeDown;flipud(timeDown)];

fig.subplot{1,1}.plot{3}.y = [x075DataDown;flipud(x025DataDown)];

fig.subplot{1,1}.plot{3}.style='area';

fig.subplot{1,1}.plot{3}.color='greyDark4';

% Capacity weighted average

fig.subplot{1,1}.plot{4}.x = timeStampNew;

fig.subplot{1,1}.plot{4}.y = mean;

fig.subplot{1,1}.plot{4}.style='plot';

fig.subplot{1,1}.plot{4}.color='x35';

% Plot properties

fig.subplot{1,1}.xlim=[datenum([2009 1 1]) datenum([2015 3 1])];

% fig.subplot{1,1}.ylim=[0 300];

% fig.subplot{1,1}.title=['Annual frequency of balancing energy price reBAP'];

fig.subplot{1,1}.xlabel='Year';

fig.subplot{1,1}.ylabel='Capacity price in EUR/MW/h';

fig.subplot{1,1}.title='Average capacity prices for positive secondary control reserve';

fig.subplot{1,1}.legend{1}='Complete price range';

fig.subplot{1,1}.legend{2}='5 % to 95 % percentile';

fig.subplot{1,1}.legend{3}='25 % to 75 % percentile';

fig.subplot{1,1}.legend{4}='Capacity weighted average';

fig.subplot{1,1}.xticks=datenum([(2009:2015)' ones(length((2009:2015)'),2)]);

fig.subplot{1,1}.xdatetick_format='yyyy';

fig.height=10;

fig.width_columns=3;

[hFig, hAxes, hPlot] = styleplot(fig,'styleplot_format_PhD','wordwide');

Functions/Results_Evaluation/resPhD_plot_capTFC_neg.m

clear

clc

%% Create Data

[moTFC,~] = loadControlReserve_Tertiary_MerritOrder;

%% Get data

for iSFC = 1:length(moTFC)

	

	time(iSFC,1) = moTFC(1,iSFC).start;

	

	moLength = moTFC(1,iSFC).end - moTFC(1,iSFC).start;

	

	maxData(iSFC,1) = max(moTFC(1,iSFC).neg.capacityPrice) * moLength;

	minData(iSFC,1) = min(moTFC(1,iSFC).neg.capacityPrice) * moLength;

	

	

	meanData(iSFC,1) = sum(moTFC(1,iSFC).neg.capacityPrice ...

		.* moTFC(1,iSFC).neg.capacity) / sum(moTFC(1,iSFC).neg.capacity)...

		* moLength;

	

	

	moCap = sortMOCapacityPrice(moTFC(1,iSFC));

	cumSumCap = cumsum(moCap.neg.capacity);

	quant025 = max(cumSumCap) * 0.25;

	quant075 = max(cumSumCap) * 0.75;

	quant005 = max(cumSumCap) * 0.05;

	quant095 = max(cumSumCap) * 0.95;

	

	

	x025Data(iSFC,1) = moCap.neg.capacityPrice(find(cumSumCap > quant025,1,'first')) * moLength;

	x075Data(iSFC,1) = moCap.neg.capacityPrice(find(cumSumCap > quant075,1,'first')) * moLength;

	

	x005Data(iSFC,1) = moCap.neg.capacityPrice(find(cumSumCap > quant005,1,'first')) * moLength;

	x095Data(iSFC,1) = moCap.neg.capacityPrice(find(cumSumCap > quant095,1,'first')) * moLength;

	

end

daysAvg = 7;

[timeDown,maxDown] = downsampleData(time,maxData,6*daysAvg,'max');

[timeDown,minDown] = downsampleData(time,minData,6*daysAvg,'min');

[timeDown,meanDown] = downsampleData(time,meanData,6*daysAvg,'mean');

[timeDown,x025DataDown] = downsampleData(time,x025Data,6*daysAvg,'mean');

[timeDown,x075DataDown] = downsampleData(time,x075Data,6*daysAvg,'mean');

[timeDown,x005DataDown] = downsampleData(time,x005Data,6*daysAvg,'mean');

[timeDown,x095DataDown] = downsampleData(time,x095Data,6*daysAvg,'mean');

% Extrapolate to regain xtick information

timeStampNew = (min(timeDown):1:max(timeDown))';

[timeStampNew, mean] = interp2Timestamp(timeStampNew, timeDown, meanDown);

%% Plot with styleplot

fig = [];

% Entire Data Range

fig.subplot{1,1}.plot{1}.x = [timeDown;flipud(timeDown)];

fig.subplot{1,1}.plot{1}.y = [maxDown;flipud(minDown)];

fig.subplot{1,1}.plot{1}.style='area';

fig.subplot{1,1}.plot{1}.color='grey';

% 5% to 95%

fig.subplot{1,1}.plot{2}.x = [timeDown;flipud(timeDown)];

fig.subplot{1,1}.plot{2}.y = [x095DataDown;flipud(x005DataDown)];

fig.subplot{1,1}.plot{2}.style='area';

fig.subplot{1,1}.plot{2}.color='greyDark2';

% 25% to 75%

fig.subplot{1,1}.plot{3}.x = [timeDown;flipud(timeDown)];

fig.subplot{1,1}.plot{3}.y = [x075DataDown;flipud(x025DataDown)];

fig.subplot{1,1}.plot{3}.style='area';

fig.subplot{1,1}.plot{3}.color='greyDark4';

% Capacity weighted average

fig.subplot{1,1}.plot{4}.x = timeStampNew;

fig.subplot{1,1}.plot{4}.y = mean;

fig.subplot{1,1}.plot{4}.style='plot';

fig.subplot{1,1}.plot{4}.color='x35';

% Plot properties

fig.subplot{1,1}.xlim=[datenum([2009 1 1]) datenum([2015 3 1])];

fig.subplot{1,1}.ylim=[0 40];

% fig.subplot{1,1}.title=['Annual frequency of balancing energy price reBAP'];

fig.subplot{1,1}.xlabel='Year';

fig.subplot{1,1}.ylabel='Capacity price in EUR/MW/h';

fig.subplot{1,1}.title='Average capacity prices for negative tertiary control reserve';

fig.subplot{1,1}.legend{1}='Complete price range';

fig.subplot{1,1}.legend{2}='5 % to 95 % percentile';

fig.subplot{1,1}.legend{3}='25 % to 75 % percentile';

fig.subplot{1,1}.legend{4}='Capacity weighted average';

fig.subplot{1,1}.xticks=datenum([(2009:2015)' ones(length((2009:2015)'),2)]);

fig.subplot{1,1}.xdatetick_format='yyyy';

fig.height=10;

fig.width_columns=3;

[hFig, hAxes, hPlot] = styleplot(fig,'styleplot_format_PhD','wordwide');

Functions/Results_Evaluation/resPhD_plot_capTFC_pos.m

clear

clc

%% Create Data

[moTFC,~] = loadControlReserve_Tertiary_MerritOrder;

%% Get data

for iSFC = 1:length(moTFC)

	

	time(iSFC,1) = moTFC(1,iSFC).start;

	

	moLength = moTFC(1,iSFC).end - moTFC(1,iSFC).start;

	

	maxData(iSFC,1) = max(moTFC(1,iSFC).pos.capacityPrice) * moLength;

	minData(iSFC,1) = min(moTFC(1,iSFC).pos.capacityPrice) * moLength;

	

	

	meanData(iSFC,1) = sum(moTFC(1,iSFC).pos.capacityPrice ...

		.* moTFC(1,iSFC).pos.capacity) / sum(moTFC(1,iSFC).pos.capacity)...

		* moLength;

	

	

	moCap = sortMOCapacityPrice(moTFC(1,iSFC));

	cumSumCap = cumsum(moCap.pos.capacity);

	quant025 = max(cumSumCap) * 0.25;

	quant075 = max(cumSumCap) * 0.75;

	quant005 = max(cumSumCap) * 0.05;

	quant095 = max(cumSumCap) * 0.95;

	

	

	x025Data(iSFC,1) = moCap.pos.capacityPrice(find(cumSumCap > quant025,1,'first')) * moLength;

	x075Data(iSFC,1) = moCap.pos.capacityPrice(find(cumSumCap > quant075,1,'first')) * moLength;

	

	x005Data(iSFC,1) = moCap.pos.capacityPrice(find(cumSumCap > quant005,1,'first')) * moLength;

	x095Data(iSFC,1) = moCap.pos.capacityPrice(find(cumSumCap > quant095,1,'first')) * moLength;

	

end

daysAvg = 7;

[timeDown,maxDown] = downsampleData(time,maxData,6*daysAvg,'max');

[timeDown,minDown] = downsampleData(time,minData,6*daysAvg,'min');

[timeDown,meanDown] = downsampleData(time,meanData,6*daysAvg,'mean');

[timeDown,x025DataDown] = downsampleData(time,x025Data,6*daysAvg,'mean');

[timeDown,x075DataDown] = downsampleData(time,x075Data,6*daysAvg,'mean');

[timeDown,x005DataDown] = downsampleData(time,x005Data,6*daysAvg,'mean');

[timeDown,x095DataDown] = downsampleData(time,x095Data,6*daysAvg,'mean');

% Extrapolate to regain xtick information

timeStampNew = (min(timeDown):1:max(timeDown))';

[timeStampNew, mean] = interp2Timestamp(timeStampNew, timeDown, meanDown);

%% Plot with styleplot

fig = [];

% Entire Data Range

fig.subplot{1,1}.plot{1}.x = [timeDown;flipud(timeDown)];

fig.subplot{1,1}.plot{1}.y = [maxDown;flipud(minDown)];

fig.subplot{1,1}.plot{1}.style='area';

fig.subplot{1,1}.plot{1}.color='grey';

% 5% to 95%

fig.subplot{1,1}.plot{2}.x = [timeDown;flipud(timeDown)];

fig.subplot{1,1}.plot{2}.y = [x095DataDown;flipud(x005DataDown)];

fig.subplot{1,1}.plot{2}.style='area';

fig.subplot{1,1}.plot{2}.color='greyDark2';

% 25% to 75%

fig.subplot{1,1}.plot{3}.x = [timeDown;flipud(timeDown)];

fig.subplot{1,1}.plot{3}.y = [x075DataDown;flipud(x025DataDown)];

fig.subplot{1,1}.plot{3}.style='area';

fig.subplot{1,1}.plot{3}.color='greyDark4';

% Capacity weighted average

fig.subplot{1,1}.plot{4}.x = timeStampNew;

fig.subplot{1,1}.plot{4}.y = mean;

fig.subplot{1,1}.plot{4}.style='plot';

fig.subplot{1,1}.plot{4}.color='x35';

% Plot properties

fig.subplot{1,1}.xlim=[datenum([2009 1 1]) datenum([2015 3 1])];

fig.subplot{1,1}.ylim=[0 10];

% fig.subplot{1,1}.title=['Annual frequency of balancing energy price reBAP'];

fig.subplot{1,1}.xlabel='Year';

fig.subplot{1,1}.ylabel='Capacity price in EUR/MW/h';

fig.subplot{1,1}.title='Average capacity prices for positive tertiary control reserve';

fig.subplot{1,1}.legend{1}='Complete price range';

fig.subplot{1,1}.legend{2}='5 % to 95 % percentile';

fig.subplot{1,1}.legend{3}='25 % to 75 % percentile';

fig.subplot{1,1}.legend{4}='Capacity weighted average';

fig.subplot{1,1}.xticks=datenum([(2009:2015)' ones(length((2009:2015)'),2)]);

fig.subplot{1,1}.xdatetick_format='yyyy';

fig.height=10;

fig.width_columns=3;

[hFig, hAxes, hPlot] = styleplot(fig,'styleplot_format_PhD','wordwide');

Functions/Results_Evaluation/resPhD_plot_diff_SpotDAID.m

clear

clc

%% Create Data

[DA_time,DA_data] = loadMarket_EPEX_Spot;

[ID_time,ID_data] = loadMarket_EPEX_ID([],'last');

%% Split into year

DA_vec_time = datevec(DA_time);

ID_vec_time = datevec(ID_time);

% time2010 = datenum(DA_vec_time(DA_vec_time(:,1) == 2010,:));

% time2011 = datenum(DA_vec_time(DA_vec_time(:,1) == 2011,:));

% time2012 = datenum(DA_vec_time(DA_vec_time(:,1) == 2012,:));

% time2013 = datenum(DA_vec_time(DA_vec_time(:,1) == 2013,:));

% time2014 = datenum(DA_vec_time(DA_vec_time(:,1) == 2014,:));

DA_data2010 = DA_data(DA_vec_time(:,1) == 2010,:);

DA_data2011 = DA_data(DA_vec_time(:,1) == 2011,:);

DA_data2012 = DA_data(DA_vec_time(:,1) == 2012,:);

DA_data2013 = DA_data(DA_vec_time(:,1) == 2013,:);

DA_data2014 = DA_data(DA_vec_time(:,1) == 2014,:);

ID_data2010 = ID_data(ID_vec_time(:,1) == 2010,:);

ID_data2011 = ID_data(ID_vec_time(:,1) == 2011,:);

ID_data2012 = ID_data(ID_vec_time(:,1) == 2012,:);

ID_data2013 = ID_data(ID_vec_time(:,1) == 2013,:);

ID_data2014 = ID_data(ID_vec_time(:,1) == 2014,:);

[xEl2010,xCent2010] =hist(DA_data2010-ID_data2010,[-100:2:100]);

[xEl2011,xCent2011] =hist(DA_data2011-ID_data2011,[-100:2:100]);

[xEl2012,xCent2012] =hist(DA_data2012-ID_data2012,[-100:2:100]);

[xEl2013,xCent2013] =hist(DA_data2013-ID_data2013,[-100:2:100]);

[xEl2014,xCent2014] =hist(DA_data2014-ID_data2014,[-100:2:100]);

perc2010 = xEl2010 / length(DA_data2010);

perc2011 = xEl2011 / length(DA_data2011);

perc2012 = xEl2012 / length(DA_data2012);

perc2013 = xEl2013 / length(DA_data2013);

perc2014 = xEl2014 / length(DA_data2014);

%% Plot with styleplot

% First Data Set %%

fig = [];

% Define data sets

fig.subplot{1,1}.plot{1}.x = xCent2010;

fig.subplot{1,1}.plot{1}.y = perc2010;

fig.subplot{1,1}.plot{1}.style='plot';

fig.subplot{1,1}.plot{1}.color='x10';

% fig.subplot{1,1}.plot{1}.color='x15';

% fig.subplot{1,1}.plot{1}.linewidth=5;

% fig.subplot{1,1}.plot{1}.linestyle='--';

fig.subplot{1,1}.plot{2}.x = xCent2011;

fig.subplot{1,1}.plot{2}.y = perc2011;

fig.subplot{1,1}.plot{2}.style='plot';

fig.subplot{1,1}.plot{2}.color='x15';

fig.subplot{1,1}.plot{3}.x = xCent2012;

fig.subplot{1,1}.plot{3}.y = perc2012;

fig.subplot{1,1}.plot{3}.style='plot';

fig.subplot{1,1}.plot{3}.color='greyDark';

fig.subplot{1,1}.plot{4}.x = xCent2013;

fig.subplot{1,1}.plot{4}.y = perc2013;

fig.subplot{1,1}.plot{4}.style='plot';

fig.subplot{1,1}.plot{4}.color='x35';

fig.subplot{1,1}.plot{5}.x = xCent2014;

fig.subplot{1,1}.plot{5}.y = perc2014;

fig.subplot{1,1}.plot{5}.style='plot';

fig.subplot{1,1}.plot{5}.color='x28';

% Plot properties

fig.subplot{1,1}.xlim=[-60 60];

% fig.subplot{1,1}.ylim=[0 300];

% fig.subplot{1,1}.title=['Annual frequency of balancing energy price reBAP'];

fig.subplot{1,1}.xlabel='Price difference in EUR/MWh';

fig.subplot{1,1}.ylabel='Relative freqeuncy';

fig.subplot{1,1}.legend={'2010','2011','2012','2013','2014'};

fig.height=10;

fig.width_columns=3;

[hFig, hAxes, hPlot] = styleplot(fig,'styleplot_format_PhD','word');

Functions/Results_Evaluation/resPhD_plot_engSFC_neg.m

% clear

% clc

%% Create Data

[moSFC,~] = loadControlReserve_Secondary_MerritOrder;

[dispatch.time,dispatch.data] = loadControlReserve_Secondary_Dispatch;

%% Get data

for iSFC = 1:length(moSFC)

	

	time(iSFC,1) = moSFC(1,iSFC).start;

	

	moLength = moSFC(1,iSFC).end - moSFC(1,iSFC).start;

	

	maxData(iSFC,1) = max(moSFC(1,iSFC).neg.energyPrice);

	minData(iSFC,1) = min(moSFC(1,iSFC).neg.energyPrice);

	

	

	meanData(iSFC,1) = sum(moSFC(1,iSFC).neg.energyPrice ...

		.* moSFC(1,iSFC).neg.capacity) / sum(moSFC(1,iSFC).neg.capacity);

	

	

	cumSumCap = cumsum(moSFC(1,iSFC).neg.capacity);

	quant025 = max(cumSumCap) * 0.25;

	quant075 = max(cumSumCap) * 0.75;

	quant005 = max(cumSumCap) * 0.05;

	quant095 = max(cumSumCap) * 0.95;

	

	

	x025Data(iSFC,1) = moSFC(1,iSFC).neg.energyPrice(find(cumSumCap > quant025,1,'first'));

	x075Data(iSFC,1) = moSFC(1,iSFC).neg.energyPrice(find(cumSumCap > quant075,1,'first'));

	

	x005Data(iSFC,1) = moSFC(1,iSFC).neg.energyPrice(find(cumSumCap > quant005,1,'first'));

	x095Data(iSFC,1) = moSFC(1,iSFC).neg.energyPrice(find(cumSumCap > quant095,1,'first'));

	

end

%% Get marginal price

dispatch.data(dispatch.data > 0) = 0;

syncTime = (min(dispatch.time):1/96:max(dispatch.time))';

[dispatchDown.time,dispatchDown.data] = downsampleData(dispatch.time,dispatch.data,15*15,'mean');

marginalPrice.time = dispatchDown.time;

[~,~,~,marginalPrice.data] = Economic_Impact.calcDispatchCost(dispatchDown, moSFC);

marginalPrice.time = [marginalPrice.time;max(marginalPrice.time)+1/96];

marginalPrice.data = [marginalPrice.data;nan];

%% Get dispatch marginal price

daysAvg = 7;

[timeDown,maxDown] = downsampleData(time,maxData,6*daysAvg,'max');

[timeDown,minDown] = downsampleData(time,minData,6*daysAvg,'min');

[timeDown,meanDown] = downsampleData(time,meanData,6*daysAvg,'mean');

[timeDown,x025DataDown] = downsampleData(time,x025Data,6*daysAvg,'mean');

[timeDown,x075DataDown] = downsampleData(time,x075Data,6*daysAvg,'mean');

[timeDown,x005DataDown] = downsampleData(time,x005Data,6*daysAvg,'mean');

[timeDown,x095DataDown] = downsampleData(time,x095Data,6*daysAvg,'mean');

% Extrapolate to regain xtick information

timeStampNew = (min(timeDown):1:max(timeDown))';

[timeStampNew, mean] = interp2Timestamp(timeStampNew, timeDown, meanDown);

%% Plot with styleplot

fig = [];

% Entire Data Range

fig.subplot{1,1}.plot{1}.x = [timeDown;flipud(timeDown)];

fig.subplot{1,1}.plot{1}.y = [maxDown;flipud(minDown)];

fig.subplot{1,1}.plot{1}.style='area';

fig.subplot{1,1}.plot{1}.color='grey';

% 5% to 95%

fig.subplot{1,1}.plot{2}.x = [timeDown;flipud(timeDown)];

fig.subplot{1,1}.plot{2}.y = [x095DataDown;flipud(x005DataDown)];

fig.subplot{1,1}.plot{2}.style='area';

fig.subplot{1,1}.plot{2}.color='greyDark2';

% 25% to 75%

fig.subplot{1,1}.plot{3}.x = [timeDown;flipud(timeDown)];

fig.subplot{1,1}.plot{3}.y = [x075DataDown;flipud(x025DataDown)];

fig.subplot{1,1}.plot{3}.style='area';

fig.subplot{1,1}.plot{3}.color='greyDark4';

% Marginal dispatch price

fig.subplot{1,1}.plot{4}.x = marginalPrice.time;

fig.subplot{1,1}.plot{4}.y = marginalPrice.data;

fig.subplot{1,1}.plot{4}.style='plot';

fig.subplot{1,1}.plot{4}.color='x15';

fig.subplot{1,1}.plot{4}.linewidth=1;

% Capacity weighted average

fig.subplot{1,1}.plot{5}.x = timeStampNew;

fig.subplot{1,1}.plot{5}.y = mean;

fig.subplot{1,1}.plot{5}.style='plot';

fig.subplot{1,1}.plot{5}.color='x35';

% Plot properties

fig.subplot{1,1}.xlim=[datenum([2009 1 1]) datenum([2015 3 1])];

fig.subplot{1,1}.ylim=[0 6000];

% fig.subplot{1,1}.title=['Annual frequency of balancing energy price reBAP'];

fig.subplot{1,1}.xlabel='Year';

fig.subplot{1,1}.ylabel='Energy price in EUR/MWh';

fig.subplot{1,1}.title='Average energy prices for negative secondary control reserve';

fig.subplot{1,1}.legend{1}='Complete price range';

fig.subplot{1,1}.legend{2}='5 % to 95 % percentile';

fig.subplot{1,1}.legend{3}='25 % to 75 % percentile';

fig.subplot{1,1}.legend{4}='Marginal dispatch price';

fig.subplot{1,1}.legend{5}='Capacity weighted average';

fig.subplot{1,1}.xticks=datenum([(2009:2015)' ones(length((2009:2015)'),2)]);

fig.subplot{1,1}.xdatetick_format='yyyy';

fig.height=9;

fig.width_columns=3;

[hFig, hAxes, hPlot] = styleplot(fig,'styleplot_format_PhD','wordwide');

Functions/Results_Evaluation/resPhD_plot_engSFC_pos.m

clear

clc

%% Create Data

[moSFC,~] = loadControlReserve_Secondary_MerritOrder;

[dispatch.time,dispatch.data] = loadControlReserve_Secondary_Dispatch;

%% Get data

for iSFC = 1:length(moSFC)

	

	time(iSFC,1) = moSFC(1,iSFC).start;

	

	moLength = moSFC(1,iSFC).end - moSFC(1,iSFC).start;

	

	maxData(iSFC,1) = max(moSFC(1,iSFC).pos.energyPrice);

	minData(iSFC,1) = min(moSFC(1,iSFC).pos.energyPrice);

	

	

	meanData(iSFC,1) = sum(moSFC(1,iSFC).pos.energyPrice ...

		.* moSFC(1,iSFC).pos.capacity) / sum(moSFC(1,iSFC).pos.capacity);

	

	

	cumSumCap = cumsum(moSFC(1,iSFC).pos.capacity);

	quant025 = max(cumSumCap) * 0.25;

	quant075 = max(cumSumCap) * 0.75;

	quant005 = max(cumSumCap) * 0.05;

	quant095 = max(cumSumCap) * 0.95;

	

	

	x025Data(iSFC,1) = moSFC(1,iSFC).pos.energyPrice(find(cumSumCap > quant025,1,'first'));

	x075Data(iSFC,1) = moSFC(1,iSFC).pos.energyPrice(find(cumSumCap > quant075,1,'first'));

	

	x005Data(iSFC,1) = moSFC(1,iSFC).pos.energyPrice(find(cumSumCap > quant005,1,'first'));

	x095Data(iSFC,1) = moSFC(1,iSFC).pos.energyPrice(find(cumSumCap > quant095,1,'first'));

	

end

%% Get marginal price

dispatch.data(dispatch.data < 0) = 0;

syncTime = (min(dispatch.time):1/96:max(dispatch.time))';

[dispatchDown.time,dispatchDown.data] = downsampleData(dispatch.time,dispatch.data,15*15,'mean');

marginalPrice.time = dispatchDown.time;

[~,~,~,marginalPrice.data] = Economic_Impact.calcDispatchCost(dispatchDown, moSFC);

marginalPrice.time = [marginalPrice.time;max(marginalPrice.time)+1/96];

marginalPrice.data = [marginalPrice.data;nan];

%% Get dispatch marginal price

daysAvg = 7;

[timeDown,maxDown] = downsampleData(time,maxData,6*daysAvg,'max');

[timeDown,minDown] = downsampleData(time,minData,6*daysAvg,'min');

[timeDown,meanDown] = downsampleData(time,meanData,6*daysAvg,'mean');

[timeDown,x025DataDown] = downsampleData(time,x025Data,6*daysAvg,'mean');

[timeDown,x075DataDown] = downsampleData(time,x075Data,6*daysAvg,'mean');

[timeDown,x005DataDown] = downsampleData(time,x005Data,6*daysAvg,'mean');

[timeDown,x095DataDown] = downsampleData(time,x095Data,6*daysAvg,'mean');

% Extrapolate to regain xtick information

timeStampNew = (min(timeDown):1:max(timeDown))';

[timeStampNew, mean] = interp2Timestamp(timeStampNew, timeDown, meanDown);

%% Plot with styleplot

fig = [];

% Entire Data Range

fig.subplot{1,1}.plot{1}.x = [timeDown;flipud(timeDown)];

fig.subplot{1,1}.plot{1}.y = [maxDown;flipud(minDown)];

fig.subplot{1,1}.plot{1}.style='area';

fig.subplot{1,1}.plot{1}.color='grey';

% 5% to 95%

fig.subplot{1,1}.plot{2}.x = [timeDown;flipud(timeDown)];

fig.subplot{1,1}.plot{2}.y = [x095DataDown;flipud(x005DataDown)];

fig.subplot{1,1}.plot{2}.style='area';

fig.subplot{1,1}.plot{2}.color='greyDark2';

% 25% to 75%

fig.subplot{1,1}.plot{3}.x = [timeDown;flipud(timeDown)];

fig.subplot{1,1}.plot{3}.y = [x075DataDown;flipud(x025DataDown)];

fig.subplot{1,1}.plot{3}.style='area';

fig.subplot{1,1}.plot{3}.color='greyDark4';

% Marginal dispatch price

fig.subplot{1,1}.plot{4}.x = marginalPrice.time;

fig.subplot{1,1}.plot{4}.y = marginalPrice.data;

fig.subplot{1,1}.plot{4}.style='plot';

fig.subplot{1,1}.plot{4}.color='x15';

fig.subplot{1,1}.plot{4}.linewidth=1;

% Capacity weighted average

fig.subplot{1,1}.plot{5}.x = timeStampNew;

fig.subplot{1,1}.plot{5}.y = mean;

fig.subplot{1,1}.plot{5}.style='plot';

fig.subplot{1,1}.plot{5}.color='x35';

% Plot properties

fig.subplot{1,1}.xlim=[datenum([2009 1 1]) datenum([2015 3 1])];

fig.subplot{1,1}.ylim=[0 6000];

% fig.subplot{1,1}.title=['Annual frequency of balancing energy price reBAP'];

fig.subplot{1,1}.xlabel='Year';

fig.subplot{1,1}.ylabel='Energy price in EUR/MWh';

fig.subplot{1,1}.title='Average energy prices for positive secondary control reserve';

fig.subplot{1,1}.legend{1}='Complete price range';

fig.subplot{1,1}.legend{2}='5 % to 95 % percentile';

fig.subplot{1,1}.legend{3}='25 % to 75 % percentile';

fig.subplot{1,1}.legend{4}='Marginal dispatch price';

fig.subplot{1,1}.legend{5}='Capacity weighted average';

fig.subplot{1,1}.xticks=datenum([(2009:2015)' ones(length((2009:2015)'),2)]);

fig.subplot{1,1}.xdatetick_format='yyyy';

fig.height=10;

fig.width_columns=3;

[hFig, hAxes, hPlot] = styleplot(fig,'styleplot_format_PhD','wordwide');

Functions/Results_Evaluation/resPhD_plot_engTFC_neg.m

clear

clc

%% Create Data

[moTFC,~] = loadControlReserve_Tertiary_MerritOrder;

[dispatch.time,dispatch.pos,dispatch.neg] = loadControlReserve_Tertiary_Dispatch;

%% Get data

for iSFC = 1:length(moTFC)

	

	time(iSFC,1) = moTFC(1,iSFC).start;

	

	moLength = moTFC(1,iSFC).end - moTFC(1,iSFC).start;

	

	maxData(iSFC,1) = max(moTFC(1,iSFC).neg.energyPrice);

	minData(iSFC,1) = min(moTFC(1,iSFC).neg.energyPrice);

	

	

	meanData(iSFC,1) = sum(moTFC(1,iSFC).neg.energyPrice ...

		.* moTFC(1,iSFC).neg.capacity) / sum(moTFC(1,iSFC).neg.capacity);

	

	

	cumSumCap = cumsum(moTFC(1,iSFC).neg.capacity);

	quant025 = max(cumSumCap) * 0.25;

	quant075 = max(cumSumCap) * 0.75;

	quant005 = max(cumSumCap) * 0.05;

	quant095 = max(cumSumCap) * 0.95;

	

	

	x025Data(iSFC,1) = moTFC(1,iSFC).neg.energyPrice(find(cumSumCap > quant025,1,'first'));

	x075Data(iSFC,1) = moTFC(1,iSFC).neg.energyPrice(find(cumSumCap > quant075,1,'first'));

	

	x005Data(iSFC,1) = moTFC(1,iSFC).neg.energyPrice(find(cumSumCap > quant005,1,'first'));

	x095Data(iSFC,1) = moTFC(1,iSFC).neg.energyPrice(find(cumSumCap > quant095,1,'first'));

	

end

%% Get marginal price

dispatchCalc.time = dispatch.time;

dispatchCalc.data = dispatch.neg;

marginalPrice.time = dispatchCalc.time;

[~,~,~,marginalPrice.data] = Economic_Impact.calcDispatchCost(dispatchCalc, moTFC);

marginalPrice.time = [marginalPrice.time;max(marginalPrice.time)+1/96];

marginalPrice.data = [marginalPrice.data;nan];

%% Get dispatch marginal price

daysAvg = 7;

[timeDown,maxDown] = downsampleData(time,maxData,6*daysAvg,'max');

[timeDown,minDown] = downsampleData(time,minData,6*daysAvg,'min');

[timeDown,meanDown] = downsampleData(time,meanData,6*daysAvg,'mean');

[timeDown,x025DataDown] = downsampleData(time,x025Data,6*daysAvg,'mean');

[timeDown,x075DataDown] = downsampleData(time,x075Data,6*daysAvg,'mean');

[timeDown,x005DataDown] = downsampleData(time,x005Data,6*daysAvg,'mean');

[timeDown,x095DataDown] = downsampleData(time,x095Data,6*daysAvg,'mean');

% Extrapolate to regain xtick information

timeStampNew = (min(timeDown):1:max(timeDown))';

[timeStampNew, mean] = interp2Timestamp(timeStampNew, timeDown, meanDown);

%% Plot with styleplot

fig = [];

% Entire Data Range

fig.subplot{1,1}.plot{1}.x = [timeDown;flipud(timeDown)];

fig.subplot{1,1}.plot{1}.y = [maxDown;flipud(minDown)];

fig.subplot{1,1}.plot{1}.style='area';

fig.subplot{1,1}.plot{1}.color='grey';

% 5% to 95%

fig.subplot{1,1}.plot{2}.x = [timeDown;flipud(timeDown)];

fig.subplot{1,1}.plot{2}.y = [x095DataDown;flipud(x005DataDown)];

fig.subplot{1,1}.plot{2}.style='area';

fig.subplot{1,1}.plot{2}.color='greyDark2';

% 25% to 75%

fig.subplot{1,1}.plot{3}.x = [timeDown;flipud(timeDown)];

fig.subplot{1,1}.plot{3}.y = [x075DataDown;flipud(x025DataDown)];

fig.subplot{1,1}.plot{3}.style='area';

fig.subplot{1,1}.plot{3}.color='greyDark4';

% Marginal dispatch price

fig.subplot{1,1}.plot{4}.x = marginalPrice.time;

fig.subplot{1,1}.plot{4}.y = marginalPrice.data;

fig.subplot{1,1}.plot{4}.style='plot';

fig.subplot{1,1}.plot{4}.color='x15';

fig.subplot{1,1}.plot{4}.linewidth=1;

% Capacity weighted average

fig.subplot{1,1}.plot{5}.x = timeStampNew;

fig.subplot{1,1}.plot{5}.y = mean;

fig.subplot{1,1}.plot{5}.style='plot';

fig.subplot{1,1}.plot{5}.color='x35';

% Plot properties

fig.subplot{1,1}.xlim=[datenum([2009 1 1]) datenum([2015 3 1])];

fig.subplot{1,1}.ylim=[-10 12000];

% fig.subplot{1,1}.title=['Annual frequency of balancing energy price reBAP'];

fig.subplot{1,1}.xlabel='Year';

fig.subplot{1,1}.ylabel='Energy price in EUR/MWh';

fig.subplot{1,1}.title='Average energy prices for negative tertiary control reserve';

fig.subplot{1,1}.legend{1}='Complete price range';

fig.subplot{1,1}.legend{2}='5 % to 95 % percentile';

fig.subplot{1,1}.legend{3}='25 % to 75 % percentile';

fig.subplot{1,1}.legend{4}='Marginal dispatch price';

fig.subplot{1,1}.legend{5}='Capacity weighted average';

fig.subplot{1,1}.xticks=datenum([(2009:2015)' ones(length((2009:2015)'),2)]);

fig.subplot{1,1}.xdatetick_format='yyyy';

fig.height=10;

fig.width_columns=3;

[hFig, hAxes, hPlot] = styleplot(fig,'styleplot_format_PhD','wordwide');

Functions/Results_Evaluation/resPhD_plot_engTFC_pos.m

clear

clc

%% Create Data

[moTFC,~] = loadControlReserve_Tertiary_MerritOrder;

[dispatch.time,dispatch.pos,dispatch.neg] = loadControlReserve_Tertiary_Dispatch;

%% Get data

for iSFC = 1:length(moTFC)

	

	time(iSFC,1) = moTFC(1,iSFC).start;

	

	moLength = moTFC(1,iSFC).end - moTFC(1,iSFC).start;

	

	maxData(iSFC,1) = max(moTFC(1,iSFC).pos.energyPrice);

	minData(iSFC,1) = min(moTFC(1,iSFC).pos.energyPrice);

	

	

	meanData(iSFC,1) = sum(moTFC(1,iSFC).pos.energyPrice ...

		.* moTFC(1,iSFC).pos.capacity) / sum(moTFC(1,iSFC).pos.capacity);

	

	

	cumSumCap = cumsum(moTFC(1,iSFC).pos.capacity);

	quant025 = max(cumSumCap) * 0.25;

	quant075 = max(cumSumCap) * 0.75;

	quant005 = max(cumSumCap) * 0.05;

	quant095 = max(cumSumCap) * 0.95;

	

	

	x025Data(iSFC,1) = moTFC(1,iSFC).pos.energyPrice(find(cumSumCap > quant025,1,'first'));

	x075Data(iSFC,1) = moTFC(1,iSFC).pos.energyPrice(find(cumSumCap > quant075,1,'first'));

	

	x005Data(iSFC,1) = moTFC(1,iSFC).pos.energyPrice(find(cumSumCap > quant005,1,'first'));

	x095Data(iSFC,1) = moTFC(1,iSFC).pos.energyPrice(find(cumSumCap > quant095,1,'first'));

	

end

%% Get marginal price

dispatchCalc.time = dispatch.time;

dispatchCalc.data = dispatch.pos;

marginalPrice.time = dispatchCalc.time;

[~,~,~,marginalPrice.data] = Economic_Impact.calcDispatchCost(dispatchCalc, moTFC);

marginalPrice.time = [marginalPrice.time;max(marginalPrice.time)+1/96];

marginalPrice.data = [marginalPrice.data;nan];

%% Get dispatch marginal price

daysAvg = 7;

[timeDown,maxDown] = downsampleData(time,maxData,6*daysAvg,'max');

[timeDown,minDown] = downsampleData(time,minData,6*daysAvg,'min');

[timeDown,meanDown] = downsampleData(time,meanData,6*daysAvg,'mean');

[timeDown,x025DataDown] = downsampleData(time,x025Data,6*daysAvg,'mean');

[timeDown,x075DataDown] = downsampleData(time,x075Data,6*daysAvg,'mean');

[timeDown,x005DataDown] = downsampleData(time,x005Data,6*daysAvg,'mean');

[timeDown,x095DataDown] = downsampleData(time,x095Data,6*daysAvg,'mean');

% Extrapolate to regain xtick information

timeStampNew = (min(timeDown):1:max(timeDown))';

[timeStampNew, mean] = interp2Timestamp(timeStampNew, timeDown, meanDown);

%% Plot with styleplot

fig = [];

% Entire Data Range

fig.subplot{1,1}.plot{1}.x = [timeDown;flipud(timeDown)];

fig.subplot{1,1}.plot{1}.y = [maxDown;flipud(minDown)];

fig.subplot{1,1}.plot{1}.style='area';

fig.subplot{1,1}.plot{1}.color='grey';

% 5% to 95%

fig.subplot{1,1}.plot{2}.x = [timeDown;flipud(timeDown)];

fig.subplot{1,1}.plot{2}.y = [x095DataDown;flipud(x005DataDown)];

fig.subplot{1,1}.plot{2}.style='area';

fig.subplot{1,1}.plot{2}.color='greyDark2';

% 25% to 75%

fig.subplot{1,1}.plot{3}.x = [timeDown;flipud(timeDown)];

fig.subplot{1,1}.plot{3}.y = [x075DataDown;flipud(x025DataDown)];

fig.subplot{1,1}.plot{3}.style='area';

fig.subplot{1,1}.plot{3}.color='greyDark4';

% Marginal dispatch price

fig.subplot{1,1}.plot{4}.x = marginalPrice.time;

fig.subplot{1,1}.plot{4}.y = marginalPrice.data; % Divide by 4 since only 1/4 of an hour

fig.subplot{1,1}.plot{4}.style='plot';

fig.subplot{1,1}.plot{4}.color='x15';

fig.subplot{1,1}.plot{4}.linewidth=1;

% Capacity weighted average

fig.subplot{1,1}.plot{5}.x = timeStampNew;

fig.subplot{1,1}.plot{5}.y = mean;

fig.subplot{1,1}.plot{5}.style='plot';

fig.subplot{1,1}.plot{5}.color='x35';

% Plot properties

fig.subplot{1,1}.xlim=[datenum([2009 1 1]) datenum([2015 3 1])];

fig.subplot{1,1}.ylim=[-10 12000];

% fig.subplot{1,1}.title=['Annual frequency of balancing energy price reBAP'];

fig.subplot{1,1}.xlabel='Year';

fig.subplot{1,1}.ylabel='Energy price in EUR/MWh';

fig.subplot{1,1}.title='Average energy prices for positive tertiary control reserve';

fig.subplot{1,1}.legend{1}='Complete price range';

fig.subplot{1,1}.legend{2}='5 % to 95 % percentile';

fig.subplot{1,1}.legend{3}='25 % to 75 % percentile';

fig.subplot{1,1}.legend{4}='Marginal dispatch price';

fig.subplot{1,1}.legend{5}='Capacity weighted average';

fig.subplot{1,1}.xticks=datenum([(2009:2015)' ones(length((2009:2015)'),2)]);

fig.subplot{1,1}.xdatetick_format='yyyy';

fig.height=10;

fig.width_columns=3;

[hFig, hAxes, hPlot] = styleplot(fig,'styleplot_format_PhD','wordwide');

Functions/Results_Evaluation/resPhD_plot_reBAP.m

clear

clc

%% Create Data

[time,data] = loadAEP;

%% Split into year

vec_time = datevec(time);

time2010 = datenum(vec_time(vec_time(:,1) == 2010,:));

time2011 = datenum(vec_time(vec_time(:,1) == 2011,:));

time2012 = datenum(vec_time(vec_time(:,1) == 2012,:));

time2013 = datenum(vec_time(vec_time(:,1) == 2013,:));

time2014 = datenum(vec_time(vec_time(:,1) == 2014,:));

data2010 = data(vec_time(:,1) == 2010,:);

data2011 = data(vec_time(:,1) == 2011,:);

data2012 = data(vec_time(:,1) == 2012,:);

data2013 = data(vec_time(:,1) == 2013,:);

data2014 = data(vec_time(:,1) == 2014,:);

[xEl2010,xCent2010] =hist(data2010,[-300:5:300]);

[xEl2011,xCent2011] =hist(data2011,[-300:5:300]);

[xEl2012,xCent2012] =hist(data2012,[-300:5:300]);

[xEl2013,xCent2013] =hist(data2013,[-300:5:300]);

[xEl2014,xCent2014] =hist(data2014,[-300:5:300]);

perc2010 = xEl2010 / length(data2010);

perc2011 = xEl2011 / length(data2011);

perc2012 = xEl2012 / length(data2012);

perc2013 = xEl2013 / length(data2013);

perc2014 = xEl2014 / length(data2014);

%% Plot with styleplot

% First Data Set %%

fig = [];

% Define data sets

fig.subplot{1,1}.plot{1}.x = xCent2010;

fig.subplot{1,1}.plot{1}.y = perc2010;

fig.subplot{1,1}.plot{1}.style='plot';

fig.subplot{1,1}.plot{1}.color='x10';

% fig.subplot{1,1}.plot{1}.linewidth=5;

% fig.subplot{1,1}.plot{1}.linestyle='--';

fig.subplot{1,1}.plot{2}.x = xCent2011;

fig.subplot{1,1}.plot{2}.y = perc2011;

fig.subplot{1,1}.plot{2}.style='plot';

fig.subplot{1,1}.plot{2}.color='x15';

fig.subplot{1,1}.plot{3}.x = xCent2012;

fig.subplot{1,1}.plot{3}.y = perc2012;

fig.subplot{1,1}.plot{3}.style='plot';

fig.subplot{1,1}.plot{3}.color='greyDark';

fig.subplot{1,1}.plot{4}.x = xCent2013;

fig.subplot{1,1}.plot{4}.y = perc2013;

fig.subplot{1,1}.plot{4}.style='plot';

fig.subplot{1,1}.plot{4}.color='x35';

fig.subplot{1,1}.plot{5}.x = xCent2014;

fig.subplot{1,1}.plot{5}.y = perc2014;

fig.subplot{1,1}.plot{5}.style='plot';

fig.subplot{1,1}.plot{5}.color='x28';

% Plot properties

fig.subplot{1,1}.xlim=[-200 200];

% fig.subplot{1,1}.ylim=[0 300];

% fig.subplot{1,1}.title=['Annual frequency of balancing energy price reBAP'];

fig.subplot{1,1}.xlabel='reBAP in EUR/MWh';

fig.subplot{1,1}.ylabel='Relative freqeuncy';

fig.subplot{1,1}.legend={'2010','2011','2012','2013','2014'};

fig.height=10;

fig.width_columns=3;

[hFig, hAxes, hPlot] = styleplot(fig,'styleplot_format_PhD','word');

Functions/Results_Evaluation/resPhD_plot_reserveDemand.m

clear

clc

%% Create Data

load('D:\Regelleistungsbedarf\Regelleistungsbedarf2007-2015.mat')

%% Plot with styleplot

% First Data Set %%

fig = [];

% Define data sets

fig.subplot{1,1}.plot{1}.x = demandControlReserve.time;

fig.subplot{1,1}.plot{1}.y = demandControlReserve.primary.pos;

fig.subplot{1,1}.plot{1}.style='plot';

fig.subplot{1,1}.plot{1}.color='x4';

% fig.subplot{1,1}.plot{1}.linewidth=5;

% fig.subplot{1,1}.plot{1}.linestyle='--';

fig.subplot{1,1}.plot{2}.x = demandControlReserve.time;

fig.subplot{1,1}.plot{2}.y = demandControlReserve.primary.neg;

fig.subplot{1,1}.plot{2}.style='plot';

fig.subplot{1,1}.plot{2}.color='x3';

% fig.subplot{1,1}.plot{1}.linewidth=5;

% fig.subplot{1,1}.plot{1}.linestyle='--';

fig.subplot{1,1}.plot{3}.x = demandControlReserve.time;

fig.subplot{1,1}.plot{3}.y = demandControlReserve.secondary.pos;

fig.subplot{1,1}.plot{3}.style='plot';

fig.subplot{1,1}.plot{3}.color='x16';

% fig.subplot{1,1}.plot{1}.linewidth=5;

% fig.subplot{1,1}.plot{1}.linestyle='--';

fig.subplot{1,1}.plot{4}.x = demandControlReserve.time;

fig.subplot{1,1}.plot{4}.y = demandControlReserve.secondary.neg;

fig.subplot{1,1}.plot{4}.style='plot';

fig.subplot{1,1}.plot{4}.color='x15';

% fig.subplot{1,1}.plot{1}.linewidth=5;

% fig.subplot{1,1}.plot{1}.linestyle='--';

fig.subplot{1,1}.plot{5}.x = demandControlReserve.time;

fig.subplot{1,1}.plot{5}.y = demandControlReserve.tertiary.pos;

fig.subplot{1,1}.plot{5}.style='plot';

fig.subplot{1,1}.plot{5}.color='x28';

% fig.subplot{1,1}.plot{1}.linewidth=5;

% fig.subplot{1,1}.plot{1}.linestyle='--';

fig.subplot{1,1}.plot{6}.x = demandControlReserve.time;

fig.subplot{1,1}.plot{6}.y = demandControlReserve.tertiary.neg;

fig.subplot{1,1}.plot{6}.style='plot';

fig.subplot{1,1}.plot{6}.color='x27';

% fig.subplot{1,1}.plot{1}.linewidth=5;

% fig.subplot{1,1}.plot{1}.linestyle='--';

% Plot properties

fig.subplot{1,1}.xlim=[datenum([2009 1 1]) datenum([2015 1 1])];

fig.subplot{1,1}.ylim=[-3500 3500];

% fig.subplot{1,1}.title=['Annual frequency of balancing energy price reBAP'];

fig.subplot{1,1}.xlabel='Year';

fig.subplot{1,1}.ylabel='Control reserve demand in MW';

fig.subplot{1,1}.legend={'Positive primary control reserve',...

	'Negative primary control reserve',...

	'Positive secondary control reserve',...

	'Negative secondary control reserve',...

	'Positive tertiary control reserve',...

	'Negative tertiary control reserve'};

fig.subplot{1,1}.xticks=datenum([(2007:2015)' ones(length((2007:2015)'),2)]);

fig.subplot{1,1}.xdatetick_format='yyyy';

fig.height=12;

fig.width_columns=3;

[hFig, hAxes, hPlot] = styleplot(fig,'styleplot_format_PhD','word');

Functions/Results_Evaluation/resPhD_probForecast.m

% clear;

clc;

%% Load

[Prob_Forec_DA, Prob_Forec_ID, actualFeedIn, ~, ~, ~, ...

	~, ~, ~, ~, simRuns, ~, ~, infoRuns] ...

	= res_loadResults_noMOL('D:\Ergebnisse REBal');

%% Options

% isDA = true;

isDA = false;

Pnenn = simRuns(1,1).installedCapacity;

if strcmp(simRuns(1,1).pool,'Germany')

	poolGer = true;

else

	poolGer = false;

end

poolName = infoRuns.runSetName(1:end-4);

%% Get Common Data set

if isDA

	Prob_Forec = Prob_Forec_DA;

	timeType = 'DA';

else

	Prob_Forec = Prob_Forec_ID;

	timeType = 'ID';

end

[actualFeedIn.time,actualFeedIn.data,Prob_Forec.time,Prob_Forec.data] = getCommonData(actualFeedIn.time,actualFeedIn.data,Prob_Forec.time,Prob_Forec.data);

%% Initialize Figure

% fhgColors.greyDark

fig = [];

% First Data Set %%

fig.subplot{1,1}.plot{1}.x = actualFeedIn.time;

fig.subplot{1,1}.plot{1}.y = actualFeedIn.data;

fig.subplot{1,1}.plot{1}.style='plot';

fig.subplot{1,1}.plot{1}.color='greyDark';

fig.subplot{1,1}.plot{2}.x = Prob_Forec.time;

fig.subplot{1,1}.plot{2}.y = Prob_Forec.data(:,1);

fig.subplot{1,1}.plot{2}.style='plot';

% fig.subplot{1,1}.plot{2}.color='x5';

fig.subplot{1,1}.plot{3}.x = Prob_Forec.time;

fig.subplot{1,1}.plot{3}.y = Prob_Forec.data(:,2);

fig.subplot{1,1}.plot{3}.style='plot';

% fig.subplot{1,1}.plot{3}.color='x5';

fig.subplot{1,1}.plot{4}.x = Prob_Forec.time;

fig.subplot{1,1}.plot{4}.y = Prob_Forec.data(:,3);

fig.subplot{1,1}.plot{4}.style='plot';

% fig.subplot{1,1}.plot{4}.color='x5';

fig.subplot{1,1}.plot{5}.x = Prob_Forec.time;

fig.subplot{1,1}.plot{5}.y = Prob_Forec.data(:,4);

fig.subplot{1,1}.plot{5}.style='plot';

% fig.subplot{1,1}.plot{5}.color='x5';

fig.subplot{1,1}.plot{6}.x = Prob_Forec.time;

fig.subplot{1,1}.plot{6}.y = Prob_Forec.data(:,5);

fig.subplot{1,1}.plot{6}.style='plot';

% fig.subplot{1,1}.plot{6}.color='x5';

fig.subplot{1,1}.plot{7}.x = Prob_Forec.time;

fig.subplot{1,1}.plot{7}.y = Prob_Forec.data(:,6);

fig.subplot{1,1}.plot{7}.style='plot';

% fig.subplot{1,1}.plot{7}.color='x5';

fig.subplot{1,1}.plot{8}.x = Prob_Forec.time;

fig.subplot{1,1}.plot{8}.y = Prob_Forec.data(:,7);

fig.subplot{1,1}.plot{8}.style='plot';

% fig.subplot{1,1}.plot{8}.color='x5';

fig.subplot{1,1}.xlim=[datenum('14-Aug-2014') datenum('20-Aug-2014')];

fig.subplot{1,1}.ylim=[0 1];

% fig.subplot{1,1}.title='Onshore Wind 30 GW Germany'; % optionaler Titel

% fig.subplot{1,1}.title='Onshore Wind 1 GW Pool'; % optionaler Titel

% fig.subplot{1,1}.title='Offshore Wind 1 GW Germany'; % optionaler Titel

% fig.subplot{1,1}.title='Photovoltaic Systems 30 GW Germany'; % optionaler Titel

fig.subplot{1,1}.title='Photovoltaic Systems 1 GW Pool'; % optionaler Titel

fig.subplot{1,1}.xlabel='Time';

fig.subplot{1,1}.ylabel='Normalized Power';

fig.subplot{1,1}.zlabel='Time';

fig.subplot{1,1}.legend={'Feed-In','95%','99%','99.5%','99.9%','99.99%','99.994%','99.999%'};

fig.subplot{1,1}.legend_orientation = 'vertical';

% fig.subplot{1,1}.colormap_label='Temperatur Gradient [°C pro h]';

fig.subplot{1,1}.xdatetick_format='dd/mm/yyyy';

fig.subplot{1,1}.xdatetick_rotate=90;

fig.height=12;

fig.width_columns=3;

[hFig, hAxes, hPlot] = styleplot(fig,'styleplot_format_PhD','word');

%% Save

path = 'C:\Users\mjansen\Synchronisation\mjansen auf User_Artemis(R)\Dissertation\Dissertation\Figures\';

name = ['FigB-9_probForecast_' poolName '_' timeType];

saveas(gcf,[path name '.fig']);

save([path name '_data.mat'],'fig');

Functions/Results_Evaluation/resPhD_probForecast_blockOffer_DA_ID.m

clear;

clc;

%% Load

[Prob_Forec_DA, Prob_Forec_ID, actualFeedIn, ~, ~, ~, ...

	~, ~, ~, ~, simRuns, ~, ~, infoRuns] ...

	= res_loadResults_noMOL('D:\Ergebnisse REBal');

%% Options

% secLevel = 95;

secLevel = 99.994;

productLength = 12;

Pnenn = simRuns(1,1).installedCapacity;

if strcmp(simRuns(1,1).pool,'Germany')

	poolGer = true;

else

	poolGer = false;

end

instCap = simRuns(1,1).installedCapacity;

denormalize = false;

poolName = infoRuns.runSetName(1:end-4);

secLevelName = strrep(num2str(secLevel),'.','_');

%% Get Common Data set

indexSecLevel = find(Prob_Forec_DA.securityLevel>=secLevel,1,'first');

[actualFeedIn.time,actualFeedIn.data,Prob_Forec_DA.time,Prob_Forec_DA.data] = getCommonData(actualFeedIn.time,actualFeedIn.data,Prob_Forec_DA.time,Prob_Forec_DA.data(:,indexSecLevel));

[actualFeedIn.time,actualFeedIn.data,Prob_Forec_ID.time,Prob_Forec_ID.data] = getCommonData(actualFeedIn.time,actualFeedIn.data,Prob_Forec_ID.time,Prob_Forec_ID.data(:,indexSecLevel));

% [~,~,~,Prob_Forec_ID2.data.fcHor2] = getCommonData(actualFeedIn.time,actualFeedIn.data,Prob_Forec_ID.time,Prob_Forec_ID.data(:,2));

% [~,~,~,Prob_Forec_ID2.data.fcHor3] = getCommonData(actualFeedIn.time,actualFeedIn.data,Prob_Forec_ID.time,Prob_Forec_ID.data(:,3));

% [~,~,~,Prob_Forec_ID2.data.fcHor4] = getCommonData(actualFeedIn.time,actualFeedIn.data,Prob_Forec_ID.time,Prob_Forec_ID.data(:,4));

% [~,~,~,Prob_Forec_ID2.data.fcHor5] = getCommonData(actualFeedIn.time,actualFeedIn.data,Prob_Forec_ID.time,Prob_Forec_ID.data(:,5));

% [~,~,~,Prob_Forec_ID2.data.fcHor6] = getCommonData(actualFeedIn.time,actualFeedIn.data,Prob_Forec_ID.time,Prob_Forec_ID.data(:,6));

% [~,~,~,Prob_Forec_ID2.data.fcHor7] = getCommonData(actualFeedIn.time,actualFeedIn.data,Prob_Forec_ID.time,Prob_Forec_ID.data(:,7));

% [~,~,Prob_Forec_ID2.time,Prob_Forec_ID2.data.fcHor8] = getCommonData(actualFeedIn.time,actualFeedIn.data,Prob_Forec_ID.time,Prob_Forec_ID.data(:,8));

[actualFeedIn.time,actualFeedIn.data,Prob_Forec_DA.time,Prob_Forec_DA.data] = getCommonData(actualFeedIn.time,actualFeedIn.data,Prob_Forec_DA.time,Prob_Forec_DA.data);

[actualFeedIn.time,actualFeedIn.data,Prob_Forec_DA.time,Prob_Forec_DA.data] = getCommonData(actualFeedIn.time,actualFeedIn.data,Prob_Forec_DA.time,Prob_Forec_DA.data);

%% Denomarmalize Data

if denormalize

	actualFeedIn.data = actualFeedIn.data * instCap;

	Prob_Forec_DA.data = Prob_Forec_DA.data * instCap;

	Prob_Forec_ID.data = Prob_Forec_ID.data * instCap;

end

%% Create Min Vals

blocklength = productLength *4;

[blockID.time,blockID.data] = downsampleData(Prob_Forec_ID.time,Prob_Forec_ID.data,blocklength,'min');

[blockDA.time,blockDA.data] = downsampleData(Prob_Forec_DA.time,Prob_Forec_DA.data,blocklength,'min');

% Create Filling

[blockIDx,blockIDy]=stairs(blockID.time,blockID.data);

[blockDAx,blockDAy]=stairs(blockDA.time,blockDA.data);

blockIDy(isnan(blockIDy)) = 0;

blockDAy(isnan(blockDAy)) = 0;

blockIDy = [0;blockIDy;0];

blockIDx = [blockIDx(1);blockIDx;blockIDx(end)];

blockDAy = [0;blockDAy;0];

blockDAx = [blockDAx(1);blockDAx;blockDAx(end)];

%% Create Figure with styleplot

% fhgColors.x15

fig = [];

% First Data Set %%

% Define data sets

fig.subplot{1,1}.plot{1}.x = actualFeedIn.time;

fig.subplot{1,1}.plot{1}.y = actualFeedIn.data;

fig.subplot{1,1}.plot{1}.style='plot';

fig.subplot{1,1}.plot{1}.color='greyDark';

fig.subplot{1,1}.plot{2}.x = blockIDx;

fig.subplot{1,1}.plot{2}.y = blockIDy;

fig.subplot{1,1}.plot{2}.style='patch';

fig.subplot{1,1}.plot{2}.color='x1';

fig.subplot{1,1}.plot{3}.x = blockDAx;

fig.subplot{1,1}.plot{3}.y = blockDAy;

fig.subplot{1,1}.plot{3}.style='patch';

fig.subplot{1,1}.plot{3}.color='x13';

fig.subplot{1,1}.plot{4}.x = Prob_Forec_DA.time;

fig.subplot{1,1}.plot{4}.y = Prob_Forec_DA.data;

fig.subplot{1,1}.plot{4}.style='plot';

fig.subplot{1,1}.plot{4}.color='x15';

fig.subplot{1,1}.plot{5}.x = Prob_Forec_ID.time;

fig.subplot{1,1}.plot{5}.y = Prob_Forec_ID.data;

fig.subplot{1,1}.plot{5}.style='plot';

fig.subplot{1,1}.plot{5}.color='x3';

fig.subplot{1,1}.plot{6}.x = blockDA.time;

fig.subplot{1,1}.plot{6}.y = blockDA.data;

fig.subplot{1,1}.plot{6}.style='stairs';

fig.subplot{1,1}.plot{6}.color='x16';

fig.subplot{1,1}.plot{7}.x = blockID.time;

fig.subplot{1,1}.plot{7}.y = blockID.data;

fig.subplot{1,1}.plot{7}.style='stairs';

fig.subplot{1,1}.plot{7}.color='x5';

% Plot properties

fig.subplot{1,1}.xlim=[datenum('14-Aug-2014') datenum('20-Aug-2014')];

% fig.subplot{1,1}.ylim=[0 0.601];

fig.subplot{1,1}.ylim=[0 1];

fig.subplot{1,1}.title=['Product length: ' num2str(productLength) ' hours'];

fig.subplot{1,1}.xlabel='Time';

fig.subplot{1,1}.ylabel='Normalized Power';

% fig.subplot{1,1}.zlabel='Time';

fig.subplot{1,1}.legend={'Feed-In', ...

	['Probabilistic day-ahead forecast with ' num2str(secLevel) '% reliability'], ...

	['Probabilistic one-hour ahead intraday forecast with ' num2str(secLevel) '% reliability'], ...

	'Offerable control reserve based on day-ahead forecast', ...

	'Offerable control reserve based on intraday forecast'};

fig.subplot{1,1}.legend_orientation = 'vertical';

% fig.subplot{1,1}.colormap_label='Temperatur Gradient [°C pro h]';

fig.subplot{1,1}.xdatetick_format='dd/mm/yyyy';

% fig.subplot{1,1}.xdatetick_rotate=90;

fig.height=9;

fig.width_columns=3;

[hFig, hAxes, hPlot] = styleplot(fig,'styleplot\styleplot_format_PhD','word');

%% Save

path = 'C:\Users\mjansen\Synchronisation\mjansen auf User_Artemis(R)\Dissertation\Dissertation\Figures\';

% Fig5-5_blockOffer_onWind_30GW_1h_top

name = ['FigB-18_blockOffer_' poolName '_' num2str(productLength) 'h_' secLevelName];

saveas(gcf,[path name '.fig']);

save([path name '_data.mat'],'fig');

Functions/Results_Evaluation/resPhD_profitMaxPrices_EnergyPrices.m

% clear;

% clc;

% %% Options

% productLength = 1;

% percentNegRP = 100;

% market = 'TFC';

%

% %% Load

%

% preDefineDataSet = ([123:141]);

%

% for iDataSet = 1:length(preDefineDataSet)

% 	

% 	[~, ~, ...

% 		~, ~, ...

% 		~, ~, ...

% 		~, ~, ...

% 		~, DataSet(iDataSet).offerRP_Min, ...

% 		DataSet(iDataSet).simRuns, ~, ...

% 		~, DataSet(iDataSet).info] ...

% 		= res_loadResults_noMOL('D:\Ergebnisse REBal',preDefineDataSet(iDataSet));

% 	

% % 	[Prob_Forec_DA, Prob_Forec_ID, actualFeedIn, ecoImpact, ecoImpactTFC, error, ...

% % 		errorRP, macroEcoImpact, offerRP, offerRP_Min, simRuns, violation, alteredMOList, infoRuns] = res_loadResults_noMOL('D:\Ergebnisse REBal',preDefineDataSet(iDataSet));

% 	

% 	runSetYear = regexp(DataSet(iDataSet).info.runSetName,'_','split');

% 	GenType{iDataSet} = runSetYear{1};

% 	PoolType{iDataSet} = runSetYear{2};

% 	Type{iDataSet} = [runSetYear{1:2}];

% 	for iYear = 1:length(runSetYear)

% 		try

% 			if ~isnan(str2double(runSetYear{iYear}))

% 				timeStampYear(iDataSet) = datenum([str2double(runSetYear{iYear}) 1 1]);

% 			end

% 		end

% 	end

% 	

% end

%% Other Vars

% Define Order

TypeAll = sort(unique([Type]));

genTypeAll = unique([GenType]);

poolTypeAll = unique([PoolType]);

[timeStampYearVec,~] = datevec(timeStampYear');

[years,~] = datevec(sort(unique(timeStampYear)));

secLevelAll = sort(unique([DataSet(1).simRuns.securityLevel]));

% secLevelAll = secLevelAll([6]); % Show on those security levels

%% Get DataSet

productLength = 1;

market = 'SFC';

pos = 100;

neg = 100;

for iSec = 1:length(secLevelAll)

	

	secLevel = secLevelAll(iSec);

	

	for iDS = 1:length(DataSet)

		

		indexA = strcmp({DataSet(iDS).simRuns.market},market);

		indexB = [DataSet(iDS).simRuns.percentPosRP] == pos;

		indexC = [DataSet(iDS).simRuns.productLength] == productLength;

		indexD = [DataSet(iDS).simRuns.securityLevel] == secLevel;

		indexAll = indexA & indexB & indexC & indexD;

		

		offerPricePos = [];

		offerPriceNeg = [];

		

		offerPricePos(:,1) ...

			= DataSet(iDS).offerRP_Min(indexAll).AAP.pos.capacity;

		offerPricePos(:,2) ...

			= DataSet(iDS).offerRP_Min(indexAll).AAP.pos.capacityPrice;

		offerPricePos(:,3) ...

			= DataSet(iDS).offerRP_Min(indexAll).AAP.pos.energyPrice;

		

		% When capacity is 0 then no price

		offerPricePos(offerPricePos(:,1) == 0,3) = nan;

		offerPricePos(offerPricePos(:,1) == 0,2) = nan;

		offerPricePos(offerPricePos(:,1) == 0,1) = nan;

		% When capacity price is below then price 0

% 		offerPriceAAP(offerPriceAAP(:,2) < 0,2) = 0;

		

% 		sortrows(offerPriceAAP,1)

		indexB = [DataSet(iDS).simRuns.percentNegRP] == neg;

		indexAll = indexA & indexB & indexC & indexD;

		offerPriceNeg(:,1) ...

			= DataSet(iDS).offerRP_Min(indexAll).AAP.neg.capacity;

		offerPriceNeg(:,2) ...

			= DataSet(iDS).offerRP_Min(indexAll).AAP.neg.capacityPrice;

		offerPriceNeg(:,3) ...

			= DataSet(iDS).offerRP_Min(indexAll).AAP.neg.energyPrice;

		

		% When capacity is 0 then no price

		offerPriceNeg(offerPriceNeg(:,1) == 0,3) = nan;

		offerPriceNeg(offerPriceNeg(:,1) == 0,2) = nan;

		offerPriceNeg(offerPriceNeg(:,1) == 0,1) = nan;

		% When capacity price is below then price 0

% 		offerPriceAAP(offerPriceAAP(:,2) < 0,2) = 0;

		

% 		sortrows(offerPriceAAP,1)

		

		meanValCapPos = nansum(offerPricePos(:,2) .* offerPricePos(:,1)) ./ nansum(offerPricePos(:,1));

		meanValEnPos = nansum(offerPricePos(:,3) .* offerPricePos(:,1)) ./ nansum(offerPricePos(:,1));

		

		if strcmp(Type(iDS),'OnWindBRD')

			meanCapPricePos(timeStampYearVec(iDS)-2009,1) = meanValCapPos;

			meanEnPricePos(timeStampYearVec(iDS)-2009,1) = meanValEnPos;

		elseif strcmp(Type(iDS),'OnWindWF')

			meanCapPricePos(timeStampYearVec(iDS)-2009,2) = meanValCapPos;

			meanEnPricePos(timeStampYearVec(iDS)-2009,2) = meanValEnPos;

		elseif strcmp(Type(iDS),'OfWindBRD')

			meanCapPricePos(timeStampYearVec(iDS)-2009,3) = meanValCapPos;

			meanEnPricePos(timeStampYearVec(iDS)-2009,3) = meanValEnPos;

		elseif strcmp(Type(iDS),'PVBRD')

			meanCapPricePos(timeStampYearVec(iDS)-2009,4) = meanValCapPos;

			meanEnPricePos(timeStampYearVec(iDS)-2009,4) = meanValEnPos;

		elseif strcmp(Type(iDS),'PVPVF')

			meanCapPricePos(timeStampYearVec(iDS)-2009,5) = meanValCapPos;

			meanEnPricePos(timeStampYearVec(iDS)-2009,5) = meanValEnPos;

		end

		

		

		meanValCapNeg = nansum(offerPriceNeg(:,2) .* offerPriceNeg(:,1)) ./ nansum(offerPriceNeg(:,1));

		meanValEnNeg = nansum(offerPriceNeg(:,3) .* offerPriceNeg(:,1)) ./ nansum(offerPriceNeg(:,1));

		

		if strcmp(Type(iDS),'OnWindBRD')

			meanCapPriceNeg(timeStampYearVec(iDS)-2009,1) = meanValCapNeg;

			meanEnPriceNeg(timeStampYearVec(iDS)-2009,1) = meanValEnNeg;

		elseif strcmp(Type(iDS),'OnWindWF')

			meanCapPriceNeg(timeStampYearVec(iDS)-2009,2) = meanValCapNeg;

			meanEnPriceNeg(timeStampYearVec(iDS)-2009,2) = meanValEnNeg;

		elseif strcmp(Type(iDS),'OfWindBRD')

			meanCapPriceNeg(timeStampYearVec(iDS)-2009,3) = meanValCapNeg;

			meanEnPriceNeg(timeStampYearVec(iDS)-2009,3) = meanValEnNeg;

		elseif strcmp(Type(iDS),'PVBRD')

			meanCapPriceNeg(timeStampYearVec(iDS)-2009,4) = meanValCapNeg;

			meanEnPriceNeg(timeStampYearVec(iDS)-2009,4) = meanValEnNeg;

		elseif strcmp(Type(iDS),'PVPVF')

			meanCapPriceNeg(timeStampYearVec(iDS)-2009,5) = meanValCapNeg;

			meanEnPriceNeg(timeStampYearVec(iDS)-2009,5) = meanValEnNeg;

		end

		

	end

	

	meanCapPricePos(meanCapPricePos == 0) = nan;

	meanEnPricePos(meanEnPricePos == 0) = nan;

	meanCapPriceNeg(meanCapPriceNeg == 0) = nan;

	meanEnPriceNeg(meanEnPriceNeg == 0) = nan;

	

	secLevelStructPos(iSec).meanCapPrice = meanCapPricePos;	

	secLevelStructPos(iSec).meanEnPrice = meanEnPricePos;	

	secLevelStructNeg(iSec).meanCapPrice = meanCapPriceNeg;	

	secLevelStructNeg(iSec).meanEnPrice = meanEnPriceNeg;

	

end

%% Consolidate data

for iSec = 1:length(secLevelAll)

	secLevelStructPos(iSec).mean = nanmean(secLevelStructPos(iSec).meanEnPrice,1);

	secLevelStructPos(iSec).max = nanmax(secLevelStructPos(iSec).meanEnPrice,1);

	secLevelStructPos(iSec).min = nanmin(secLevelStructPos(iSec).meanEnPrice,1);

	secLevelStructNeg(iSec).mean = nanmean(secLevelStructNeg(iSec).meanEnPrice,1);

	secLevelStructNeg(iSec).max = nanmax(secLevelStructNeg(iSec).meanEnPrice,1);

	secLevelStructNeg(iSec).min = nanmin(secLevelStructNeg(iSec).meanEnPrice,1);

end

%% AAP Data

dataPos = [];

for iData = 1:length(secLevelStructPos)

	dataPos = [dataPos;secLevelStructPos(iData).mean];

end

dataPos = dataPos; % So actually % are plotted rather than decimal numbers

rangeLowPos = [];

for iData = 1:length(secLevelStructPos)

	rangeLowPos = [rangeLowPos;secLevelStructPos(iData).min];

end

rangeLowPos = dataPos-rangeLowPos; % So actually % are plotted rather than decimal numbers

rangeHighPos = [];

for iData = 1:length(secLevelStructPos)

	rangeHighPos = [rangeHighPos;secLevelStructPos(iData).max];

end

rangeHighPos = dataPos-rangeHighPos; % So actually % are plotted rather than decimal numbers

errorbarDataPos = [dataPos;rangeLowPos;rangeHighPos];

%% AAP data

dataNeg = [];

for iData = 1:length(secLevelStructNeg)

	dataNeg = [dataNeg;secLevelStructNeg(iData).mean];

end

dataNeg = dataNeg; % So actually % are plotted rather than decimal numbers

rangeLowNeg = [];

for iData = 1:length(secLevelStructNeg)

	rangeLowNeg = [rangeLowNeg;secLevelStructNeg(iData).min];

end

rangeLowNeg = dataNeg-rangeLowNeg; % So actually % are plotted rather than decimal numbers

rangeHighNeg = [];

for iData = 1:length(secLevelStructNeg)

	rangeHighNeg = [rangeHighNeg;secLevelStructNeg(iData).max];

end

rangeHighNeg = dataNeg-rangeHighNeg; % So actually % are plotted rather than decimal numbers

errorbarDataNeg = [dataNeg;rangeLowNeg;rangeHighNeg];

% % Values for bars

% dataVal = [];

% for iData = 1:length(secLevelStruct)

% 	dataVal = [dataVal;secLevelStruct(iData).lostVal];

% end

% dataVal = dataVal / 1000; % So actually % are plotted rather than decimal numbers

% dataValTXT = num2cell(dataVal);

% textFormat = cell(size(dataValTXT));

% textFormat(:) = {'%0.1f'};

% dataValTXT = cellfun(@num2str,dataValTXT,textFormat,'UniformOutput',0);

%% Plot with styleplot

% First Data Set %%

fig = [];

% Define data sets

fig.subplot{1,1}.plot{1}.x = 1:size(dataNeg,1);

fig.subplot{1,1}.plot{1}.y = dataNeg;

fig.subplot{1,1}.plot{1}.style='bar';

fig.subplot{1,1}.plot{1}.barlayout='grouped';

fig.subplot{1,1}.plot{1}.barcolor={'x2','x34','x27','x19','x14'}; % Overwrite the color property

% Define data sets

fig.subplot{1,1}.plot{2}.x = 1:size(dataPos,1);

fig.subplot{1,1}.plot{2}.y = dataPos;

fig.subplot{1,1}.plot{2}.style='bar';

fig.subplot{1,1}.plot{2}.barlayout='grouped';

fig.subplot{1,1}.plot{2}.barcolor={'x3','x35','x28','x20','x15'}; % Overwrite the color property

% Error Bar

fig.subplot{1,1}.plot{3}.x = 1:size(dataNeg,1);

fig.subplot{1,1}.plot{3}.y = errorbarDataNeg;

fig.subplot{1,1}.plot{3}.style='errorbar';

fig.subplot{1,1}.plot{3}.barlayout='grouped';

fig.subplot{1,1}.plot{3}.color='red';

% Error Bar

fig.subplot{1,1}.plot{4}.x = 1:size(dataPos,1);

fig.subplot{1,1}.plot{4}.y = errorbarDataPos;

fig.subplot{1,1}.plot{4}.style='errorbar';

fig.subplot{1,1}.plot{4}.barlayout='grouped';

fig.subplot{1,1}.plot{4}.color='greyDark';

% Plot properties

% fig.subplot{1,1}.xlim=[datenum('14-Aug-2014') datenum('20-Aug-2014')];

fig.subplot{1,1}.ylim=[0 200];

fig.subplot{1,1}.yticks=min(fig.subplot{1,1}.ylim):50:max(fig.subplot{1,1}.ylim);

% fig.subplot{1,1}.title=['Secondary control reserve']; % optionaler Titel

fig.subplot{1,1}.title=['Tertiary control reserve']; % optionaler Titel

fig.subplot{1,1}.xlabel='Level of reliability';

fig.subplot{1,1}.ylabel='Average energy price in EUR/MWh';

% fig.subplot{1,1}.zlabel='Time';

fig.subplot{1,1}.legend={'Onshore Wind 30 GW Germany negative energy dispatch bids', ...

	'Onshore Wind 1 GW Pool negative energy dispatch bids', ...

	'Offshore Wind 1 GW Germany negative energy dispatch bids', ...

	'Photovoltaic Systems 30 GW Germany negative energy dispatch bids', ...

	'Photovoltaic Systems 1 GW Pool negative energy dispatch bids', ...

	'Onshore Wind 30 GW Germany positive energy dispatch bids', ...

	'Onshore Wind 1 GW Pool positive energy dispatch bids', ...

	'Offshore Wind 1 GW Germany positive energy dispatch bids', ...

	'Photovoltaic Systems 30 GW Germany positive energy dispatch bids', ...

	'Photovoltaic Systems 1 GW Pool positive energy dispatch bids'};

% fig.subplot{1,1}.legend_orientation = 'vertical';

% fig.subplot{1,1}.colormap_label='Temperatur Gradient [°C pro h]';

fig.subplot{1,1}.xticks=fig.subplot{1,1}.plot{1}.x;

fig.subplot{1,1}.xticklabels={'95%','99%','99.5%','99.9%','99.99%','99.994%','99.999%'};

% fig.subplot{1,1}.xdatetick_format='dd/mm/yyyy';

fig.subplot{1,1}.xdatetick_rotate=90;

fig.height=12;

fig.width_columns=3;

[hFig, hAxes, hPlot] = styleplot(fig,'styleplot_format_PhD','word');

%% Save

path = 'C:\Users\mjansen\Synchronisation\mjansen auf User_Artemis(R)\Dissertation\Dissertation\Figures\5 Economics of fluctuating RES in the control reserve markets\';

% name = 'Fig5-22_profitMax_engPrices_annAvg_secRes_1h_top';

% name = 'Fig5-22_profitMax_engPrices_annAvg_terRes_1h_bottom';

name = 'Fig5-22_profitMax_engPrices_annAvg_terRes_1h_legend';

saveas(gcf,[path name '.fig']);

save([path name '_data.mat'],'fig');

Functions/Results_Evaluation/resPhD_profitMaxPrices_negative_secondary.m

% clear;

% clc;

% %% Options

% % productLength = 4;

% % percentNegRP = 100;

% % market = 'SFC';

%

% %% Load

%

% preDefineDataSet = ([117:135]);

%

% for iDataSet = 1:length(preDefineDataSet)

% 	

% 	[~, ~, ...

% 		~, ~, ...

% 		~, ~, ...

% 		~, ~, ...

% 		~, DataSet(iDataSet).offerRP_Min, ...

% 		DataSet(iDataSet).simRuns, ~, ...

% 		~, DataSet(iDataSet).info] ...

% 		= res_loadResults_noMOL('D:\Ergebnisse REBal',preDefineDataSet(iDataSet));

% 	

% % 	[Prob_Forec_DA, Prob_Forec_ID, actualFeedIn, ecoImpact, ecoImpactTFC, error, ...

% % 		errorRP, macroEcoImpact, offerRP, offerRP_Min, simRuns, violation, alteredMOList, infoRuns] = res_loadResults_noMOL('D:\Ergebnisse REBal',preDefineDataSet(iDataSet));

% 	

% 	runSetYear = regexp(DataSet(iDataSet).info.runSetName,'_','split');

% 	GenType{iDataSet} = runSetYear{1};

% 	PoolType{iDataSet} = runSetYear{2};

% 	Type{iDataSet} = [runSetYear{1:2}];

% 	for iYear = 1:length(runSetYear)

% 		try

% 			if ~isnan(str2double(runSetYear{iYear}))

% 				timeStampYear(iDataSet) = datenum([str2double(runSetYear{iYear}) 1 1]);

% 			end

% 		end

% 	end

% 	

% end

%

% % Select only valid datasets

% invalidDS = false(size(DataSet));

% for iDS = 1:length(DataSet)

% 	if length(DataSet(iDS).offerRP_Min) == 1

% 		invalidDS(iDS) = isnan(DataSet(iDS).offerRP_Min);

% 	end

% end

% DataSet = DataSet(~invalidDS);

% timeStampYear = timeStampYear(~invalidDS);

% GenType = GenType(~invalidDS);

% PoolType = PoolType(~invalidDS);

% Type = Type(~invalidDS);

%% Other Vars

% Define Order

TypeAll = sort(unique([Type]));

genTypeAll = unique([GenType]);

poolTypeAll = unique([PoolType]);

[timeStampYearVec,~] = datevec(timeStampYear');

[years,~] = datevec(sort(unique(timeStampYear)));

secLevelAll = sort(unique([DataSet(1).simRuns.securityLevel]));

% secLevelAll = secLevelAll([6]); % Show on those security levels

%% Get DataSet

productLength = 12;

market = 'SFC';

neg = 100;

for iSec = 1:length(secLevelAll)

	

	secLevel = secLevelAll(iSec);

	

	for iDS = 1:length(DataSet)

		

		indexA = strcmp({DataSet(iDS).simRuns.market},market);

		indexB = [DataSet(iDS).simRuns.percentNegRP] == neg;

		indexC = [DataSet(iDS).simRuns.productLength] == productLength;

		indexD = [DataSet(iDS).simRuns.securityLevel] == secLevel;

		indexAll = indexA & indexB & indexC & indexD;

		

		offerPrice = [];

		offerPriceNeg = [];

		

		offerPrice(:,1) ...

			= DataSet(iDS).offerRP_Min(indexAll).BC.neg.capacity;

		offerPrice(:,2) ...

			= DataSet(iDS).offerRP_Min(indexAll).BC.neg.capacityPrice;

		offerPrice(:,3) ...

			= DataSet(iDS).offerRP_Min(indexAll).BC.neg.energyPrice;

		

		% When capacity is 0 then no price

		offerPric(offerPrice(:,1) == 0,3) = nan;

		offerPrice(offerPrice(:,1) == 0,2) = nan;

		offerPrice(offerPrice(:,1) == 0,1) = nan;

		meanValCap = nansum(offerPrice(:,2) .* offerPrice(:,1)) ./ nansum(offerPrice(:,1));

		meanValEn = nansum(offerPrice(:,3) .* offerPrice(:,1)) ./ nansum(offerPrice(:,1));

		

		if strcmp(Type(iDS),'OnWindBRD')

			meanCapPrice(timeStampYearVec(iDS)-2009,1) = meanValCap;

			meanEnPrice(timeStampYearVec(iDS)-2009,1) = meanValEn;

		elseif strcmp(Type(iDS),'OnWindWF')

			meanCapPrice(timeStampYearVec(iDS)-2009,2) = meanValCap;

			meanEnPrice(timeStampYearVec(iDS)-2009,2) = meanValEn;

		elseif strcmp(Type(iDS),'OfWindBRD')

			meanCapPrice(timeStampYearVec(iDS)-2009,3) = meanValCap;

			meanEnPrice(timeStampYearVec(iDS)-2009,3) = meanValEn;

		elseif strcmp(Type(iDS),'PVBRD')

			meanCapPrice(timeStampYearVec(iDS)-2009,4) = meanValCap;

			meanEnPrice(timeStampYearVec(iDS)-2009,4) = meanValEn;

		elseif strcmp(Type(iDS),'PVPVF')

			meanCapPrice(timeStampYearVec(iDS)-2009,5) = meanValCap;

			meanEnPrice(timeStampYearVec(iDS)-2009,5) = meanValEn;

		end

		

	end

	

	meanCapPrice(meanCapPrice == 0) = nan;

	meanEnPrice(meanEnPrice == 0) = nan;

	secLevelStruct(iSec).meanCapPrice = meanCapPrice;	

	secLevelStruct(iSec).meanEnPrice = meanEnPrice;	

	

end

%% Consolidate data

for iSec = 1:length(secLevelAll)

	secLevelStruct(iSec).mean = nanmean(secLevelStruct(iSec).meanCapPrice,1);

	secLevelStruct(iSec).max = nanmax(secLevelStruct(iSec).meanCapPrice,1);

	secLevelStruct(iSec).min = nanmin(secLevelStruct(iSec).meanCapPrice,1);

end

data = [];

for iData = 1:length(secLevelStruct)

	data = [data;secLevelStruct(iData).mean];

end

data = data; % So actually % are plotted rather than decimal numbers

rangeLow = [];

for iData = 1:length(secLevelStruct)

	rangeLow = [rangeLow;secLevelStruct(iData).min];

end

rangeLow = data-rangeLow; % So actually % are plotted rather than decimal numbers

rangeHigh = [];

for iData = 1:length(secLevelStruct)

	rangeHigh = [rangeHigh;secLevelStruct(iData).max];

end

rangeHigh = rangeHigh-data; % So actually % are plotted rather than decimal numbers

errorbarData = [data;rangeLow;rangeHigh];

% % Values for bars

% dataVal = [];

% for iData = 1:length(secLevelStruct)

% 	dataVal = [dataVal;secLevelStruct(iData).lostVal];

% end

% dataVal = dataVal / 1000; % So actually % are plotted rather than decimal numbers

% dataValTXT = num2cell(dataVal);

% textFormat = cell(size(dataValTXT));

% textFormat(:) = {'%0.1f'};

% dataValTXT = cellfun(@num2str,dataValTXT,textFormat,'UniformOutput',0);

%% Plot with styleplot

fig = [];

% Define data sets

fig.subplot{1,1}.plot{1}.x = 1:size(data,1);

fig.subplot{1,1}.plot{1}.y = data;

fig.subplot{1,1}.plot{1}.style='bar';

fig.subplot{1,1}.plot{1}.barlayout='grouped';

fig.subplot{1,1}.plot{1}.barcolor={'x3','x35','x28','x20','x15'}; % Overwrite the color property

% fig.subplot{1,1}.plot{1}.text=dataValTXT; % Must be the same size as the data

% % Define data sets

% fig.subplot{1,1}.plot{2}.x = 1:size(dataNeg,1);

% fig.subplot{1,1}.plot{2}.y = dataNeg;

% fig.subplot{1,1}.plot{2}.style='bar';

% fig.subplot{1,1}.plot{2}.barlayout='grouped';

% fig.subplot{1,1}.plot{2}.barcolor={'x2','x34','x27','x19','x14'}; % Overwrite the color property

% Error Bar

fig.subplot{1,1}.plot{2}.x = 1:size(data,1);

fig.subplot{1,1}.plot{2}.y = errorbarData;

fig.subplot{1,1}.plot{2}.style='errorbar';

fig.subplot{1,1}.plot{2}.barlayout='grouped';

fig.subplot{1,1}.plot{2}.color='greyDark';

% % Error Bar

% fig.subplot{1,1}.plot{4}.x = 1:size(dataNeg,1);

% fig.subplot{1,1}.plot{4}.y = errorbarDataNeg;

% fig.subplot{1,1}.plot{4}.style='errorbar';

% fig.subplot{1,1}.plot{4}.barlayout='grouped';

% fig.subplot{1,1}.plot{4}.color='red';

% Plot properties

% fig.subplot{1,1}.xlim=[datenum('14-Aug-2014') datenum('20-Aug-2014')];

% fig.subplot{1,1}.ylim=[0 40];

% fig.subplot{1,1}.title=['Control reserve potential onshore wind 30 GW Germany']; % optionaler Titel

% fig.subplot{1,1}.title=['Mean annual control reserve potential by fluctuating RES generators based on the probilistic intraday forecast']; % optionaler Titel

% fig.subplot{1,1}.title=['Control reserve potential onshore wind 30 GW Germany \newline @' num2str(secLevel) '% and ' num2str(productLength) ' hour product length']; % optionaler Titel

fig.subplot{1,1}.xlabel='Level of reliability';

fig.subplot{1,1}.ylabel='Average capacity price EUR/MW/h';

% fig.subplot{1,1}.zlabel='Time';

fig.subplot{1,1}.legend={'Onshore Wind 30 GW Germany negative capacity bids', ...

	'Onshore Wind 1 GW Pool negative capacity bids', ...

	'Offshore Wind 1 GW Germany negative capacity bids', ...

	'Photovoltaic Systems 30 GW Germany negative capacity bids', ...

	'Photovoltaic Systems 1 GW Pool negative capacity bids'};

% fig.subplot{1,1}.legend_orientation = 'vertical';

% fig.subplot{1,1}.colormap_label='Temperatur Gradient [°C pro h]';

fig.subplot{1,1}.xticks=fig.subplot{1,1}.plot{1}.x;

fig.subplot{1,1}.xticklabels={'95%','99%','99.5%','99.9%','99.99%','99.994%','99.999%'};

% fig.subplot{1,1}.xdatetick_format='dd/mm/yyyy';

fig.subplot{1,1}.xdatetick_rotate=90;

fig.height=15;

fig.width_columns=3;

[hFig, hAxes, hPlot] = styleplot(fig,'styleplot_format_PhD','word');

%% Save

path = 'C:\Users\mjansen\Synchronisation\mjansen auf User_Artemis(R)\Dissertation\Dissertation\Figures\';

name = ['FigB-31_profitMax_annAvg_negSec_' num2str(productLength) 'h'];

saveas(gcf,[path name '.fig']);

save([path name '_data.mat'],'fig');

Functions/Results_Evaluation/resPhD_profitMaxPrices_negative_tertiary.m

% % clear;

% clc;

% %% Options

% productLength = 1;

% percentNegRP = 100;

% market = 'TFC';

%

% %% Load

%

% preDefineDataSet = ([123:141]);

%

% for iDataSet = 1:length(preDefineDataSet)

% 	

% 	[~, ~, ...

% 		~, ~, ...

% 		~, ~, ...

% 		~, ~, ...

% 		~, DataSet(iDataSet).offerRP_Min, ...

% 		DataSet(iDataSet).simRuns, ~, ...

% 		~, DataSet(iDataSet).info] ...

% 		= res_loadResults_noMOL('D:\Ergebnisse REBal',preDefineDataSet(iDataSet));

% 	

% % 	[Prob_Forec_DA, Prob_Forec_ID, actualFeedIn, ecoImpact, ecoImpactTFC, error, ...

% % 		errorRP, macroEcoImpact, offerRP, offerRP_Min, simRuns, violation, alteredMOList, infoRuns] = res_loadResults_noMOL('D:\Ergebnisse REBal',preDefineDataSet(iDataSet));

% 	

% 	runSetYear = regexp(DataSet(iDataSet).info.runSetName,'_','split');

% 	GenType{iDataSet} = runSetYear{1};

% 	PoolType{iDataSet} = runSetYear{2};

% 	Type{iDataSet} = [runSetYear{1:2}];

% 	for iYear = 1:length(runSetYear)

% 		try

% 			if ~isnan(str2double(runSetYear{iYear}))

% 				timeStampYear(iDataSet) = datenum([str2double(runSetYear{iYear}) 1 1]);

% 			end

% 		end

% 	end

% 	

% end

%

% % Select only valid datasets

% invalidDS = false(size(DataSet));

% for iDS = 1:length(DataSet)

% 	if length(DataSet(iDS).offerRP_Min) == 1

% 		invalidDS(iDS) = isnan(DataSet(iDS).offerRP_Min);

% 	end

% end

% DataSet = DataSet(~invalidDS);

% timeStampYear = timeStampYear(~invalidDS);

% GenType = GenType(~invalidDS);

% PoolType = PoolType(~invalidDS);

% Type = Type(~invalidDS);

%% Other Vars

% Define Order

TypeAll = sort(unique([Type]));

genTypeAll = unique([GenType]);

poolTypeAll = unique([PoolType]);

[timeStampYearVec,~] = datevec(timeStampYear');

[years,~] = datevec(sort(unique(timeStampYear)));

secLevelAll = sort(unique([DataSet(1).simRuns.securityLevel]));

% secLevelAll = secLevelAll([6]); % Show on those security levels

%% Get DataSet

productLength = 12;

market = 'TFC';

neg = 100;

for iSec = 1:length(secLevelAll)

	

	secLevel = secLevelAll(iSec);

	

	for iDS = 1:length(DataSet)

		

		indexA = strcmp({DataSet(iDS).simRuns.market},market);

		indexB = [DataSet(iDS).simRuns.percentNegRP] == neg;

		indexC = [DataSet(iDS).simRuns.productLength] == productLength;

		indexD = [DataSet(iDS).simRuns.securityLevel] == secLevel;

		indexAll = indexA & indexB & indexC & indexD;

		

		offerPrice = [];

		offerPriceNeg = [];

		

		offerPrice(:,1) ...

			= DataSet(iDS).offerRP_Min(indexAll).BC.neg.capacity;

		offerPrice(:,2) ...

			= DataSet(iDS).offerRP_Min(indexAll).BC.neg.capacityPrice;

		offerPrice(:,3) ...

			= DataSet(iDS).offerRP_Min(indexAll).BC.neg.energyPrice;

		

		% When capacity is 0 then no price

		offerPrice(offerPrice(:,1) == 0,3) = nan;

		offerPrice(offerPrice(:,1) == 0,2) = nan;

		offerPrice(offerPrice(:,1) == 0,1) = nan;

		meanValCap = nansum(offerPrice(:,2) .* offerPrice(:,1)) ./ nansum(offerPrice(:,1));

		meanValEn = nansum(offerPrice(:,3) .* offerPrice(:,1)) ./ nansum(offerPrice(:,1));

		

		if strcmp(Type(iDS),'OnWindBRD')

			meanCapPrice(timeStampYearVec(iDS)-2009,1) = meanValCap;

			meanEnPrice(timeStampYearVec(iDS)-2009,1) = meanValEn;

		elseif strcmp(Type(iDS),'OnWindWF')

			meanCapPrice(timeStampYearVec(iDS)-2009,2) = meanValCap;

			meanEnPrice(timeStampYearVec(iDS)-2009,2) = meanValEn;

		elseif strcmp(Type(iDS),'OfWindBRD')

			meanCapPrice(timeStampYearVec(iDS)-2009,3) = meanValCap;

			meanEnPrice(timeStampYearVec(iDS)-2009,3) = meanValEn;

		elseif strcmp(Type(iDS),'PVBRD')

			meanCapPrice(timeStampYearVec(iDS)-2009,4) = meanValCap;

			meanEnPrice(timeStampYearVec(iDS)-2009,4) = meanValEn;

		elseif strcmp(Type(iDS),'PVPVF')

			meanCapPrice(timeStampYearVec(iDS)-2009,5) = meanValCap;

			meanEnPrice(timeStampYearVec(iDS)-2009,5) = meanValEn;

		end

		

	end

	

	meanCapPrice(meanCapPrice == 0) = nan;

	meanEnPrice(meanEnPrice == 0) = nan;

	secLevelStruct(iSec).meanCapPrice = meanCapPrice;	

	secLevelStruct(iSec).meanEnPrice = meanEnPrice;	

	

end

%% Consolidate data

for iSec = 1:length(secLevelAll)

	secLevelStruct(iSec).mean = nanmean(secLevelStruct(iSec).meanCapPrice,1);

	secLevelStruct(iSec).max = nanmax(secLevelStruct(iSec).meanCapPrice,1);

	secLevelStruct(iSec).min = nanmin(secLevelStruct(iSec).meanCapPrice,1);

end

data = [];

for iData = 1:length(secLevelStruct)

	data = [data;secLevelStruct(iData).mean];

end

data = data; % So actually % are plotted rather than decimal numbers

rangeLow = [];

for iData = 1:length(secLevelStruct)

	rangeLow = [rangeLow;secLevelStruct(iData).min];

end

rangeLow = data-rangeLow; % So actually % are plotted rather than decimal numbers

rangeHigh = [];

for iData = 1:length(secLevelStruct)

	rangeHigh = [rangeHigh;secLevelStruct(iData).max];

end

rangeHigh = rangeHigh-data; % So actually % are plotted rather than decimal numbers

errorbarData = [data;rangeLow;rangeHigh];

% % Values for bars

% dataVal = [];

% for iData = 1:length(secLevelStruct)

% 	dataVal = [dataVal;secLevelStruct(iData).lostVal];

% end

% dataVal = dataVal / 1000; % So actually % are plotted rather than decimal numbers

% dataValTXT = num2cell(dataVal);

% textFormat = cell(size(dataValTXT));

% textFormat(:) = {'%0.1f'};

% dataValTXT = cellfun(@num2str,dataValTXT,textFormat,'UniformOutput',0);

%% Plot with styleplot

fig = [];

% Define data sets

fig.subplot{1,1}.plot{1}.x = 1:size(data,1);

fig.subplot{1,1}.plot{1}.y = data;

fig.subplot{1,1}.plot{1}.style='bar';

fig.subplot{1,1}.plot{1}.barlayout='grouped';

fig.subplot{1,1}.plot{1}.barcolor={'x3','x35','x28','x20','x15'}; % Overwrite the color property

% fig.subplot{1,1}.plot{1}.text=dataValTXT; % Must be the same size as the data

% % Define data sets

% fig.subplot{1,1}.plot{2}.x = 1:size(dataNeg,1);

% fig.subplot{1,1}.plot{2}.y = dataNeg;

% fig.subplot{1,1}.plot{2}.style='bar';

% fig.subplot{1,1}.plot{2}.barlayout='grouped';

% fig.subplot{1,1}.plot{2}.barcolor={'x2','x34','x27','x19','x14'}; % Overwrite the color property

% Error Bar

fig.subplot{1,1}.plot{2}.x = 1:size(data,1);

fig.subplot{1,1}.plot{2}.y = errorbarData;

fig.subplot{1,1}.plot{2}.style='errorbar';

fig.subplot{1,1}.plot{2}.barlayout='grouped';

fig.subplot{1,1}.plot{2}.color='greyDark';

% % Error Bar

% fig.subplot{1,1}.plot{4}.x = 1:size(dataNeg,1);

% fig.subplot{1,1}.plot{4}.y = errorbarDataNeg;

% fig.subplot{1,1}.plot{4}.style='errorbar';

% fig.subplot{1,1}.plot{4}.barlayout='grouped';

% fig.subplot{1,1}.plot{4}.color='red';

% Plot properties

% fig.subplot{1,1}.xlim=[datenum('14-Aug-2014') datenum('20-Aug-2014')];

% fig.subplot{1,1}.ylim=[0 40];

% fig.subplot{1,1}.title=['Control reserve potential onshore wind 30 GW Germany']; % optionaler Titel

% fig.subplot{1,1}.title=['Mean annual control reserve potential by fluctuating RES generators based on the probilistic intraday forecast']; % optionaler Titel

% fig.subplot{1,1}.title=['Control reserve potential onshore wind 30 GW Germany \newline @' num2str(secLevel) '% and ' num2str(productLength) ' hour product length']; % optionaler Titel

fig.subplot{1,1}.xlabel='Level of reliability';

fig.subplot{1,1}.ylabel='Average capacity price EUR/MW/h';

% fig.subplot{1,1}.zlabel='Time';

fig.subplot{1,1}.legend={'Onshore Wind 30 GW Germany negative capacity bids', ...

	'Onshore Wind 1 GW Pool negative capacity bids', ...

	'Offshore Wind 1 GW Germany negative capacity bids', ...

	'Photovoltaic Systems 30 GW Germany negative capacity bids', ...

	'Photovoltaic Systems 1 GW Pool negative capacity bids'};

% fig.subplot{1,1}.legend_orientation = 'vertical';

% fig.subplot{1,1}.colormap_label='Temperatur Gradient [°C pro h]';

fig.subplot{1,1}.xticks=fig.subplot{1,1}.plot{1}.x;

fig.subplot{1,1}.xticklabels={'95%','99%','99.5%','99.9%','99.99%','99.994%','99.999%'};

% fig.subplot{1,1}.xdatetick_format='dd/mm/yyyy';

fig.subplot{1,1}.xdatetick_rotate=90;

fig.height=15;

fig.width_columns=3;

[hFig, hAxes, hPlot] = styleplot(fig,'styleplot_format_PhD','word');

%% Save

path = 'C:\Users\mjansen\Synchronisation\mjansen auf User_Artemis(R)\Dissertation\Dissertation\Figures\';

name = ['FigB-33_profitMax_annAvg_negTer_' num2str(productLength) 'h'];

saveas(gcf,[path name '.fig']);

save([path name '_data.mat'],'fig');

Functions/Results_Evaluation/resPhD_profitMaxPrices_positive_secondary.m

% % clear;

% clc;

% %% Options

% productLength = 1;

% market = 'SFC';

%

% %% Load

%

% preDefineDataSet = ([117:135]);

%

% for iDataSet = 1:length(preDefineDataSet)

% 	

% 	[~, ~, ...

% 		~, ~, ...

% 		~, ~, ...

% 		~, ~, ...

% 		~, DataSet(iDataSet).offerRP_Min, ...

% 		DataSet(iDataSet).simRuns, ~, ...

% 		~, DataSet(iDataSet).info] ...

% 		= res_loadResults_noMOL('D:\Ergebnisse REBal',preDefineDataSet(iDataSet));

% 	

% % 	[Prob_Forec_DA, Prob_Forec_ID, actualFeedIn, ecoImpact, ecoImpactTFC, error, ...

% % 		errorRP, macroEcoImpact, offerRP, offerRP_Min, simRuns, violation, alteredMOList, infoRuns] = res_loadResults_noMOL('D:\Ergebnisse REBal',preDefineDataSet(iDataSet));

% 	

% 	runSetYear = regexp(DataSet(iDataSet).info.runSetName,'_','split');

% 	GenType{iDataSet} = runSetYear{1};

% 	PoolType{iDataSet} = runSetYear{2};

% 	Type{iDataSet} = [runSetYear{1:2}];

% 	for iYear = 1:length(runSetYear)

% 		try

% 			if ~isnan(str2double(runSetYear{iYear}))

% 				timeStampYear(iDataSet) = datenum([str2double(runSetYear{iYear}) 1 1]);

% 			end

% 		end

% 	end

% 	

% end

%

% % Select only valid datasets

% invalidDS = false(size(DataSet));

% for iDS = 1:length(DataSet)

% 	if length(DataSet(iDS).offerRP_Min) == 1

% 		invalidDS(iDS) = isnan(DataSet(iDS).offerRP_Min);

% 	end

% end

% DataSet = DataSet(~invalidDS);

% timeStampYear = timeStampYear(~invalidDS);

% GenType = GenType(~invalidDS);

% PoolType = PoolType(~invalidDS);

% Type = Type(~invalidDS);

%% Other Vars

% Define Order

TypeAll = sort(unique([Type]));

genTypeAll = unique([GenType]);

poolTypeAll = unique([PoolType]);

[timeStampYearVec,~] = datevec(timeStampYear');

[years,~] = datevec(sort(unique(timeStampYear)));

secLevelAll = sort(unique([DataSet(1).simRuns.securityLevel]));

% secLevelAll = secLevelAll([6]); % Show on those security levels

%% Get DataSet

productLength = 12;

market = 'SFC';

pos = 100;

for iSec = 1:length(secLevelAll)

	

	secLevel = secLevelAll(iSec);

	

	for iDS = 1:length(DataSet)

		

		indexA = strcmp({DataSet(iDS).simRuns.market},market);

		indexB = [DataSet(iDS).simRuns.percentPosRP] == pos;

		indexC = [DataSet(iDS).simRuns.productLength] == productLength;

		indexD = [DataSet(iDS).simRuns.securityLevel] == secLevel;

		indexAll = indexA & indexB & indexC & indexD;

		

		offerPrice = [];

		offerPriceNeg = [];

		

		offerPrice(:,1) ...

			= DataSet(iDS).offerRP_Min(indexAll).BC.pos.capacity;

		offerPrice(:,2) ...

			= DataSet(iDS).offerRP_Min(indexAll).BC.pos.capacityPrice;

		offerPrice(:,3) ...

			= DataSet(iDS).offerRP_Min(indexAll).BC.pos.energyPrice;

		

		% When capacity is 0 then no price

		offerPrice(offerPrice(:,1) == 0,3) = nan;

		offerPrice(offerPrice(:,1) == 0,2) = nan;

		offerPrice(offerPrice(:,1) == 0,1) = nan;

		meanValCap = nansum(offerPrice(:,2) .* offerPrice(:,1)) ./ nansum(offerPrice(:,1));

		meanValEn = nansum(offerPrice(:,3) .* offerPrice(:,1)) ./ nansum(offerPrice(:,1));

		

		if strcmp(Type(iDS),'OnWindBRD')

			meanCapPrice(timeStampYearVec(iDS)-2009,1) = meanValCap;

			meanEnPrice(timeStampYearVec(iDS)-2009,1) = meanValEn;

		elseif strcmp(Type(iDS),'OnWindWF')

			meanCapPrice(timeStampYearVec(iDS)-2009,2) = meanValCap;

			meanEnPrice(timeStampYearVec(iDS)-2009,2) = meanValEn;

		elseif strcmp(Type(iDS),'OfWindBRD')

			meanCapPrice(timeStampYearVec(iDS)-2009,3) = meanValCap;

			meanEnPrice(timeStampYearVec(iDS)-2009,3) = meanValEn;

		elseif strcmp(Type(iDS),'PVBRD')

			meanCapPrice(timeStampYearVec(iDS)-2009,4) = meanValCap;

			meanEnPrice(timeStampYearVec(iDS)-2009,4) = meanValEn;

		elseif strcmp(Type(iDS),'PVPVF')

			meanCapPrice(timeStampYearVec(iDS)-2009,5) = meanValCap;

			meanEnPrice(timeStampYearVec(iDS)-2009,5) = meanValEn;

		end

		

	end

	

	meanCapPrice(meanCapPrice == 0) = nan;

	meanEnPrice(meanEnPrice == 0) = nan;

	secLevelStruct(iSec).meanCapPrice = meanCapPrice;	

	secLevelStruct(iSec).meanEnPrice = meanEnPrice;	

	

end

%% Consolidate data

for iSec = 1:length(secLevelAll)

	secLevelStruct(iSec).mean = nanmean(secLevelStruct(iSec).meanCapPrice,1);

	secLevelStruct(iSec).max = nanmax(secLevelStruct(iSec).meanCapPrice,1);

	secLevelStruct(iSec).min = nanmin(secLevelStruct(iSec).meanCapPrice,1);

end

data = [];

for iData = 1:length(secLevelStruct)

	data = [data;secLevelStruct(iData).mean];

end

data = data; % So actually % are plotted rather than decimal numbers

rangeLow = [];

for iData = 1:length(secLevelStruct)

	rangeLow = [rangeLow;secLevelStruct(iData).min];

end

rangeLow = data-rangeLow; % So actually % are plotted rather than decimal numbers

rangeHigh = [];

for iData = 1:length(secLevelStruct)

	rangeHigh = [rangeHigh;secLevelStruct(iData).max];

end

rangeHigh = rangeHigh-data; % So actually % are plotted rather than decimal numbers

errorbarData = [data;rangeLow;rangeHigh];

% % Values for bars

% dataVal = [];

% for iData = 1:length(secLevelStruct)

% 	dataVal = [dataVal;secLevelStruct(iData).lostVal];

% end

% dataVal = dataVal / 1000; % So actually % are plotted rather than decimal numbers

% dataValTXT = num2cell(dataVal);

% textFormat = cell(size(dataValTXT));

% textFormat(:) = {'%0.1f'};

% dataValTXT = cellfun(@num2str,dataValTXT,textFormat,'UniformOutput',0);

%% Plot with styleplot

fig = [];

% Define data sets

fig.subplot{1,1}.plot{1}.x = 1:size(data,1);

fig.subplot{1,1}.plot{1}.y = data;

fig.subplot{1,1}.plot{1}.style='bar';

fig.subplot{1,1}.plot{1}.barlayout='grouped';

fig.subplot{1,1}.plot{1}.barcolor={'x3','x35','x28','x20','x15'}; % Overwrite the color property

% fig.subplot{1,1}.plot{1}.text=dataValTXT; % Must be the same size as the data

% % Define data sets

% fig.subplot{1,1}.plot{2}.x = 1:size(dataNeg,1);

% fig.subplot{1,1}.plot{2}.y = dataNeg;

% fig.subplot{1,1}.plot{2}.style='bar';

% fig.subplot{1,1}.plot{2}.barlayout='grouped';

% fig.subplot{1,1}.plot{2}.barcolor={'x2','x34','x27','x19','x14'}; % Overwrite the color property

% Error Bar

fig.subplot{1,1}.plot{2}.x = 1:size(data,1);

fig.subplot{1,1}.plot{2}.y = errorbarData;

fig.subplot{1,1}.plot{2}.style='errorbar';

fig.subplot{1,1}.plot{2}.barlayout='grouped';

fig.subplot{1,1}.plot{2}.color='greyDark';

% % Error Bar

% fig.subplot{1,1}.plot{4}.x = 1:size(dataNeg,1);

% fig.subplot{1,1}.plot{4}.y = errorbarDataNeg;

% fig.subplot{1,1}.plot{4}.style='errorbar';

% fig.subplot{1,1}.plot{4}.barlayout='grouped';

% fig.subplot{1,1}.plot{4}.color='red';

% Plot properties

% fig.subplot{1,1}.xlim=[datenum('14-Aug-2014') datenum('20-Aug-2014')];

% fig.subplot{1,1}.ylim=[0 40];

% fig.subplot{1,1}.title=['Control reserve potential onshore wind 30 GW Germany']; % optionaler Titel

% fig.subplot{1,1}.title=['Mean annual control reserve potential by fluctuating RES generators based on the probilistic intraday forecast']; % optionaler Titel

% fig.subplot{1,1}.title=['Control reserve potential onshore wind 30 GW Germany \newline @' num2str(secLevel) '% and ' num2str(productLength) ' hour product length']; % optionaler Titel

fig.subplot{1,1}.xlabel='Level of reliability';

fig.subplot{1,1}.ylabel='Average capacity price EUR/MW/h';

% fig.subplot{1,1}.zlabel='Time';

fig.subplot{1,1}.legend={'Onshore Wind 30 GW Germany positive capacity bids', ...

	'Onshore Wind 1 GW Pool positive capacity bids', ...

	'Offshore Wind 1 GW Germany positive capacity bids', ...

	'Photovoltaic Systems 30 GW Germany positive capacity bids', ...

	'Photovoltaic Systems 1 GW Pool positive capacity bids'};

% fig.subplot{1,1}.legend_orientation = 'vertical';

% fig.subplot{1,1}.colormap_label='Temperatur Gradient [°C pro h]';

fig.subplot{1,1}.xticks=fig.subplot{1,1}.plot{1}.x;

fig.subplot{1,1}.xticklabels={'95%','99%','99.5%','99.9%','99.99%','99.994%','99.999%'};

% fig.subplot{1,1}.xdatetick_format='dd/mm/yyyy';

fig.subplot{1,1}.xdatetick_rotate=90;

fig.height=15;

fig.width_columns=3;

[hFig, hAxes, hPlot] = styleplot(fig,'styleplot_format_PhD','word');

%% Save

path = 'C:\Users\mjansen\Synchronisation\mjansen auf User_Artemis(R)\Dissertation\Dissertation\Figures\';

name = ['FigB-32_profitMax_annAvg_posSec_' num2str(productLength) 'h'];

saveas(gcf,[path name '.fig']);

save([path name '_data.mat'],'fig');

Functions/Results_Evaluation/resPhD_profitMaxPrices_positive_tertiary.m

% clear;

% clc;

% %% Options

% productLength = 1;

% percentNegRP = 100;

% market = 'TFC';

%

% %% Load

%

% preDefineDataSet = ([123:141]);

%

% for iDataSet = 1:length(preDefineDataSet)

% 	

% 	[~, ~, ...

% 		~, ~, ...

% 		~, ~, ...

% 		~, ~, ...

% 		~, DataSet(iDataSet).offerRP_Min, ...

% 		DataSet(iDataSet).simRuns, ~, ...

% 		~, DataSet(iDataSet).info] ...

% 		= res_loadResults_noMOL('D:\Ergebnisse REBal',preDefineDataSet(iDataSet));

% 	

% % 	[Prob_Forec_DA, Prob_Forec_ID, actualFeedIn, ecoImpact, ecoImpactTFC, error, ...

% % 		errorRP, macroEcoImpact, offerRP, offerRP_Min, simRuns, violation, alteredMOList, infoRuns] = res_loadResults_noMOL('D:\Ergebnisse REBal',preDefineDataSet(iDataSet));

% 	

% 	runSetYear = regexp(DataSet(iDataSet).info.runSetName,'_','split');

% 	GenType{iDataSet} = runSetYear{1};

% 	PoolType{iDataSet} = runSetYear{2};

% 	Type{iDataSet} = [runSetYear{1:2}];

% 	for iYear = 1:length(runSetYear)

% 		try

% 			if ~isnan(str2double(runSetYear{iYear}))

% 				timeStampYear(iDataSet) = datenum([str2double(runSetYear{iYear}) 1 1]);

% 			end

% 		end

% 	end

% 	

% end

%

% % Select only valid datasets

% invalidDS = false(size(DataSet));

% for iDS = 1:length(DataSet)

% 	if length(DataSet(iDS).offerRP_Min) == 1

% 		invalidDS(iDS) = isnan(DataSet(iDS).offerRP_Min);

% 	end

% end

% DataSet = DataSet(~invalidDS);

% timeStampYear = timeStampYear(~invalidDS);

% GenType = GenType(~invalidDS);

% PoolType = PoolType(~invalidDS);

% Type = Type(~invalidDS);

%% Other Vars

% Define Order

TypeAll = sort(unique([Type]));

genTypeAll = unique([GenType]);

poolTypeAll = unique([PoolType]);

[timeStampYearVec,~] = datevec(timeStampYear');

[years,~] = datevec(sort(unique(timeStampYear)));

secLevelAll = sort(unique([DataSet(1).simRuns.securityLevel]));

% secLevelAll = secLevelAll([6]); % Show on those security levels

%% Get DataSet

productLength = 12;

market = 'TFC';

pos = 100;

for iSec = 1:length(secLevelAll)

	

	secLevel = secLevelAll(iSec);

	

	for iDS = 1:length(DataSet)

		

		indexA = strcmp({DataSet(iDS).simRuns.market},market);

		indexB = [DataSet(iDS).simRuns.percentPosRP] == pos;

		indexC = [DataSet(iDS).simRuns.productLength] == productLength;

		indexD = [DataSet(iDS).simRuns.securityLevel] == secLevel;

		indexAll = indexA & indexB & indexC & indexD;

		

		offerPrice = [];

		offerPriceNeg = [];

		

		offerPrice(:,1) ...

			= DataSet(iDS).offerRP_Min(indexAll).BC.pos.capacity;

		offerPrice(:,2) ...

			= DataSet(iDS).offerRP_Min(indexAll).BC.pos.capacityPrice;

		offerPrice(:,3) ...

			= DataSet(iDS).offerRP_Min(indexAll).BC.pos.energyPrice;

		

		% When capacity is 0 then no price

		offerPrice(offerPrice(:,1) == 0,3) = nan;

		offerPrice(offerPrice(:,1) == 0,2) = nan;

		offerPrice(offerPrice(:,1) == 0,1) = nan;

		meanValCap = nansum(offerPrice(:,2) .* offerPrice(:,1)) ./ nansum(offerPrice(:,1));

		meanValEn = nansum(offerPrice(:,3) .* offerPrice(:,1)) ./ nansum(offerPrice(:,1));

		

		if strcmp(Type(iDS),'OnWindBRD')

			meanCapPrice(timeStampYearVec(iDS)-2009,1) = meanValCap;

			meanEnPrice(timeStampYearVec(iDS)-2009,1) = meanValEn;

		elseif strcmp(Type(iDS),'OnWindWF')

			meanCapPrice(timeStampYearVec(iDS)-2009,2) = meanValCap;

			meanEnPrice(timeStampYearVec(iDS)-2009,2) = meanValEn;

		elseif strcmp(Type(iDS),'OfWindBRD')

			meanCapPrice(timeStampYearVec(iDS)-2009,3) = meanValCap;

			meanEnPrice(timeStampYearVec(iDS)-2009,3) = meanValEn;

		elseif strcmp(Type(iDS),'PVBRD')

			meanCapPrice(timeStampYearVec(iDS)-2009,4) = meanValCap;

			meanEnPrice(timeStampYearVec(iDS)-2009,4) = meanValEn;

		elseif strcmp(Type(iDS),'PVPVF')

			meanCapPrice(timeStampYearVec(iDS)-2009,5) = meanValCap;

			meanEnPrice(timeStampYearVec(iDS)-2009,5) = meanValEn;

		end

		

	end

	

	meanCapPrice(meanCapPrice == 0) = nan;

	meanEnPrice(meanEnPrice == 0) = nan;

	secLevelStruct(iSec).meanCapPrice = meanCapPrice;	

	secLevelStruct(iSec).meanEnPrice = meanEnPrice;	

	

end

%% Consolidate data

for iSec = 1:length(secLevelAll)

	secLevelStruct(iSec).mean = nanmean(secLevelStruct(iSec).meanCapPrice,1);

	secLevelStruct(iSec).max = nanmax(secLevelStruct(iSec).meanCapPrice,1);

	secLevelStruct(iSec).min = nanmin(secLevelStruct(iSec).meanCapPrice,1);

end

data = [];

for iData = 1:length(secLevelStruct)

	data = [data;secLevelStruct(iData).mean];

end

data = data; % So actually % are plotted rather than decimal numbers

rangeLow = [];

for iData = 1:length(secLevelStruct)

	rangeLow = [rangeLow;secLevelStruct(iData).min];

end

rangeLow = data-rangeLow; % So actually % are plotted rather than decimal numbers

rangeHigh = [];

for iData = 1:length(secLevelStruct)

	rangeHigh = [rangeHigh;secLevelStruct(iData).max];

end

rangeHigh = rangeHigh-data; % So actually % are plotted rather than decimal numbers

errorbarData = [data;rangeLow;rangeHigh];

% % Values for bars

% dataVal = [];

% for iData = 1:length(secLevelStruct)

% 	dataVal = [dataVal;secLevelStruct(iData).lostVal];

% end

% dataVal = dataVal / 1000; % So actually % are plotted rather than decimal numbers

% dataValTXT = num2cell(dataVal);

% textFormat = cell(size(dataValTXT));

% textFormat(:) = {'%0.1f'};

% dataValTXT = cellfun(@num2str,dataValTXT,textFormat,'UniformOutput',0);

%% Plot with styleplot

fig = [];

% Define data sets

fig.subplot{1,1}.plot{1}.x = 1:size(data,1);

fig.subplot{1,1}.plot{1}.y = data;

fig.subplot{1,1}.plot{1}.style='bar';

fig.subplot{1,1}.plot{1}.barlayout='grouped';

fig.subplot{1,1}.plot{1}.barcolor={'x3','x35','x28','x20','x15'}; % Overwrite the color property

% fig.subplot{1,1}.plot{1}.text=dataValTXT; % Must be the same size as the data

% % Define data sets

% fig.subplot{1,1}.plot{2}.x = 1:size(dataNeg,1);

% fig.subplot{1,1}.plot{2}.y = dataNeg;

% fig.subplot{1,1}.plot{2}.style='bar';

% fig.subplot{1,1}.plot{2}.barlayout='grouped';

% fig.subplot{1,1}.plot{2}.barcolor={'x2','x34','x27','x19','x14'}; % Overwrite the color property

% Error Bar

fig.subplot{1,1}.plot{2}.x = 1:size(data,1);

fig.subplot{1,1}.plot{2}.y = errorbarData;

fig.subplot{1,1}.plot{2}.style='errorbar';

fig.subplot{1,1}.plot{2}.barlayout='grouped';

fig.subplot{1,1}.plot{2}.color='greyDark';

% % Error Bar

% fig.subplot{1,1}.plot{4}.x = 1:size(dataNeg,1);

% fig.subplot{1,1}.plot{4}.y = errorbarDataNeg;

% fig.subplot{1,1}.plot{4}.style='errorbar';

% fig.subplot{1,1}.plot{4}.barlayout='grouped';

% fig.subplot{1,1}.plot{4}.color='red';

% Plot properties

% fig.subplot{1,1}.xlim=[datenum('14-Aug-2014') datenum('20-Aug-2014')];

% fig.subplot{1,1}.ylim=[0 40];

% fig.subplot{1,1}.title=['Control reserve potential onshore wind 30 GW Germany']; % optionaler Titel

% fig.subplot{1,1}.title=['Mean annual control reserve potential by fluctuating RES generators based on the probilistic intraday forecast']; % optionaler Titel

% fig.subplot{1,1}.title=['Control reserve potential onshore wind 30 GW Germany \newline @' num2str(secLevel) '% and ' num2str(productLength) ' hour product length']; % optionaler Titel

fig.subplot{1,1}.xlabel='Level of reliability';

fig.subplot{1,1}.ylabel='Average capacity price EUR/MW/h';

% fig.subplot{1,1}.zlabel='Time';

fig.subplot{1,1}.legend={'Onshore Wind 30 GW Germany positive capacity bids', ...

	'Onshore Wind 1 GW Pool positive capacity bids', ...

	'Offshore Wind 1 GW Germany positive capacity bids', ...

	'Photovoltaic Systems 30 GW Germany positive capacity bids', ...

	'Photovoltaic Systems 1 GW Pool positive capacity bids'};

% fig.subplot{1,1}.legend_orientation = 'vertical';

% fig.subplot{1,1}.colormap_label='Temperatur Gradient [°C pro h]';

fig.subplot{1,1}.xticks=fig.subplot{1,1}.plot{1}.x;

fig.subplot{1,1}.xticklabels={'95%','99%','99.5%','99.9%','99.99%','99.994%','99.999%'};

% fig.subplot{1,1}.xdatetick_format='dd/mm/yyyy';

fig.subplot{1,1}.xdatetick_rotate=90;

fig.height=15;

fig.width_columns=3;

[hFig, hAxes, hPlot] = styleplot(fig,'styleplot_format_PhD','word');

%% Save

path = 'C:\Users\mjansen\Synchronisation\mjansen auf User_Artemis(R)\Dissertation\Dissertation\Figures\';

name = ['FigB-34_profitMax_annAvg_posTer_' num2str(productLength) 'h'];

saveas(gcf,[path name '.fig']);

save([path name '_data.mat'],'fig');

Functions/Results_Evaluation/resPhD_SpotDA.m

% clear;

% clc;

%

%% Load Data

[epexDA.time,epexDA.data] = loadMarket_EPEX_Spot;

%% Build monthly average

[minYear,~] = datevec(min(epexDA.time));

[maxYear,~] = datevec(max(epexDA.time));

months = (1:12)';

years = reshape(repmat(minYear:maxYear+1,size(months,1),1),[],1);

months = repmat(months,size(years,1)/size(months,1),1);

timeSelect = datenum([years months ones(size(months,1),1)]);

[DA_year,DA_month,DA_day,DA_hour,DA_minute,~] = datevec(epexDA.time);

isOffPeak = any(bsxfun(@eq,([(0:7) (20:23)]),DA_hour),2);

isPeak = any(bsxfun(@eq,([8:19]),DA_hour),2);

for iDate = 1:length(timeSelect)-1

	

	isMonth = epexDA.time >= timeSelect(iDate) & epexDA.time < timeSelect(iDate+1);

	

	timeMonth(iDate,1) = timeSelect(iDate);

	

	Peak(iDate,1) = mean(epexDA.data(isMonth & isPeak));

	OffPeak(iDate,1) = mean(epexDA.data(isMonth & isOffPeak));

	

	

	

end

%% Plot Prices

fig = [];

fig.subplot{1,1}.plot{1}.x = timeMonth; % Zeitreihe Zeit

fig.subplot{1,1}.plot{1}.y = OffPeak; % Zeitreihe der darzustellenden Größe

fig.subplot{1,1}.plot{2}.x = timeMonth; % Zeitreihe Zeit

fig.subplot{1,1}.plot{2}.y = Peak; % Zeitreihe der darzustellenden Größe

% fig.subplot{1,1}.plot{3}.x = HighMonth(:,2); % Zeitreihe Zeit

% fig.subplot{1,1}.plot{3}.y = HighMonth(:,1); % Zeitreihe der darzustellenden Größe

fig.subplot{1,1}.plot{1}.style='plot';

fig.subplot{1,1}.plot{2}.style='plot';

% fig.subplot{1,1}.plot{3}.style='plot';

fig.subplot{1,1}.plot{2}.color='x10'; % Farben überschreiben

% Plot properties

fig.subplot{1,1}.xlim=[datenum([2001 1 1]) datenum([2015 1 1])];

% fig.subplot{1,1}.ylim=[0,140];

fig.subplot{1,1}.xdatetick_format='yyyy';

fig.subplot{1,1}.xticks=datenum([(2010:2015)',ones(size(2010:2015,2),1),ones(size(2010:2015,2),1)]);

fig.subplot{1,1}.xticks=datenum([(2007:2015)' ones(length((2007:2015)'),2)]);

fig.subplot{1,1}.xlabel='Year';

% fig.subplot{1,1}.title='Base and Peak Prices and Highest Twelve EPEX SPOT day-ahead auction'; % optionaler Titel

fig.subplot{1,1}.legend{1}='Off-Peak 20:00 to 08:00'; % optionaler Titel

fig.subplot{1,1}.legend{2}='Peak 08:00 to 20:00'; % optionaler Titel

% fig.subplot{1,1}.legend{3}='Highest Twelve'; % optionaler Titel

fig.subplot{1,1}.ylabel='Settlement Prices in EUR/MWh';

fig.height=12;

fig.width_columns=3;

styleplot(fig, 'styleplot_format_PhD.mat', 'word')

% saveas(gcf,'plot_PhelixBasePeak_FrontYear_Prices.fig','fig')

Functions/Results_Evaluation/resPhD_SpotDA_volumes.m

clear;

clc;

time = [2000:2013]';

data = [12306013;24082906;35859798;47636691;59413583;85335104;87602165;117321857;145598338;135601265;205479149;224550816;245268525;245566864]/1000000;

dataCons = [579600000 585100000 587400000 600700000 610200000 614100000 619800000 621500000 618200000 581300000 615300000 606800000 606700000 596000000]'/1000000;

dataPerCent = data ./ dataCons;

%% Plot Volumes

clear fig

fig.subplot{1,1}.plot{1}.x = datenum([time ones(size(time,1),1) ones(size(time,1),1)]); % Zeitreihe Zeit

fig.subplot{1,1}.plot{1}.y = data; % Zeitreihe der darzustellenden Größe

fig.subplot{1,1}.plot{1}.style='bar';

% fig.subplot{1,1}.plot{2}.color='x10'; % Farben überschreiben

% fig.subplot{1,1}.ylim= [0,140];

fig.subplot{1,1}.xlim= [datenum([1999 7 1]),datenum([2013 7 1])];

% fig.subplot{1,1}.plot{1}.color_limits=[-3, 3]; % optional, gibt die Limits für die Colormap an

fig.subplot{1,1}.title='Volume traded at EPEX SPOT day-ahead auction'; % optionaler Titel

% fig.subplot{1,1}.legend{1}='Base'; % optionaler Titel

fig.subplot{1,1}.xlabel='Year';

fig.subplot{1,1}.ylabel='Traded Volume in TWh';

% fig.subplot{1,1}.colormap_label='Temperatur Gradient [°C pro h]';

fig.subplot{1,1}.xdatetick_format='yyyy';

fig.subplot{1,1}.xticks=datenum([time ones(size(time,1),1) ones(size(time,1),1)]);

fig.height=8;

fig.width_columns=3;

styleplot(fig, 'styleplot_format_dnb.mat', 'word')

% saveas(gcf,'plot_PhelixBasePeak_FrontYear_Prices.fig','fig')

Functions/Results_Evaluation/resPhD_violationKDE.m

clear;

clc;

%% Load Data

[~, ~, violationsKDE] = xlsread('C:\Users\mjansen\Synchronisation\mjansen auf User_Artemis(R)\Dissertation\Dissertation\Figures\5 Economics of fluctuating RES in the control reserve markets\violations_KDE.xlsx','Tabelle1');

violationsKDE(cellfun(@(x) ~isempty(x) && isnumeric(x) && isnan(x),violationsKDE)) = {''};

%% Build monthly average

% Wind Onshore 30 GW

TMP = violationsKDE(2:7,2:end);

TMP(isemptycell(TMP)) = {nan};

OnWind30 = cell2mat(TMP);

% Wind Onshore 1 GW

TMP = violationsKDE(10:15,2:end);

TMP(isemptycell(TMP)) = {nan};

OnWind1 = cell2mat(TMP);

% Wind Offshore 1 GW

TMP = violationsKDE(18:23,2:end);

TMP(isemptycell(TMP)) = {nan};

OffWind1 = cell2mat(TMP);

% PV 30 GW

TMP = violationsKDE(26:31,2:end);

TMP(isemptycell(TMP)) = {nan};

PV30 = cell2mat(TMP);

% PV 1 GW

TMP = violationsKDE(34:39,2:end);

TMP(isemptycell(TMP)) = {nan};

PV1 = cell2mat(TMP);

% Percentages

percentages = cell2mat(violationsKDE(1,2:end));

% Theoretical values

theoVal = 35040 * (1 - percentages / 100);

%% Plot Prices

fig = [];

fig.subplot{1,1}.plot{1}.x = percentages; % Zeitreihe Zeit

fig.subplot{1,1}.plot{1}.y = OnWind30(end,:); % Zeitreihe der darzustellenden Größe

fig.subplot{1,1}.plot{1}.style='plot';

fig.subplot{1,1}.plot{1}.color='x3';

fig.subplot{1,1}.plot{2}.x = percentages; % Zeitreihe Zeit

fig.subplot{1,1}.plot{2}.y = OnWind1(end,:); % Zeitreihe der darzustellenden Größe

fig.subplot{1,1}.plot{2}.style='plot';

fig.subplot{1,1}.plot{2}.color='x35';

fig.subplot{1,1}.plot{3}.x = percentages; % Zeitreihe Zeit

fig.subplot{1,1}.plot{3}.y = OffWind1(end,:); % Zeitreihe der darzustellenden Größe

fig.subplot{1,1}.plot{3}.style='plot';

fig.subplot{1,1}.plot{3}.color='x28';

fig.subplot{1,1}.plot{4}.x = percentages; % Zeitreihe Zeit

fig.subplot{1,1}.plot{4}.y = PV30(end,:); % Zeitreihe der darzustellenden Größe

fig.subplot{1,1}.plot{4}.style='plot';

fig.subplot{1,1}.plot{4}.color='x20';

fig.subplot{1,1}.plot{5}.x = percentages; % Zeitreihe Zeit

fig.subplot{1,1}.plot{5}.y = PV1(end,:); % Zeitreihe der darzustellenden Größe

fig.subplot{1,1}.plot{5}.style='plot';

fig.subplot{1,1}.plot{5}.color='x15';

fig.subplot{1,1}.plot{6}.x = percentages; % Zeitreihe Zeit

fig.subplot{1,1}.plot{6}.y = theoVal; % Zeitreihe der darzustellenden Größe

fig.subplot{1,1}.plot{6}.style='plot';

fig.subplot{1,1}.plot{6}.color='grey';

% Plot properties

fig.subplot{1,1}.xlim=[min(percentages(4:end)) max(percentages)] ;

% fig.subplot{1,1}.ylim=[0,140];

% fig.subplot{1,1}.xdatetick_format='yyyy';

fig.subplot{1,1}.xticks=percentages(2:end);

% fig.subplot{1,1}.xticks=datenum([(2007:2015)' ones(length((2007:2015)'),2)]);

% fig.subplot{1,1}.xlabel='Year';

% fig.subplot{1,1}.title='Base and Peak Prices and Highest Twelve EPEX SPOT day-ahead auction'; % optionaler Titel

fig.subplot{1,1}.legend{1}='Onshore Wind 30 GW'; % optionaler Titel

fig.subplot{1,1}.legend{2}='Onshore Wind 1 GW'; % optionaler Titel

fig.subplot{1,1}.legend{3}='Offshore Wind 1 GW'; % optionaler Titel

fig.subplot{1,1}.legend{4}='PV 30 GW'; % optionaler Titel

fig.subplot{1,1}.legend{5}='PV 1 GW'; % optionaler Titel

fig.subplot{1,1}.legend{6}='Theoretical value'; % optionaler Titel

% fig.subplot{1,1}.legend{3}='Highest Twelve'; % optionaler Titel

fig.subplot{1,1}.ylabel='Number of violated 1/4 hours';

fig.subplot{1,1}.xlabel='Level of reliabilty in %';

fig.height=10;

fig.width_columns=3;

styleplot(fig, 'styleplot_format_PhD.mat', 'word')

% saveas(gcf,'plot_PhelixBasePeak_FrontYear_Prices.fig','fig')

Functions/Results_Evaluation/resPhD_welfareGain.m

clear;

clc;

%% Options

productLength = 1;

%% Load

preDefineDataSet = ([117:135]);

for iDataSet = 1:length(preDefineDataSet)

	

	[~, ~, ...

		~, DataSet(iDataSet).ecoImpact, ...

		~, ~, ...

		~, ~, ...

		~, DataSet(iDataSet).offerRP_Min, ...

		DataSet(iDataSet).simRuns, ~, ...

		~, DataSet(iDataSet).info] ...

		= res_loadResults_noMOL('D:\Ergebnisse REBal',preDefineDataSet(iDataSet));

	

% 	[Prob_Forec_DA, Prob_Forec_ID, actualFeedIn, ecoImpact, ecoImpactTFC, error, ...

% 		errorRP, macroEcoImpact, offerRP, offerRP_Min, simRuns, violation, alteredMOList, infoRuns] = res_loadResults_noMOL('D:\Ergebnisse REBal',preDefineDataSet(iDataSet));

	

	runSetYear = regexp(DataSet(iDataSet).info.runSetName,'_','split');

	GenType{iDataSet} = runSetYear{1};

	PoolType{iDataSet} = runSetYear{2};

	Type{iDataSet} = [runSetYear{1:2}];

	for iYear = 1:length(runSetYear)

		try

			if ~isnan(str2double(runSetYear{iYear}))

				timeStampYear(iDataSet) = datenum([str2double(runSetYear{iYear}) 1 1]);

			end

		end

	end

	

end

% % Select only valid datasets

% invalidDS = false(size(DataSet));

% for iDS = 1:length(DataSet)

% 	if length(DataSet(iDS).offerRP_Min) == 1

% 		invalidDS(iDS) = isnan(DataSet(iDS).offerRP_Min);

% 	end

% end

% DataSet = DataSet(~invalidDS);

% timeStampYear = timeStampYear(~invalidDS);

% GenType = GenType(~invalidDS);

% PoolType = PoolType(~invalidDS);

% Type = Type(~invalidDS);

%% Other Vars

% Define Order

TypeAll = sort(unique([Type]));

genTypeAll = unique([GenType]);

poolTypeAll = unique([PoolType]);

[timeStampYearVec,~] = datevec(timeStampYear');

[years,~] = datevec(sort(unique(timeStampYear)));

secLevelAll = sort(unique([DataSet(1).simRuns.securityLevel]));

secLevelAll = secLevelAll([1]); % Show on those security levels

prodLengthAll = sort(unique([DataSet(1).simRuns.productLength]));

prodLengthAll = prodLengthAll([1]); % Show on those security levels

genTypeNumber = 1; % 1 for Wind 30 GW, 2 for wind 1GW and so on

secLevelName = strrep(num2str(secLevelAll),'.','_');

%% Get DataSet for secondary positive

productLength = 1;

market = 'SFC';

neg = 100;

for iSec = 1:length(secLevelAll)

	

	secLevel = secLevelAll(iSec);

	for iPL = 1:length(prodLengthAll)

		

		productLength = prodLengthAll(iPL);

		

		for iDS = 1:length(DataSet)

			indexA = strcmp({DataSet(iDS).simRuns.market},market);

			indexB = [DataSet(iDS).simRuns.percentPosRP] == neg;

			indexC = [DataSet(iDS).simRuns.productLength] == productLength;

			indexD = [DataSet(iDS).simRuns.securityLevel] == secLevel;

			indexAll = indexA & indexB & indexC & indexD;

			

			costSavPot = [];

			costSavPot_Cap = [];

			costSavPot_En = [];

			

			costSavPot(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max;

							

			addIncome_perCapInst(:,1) ...

				= costSavPot(:,1) ...

				/ DataSet(iDS).simRuns(indexAll).installedCapacity;

			

			costSavPot_Cap(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.capacity;

							

			costSavPot_En(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.dispatch;

			

			costOrig(timeStampYearVec(iDS)-2009,1) = ...

				DataSet(iDS).ecoImpact(indexAll).capacityCostOriginal ...

				+ DataSet(iDS).ecoImpact(indexAll).dispatchCostOriginal;

			

			costCapOrig(timeStampYearVec(iDS)-2009,1) = ...

				DataSet(iDS).ecoImpact(indexAll).capacityCostOriginal;

				

			costEngOrig(timeStampYearVec(iDS)-2009,1) = ...

				+ DataSet(iDS).ecoImpact(indexAll).dispatchCostOriginal;

			

			if strcmp(Type(iDS),'OnWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,1) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,1) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,1) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,1) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OnWindWF')

				CSTotal(timeStampYearVec(iDS)-2009,2) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,2) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,2) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,2) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OfWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,3) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,3) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,3) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,3) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVBRD')

				CSTotal(timeStampYearVec(iDS)-2009,4) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,4) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,4) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,4) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVPVF')

				CSTotal(timeStampYearVec(iDS)-2009,5) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,5) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,5) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,5) = addIncome_perCapInst;

			end

			

		end

	

	CSTotal(CSTotal == 0) = nan;

	CSCap(CSCap == 0) = nan;

	CSEn(CSEn == 0) = nan;

	CSPerGW(CSPerGW == 0) = nan;

	secLevelStructPosSFC(iSec,iPL).CSTotal = CSTotal;

	secLevelStructPosSFC(iSec,iPL).CSCap = CSCap;

	secLevelStructPosSFC(iSec,iPL).CSEn = CSEn;

	secLevelStructPosSFC(iSec,iPL).CSPerGW = CSPerGW;

	end	

end

% Consolidate data

% OnWindBRD is 1

TotalPosSFC = secLevelStructPosSFC(1,1).CSTotal;

%% Get DataSet for secondary negative

productLength = 1;

market = 'SFC';

neg = 100;

for iSec = 1:length(secLevelAll)

	

	secLevel = secLevelAll(iSec);

	for iPL = 1:length(prodLengthAll)

		

		productLength = prodLengthAll(iPL);

		

		for iDS = 1:length(DataSet)

			indexA = strcmp({DataSet(iDS).simRuns.market},market);

			indexB = [DataSet(iDS).simRuns.percentNegRP] == neg;

			indexC = [DataSet(iDS).simRuns.productLength] == productLength;

			indexD = [DataSet(iDS).simRuns.securityLevel] == secLevel;

			indexAll = indexA & indexB & indexC & indexD;

			

			costSavPot = [];

			costSavPot_Cap = [];

			costSavPot_En = [];

			

			costSavPot(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max;

							

			addIncome_perCapInst(:,1) ...

				= costSavPot(:,1) ...

				/ DataSet(iDS).simRuns(indexAll).installedCapacity;

			

			costSavPot_Cap(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.capacity;

							

			costSavPot_En(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.dispatch;

							

			if strcmp(Type(iDS),'OnWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,1) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,1) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,1) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,1) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OnWindWF')

				CSTotal(timeStampYearVec(iDS)-2009,2) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,2) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,2) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,2) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OfWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,3) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,3) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,3) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,3) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVBRD')

				CSTotal(timeStampYearVec(iDS)-2009,4) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,4) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,4) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,4) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVPVF')

				CSTotal(timeStampYearVec(iDS)-2009,5) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,5) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,5) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,5) = addIncome_perCapInst;

			end

			

		end

	

	CSTotal(CSTotal == 0) = nan;

	CSCap(CSCap == 0) = nan;

	CSEn(CSEn == 0) = nan;

	CSPerGW(CSPerGW == 0) = nan;

	secLevelStructNegSFC(iSec,iPL).CSTotal = CSTotal;

	secLevelStructNegSFC(iSec,iPL).CSCap = CSCap;

	secLevelStructNegSFC(iSec,iPL).CSEn = CSEn;	

	secLevelStructNegSFC(iSec,iPL).CSPerGW = CSPerGW;	

	end	

end

% Consolidate data

% OnWindBRD is 1

TotalNegSFC = secLevelStructNegSFC(1,1).CSTotal;

%% Get DataSet for tertiary positive

productLength = 1;

market = 'TFC';

neg = 100;

for iSec = 1:length(secLevelAll)

	

	secLevel = secLevelAll(iSec);

	for iPL = 1:length(prodLengthAll)

		

		productLength = prodLengthAll(iPL);

		

		for iDS = 1:length(DataSet)

			indexA = strcmp({DataSet(iDS).simRuns.market},market);

			indexB = [DataSet(iDS).simRuns.percentPosRP] == neg;

			indexC = [DataSet(iDS).simRuns.productLength] == productLength;

			indexD = [DataSet(iDS).simRuns.securityLevel] == secLevel;

			indexAll = indexA & indexB & indexC & indexD;

			

			costSavPot = [];

			costSavPot_Cap = [];

			costSavPot_En = [];

			

			costSavPot(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max;

							

			addIncome_perCapInst(:,1) ...

				= costSavPot(:,1) ...

				/ DataSet(iDS).simRuns(indexAll).installedCapacity;

			

			costSavPot_Cap(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.capacity;

							

			costSavPot_En(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.dispatch;

			

			costOrig(timeStampYearVec(iDS)-2009,2) = ...

				DataSet(iDS).ecoImpact(indexAll).capacityCostOriginal ...

				+ DataSet(iDS).ecoImpact(indexAll).dispatchCostOriginal;

			

			costCapOrig(timeStampYearVec(iDS)-2009,2) = ...

				DataSet(iDS).ecoImpact(indexAll).capacityCostOriginal;

				

			costEngOrig(timeStampYearVec(iDS)-2009,2) = ...

				+ DataSet(iDS).ecoImpact(indexAll).dispatchCostOriginal;

			

			if strcmp(Type(iDS),'OnWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,1) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,1) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,1) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,1) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OnWindWF')

				CSTotal(timeStampYearVec(iDS)-2009,2) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,2) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,2) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,2) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OfWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,3) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,3) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,3) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,3) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVBRD')

				CSTotal(timeStampYearVec(iDS)-2009,4) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,4) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,4) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,4) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVPVF')

				CSTotal(timeStampYearVec(iDS)-2009,5) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,5) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,5) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,5) = addIncome_perCapInst;

			end

			

		end

	

	CSTotal(CSTotal == 0) = nan;

	CSCap(CSCap == 0) = nan;

	CSEn(CSEn == 0) = nan;

	CSPerGW(CSPerGW == 0) = nan;

	secLevelStructPosTFC(iSec,iPL).CSTotal = CSTotal;

	secLevelStructPosTFC(iSec,iPL).CSCap = CSCap;

	secLevelStructPosTFC(iSec,iPL).CSEn = CSEn;	

	secLevelStructPosTFC(iSec,iPL).CSPerGW = CSPerGW;	

	end	

end

% Consolidate data

% OnWindBRD is 1

TotalPosTFC = secLevelStructPosTFC(1,1).CSTotal;

%% Get DataSet for tertiary negative

productLength = 1;

market = 'TFC';

neg = 100;

for iSec = 1:length(secLevelAll)

	

	secLevel = secLevelAll(iSec);

	for iPL = 1:length(prodLengthAll)

		

		productLength = prodLengthAll(iPL);

		

		for iDS = 1:length(DataSet)

			indexA = strcmp({DataSet(iDS).simRuns.market},market);

			indexB = [DataSet(iDS).simRuns.percentNegRP] == neg;

			indexC = [DataSet(iDS).simRuns.productLength] == productLength;

			indexD = [DataSet(iDS).simRuns.securityLevel] == secLevel;

			indexAll = indexA & indexB & indexC & indexD;

			

			costSavPot = [];

			costSavPot_Cap = [];

			costSavPot_En = [];

			

			costSavPot(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max;

							

			addIncome_perCapInst(:,1) ...

				= costSavPot(:,1) ...

				/ DataSet(iDS).simRuns(indexAll).installedCapacity;

			

			costSavPot_Cap(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.capacity;

							

			costSavPot_En(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.dispatch;

							

			if strcmp(Type(iDS),'OnWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,1) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,1) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,1) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,1) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OnWindWF')

				CSTotal(timeStampYearVec(iDS)-2009,2) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,2) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,2) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,2) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OfWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,3) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,3) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,3) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,3) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVBRD')

				CSTotal(timeStampYearVec(iDS)-2009,4) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,4) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,4) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,4) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVPVF')

				CSTotal(timeStampYearVec(iDS)-2009,5) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,5) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,5) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,5) = addIncome_perCapInst;

			end

			

		end

	

	CSTotal(CSTotal == 0) = nan;

	CSCap(CSCap == 0) = nan;

	CSEn(CSEn == 0) = nan;

	CSPerGW(CSPerGW == 0) = nan;

	secLevelStructNegTFC(iSec,iPL).CSTotal = CSTotal;

	secLevelStructNegTFC(iSec,iPL).CSCap = CSCap;

	secLevelStructNegTFC(iSec,iPL).CSEn = CSEn;	

	secLevelStructNegTFC(iSec,iPL).CSPerGW = CSPerGW;	

	end	

end

% Consolidate data

% OnWindBRD is 1

TotalNegTFC = secLevelStructNegTFC(1,1).CSTotal;

%% Name

switch genTypeNumber

	case 1

		name = 'OnWind30';

	case 2

		name = 'OnWind1';

	case 3

		name = 'OffWind1';

	case 4

		name = 'PV30';

	case 5

		name = 'PV1';

end

%% Rearrange data

NegTFC.time = datenum([(2010:2014)' repmat([1 1 0 0 0],5,1)]);

NegTFC.data = TotalNegTFC / 1000000;

PosTFC.time = datenum([(2010:2014)' repmat([1 1 0 0 0],5,1)]);

PosTFC.data = TotalPosTFC / 1000000;

NegSFC.time = datenum([(2010:2014)' repmat([1 1 0 0 0],5,1)]);

NegSFC.data = TotalNegSFC / 1000000;

PosSFC.time = datenum([(2010:2014)' repmat([1 1 0 0 0],5,1)]);

PosSFC.data = TotalPosSFC / 1000000;

%% Plot with styleplot

fig = [];

% fhgCol = getFHGColors;

% fhgCol.grey

% area

% Market volume

fig.subplot{1,1}.plot{1}.x = NegSFC.time;

fig.subplot{1,1}.plot{1}.y = [(costOrig(:,1) / 1000000 * 0.3) (costOrig(:,2) / 1000000 * 0.3)];

fig.subplot{1,1}.plot{1}.style='bar';

fig.subplot{1,1}.plot{1}.barlayout='grouped';

fig.subplot{1,1}.plot{1}.linewidth=3;

fig.subplot{1,1}.plot{1}.barcolor={'greyDark','greyLight2'}; % Overwrite the color property

fig.subplot{1,1}.plot{2}.x = NegSFC.time;

fig.subplot{1,1}.plot{2}.y = [(costOrig(:,1) / 1000000 * 0.2) (costOrig(:,2) / 1000000 * 0.2)];

fig.subplot{1,1}.plot{2}.style='bar';

fig.subplot{1,1}.plot{2}.barlayout='grouped';

fig.subplot{1,1}.plot{2}.linewidth=3;

fig.subplot{1,1}.plot{2}.barcolor={'greyDark2','greyLight'}; % Overwrite the color property

fig.subplot{1,1}.plot{3}.x = NegSFC.time;

fig.subplot{1,1}.plot{3}.y = [(costOrig(:,1) / 1000000 * 0.1) (costOrig(:,2) / 1000000 * 0.1)];

fig.subplot{1,1}.plot{3}.style='bar';

fig.subplot{1,1}.plot{3}.barlayout='grouped';

fig.subplot{1,1}.plot{3}.linewidth=3;

fig.subplot{1,1}.plot{3}.barcolor={'greyDark3','grey'}; % Overwrite the color property

% Wind

fig.subplot{1,1}.plot{4}.x = NegSFC.time;

fig.subplot{1,1}.plot{4}.y = NegSFC.data(:,1);

fig.subplot{1,1}.plot{4}.style='plot';

fig.subplot{1,1}.plot{4}.axislocation='right';

fig.subplot{1,1}.plot{4}.linestyle='-';

fig.subplot{1,1}.plot{4}.markerstyle='x';

fig.subplot{1,1}.plot{4}.markersize=14;

fig.subplot{1,1}.plot{4}.color='x3'; % Overwrite the color property

fig.subplot{1,1}.plot{5}.x = PosSFC.time;

fig.subplot{1,1}.plot{5}.y = PosSFC.data(:,1);

fig.subplot{1,1}.plot{5}.style='plot';

fig.subplot{1,1}.plot{5}.linestyle='--';

fig.subplot{1,1}.plot{5}.markerstyle='x';

fig.subplot{1,1}.plot{5}.markersize=14;

fig.subplot{1,1}.plot{5}.color='x3'; % Overwrite the color property

fig.subplot{1,1}.plot{6}.x = NegTFC.time;

fig.subplot{1,1}.plot{6}.y = NegTFC.data(:,1);

fig.subplot{1,1}.plot{6}.style='plot';

fig.subplot{1,1}.plot{6}.linestyle='-';

fig.subplot{1,1}.plot{6}.markerstyle='x';

fig.subplot{1,1}.plot{6}.markersize=14;

fig.subplot{1,1}.plot{6}.color='x2'; % Overwrite the color property

fig.subplot{1,1}.plot{7}.x = PosTFC.time;

fig.subplot{1,1}.plot{7}.y = PosTFC.data(:,1);

fig.subplot{1,1}.plot{7}.style='plot';

fig.subplot{1,1}.plot{7}.linestyle='--';

fig.subplot{1,1}.plot{7}.markerstyle='x';

fig.subplot{1,1}.plot{7}.markersize=14;

fig.subplot{1,1}.plot{7}.color='x2'; % Overwrite the color property

% PV Systems

fig.subplot{1,1}.plot{8}.x = NegSFC.time;

fig.subplot{1,1}.plot{8}.y = NegSFC.data(:,4);

fig.subplot{1,1}.plot{8}.style='plot';

fig.subplot{1,1}.plot{8}.linestyle='-';

fig.subplot{1,1}.plot{8}.markerstyle='x';

fig.subplot{1,1}.plot{8}.markersize=14;

fig.subplot{1,1}.plot{8}.color='x15'; % Overwrite the color property

fig.subplot{1,1}.plot{9}.x = PosSFC.time;

fig.subplot{1,1}.plot{9}.y = PosSFC.data(:,4);

fig.subplot{1,1}.plot{9}.style='plot';

fig.subplot{1,1}.plot{9}.linestyle='--';

fig.subplot{1,1}.plot{9}.markerstyle='x';

fig.subplot{1,1}.plot{9}.markersize=14;

fig.subplot{1,1}.plot{9}.color='x15'; % Overwrite the color property

fig.subplot{1,1}.plot{10}.x = NegTFC.time;

fig.subplot{1,1}.plot{10}.y = NegTFC.data(:,4);

fig.subplot{1,1}.plot{10}.style='plot';

fig.subplot{1,1}.plot{10}.linestyle='-';

fig.subplot{1,1}.plot{10}.markerstyle='x';

fig.subplot{1,1}.plot{10}.markersize=14;

fig.subplot{1,1}.plot{10}.color='x14'; % Overwrite the color property

fig.subplot{1,1}.plot{11}.x = PosTFC.time;

fig.subplot{1,1}.plot{11}.y = PosTFC.data(:,4);

fig.subplot{1,1}.plot{11}.style='plot';

fig.subplot{1,1}.plot{11}.linestyle='--';

fig.subplot{1,1}.plot{11}.markerstyle='x';

fig.subplot{1,1}.plot{11}.markersize=14;

fig.subplot{1,1}.plot{11}.color='x14'; % Overwrite the color property

% Plot axes properties

xLimVal = [min(NegSFC.time)-150 max(NegSFC.time)+150];

fig.subplot{1,1}.xlim=xLimVal;

yLimVal = [-30 80];

fig.subplot{1,1}.ylim=yLimVal;

fig.subplot{1,1}.yticks=min(yLimVal):10:max(yLimVal);

% Title subplots

% fig.subplot{1,1}.title=['2010']; % optionaler Titel

% Axes labeling

fig.subplot{1,1}.xlabel='Year';

fig.subplot{1,1}.ylabel='Welfare gain in mio. EUR';

fig.subplot{1,1}.legend={'30% threshold of secondary market share', ...

	'30% threshold of tertiary market share', ...

	'20% threshold of secondary market share', ...

	'20% threshold of tertiary market share', ...

	'10% threshold of secondary market share', ...

	'10% threshold of tertiary market share', ...

	'Wind negative secondary control reserve', ...

	'Wind positive secondary control reserve', ...

	'Wind negative tertiary control reserve', ...

	'Wind positive tertiary control reserve', ...

	'PV systems negative secondary control reserve', ...

	'PV systems positive secondary control reserve', ...

	'PV systems negative tertiary control reserve', ...

	'PV systems positive tertiary control reserve'};

% fig.subplot{1,1}.legend_orientation = 'horizontal';

fig.subplot{1,1}.xticks=NegTFC.time;%fig.subplot{1,1}.plot{1}.x;

% fig.subplot{1,1}.xticklabels={'Negative secondary', ...

% 	'Positive secondary', ...

% 	'Negative tertiary', ...

% 	'Positive tertiary'};

fig.subplot{1,1}.xdatetick_format='yyyy';

fig.height=16;

fig.width_columns=3;

[hFig, hAxes, hPlot] = styleplot(fig,'styleplot_format_PhD','word');

%% Save

path = 'C:\Users\mjansen\Synchronisation\mjansen auf User_Artemis(R)\Dissertation\Dissertation\Figures\';

name = ['Fig6-4_welfareGain_' num2str(productLength) 'h_' secLevelName];

saveas(gcf,[path name '.fig']);

save([path name '_data.mat'],'fig');

Functions/Results_Evaluation/resPhD_welfareGain_avgMarketShare.m

clear;

clc;

%% Options

%% Load

preDefineDataSet = ([117:135]);

for iDataSet = 1:length(preDefineDataSet)

	

	[~, ~, ...

		~, DataSet(iDataSet).ecoImpact, ...

		~, ~, ...

		~, ~, ...

		~, DataSet(iDataSet).offerRP_Min, ...

		DataSet(iDataSet).simRuns, ~, ...

		~, DataSet(iDataSet).info] ...

		= res_loadResults_noMOL('D:\Ergebnisse REBal',preDefineDataSet(iDataSet));

	

% 	[Prob_Forec_DA, Prob_Forec_ID, actualFeedIn, ecoImpact, ecoImpactTFC, error, ...

% 		errorRP, macroEcoImpact, offerRP, offerRP_Min, simRuns, violation, alteredMOList, infoRuns] = res_loadResults_noMOL('D:\Ergebnisse REBal',preDefineDataSet(iDataSet));

	

	runSetYear = regexp(DataSet(iDataSet).info.runSetName,'_','split');

	GenType{iDataSet} = runSetYear{1};

	PoolType{iDataSet} = runSetYear{2};

	Type{iDataSet} = [runSetYear{1:2}];

	for iYear = 1:length(runSetYear)

		try

			if ~isnan(str2double(runSetYear{iYear}))

				timeStampYear(iDataSet) = datenum([str2double(runSetYear{iYear}) 1 1]);

			end

		end

	end

	

end

% % Select only valid datasets

% invalidDS = false(size(DataSet));

% for iDS = 1:length(DataSet)

% 	if length(DataSet(iDS).offerRP_Min) == 1

% 		invalidDS(iDS) = isnan(DataSet(iDS).offerRP_Min);

% 	end

% end

% DataSet = DataSet(~invalidDS);

% timeStampYear = timeStampYear(~invalidDS);

% GenType = GenType(~invalidDS);

% PoolType = PoolType(~invalidDS);

% Type = Type(~invalidDS);

%% Other Vars

% Define Order

TypeAll = sort(unique([Type]));

genTypeAll = unique([GenType]);

poolTypeAll = unique([PoolType]);

[timeStampYearVec,~] = datevec(timeStampYear');

[years,~] = datevec(sort(unique(timeStampYear)));

secLevelAll = sort(unique([DataSet(1).simRuns.securityLevel]));

% secLevelAll = secLevelAll([1 6]); % Show on those security levels

prodLengthAll = sort(unique([DataSet(1).simRuns.productLength]));

% prodLengthAll = prodLengthAll([1 3 5]); % Show on those security levels

genTypeNumber = 1; % 1 for Wind 30 GW, 2 for wind 1GW and so on

%% Get DataSet for secondary positive

market = 'SFC';

neg = 100;

for iSec = 1:length(secLevelAll)

	

	secLevel = secLevelAll(iSec);

	for iPL = 1:length(prodLengthAll)

		

		productLength = prodLengthAll(iPL);

		

		for iDS = 1:length(DataSet)

			indexA = strcmp({DataSet(iDS).simRuns.market},market);

			indexB = [DataSet(iDS).simRuns.percentPosRP] == neg;

			indexC = [DataSet(iDS).simRuns.productLength] == productLength;

			indexD = [DataSet(iDS).simRuns.securityLevel] == secLevel;

			indexAll = indexA & indexB & indexC & indexD;

			

			costSavPot = [];

			costSavPot_Cap = [];

			costSavPot_En = [];

			

			costSavPot(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max;

							

			addIncome_perCapInst(:,1) ...

				= costSavPot(:,1) ...

				/ DataSet(iDS).simRuns(indexAll).installedCapacity;

			

			costSavPot_Cap(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.capacity;

							

			costSavPot_En(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.dispatch;

			

			costOrig(timeStampYearVec(iDS)-2009,1) = ...

				DataSet(iDS).ecoImpact(indexAll).capacityCostOriginal ...

				+ DataSet(iDS).ecoImpact(indexAll).dispatchCostOriginal;

			

			costCapOrig(timeStampYearVec(iDS)-2009,1) = ...

				DataSet(iDS).ecoImpact(indexAll).capacityCostOriginal;

				

			costEngOrig(timeStampYearVec(iDS)-2009,1) = ...

				+ DataSet(iDS).ecoImpact(indexAll).dispatchCostOriginal;

			

			if strcmp(Type(iDS),'OnWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,1) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,1) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,1) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,1) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OnWindWF')

				CSTotal(timeStampYearVec(iDS)-2009,2) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,2) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,2) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,2) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OfWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,3) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,3) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,3) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,3) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVBRD')

				CSTotal(timeStampYearVec(iDS)-2009,4) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,4) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,4) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,4) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVPVF')

				CSTotal(timeStampYearVec(iDS)-2009,5) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,5) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,5) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,5) = addIncome_perCapInst;

			end

			

		end

	

	CSTotal(CSTotal == 0) = nan;

	CSCap(CSCap == 0) = nan;

	CSEn(CSEn == 0) = nan;

	CSPerGW(CSPerGW == 0) = nan;

	secLevelStructPosSFC(iSec,iPL).CSTotal = CSTotal;

	secLevelStructPosSFC(iSec,iPL).CSCap = CSCap;

	secLevelStructPosSFC(iSec,iPL).CSEn = CSEn;

	secLevelStructPosSFC(iSec,iPL).CSPerGW = CSPerGW;

	end	

end

% Consolidate data

% OnWindBRD is 1

TotalPosSFC = secLevelStructPosSFC(1,1).CSCap;

costMult = reshape(repmat(costCapOrig(:,1),size(secLevelStructPosSFC(1,1).CSCap,1),[]),[],size(secLevelStructPosSFC(1,1).CSCap,1));

TotalPosSFC = secLevelStructPosSFC(1,1).CSCap ./ costMult;

%% Get DataSet for secondary negative

market = 'SFC';

neg = 100;

for iSec = 1:length(secLevelAll)

	

	secLevel = secLevelAll(iSec);

	for iPL = 1:length(prodLengthAll)

		

		productLength = prodLengthAll(iPL);

		

		for iDS = 1:length(DataSet)

			indexA = strcmp({DataSet(iDS).simRuns.market},market);

			indexB = [DataSet(iDS).simRuns.percentNegRP] == neg;

			indexC = [DataSet(iDS).simRuns.productLength] == productLength;

			indexD = [DataSet(iDS).simRuns.securityLevel] == secLevel;

			indexAll = indexA & indexB & indexC & indexD;

			

			costSavPot = [];

			costSavPot_Cap = [];

			costSavPot_En = [];

			

			costSavPot(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max;

							

			addIncome_perCapInst(:,1) ...

				= costSavPot(:,1) ...

				/ DataSet(iDS).simRuns(indexAll).installedCapacity;

			

			costSavPot_Cap(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.capacity;

							

			costSavPot_En(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.dispatch;

							

			if strcmp(Type(iDS),'OnWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,1) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,1) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,1) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,1) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OnWindWF')

				CSTotal(timeStampYearVec(iDS)-2009,2) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,2) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,2) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,2) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OfWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,3) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,3) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,3) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,3) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVBRD')

				CSTotal(timeStampYearVec(iDS)-2009,4) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,4) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,4) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,4) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVPVF')

				CSTotal(timeStampYearVec(iDS)-2009,5) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,5) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,5) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,5) = addIncome_perCapInst;

			end

			

		end

	

	CSTotal(CSTotal == 0) = nan;

	CSCap(CSCap == 0) = nan;

	CSEn(CSEn == 0) = nan;

	CSPerGW(CSPerGW == 0) = nan;

	secLevelStructNegSFC(iSec,iPL).CSTotal = CSTotal;

	secLevelStructNegSFC(iSec,iPL).CSCap = CSCap;

	secLevelStructNegSFC(iSec,iPL).CSEn = CSEn;	

	secLevelStructNegSFC(iSec,iPL).CSPerGW = CSPerGW;	

	end	

end

% Consolidate data

% OnWindBRD is 1

TotalNegSFC = secLevelStructNegSFC(1,1).CSCap;

% costMult = reshape(repmat(costCapOrig(:,1),size(secLevelStructNegSFC(1,1).CSCap,1),[]),[],size(secLevelStructNegSFC(1,1).CSCap,1));

TotalNegSFC = secLevelStructNegSFC(1,1).CSCap ./ costMult;

%% Get DataSet for tertiary positive

market = 'TFC';

neg = 100;

for iSec = 1:length(secLevelAll)

	

	secLevel = secLevelAll(iSec);

	for iPL = 1:length(prodLengthAll)

		

		productLength = prodLengthAll(iPL);

		

		for iDS = 1:length(DataSet)

			indexA = strcmp({DataSet(iDS).simRuns.market},market);

			indexB = [DataSet(iDS).simRuns.percentPosRP] == neg;

			indexC = [DataSet(iDS).simRuns.productLength] == productLength;

			indexD = [DataSet(iDS).simRuns.securityLevel] == secLevel;

			indexAll = indexA & indexB & indexC & indexD;

			

			costSavPot = [];

			costSavPot_Cap = [];

			costSavPot_En = [];

			

			costSavPot(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max;

							

			addIncome_perCapInst(:,1) ...

				= costSavPot(:,1) ...

				/ DataSet(iDS).simRuns(indexAll).installedCapacity;

			

			costSavPot_Cap(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.capacity;

							

			costSavPot_En(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.dispatch;

			

			costOrig(timeStampYearVec(iDS)-2009,2) = ...

				DataSet(iDS).ecoImpact(indexAll).capacityCostOriginal ...

				+ DataSet(iDS).ecoImpact(indexAll).dispatchCostOriginal;

			

			costCapOrig(timeStampYearVec(iDS)-2009,2) = ...

				DataSet(iDS).ecoImpact(indexAll).capacityCostOriginal;

				

			costEngOrig(timeStampYearVec(iDS)-2009,2) = ...

				+ DataSet(iDS).ecoImpact(indexAll).dispatchCostOriginal;

			

			if strcmp(Type(iDS),'OnWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,1) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,1) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,1) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,1) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OnWindWF')

				CSTotal(timeStampYearVec(iDS)-2009,2) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,2) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,2) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,2) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OfWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,3) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,3) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,3) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,3) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVBRD')

				CSTotal(timeStampYearVec(iDS)-2009,4) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,4) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,4) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,4) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVPVF')

				CSTotal(timeStampYearVec(iDS)-2009,5) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,5) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,5) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,5) = addIncome_perCapInst;

			end

			

		end

	

	CSTotal(CSTotal == 0) = nan;

	CSCap(CSCap == 0) = nan;

	CSEn(CSEn == 0) = nan;

	CSPerGW(CSPerGW == 0) = nan;

	secLevelStructPosTFC(iSec,iPL).CSTotal = CSTotal;

	secLevelStructPosTFC(iSec,iPL).CSCap = CSCap;

	secLevelStructPosTFC(iSec,iPL).CSEn = CSEn;	

	secLevelStructPosTFC(iSec,iPL).CSPerGW = CSPerGW;	

	end	

end

% Consolidate data

% OnWindBRD is 1

TotalPosTFC = secLevelStructPosTFC(1,1).CSCap;

costMult = reshape(repmat(costCapOrig(:,2),size(secLevelStructPosTFC(1,1).CSCap,1),[]),[],size(secLevelStructPosTFC(1,1).CSCap,1));

TotalPosTFC = secLevelStructPosTFC(1,1).CSCap ./ costMult;

%% Get DataSet for tertiary negative

market = 'TFC';

neg = 100;

for iSec = 1:length(secLevelAll)

	

	secLevel = secLevelAll(iSec);

	for iPL = 1:length(prodLengthAll)

		

		productLength = prodLengthAll(iPL);

		

		for iDS = 1:length(DataSet)

			indexA = strcmp({DataSet(iDS).simRuns.market},market);

			indexB = [DataSet(iDS).simRuns.percentNegRP] == neg;

			indexC = [DataSet(iDS).simRuns.productLength] == productLength;

			indexD = [DataSet(iDS).simRuns.securityLevel] == secLevel;

			indexAll = indexA & indexB & indexC & indexD;

			

			costSavPot = [];

			costSavPot_Cap = [];

			costSavPot_En = [];

			

			costSavPot(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max;

							

			addIncome_perCapInst(:,1) ...

				= costSavPot(:,1) ...

				/ DataSet(iDS).simRuns(indexAll).installedCapacity;

			

			costSavPot_Cap(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.capacity;

							

			costSavPot_En(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.dispatch;

							

			if strcmp(Type(iDS),'OnWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,1) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,1) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,1) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,1) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OnWindWF')

				CSTotal(timeStampYearVec(iDS)-2009,2) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,2) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,2) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,2) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OfWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,3) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,3) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,3) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,3) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVBRD')

				CSTotal(timeStampYearVec(iDS)-2009,4) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,4) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,4) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,4) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVPVF')

				CSTotal(timeStampYearVec(iDS)-2009,5) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,5) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,5) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,5) = addIncome_perCapInst;

			end

			

		end

	

	CSTotal(CSTotal == 0) = nan;

	CSCap(CSCap == 0) = nan;

	CSEn(CSEn == 0) = nan;

	CSPerGW(CSPerGW == 0) = nan;

	secLevelStructNegTFC(iSec,iPL).CSTotal = CSTotal;

	secLevelStructNegTFC(iSec,iPL).CSCap = CSCap;

	secLevelStructNegTFC(iSec,iPL).CSEn = CSEn;	

	secLevelStructNegTFC(iSec,iPL).CSPerGW = CSPerGW;	

	end	

end

% Consolidate data

% OnWindBRD is 1

TotalNegTFC = secLevelStructNegTFC(1,1).CSCap;

% costMult = reshape(repmat(costCapOrig(:,2),size(secLevelStructPosTFC(1,1).CSCap,1),[]),[],size(secLevelStructPosTFC(1,1).CSCap,1));

TotalNegTFC = secLevelStructNegTFC(1,1).CSCap ./ costMult;

%% Rearrange data

% % load intermediary

% load('C:\Users\mjansen\Synchronisation\mjansen auf User_Artemis(R)\Dissertation\Data\sharesLoadedData.mat')

[timeAS,~,capCost_SFC,capCost_TFC] = loadAncillaryServiceCost;

timeAS_select = timeAS(timeAS >= datenum([2010 1 1]) & timeAS < datenum([2015 1 1]));

capCost_SFC_select = capCost_SFC(timeAS >= datenum([2010 1 1]) & timeAS < datenum([2015 1 1])) * 1000000;

capCost_TFC_select = capCost_TFC(timeAS >= datenum([2010 1 1]) & timeAS < datenum([2015 1 1])) * 1000000;

capCost_select = capCost_SFC_select + capCost_TFC_select;

for iSecurity = 1:size(secLevelStructNegSFC,1)

	for iProductLength = 1:size(secLevelStructNegSFC,2)

		

		

		shareSFC = secLevelStructNegSFC(iSecurity,iProductLength).CSCap(:,1) ./ capCost_SFC_select;

		shareTFC = secLevelStructNegTFC(iSecurity,iProductLength).CSCap(:,1) ./ capCost_TFC_select;

		shareMEANyears_Wind{iSecurity,iProductLength} = (shareSFC + shareTFC) / 2;

		shareMEAN_Wind(iSecurity,iProductLength) = nanmean(shareMEANyears_Wind{iSecurity,iProductLength});

		

		shareSFC = secLevelStructNegSFC(iSecurity,iProductLength).CSCap(:,4) ./ capCost_SFC_select;

		shareTFC = secLevelStructNegTFC(iSecurity,iProductLength).CSCap(:,4) ./ capCost_TFC_select;

		shareMEANyears_PV{iSecurity,iProductLength} = (shareSFC + shareTFC) / 2;

		shareMEAN_PV(iSecurity,iProductLength) = nanmean(shareMEANyears_PV{iSecurity,iProductLength});

		

	end

end

% %% Plot

% plot(shareMEANyears_Wind{1,1})

% hold on

% plot(shareMEANyears_Wind{2,1})

% plot(shareMEANyears_Wind{3,1})

% plot(shareMEANyears_Wind{4,1})

% plot(shareMEANyears_Wind{5,1})

%

% plot(shareMEANyears_Wind{1,2})

% hold on

% plot(shareMEANyears_Wind{2,2})

% plot(shareMEANyears_Wind{3,2})

% plot(shareMEANyears_Wind{4,2})

% plot(shareMEANyears_Wind{5,2})

%

% plot(shareMEANyears_Wind{1,6})

% hold on

% plot(shareMEANyears_Wind{2,6})

% plot(shareMEANyears_Wind{3,6})

% plot(shareMEANyears_Wind{4,6})

% plot(shareMEANyears_Wind{5,6})

%% Plot with styleplot

fig = [];

% fhgCol = getFHGColors;

% Wind farms

colorsWind = {'x4','x3','x2','x26','x27','x28'};

for iPlotWind = 1:6

	fig.subplot{1,1}.plot{iPlotWind}.x = (1:7);

	fig.subplot{1,1}.plot{iPlotWind}.y = shareMEAN_Wind(:,iPlotWind)' * 100;

	fig.subplot{1,1}.plot{iPlotWind}.style='plot';

	fig.subplot{1,1}.plot{iPlotWind}.color=colorsWind{iPlotWind};

	% fig.subplot{1,1}.plot{iPlotWind}.linestyle='-';

	% fig.subplot{1,1}.plot{iPlotWind}.markerstyle='x';

	% fig.subplot{1,1}.plot{iPlotWind}.markersize=14;

end

% PV Systems

colorsPV = {'x20','x19','x18','x14','x15','x16'};

for iPlotPV = 1:6

	fig.subplot{1,1}.plot{iPlotPV+6}.x = (1:7);

	fig.subplot{1,1}.plot{iPlotPV+6}.y = shareMEAN_PV(:,iPlotPV)' * 100;

	fig.subplot{1,1}.plot{iPlotPV+6}.style='plot';

	fig.subplot{1,1}.plot{iPlotPV+6}.color=colorsPV{iPlotPV};

	% fig.subplot{1,1}.plot{iPlotWind}.linestyle='-';

	% fig.subplot{1,1}.plot{iPlotWind}.markerstyle='x';

	% fig.subplot{1,1}.plot{iPlotWind}.markersize=14;

end

% Plot axes properties

xLimVal = [1 7];

fig.subplot{1,1}.xlim=xLimVal;

yLimVal = [0 60];

fig.subplot{1,1}.ylim=yLimVal;

fig.subplot{1,1}.yticks=min(yLimVal):10:max(yLimVal);

% Title subplots

% fig.subplot{1,1}.title=['2010']; % optionaler Titel

% Axes labeling

fig.subplot{1,1}.xlabel='Level of reliability';

fig.subplot{1,1}.ylabel='Ratio of welfare gain to total capacity market value in %';

fig.subplot{1,1}.legend={'1h product length wind farms', ...

	'2h product length wind farms', ...

	'4h product length wind farms', ...

	'8h product length wind farms', ...

	'12h product length wind farms', ...

	'24h product length wind farms', ...

	'1h product length PV systems', ...

	'2h product length PV systems', ...

	'4h product length PV systems', ...

	'8h product length PV systems', ...

	'12h product length PV systems', ...

	'24h product length PV systems'};

% fig.subplot{1,1}.legend_orientation = 'horizontal';

% fig.subplot{1,1}.xticks= 1:;

fig.subplot{1,1}.xticklabels={'95%','99%','99.5%', ...

	'99.9%','99.99%','99.994%','99.999%'};

% fig.subplot{1,1}.xdatetick_format='yyyy';

fig.height=15;

fig.width_columns=3;

[hFig, hAxes, hPlot] = styleplot(fig,'styleplot_format_PhD','word');

% Save data

meanShares.Wind = shareMEAN_Wind;

meanShares.PV = shareMEAN_PV;

meanShares.secLevel = secLevelAll';

meanShares.prodLength = prodLengthAll';

save('C:\Users\mjansen\Synchronisation\mjansen auf User_Artemis(R)\Dissertation\Data\meanShares.mat','meanShares');

%% Save

path = 'C:\Users\mjansen\Synchronisation\mjansen auf User_Artemis(R)\Dissertation\Dissertation\Figures\6 Economic impact of fluctuating RES on the power system level\';

name = ['Fig6-8_welfareGain_avgMarketShares'];

saveas(gcf,[path name '.fig']);

save([path name '_data.mat'],'fig');

Functions/Results_Evaluation/resPhD_welfareGain_CapOnly.m

% % clear;

% clc;

% %% Options

% productLength = 1;

%

% %% Load

%

% preDefineDataSet = ([123:139]);

%

% for iDataSet = 1:length(preDefineDataSet)

% 	

% 	[~, ~, ...

% 		~, DataSet(iDataSet).ecoImpact, ...

% 		~, ~, ...

% 		~, ~, ...

% 		~, DataSet(iDataSet).offerRP_Min, ...

% 		DataSet(iDataSet).simRuns, ~, ...

% 		~, DataSet(iDataSet).info] ...

% 		= res_loadResults_noMOL('D:\Ergebnisse REBal',preDefineDataSet(iDataSet));

% 	

% % 	[Prob_Forec_DA, Prob_Forec_ID, actualFeedIn, ecoImpact, ecoImpactTFC, error, ...

% % 		errorRP, macroEcoImpact, offerRP, offerRP_Min, simRuns, violation, alteredMOList, infoRuns] = res_loadResults_noMOL('D:\Ergebnisse REBal',preDefineDataSet(iDataSet));

% 	

% 	runSetYear = regexp(DataSet(iDataSet).info.runSetName,'_','split');

% 	GenType{iDataSet} = runSetYear{1};

% 	PoolType{iDataSet} = runSetYear{2};

% 	Type{iDataSet} = [runSetYear{1:2}];

% 	for iYear = 1:length(runSetYear)

% 		try

% 			if ~isnan(str2double(runSetYear{iYear}))

% 				timeStampYear(iDataSet) = datenum([str2double(runSetYear{iYear}) 1 1]);

% 			end

% 		end

% 	end

% 	

% end

%

% % % Select only valid datasets

% % invalidDS = false(size(DataSet));

% % for iDS = 1:length(DataSet)

% % 	if length(DataSet(iDS).offerRP_Min) == 1

% % 		invalidDS(iDS) = isnan(DataSet(iDS).offerRP_Min);

% % 	end

% % end

% % DataSet = DataSet(~invalidDS);

% % timeStampYear = timeStampYear(~invalidDS);

% % GenType = GenType(~invalidDS);

% % PoolType = PoolType(~invalidDS);

% % Type = Type(~invalidDS);

% %% Other Vars

%

% % Define Order

% TypeAll = sort(unique([Type]));

% genTypeAll = unique([GenType]);

% poolTypeAll = unique([PoolType]);

%

% [timeStampYearVec,~] = datevec(timeStampYear');

% [years,~] = datevec(sort(unique(timeStampYear)));

%

secLevelAll = sort(unique([DataSet(1).simRuns.securityLevel]));

secLevelAll = secLevelAll([6]); % Show on those security levels

prodLengthAll = sort(unique([DataSet(1).simRuns.productLength]));

prodLengthAll = prodLengthAll([5]); % Show on those security levels

genTypeNumber = 1; % 1 for Wind 30 GW, 2 for wind 1GW and so on

%% Get DataSet for secondary positive

productLength = 1;

market = 'SFC';

neg = 100;

for iSec = 1:length(secLevelAll)

	

	secLevel = secLevelAll(iSec);

	for iPL = 1:length(prodLengthAll)

		

		productLength = prodLengthAll(iPL);

		

		for iDS = 1:length(DataSet)

			indexA = strcmp({DataSet(iDS).simRuns.market},market);

			indexB = [DataSet(iDS).simRuns.percentPosRP] == neg;

			indexC = [DataSet(iDS).simRuns.productLength] == productLength;

			indexD = [DataSet(iDS).simRuns.securityLevel] == secLevel;

			indexAll = indexA & indexB & indexC & indexD;

			

			costSavPot = [];

			costSavPot_Cap = [];

			costSavPot_En = [];

			

			costSavPot(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max;

							

			addIncome_perCapInst(:,1) ...

				= costSavPot(:,1) ...

				/ DataSet(iDS).simRuns(indexAll).installedCapacity;

			

			costSavPot_Cap(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.capacity;

							

			costSavPot_En(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.dispatch;

			

			costOrig(timeStampYearVec(iDS)-2009,1) = ...

				DataSet(iDS).ecoImpact(indexAll).capacityCostOriginal ...

				+ DataSet(iDS).ecoImpact(indexAll).dispatchCostOriginal;

			

			costCapOrig(timeStampYearVec(iDS)-2009,1) = ...

				DataSet(iDS).ecoImpact(indexAll).capacityCostOriginal;

				

			costEngOrig(timeStampYearVec(iDS)-2009,1) = ...

				+ DataSet(iDS).ecoImpact(indexAll).dispatchCostOriginal;

			

			if strcmp(Type(iDS),'OnWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,1) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,1) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,1) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,1) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OnWindWF')

				CSTotal(timeStampYearVec(iDS)-2009,2) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,2) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,2) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,2) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OfWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,3) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,3) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,3) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,3) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVBRD')

				CSTotal(timeStampYearVec(iDS)-2009,4) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,4) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,4) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,4) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVPVF')

				CSTotal(timeStampYearVec(iDS)-2009,5) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,5) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,5) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,5) = addIncome_perCapInst;

			end

			

		end

	

	CSTotal(CSTotal == 0) = nan;

	CSCap(CSCap == 0) = nan;

	CSEn(CSEn == 0) = nan;

	CSPerGW(CSPerGW == 0) = nan;

	secLevelStructPosSFC(iSec,iPL).CSTotal = CSTotal;

	secLevelStructPosSFC(iSec,iPL).CSCap = CSCap;

	secLevelStructPosSFC(iSec,iPL).CSEn = CSEn;

	secLevelStructPosSFC(iSec,iPL).CSPerGW = CSPerGW;

	end	

end

% Consolidate data

% OnWindBRD is 1

TotalPosSFC = secLevelStructPosSFC(1,1).CSCap;

%% Get DataSet for secondary negative

productLength = 1;

market = 'SFC';

neg = 100;

for iSec = 1:length(secLevelAll)

	

	secLevel = secLevelAll(iSec);

	for iPL = 1:length(prodLengthAll)

		

		productLength = prodLengthAll(iPL);

		

		for iDS = 1:length(DataSet)

			indexA = strcmp({DataSet(iDS).simRuns.market},market);

			indexB = [DataSet(iDS).simRuns.percentNegRP] == neg;

			indexC = [DataSet(iDS).simRuns.productLength] == productLength;

			indexD = [DataSet(iDS).simRuns.securityLevel] == secLevel;

			indexAll = indexA & indexB & indexC & indexD;

			

			costSavPot = [];

			costSavPot_Cap = [];

			costSavPot_En = [];

			

			costSavPot(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max;

							

			addIncome_perCapInst(:,1) ...

				= costSavPot(:,1) ...

				/ DataSet(iDS).simRuns(indexAll).installedCapacity;

			

			costSavPot_Cap(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.capacity;

							

			costSavPot_En(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.dispatch;

							

			if strcmp(Type(iDS),'OnWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,1) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,1) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,1) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,1) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OnWindWF')

				CSTotal(timeStampYearVec(iDS)-2009,2) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,2) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,2) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,2) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OfWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,3) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,3) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,3) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,3) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVBRD')

				CSTotal(timeStampYearVec(iDS)-2009,4) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,4) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,4) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,4) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVPVF')

				CSTotal(timeStampYearVec(iDS)-2009,5) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,5) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,5) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,5) = addIncome_perCapInst;

			end

			

		end

	

	CSTotal(CSTotal == 0) = nan;

	CSCap(CSCap == 0) = nan;

	CSEn(CSEn == 0) = nan;

	CSPerGW(CSPerGW == 0) = nan;

	secLevelStructNegSFC(iSec,iPL).CSTotal = CSTotal;

	secLevelStructNegSFC(iSec,iPL).CSCap = CSCap;

	secLevelStructNegSFC(iSec,iPL).CSEn = CSEn;	

	secLevelStructNegSFC(iSec,iPL).CSPerGW = CSPerGW;	

	end	

end

% Consolidate data

% OnWindBRD is 1

TotalNegSFC = secLevelStructNegSFC(1,1).CSCap;

%% Get DataSet for tertiary positive

productLength = 1;

market = 'TFC';

neg = 100;

for iSec = 1:length(secLevelAll)

	

	secLevel = secLevelAll(iSec);

	for iPL = 1:length(prodLengthAll)

		

		productLength = prodLengthAll(iPL);

		

		for iDS = 1:length(DataSet)

			indexA = strcmp({DataSet(iDS).simRuns.market},market);

			indexB = [DataSet(iDS).simRuns.percentPosRP] == neg;

			indexC = [DataSet(iDS).simRuns.productLength] == productLength;

			indexD = [DataSet(iDS).simRuns.securityLevel] == secLevel;

			indexAll = indexA & indexB & indexC & indexD;

			

			costSavPot = [];

			costSavPot_Cap = [];

			costSavPot_En = [];

			

			costSavPot(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max;

							

			addIncome_perCapInst(:,1) ...

				= costSavPot(:,1) ...

				/ DataSet(iDS).simRuns(indexAll).installedCapacity;

			

			costSavPot_Cap(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.capacity;

							

			costSavPot_En(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.dispatch;

			

			costOrig(timeStampYearVec(iDS)-2009,2) = ...

				DataSet(iDS).ecoImpact(indexAll).capacityCostOriginal ...

				+ DataSet(iDS).ecoImpact(indexAll).dispatchCostOriginal;

			

			costCapOrig(timeStampYearVec(iDS)-2009,2) = ...

				DataSet(iDS).ecoImpact(indexAll).capacityCostOriginal;

				

			costEngOrig(timeStampYearVec(iDS)-2009,2) = ...

				+ DataSet(iDS).ecoImpact(indexAll).dispatchCostOriginal;

			

			if strcmp(Type(iDS),'OnWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,1) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,1) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,1) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,1) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OnWindWF')

				CSTotal(timeStampYearVec(iDS)-2009,2) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,2) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,2) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,2) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OfWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,3) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,3) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,3) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,3) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVBRD')

				CSTotal(timeStampYearVec(iDS)-2009,4) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,4) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,4) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,4) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVPVF')

				CSTotal(timeStampYearVec(iDS)-2009,5) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,5) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,5) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,5) = addIncome_perCapInst;

			end

			

		end

	

	CSTotal(CSTotal == 0) = nan;

	CSCap(CSCap == 0) = nan;

	CSEn(CSEn == 0) = nan;

	CSPerGW(CSPerGW == 0) = nan;

	secLevelStructPosTFC(iSec,iPL).CSTotal = CSTotal;

	secLevelStructPosTFC(iSec,iPL).CSCap = CSCap;

	secLevelStructPosTFC(iSec,iPL).CSEn = CSEn;	

	secLevelStructPosTFC(iSec,iPL).CSPerGW = CSPerGW;	

	end	

end

% Consolidate data

% OnWindBRD is 1

TotalPosTFC = secLevelStructPosTFC(1,1).CSCap;

%% Get DataSet for tertiary negative

productLength = 1;

market = 'TFC';

neg = 100;

for iSec = 1:length(secLevelAll)

	

	secLevel = secLevelAll(iSec);

	for iPL = 1:length(prodLengthAll)

		

		productLength = prodLengthAll(iPL);

		

		for iDS = 1:length(DataSet)

			indexA = strcmp({DataSet(iDS).simRuns.market},market);

			indexB = [DataSet(iDS).simRuns.percentNegRP] == neg;

			indexC = [DataSet(iDS).simRuns.productLength] == productLength;

			indexD = [DataSet(iDS).simRuns.securityLevel] == secLevel;

			indexAll = indexA & indexB & indexC & indexD;

			

			costSavPot = [];

			costSavPot_Cap = [];

			costSavPot_En = [];

			

			costSavPot(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max;

							

			addIncome_perCapInst(:,1) ...

				= costSavPot(:,1) ...

				/ DataSet(iDS).simRuns(indexAll).installedCapacity;

			

			costSavPot_Cap(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.capacity;

							

			costSavPot_En(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.dispatch;

							

			if strcmp(Type(iDS),'OnWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,1) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,1) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,1) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,1) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OnWindWF')

				CSTotal(timeStampYearVec(iDS)-2009,2) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,2) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,2) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,2) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OfWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,3) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,3) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,3) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,3) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVBRD')

				CSTotal(timeStampYearVec(iDS)-2009,4) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,4) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,4) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,4) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVPVF')

				CSTotal(timeStampYearVec(iDS)-2009,5) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,5) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,5) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,5) = addIncome_perCapInst;

			end

			

		end

	

	CSTotal(CSTotal == 0) = nan;

	CSCap(CSCap == 0) = nan;

	CSEn(CSEn == 0) = nan;

	CSPerGW(CSPerGW == 0) = nan;

	secLevelStructNegTFC(iSec,iPL).CSTotal = CSTotal;

	secLevelStructNegTFC(iSec,iPL).CSCap = CSCap;

	secLevelStructNegTFC(iSec,iPL).CSEn = CSEn;	

	secLevelStructNegTFC(iSec,iPL).CSPerGW = CSPerGW;	

	end	

end

% Consolidate data

% OnWindBRD is 1

TotalNegTFC = secLevelStructNegTFC(1,1).CSCap;

%% Rearrange data

NegTFC.time = datenum([(2010:2014)' repmat([1 1 0 0 0],5,1)]);

NegTFC.data = TotalNegTFC / 1000000;

PosTFC.time = datenum([(2010:2014)' repmat([1 1 0 0 0],5,1)]);

PosTFC.data = TotalPosTFC / 1000000;

NegSFC.time = datenum([(2010:2014)' repmat([1 1 0 0 0],5,1)]);

NegSFC.data = TotalNegSFC / 1000000;

PosSFC.time = datenum([(2010:2014)' repmat([1 1 0 0 0],5,1)]);

PosSFC.data = TotalPosSFC / 1000000;

%% Plot with styleplot

fig = [];

% fhgCol = getFHGColors;

% fhgCol.grey

% area

% Market volume

fig.subplot{1,1}.plot{1}.x = NegSFC.time;

fig.subplot{1,1}.plot{1}.y = [(costCapOrig(:,1) / 1000000 * 0.3) (costCapOrig(:,2) / 1000000 * 0.3)];

fig.subplot{1,1}.plot{1}.style='bar';

fig.subplot{1,1}.plot{1}.barlayout='grouped';

fig.subplot{1,1}.plot{1}.linewidth=3;

fig.subplot{1,1}.plot{1}.barcolor={'greyDark','greyLight2'}; % Overwrite the color property

fig.subplot{1,1}.plot{2}.x = NegSFC.time;

fig.subplot{1,1}.plot{2}.y = [(costCapOrig(:,1) / 1000000 * 0.2) (costCapOrig(:,2) / 1000000 * 0.2)];

fig.subplot{1,1}.plot{2}.style='bar';

fig.subplot{1,1}.plot{2}.barlayout='grouped';

fig.subplot{1,1}.plot{2}.linewidth=3;

fig.subplot{1,1}.plot{2}.barcolor={'greyDark2','greyLight'}; % Overwrite the color property

fig.subplot{1,1}.plot{3}.x = NegSFC.time;

fig.subplot{1,1}.plot{3}.y = [(costCapOrig(:,1) / 1000000 * 0.1) (costCapOrig(:,2) / 1000000 * 0.1)];

fig.subplot{1,1}.plot{3}.style='bar';

fig.subplot{1,1}.plot{3}.barlayout='grouped';

fig.subplot{1,1}.plot{3}.linewidth=3;

fig.subplot{1,1}.plot{3}.barcolor={'greyDark3','grey'}; % Overwrite the color property

% Wind

fig.subplot{1,1}.plot{4}.x = NegSFC.time;

fig.subplot{1,1}.plot{4}.y = NegSFC.data(:,1);

fig.subplot{1,1}.plot{4}.style='plot';

fig.subplot{1,1}.plot{4}.axislocation='right';

fig.subplot{1,1}.plot{4}.linestyle='-';

fig.subplot{1,1}.plot{4}.markerstyle='x';

fig.subplot{1,1}.plot{4}.markersize=14;

fig.subplot{1,1}.plot{4}.color='x3'; % Overwrite the color property

fig.subplot{1,1}.plot{5}.x = PosSFC.time;

fig.subplot{1,1}.plot{5}.y = PosSFC.data(:,1);

fig.subplot{1,1}.plot{5}.style='plot';

fig.subplot{1,1}.plot{5}.linestyle='--';

fig.subplot{1,1}.plot{5}.markerstyle='x';

fig.subplot{1,1}.plot{5}.markersize=14;

fig.subplot{1,1}.plot{5}.color='x3'; % Overwrite the color property

fig.subplot{1,1}.plot{6}.x = NegTFC.time;

fig.subplot{1,1}.plot{6}.y = NegTFC.data(:,1);

fig.subplot{1,1}.plot{6}.style='plot';

fig.subplot{1,1}.plot{6}.linestyle='-';

fig.subplot{1,1}.plot{6}.markerstyle='x';

fig.subplot{1,1}.plot{6}.markersize=14;

fig.subplot{1,1}.plot{6}.color='x2'; % Overwrite the color property

fig.subplot{1,1}.plot{7}.x = PosTFC.time;

fig.subplot{1,1}.plot{7}.y = PosTFC.data(:,1);

fig.subplot{1,1}.plot{7}.style='plot';

fig.subplot{1,1}.plot{7}.linestyle='--';

fig.subplot{1,1}.plot{7}.markerstyle='x';

fig.subplot{1,1}.plot{7}.markersize=14;

fig.subplot{1,1}.plot{7}.color='x2'; % Overwrite the color property

% PV Systems

fig.subplot{1,1}.plot{8}.x = NegSFC.time;

fig.subplot{1,1}.plot{8}.y = NegSFC.data(:,4);

fig.subplot{1,1}.plot{8}.style='plot';

fig.subplot{1,1}.plot{8}.linestyle='-';

fig.subplot{1,1}.plot{8}.markerstyle='x';

fig.subplot{1,1}.plot{8}.markersize=14;

fig.subplot{1,1}.plot{8}.color='x15'; % Overwrite the color property

fig.subplot{1,1}.plot{9}.x = PosSFC.time;

fig.subplot{1,1}.plot{9}.y = PosSFC.data(:,4);

fig.subplot{1,1}.plot{9}.style='plot';

fig.subplot{1,1}.plot{9}.linestyle='--';

fig.subplot{1,1}.plot{9}.markerstyle='x';

fig.subplot{1,1}.plot{9}.markersize=14;

fig.subplot{1,1}.plot{9}.color='x15'; % Overwrite the color property

fig.subplot{1,1}.plot{10}.x = NegTFC.time;

fig.subplot{1,1}.plot{10}.y = NegTFC.data(:,4);

fig.subplot{1,1}.plot{10}.style='plot';

fig.subplot{1,1}.plot{10}.linestyle='-';

fig.subplot{1,1}.plot{10}.markerstyle='x';

fig.subplot{1,1}.plot{10}.markersize=14;

fig.subplot{1,1}.plot{10}.color='x14'; % Overwrite the color property

fig.subplot{1,1}.plot{11}.x = PosTFC.time;

fig.subplot{1,1}.plot{11}.y = PosTFC.data(:,4);

fig.subplot{1,1}.plot{11}.style='plot';

fig.subplot{1,1}.plot{11}.linestyle='--';

fig.subplot{1,1}.plot{11}.markerstyle='x';

fig.subplot{1,1}.plot{11}.markersize=14;

fig.subplot{1,1}.plot{11}.color='x14'; % Overwrite the color property

% Plot axes properties

xLimVal = [min(NegSFC.time)-150 max(NegSFC.time)+150];

fig.subplot{1,1}.xlim=xLimVal;

yLimVal = [0 120];

fig.subplot{1,1}.ylim=yLimVal;

fig.subplot{1,1}.yticks=min(yLimVal):20:max(yLimVal);

% Title subplots

% fig.subplot{1,1}.title=['2010']; % optionaler Titel

% Axes labeling

fig.subplot{1,1}.xlabel='Year';

fig.subplot{1,1}.ylabel='Welfare gain in mio. EUR';

fig.subplot{1,1}.legend={'30% threshold of secondary market share', ...

	'30% threshold of tertiary market share', ...

	'20% threshold of secondary market share', ...

	'20% threshold of tertiary market share', ...

	'10% threshold of secondary market share', ...

	'10% threshold of tertiary market share', ...

	'Wind negative secondary control reserve', ...

	'Wind positive secondary control reserve', ...

	'Wind negative tertiary control reserve', ...

	'Wind positive tertiary control reserve', ...

	'PV systems negative secondary control reserve', ...

	'PV systems positive secondary control reserve', ...

	'PV systems negative tertiary control reserve', ...

	'PV systems positive tertiary control reserve'};

% fig.subplot{1,1}.legend_orientation = 'horizontal';

fig.subplot{1,1}.xticks=NegTFC.time;%fig.subplot{1,1}.plot{1}.x;

% fig.subplot{1,1}.xticklabels={'Negative secondary', ...

% 	'Positive secondary', ...

% 	'Negative tertiary', ...

% 	'Positive tertiary'};

fig.subplot{1,1}.xdatetick_format='yyyy';

fig.height=16;

fig.width_columns=3;

[hFig, hAxes, hPlot] = styleplot(fig,'styleplot_format_PhD','word');

%% Save

path = 'C:\Users\mjansen\Synchronisation\mjansen auf User_Artemis(R)\Dissertation\Dissertation\Figures\6 Economic impact of fluctuating RES on the power system level\';

name = ['Fig6-6_welfareGain_capComp_' num2str(productLength) 'h_99_994'];

saveas(gcf,[path name '.fig']);

save([path name '_data.mat'],'fig');

Functions/Results_Evaluation/resPhD_welfareGain_CapOnly_byMarketshare.m

% clear;

clc;

%% Options

%% Load

preDefineDataSet = ([117:135]);

for iDataSet = 1:length(preDefineDataSet)

	

	[~, ~, ...

		~, DataSet(iDataSet).ecoImpact, ...

		~, ~, ...

		~, ~, ...

		~, DataSet(iDataSet).offerRP_Min, ...

		DataSet(iDataSet).simRuns, ~, ...

		~, DataSet(iDataSet).info] ...

		= res_loadResults_noMOL('D:\Ergebnisse REBal',preDefineDataSet(iDataSet));

	

% 	[Prob_Forec_DA, Prob_Forec_ID, actualFeedIn, ecoImpact, ecoImpactTFC, error, ...

% 		errorRP, macroEcoImpact, offerRP, offerRP_Min, simRuns, violation, alteredMOList, infoRuns] = res_loadResults_noMOL('D:\Ergebnisse REBal',preDefineDataSet(iDataSet));

	

	runSetYear = regexp(DataSet(iDataSet).info.runSetName,'_','split');

	GenType{iDataSet} = runSetYear{1};

	PoolType{iDataSet} = runSetYear{2};

	Type{iDataSet} = [runSetYear{1:2}];

	for iYear = 1:length(runSetYear)

		try

			if ~isnan(str2double(runSetYear{iYear}))

				timeStampYear(iDataSet) = datenum([str2double(runSetYear{iYear}) 1 1]);

			end

		end

	end

	

end

% % Select only valid datasets

% invalidDS = false(size(DataSet));

% for iDS = 1:length(DataSet)

% 	if length(DataSet(iDS).offerRP_Min) == 1

% 		invalidDS(iDS) = isnan(DataSet(iDS).offerRP_Min);

% 	end

% end

% DataSet = DataSet(~invalidDS);

% timeStampYear = timeStampYear(~invalidDS);

% GenType = GenType(~invalidDS);

% PoolType = PoolType(~invalidDS);

% Type = Type(~invalidDS);

%% Other Vars

% Define Order

TypeAll = sort(unique([Type]));

genTypeAll = unique([GenType]);

poolTypeAll = unique([PoolType]);

[timeStampYearVec,~] = datevec(timeStampYear');

[years,~] = datevec(sort(unique(timeStampYear)));

secLevelAll = sort(unique([DataSet(1).simRuns.securityLevel]));

secLevelAll = secLevelAll([1]); % Show on those security levels

prodLengthAll = sort(unique([DataSet(1).simRuns.productLength]));

prodLengthAll = prodLengthAll([5]); % Show on those security levels

genTypeNumber = 1; % 1 for Wind 30 GW, 2 for wind 1GW and so on

secLevelName = strrep(num2str(secLevelAll),'.','_');

%% Get DataSet for secondary positive

market = 'SFC';

neg = 100;

for iSec = 1:length(secLevelAll)

	

	secLevel = secLevelAll(iSec);

	for iPL = 1:length(prodLengthAll)

		

		productLength = prodLengthAll(iPL);

		

		for iDS = 1:length(DataSet)

			indexA = strcmp({DataSet(iDS).simRuns.market},market);

			indexB = [DataSet(iDS).simRuns.percentPosRP] == neg;

			indexC = [DataSet(iDS).simRuns.productLength] == productLength;

			indexD = [DataSet(iDS).simRuns.securityLevel] == secLevel;

			indexAll = indexA & indexB & indexC & indexD;

			

			costSavPot = [];

			costSavPot_Cap = [];

			costSavPot_En = [];

			

			costSavPot(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max;

							

			addIncome_perCapInst(:,1) ...

				= costSavPot(:,1) ...

				/ DataSet(iDS).simRuns(indexAll).installedCapacity;

			

			costSavPot_Cap(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.capacity;

							

			costSavPot_En(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.dispatch;

			

			costOrig(timeStampYearVec(iDS)-2009,1) = ...

				DataSet(iDS).ecoImpact(indexAll).capacityCostOriginal ...

				+ DataSet(iDS).ecoImpact(indexAll).dispatchCostOriginal;

			

			costCapOrig(timeStampYearVec(iDS)-2009,1) = ...

				DataSet(iDS).ecoImpact(indexAll).capacityCostOriginal;

				

			costEngOrig(timeStampYearVec(iDS)-2009,1) = ...

				+ DataSet(iDS).ecoImpact(indexAll).dispatchCostOriginal;

			

			if strcmp(Type(iDS),'OnWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,1) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,1) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,1) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,1) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OnWindWF')

				CSTotal(timeStampYearVec(iDS)-2009,2) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,2) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,2) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,2) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OfWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,3) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,3) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,3) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,3) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVBRD')

				CSTotal(timeStampYearVec(iDS)-2009,4) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,4) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,4) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,4) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVPVF')

				CSTotal(timeStampYearVec(iDS)-2009,5) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,5) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,5) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,5) = addIncome_perCapInst;

			end

			

		end

	

	CSTotal(CSTotal == 0) = nan;

	CSCap(CSCap == 0) = nan;

	CSEn(CSEn == 0) = nan;

	CSPerGW(CSPerGW == 0) = nan;

	secLevelStructPosSFC(iSec,iPL).CSTotal = CSTotal;

	secLevelStructPosSFC(iSec,iPL).CSCap = CSCap;

	secLevelStructPosSFC(iSec,iPL).CSEn = CSEn;

	secLevelStructPosSFC(iSec,iPL).CSPerGW = CSPerGW;

	end	

end

% Consolidate data

% OnWindBRD is 1

TotalPosSFC = secLevelStructPosSFC(1,1).CSCap;

costMult = reshape(repmat(costCapOrig(:,1),size(secLevelStructPosSFC(1,1).CSCap,1),[]),[],size(secLevelStructPosSFC(1,1).CSCap,1));

TotalPosSFC = secLevelStructPosSFC(1,1).CSCap ./ costMult;

%% Get DataSet for secondary negative

market = 'SFC';

neg = 100;

for iSec = 1:length(secLevelAll)

	

	secLevel = secLevelAll(iSec);

	for iPL = 1:length(prodLengthAll)

		

		productLength = prodLengthAll(iPL);

		

		for iDS = 1:length(DataSet)

			indexA = strcmp({DataSet(iDS).simRuns.market},market);

			indexB = [DataSet(iDS).simRuns.percentNegRP] == neg;

			indexC = [DataSet(iDS).simRuns.productLength] == productLength;

			indexD = [DataSet(iDS).simRuns.securityLevel] == secLevel;

			indexAll = indexA & indexB & indexC & indexD;

			

			costSavPot = [];

			costSavPot_Cap = [];

			costSavPot_En = [];

			

			costSavPot(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max;

							

			addIncome_perCapInst(:,1) ...

				= costSavPot(:,1) ...

				/ DataSet(iDS).simRuns(indexAll).installedCapacity;

			

			costSavPot_Cap(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.capacity;

							

			costSavPot_En(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.dispatch;

							

			if strcmp(Type(iDS),'OnWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,1) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,1) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,1) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,1) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OnWindWF')

				CSTotal(timeStampYearVec(iDS)-2009,2) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,2) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,2) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,2) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OfWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,3) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,3) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,3) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,3) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVBRD')

				CSTotal(timeStampYearVec(iDS)-2009,4) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,4) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,4) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,4) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVPVF')

				CSTotal(timeStampYearVec(iDS)-2009,5) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,5) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,5) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,5) = addIncome_perCapInst;

			end

			

		end

	

	CSTotal(CSTotal == 0) = nan;

	CSCap(CSCap == 0) = nan;

	CSEn(CSEn == 0) = nan;

	CSPerGW(CSPerGW == 0) = nan;

	secLevelStructNegSFC(iSec,iPL).CSTotal = CSTotal;

	secLevelStructNegSFC(iSec,iPL).CSCap = CSCap;

	secLevelStructNegSFC(iSec,iPL).CSEn = CSEn;	

	secLevelStructNegSFC(iSec,iPL).CSPerGW = CSPerGW;	

	end	

end

% Consolidate data

% OnWindBRD is 1

TotalNegSFC = secLevelStructNegSFC(1,1).CSCap;

% costMult = reshape(repmat(costCapOrig(:,1),size(secLevelStructNegSFC(1,1).CSCap,1),[]),[],size(secLevelStructNegSFC(1,1).CSCap,1));

TotalNegSFC = secLevelStructNegSFC(1,1).CSCap ./ costMult;

%% Get DataSet for tertiary positive

market = 'TFC';

neg = 100;

for iSec = 1:length(secLevelAll)

	

	secLevel = secLevelAll(iSec);

	for iPL = 1:length(prodLengthAll)

		

		productLength = prodLengthAll(iPL);

		

		for iDS = 1:length(DataSet)

			indexA = strcmp({DataSet(iDS).simRuns.market},market);

			indexB = [DataSet(iDS).simRuns.percentPosRP] == neg;

			indexC = [DataSet(iDS).simRuns.productLength] == productLength;

			indexD = [DataSet(iDS).simRuns.securityLevel] == secLevel;

			indexAll = indexA & indexB & indexC & indexD;

			

			costSavPot = [];

			costSavPot_Cap = [];

			costSavPot_En = [];

			

			costSavPot(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max;

							

			addIncome_perCapInst(:,1) ...

				= costSavPot(:,1) ...

				/ DataSet(iDS).simRuns(indexAll).installedCapacity;

			

			costSavPot_Cap(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.capacity;

							

			costSavPot_En(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.dispatch;

			

			costOrig(timeStampYearVec(iDS)-2009,2) = ...

				DataSet(iDS).ecoImpact(indexAll).capacityCostOriginal ...

				+ DataSet(iDS).ecoImpact(indexAll).dispatchCostOriginal;

			

			costCapOrig(timeStampYearVec(iDS)-2009,2) = ...

				DataSet(iDS).ecoImpact(indexAll).capacityCostOriginal;

				

			costEngOrig(timeStampYearVec(iDS)-2009,2) = ...

				+ DataSet(iDS).ecoImpact(indexAll).dispatchCostOriginal;

			

			if strcmp(Type(iDS),'OnWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,1) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,1) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,1) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,1) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OnWindWF')

				CSTotal(timeStampYearVec(iDS)-2009,2) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,2) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,2) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,2) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OfWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,3) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,3) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,3) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,3) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVBRD')

				CSTotal(timeStampYearVec(iDS)-2009,4) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,4) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,4) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,4) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVPVF')

				CSTotal(timeStampYearVec(iDS)-2009,5) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,5) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,5) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,5) = addIncome_perCapInst;

			end

			

		end

	

	CSTotal(CSTotal == 0) = nan;

	CSCap(CSCap == 0) = nan;

	CSEn(CSEn == 0) = nan;

	CSPerGW(CSPerGW == 0) = nan;

	secLevelStructPosTFC(iSec,iPL).CSTotal = CSTotal;

	secLevelStructPosTFC(iSec,iPL).CSCap = CSCap;

	secLevelStructPosTFC(iSec,iPL).CSEn = CSEn;	

	secLevelStructPosTFC(iSec,iPL).CSPerGW = CSPerGW;	

	end	

end

% Consolidate data

% OnWindBRD is 1

TotalPosTFC = secLevelStructPosTFC(1,1).CSCap;

costMult = reshape(repmat(costCapOrig(:,2),size(secLevelStructPosTFC(1,1).CSCap,1),[]),[],size(secLevelStructPosTFC(1,1).CSCap,1));

TotalPosTFC = secLevelStructPosTFC(1,1).CSCap ./ costMult;

%% Get DataSet for tertiary negative

market = 'TFC';

neg = 100;

for iSec = 1:length(secLevelAll)

	

	secLevel = secLevelAll(iSec);

	for iPL = 1:length(prodLengthAll)

		

		productLength = prodLengthAll(iPL);

		

		for iDS = 1:length(DataSet)

			indexA = strcmp({DataSet(iDS).simRuns.market},market);

			indexB = [DataSet(iDS).simRuns.percentNegRP] == neg;

			indexC = [DataSet(iDS).simRuns.productLength] == productLength;

			indexD = [DataSet(iDS).simRuns.securityLevel] == secLevel;

			indexAll = indexA & indexB & indexC & indexD;

			

			costSavPot = [];

			costSavPot_Cap = [];

			costSavPot_En = [];

			

			costSavPot(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max;

							

			addIncome_perCapInst(:,1) ...

				= costSavPot(:,1) ...

				/ DataSet(iDS).simRuns(indexAll).installedCapacity;

			

			costSavPot_Cap(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.capacity;

							

			costSavPot_En(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.dispatch;

							

			if strcmp(Type(iDS),'OnWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,1) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,1) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,1) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,1) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OnWindWF')

				CSTotal(timeStampYearVec(iDS)-2009,2) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,2) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,2) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,2) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OfWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,3) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,3) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,3) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,3) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVBRD')

				CSTotal(timeStampYearVec(iDS)-2009,4) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,4) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,4) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,4) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVPVF')

				CSTotal(timeStampYearVec(iDS)-2009,5) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,5) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,5) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,5) = addIncome_perCapInst;

			end

			

		end

	

	CSTotal(CSTotal == 0) = nan;

	CSCap(CSCap == 0) = nan;

	CSEn(CSEn == 0) = nan;

	CSPerGW(CSPerGW == 0) = nan;

	secLevelStructNegTFC(iSec,iPL).CSTotal = CSTotal;

	secLevelStructNegTFC(iSec,iPL).CSCap = CSCap;

	secLevelStructNegTFC(iSec,iPL).CSEn = CSEn;	

	secLevelStructNegTFC(iSec,iPL).CSPerGW = CSPerGW;	

	end	

end

% Consolidate data

% OnWindBRD is 1

TotalNegTFC = secLevelStructNegTFC(1,1).CSCap;

% costMult = reshape(repmat(costCapOrig(:,2),size(secLevelStructPosTFC(1,1).CSCap,1),[]),[],size(secLevelStructPosTFC(1,1).CSCap,1));

TotalNegTFC = secLevelStructNegTFC(1,1).CSCap ./ costMult;

%% Rearrange data

NegTFC.time = datenum([(2010:2014)' repmat([1 1 0 0 0],5,1)]);

NegTFC.data = TotalNegTFC * 100;

PosTFC.time = datenum([(2010:2014)' repmat([1 1 0 0 0],5,1)]);

PosTFC.data = TotalPosTFC * 100;

NegSFC.time = datenum([(2010:2014)' repmat([1 1 0 0 0],5,1)]);

NegSFC.data = TotalNegSFC * 100;

PosSFC.time = datenum([(2010:2014)' repmat([1 1 0 0 0],5,1)]);

PosSFC.data = TotalPosSFC * 100;

% Build average NOTE: Just messing around so far

meanMSPosWind = mean([PosTFC.data(:,1),PosSFC.data(:,1)],2)

meanMSNegWind = mean([NegTFC.data(:,1),NegSFC.data(:,1)],2)

meanMSPosPV = mean([PosTFC.data(:,4),PosSFC.data(:,4)],2)

meanMSNegPV = mean([NegTFC.data(:,4),NegSFC.data(:,4)],2)

meanMS = mean([NegTFC.data(:,1),PosTFC.data(:,1),NegSFC.data(:,1),PosSFC.data(:,1)],2)

meanMS = mean([NegTFC.data(:,4),PosTFC.data(:,4),NegSFC.data(:,4),PosSFC.data(:,4)],2)

%% Plot with styleplot

fig = [];

% fhgCol = getFHGColors;

% Wind

fig.subplot{1,1}.plot{1}.x = NegSFC.time;

fig.subplot{1,1}.plot{1}.y = NegSFC.data(:,1);

fig.subplot{1,1}.plot{1}.style='plot';

fig.subplot{1,1}.plot{1}.axislocation='right';

fig.subplot{1,1}.plot{1}.linestyle='-';

fig.subplot{1,1}.plot{1}.markerstyle='x';

fig.subplot{1,1}.plot{1}.markersize=14;

fig.subplot{1,1}.plot{1}.color='x3'; % Overwrite the color property

fig.subplot{1,1}.plot{2}.x = PosSFC.time;

fig.subplot{1,1}.plot{2}.y = PosSFC.data(:,1);

fig.subplot{1,1}.plot{2}.style='plot';

fig.subplot{1,1}.plot{2}.linestyle='--';

fig.subplot{1,1}.plot{2}.markerstyle='x';

fig.subplot{1,1}.plot{2}.markersize=14;

fig.subplot{1,1}.plot{2}.color='x3'; % Overwrite the color property

fig.subplot{1,1}.plot{3}.x = NegTFC.time;

fig.subplot{1,1}.plot{3}.y = NegTFC.data(:,1);

fig.subplot{1,1}.plot{3}.style='plot';

fig.subplot{1,1}.plot{3}.linestyle='-';

fig.subplot{1,1}.plot{3}.markerstyle='x';

fig.subplot{1,1}.plot{3}.markersize=14;

fig.subplot{1,1}.plot{3}.color='x2'; % Overwrite the color property

fig.subplot{1,1}.plot{4}.x = PosTFC.time;

fig.subplot{1,1}.plot{4}.y = PosTFC.data(:,1);

fig.subplot{1,1}.plot{4}.style='plot';

fig.subplot{1,1}.plot{4}.linestyle='--';

fig.subplot{1,1}.plot{4}.markerstyle='x';

fig.subplot{1,1}.plot{4}.markersize=14;

fig.subplot{1,1}.plot{4}.color='x2'; % Overwrite the color property

% PV Systems

fig.subplot{1,1}.plot{5}.x = NegSFC.time;

fig.subplot{1,1}.plot{5}.y = NegSFC.data(:,4);

fig.subplot{1,1}.plot{5}.style='plot';

fig.subplot{1,1}.plot{5}.linestyle='-';

fig.subplot{1,1}.plot{5}.markerstyle='x';

fig.subplot{1,1}.plot{5}.markersize=14;

fig.subplot{1,1}.plot{5}.color='x15'; % Overwrite the color property

fig.subplot{1,1}.plot{6}.x = PosSFC.time;

fig.subplot{1,1}.plot{6}.y = PosSFC.data(:,4);

fig.subplot{1,1}.plot{6}.style='plot';

fig.subplot{1,1}.plot{6}.linestyle='--';

fig.subplot{1,1}.plot{6}.markerstyle='x';

fig.subplot{1,1}.plot{6}.markersize=14;

fig.subplot{1,1}.plot{6}.color='x15'; % Overwrite the color property

fig.subplot{1,1}.plot{7}.x = NegTFC.time;

fig.subplot{1,1}.plot{7}.y = NegTFC.data(:,4);

fig.subplot{1,1}.plot{7}.style='plot';

fig.subplot{1,1}.plot{7}.linestyle='-';

fig.subplot{1,1}.plot{7}.markerstyle='x';

fig.subplot{1,1}.plot{7}.markersize=14;

fig.subplot{1,1}.plot{7}.color='x14'; % Overwrite the color property

fig.subplot{1,1}.plot{8}.x = PosTFC.time;

fig.subplot{1,1}.plot{8}.y = PosTFC.data(:,4);

fig.subplot{1,1}.plot{8}.style='plot';

fig.subplot{1,1}.plot{8}.linestyle='--';

fig.subplot{1,1}.plot{8}.markerstyle='x';

fig.subplot{1,1}.plot{8}.markersize=14;

fig.subplot{1,1}.plot{8}.color='x14'; % Overwrite the color property

% Plot axes properties

xLimVal = [min(NegSFC.time)-150 max(NegSFC.time)+150];

fig.subplot{1,1}.xlim=xLimVal;

yLimVal = [0 50];

fig.subplot{1,1}.ylim=yLimVal;

fig.subplot{1,1}.yticks=min(yLimVal):5:max(yLimVal);

% Title subplots

% fig.subplot{1,1}.title=['2010']; % optionaler Titel

% Axes labeling

fig.subplot{1,1}.xlabel='Year';

fig.subplot{1,1}.ylabel='% of capacity market value';

fig.subplot{1,1}.legend={'Wind negative secondary control reserve', ...

	'Wind positive secondary control reserve', ...

	'Wind negative tertiary control reserve', ...

	'Wind positive tertiary control reserve', ...

	'PV systems negative secondary control reserve', ...

	'PV systems positive secondary control reserve', ...

	'PV systems negative tertiary control reserve', ...

	'PV systems positive tertiary control reserve'};

% fig.subplot{1,1}.legend_orientation = 'horizontal';

fig.subplot{1,1}.xticks=NegTFC.time;%fig.subplot{1,1}.plot{1}.x;

% fig.subplot{1,1}.xticklabels={'Negative secondary', ...

% 	'Positive secondary', ...

% 	'Negative tertiary', ...

% 	'Positive tertiary'};

fig.subplot{1,1}.xdatetick_format='yyyy';

fig.height=16;

fig.width_columns=3;

[hFig, hAxes, hPlot] = styleplot(fig,'styleplot_format_PhD','word');

%% Save

path = 'C:\Users\mjansen\Synchronisation\mjansen auf User_Artemis(R)\Dissertation\Dissertation\Figures\';

name = ['FigD-49_welfareGain_capComp_marketShare_' num2str(productLength) 'h_' secLevelName];

saveas(gcf,[path name '.fig']);

save([path name '_data.mat'],'fig');

Functions/Results_Evaluation/resPhD_welfareGain_CapOnly_execSum.m

clear;

clc;

%% Options

productLength = 1;

%% Load

preDefineDataSet = ([117:135]);

for iDataSet = 1:length(preDefineDataSet)

	

	[~, ~, ...

		~, DataSet(iDataSet).ecoImpact, ...

		~, ~, ...

		~, ~, ...

		~, DataSet(iDataSet).offerRP_Min, ...

		DataSet(iDataSet).simRuns, ~, ...

		~, DataSet(iDataSet).info] ...

		= res_loadResults_noMOL('D:\Ergebnisse REBal',preDefineDataSet(iDataSet));

	

% 	[Prob_Forec_DA, Prob_Forec_ID, actualFeedIn, ecoImpact, ecoImpactTFC, error, ...

% 		errorRP, macroEcoImpact, offerRP, offerRP_Min, simRuns, violation, alteredMOList, infoRuns] = res_loadResults_noMOL('D:\Ergebnisse REBal',preDefineDataSet(iDataSet));

	

	runSetYear = regexp(DataSet(iDataSet).info.runSetName,'_','split');

	GenType{iDataSet} = runSetYear{1};

	PoolType{iDataSet} = runSetYear{2};

	Type{iDataSet} = [runSetYear{1:2}];

	for iYear = 1:length(runSetYear)

		try

			if ~isnan(str2double(runSetYear{iYear}))

				timeStampYear(iDataSet) = datenum([str2double(runSetYear{iYear}) 1 1]);

			end

		end

	end

	

end

% % Select only valid datasets

% invalidDS = false(size(DataSet));

% for iDS = 1:length(DataSet)

% 	if length(DataSet(iDS).offerRP_Min) == 1

% 		invalidDS(iDS) = isnan(DataSet(iDS).offerRP_Min);

% 	end

% end

% DataSet = DataSet(~invalidDS);

% timeStampYear = timeStampYear(~invalidDS);

% GenType = GenType(~invalidDS);

% PoolType = PoolType(~invalidDS);

% Type = Type(~invalidDS);

%% Other Vars

% Define Order

TypeAll = sort(unique([Type]));

genTypeAll = unique([GenType]);

poolTypeAll = unique([PoolType]);

[timeStampYearVec,~] = datevec(timeStampYear');

[years,~] = datevec(sort(unique(timeStampYear)));

secLevelAll = sort(unique([DataSet(1).simRuns.securityLevel]));

secLevelAll = secLevelAll([6]); % Show on those security levels

prodLengthAll = sort(unique([DataSet(1).simRuns.productLength]));

prodLengthAll = prodLengthAll([4]); % Show on those security levels

genTypeNumber = 1; % 1 for Wind 30 GW, 2 for wind 1GW and so on

%% Get DataSet for secondary positive

productLength = 1;

market = 'SFC';

neg = 100;

for iSec = 1:length(secLevelAll)

	

	secLevel = secLevelAll(iSec);

	for iPL = 1:length(prodLengthAll)

		

		productLength = prodLengthAll(iPL);

		

		for iDS = 1:length(DataSet)

			indexA = strcmp({DataSet(iDS).simRuns.market},market);

			indexB = [DataSet(iDS).simRuns.percentPosRP] == neg;

			indexC = [DataSet(iDS).simRuns.productLength] == productLength;

			indexD = [DataSet(iDS).simRuns.securityLevel] == secLevel;

			indexAll = indexA & indexB & indexC & indexD;

			

			costSavPot = [];

			costSavPot_Cap = [];

			costSavPot_En = [];

			

			costSavPot(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max;

							

			addIncome_perCapInst(:,1) ...

				= costSavPot(:,1) ...

				/ DataSet(iDS).simRuns(indexAll).installedCapacity;

			

			costSavPot_Cap(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.capacity;

							

			costSavPot_En(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.dispatch;

			

			costOrig(timeStampYearVec(iDS)-2009,1) = ...

				DataSet(iDS).ecoImpact(indexAll).capacityCostOriginal ...

				+ DataSet(iDS).ecoImpact(indexAll).dispatchCostOriginal;

			

			costCapOrig(timeStampYearVec(iDS)-2009,1) = ...

				DataSet(iDS).ecoImpact(indexAll).capacityCostOriginal;

				

			costEngOrig(timeStampYearVec(iDS)-2009,1) = ...

				+ DataSet(iDS).ecoImpact(indexAll).dispatchCostOriginal;

			

			if strcmp(Type(iDS),'OnWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,1) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,1) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,1) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,1) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OnWindWF')

				CSTotal(timeStampYearVec(iDS)-2009,2) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,2) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,2) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,2) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OfWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,3) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,3) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,3) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,3) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVBRD')

				CSTotal(timeStampYearVec(iDS)-2009,4) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,4) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,4) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,4) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVPVF')

				CSTotal(timeStampYearVec(iDS)-2009,5) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,5) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,5) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,5) = addIncome_perCapInst;

			end

			

		end

	

	CSTotal(CSTotal == 0) = nan;

	CSCap(CSCap == 0) = nan;

	CSEn(CSEn == 0) = nan;

	CSPerGW(CSPerGW == 0) = nan;

	secLevelStructPosSFC(iSec,iPL).CSTotal = CSTotal;

	secLevelStructPosSFC(iSec,iPL).CSCap = CSCap;

	secLevelStructPosSFC(iSec,iPL).CSEn = CSEn;

	secLevelStructPosSFC(iSec,iPL).CSPerGW = CSPerGW;

	end	

end

% Consolidate data

% OnWindBRD is 1

TotalPosSFC = secLevelStructPosSFC(1,1).CSCap;

%% Get DataSet for secondary negative

productLength = 1;

market = 'SFC';

neg = 100;

for iSec = 1:length(secLevelAll)

	

	secLevel = secLevelAll(iSec);

	for iPL = 1:length(prodLengthAll)

		

		productLength = prodLengthAll(iPL);

		

		for iDS = 1:length(DataSet)

			indexA = strcmp({DataSet(iDS).simRuns.market},market);

			indexB = [DataSet(iDS).simRuns.percentNegRP] == neg;

			indexC = [DataSet(iDS).simRuns.productLength] == productLength;

			indexD = [DataSet(iDS).simRuns.securityLevel] == secLevel;

			indexAll = indexA & indexB & indexC & indexD;

			

			costSavPot = [];

			costSavPot_Cap = [];

			costSavPot_En = [];

			

			costSavPot(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max;

							

			addIncome_perCapInst(:,1) ...

				= costSavPot(:,1) ...

				/ DataSet(iDS).simRuns(indexAll).installedCapacity;

			

			costSavPot_Cap(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.capacity;

							

			costSavPot_En(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.dispatch;

							

			if strcmp(Type(iDS),'OnWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,1) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,1) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,1) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,1) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OnWindWF')

				CSTotal(timeStampYearVec(iDS)-2009,2) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,2) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,2) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,2) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OfWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,3) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,3) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,3) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,3) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVBRD')

				CSTotal(timeStampYearVec(iDS)-2009,4) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,4) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,4) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,4) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVPVF')

				CSTotal(timeStampYearVec(iDS)-2009,5) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,5) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,5) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,5) = addIncome_perCapInst;

			end

			

		end

	

	CSTotal(CSTotal == 0) = nan;

	CSCap(CSCap == 0) = nan;

	CSEn(CSEn == 0) = nan;

	CSPerGW(CSPerGW == 0) = nan;

	secLevelStructNegSFC(iSec,iPL).CSTotal = CSTotal;

	secLevelStructNegSFC(iSec,iPL).CSCap = CSCap;

	secLevelStructNegSFC(iSec,iPL).CSEn = CSEn;	

	secLevelStructNegSFC(iSec,iPL).CSPerGW = CSPerGW;	

	end	

end

% Consolidate data

% OnWindBRD is 1

TotalNegSFC = secLevelStructNegSFC(1,1).CSCap;

%% Get DataSet for tertiary positive

productLength = 1;

market = 'TFC';

neg = 100;

for iSec = 1:length(secLevelAll)

	

	secLevel = secLevelAll(iSec);

	for iPL = 1:length(prodLengthAll)

		

		productLength = prodLengthAll(iPL);

		

		for iDS = 1:length(DataSet)

			indexA = strcmp({DataSet(iDS).simRuns.market},market);

			indexB = [DataSet(iDS).simRuns.percentPosRP] == neg;

			indexC = [DataSet(iDS).simRuns.productLength] == productLength;

			indexD = [DataSet(iDS).simRuns.securityLevel] == secLevel;

			indexAll = indexA & indexB & indexC & indexD;

			

			costSavPot = [];

			costSavPot_Cap = [];

			costSavPot_En = [];

			

			costSavPot(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max;

							

			addIncome_perCapInst(:,1) ...

				= costSavPot(:,1) ...

				/ DataSet(iDS).simRuns(indexAll).installedCapacity;

			

			costSavPot_Cap(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.capacity;

							

			costSavPot_En(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.dispatch;

			

			costOrig(timeStampYearVec(iDS)-2009,2) = ...

				DataSet(iDS).ecoImpact(indexAll).capacityCostOriginal ...

				+ DataSet(iDS).ecoImpact(indexAll).dispatchCostOriginal;

			

			costCapOrig(timeStampYearVec(iDS)-2009,2) = ...

				DataSet(iDS).ecoImpact(indexAll).capacityCostOriginal;

				

			costEngOrig(timeStampYearVec(iDS)-2009,2) = ...

				+ DataSet(iDS).ecoImpact(indexAll).dispatchCostOriginal;

			

			if strcmp(Type(iDS),'OnWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,1) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,1) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,1) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,1) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OnWindWF')

				CSTotal(timeStampYearVec(iDS)-2009,2) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,2) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,2) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,2) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OfWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,3) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,3) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,3) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,3) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVBRD')

				CSTotal(timeStampYearVec(iDS)-2009,4) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,4) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,4) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,4) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVPVF')

				CSTotal(timeStampYearVec(iDS)-2009,5) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,5) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,5) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,5) = addIncome_perCapInst;

			end

			

		end

	

	CSTotal(CSTotal == 0) = nan;

	CSCap(CSCap == 0) = nan;

	CSEn(CSEn == 0) = nan;

	CSPerGW(CSPerGW == 0) = nan;

	secLevelStructPosTFC(iSec,iPL).CSTotal = CSTotal;

	secLevelStructPosTFC(iSec,iPL).CSCap = CSCap;

	secLevelStructPosTFC(iSec,iPL).CSEn = CSEn;	

	secLevelStructPosTFC(iSec,iPL).CSPerGW = CSPerGW;	

	end	

end

% Consolidate data

% OnWindBRD is 1

TotalPosTFC = secLevelStructPosTFC(1,1).CSCap;

%% Get DataSet for tertiary negative

productLength = 1;

market = 'TFC';

neg = 100;

for iSec = 1:length(secLevelAll)

	

	secLevel = secLevelAll(iSec);

	for iPL = 1:length(prodLengthAll)

		

		productLength = prodLengthAll(iPL);

		

		for iDS = 1:length(DataSet)

			indexA = strcmp({DataSet(iDS).simRuns.market},market);

			indexB = [DataSet(iDS).simRuns.percentNegRP] == neg;

			indexC = [DataSet(iDS).simRuns.productLength] == productLength;

			indexD = [DataSet(iDS).simRuns.securityLevel] == secLevel;

			indexAll = indexA & indexB & indexC & indexD;

			

			costSavPot = [];

			costSavPot_Cap = [];

			costSavPot_En = [];

			

			costSavPot(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max;

							

			addIncome_perCapInst(:,1) ...

				= costSavPot(:,1) ...

				/ DataSet(iDS).simRuns(indexAll).installedCapacity;

			

			costSavPot_Cap(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.capacity;

							

			costSavPot_En(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.dispatch;

							

			if strcmp(Type(iDS),'OnWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,1) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,1) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,1) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,1) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OnWindWF')

				CSTotal(timeStampYearVec(iDS)-2009,2) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,2) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,2) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,2) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OfWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,3) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,3) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,3) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,3) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVBRD')

				CSTotal(timeStampYearVec(iDS)-2009,4) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,4) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,4) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,4) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVPVF')

				CSTotal(timeStampYearVec(iDS)-2009,5) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,5) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,5) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,5) = addIncome_perCapInst;

			end

			

		end

	

	CSTotal(CSTotal == 0) = nan;

	CSCap(CSCap == 0) = nan;

	CSEn(CSEn == 0) = nan;

	CSPerGW(CSPerGW == 0) = nan;

	secLevelStructNegTFC(iSec,iPL).CSTotal = CSTotal;

	secLevelStructNegTFC(iSec,iPL).CSCap = CSCap;

	secLevelStructNegTFC(iSec,iPL).CSEn = CSEn;	

	secLevelStructNegTFC(iSec,iPL).CSPerGW = CSPerGW;	

	end	

end

% Consolidate data

% OnWindBRD is 1

TotalNegTFC = secLevelStructNegTFC(1,1).CSCap;

%% Rearrange data

NegTFC.time = datenum([(2010:2014)' repmat([1 1 0 0 0],5,1)]);

NegTFC.data = TotalNegTFC / 1000000;

PosTFC.time = datenum([(2010:2014)' repmat([1 1 0 0 0],5,1)]);

PosTFC.data = TotalPosTFC / 1000000;

NegSFC.time = datenum([(2010:2014)' repmat([1 1 0 0 0],5,1)]);

NegSFC.data = TotalNegSFC / 1000000;

PosSFC.time = datenum([(2010:2014)' repmat([1 1 0 0 0],5,1)]);

PosSFC.data = TotalPosSFC / 1000000;

%% Plot with styleplot

fig = [];

% Wind

fig.subplot{1,1}.plot{1}.x = NegSFC.time;

fig.subplot{1,1}.plot{1}.y = NegSFC.data(:,1);

fig.subplot{1,1}.plot{1}.style='plot';

fig.subplot{1,1}.plot{1}.axislocation='right';

fig.subplot{1,1}.plot{1}.linestyle='-';

fig.subplot{1,1}.plot{1}.markerstyle='x';

fig.subplot{1,1}.plot{1}.markersize=14;

fig.subplot{1,1}.plot{1}.color='x3'; % Overwrite the color property

fig.subplot{1,1}.plot{2}.x = NegTFC.time;

fig.subplot{1,1}.plot{2}.y = NegTFC.data(:,1);

fig.subplot{1,1}.plot{2}.style='plot';

fig.subplot{1,1}.plot{2}.linestyle='-';

fig.subplot{1,1}.plot{2}.markerstyle='x';

fig.subplot{1,1}.plot{2}.markersize=14;

fig.subplot{1,1}.plot{2}.color='x2'; % Overwrite the color property

% PV Systems

fig.subplot{1,1}.plot{3}.x = NegSFC.time;

fig.subplot{1,1}.plot{3}.y = NegSFC.data(:,4);

fig.subplot{1,1}.plot{3}.style='plot';

fig.subplot{1,1}.plot{3}.linestyle='-';

fig.subplot{1,1}.plot{3}.markerstyle='x';

fig.subplot{1,1}.plot{3}.markersize=14;

fig.subplot{1,1}.plot{3}.color='x15'; % Overwrite the color property

fig.subplot{1,1}.plot{4}.x = NegTFC.time;

fig.subplot{1,1}.plot{4}.y = NegTFC.data(:,4);

fig.subplot{1,1}.plot{4}.style='plot';

fig.subplot{1,1}.plot{4}.linestyle='-';

fig.subplot{1,1}.plot{4}.markerstyle='x';

fig.subplot{1,1}.plot{4}.markersize=14;

fig.subplot{1,1}.plot{4}.color='x14'; % Overwrite the color property

% Plot axes properties

xLimVal = [min(NegSFC.time)-150 max(NegSFC.time)+150];

fig.subplot{1,1}.xlim=xLimVal;

% yLimVal = [0 120];

% fig.subplot{1,1}.ylim=yLimVal;

% fig.subplot{1,1}.yticks=min(yLimVal):20:max(yLimVal);

% Title subplots

fig.subplot{1,1}.title='Negative control reserve markets | Four hours | 99.994%';

% Axes labeling

fig.subplot{1,1}.xlabel='Year';

fig.subplot{1,1}.ylabel='Welfare gain in mio. EUR';

fig.subplot{1,1}.legend={'Wind negative secondary control reserve', ...

	'Wind negative tertiary control reserve', ...

	'PV systems negative secondary control reserve', ...

	'PV systems negative tertiary control reserve'};

fig.subplot{1,1}.xticks=NegTFC.time;%fig.subplot{1,1}.plot{1}.x;

% fig.subplot{1,1}.xticklabels={'Negative secondary', ...

% 	'Positive secondary', ...

% 	'Negative tertiary', ...

% 	'Positive tertiary'};

fig.subplot{1,1}.xdatetick_format='yyyy';

fig.height=10;

fig.width_columns=3;

[hFig, hAxes, hPlot] = styleplot(fig,'styleplot_format_PhD','wordwide');

Functions/Results_Evaluation/resPhD_welfareGain_EngOnly.m

% % clear;

% clc;

% %% Options

% productLength = 1;

%

% %% Load

%

% preDefineDataSet = ([123:139]);

%

% for iDataSet = 1:length(preDefineDataSet)

% 	

% 	[~, ~, ...

% 		~, DataSet(iDataSet).ecoImpact, ...

% 		~, ~, ...

% 		~, ~, ...

% 		~, DataSet(iDataSet).offerRP_Min, ...

% 		DataSet(iDataSet).simRuns, ~, ...

% 		~, DataSet(iDataSet).info] ...

% 		= res_loadResults_noMOL('D:\Ergebnisse REBal',preDefineDataSet(iDataSet));

% 	

% % 	[Prob_Forec_DA, Prob_Forec_ID, actualFeedIn, ecoImpact, ecoImpactTFC, error, ...

% % 		errorRP, macroEcoImpact, offerRP, offerRP_Min, simRuns, violation, alteredMOList, infoRuns] = res_loadResults_noMOL('D:\Ergebnisse REBal',preDefineDataSet(iDataSet));

% 	

% 	runSetYear = regexp(DataSet(iDataSet).info.runSetName,'_','split');

% 	GenType{iDataSet} = runSetYear{1};

% 	PoolType{iDataSet} = runSetYear{2};

% 	Type{iDataSet} = [runSetYear{1:2}];

% 	for iYear = 1:length(runSetYear)

% 		try

% 			if ~isnan(str2double(runSetYear{iYear}))

% 				timeStampYear(iDataSet) = datenum([str2double(runSetYear{iYear}) 1 1]);

% 			end

% 		end

% 	end

% 	

% end

%

% % % Select only valid datasets

% % invalidDS = false(size(DataSet));

% % for iDS = 1:length(DataSet)

% % 	if length(DataSet(iDS).offerRP_Min) == 1

% % 		invalidDS(iDS) = isnan(DataSet(iDS).offerRP_Min);

% % 	end

% % end

% % DataSet = DataSet(~invalidDS);

% % timeStampYear = timeStampYear(~invalidDS);

% % GenType = GenType(~invalidDS);

% % PoolType = PoolType(~invalidDS);

% % Type = Type(~invalidDS);

% %% Other Vars

%

% % Define Order

% TypeAll = sort(unique([Type]));

% genTypeAll = unique([GenType]);

% poolTypeAll = unique([PoolType]);

%

% [timeStampYearVec,~] = datevec(timeStampYear');

% [years,~] = datevec(sort(unique(timeStampYear)));

%

secLevelAll = sort(unique([DataSet(1).simRuns.securityLevel]));

secLevelAll = secLevelAll([6]); % Show on those security levels

prodLengthAll = sort(unique([DataSet(1).simRuns.productLength]));

prodLengthAll = prodLengthAll([5]); % Show on those security levels

genTypeNumber = 1; % 1 for Wind 30 GW, 2 for wind 1GW and so on

%% Get DataSet for secondary positive

productLength = 1;

market = 'SFC';

neg = 100;

for iSec = 1:length(secLevelAll)

	

	secLevel = secLevelAll(iSec);

	for iPL = 1:length(prodLengthAll)

		

		productLength = prodLengthAll(iPL);

		

		for iDS = 1:length(DataSet)

			indexA = strcmp({DataSet(iDS).simRuns.market},market);

			indexB = [DataSet(iDS).simRuns.percentPosRP] == neg;

			indexC = [DataSet(iDS).simRuns.productLength] == productLength;

			indexD = [DataSet(iDS).simRuns.securityLevel] == secLevel;

			indexAll = indexA & indexB & indexC & indexD;

			

			costSavPot = [];

			costSavPot_Cap = [];

			costSavPot_En = [];

			

			costSavPot(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max;

							

			addIncome_perCapInst(:,1) ...

				= costSavPot(:,1) ...

				/ DataSet(iDS).simRuns(indexAll).installedCapacity;

			

			costSavPot_Cap(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.capacity;

							

			costSavPot_En(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.dispatch;

			

			costOrig(timeStampYearVec(iDS)-2009,1) = ...

				DataSet(iDS).ecoImpact(indexAll).capacityCostOriginal ...

				+ DataSet(iDS).ecoImpact(indexAll).dispatchCostOriginal;

			

			costCapOrig(timeStampYearVec(iDS)-2009,1) = ...

				DataSet(iDS).ecoImpact(indexAll).capacityCostOriginal;

				

			costEngOrig(timeStampYearVec(iDS)-2009,1) = ...

				+ DataSet(iDS).ecoImpact(indexAll).dispatchCostOriginal;

			

			if strcmp(Type(iDS),'OnWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,1) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,1) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,1) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,1) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OnWindWF')

				CSTotal(timeStampYearVec(iDS)-2009,2) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,2) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,2) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,2) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OfWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,3) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,3) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,3) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,3) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVBRD')

				CSTotal(timeStampYearVec(iDS)-2009,4) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,4) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,4) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,4) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVPVF')

				CSTotal(timeStampYearVec(iDS)-2009,5) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,5) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,5) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,5) = addIncome_perCapInst;

			end

			

		end

	

	CSTotal(CSTotal == 0) = nan;

	CSCap(CSCap == 0) = nan;

	CSEn(CSEn == 0) = nan;

	CSPerGW(CSPerGW == 0) = nan;

	secLevelStructPosSFC(iSec,iPL).CSTotal = CSTotal;

	secLevelStructPosSFC(iSec,iPL).CSCap = CSCap;

	secLevelStructPosSFC(iSec,iPL).CSEn = CSEn;

	secLevelStructPosSFC(iSec,iPL).CSPerGW = CSPerGW;

	end	

end

% Consolidate data

% OnWindBRD is 1

TotalPosSFC = secLevelStructPosSFC(1,1).CSEn;

%% Get DataSet for secondary negative

productLength = 1;

market = 'SFC';

neg = 100;

for iSec = 1:length(secLevelAll)

	

	secLevel = secLevelAll(iSec);

	for iPL = 1:length(prodLengthAll)

		

		productLength = prodLengthAll(iPL);

		

		for iDS = 1:length(DataSet)

			indexA = strcmp({DataSet(iDS).simRuns.market},market);

			indexB = [DataSet(iDS).simRuns.percentNegRP] == neg;

			indexC = [DataSet(iDS).simRuns.productLength] == productLength;

			indexD = [DataSet(iDS).simRuns.securityLevel] == secLevel;

			indexAll = indexA & indexB & indexC & indexD;

			

			costSavPot = [];

			costSavPot_Cap = [];

			costSavPot_En = [];

			

			costSavPot(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max;

							

			addIncome_perCapInst(:,1) ...

				= costSavPot(:,1) ...

				/ DataSet(iDS).simRuns(indexAll).installedCapacity;

			

			costSavPot_Cap(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.capacity;

							

			costSavPot_En(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.dispatch;

							

			if strcmp(Type(iDS),'OnWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,1) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,1) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,1) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,1) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OnWindWF')

				CSTotal(timeStampYearVec(iDS)-2009,2) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,2) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,2) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,2) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OfWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,3) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,3) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,3) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,3) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVBRD')

				CSTotal(timeStampYearVec(iDS)-2009,4) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,4) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,4) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,4) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVPVF')

				CSTotal(timeStampYearVec(iDS)-2009,5) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,5) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,5) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,5) = addIncome_perCapInst;

			end

			

		end

	

	CSTotal(CSTotal == 0) = nan;

	CSCap(CSCap == 0) = nan;

	CSEn(CSEn == 0) = nan;

	CSPerGW(CSPerGW == 0) = nan;

	secLevelStructNegSFC(iSec,iPL).CSTotal = CSTotal;

	secLevelStructNegSFC(iSec,iPL).CSCap = CSCap;

	secLevelStructNegSFC(iSec,iPL).CSEn = CSEn;	

	secLevelStructNegSFC(iSec,iPL).CSPerGW = CSPerGW;	

	end	

end

% Consolidate data

% OnWindBRD is 1

TotalNegSFC = secLevelStructNegSFC(1,1).CSEn;

%% Get DataSet for tertiary positive

productLength = 1;

market = 'TFC';

neg = 100;

for iSec = 1:length(secLevelAll)

	

	secLevel = secLevelAll(iSec);

	for iPL = 1:length(prodLengthAll)

		

		productLength = prodLengthAll(iPL);

		

		for iDS = 1:length(DataSet)

			indexA = strcmp({DataSet(iDS).simRuns.market},market);

			indexB = [DataSet(iDS).simRuns.percentPosRP] == neg;

			indexC = [DataSet(iDS).simRuns.productLength] == productLength;

			indexD = [DataSet(iDS).simRuns.securityLevel] == secLevel;

			indexAll = indexA & indexB & indexC & indexD;

			

			costSavPot = [];

			costSavPot_Cap = [];

			costSavPot_En = [];

			

			costSavPot(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max;

							

			addIncome_perCapInst(:,1) ...

				= costSavPot(:,1) ...

				/ DataSet(iDS).simRuns(indexAll).installedCapacity;

			

			costSavPot_Cap(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.capacity;

							

			costSavPot_En(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.dispatch;

			

			costOrig(timeStampYearVec(iDS)-2009,2) = ...

				DataSet(iDS).ecoImpact(indexAll).capacityCostOriginal ...

				+ DataSet(iDS).ecoImpact(indexAll).dispatchCostOriginal;

			

			costCapOrig(timeStampYearVec(iDS)-2009,2) = ...

				DataSet(iDS).ecoImpact(indexAll).capacityCostOriginal;

				

			costEngOrig(timeStampYearVec(iDS)-2009,2) = ...

				+ DataSet(iDS).ecoImpact(indexAll).dispatchCostOriginal;

			

			if strcmp(Type(iDS),'OnWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,1) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,1) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,1) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,1) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OnWindWF')

				CSTotal(timeStampYearVec(iDS)-2009,2) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,2) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,2) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,2) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OfWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,3) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,3) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,3) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,3) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVBRD')

				CSTotal(timeStampYearVec(iDS)-2009,4) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,4) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,4) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,4) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVPVF')

				CSTotal(timeStampYearVec(iDS)-2009,5) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,5) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,5) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,5) = addIncome_perCapInst;

			end

			

		end

	

	CSTotal(CSTotal == 0) = nan;

	CSCap(CSCap == 0) = nan;

	CSEn(CSEn == 0) = nan;

	CSPerGW(CSPerGW == 0) = nan;

	secLevelStructPosTFC(iSec,iPL).CSTotal = CSTotal;

	secLevelStructPosTFC(iSec,iPL).CSCap = CSCap;

	secLevelStructPosTFC(iSec,iPL).CSEn = CSEn;	

	secLevelStructPosTFC(iSec,iPL).CSPerGW = CSPerGW;	

	end	

end

% Consolidate data

% OnWindBRD is 1

TotalPosTFC = secLevelStructPosTFC(1,1).CSEn;

%% Get DataSet for tertiary negative

productLength = 1;

market = 'TFC';

neg = 100;

for iSec = 1:length(secLevelAll)

	

	secLevel = secLevelAll(iSec);

	for iPL = 1:length(prodLengthAll)

		

		productLength = prodLengthAll(iPL);

		

		for iDS = 1:length(DataSet)

			indexA = strcmp({DataSet(iDS).simRuns.market},market);

			indexB = [DataSet(iDS).simRuns.percentNegRP] == neg;

			indexC = [DataSet(iDS).simRuns.productLength] == productLength;

			indexD = [DataSet(iDS).simRuns.securityLevel] == secLevel;

			indexAll = indexA & indexB & indexC & indexD;

			

			costSavPot = [];

			costSavPot_Cap = [];

			costSavPot_En = [];

			

			costSavPot(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max;

							

			addIncome_perCapInst(:,1) ...

				= costSavPot(:,1) ...

				/ DataSet(iDS).simRuns(indexAll).installedCapacity;

			

			costSavPot_Cap(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.capacity;

							

			costSavPot_En(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.dispatch;

							

			if strcmp(Type(iDS),'OnWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,1) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,1) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,1) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,1) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OnWindWF')

				CSTotal(timeStampYearVec(iDS)-2009,2) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,2) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,2) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,2) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OfWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,3) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,3) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,3) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,3) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVBRD')

				CSTotal(timeStampYearVec(iDS)-2009,4) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,4) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,4) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,4) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVPVF')

				CSTotal(timeStampYearVec(iDS)-2009,5) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,5) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,5) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,5) = addIncome_perCapInst;

			end

			

		end

	

	CSTotal(CSTotal == 0) = nan;

	CSCap(CSCap == 0) = nan;

	CSEn(CSEn == 0) = nan;

	CSPerGW(CSPerGW == 0) = nan;

	secLevelStructNegTFC(iSec,iPL).CSTotal = CSTotal;

	secLevelStructNegTFC(iSec,iPL).CSCap = CSCap;

	secLevelStructNegTFC(iSec,iPL).CSEn = CSEn;	

	secLevelStructNegTFC(iSec,iPL).CSPerGW = CSPerGW;	

	end	

end

% Consolidate data

% OnWindBRD is 1

TotalNegTFC = secLevelStructNegTFC(1,1).CSEn;

%% Rearrange data

NegTFC.time = datenum([(2010:2014)' repmat([1 1 0 0 0],5,1)]);

NegTFC.data = TotalNegTFC / 1000000;

PosTFC.time = datenum([(2010:2014)' repmat([1 1 0 0 0],5,1)]);

PosTFC.data = TotalPosTFC / 1000000;

NegSFC.time = datenum([(2010:2014)' repmat([1 1 0 0 0],5,1)]);

NegSFC.data = TotalNegSFC / 1000000;

PosSFC.time = datenum([(2010:2014)' repmat([1 1 0 0 0],5,1)]);

PosSFC.data = TotalPosSFC / 1000000;

%% Plot with styleplot

fig = [];

% fhgCol = getFHGColors;

% fhgCol.grey

% area

% Market volume

fig.subplot{1,1}.plot{1}.x = NegSFC.time;

fig.subplot{1,1}.plot{1}.y = [(costEngOrig(:,1) / 1000000 * 0.3) (costEngOrig(:,2) / 1000000 * 0.3)];

fig.subplot{1,1}.plot{1}.style='bar';

fig.subplot{1,1}.plot{1}.barlayout='grouped';

fig.subplot{1,1}.plot{1}.linewidth=3;

fig.subplot{1,1}.plot{1}.barcolor={'greyDark','greyLight2'}; % Overwrite the color property

fig.subplot{1,1}.plot{2}.x = NegSFC.time;

fig.subplot{1,1}.plot{2}.y = [(costEngOrig(:,1) / 1000000 * 0.2) (costEngOrig(:,2) / 1000000 * 0.2)];

fig.subplot{1,1}.plot{2}.style='bar';

fig.subplot{1,1}.plot{2}.barlayout='grouped';

fig.subplot{1,1}.plot{2}.linewidth=3;

fig.subplot{1,1}.plot{2}.barcolor={'greyDark2','greyLight'}; % Overwrite the color property

fig.subplot{1,1}.plot{3}.x = NegSFC.time;

fig.subplot{1,1}.plot{3}.y = [(costEngOrig(:,1) / 1000000 * 0.1) (costEngOrig(:,2) / 1000000 * 0.1)];

fig.subplot{1,1}.plot{3}.style='bar';

fig.subplot{1,1}.plot{3}.barlayout='grouped';

fig.subplot{1,1}.plot{3}.linewidth=3;

fig.subplot{1,1}.plot{3}.barcolor={'greyDark3','grey'}; % Overwrite the color property

% Wind

fig.subplot{1,1}.plot{4}.x = NegSFC.time;

fig.subplot{1,1}.plot{4}.y = NegSFC.data(:,1);

fig.subplot{1,1}.plot{4}.style='plot';

fig.subplot{1,1}.plot{4}.axislocation='right';

fig.subplot{1,1}.plot{4}.linestyle='-';

fig.subplot{1,1}.plot{4}.markerstyle='x';

fig.subplot{1,1}.plot{4}.markersize=14;

fig.subplot{1,1}.plot{4}.color='x3'; % Overwrite the color property

fig.subplot{1,1}.plot{5}.x = PosSFC.time;

fig.subplot{1,1}.plot{5}.y = PosSFC.data(:,1);

fig.subplot{1,1}.plot{5}.style='plot';

fig.subplot{1,1}.plot{5}.linestyle='--';

fig.subplot{1,1}.plot{5}.markerstyle='x';

fig.subplot{1,1}.plot{5}.markersize=14;

fig.subplot{1,1}.plot{5}.color='x3'; % Overwrite the color property

fig.subplot{1,1}.plot{6}.x = NegTFC.time;

fig.subplot{1,1}.plot{6}.y = NegTFC.data(:,1);

fig.subplot{1,1}.plot{6}.style='plot';

fig.subplot{1,1}.plot{6}.linestyle='-';

fig.subplot{1,1}.plot{6}.markerstyle='x';

fig.subplot{1,1}.plot{6}.markersize=14;

fig.subplot{1,1}.plot{6}.color='x2'; % Overwrite the color property

fig.subplot{1,1}.plot{7}.x = PosTFC.time;

fig.subplot{1,1}.plot{7}.y = PosTFC.data(:,1);

fig.subplot{1,1}.plot{7}.style='plot';

fig.subplot{1,1}.plot{7}.linestyle='--';

fig.subplot{1,1}.plot{7}.markerstyle='x';

fig.subplot{1,1}.plot{7}.markersize=14;

fig.subplot{1,1}.plot{7}.color='x2'; % Overwrite the color property

% PV Systems

fig.subplot{1,1}.plot{8}.x = NegSFC.time;

fig.subplot{1,1}.plot{8}.y = NegSFC.data(:,4);

fig.subplot{1,1}.plot{8}.style='plot';

fig.subplot{1,1}.plot{8}.linestyle='-';

fig.subplot{1,1}.plot{8}.markerstyle='x';

fig.subplot{1,1}.plot{8}.markersize=14;

fig.subplot{1,1}.plot{8}.color='x15'; % Overwrite the color property

fig.subplot{1,1}.plot{9}.x = PosSFC.time;

fig.subplot{1,1}.plot{9}.y = PosSFC.data(:,4);

fig.subplot{1,1}.plot{9}.style='plot';

fig.subplot{1,1}.plot{9}.linestyle='--';

fig.subplot{1,1}.plot{9}.markerstyle='x';

fig.subplot{1,1}.plot{9}.markersize=14;

fig.subplot{1,1}.plot{9}.color='x15'; % Overwrite the color property

fig.subplot{1,1}.plot{10}.x = NegTFC.time;

fig.subplot{1,1}.plot{10}.y = NegTFC.data(:,4);

fig.subplot{1,1}.plot{10}.style='plot';

fig.subplot{1,1}.plot{10}.linestyle='-';

fig.subplot{1,1}.plot{10}.markerstyle='x';

fig.subplot{1,1}.plot{10}.markersize=14;

fig.subplot{1,1}.plot{10}.color='x14'; % Overwrite the color property

fig.subplot{1,1}.plot{11}.x = PosTFC.time;

fig.subplot{1,1}.plot{11}.y = PosTFC.data(:,4);

fig.subplot{1,1}.plot{11}.style='plot';

fig.subplot{1,1}.plot{11}.linestyle='--';

fig.subplot{1,1}.plot{11}.markerstyle='x';

fig.subplot{1,1}.plot{11}.markersize=14;

fig.subplot{1,1}.plot{11}.color='x14'; % Overwrite the color property

% Plot axes properties

xLimVal = [min(NegSFC.time)-150 max(NegSFC.time)+150];

fig.subplot{1,1}.xlim=xLimVal;

yLimVal = [-120 80];

fig.subplot{1,1}.ylim=yLimVal;

fig.subplot{1,1}.yticks=min(yLimVal):20:max(yLimVal);

% Title subplots

% fig.subplot{1,1}.title=['2010']; % optionaler Titel

% Axes labeling

fig.subplot{1,1}.xlabel='Year';

fig.subplot{1,1}.ylabel='Welfare gain in mio. EUR';

fig.subplot{1,1}.legend={'30% threshold of secondary market share', ...

	'30% threshold of tertiary market share', ...

	'20% threshold of secondary market share', ...

	'20% threshold of tertiary market share', ...

	'10% threshold of secondary market share', ...

	'10% threshold of tertiary market share', ...

	'Wind negative secondary control reserve', ...

	'Wind positive secondary control reserve', ...

	'Wind negative tertiary control reserve', ...

	'Wind positive tertiary control reserve', ...

	'PV systems negative secondary control reserve', ...

	'PV systems positive secondary control reserve', ...

	'PV systems negative tertiary control reserve', ...

	'PV systems positive tertiary control reserve'};

% fig.subplot{1,1}.legend_orientation = 'horizontal';

fig.subplot{1,1}.xticks=NegTFC.time;%fig.subplot{1,1}.plot{1}.x;

% fig.subplot{1,1}.xticklabels={'Negative secondary', ...

% 	'Positive secondary', ...

% 	'Negative tertiary', ...

% 	'Positive tertiary'};

fig.subplot{1,1}.xdatetick_format='yyyy';

fig.height=16;

fig.width_columns=3;

[hFig, hAxes, hPlot] = styleplot(fig,'styleplot_format_PhD','word');

%% Save

path = 'C:\Users\mjansen\Synchronisation\mjansen auf User_Artemis(R)\Dissertation\Dissertation\Figures\6 Economic impact of fluctuating RES on the power system level\';

name = ['Fig6-5_welfareGain_dispComp_' num2str(productLength) 'h_99_994'];

saveas(gcf,[path name '.fig']);

save([path name '_data.mat'],'fig');

Functions/Results_Evaluation/resPhD_welfareGain_EngOnly_byMarketshare.m

% % clear;

% clc;

% %% Options

% productLength = 1;

%

% %% Load

%

% preDefineDataSet = ([123:139]);

%

% for iDataSet = 1:length(preDefineDataSet)

% 	

% 	[~, ~, ...

% 		~, DataSet(iDataSet).ecoImpact, ...

% 		~, ~, ...

% 		~, ~, ...

% 		~, DataSet(iDataSet).offerRP_Min, ...

% 		DataSet(iDataSet).simRuns, ~, ...

% 		~, DataSet(iDataSet).info] ...

% 		= res_loadResults_noMOL('D:\Ergebnisse REBal',preDefineDataSet(iDataSet));

% 	

% % 	[Prob_Forec_DA, Prob_Forec_ID, actualFeedIn, ecoImpact, ecoImpactTFC, error, ...

% % 		errorRP, macroEcoImpact, offerRP, offerRP_Min, simRuns, violation, alteredMOList, infoRuns] = res_loadResults_noMOL('D:\Ergebnisse REBal',preDefineDataSet(iDataSet));

% 	

% 	runSetYear = regexp(DataSet(iDataSet).info.runSetName,'_','split');

% 	GenType{iDataSet} = runSetYear{1};

% 	PoolType{iDataSet} = runSetYear{2};

% 	Type{iDataSet} = [runSetYear{1:2}];

% 	for iYear = 1:length(runSetYear)

% 		try

% 			if ~isnan(str2double(runSetYear{iYear}))

% 				timeStampYear(iDataSet) = datenum([str2double(runSetYear{iYear}) 1 1]);

% 			end

% 		end

% 	end

% 	

% end

%

% % % Select only valid datasets

% % invalidDS = false(size(DataSet));

% % for iDS = 1:length(DataSet)

% % 	if length(DataSet(iDS).offerRP_Min) == 1

% % 		invalidDS(iDS) = isnan(DataSet(iDS).offerRP_Min);

% % 	end

% % end

% % DataSet = DataSet(~invalidDS);

% % timeStampYear = timeStampYear(~invalidDS);

% % GenType = GenType(~invalidDS);

% % PoolType = PoolType(~invalidDS);

% % Type = Type(~invalidDS);

% %% Other Vars

%

% % Define Order

% TypeAll = sort(unique([Type]));

% genTypeAll = unique([GenType]);

% poolTypeAll = unique([PoolType]);

%

% [timeStampYearVec,~] = datevec(timeStampYear');

% [years,~] = datevec(sort(unique(timeStampYear)));

%

% secLevelAll = sort(unique([DataSet(1).simRuns.securityLevel]));

% secLevelAll = secLevelAll([6]); % Show on those security levels

% prodLengthAll = sort(unique([DataSet(1).simRuns.productLength]));

% prodLengthAll = prodLengthAll([1]); % Show on those security levels

genTypeNumber = 1; % 1 for Wind 30 GW, 2 for wind 1GW and so on

%% Get DataSet for secondary positive

productLength = 1;

market = 'SFC';

neg = 100;

for iSec = 1:length(secLevelAll)

	

	secLevel = secLevelAll(iSec);

	for iPL = 1:length(prodLengthAll)

		

		productLength = prodLengthAll(iPL);

		

		for iDS = 1:length(DataSet)

			indexA = strcmp({DataSet(iDS).simRuns.market},market);

			indexB = [DataSet(iDS).simRuns.percentPosRP] == neg;

			indexC = [DataSet(iDS).simRuns.productLength] == productLength;

			indexD = [DataSet(iDS).simRuns.securityLevel] == secLevel;

			indexAll = indexA & indexB & indexC & indexD;

			

			costSavPot = [];

			costSavPot_Cap = [];

			costSavPot_En = [];

			

			costSavPot(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max;

							

			addIncome_perCapInst(:,1) ...

				= costSavPot(:,1) ...

				/ DataSet(iDS).simRuns(indexAll).installedCapacity;

			

			costSavPot_Cap(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.capacity;

							

			costSavPot_En(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.dispatch;

			

			costOrig(timeStampYearVec(iDS)-2009,1) = ...

				DataSet(iDS).ecoImpact(indexAll).capacityCostOriginal ...

				+ DataSet(iDS).ecoImpact(indexAll).dispatchCostOriginal;

			

			costCapOrig(timeStampYearVec(iDS)-2009,1) = ...

				DataSet(iDS).ecoImpact(indexAll).capacityCostOriginal;

				

			costEngOrig(timeStampYearVec(iDS)-2009,1) = ...

				+ DataSet(iDS).ecoImpact(indexAll).dispatchCostOriginal;

			

			if strcmp(Type(iDS),'OnWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,1) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,1) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,1) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,1) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OnWindWF')

				CSTotal(timeStampYearVec(iDS)-2009,2) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,2) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,2) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,2) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OfWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,3) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,3) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,3) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,3) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVBRD')

				CSTotal(timeStampYearVec(iDS)-2009,4) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,4) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,4) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,4) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVPVF')

				CSTotal(timeStampYearVec(iDS)-2009,5) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,5) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,5) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,5) = addIncome_perCapInst;

			end

			

		end

	

	CSTotal(CSTotal == 0) = nan;

	CSCap(CSCap == 0) = nan;

	CSEn(CSEn == 0) = nan;

	CSPerGW(CSPerGW == 0) = nan;

	secLevelStructPosSFC(iSec,iPL).CSTotal = CSTotal;

	secLevelStructPosSFC(iSec,iPL).CSCap = CSCap;

	secLevelStructPosSFC(iSec,iPL).CSEn = CSEn;

	secLevelStructPosSFC(iSec,iPL).CSPerGW = CSPerGW;

	end	

end

% Consolidate data

% OnWindBRD is 1

TotalPosSFC = secLevelStructPosSFC(1,1).CSEn;

costMult = reshape(repmat(costCapOrig(:,1),size(secLevelStructPosSFC(1,1).CSEn,1),[]),[],size(secLevelStructPosSFC(1,1).CSEn,1));

TotalPosSFC = secLevelStructPosSFC(1,1).CSEn ./ costMult;

%% Get DataSet for secondary negative

productLength = 1;

market = 'SFC';

neg = 100;

for iSec = 1:length(secLevelAll)

	

	secLevel = secLevelAll(iSec);

	for iPL = 1:length(prodLengthAll)

		

		productLength = prodLengthAll(iPL);

		

		for iDS = 1:length(DataSet)

			indexA = strcmp({DataSet(iDS).simRuns.market},market);

			indexB = [DataSet(iDS).simRuns.percentNegRP] == neg;

			indexC = [DataSet(iDS).simRuns.productLength] == productLength;

			indexD = [DataSet(iDS).simRuns.securityLevel] == secLevel;

			indexAll = indexA & indexB & indexC & indexD;

			

			costSavPot = [];

			costSavPot_Cap = [];

			costSavPot_En = [];

			

			costSavPot(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max;

							

			addIncome_perCapInst(:,1) ...

				= costSavPot(:,1) ...

				/ DataSet(iDS).simRuns(indexAll).installedCapacity;

			

			costSavPot_Cap(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.capacity;

							

			costSavPot_En(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.dispatch;

							

			if strcmp(Type(iDS),'OnWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,1) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,1) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,1) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,1) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OnWindWF')

				CSTotal(timeStampYearVec(iDS)-2009,2) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,2) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,2) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,2) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OfWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,3) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,3) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,3) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,3) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVBRD')

				CSTotal(timeStampYearVec(iDS)-2009,4) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,4) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,4) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,4) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVPVF')

				CSTotal(timeStampYearVec(iDS)-2009,5) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,5) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,5) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,5) = addIncome_perCapInst;

			end

			

		end

	

	CSTotal(CSTotal == 0) = nan;

	CSCap(CSCap == 0) = nan;

	CSEn(CSEn == 0) = nan;

	CSPerGW(CSPerGW == 0) = nan;

	secLevelStructNegSFC(iSec,iPL).CSTotal = CSTotal;

	secLevelStructNegSFC(iSec,iPL).CSCap = CSCap;

	secLevelStructNegSFC(iSec,iPL).CSEn = CSEn;	

	secLevelStructNegSFC(iSec,iPL).CSPerGW = CSPerGW;	

	end	

end

% Consolidate data

% OnWindBRD is 1

TotalNegSFC = secLevelStructNegSFC(1,1).CSEn;

% costMult = reshape(repmat(costCapOrig(:,1),size(secLevelStructNegSFC(1,1).CSEn,1),[]),[],size(secLevelStructNegSFC(1,1).CSEn,1));

TotalNegSFC = secLevelStructNegSFC(1,1).CSEn ./ costMult;

%% Get DataSet for tertiary positive

productLength = 1;

market = 'TFC';

neg = 100;

for iSec = 1:length(secLevelAll)

	

	secLevel = secLevelAll(iSec);

	for iPL = 1:length(prodLengthAll)

		

		productLength = prodLengthAll(iPL);

		

		for iDS = 1:length(DataSet)

			indexA = strcmp({DataSet(iDS).simRuns.market},market);

			indexB = [DataSet(iDS).simRuns.percentPosRP] == neg;

			indexC = [DataSet(iDS).simRuns.productLength] == productLength;

			indexD = [DataSet(iDS).simRuns.securityLevel] == secLevel;

			indexAll = indexA & indexB & indexC & indexD;

			

			costSavPot = [];

			costSavPot_Cap = [];

			costSavPot_En = [];

			

			costSavPot(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max;

							

			addIncome_perCapInst(:,1) ...

				= costSavPot(:,1) ...

				/ DataSet(iDS).simRuns(indexAll).installedCapacity;

			

			costSavPot_Cap(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.capacity;

							

			costSavPot_En(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.dispatch;

			

			costOrig(timeStampYearVec(iDS)-2009,2) = ...

				DataSet(iDS).ecoImpact(indexAll).capacityCostOriginal ...

				+ DataSet(iDS).ecoImpact(indexAll).dispatchCostOriginal;

			

			costCapOrig(timeStampYearVec(iDS)-2009,2) = ...

				DataSet(iDS).ecoImpact(indexAll).capacityCostOriginal;

				

			costEngOrig(timeStampYearVec(iDS)-2009,2) = ...

				+ DataSet(iDS).ecoImpact(indexAll).dispatchCostOriginal;

			

			if strcmp(Type(iDS),'OnWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,1) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,1) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,1) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,1) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OnWindWF')

				CSTotal(timeStampYearVec(iDS)-2009,2) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,2) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,2) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,2) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OfWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,3) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,3) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,3) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,3) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVBRD')

				CSTotal(timeStampYearVec(iDS)-2009,4) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,4) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,4) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,4) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVPVF')

				CSTotal(timeStampYearVec(iDS)-2009,5) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,5) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,5) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,5) = addIncome_perCapInst;

			end

			

		end

	

	CSTotal(CSTotal == 0) = nan;

	CSCap(CSCap == 0) = nan;

	CSEn(CSEn == 0) = nan;

	CSPerGW(CSPerGW == 0) = nan;

	secLevelStructPosTFC(iSec,iPL).CSTotal = CSTotal;

	secLevelStructPosTFC(iSec,iPL).CSCap = CSCap;

	secLevelStructPosTFC(iSec,iPL).CSEn = CSEn;	

	secLevelStructPosTFC(iSec,iPL).CSPerGW = CSPerGW;	

	end	

end

% Consolidate data

% OnWindBRD is 1

TotalPosTFC = secLevelStructPosTFC(1,1).CSEn;

costMult = reshape(repmat(costCapOrig(:,2),size(secLevelStructPosTFC(1,1).CSEn,1),[]),[],size(secLevelStructPosTFC(1,1).CSEn,1));

TotalPosTFC = secLevelStructPosTFC(1,1).CSEn ./ costMult;

%% Get DataSet for tertiary negative

productLength = 1;

market = 'TFC';

neg = 100;

for iSec = 1:length(secLevelAll)

	

	secLevel = secLevelAll(iSec);

	for iPL = 1:length(prodLengthAll)

		

		productLength = prodLengthAll(iPL);

		

		for iDS = 1:length(DataSet)

			indexA = strcmp({DataSet(iDS).simRuns.market},market);

			indexB = [DataSet(iDS).simRuns.percentNegRP] == neg;

			indexC = [DataSet(iDS).simRuns.productLength] == productLength;

			indexD = [DataSet(iDS).simRuns.securityLevel] == secLevel;

			indexAll = indexA & indexB & indexC & indexD;

			

			costSavPot = [];

			costSavPot_Cap = [];

			costSavPot_En = [];

			

			costSavPot(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max;

							

			addIncome_perCapInst(:,1) ...

				= costSavPot(:,1) ...

				/ DataSet(iDS).simRuns(indexAll).installedCapacity;

			

			costSavPot_Cap(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.capacity;

							

			costSavPot_En(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.dispatch;

							

			if strcmp(Type(iDS),'OnWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,1) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,1) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,1) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,1) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OnWindWF')

				CSTotal(timeStampYearVec(iDS)-2009,2) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,2) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,2) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,2) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OfWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,3) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,3) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,3) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,3) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVBRD')

				CSTotal(timeStampYearVec(iDS)-2009,4) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,4) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,4) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,4) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVPVF')

				CSTotal(timeStampYearVec(iDS)-2009,5) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,5) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,5) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,5) = addIncome_perCapInst;

			end

			

		end

	

	CSTotal(CSTotal == 0) = nan;

	CSCap(CSCap == 0) = nan;

	CSEn(CSEn == 0) = nan;

	CSPerGW(CSPerGW == 0) = nan;

	secLevelStructNegTFC(iSec,iPL).CSTotal = CSTotal;

	secLevelStructNegTFC(iSec,iPL).CSCap = CSCap;

	secLevelStructNegTFC(iSec,iPL).CSEn = CSEn;	

	secLevelStructNegTFC(iSec,iPL).CSPerGW = CSPerGW;	

	end	

end

% Consolidate data

% OnWindBRD is 1

TotalNegTFC = secLevelStructNegTFC(1,1).CSEn;

% costMult = reshape(repmat(costCapOrig(:,2),size(secLevelStructPosTFC(1,1).CSEn,1),[]),[],size(secLevelStructPosTFC(1,1).CSEn,1));

TotalNegTFC = secLevelStructNegTFC(1,1).CSEn ./ costMult;

%% Rearrange data

NegTFC.time = datenum([(2010:2014)' repmat([1 1 0 0 0],5,1)]);

NegTFC.data = TotalNegTFC * 100;

PosTFC.time = datenum([(2010:2014)' repmat([1 1 0 0 0],5,1)]);

PosTFC.data = TotalPosTFC * 100;

NegSFC.time = datenum([(2010:2014)' repmat([1 1 0 0 0],5,1)]);

NegSFC.data = TotalNegSFC * 100;

PosSFC.time = datenum([(2010:2014)' repmat([1 1 0 0 0],5,1)]);

PosSFC.data = TotalPosSFC * 100;

% Build average NOTE: Just messing around so far

meanMSPosWind = mean([PosTFC.data(:,1),PosSFC.data(:,1)],2)

meanMSNegWind = mean([NegTFC.data(:,1),NegSFC.data(:,1)],2)

meanMSPosPV = mean([PosTFC.data(:,4),PosSFC.data(:,4)],2)

meanMSNegPV = mean([NegTFC.data(:,4),NegSFC.data(:,4)],2)

meanMS = mean([NegTFC.data(:,1),PosTFC.data(:,1),NegSFC.data(:,1),PosSFC.data(:,1)],2)

meanMS = mean([NegTFC.data(:,4),PosTFC.data(:,4),NegSFC.data(:,4),PosSFC.data(:,4)],2)

%% Plot with styleplot

fig = [];

% fhgCol = getFHGColors;

% Wind

fig.subplot{1,1}.plot{1}.x = NegSFC.time;

fig.subplot{1,1}.plot{1}.y = NegSFC.data(:,1);

fig.subplot{1,1}.plot{1}.style='plot';

fig.subplot{1,1}.plot{1}.axislocation='right';

fig.subplot{1,1}.plot{1}.linestyle='-';

fig.subplot{1,1}.plot{1}.markerstyle='x';

fig.subplot{1,1}.plot{1}.markersize=14;

fig.subplot{1,1}.plot{1}.color='x3'; % Overwrite the color property

fig.subplot{1,1}.plot{2}.x = PosSFC.time;

fig.subplot{1,1}.plot{2}.y = PosSFC.data(:,1);

fig.subplot{1,1}.plot{2}.style='plot';

fig.subplot{1,1}.plot{2}.linestyle='--';

fig.subplot{1,1}.plot{2}.markerstyle='x';

fig.subplot{1,1}.plot{2}.markersize=14;

fig.subplot{1,1}.plot{2}.color='x3'; % Overwrite the color property

fig.subplot{1,1}.plot{3}.x = NegTFC.time;

fig.subplot{1,1}.plot{3}.y = NegTFC.data(:,1);

fig.subplot{1,1}.plot{3}.style='plot';

fig.subplot{1,1}.plot{3}.linestyle='-';

fig.subplot{1,1}.plot{3}.markerstyle='x';

fig.subplot{1,1}.plot{3}.markersize=14;

fig.subplot{1,1}.plot{3}.color='x2'; % Overwrite the color property

fig.subplot{1,1}.plot{4}.x = PosTFC.time;

fig.subplot{1,1}.plot{4}.y = PosTFC.data(:,1);

fig.subplot{1,1}.plot{4}.style='plot';

fig.subplot{1,1}.plot{4}.linestyle='--';

fig.subplot{1,1}.plot{4}.markerstyle='x';

fig.subplot{1,1}.plot{4}.markersize=14;

fig.subplot{1,1}.plot{4}.color='x2'; % Overwrite the color property

% PV Systems

fig.subplot{1,1}.plot{5}.x = NegSFC.time;

fig.subplot{1,1}.plot{5}.y = NegSFC.data(:,4);

fig.subplot{1,1}.plot{5}.style='plot';

fig.subplot{1,1}.plot{5}.linestyle='-';

fig.subplot{1,1}.plot{5}.markerstyle='x';

fig.subplot{1,1}.plot{5}.markersize=14;

fig.subplot{1,1}.plot{5}.color='x15'; % Overwrite the color property

fig.subplot{1,1}.plot{6}.x = PosSFC.time;

fig.subplot{1,1}.plot{6}.y = PosSFC.data(:,4);

fig.subplot{1,1}.plot{6}.style='plot';

fig.subplot{1,1}.plot{6}.linestyle='--';

fig.subplot{1,1}.plot{6}.markerstyle='x';

fig.subplot{1,1}.plot{6}.markersize=14;

fig.subplot{1,1}.plot{6}.color='x15'; % Overwrite the color property

fig.subplot{1,1}.plot{7}.x = NegTFC.time;

fig.subplot{1,1}.plot{7}.y = NegTFC.data(:,4);

fig.subplot{1,1}.plot{7}.style='plot';

fig.subplot{1,1}.plot{7}.linestyle='-';

fig.subplot{1,1}.plot{7}.markerstyle='x';

fig.subplot{1,1}.plot{7}.markersize=14;

fig.subplot{1,1}.plot{7}.color='x14'; % Overwrite the color property

fig.subplot{1,1}.plot{8}.x = PosTFC.time;

fig.subplot{1,1}.plot{8}.y = PosTFC.data(:,4);

fig.subplot{1,1}.plot{8}.style='plot';

fig.subplot{1,1}.plot{8}.linestyle='--';

fig.subplot{1,1}.plot{8}.markerstyle='x';

fig.subplot{1,1}.plot{8}.markersize=14;

fig.subplot{1,1}.plot{8}.color='x14'; % Overwrite the color property

% Plot axes properties

xLimVal = [min(NegSFC.time)-150 max(NegSFC.time)+150];

fig.subplot{1,1}.xlim=xLimVal;

yLimVal = [-35 25];

fig.subplot{1,1}.ylim=yLimVal;

fig.subplot{1,1}.yticks=min(yLimVal):5:max(yLimVal);

% Title subplots

% fig.subplot{1,1}.title=['2010']; % optionaler Titel

% Axes labeling

fig.subplot{1,1}.xlabel='Year';

fig.subplot{1,1}.ylabel='% of energy market value';

fig.subplot{1,1}.legend={'Wind negative secondary control reserve', ...

	'Wind positive secondary control reserve', ...

	'Wind negative tertiary control reserve', ...

	'Wind positive tertiary control reserve', ...

	'PV systems negative secondary control reserve', ...

	'PV systems positive secondary control reserve', ...

	'PV systems negative tertiary control reserve', ...

	'PV systems positive tertiary control reserve'};

% fig.subplot{1,1}.legend_orientation = 'horizontal';

fig.subplot{1,1}.xticks=NegTFC.time;%fig.subplot{1,1}.plot{1}.x;

% fig.subplot{1,1}.xticklabels={'Negative secondary', ...

% 	'Positive secondary', ...

% 	'Negative tertiary', ...

% 	'Positive tertiary'};

fig.subplot{1,1}.xdatetick_format='yyyy';

fig.height=16;

fig.width_columns=3;

[hFig, hAxes, hPlot] = styleplot(fig,'styleplot_format_PhD','word');

Functions/Results_Evaluation/resPhD_welfareGain_execSum.m

% clear;

% clc;

% %% Options

% productLength = 1;

%

% %% Load

%

% preDefineDataSet = ([123:141]);

%

% for iDataSet = 1:length(preDefineDataSet)

% 	

% 	[~, ~, ...

% 		~, DataSet(iDataSet).ecoImpact, ...

% 		~, ~, ...

% 		~, ~, ...

% 		~, DataSet(iDataSet).offerRP_Min, ...

% 		DataSet(iDataSet).simRuns, ~, ...

% 		~, DataSet(iDataSet).info] ...

% 		= res_loadResults_noMOL('D:\Ergebnisse REBal',preDefineDataSet(iDataSet));

% 	

% % 	[Prob_Forec_DA, Prob_Forec_ID, actualFeedIn, ecoImpact, ecoImpactTFC, error, ...

% % 		errorRP, macroEcoImpact, offerRP, offerRP_Min, simRuns, violation, alteredMOList, infoRuns] = res_loadResults_noMOL('D:\Ergebnisse REBal',preDefineDataSet(iDataSet));

% 	

% 	runSetYear = regexp(DataSet(iDataSet).info.runSetName,'_','split');

% 	GenType{iDataSet} = runSetYear{1};

% 	PoolType{iDataSet} = runSetYear{2};

% 	Type{iDataSet} = [runSetYear{1:2}];

% 	for iYear = 1:length(runSetYear)

% 		try

% 			if ~isnan(str2double(runSetYear{iYear}))

% 				timeStampYear(iDataSet) = datenum([str2double(runSetYear{iYear}) 1 1]);

% 			end

% 		end

% 	end

% 	

% end

%

% % % Select only valid datasets

% % invalidDS = false(size(DataSet));

% % for iDS = 1:length(DataSet)

% % 	if length(DataSet(iDS).offerRP_Min) == 1

% % 		invalidDS(iDS) = isnan(DataSet(iDS).offerRP_Min);

% % 	end

% % end

% % DataSet = DataSet(~invalidDS);

% % timeStampYear = timeStampYear(~invalidDS);

% % GenType = GenType(~invalidDS);

% % PoolType = PoolType(~invalidDS);

% % Type = Type(~invalidDS);

%% Other Vars

% Define Order

TypeAll = sort(unique([Type]));

genTypeAll = unique([GenType]);

poolTypeAll = unique([PoolType]);

[timeStampYearVec,~] = datevec(timeStampYear');

[years,~] = datevec(sort(unique(timeStampYear)));

secLevelAll = sort(unique([DataSet(1).simRuns.securityLevel]));

secLevelAll = secLevelAll([1]); % Show on those security levels

prodLengthAll = sort(unique([DataSet(1).simRuns.productLength]));

prodLengthAll = prodLengthAll([5]); % Show on those security levels

genTypeNumber = 1; % 1 for Wind 30 GW, 2 for wind 1GW and so on

%% Get DataSet for secondary positive

productLength = 1;

market = 'SFC';

neg = 100;

for iSec = 1:length(secLevelAll)

	

	secLevel = secLevelAll(iSec);

	for iPL = 1:length(prodLengthAll)

		

		productLength = prodLengthAll(iPL);

		

		for iDS = 1:length(DataSet)

			indexA = strcmp({DataSet(iDS).simRuns.market},market);

			indexB = [DataSet(iDS).simRuns.percentPosRP] == neg;

			indexC = [DataSet(iDS).simRuns.productLength] == productLength;

			indexD = [DataSet(iDS).simRuns.securityLevel] == secLevel;

			indexAll = indexA & indexB & indexC & indexD;

			

			costSavPot = [];

			costSavPot_Cap = [];

			costSavPot_En = [];

			

			costSavPot(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max;

							

			addIncome_perCapInst(:,1) ...

				= costSavPot(:,1) ...

				/ DataSet(iDS).simRuns(indexAll).installedCapacity;

			

			costSavPot_Cap(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.capacity;

							

			costSavPot_En(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.dispatch;

			

			costOrig(timeStampYearVec(iDS)-2009,1) = ...

				DataSet(iDS).ecoImpact(indexAll).capacityCostOriginal ...

				+ DataSet(iDS).ecoImpact(indexAll).dispatchCostOriginal;

			

			costCapOrig(timeStampYearVec(iDS)-2009,1) = ...

				DataSet(iDS).ecoImpact(indexAll).capacityCostOriginal;

				

			costEngOrig(timeStampYearVec(iDS)-2009,1) = ...

				+ DataSet(iDS).ecoImpact(indexAll).dispatchCostOriginal;

			

			if strcmp(Type(iDS),'OnWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,1) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,1) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,1) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,1) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OnWindWF')

				CSTotal(timeStampYearVec(iDS)-2009,2) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,2) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,2) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,2) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OfWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,3) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,3) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,3) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,3) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVBRD')

				CSTotal(timeStampYearVec(iDS)-2009,4) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,4) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,4) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,4) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVPVF')

				CSTotal(timeStampYearVec(iDS)-2009,5) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,5) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,5) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,5) = addIncome_perCapInst;

			end

			

		end

	

	CSTotal(CSTotal == 0) = nan;

	CSCap(CSCap == 0) = nan;

	CSEn(CSEn == 0) = nan;

	CSPerGW(CSPerGW == 0) = nan;

	secLevelStructPosSFC(iSec,iPL).CSTotal = CSTotal;

	secLevelStructPosSFC(iSec,iPL).CSCap = CSCap;

	secLevelStructPosSFC(iSec,iPL).CSEn = CSEn;

	secLevelStructPosSFC(iSec,iPL).CSPerGW = CSPerGW;

	end	

end

% Consolidate data

% OnWindBRD is 1

TotalPosSFC = secLevelStructPosSFC(1,1).CSTotal;

%% Get DataSet for secondary negative

productLength = 1;

market = 'SFC';

neg = 100;

for iSec = 1:length(secLevelAll)

	

	secLevel = secLevelAll(iSec);

	for iPL = 1:length(prodLengthAll)

		

		productLength = prodLengthAll(iPL);

		

		for iDS = 1:length(DataSet)

			indexA = strcmp({DataSet(iDS).simRuns.market},market);

			indexB = [DataSet(iDS).simRuns.percentNegRP] == neg;

			indexC = [DataSet(iDS).simRuns.productLength] == productLength;

			indexD = [DataSet(iDS).simRuns.securityLevel] == secLevel;

			indexAll = indexA & indexB & indexC & indexD;

			

			costSavPot = [];

			costSavPot_Cap = [];

			costSavPot_En = [];

			

			costSavPot(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max;

							

			addIncome_perCapInst(:,1) ...

				= costSavPot(:,1) ...

				/ DataSet(iDS).simRuns(indexAll).installedCapacity;

			

			costSavPot_Cap(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.capacity;

							

			costSavPot_En(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.dispatch;

							

			if strcmp(Type(iDS),'OnWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,1) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,1) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,1) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,1) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OnWindWF')

				CSTotal(timeStampYearVec(iDS)-2009,2) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,2) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,2) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,2) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OfWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,3) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,3) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,3) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,3) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVBRD')

				CSTotal(timeStampYearVec(iDS)-2009,4) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,4) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,4) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,4) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVPVF')

				CSTotal(timeStampYearVec(iDS)-2009,5) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,5) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,5) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,5) = addIncome_perCapInst;

			end

			

		end

	

	CSTotal(CSTotal == 0) = nan;

	CSCap(CSCap == 0) = nan;

	CSEn(CSEn == 0) = nan;

	CSPerGW(CSPerGW == 0) = nan;

	secLevelStructNegSFC(iSec,iPL).CSTotal = CSTotal;

	secLevelStructNegSFC(iSec,iPL).CSCap = CSCap;

	secLevelStructNegSFC(iSec,iPL).CSEn = CSEn;	

	secLevelStructNegSFC(iSec,iPL).CSPerGW = CSPerGW;	

	end	

end

% Consolidate data

% OnWindBRD is 1

TotalNegSFC = secLevelStructNegSFC(1,1).CSTotal;

%% Get DataSet for tertiary positive

productLength = 1;

market = 'TFC';

neg = 100;

for iSec = 1:length(secLevelAll)

	

	secLevel = secLevelAll(iSec);

	for iPL = 1:length(prodLengthAll)

		

		productLength = prodLengthAll(iPL);

		

		for iDS = 1:length(DataSet)

			indexA = strcmp({DataSet(iDS).simRuns.market},market);

			indexB = [DataSet(iDS).simRuns.percentPosRP] == neg;

			indexC = [DataSet(iDS).simRuns.productLength] == productLength;

			indexD = [DataSet(iDS).simRuns.securityLevel] == secLevel;

			indexAll = indexA & indexB & indexC & indexD;

			

			costSavPot = [];

			costSavPot_Cap = [];

			costSavPot_En = [];

			

			costSavPot(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max;

							

			addIncome_perCapInst(:,1) ...

				= costSavPot(:,1) ...

				/ DataSet(iDS).simRuns(indexAll).installedCapacity;

			

			costSavPot_Cap(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.capacity;

							

			costSavPot_En(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.dispatch;

			

			costOrig(timeStampYearVec(iDS)-2009,2) = ...

				DataSet(iDS).ecoImpact(indexAll).capacityCostOriginal ...

				+ DataSet(iDS).ecoImpact(indexAll).dispatchCostOriginal;

			

			costCapOrig(timeStampYearVec(iDS)-2009,2) = ...

				DataSet(iDS).ecoImpact(indexAll).capacityCostOriginal;

				

			costEngOrig(timeStampYearVec(iDS)-2009,2) = ...

				+ DataSet(iDS).ecoImpact(indexAll).dispatchCostOriginal;

			

			if strcmp(Type(iDS),'OnWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,1) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,1) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,1) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,1) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OnWindWF')

				CSTotal(timeStampYearVec(iDS)-2009,2) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,2) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,2) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,2) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OfWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,3) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,3) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,3) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,3) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVBRD')

				CSTotal(timeStampYearVec(iDS)-2009,4) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,4) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,4) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,4) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVPVF')

				CSTotal(timeStampYearVec(iDS)-2009,5) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,5) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,5) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,5) = addIncome_perCapInst;

			end

			

		end

	

	CSTotal(CSTotal == 0) = nan;

	CSCap(CSCap == 0) = nan;

	CSEn(CSEn == 0) = nan;

	CSPerGW(CSPerGW == 0) = nan;

	secLevelStructPosTFC(iSec,iPL).CSTotal = CSTotal;

	secLevelStructPosTFC(iSec,iPL).CSCap = CSCap;

	secLevelStructPosTFC(iSec,iPL).CSEn = CSEn;	

	secLevelStructPosTFC(iSec,iPL).CSPerGW = CSPerGW;	

	end	

end

% Consolidate data

% OnWindBRD is 1

TotalPosTFC = secLevelStructPosTFC(1,1).CSTotal;

%% Get DataSet for tertiary negative

productLength = 1;

market = 'TFC';

neg = 100;

for iSec = 1:length(secLevelAll)

	

	secLevel = secLevelAll(iSec);

	for iPL = 1:length(prodLengthAll)

		

		productLength = prodLengthAll(iPL);

		

		for iDS = 1:length(DataSet)

			indexA = strcmp({DataSet(iDS).simRuns.market},market);

			indexB = [DataSet(iDS).simRuns.percentNegRP] == neg;

			indexC = [DataSet(iDS).simRuns.productLength] == productLength;

			indexD = [DataSet(iDS).simRuns.securityLevel] == secLevel;

			indexAll = indexA & indexB & indexC & indexD;

			

			costSavPot = [];

			costSavPot_Cap = [];

			costSavPot_En = [];

			

			costSavPot(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max;

							

			addIncome_perCapInst(:,1) ...

				= costSavPot(:,1) ...

				/ DataSet(iDS).simRuns(indexAll).installedCapacity;

			

			costSavPot_Cap(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.capacity;

							

			costSavPot_En(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.dispatch;

							

			if strcmp(Type(iDS),'OnWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,1) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,1) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,1) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,1) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OnWindWF')

				CSTotal(timeStampYearVec(iDS)-2009,2) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,2) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,2) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,2) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OfWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,3) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,3) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,3) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,3) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVBRD')

				CSTotal(timeStampYearVec(iDS)-2009,4) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,4) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,4) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,4) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVPVF')

				CSTotal(timeStampYearVec(iDS)-2009,5) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,5) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,5) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,5) = addIncome_perCapInst;

			end

			

		end

	

	CSTotal(CSTotal == 0) = nan;

	CSCap(CSCap == 0) = nan;

	CSEn(CSEn == 0) = nan;

	CSPerGW(CSPerGW == 0) = nan;

	secLevelStructNegTFC(iSec,iPL).CSTotal = CSTotal;

	secLevelStructNegTFC(iSec,iPL).CSCap = CSCap;

	secLevelStructNegTFC(iSec,iPL).CSEn = CSEn;	

	secLevelStructNegTFC(iSec,iPL).CSPerGW = CSPerGW;	

	end	

end

% Consolidate data

% OnWindBRD is 1

TotalNegTFC = secLevelStructNegTFC(1,1).CSTotal;

%% Rearrange data

NegTFC.time = datenum([(2010:2014)' repmat([1 1 0 0 0],5,1)]);

NegTFC.data = TotalNegTFC / 1000000;

PosTFC.time = datenum([(2010:2014)' repmat([1 1 0 0 0],5,1)]);

PosTFC.data = TotalPosTFC / 1000000;

NegSFC.time = datenum([(2010:2014)' repmat([1 1 0 0 0],5,1)]);

NegSFC.data = TotalNegSFC / 1000000;

PosSFC.time = datenum([(2010:2014)' repmat([1 1 0 0 0],5,1)]);

PosSFC.data = TotalPosSFC / 1000000;

%% Plot with styleplot

fig = [];

% fhgCol = getFHGColors;

% fhgCol.grey

% area

% Market volume

fig.subplot{1,1}.plot{1}.x = NegSFC.time;

fig.subplot{1,1}.plot{1}.y = [(costOrig(:,1) / 1000000 * 0.3) (costOrig(:,2) / 1000000 * 0.3)];

fig.subplot{1,1}.plot{1}.style='bar';

fig.subplot{1,1}.plot{1}.barlayout='grouped';

fig.subplot{1,1}.plot{1}.linewidth=3;

fig.subplot{1,1}.plot{1}.barcolor={'greyDark','greyLight2'}; % Overwrite the color property

fig.subplot{1,1}.plot{2}.x = NegSFC.time;

fig.subplot{1,1}.plot{2}.y = [(costOrig(:,1) / 1000000 * 0.2) (costOrig(:,2) / 1000000 * 0.2)];

fig.subplot{1,1}.plot{2}.style='bar';

fig.subplot{1,1}.plot{2}.barlayout='grouped';

fig.subplot{1,1}.plot{2}.linewidth=3;

fig.subplot{1,1}.plot{2}.barcolor={'greyDark2','greyLight'}; % Overwrite the color property

fig.subplot{1,1}.plot{3}.x = NegSFC.time;

fig.subplot{1,1}.plot{3}.y = [(costOrig(:,1) / 1000000 * 0.1) (costOrig(:,2) / 1000000 * 0.1)];

fig.subplot{1,1}.plot{3}.style='bar';

fig.subplot{1,1}.plot{3}.barlayout='grouped';

fig.subplot{1,1}.plot{3}.linewidth=3;

fig.subplot{1,1}.plot{3}.barcolor={'greyDark3','grey'}; % Overwrite the color property

% Wind

fig.subplot{1,1}.plot{4}.x = NegSFC.time;

fig.subplot{1,1}.plot{4}.y = NegSFC.data(:,1);

fig.subplot{1,1}.plot{4}.style='plot';

fig.subplot{1,1}.plot{4}.axislocation='right';

fig.subplot{1,1}.plot{4}.linestyle='-';

fig.subplot{1,1}.plot{4}.markerstyle='x';

fig.subplot{1,1}.plot{4}.markersize=14;

fig.subplot{1,1}.plot{4}.color='x3'; % Overwrite the color property

fig.subplot{1,1}.plot{5}.x = PosSFC.time;

fig.subplot{1,1}.plot{5}.y = PosSFC.data(:,1);

fig.subplot{1,1}.plot{5}.style='plot';

fig.subplot{1,1}.plot{5}.linestyle='--';

fig.subplot{1,1}.plot{5}.markerstyle='x';

fig.subplot{1,1}.plot{5}.markersize=14;

fig.subplot{1,1}.plot{5}.color='x3'; % Overwrite the color property

fig.subplot{1,1}.plot{6}.x = NegTFC.time;

fig.subplot{1,1}.plot{6}.y = NegTFC.data(:,1);

fig.subplot{1,1}.plot{6}.style='plot';

fig.subplot{1,1}.plot{6}.linestyle='-';

fig.subplot{1,1}.plot{6}.markerstyle='x';

fig.subplot{1,1}.plot{6}.markersize=14;

fig.subplot{1,1}.plot{6}.color='x2'; % Overwrite the color property

fig.subplot{1,1}.plot{7}.x = PosTFC.time;

fig.subplot{1,1}.plot{7}.y = PosTFC.data(:,1);

fig.subplot{1,1}.plot{7}.style='plot';

fig.subplot{1,1}.plot{7}.linestyle='--';

fig.subplot{1,1}.plot{7}.markerstyle='x';

fig.subplot{1,1}.plot{7}.markersize=14;

fig.subplot{1,1}.plot{7}.color='x2'; % Overwrite the color property

% PV Systems

fig.subplot{1,1}.plot{8}.x = NegSFC.time;

fig.subplot{1,1}.plot{8}.y = NegSFC.data(:,4);

fig.subplot{1,1}.plot{8}.style='plot';

fig.subplot{1,1}.plot{8}.linestyle='-';

fig.subplot{1,1}.plot{8}.markerstyle='x';

fig.subplot{1,1}.plot{8}.markersize=14;

fig.subplot{1,1}.plot{8}.color='x15'; % Overwrite the color property

fig.subplot{1,1}.plot{9}.x = PosSFC.time;

fig.subplot{1,1}.plot{9}.y = PosSFC.data(:,4);

fig.subplot{1,1}.plot{9}.style='plot';

fig.subplot{1,1}.plot{9}.linestyle='--';

fig.subplot{1,1}.plot{9}.markerstyle='x';

fig.subplot{1,1}.plot{9}.markersize=14;

fig.subplot{1,1}.plot{9}.color='x15'; % Overwrite the color property

fig.subplot{1,1}.plot{10}.x = NegTFC.time;

fig.subplot{1,1}.plot{10}.y = NegTFC.data(:,4);

fig.subplot{1,1}.plot{10}.style='plot';

fig.subplot{1,1}.plot{10}.linestyle='-';

fig.subplot{1,1}.plot{10}.markerstyle='x';

fig.subplot{1,1}.plot{10}.markersize=14;

fig.subplot{1,1}.plot{10}.color='x14'; % Overwrite the color property

fig.subplot{1,1}.plot{11}.x = PosTFC.time;

fig.subplot{1,1}.plot{11}.y = PosTFC.data(:,4);

fig.subplot{1,1}.plot{11}.style='plot';

fig.subplot{1,1}.plot{11}.linestyle='--';

fig.subplot{1,1}.plot{11}.markerstyle='x';

fig.subplot{1,1}.plot{11}.markersize=14;

fig.subplot{1,1}.plot{11}.color='x14'; % Overwrite the color property

% Plot axes properties

xLimVal = [min(NegSFC.time)-150 max(NegSFC.time)+150];

fig.subplot{1,1}.xlim=xLimVal;

yLimVal = [-50 300];

fig.subplot{1,1}.ylim=yLimVal;

fig.subplot{1,1}.yticks=min(yLimVal):50:max(yLimVal);

% Title subplots

% fig.subplot{1,1}.title=['2010']; % optionaler Titel

% Axes labeling

fig.subplot{1,1}.xlabel='Year';

fig.subplot{1,1}.ylabel='Welfare gain in mio. EUR';

fig.subplot{1,1}.legend={'30% threshold of secondary market share', ...

	'30% threshold of tertiary market share', ...

	'20% threshold of secondary market share', ...

	'20% threshold of tertiary market share', ...

	'10% threshold of secondary market share', ...

	'10% threshold of tertiary market share', ...

	'Wind negative secondary control reserve', ...

	'Wind positive secondary control reserve', ...

	'Wind negative tertiary control reserve', ...

	'Wind positive tertiary control reserve', ...

	'PV systems negative secondary control reserve', ...

	'PV systems positive secondary control reserve', ...

	'PV systems negative tertiary control reserve', ...

	'PV systems positive tertiary control reserve'};

% fig.subplot{1,1}.legend_orientation = 'horizontal';

fig.subplot{1,1}.xticks=NegTFC.time;%fig.subplot{1,1}.plot{1}.x;

% fig.subplot{1,1}.xticklabels={'Negative secondary', ...

% 	'Positive secondary', ...

% 	'Negative tertiary', ...

% 	'Positive tertiary'};

fig.subplot{1,1}.xdatetick_format='yyyy';

fig.height=16;

fig.width_columns=3;

[hFig, hAxes, hPlot] = styleplot(fig,'styleplot_format_PhD','word');

Functions/Results_Evaluation/resPhD_welfareGain_MarketShare.m

% clear;

clc;

%% Options

productLength = 1;

%% Load

preDefineDataSet = ([117:135]);

for iDataSet = 1:length(preDefineDataSet)

	

	[~, ~, ...

		~, DataSet(iDataSet).ecoImpact, ...

		~, ~, ...

		~, ~, ...

		~, DataSet(iDataSet).offerRP_Min, ...

		DataSet(iDataSet).simRuns, ~, ...

		~, DataSet(iDataSet).info] ...

		= res_loadResults_noMOL('D:\Ergebnisse REBal',preDefineDataSet(iDataSet));

	

% 	[Prob_Forec_DA, Prob_Forec_ID, actualFeedIn, ecoImpact, ecoImpactTFC, error, ...

% 		errorRP, macroEcoImpact, offerRP, offerRP_Min, simRuns, violation, alteredMOList, infoRuns] = res_loadResults_noMOL('D:\Ergebnisse REBal',preDefineDataSet(iDataSet));

	

	runSetYear = regexp(DataSet(iDataSet).info.runSetName,'_','split');

	GenType{iDataSet} = runSetYear{1};

	PoolType{iDataSet} = runSetYear{2};

	Type{iDataSet} = [runSetYear{1:2}];

	for iYear = 1:length(runSetYear)

		try

			if ~isnan(str2double(runSetYear{iYear}))

				timeStampYear(iDataSet) = datenum([str2double(runSetYear{iYear}) 1 1]);

			end

		end

	end

	

end

% % Select only valid datasets

% invalidDS = false(size(DataSet));

% for iDS = 1:length(DataSet)

% 	if length(DataSet(iDS).offerRP_Min) == 1

% 		invalidDS(iDS) = isnan(DataSet(iDS).offerRP_Min);

% 	end

% end

% DataSet = DataSet(~invalidDS);

% timeStampYear = timeStampYear(~invalidDS);

% GenType = GenType(~invalidDS);

% PoolType = PoolType(~invalidDS);

% Type = Type(~invalidDS);

%% Other Vars

% Define Order

TypeAll = sort(unique([Type]));

genTypeAll = unique([GenType]);

poolTypeAll = unique([PoolType]);

[timeStampYearVec,~] = datevec(timeStampYear');

[years,~] = datevec(sort(unique(timeStampYear)));

secLevelAll = sort(unique([DataSet(1).simRuns.securityLevel]));

secLevelAll = secLevelAll([6]); % Show on those security levels

prodLengthAll = sort(unique([DataSet(1).simRuns.productLength]));

prodLengthAll = prodLengthAll([1]); % Show on those security levels

genTypeNumber = 1; % 1 for Wind 30 GW, 2 for wind 1GW and so on

%% Get DataSet for secondary positive

productLength = 1;

market = 'SFC';

neg = 100;

for iSec = 1:length(secLevelAll)

	

	secLevel = secLevelAll(iSec);

	for iPL = 1:length(prodLengthAll)

		

		productLength = prodLengthAll(iPL);

		

		for iDS = 1:length(DataSet)

			indexA = strcmp({DataSet(iDS).simRuns.market},market);

			indexB = [DataSet(iDS).simRuns.percentPosRP] == neg;

			indexC = [DataSet(iDS).simRuns.productLength] == productLength;

			indexD = [DataSet(iDS).simRuns.securityLevel] == secLevel;

			indexAll = indexA & indexB & indexC & indexD;

			

			costSavPot = [];

			costSavPot_Cap = [];

			costSavPot_En = [];

			

			costSavPot(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max;

							

			addIncome_perCapInst(:,1) ...

				= costSavPot(:,1) ...

				/ DataSet(iDS).simRuns(indexAll).installedCapacity;

			

			costSavPot_Cap(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.capacity;

							

			costSavPot_En(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.dispatch;

			

			costOrig(timeStampYearVec(iDS)-2009,1) = ...

				DataSet(iDS).ecoImpact(indexAll).capacityCostOriginal ...

				+ DataSet(iDS).ecoImpact(indexAll).dispatchCostOriginal;

			

			costCapOrig(timeStampYearVec(iDS)-2009,1) = ...

				DataSet(iDS).ecoImpact(indexAll).capacityCostOriginal;

				

			costEngOrig(timeStampYearVec(iDS)-2009,1) = ...

				+ DataSet(iDS).ecoImpact(indexAll).dispatchCostOriginal;

			

			costSavPot(:,1) = costSavPot(:,1) / costOrig(timeStampYearVec(iDS)-2009,1);

			

			if strcmp(Type(iDS),'OnWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,1) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,1) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,1) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,1) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OnWindWF')

				CSTotal(timeStampYearVec(iDS)-2009,2) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,2) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,2) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,2) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OfWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,3) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,3) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,3) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,3) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVBRD')

				CSTotal(timeStampYearVec(iDS)-2009,4) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,4) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,4) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,4) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVPVF')

				CSTotal(timeStampYearVec(iDS)-2009,5) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,5) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,5) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,5) = addIncome_perCapInst;

			end

			

		end

	

	CSTotal(CSTotal == 0) = nan;

	CSCap(CSCap == 0) = nan;

	CSEn(CSEn == 0) = nan;

	CSPerGW(CSPerGW == 0) = nan;

	secLevelStructPosSFC(iSec,iPL).CSTotal = CSTotal;

	secLevelStructPosSFC(iSec,iPL).CSCap = CSCap;

	secLevelStructPosSFC(iSec,iPL).CSEn = CSEn;

	secLevelStructPosSFC(iSec,iPL).CSPerGW = CSPerGW;

	end	

end

% Consolidate data

% OnWindBRD is 1

TotalPosSFC = secLevelStructPosSFC(1,1).CSTotal;

%% Get DataSet for secondary negative

productLength = 1;

market = 'SFC';

neg = 100;

for iSec = 1:length(secLevelAll)

	

	secLevel = secLevelAll(iSec);

	for iPL = 1:length(prodLengthAll)

		

		productLength = prodLengthAll(iPL);

		

		for iDS = 1:length(DataSet)

			indexA = strcmp({DataSet(iDS).simRuns.market},market);

			indexB = [DataSet(iDS).simRuns.percentNegRP] == neg;

			indexC = [DataSet(iDS).simRuns.productLength] == productLength;

			indexD = [DataSet(iDS).simRuns.securityLevel] == secLevel;

			indexAll = indexA & indexB & indexC & indexD;

			

			costSavPot = [];

			costSavPot_Cap = [];

			costSavPot_En = [];

			

			costSavPot(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max;

							

			addIncome_perCapInst(:,1) ...

				= costSavPot(:,1) ...

				/ DataSet(iDS).simRuns(indexAll).installedCapacity;

			

			costSavPot_Cap(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.capacity;

							

			costSavPot_En(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.dispatch;

			

			costOrig(timeStampYearVec(iDS)-2009,1) = ...

				DataSet(iDS).ecoImpact(indexAll).capacityCostOriginal ...

				+ DataSet(iDS).ecoImpact(indexAll).dispatchCostOriginal;

			

			costCapOrig(timeStampYearVec(iDS)-2009,1) = ...

				DataSet(iDS).ecoImpact(indexAll).capacityCostOriginal;

			

			costEngOrig(timeStampYearVec(iDS)-2009,1) = ...

				+ DataSet(iDS).ecoImpact(indexAll).dispatchCostOriginal;

			

			costSavPot(:,1) = costSavPot(:,1) / costOrig(timeStampYearVec(iDS)-2009,1);

			

			if strcmp(Type(iDS),'OnWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,1) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,1) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,1) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,1) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OnWindWF')

				CSTotal(timeStampYearVec(iDS)-2009,2) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,2) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,2) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,2) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OfWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,3) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,3) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,3) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,3) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVBRD')

				CSTotal(timeStampYearVec(iDS)-2009,4) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,4) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,4) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,4) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVPVF')

				CSTotal(timeStampYearVec(iDS)-2009,5) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,5) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,5) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,5) = addIncome_perCapInst;

			end

			

		end

	

	CSTotal(CSTotal == 0) = nan;

	CSCap(CSCap == 0) = nan;

	CSEn(CSEn == 0) = nan;

	CSPerGW(CSPerGW == 0) = nan;

	secLevelStructNegSFC(iSec,iPL).CSTotal = CSTotal;

	secLevelStructNegSFC(iSec,iPL).CSCap = CSCap;

	secLevelStructNegSFC(iSec,iPL).CSEn = CSEn;	

	secLevelStructNegSFC(iSec,iPL).CSPerGW = CSPerGW;	

	end	

end

% Consolidate data

% OnWindBRD is 1

TotalNegSFC = secLevelStructNegSFC(1,1).CSTotal;

%% Get DataSet for tertiary positive

productLength = 1;

market = 'TFC';

neg = 100;

for iSec = 1:length(secLevelAll)

	

	secLevel = secLevelAll(iSec);

	for iPL = 1:length(prodLengthAll)

		

		productLength = prodLengthAll(iPL);

		

		for iDS = 1:length(DataSet)

			indexA = strcmp({DataSet(iDS).simRuns.market},market);

			indexB = [DataSet(iDS).simRuns.percentPosRP] == neg;

			indexC = [DataSet(iDS).simRuns.productLength] == productLength;

			indexD = [DataSet(iDS).simRuns.securityLevel] == secLevel;

			indexAll = indexA & indexB & indexC & indexD;

			

			costSavPot = [];

			costSavPot_Cap = [];

			costSavPot_En = [];

			

			costSavPot(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max;

							

			addIncome_perCapInst(:,1) ...

				= costSavPot(:,1) ...

				/ DataSet(iDS).simRuns(indexAll).installedCapacity;

			

			costSavPot_Cap(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.capacity;

							

			costSavPot_En(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.dispatch;

			

			costOrig(timeStampYearVec(iDS)-2009,1) = ...

				DataSet(iDS).ecoImpact(indexAll).capacityCostOriginal ...

				+ DataSet(iDS).ecoImpact(indexAll).dispatchCostOriginal;

			

			costCapOrig(timeStampYearVec(iDS)-2009,1) = ...

				DataSet(iDS).ecoImpact(indexAll).capacityCostOriginal;

				

			costEngOrig(timeStampYearVec(iDS)-2009,1) = ...

				+ DataSet(iDS).ecoImpact(indexAll).dispatchCostOriginal;

			

			costSavPot(:,1) = costSavPot(:,1) / costOrig(timeStampYearVec(iDS)-2009,1);

			

			if strcmp(Type(iDS),'OnWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,1) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,1) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,1) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,1) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OnWindWF')

				CSTotal(timeStampYearVec(iDS)-2009,2) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,2) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,2) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,2) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OfWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,3) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,3) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,3) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,3) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVBRD')

				CSTotal(timeStampYearVec(iDS)-2009,4) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,4) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,4) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,4) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVPVF')

				CSTotal(timeStampYearVec(iDS)-2009,5) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,5) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,5) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,5) = addIncome_perCapInst;

			end

			

		end

	

	CSTotal(CSTotal == 0) = nan;

	CSCap(CSCap == 0) = nan;

	CSEn(CSEn == 0) = nan;

	CSPerGW(CSPerGW == 0) = nan;

	secLevelStructPosTFC(iSec,iPL).CSTotal = CSTotal;

	secLevelStructPosTFC(iSec,iPL).CSCap = CSCap;

	secLevelStructPosTFC(iSec,iPL).CSEn = CSEn;	

	secLevelStructPosTFC(iSec,iPL).CSPerGW = CSPerGW;	

	end	

end

% Consolidate data

% OnWindBRD is 1

TotalPosTFC = secLevelStructPosTFC(1,1).CSTotal;

%% Get DataSet for tertiary negative

productLength = 1;

market = 'TFC';

neg = 100;

for iSec = 1:length(secLevelAll)

	

	secLevel = secLevelAll(iSec);

	for iPL = 1:length(prodLengthAll)

		

		productLength = prodLengthAll(iPL);

		

		for iDS = 1:length(DataSet)

			indexA = strcmp({DataSet(iDS).simRuns.market},market);

			indexB = [DataSet(iDS).simRuns.percentNegRP] == neg;

			indexC = [DataSet(iDS).simRuns.productLength] == productLength;

			indexD = [DataSet(iDS).simRuns.securityLevel] == secLevel;

			indexAll = indexA & indexB & indexC & indexD;

			

			costSavPot = [];

			costSavPot_Cap = [];

			costSavPot_En = [];

			

			costSavPot(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max;

							

			addIncome_perCapInst(:,1) ...

				= costSavPot(:,1) ...

				/ DataSet(iDS).simRuns(indexAll).installedCapacity;

			

			costSavPot_Cap(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.capacity;

							

			costSavPot_En(:,1) ...

				= DataSet(iDS).ecoImpact(indexAll).AAP.Max_DiffSplit.dispatch;

			

			costOrig(timeStampYearVec(iDS)-2009,1) = ...

				DataSet(iDS).ecoImpact(indexAll).capacityCostOriginal ...

				+ DataSet(iDS).ecoImpact(indexAll).dispatchCostOriginal;

			

			costCapOrig(timeStampYearVec(iDS)-2009,1) = ...

				DataSet(iDS).ecoImpact(indexAll).capacityCostOriginal;

			

			costEngOrig(timeStampYearVec(iDS)-2009,1) = ...

				+ DataSet(iDS).ecoImpact(indexAll).dispatchCostOriginal;

			

			costSavPot(:,1) = costSavPot(:,1) / costOrig(timeStampYearVec(iDS)-2009,1);

			

			if strcmp(Type(iDS),'OnWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,1) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,1) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,1) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,1) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OnWindWF')

				CSTotal(timeStampYearVec(iDS)-2009,2) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,2) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,2) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,2) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'OfWindBRD')

				CSTotal(timeStampYearVec(iDS)-2009,3) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,3) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,3) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,3) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVBRD')

				CSTotal(timeStampYearVec(iDS)-2009,4) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,4) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,4) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,4) = addIncome_perCapInst;

			elseif strcmp(Type(iDS),'PVPVF')

				CSTotal(timeStampYearVec(iDS)-2009,5) = costSavPot;

				CSCap(timeStampYearVec(iDS)-2009,5) = costSavPot_Cap;

				CSEn(timeStampYearVec(iDS)-2009,5) = costSavPot_En;

				CSPerGW(timeStampYearVec(iDS)-2009,5) = addIncome_perCapInst;

			end

			

		end

	

	CSTotal(CSTotal == 0) = nan;

	CSCap(CSCap == 0) = nan;

	CSEn(CSEn == 0) = nan;

	CSPerGW(CSPerGW == 0) = nan;

	secLevelStructNegTFC(iSec,iPL).CSTotal = CSTotal;

	secLevelStructNegTFC(iSec,iPL).CSCap = CSCap;

	secLevelStructNegTFC(iSec,iPL).CSEn = CSEn;	

	secLevelStructNegTFC(iSec,iPL).CSPerGW = CSPerGW;	

	end	

end

% Consolidate data

% OnWindBRD is 1

TotalNegTFC = secLevelStructNegTFC(1,1).CSTotal;

%% Rearrange data

NegTFC.time = datenum([(2010:2014)' repmat([1 1 0 0 0],5,1)]);

NegTFC.data = TotalNegTFC * 100;

PosTFC.time = datenum([(2010:2014)' repmat([1 1 0 0 0],5,1)]);

PosTFC.data = TotalPosTFC * 100;

NegSFC.time = datenum([(2010:2014)' repmat([1 1 0 0 0],5,1)]);

NegSFC.data = TotalNegSFC * 100;

PosSFC.time = datenum([(2010:2014)' repmat([1 1 0 0 0],5,1)]);

PosSFC.data = TotalPosSFC * 100;

%% Plot with styleplot

fig = [];

% fhgCol = getFHGColors;

% fhgCol.grey

% % Market volume

% fig.subplot{1,1}.plot{1}.x = NegSFC.time;

% fig.subplot{1,1}.plot{1}.y = costOrig;

% fig.subplot{1,1}.plot{1}.style='bar';

% fig.subplot{1,1}.plot{1}.barlayout='grouped';

% fig.subplot{1,1}.plot{1}.barcolor={'greyDark','greyLight'}; % Overwrite the color property

% Wind

fig.subplot{1,1}.plot{1}.x = NegSFC.time;

fig.subplot{1,1}.plot{1}.y = NegSFC.data(:,1);

fig.subplot{1,1}.plot{1}.style='plot';

% fig.subplot{1,1}.plot{1}.axislocation='right';

fig.subplot{1,1}.plot{1}.linestyle='-';

fig.subplot{1,1}.plot{1}.marker_style='x';

fig.subplot{1,1}.plot{1}.markersize=14;

fig.subplot{1,1}.plot{1}.color='x3'; % Overwrite the color property

fig.subplot{1,1}.plot{2}.x = NegTFC.time;

fig.subplot{1,1}.plot{2}.y = NegTFC.data(:,1);

fig.subplot{1,1}.plot{2}.style='plot';

fig.subplot{1,1}.plot{2}.linestyle='-';

fig.subplot{1,1}.plot{2}.marker_style='x';

fig.subplot{1,1}.plot{2}.markersize=14;

fig.subplot{1,1}.plot{2}.color='x2'; % Overwrite the color property

fig.subplot{1,1}.plot{3}.x = PosSFC.time;

fig.subplot{1,1}.plot{3}.y = PosSFC.data(:,1);

fig.subplot{1,1}.plot{3}.style='plot';

fig.subplot{1,1}.plot{3}.linestyle='--';

fig.subplot{1,1}.plot{3}.marker_style='x';

fig.subplot{1,1}.plot{3}.markersize=14;

fig.subplot{1,1}.plot{3}.color='x3'; % Overwrite the color property

fig.subplot{1,1}.plot{4}.x = PosTFC.time;

fig.subplot{1,1}.plot{4}.y = PosTFC.data(:,1);

fig.subplot{1,1}.plot{4}.style='plot';

fig.subplot{1,1}.plot{4}.linestyle='--';

fig.subplot{1,1}.plot{4}.marker_style='x';

fig.subplot{1,1}.plot{4}.markersize=14;

fig.subplot{1,1}.plot{4}.color='x2'; % Overwrite the color property

% PV Systems

fig.subplot{1,1}.plot{5}.x = NegSFC.time;

fig.subplot{1,1}.plot{5}.y = NegSFC.data(:,4);

fig.subplot{1,1}.plot{5}.style='plot';

fig.subplot{1,1}.plot{5}.linestyle='-';

fig.subplot{1,1}.plot{5}.marker_style='x';

fig.subplot{1,1}.plot{5}.markersize=14;

fig.subplot{1,1}.plot{5}.color='x15'; % Overwrite the color property

fig.subplot{1,1}.plot{6}.x = NegTFC.time;

fig.subplot{1,1}.plot{6}.y = NegTFC.data(:,4);

fig.subplot{1,1}.plot{6}.style='plot';

fig.subplot{1,1}.plot{6}.linestyle='-';

fig.subplot{1,1}.plot{6}.marker_style='x';

fig.subplot{1,1}.plot{6}.markersize=14;

fig.subplot{1,1}.plot{6}.color='x14'; % Overwrite the color property

fig.subplot{1,1}.plot{7}.x = PosSFC.time;

fig.subplot{1,1}.plot{7}.y = PosSFC.data(:,4);

fig.subplot{1,1}.plot{7}.style='plot';

fig.subplot{1,1}.plot{7}.linestyle='--';

fig.subplot{1,1}.plot{7}.marker_style='x';

fig.subplot{1,1}.plot{7}.markersize=14;

fig.subplot{1,1}.plot{7}.color='x15'; % Overwrite the color property

fig.subplot{1,1}.plot{8}.x = PosTFC.time;

fig.subplot{1,1}.plot{8}.y = PosTFC.data(:,4);

fig.subplot{1,1}.plot{8}.style='plot';

fig.subplot{1,1}.plot{8}.linestyle='--';

fig.subplot{1,1}.plot{8}.marker_style='x';

fig.subplot{1,1}.plot{8}.markersize=14;

fig.subplot{1,1}.plot{8}.color='x14'; % Overwrite the color property

% Market volume information

% fig.subplot{1,1}.plot{2}.x = 1:size(yearInd{1},1);

% fig.subplot{1,1}.plot{2}.y = yearInd{1};

% fig.subplot{1,1}.plot{2}.style='bar';

% fig.subplot{1,1}.plot{2}.barlayout='grouped';

% fig.subplot{1,1}.plot{2}.barcolor=IndCol; % Overwrite the color property

% % fig.subplot{1,1}.plot{2}.text=dataValTXT; % Must be the same size as the data

% Plot axes properties

xLimVal = [min(NegSFC.time)-150 max(NegSFC.time)+150];

fig.subplot{1,1}.xlim=xLimVal;

% yLimVal = [-100 100];

% fig.subplot{1,1}.ylim=yLimVal;

% % fig.subplot{1,1}.yticks=min(yLimVal):20:max(yLimVal);

% Title subplots

% fig.subplot{1,1}.title=['2010']; % optionaler Titel

% Axes labeling

fig.subplot{1,1}.xlabel='Year';

fig.subplot{1,1}.ylabel='Welfare gain in % of market volume';

fig.subplot{1,1}.legend={'Wind secondary control reserve', ...

	'Wind negative tertiarycontrol reserve', ...

	'Wind positive secondary control reserve', ...

	'Wind positive tertiarycontrol reserve', ...

	'PV systems secondary control reserve', ...

	'PV systems negative tertiarycontrol reserve', ...

	'PV systems positive secondary control reserve', ...

	'PV systems positive tertiarycontrol reserve'};

% fig.subplot{1,1}.legend_orientation = 'horizontal';

fig.subplot{1,1}.xticks=NegTFC.time;%fig.subplot{1,1}.plot{1}.x;

% fig.subplot{1,1}.xticklabels={'Negative secondary', ...

% 	'Positive secondary', ...

% 	'Negative tertiary', ...

% 	'Positive tertiary'};

fig.subplot{1,1}.xdatetick_format='yyyy';

fig.height=12;

fig.width_columns=3;

[hFig, hAxes, hPlot] = styleplot(fig,'styleplot_format_PhD','word');

Functions/Results_Evaluation/resPhD_welfareGain_TotalNumbers.m

clear;

clc;

%% Load data

load('C:\Users\mjansen\Synchronisation\mjansen auf User_Artemis(R)\Dissertation\Matlab\Data\marketVolFC.mat')

load('C:\Users\mjansen\Synchronisation\mjansen auf User_Artemis(R)\Dissertation\Matlab\Data\meanShares.mat')

%% Calculate welfare gain

% Without demand adjustments

welGain2020.Wind = marketVolFC.data(1,1) .* meanShares.Wind;

welGain2020.PV = marketVolFC.data(1,1) .* meanShares.PV;

welGain2030.Wind = marketVolFC.data(2,1) .* meanShares.Wind;

welGain2030.PV = marketVolFC.data(2,1) .* meanShares.PV;

% With demand adjustments

welGainDemanAdj2020.Wind = marketVolFC.data(1,2) .* meanShares.Wind;

welGainDemanAdj2020.PV = marketVolFC.data(1,2) .* meanShares.PV;

welGainDemanAdj2030.Wind = marketVolFC.data(2,2) .* meanShares.Wind;

welGainDemanAdj2030.PV = marketVolFC.data(2,2) .* meanShares.PV;

%% Plot

secLevel = 1;

prodLength = 1;

% One hour ahead and 99.994% and no adjustment

data1(1,1) = welGain2020.Wind(secLevel,prodLength);

data1(2,1) = welGain2030.Wind(secLevel,prodLength);

data1(1,3) = welGain2020.PV(secLevel,prodLength);

data1(2,3) = welGain2030.PV(secLevel,prodLength);

% One hour ahead and 99.994% and adjustment

data1(1,2) = welGainDemanAdj2020.Wind(secLevel,prodLength);

data1(2,2) = welGainDemanAdj2030.Wind(secLevel,prodLength);

data1(1,4) = welGainDemanAdj2020.PV(secLevel,prodLength);	

data1(2,4) = welGainDemanAdj2030.PV(secLevel,prodLength);

prodLength = 3;

% One hour ahead and 99.994% and no adjustment

data2(1,1) = welGain2020.Wind(secLevel,prodLength);

data2(2,1) = welGain2030.Wind(secLevel,prodLength);

data2(1,3) = welGain2020.PV(secLevel,prodLength);

data2(2,3) = welGain2030.PV(secLevel,prodLength);

% One hour ahead and 99.994% and adjustment

data2(1,2) = welGainDemanAdj2020.Wind(secLevel,prodLength);

data2(2,2) = welGainDemanAdj2030.Wind(secLevel,prodLength);

data2(1,4) = welGainDemanAdj2020.PV(secLevel,prodLength);

data2(2,4) = welGainDemanAdj2030.PV(secLevel,prodLength);

prodLength = 5;

% One hour ahead and 99.994% and no adjustment

data3(1,1) = welGain2020.Wind(secLevel,prodLength);

data3(2,1) = welGain2030.Wind(secLevel,prodLength);

data3(1,3) = welGain2020.PV(secLevel,prodLength);

data3(2,3) = welGain2030.PV(secLevel,prodLength);

% One hour ahead and 99.994% and adjustment

data3(1,2) = welGainDemanAdj2020.Wind(secLevel,prodLength);

data3(2,2) = welGainDemanAdj2030.Wind(secLevel,prodLength);

data3(1,4) = welGainDemanAdj2020.PV(secLevel,prodLength);

data3(2,4) = welGainDemanAdj2030.PV(secLevel,prodLength);

%% Plot with styleplot

fig = [];

% Define data sets

fig.subplot{1,1}.plot{1}.x = 1:size(data1,1);

fig.subplot{1,1}.plot{1}.y = data1;

fig.subplot{1,1}.plot{1}.style='bar';

fig.subplot{1,1}.plot{1}.barlayout='grouped';

fig.subplot{1,1}.plot{1}.barcolor={'x2','x3','x18','x19'}; % Overwrite the color property

% Define data sets

fig.subplot{1,2}.plot{1}.x = 1:size(data2,1);

fig.subplot{1,2}.plot{1}.y = data2;

fig.subplot{1,2}.plot{1}.style='bar';

fig.subplot{1,2}.plot{1}.barlayout='grouped';

fig.subplot{1,2}.plot{1}.barcolor={'x2','x3','x18','x19'}; % Overwrite the color property

% Define data sets

fig.subplot{1,3}.plot{1}.x = 1:size(data3,1);

fig.subplot{1,3}.plot{1}.y = data3;

fig.subplot{1,3}.plot{1}.style='bar';

fig.subplot{1,3}.plot{1}.barlayout='grouped';

fig.subplot{1,3}.plot{1}.barcolor={'x2','x3','x18','x19'}; % Overwrite the color property

% Plot properties

fig.subplot{1,1}.xlim=[0.5 2.5];

fig.subplot{1,1}.xticks=1:2;

fig.subplot{1,1}.xticklabels={'2020','2030'};

fig.subplot{1,1}.ylim=[0 200];

fig.subplot{1,1}.title=['Product length: 1 hour']; % optionaler Titel

fig.subplot{1,1}.xlabel='Year';

fig.subplot{1,1}.ylabel='Forecasted welfare gain in mio. EUR';

fig.subplot{1,1}.legend={'Wind farms', ...

	'Demand adjusted wind farms', 'PV systems', ...

	'Demand adjusted PV systems',};

fig.subplot{1,2}.xlim=fig.subplot{1,1}.xlim;

fig.subplot{1,2}.xticks=fig.subplot{1,1}.xticks;

fig.subplot{1,2}.xticklabels=fig.subplot{1,1}.xticklabels;

fig.subplot{1,2}.ylim=fig.subplot{1,1}.ylim;

fig.subplot{1,2}.title=['Product length: 4 hours']; % optionaler Titel

fig.subplot{1,2}.xlabel=fig.subplot{1,1}.xlabel;

fig.subplot{1,2}.ylabel=fig.subplot{1,1}.ylabel;

fig.subplot{1,3}.xlim=fig.subplot{1,1}.xlim;

fig.subplot{1,3}.xticks=fig.subplot{1,1}.xticks;

fig.subplot{1,3}.xticklabels=fig.subplot{1,1}.xticklabels;

fig.subplot{1,3}.ylim=fig.subplot{1,1}.ylim;

fig.subplot{1,3}.title=['Product length: 12 hours']; % optionaler Titel

fig.subplot{1,3}.xlabel=fig.subplot{1,1}.xlabel;

fig.subplot{1,3}.ylabel=fig.subplot{1,1}.ylabel;

fig.height=12;

fig.width_columns=3;

[hFig, hAxes, hPlot] = styleplot(fig,'styleplot_format_PhD','word');

%% Save

path = 'C:\Users\mjansen\Synchronisation\mjansen auf User_Artemis(R)\Dissertation\Dissertation\Figures\6 Economic impact of fluctuating RES on the power system level\';

name = ['Fig6-10_welfareGain_totalNmbs_2020_2030_95'];

% name = ['Fig6-10_welfareGain_totalNmbs_2020_2030_99_994_legend'];

saveas(gcf,[path name '.fig']);

save([path name '_data.mat'],'fig');

Functions/Results_Evaluation/res_loadResults_noMOL.m

function [Prob_Forec_DA, Prob_Forec_ID, actualFeedIn, ecoImpact, ecoImpactTFC, error, ...

	errorRP, macroEcoImpact, offerRP, offerRP_Min, simRuns, violation, alteredMOList, info] = res_loadResults_noMOL(directory, dataSet)

% Provide directory and set if available

% Check input variables

if ~exist('directory','var')

	directory = 'D:\Ergebnisse REBal\';

end

% Define result path

dirResults = directory;

%% Define set of Calculations

folderNames = getfilenames(dirResults)';

folderNamesNoPath = regexp(folderNames,'\','split');

for iStruct=1:length(folderNamesNoPath)

	nameDir{iStruct,1} = folderNamesNoPath{iStruct,1}{end};

end

indexNameDir = linspace(1,length(nameDir),length(nameDir))';

fprintf('Please choose one set of Data:\n');

for iName=1:length(nameDir)

	

	name{iName} = sprintf([nameDir{iName}]);

	

end

maxSigns = max(cellfun(@length,name));

for iName=1:length(nameDir)

	while length(name{iName}) <= maxSigns

		name{iName} = sprintf([name{iName} ' ']);

	end

	name{iName} = sprintf([name{iName} '(' num2str(iName) ')']);

end

for iName=1:length(nameDir)

	disp(name{iName});

	

end

delimLn = '-';

maxSignsNew = max(cellfun(@length,name));

while length(delimLn) < maxSignsNew

	delimLn = sprintf([delimLn '-']);

end

disp(delimLn);

if ~exist('dataSet','var')

	calcSet = input(sprintf('Give set of Results: \t \t'));

else

	calcSet = dataSet;

	disp(calcSet);

end

while ~ismember(calcSet,indexNameDir)

	fprintf(2,'*\t Incorrect Input \t\t*\n');

	disp(delimLn);

	calcSet = input(sprintf('Give set of Results (n): \t'));

end

%% Load Set of calc

pathnames = getfilenames([directory '\' nameDir{calcSet}],'*.mat')';

pathnamesSplit = regexp(pathnames,'\','split');

for iStruct=1:length(pathnamesSplit)

	fileNamesSelect{iStruct,1} = pathnamesSplit{iStruct,1}{end};

end

pathOnly = strcat(pathnamesSplit{1,1}(1,1:end-1),'\');

pathData = strcat(pathOnly{:});

omit = strfind(fileNamesSelect,'moList_altered');

keep = cellfun(@isempty,omit);

pathnames = pathnames(keep);

% Get Filenames and Load Data Eco Impact

for iFileNames=1:length(pathnames)

	

	load(pathnames{iFileNames});

	

end

%%

dataArrays = {'Prob_Forec_DA', 'Prob_Forec_ID', 'actualFeedIn', 'ecoImpact', 'ecoImpactTFC', 'error', ...

	'errorRP', 'macroEcoImpact', 'offerRP', 'offerRP_Min', 'simRuns', 'violation', 'alteredMOList'};

for iData = 1:length(dataArrays)

	

	if ~exist(dataArrays{iData},'var')

		eval([dataArrays{iData} ' = nan;'])

	end

	

end

%% Get name

runSetName = pathData(37:end-1);

%% Create Info var

info.pathData = pathData;

info.runSetName = runSetName;

commonFunctions/rmse.m

function r = rmse(data,estimate)

% Function to calculate root mean square error from a data vector or matrix

% and the corresponding estimates.

% Usage: r = rmse(data,estimate)

% Note: data and estimates have to be of same size

% Example: r = rmse(randn(100,100),randn(100,100));

% delete records with NaNs in both datasets first

I = ~isnan(data) & ~isnan(estimate);

data = data(I); estimate = estimate(I);

r = sqrt(sum((data(:)-estimate(:)).^2)/numel(data));

Functions/+Auxiliary_Functions/rmse.m

function r = rmse(data,estimate)

% Function to calculate root mean square error from a data vector or matrix

% and the corresponding estimates.

% Usage: r = rmse(data,estimate)

% Note: data and estimates have to be of same size

% Example: r = rmse(randn(100,100),randn(100,100));

% delete records with NaNs in both datasets first

I = ~isnan(data) & ~isnan(estimate);

data = data(I); estimate = estimate(I);

r = sqrt(sum((data(:)-estimate(:)).^2)/numel(data));

commonFunctions/roundn.m

% --- roundn(x,d)
% ROUNDN(x,d) returns x rounded to d digits.
%
% If d is not given, then d = 1 is assumed.
%
% See also:
% ROUND
% ---

function y = roundn(x,d)

if nargin == 1
 y = round(x);
else

	d = -d;
	
 y = round(10^d*x)/10^d;

end

Functions/+Auxiliary_Functions/roundn.m

% --- roundn(x,d)
% ROUNDN(x,d) returns x rounded to d digits.
%
% If d is not given, then d = 1 is assumed.
%
% See also:
% ROUND
% ---

function y = roundn(x,d)

if nargin == 1
 y = round(x);
else

	d = -d;
	
 y = round(10^d*x)/10^d;

end

Functions/+Config/saveResults.m

%% Save Results

nowTime = datestr(now, 'yyyymmdd(HH_MM)');

if exist([dirRes deli nowTime],'dir') ~= 7;

	mkdir([dirRes deli nowTime]);

end

addpath([dirRes deli nowTime]);

dirResults = [dirRes deli nowTime];

% Probabilistic Forecast

try

	save([dirResults deli 'probForecast_' ...

		datestr(simRuns(1).startTime, 'ddmmmyyyy(HHMMSS)') '-'...

		datestr(simRuns(1).endTime, 'ddmmmyyyy(HHMMSS)') '.mat'],'Prob_Forec_DA','Prob_Forec_ID','actualFeedIn');

catch error

	disp(error)

	disp('Saving Probabilistic Forecast failed')

end

% Offer RP

try

	save([dirResults deli 'offerRP_' ...

		datestr(simRuns(1).startTime, 'ddmmmyyyy(HHMMSS)') '-'...

		datestr(simRuns(1).endTime, 'ddmmmyyyy(HHMMSS)') '.mat'],'offerRP','offerRP_Min','simRuns')

catch error

	disp(error)

	disp('Saving Offer RP failed')

end

% Economic Impact

try

	save([dirResults deli 'ecoImpact_' ...

		datestr(simRuns(1).startTime, 'ddmmmyyyy(HHMMSS)') '-'...

		datestr(simRuns(1).endTime, 'ddmmmyyyy(HHMMSS)') '.mat'],'ecoImpact','simRuns')

catch error

	disp(error)

	disp('Saving Economic Impact failed')

end

% Macroeconomic Impact

try

	save([dirResults deli 'macroEcoImpact_' ...

		datestr(simRuns(1).startTime, 'ddmmmyyyy(HHMMSS)') '-'...

		datestr(simRuns(1).endTime, 'ddmmmyyyy(HHMMSS)') '.mat'],'macroEcoImpact','simRuns');

catch error

	disp(error)

	disp('Saving Macroeconomic Impact failed')

end

% Options

try

	save([dirResults deli 'opts_' ...

		datestr(simRuns(1).startTime, 'ddmmmyyyy(HHMMSS)') '-'...

		datestr(simRuns(1).endTime, 'ddmmmyyyy(HHMMSS)') '.mat'],...

		'simRuns','optsCalc','optsProbForecDA','optsProbForecID',...

		'optsOffer','optsImpact','optsMacroImpact');

catch error

	disp(error)

	disp('Saving options failed')

end

% Altered Merrit-Order Lists

try

	save([dirResults deli 'moList_altered_' ...

		datestr(simRuns(1).startTime, 'ddmmmyyyy(HHMMSS)') '-'...

		datestr(simRuns(1).endTime, 'ddmmmyyyy(HHMMSS)') '.mat'],'alteredMOList','simRuns','-v7.3');

catch error

	disp(error)

	disp('Saving Altered Merrit-Order Lists failed, try setting optsImpact.returnMOLists to true')

end

commonFunctions/smooth.m

function [c,ww] = smooth(varargin)
%SMOOTH Smooth data.
% Z = SMOOTH(Y) smooths data Y using a 5-point moving average.
%
% Z = SMOOTH(Y,SPAN) smooths data Y using SPAN as the number of points used
% to compute each element of Z.
%
% Z = SMOOTH(Y,SPAN,METHOD) smooths data Y with specified METHOD. The
% available methods are:
%
% 'moving' - Moving average (default)
% 'lowess' - Lowess (linear fit)
% 'loess' - Loess (quadratic fit)
% 'sgolay' - Savitzky-Golay
% 'rlowess' - Robust Lowess (linear fit)
% 'rloess' - Robust Loess (quadratic fit)
%
% Z = SMOOTH(Y,METHOD) uses the default SPAN 5.
%
% Z = SMOOTH(Y,SPAN,'sgolay',DEGREE) and Z = SMOOTH(Y,'sgolay',DEGREE)
% additionally specify the degree of the polynomial to be used in the
% Savitzky-Golay method. The default DEGREE is 2. DEGREE must be smaller
% than SPAN.
%
% Z = SMOOTH(X,Y,...) additionally specifies the X coordinates. If X is
% not provided, methods that require X coordinates assume X = 1:N, where
% N is the length of Y.
%
% Notes:
% 1. When X is given and X is not uniformly distributed, the default method
% is 'lowess'. The 'moving' method is not recommended.
%
% 2. For the 'moving' and 'sgolay' methods, SPAN must be odd.
% If an even SPAN is specified, it is reduced by 1.
%
% 3. If SPAN is greater than the length of Y, it is reduced to the
% length of Y.
%
% 4. In the case of (robust) lowess and (robust) loess, it is also
% possible to specify the SPAN as a percentage of the total number
% of data points. When SPAN is less than or equal to 1, it is
% treated as a percentage.
%
% For example:
%
% Z = SMOOTH(Y) uses the moving average method with span 5 and
% X=1:length(Y).
%
% Z = SMOOTH(Y,7) uses the moving average method with span 7 and
% X=1:length(Y).
%
% Z = SMOOTH(Y,'sgolay') uses the Savitzky-Golay method with DEGREE=2,
% SPAN = 5, X = 1:length(Y).
%
% Z = SMOOTH(X,Y,'lowess') uses the lowess method with SPAN=5.
%
% Z = SMOOTH(X,Y,SPAN,'rloess') uses the robust loess method.
%
% Z = SMOOTH(X,Y) where X is unevenly distributed uses the
% 'lowess' method with span 5.
%
% Z = SMOOTH(X,Y,8,'sgolay') uses the Savitzky-Golay method with
% span 7 (8 is reduced by 1 to make it odd).
%
% Z = SMOOTH(X,Y,0.3,'loess') uses the loess method where span is
% 30% of the data, i.e. span = ceil(0.3*length(Y)).
%
% See also SPLINE.

% Copyright 2001-2005 The MathWorks, Inc.
% $Revision: 1.17.4.9 $ $Date: 2005/06/21 19:20:49 $

if nargin < 1
 error('curvefit:smooth:needMoreArgs', ...
 'SMOOTH needs at least one argument.');
end

if nargout > 1 % Called from the GUI cftool
 ws = warning('off', 'all'); % turn warning off and record the previous warning state.
 [lw,lwid] = lastwarn;
 lastwarn('');
else
 ws = warning('query','all'); % Leave warning state alone but save it so resets are no-ops.
end

% is x given as the first argument?
if nargin==1 || (nargin > 1 && (length(varargin{2})==1 || ischar(varargin{2})))
 % smooth(Y) | smooth(Y,span,...) | smooth(Y,method,...)
 is_x = 0; % x is not given
 y = varargin{1};
 y = y(:);
 x = (1:length(y))';
else % smooth(X,Y,...)
 is_x = 1;
 y = varargin{2};
 x = varargin{1};
 y = y(:);
 x = x(:);
end

% is span given?
span = [];
if nargin == 1+is_x || ischar(varargin{2+is_x})
 % smooth(Y), smooth(X,Y) || smooth(X,Y,method,..), smooth(Y,method)
 is_span = 0;
else
 % smooth(...,SPAN,...)
 is_span = 1;
 span = varargin{2+is_x};
end

% is method given?
method = [];
if nargin >= 2+is_x+is_span
 % smooth(...,Y,method,...) | smooth(...,Y,span,method,...)
 method = varargin{2+is_x+is_span};
end

t = length(y);
if t == 0
 c = y;
 ww = '';
 if nargout > 1
 ww = lastwarn;
 lastwarn(lw,lwid);
 warning(ws); % turn warning back to the previous state.
 end
 return
elseif length(x) ~= t
 warning(ws); % reset warn state before erroring
 error('curvefit:smooth:XYmustBeSameLength',...
 'X and Y must be the same length.');
end

if isempty(method)
 diffx = diff(x);
 if uniformx(diffx,x,y)
 method = 'moving'; % uniformly distributed X.
 else
 method = 'lowess';
 end
end

% realize span
if span <= 0
 warning(ws); % reset warn state before erroring
 error('curvefit:smooth:spanMustBePositive', ...
 'SPAN must be positive.');
end
if span < 1, span = ceil(span*t); end % percent convention
if isempty(span), span = 5; end % smooth(Y,[],method)

idx = 1:t;

sortx = any(diff(isnan(x))<0); % if NaNs not all at end
if sortx || any(diff(x)<0) % sort x
 [x,idx] = sort(x);
 y = y(idx);
end

c = repmat(NaN,size(y));
ok = ~isnan(x);
switch method
 case 'moving'
 c(ok) = moving(x(ok),y(ok),span);
 case {'lowess','loess','rlowess','rloess'}
 robust = 0;
 iter = 5;
 if method(1)=='r'
 robust = 1;
 method = method(2:end);
 end
 c(ok) = lowess(x(ok),y(ok),span, method,robust,iter);
 case 'sgolay'
 if nargin >= 3+is_x+is_span
 degree = varargin{3+is_x+is_span};
 else
 degree = 2;
 end
 if degree < 0 || degree ~= floor(degree) || degree >= span
 warning(ws); % reset warn state before erroring
 error('curvefit:smooth:invalidDegree', ...
 'Degree must be an integer between 0 and span-1.');
 end
 c(ok) = sgolay(x(ok),y(ok),span,degree);
 otherwise
 warning(ws); % reset warn state before erroring
 error('curvefit:smooth:unrecognizedMethod', ...
 'SMOOTH: Unrecognized method.');
end

c(idx) = c;

if nargout > 1
 ww = lastwarn;
 lastwarn(lw,lwid);
 warning(ws); % turn warning back to the previous state.
end

%--
function c = moving(x,y, span)
% moving average of the data.

ynan = isnan(y);
span = floor(span);
n = length(y);
span = min(span,n);
width = span-1+mod(span,2); % force it to be odd
xreps = any(diff(x)==0);
if width==1 && ~xreps && ~any(ynan), c = y; return; end
if ~xreps && ~any(ynan)
 % simplest method for most common case
 c = filter(ones(width,1)/width,1,y);
 cbegin = cumsum(y(1:width-2));
 cbegin = cbegin(1:2:end)./(1:2:(width-2))';
 cend = cumsum(y(n:-1:n-width+3));
 cend = cend(end:-2:1)./(width-2:-2:1)';
 c = [cbegin;c(width:end);cend];
elseif ~xreps
 % with no x repeats, can take ratio of two smoothed sequences
 yy = y;
 yy(ynan) = 0;
 nn = double(~ynan);
 ynum = moving(x,yy,span);
 yden = moving(x,nn,span);
 c = ynum ./ yden;
else
 % with some x repeats, loop
 notnan = ~ynan;
 yy = y;
 yy(ynan) = 0;
 c = zeros(n,1);
 for i=1:n
 if i>1 && x(i)==x(i-1)
 c(i) = c(i-1);
 continue;
 end
 R = i; % find rightmost value with same x
 while(R<n && x(R+1)==x(R))
 R = R+1;
 end
 hf = ceil(max(0,(span - (R-i+1))/2)); % need this many more on each side
 hf = min(min(hf,(i-1)), (n-R));
 L = i-hf; % find leftmost point needed
 while(L>1 && x(L)==x(L-1))
 L = L-1;
 end
 R = R+hf; % find rightmost point needed
 while(R<n && x(R)==x(R+1))
 R = R+1;
 end
 c(i) = sum(yy(L:R)) / sum(notnan(L:R));
 end
end

%--
function c = lowess(x,y, span, method, robust, iter)
% LOWESS Smooth data using Lowess or Loess method.
%
% The difference between LOWESS and LOESS is that LOWESS uses a
% linear model to do the local fitting whereas LOESS uses a
% quadratic model to do the local fitting. Some other software
% may not have LOWESS, instead, they use LOESS with order 1 or 2 to
% represent these two smoothing methods.
% Reference: "Trimmed resistant weighted scatterplot smooth" by
% Matthew C Hutcheson.

n = length(y);
span = floor(span);
span = min(span,n);
c = y;
if span == 1
 return;
end

useLoess = false;
if isequal(method,'loess')
 useLoess = true;
end

diffx = diff(x);

% For problems where x is uniform, there's a faster way
isuniform = uniformx(diffx,x,y);
if isuniform
 % For uniform data, an even span actually covers an odd number of
 % points. For example, the four closest points to 5 in the
 % sequence 1:10 are {3,4,5,6}, but 7 is as close as 3.
 % Therfore force an odd span.
 span = 2*floor(span/2) + 1;

 c = unifloess(y,span,useLoess);
 if ~robust || span<=2
 return;
 end
end

% Turn off warnings when called from command line (already off if called from
% cftool).
ws = warning('off', 'all'); % save warning state
[lastwarnmsg,lastwarnid]=lastwarn; % save last warning

ynan = isnan(y);
anyNans = any(ynan(:));
seps = sqrt(eps);
theDiffs = [1; diffx; 1];

if isuniform
 % We've already computed the non-robust smooth, so in preparation for
 % the robust smooth, compute the following arrays directly
 halfw = floor(span/2);
 lbound = max(1, min(n-span+1, (1:n)-halfw));
 rbound = max(span, min(n, (1:n)+halfw));
 dmaxv = repmat(halfw,1,n);
 dmaxv(1:halfw) = span-(1:halfw);
 dmaxv(end:-1:end-halfw+1) = dmaxv(1:halfw);
 x = (1:numel(x))';
else
 if robust
 % pre-allocate space for lower and upper indices for each fit,
 % to avoid re-computing this information in robust iterations
 lbound = zeros(n,1);
 rbound = zeros(n,1);
 dmaxv = zeros(n,1);
 end

 % Compute the non-robust smooth for non-uniform x
 for i=1:n
 % if x(i) and x(i-1) are equal we just use the old value.
 if theDiffs(i) == 0
 c(i) = c(i-1);
 if robust
 lbound(i) = lbound(i-1);
 rbound(i) = rbound(i-1);
 dmaxv(i) = dmaxv(i-1);
 end
 continue;
 end
 % calculate how far we have to look on either side
 left = max(1,i-span+1);
 right = min(n,i+span-1);
 % now see if we have any equal values that we need to take into account
 while left > 0 && theDiffs(left) == 0
 left = left-1;
 end
 while right <= n && theDiffs(right+1) == 0
 right = right+1;
 end

 mx = x(i); % center around current point to improve conditioning
 % look at the span interval around x(i)
 d = abs(x(left:right)-mx);
 [dsort,idx] = sort(d);
 idx = idx +left-1; % add back left value

 if anyNans
 idx = idx(dsort<=dsort(span) & ~ynan(idx));
 else
 idx = idx(dsort<=dsort(span));
 end

 if isempty(idx)
 c(i) = NaN;
 continue
 end
 x1 = x(idx)-mx;
 y1 = y(idx);
 dsort = d(idx-left+1);
 dmax = dsort(end);
 if dmax==0, dmax = 1; end
 if robust
 lbound(i) = min(idx);
 rbound(i) = max(idx);
 dmaxv(i) = dmax;
 end

 weight = (1 - (dsort/dmax).^3).^1.5; % tri-cubic weight
 if all(weight<seps)
 weight(:) = 1; % if all weights are 0, just skip weighting
 end

 v = [ones(size(x1)) x1];
 if useLoess
 v = [v x1.*x1];
 end

 v = weight(:,ones(1,size(v,2))).*v;
 y1 = weight.*y1;
 if size(v,1)==size(v,2)
 % Square v may give infs in the \ solution, so force least squares
 b = [v;zeros(1,size(v,2))]\[y1;0];
 else
 b = v\y1;
 end
 c(i) = b(1);
 end
end

% now that we have a non-robust fit, we can compute the residual and do
% the robust fit if required
maxabsyXeps = max(abs(y))*eps;
if robust
 for k = 1:iter
 r = y-c;
 for i=1:n
 if i>1 && x(i)==x(i-1)
 c(i) = c(i-1);
 continue;
 end
 if isnan(c(i)), continue; end
 idx = lbound(i):rbound(i);
 if anyNans
 idx = idx(~ynan(idx));
 end
 x1 = x(idx);
 mx = x(i);
 x1 = x1-mx;
 dsort = abs(x1);
 y1 = y(idx);
 r1 = r(idx);

 weight = (1 - (dsort/dmaxv(i)).^3).^1.5; % tri-cubic weight
 if all(weight<seps)
 weight(:) = 1; % if all weights 0, just skip weighting
 end

 v = [ones(size(x1)) x1];
 if useLoess
 v = [v x1.*x1];
 end

 % Modify the weights based on x values by mutliplying them by
 % robust weights. These are computed using the median absolute
 % deviation of all points given positive weight based on x.
 mask = (weight>0);
 rmed = median(r1(mask));
 r1 = abs(r1-rmed);
 mad = median(r1(mask));
 if mad > maxabsyXeps
 rweight = r1./(6*mad);
 id = (rweight<=1);
 rweight(~id) = 0;
 rweight(id) = (1-rweight(id).*rweight(id));
 weight = weight.*rweight;
 end

 v = weight(:,ones(1,size(v,2))).*v;
 y1 = weight.*y1;
 if size(v,1)==size(v,2)
 % Square v may give infs in the \ solution, so force least squares
 b = [v;zeros(1,size(v,2))]\[y1;0];
 else
 b = v\y1;
 end
 c(i) = b(1);
 end
 end
end

lastwarn(lastwarnmsg,lastwarnid);
warning(ws);

%--
function c=sgolay(x,y,f,k)
% savitziki-golay smooth
% (x,y) are given data. f is the frame length to be taken, should
% be an odd number. k is the degree of polynomial filter. It should
% be less than f.

% Reference: Orfanidis, S.J., Introduction to Signal Processing,
% Prentice-Hall, Englewood Cliffs, NJ, 1996.

n = length(x);
f = floor(f);
f = min(f,n);
f = f-mod(f-1,2); % will substract 1 if frame is even.
diffx = diff(x);
notnan = ~isnan(y);
nomissing = all(notnan);
if f <= k && all(diffx>0) && nomissing, c = y; return; end
hf = (f-1)/2; % half frame length

idx = 1:n;
if any(diffx<0) % make sure x is monotonically increasing
 [x,idx]=sort(x);
 y = y(idx);
 notnan = notnan(idx);
 diffx = diff(x);
end
% note that x is sorted so max(abs(x)) must be abs(x(1)) or abs(x(end));
% already calculated diffx for monotonic case, so use it again. Only
% recalculate if we sort x.
if nomissing && uniformx(diffx,x,y)
 v = ones(f,k+1);
 t=(-hf:hf)';
 for i=1:k
 v(:,i+1)=t.^i;
 end
 [q,ignore]=qr(v,0);
 ymid = filter(q*q(hf+1,:)',1,y);
 ybegin = q(1:hf,:)*q'*y(1:f);
 yend = q((hf+2):end,:)*q'*y(n-f+1:n);
 c = [ybegin;ymid(f:end);yend];
 return;
end

% non-uniformly distributed data
c = y;

% Turn off warnings when called from command line (already off if called from
% cftool).
ws = warning('off', 'all');
[lastwarnmsg,lastwarnid]=lastwarn;

for i = 1:n
 if i>1 && x(i)==x(i-1)
 c(i) = c(i-1);
 continue
 end
 L = i; R = i; % find leftmost and rightmost values
 while(R<n && x(R+1)==x(i))
 R = R+1;
 end
 while(L>1 && x(L-1)==x(i))
 L = L-1;
 end
 HF = ceil(max(0,(f - (R-L+1))/2)); % need this many more on each side

 L = min(n-f+1,max(1,L-HF)); % find leftmost point needed
 while(L>1 && x(L)==x(L-1))
 L = L-1;
 end
 R = min(n,max(R+HF,L+f-1)); % find rightmost point needed
 while(R<n && x(R)==x(R+1))
 R = R+1;
 end

 tidx = L:R;
 tidx = tidx(notnan(tidx));
 if isempty(tidx)
 c(i) = NaN;
 continue;
 end
 q = x(tidx) - x(i); % center to improve conditioning
 vrank = 1 + sum(diff(q)>0);
 ncols = min(k+1, vrank);
 v = ones(length(q),ncols);
 for j = 1:ncols-1
 v(:,j+1) = q.^j;
 end
 if size(v,1)==size(v,2)
 % Square v may give infs in the \ solution, so force least squares
 d = [v;zeros(1,size(v,2))]\[y(tidx);0];
 else
 d = v\y(tidx);
 end
 c(i) = d(1);
end
c(idx) = c;

lastwarn(lastwarnmsg,lastwarnid);
warning(ws);

% --
function ys = unifloess(y,span,useLoess)
%UNIFLOESS Apply loess on uniformly spaced X values

y = y(:);

% Omit points at the extremes, which have zero weight
halfw = (span-1)/2; % halfwidth of entire span
d = abs((1-halfw:halfw-1)); % distances to pts with nonzero weight
dmax = halfw; % max distance for tri-cubic weight

% Set up weighted Vandermonde matrix using equally spaced X values
x1 = (2:span-1)-(halfw+1);
weight = (1 - (d/dmax).^3).^1.5; % tri-cubic weight
v = [ones(length(x1),1) x1(:)];
if useLoess
 v = [v x1(:).^2];
end
V = v .* repmat(weight',1,size(v,2));

% Do QR decomposition
[Q,ignore] = qr(V,0);

% The projection matrix is Q*Q'. We want to project onto the middle
% point, so we can take just one row of the first factor.
alpha = Q(halfw,:)*Q';

% This alpha defines the linear combination of the weighted y values that
% yields the desired smooth values. Incorporate the weights into the
% coefficients of the linear combination, then apply filter.
alpha = alpha .* weight;
ys = filter(alpha,1,y);

% We need to slide the values into the center of the array.
ys(halfw+1:end-halfw) = ys(span-1:end-1);

% Now we have taken care of everything except the end effects. Loop over
% the points where we don't have a complete span. Now the Vandermonde
% matrix has span-1 points, because only 1 has zero weight.
x1 = 1:span-1;
v = [ones(length(x1),1) x1(:)];
if useLoess
 v = [v x1(:).^2];
end
for j=1:halfw
 % Compute weights based on deviations from the jth point,
 % then compute weights and apply them as above.
 d = abs((1:span-1) - j);
 weight = (1 - (d/(span-j)).^3).^1.5;
 V = v .* repmat(weight(:),1,size(v,2));
 [Q,ignore] = qr(V,0);
 alpha = Q(j,:)*Q';
 alpha = alpha .* weight;
 ys(j) = alpha * y(1:span-1);

 % These coefficients can be applied to the other end as well
 ys(end+1-j) = alpha * y(end:-1:end-span+2);
end

% ---
function isuniform = uniformx(diffx,x,y)
%ISUNIFORM True if x is of the form a:b:c

if any(isnan(y)) || any(isnan(x))
 isuniform = false;
else
 isuniform = all(abs(diff(diffx)) <= eps*max(abs([x(1),x(end)])));
end

Functions/+Auxiliary_Functions/smooth.m

function [c,ww] = smooth(varargin)
%SMOOTH Smooth data.
% Z = SMOOTH(Y) smooths data Y using a 5-point moving average.
%
% Z = SMOOTH(Y,SPAN) smooths data Y using SPAN as the number of points used
% to compute each element of Z.
%
% Z = SMOOTH(Y,SPAN,METHOD) smooths data Y with specified METHOD. The
% available methods are:
%
% 'moving' - Moving average (default)
% 'lowess' - Lowess (linear fit)
% 'loess' - Loess (quadratic fit)
% 'sgolay' - Savitzky-Golay
% 'rlowess' - Robust Lowess (linear fit)
% 'rloess' - Robust Loess (quadratic fit)
%
% Z = SMOOTH(Y,METHOD) uses the default SPAN 5.
%
% Z = SMOOTH(Y,SPAN,'sgolay',DEGREE) and Z = SMOOTH(Y,'sgolay',DEGREE)
% additionally specify the degree of the polynomial to be used in the
% Savitzky-Golay method. The default DEGREE is 2. DEGREE must be smaller
% than SPAN.
%
% Z = SMOOTH(X,Y,...) additionally specifies the X coordinates. If X is
% not provided, methods that require X coordinates assume X = 1:N, where
% N is the length of Y.
%
% Notes:
% 1. When X is given and X is not uniformly distributed, the default method
% is 'lowess'. The 'moving' method is not recommended.
%
% 2. For the 'moving' and 'sgolay' methods, SPAN must be odd.
% If an even SPAN is specified, it is reduced by 1.
%
% 3. If SPAN is greater than the length of Y, it is reduced to the
% length of Y.
%
% 4. In the case of (robust) lowess and (robust) loess, it is also
% possible to specify the SPAN as a percentage of the total number
% of data points. When SPAN is less than or equal to 1, it is
% treated as a percentage.
%
% For example:
%
% Z = SMOOTH(Y) uses the moving average method with span 5 and
% X=1:length(Y).
%
% Z = SMOOTH(Y,7) uses the moving average method with span 7 and
% X=1:length(Y).
%
% Z = SMOOTH(Y,'sgolay') uses the Savitzky-Golay method with DEGREE=2,
% SPAN = 5, X = 1:length(Y).
%
% Z = SMOOTH(X,Y,'lowess') uses the lowess method with SPAN=5.
%
% Z = SMOOTH(X,Y,SPAN,'rloess') uses the robust loess method.
%
% Z = SMOOTH(X,Y) where X is unevenly distributed uses the
% 'lowess' method with span 5.
%
% Z = SMOOTH(X,Y,8,'sgolay') uses the Savitzky-Golay method with
% span 7 (8 is reduced by 1 to make it odd).
%
% Z = SMOOTH(X,Y,0.3,'loess') uses the loess method where span is
% 30% of the data, i.e. span = ceil(0.3*length(Y)).
%
% See also SPLINE.

% Copyright 2001-2005 The MathWorks, Inc.
% $Revision: 1.17.4.9 $ $Date: 2005/06/21 19:20:49 $

if nargin < 1
 error('curvefit:smooth:needMoreArgs', ...
 'SMOOTH needs at least one argument.');
end

if nargout > 1 % Called from the GUI cftool
 ws = warning('off', 'all'); % turn warning off and record the previous warning state.
 [lw,lwid] = lastwarn;
 lastwarn('');
else
 ws = warning('query','all'); % Leave warning state alone but save it so resets are no-ops.
end

% is x given as the first argument?
if nargin==1 || (nargin > 1 && (length(varargin{2})==1 || ischar(varargin{2})))
 % smooth(Y) | smooth(Y,span,...) | smooth(Y,method,...)
 is_x = 0; % x is not given
 y = varargin{1};
 y = y(:);
 x = (1:length(y))';
else % smooth(X,Y,...)
 is_x = 1;
 y = varargin{2};
 x = varargin{1};
 y = y(:);
 x = x(:);
end

% is span given?
span = [];
if nargin == 1+is_x || ischar(varargin{2+is_x})
 % smooth(Y), smooth(X,Y) || smooth(X,Y,method,..), smooth(Y,method)
 is_span = 0;
else
 % smooth(...,SPAN,...)
 is_span = 1;
 span = varargin{2+is_x};
end

% is method given?
method = [];
if nargin >= 2+is_x+is_span
 % smooth(...,Y,method,...) | smooth(...,Y,span,method,...)
 method = varargin{2+is_x+is_span};
end

t = length(y);
if t == 0
 c = y;
 ww = '';
 if nargout > 1
 ww = lastwarn;
 lastwarn(lw,lwid);
 warning(ws); % turn warning back to the previous state.
 end
 return
elseif length(x) ~= t
 warning(ws); % reset warn state before erroring
 error('curvefit:smooth:XYmustBeSameLength',...
 'X and Y must be the same length.');
end

if isempty(method)
 diffx = diff(x);
 if uniformx(diffx,x,y)
 method = 'moving'; % uniformly distributed X.
 else
 method = 'lowess';
 end
end

% realize span
if span <= 0
 warning(ws); % reset warn state before erroring
 error('curvefit:smooth:spanMustBePositive', ...
 'SPAN must be positive.');
end
if span < 1, span = ceil(span*t); end % percent convention
if isempty(span), span = 5; end % smooth(Y,[],method)

idx = 1:t;

sortx = any(diff(isnan(x))<0); % if NaNs not all at end
if sortx || any(diff(x)<0) % sort x
 [x,idx] = sort(x);
 y = y(idx);
end

c = repmat(NaN,size(y));
ok = ~isnan(x);
switch method
 case 'moving'
 c(ok) = moving(x(ok),y(ok),span);
 case {'lowess','loess','rlowess','rloess'}
 robust = 0;
 iter = 5;
 if method(1)=='r'
 robust = 1;
 method = method(2:end);
 end
 c(ok) = lowess(x(ok),y(ok),span, method,robust,iter);
 case 'sgolay'
 if nargin >= 3+is_x+is_span
 degree = varargin{3+is_x+is_span};
 else
 degree = 2;
 end
 if degree < 0 || degree ~= floor(degree) || degree >= span
 warning(ws); % reset warn state before erroring
 error('curvefit:smooth:invalidDegree', ...
 'Degree must be an integer between 0 and span-1.');
 end
 c(ok) = sgolay(x(ok),y(ok),span,degree);
 otherwise
 warning(ws); % reset warn state before erroring
 error('curvefit:smooth:unrecognizedMethod', ...
 'SMOOTH: Unrecognized method.');
end

c(idx) = c;

if nargout > 1
 ww = lastwarn;
 lastwarn(lw,lwid);
 warning(ws); % turn warning back to the previous state.
end

%--
function c = moving(x,y, span)
% moving average of the data.

ynan = isnan(y);
span = floor(span);
n = length(y);
span = min(span,n);
width = span-1+mod(span,2); % force it to be odd
xreps = any(diff(x)==0);
if width==1 && ~xreps && ~any(ynan), c = y; return; end
if ~xreps && ~any(ynan)
 % simplest method for most common case
 c = filter(ones(width,1)/width,1,y);
 cbegin = cumsum(y(1:width-2));
 cbegin = cbegin(1:2:end)./(1:2:(width-2))';
 cend = cumsum(y(n:-1:n-width+3));
 cend = cend(end:-2:1)./(width-2:-2:1)';
 c = [cbegin;c(width:end);cend];
elseif ~xreps
 % with no x repeats, can take ratio of two smoothed sequences
 yy = y;
 yy(ynan) = 0;
 nn = double(~ynan);
 ynum = moving(x,yy,span);
 yden = moving(x,nn,span);
 c = ynum ./ yden;
else
 % with some x repeats, loop
 notnan = ~ynan;
 yy = y;
 yy(ynan) = 0;
 c = zeros(n,1);
 for i=1:n
 if i>1 && x(i)==x(i-1)
 c(i) = c(i-1);
 continue;
 end
 R = i; % find rightmost value with same x
 while(R<n && x(R+1)==x(R))
 R = R+1;
 end
 hf = ceil(max(0,(span - (R-i+1))/2)); % need this many more on each side
 hf = min(min(hf,(i-1)), (n-R));
 L = i-hf; % find leftmost point needed
 while(L>1 && x(L)==x(L-1))
 L = L-1;
 end
 R = R+hf; % find rightmost point needed
 while(R<n && x(R)==x(R+1))
 R = R+1;
 end
 c(i) = sum(yy(L:R)) / sum(notnan(L:R));
 end
end

%--
function c = lowess(x,y, span, method, robust, iter)
% LOWESS Smooth data using Lowess or Loess method.
%
% The difference between LOWESS and LOESS is that LOWESS uses a
% linear model to do the local fitting whereas LOESS uses a
% quadratic model to do the local fitting. Some other software
% may not have LOWESS, instead, they use LOESS with order 1 or 2 to
% represent these two smoothing methods.
% Reference: "Trimmed resistant weighted scatterplot smooth" by
% Matthew C Hutcheson.

n = length(y);
span = floor(span);
span = min(span,n);
c = y;
if span == 1
 return;
end

useLoess = false;
if isequal(method,'loess')
 useLoess = true;
end

diffx = diff(x);

% For problems where x is uniform, there's a faster way
isuniform = uniformx(diffx,x,y);
if isuniform
 % For uniform data, an even span actually covers an odd number of
 % points. For example, the four closest points to 5 in the
 % sequence 1:10 are {3,4,5,6}, but 7 is as close as 3.
 % Therfore force an odd span.
 span = 2*floor(span/2) + 1;

 c = unifloess(y,span,useLoess);
 if ~robust || span<=2
 return;
 end
end

% Turn off warnings when called from command line (already off if called from
% cftool).
ws = warning('off', 'all'); % save warning state
[lastwarnmsg,lastwarnid]=lastwarn; % save last warning

ynan = isnan(y);
anyNans = any(ynan(:));
seps = sqrt(eps);
theDiffs = [1; diffx; 1];

if isuniform
 % We've already computed the non-robust smooth, so in preparation for
 % the robust smooth, compute the following arrays directly
 halfw = floor(span/2);
 lbound = max(1, min(n-span+1, (1:n)-halfw));
 rbound = max(span, min(n, (1:n)+halfw));
 dmaxv = repmat(halfw,1,n);
 dmaxv(1:halfw) = span-(1:halfw);
 dmaxv(end:-1:end-halfw+1) = dmaxv(1:halfw);
 x = (1:numel(x))';
else
 if robust
 % pre-allocate space for lower and upper indices for each fit,
 % to avoid re-computing this information in robust iterations
 lbound = zeros(n,1);
 rbound = zeros(n,1);
 dmaxv = zeros(n,1);
 end

 % Compute the non-robust smooth for non-uniform x
 for i=1:n
 % if x(i) and x(i-1) are equal we just use the old value.
 if theDiffs(i) == 0
 c(i) = c(i-1);
 if robust
 lbound(i) = lbound(i-1);
 rbound(i) = rbound(i-1);
 dmaxv(i) = dmaxv(i-1);
 end
 continue;
 end
 % calculate how far we have to look on either side
 left = max(1,i-span+1);
 right = min(n,i+span-1);
 % now see if we have any equal values that we need to take into account
 while left > 0 && theDiffs(left) == 0
 left = left-1;
 end
 while right <= n && theDiffs(right+1) == 0
 right = right+1;
 end

 mx = x(i); % center around current point to improve conditioning
 % look at the span interval around x(i)
 d = abs(x(left:right)-mx);
 [dsort,idx] = sort(d);
 idx = idx +left-1; % add back left value

 if anyNans
 idx = idx(dsort<=dsort(span) & ~ynan(idx));
 else
 idx = idx(dsort<=dsort(span));
 end

 if isempty(idx)
 c(i) = NaN;
 continue
 end
 x1 = x(idx)-mx;
 y1 = y(idx);
 dsort = d(idx-left+1);
 dmax = dsort(end);
 if dmax==0, dmax = 1; end
 if robust
 lbound(i) = min(idx);
 rbound(i) = max(idx);
 dmaxv(i) = dmax;
 end

 weight = (1 - (dsort/dmax).^3).^1.5; % tri-cubic weight
 if all(weight<seps)
 weight(:) = 1; % if all weights are 0, just skip weighting
 end

 v = [ones(size(x1)) x1];
 if useLoess
 v = [v x1.*x1];
 end

 v = weight(:,ones(1,size(v,2))).*v;
 y1 = weight.*y1;
 if size(v,1)==size(v,2)
 % Square v may give infs in the \ solution, so force least squares
 b = [v;zeros(1,size(v,2))]\[y1;0];
 else
 b = v\y1;
 end
 c(i) = b(1);
 end
end

% now that we have a non-robust fit, we can compute the residual and do
% the robust fit if required
maxabsyXeps = max(abs(y))*eps;
if robust
 for k = 1:iter
 r = y-c;
 for i=1:n
 if i>1 && x(i)==x(i-1)
 c(i) = c(i-1);
 continue;
 end
 if isnan(c(i)), continue; end
 idx = lbound(i):rbound(i);
 if anyNans
 idx = idx(~ynan(idx));
 end
 x1 = x(idx);
 mx = x(i);
 x1 = x1-mx;
 dsort = abs(x1);
 y1 = y(idx);
 r1 = r(idx);

 weight = (1 - (dsort/dmaxv(i)).^3).^1.5; % tri-cubic weight
 if all(weight<seps)
 weight(:) = 1; % if all weights 0, just skip weighting
 end

 v = [ones(size(x1)) x1];
 if useLoess
 v = [v x1.*x1];
 end

 % Modify the weights based on x values by mutliplying them by
 % robust weights. These are computed using the median absolute
 % deviation of all points given positive weight based on x.
 mask = (weight>0);
 rmed = median(r1(mask));
 r1 = abs(r1-rmed);
 mad = median(r1(mask));
 if mad > maxabsyXeps
 rweight = r1./(6*mad);
 id = (rweight<=1);
 rweight(~id) = 0;
 rweight(id) = (1-rweight(id).*rweight(id));
 weight = weight.*rweight;
 end

 v = weight(:,ones(1,size(v,2))).*v;
 y1 = weight.*y1;
 if size(v,1)==size(v,2)
 % Square v may give infs in the \ solution, so force least squares
 b = [v;zeros(1,size(v,2))]\[y1;0];
 else
 b = v\y1;
 end
 c(i) = b(1);
 end
 end
end

lastwarn(lastwarnmsg,lastwarnid);
warning(ws);

%--
function c=sgolay(x,y,f,k)
% savitziki-golay smooth
% (x,y) are given data. f is the frame length to be taken, should
% be an odd number. k is the degree of polynomial filter. It should
% be less than f.

% Reference: Orfanidis, S.J., Introduction to Signal Processing,
% Prentice-Hall, Englewood Cliffs, NJ, 1996.

n = length(x);
f = floor(f);
f = min(f,n);
f = f-mod(f-1,2); % will substract 1 if frame is even.
diffx = diff(x);
notnan = ~isnan(y);
nomissing = all(notnan);
if f <= k && all(diffx>0) && nomissing, c = y; return; end
hf = (f-1)/2; % half frame length

idx = 1:n;
if any(diffx<0) % make sure x is monotonically increasing
 [x,idx]=sort(x);
 y = y(idx);
 notnan = notnan(idx);
 diffx = diff(x);
end
% note that x is sorted so max(abs(x)) must be abs(x(1)) or abs(x(end));
% already calculated diffx for monotonic case, so use it again. Only
% recalculate if we sort x.
if nomissing && uniformx(diffx,x,y)
 v = ones(f,k+1);
 t=(-hf:hf)';
 for i=1:k
 v(:,i+1)=t.^i;
 end
 [q,ignore]=qr(v,0);
 ymid = filter(q*q(hf+1,:)',1,y);
 ybegin = q(1:hf,:)*q'*y(1:f);
 yend = q((hf+2):end,:)*q'*y(n-f+1:n);
 c = [ybegin;ymid(f:end);yend];
 return;
end

% non-uniformly distributed data
c = y;

% Turn off warnings when called from command line (already off if called from
% cftool).
ws = warning('off', 'all');
[lastwarnmsg,lastwarnid]=lastwarn;

for i = 1:n
 if i>1 && x(i)==x(i-1)
 c(i) = c(i-1);
 continue
 end
 L = i; R = i; % find leftmost and rightmost values
 while(R<n && x(R+1)==x(i))
 R = R+1;
 end
 while(L>1 && x(L-1)==x(i))
 L = L-1;
 end
 HF = ceil(max(0,(f - (R-L+1))/2)); % need this many more on each side

 L = min(n-f+1,max(1,L-HF)); % find leftmost point needed
 while(L>1 && x(L)==x(L-1))
 L = L-1;
 end
 R = min(n,max(R+HF,L+f-1)); % find rightmost point needed
 while(R<n && x(R)==x(R+1))
 R = R+1;
 end

 tidx = L:R;
 tidx = tidx(notnan(tidx));
 if isempty(tidx)
 c(i) = NaN;
 continue;
 end
 q = x(tidx) - x(i); % center to improve conditioning
 vrank = 1 + sum(diff(q)>0);
 ncols = min(k+1, vrank);
 v = ones(length(q),ncols);
 for j = 1:ncols-1
 v(:,j+1) = q.^j;
 end
 if size(v,1)==size(v,2)
 % Square v may give infs in the \ solution, so force least squares
 d = [v;zeros(1,size(v,2))]\[y(tidx);0];
 else
 d = v\y(tidx);
 end
 c(i) = d(1);
end
c(idx) = c;

lastwarn(lastwarnmsg,lastwarnid);
warning(ws);

% --
function ys = unifloess(y,span,useLoess)
%UNIFLOESS Apply loess on uniformly spaced X values

y = y(:);

% Omit points at the extremes, which have zero weight
halfw = (span-1)/2; % halfwidth of entire span
d = abs((1-halfw:halfw-1)); % distances to pts with nonzero weight
dmax = halfw; % max distance for tri-cubic weight

% Set up weighted Vandermonde matrix using equally spaced X values
x1 = (2:span-1)-(halfw+1);
weight = (1 - (d/dmax).^3).^1.5; % tri-cubic weight
v = [ones(length(x1),1) x1(:)];
if useLoess
 v = [v x1(:).^2];
end
V = v .* repmat(weight',1,size(v,2));

% Do QR decomposition
[Q,ignore] = qr(V,0);

% The projection matrix is Q*Q'. We want to project onto the middle
% point, so we can take just one row of the first factor.
alpha = Q(halfw,:)*Q';

% This alpha defines the linear combination of the weighted y values that
% yields the desired smooth values. Incorporate the weights into the
% coefficients of the linear combination, then apply filter.
alpha = alpha .* weight;
ys = filter(alpha,1,y);

% We need to slide the values into the center of the array.
ys(halfw+1:end-halfw) = ys(span-1:end-1);

% Now we have taken care of everything except the end effects. Loop over
% the points where we don't have a complete span. Now the Vandermonde
% matrix has span-1 points, because only 1 has zero weight.
x1 = 1:span-1;
v = [ones(length(x1),1) x1(:)];
if useLoess
 v = [v x1(:).^2];
end
for j=1:halfw
 % Compute weights based on deviations from the jth point,
 % then compute weights and apply them as above.
 d = abs((1:span-1) - j);
 weight = (1 - (d/(span-j)).^3).^1.5;
 V = v .* repmat(weight(:),1,size(v,2));
 [Q,ignore] = qr(V,0);
 alpha = Q(j,:)*Q';
 alpha = alpha .* weight;
 ys(j) = alpha * y(1:span-1);

 % These coefficients can be applied to the other end as well
 ys(end+1-j) = alpha * y(end:-1:end-span+2);
end

% ---
function isuniform = uniformx(diffx,x,y)
%ISUNIFORM True if x is of the form a:b:c

if any(isnan(y)) || any(isnan(x))
 isuniform = false;
else
 isuniform = all(abs(diff(diffx)) <= eps*max(abs([x(1),x(end)])));
end

Functions/+Economic_Impact/sortMOListCAPPrice.m

function [MOListSorted] = sortMOListCAPPrice_New(capacityPrice, capacity, capacityCum, energyPrice)

% Function sorts the Merrit-Order-List by capacity price

% Input:

% sortMOListCAPPRice(capacityPrice, capacity, capacityCum, energyPrice)

%

% v1.1 (26.02.2014) by Malte Jansen @ Fraunhofer IWES

MOSort(:,1)= capacityPrice;

MOSort(:,2)= capacity;

MOSort(:,3)= capacityCum;

MOSort(:,4)= energyPrice;

MOSort = sortrows(MOSort, -1);

MOListSorted.capacityPrice = MOSort(:,1);

MOListSorted.capacity = MOSort(:,2);

MOListSorted.capacityCum = MOSort(:,3);

MOListSorted.energyPrice = MOSort(:,4);

MOListSorted.capacityCum = cumsum(MOListSorted.capacity);

Functions/+Economic_Impact/sortMOListCAPPrice_New.m

function [MOListSorted] = sortMOListCAPPrice_New(capacityPrice, capacity, capacityCum, energyPrice)

% Function sorts the Merrit-Order-List by capacity price

% Input:

% sortMOListCAPPRice(capacityPrice, capacity, capacityCum, energyPrice)

%

% v1.1 (26.02.2014) by Malte Jansen @ Fraunhofer IWES

MOSort(:,1)= capacityPrice;

MOSort(:,2)= capacity;

MOSort(:,3)= capacityCum;

MOSort(:,4)= energyPrice;

MOSort = sortrows(MOSort, 1);

MOListSorted.capacityPrice = MOSort(:,1);

MOListSorted.capacity = MOSort(:,2);

MOListSorted.capacityCum = MOSort(:,3);

MOListSorted.energyPrice = MOSort(:,4);

MOListSorted.capacityCum = cumsum(MOListSorted.capacity);

Functions/+Economic_Impact/sortMOListNRGPrice.m

function [MOListSorted_capacityPrice,MOListSorted_capacity,MOListSorted_capacityCum,MOListSorted_energyPrice,MOListSorted_isWindTendered] = sortMOListNRGPrice(capacityPrice, capacity, capacityCum, energyPrice, isWindTendered)

% Function sorts the Merrit-Order-List by energy price

% Input:

% sortMOListNRGPrice(capacityPrice, capacity, capacityCum, energyPrice)

%

% v1.0 (22.12.2012) by Malte Jansen @ Fraunhofer IWES

% v1.1 (25.06.2013) by Malte Jansen @ Fraunhofer IWES

	MOSort(:,1)= capacityPrice;

	MOSort(:,2)= capacity;

	MOSort(:,3)= capacityCum;

	MOSort(:,4)= energyPrice;

	MOSort(:,5)= isWindTendered;

	

	MOSort = sortrows(MOSort, 4);

	

	MOListSorted_capacityPrice = MOSort(:,1);

	MOListSorted_capacity = MOSort(:,2);

	MOListSorted_capacityCum = MOSort(:,3);

	MOListSorted_energyPrice = MOSort(:,4);

	MOListSorted_isWindTendered = MOSort(:,5);

	

commonFunctions/strjoin.m

function str = strjoin(sep, varargin)

%STRJOIN Join strings in a cell array.

%

% STRJOIN(SEP, STR1, STR2, ...) joins the separate strings STR1, STR2, ...

% into a single string with fields separated by SEP, and returns that new

% string.

% Examples:

%

% strjoin('-by-', '2', '3', '4')

%

% returns '2-by-3-by-4'.

%

% list = {'fee', 'fie', 'foe.m'};

% strjoin('/', list{:}).

%

% returns 'fee/fie/foe.m'.

%

% This function is inspired by Perl' function join().

% Author: Peter John Acklam

% Time-stamp: 2003-10-13 11:13:55 +0200

% E-mail: pjacklam@online.no

% URL: http://home.online.no/~pjacklam

 % Check number of input arguments.

 error(nargchk(1, Inf, nargin));

 % Quick exit if output will be empty.

 if nargin == 1

 str = '';

 return

 end

 if isempty(sep)

 % special case: empty separator so use simple string concatenation

 str = [varargin{:}];

 else

 % varargin is a row vector, so fill second column with separator (using scalar

 % expansion) and concatenate but strip last separator

 varargin(2,:) = { sep };

 str = [varargin{1:end-1}];

 end

Functions/+Auxiliary_Functions/strjoin.m

function str = strjoin(sep, varargin)

%STRJOIN Join strings in a cell array.

%

% STRJOIN(SEP, STR1, STR2, ...) joins the separate strings STR1, STR2, ...

% into a single string with fields separated by SEP, and returns that new

% string.

% Examples:

%

% strjoin('-by-', '2', '3', '4')

%

% returns '2-by-3-by-4'.

%

% list = {'fee', 'fie', 'foe.m'};

% strjoin('/', list{:}).

%

% returns 'fee/fie/foe.m'.

%

% This function is inspired by Perl' function join().

% Author: Peter John Acklam

% Time-stamp: 2003-10-13 11:13:55 +0200

% E-mail: pjacklam@online.no

% URL: http://home.online.no/~pjacklam

 % Check number of input arguments.

 error(nargchk(1, Inf, nargin));

 % Quick exit if output will be empty.

 if nargin == 1

 str = '';

 return

 end

 if isempty(sep)

 % special case: empty separator so use simple string concatenation

 str = [varargin{:}];

 else

 % varargin is a row vector, so fill second column with separator (using scalar

 % expansion) and concatenate but strip last separator

 varargin(2,:) = { sep };

 str = [varargin{1:end-1}];

 end

commonFunctions/styleplot.m

function [hFig, ax, hPlot] = styleplot(fig, format, style)

%UNTITLED3 Summary of this function goes here

% Detailed explanation goes here

%{

fig:

style: 'word', 'ppp', 'wordwide'...

format: styleplot_format file

%}

% load format-file

load (format);

% get FHG-Colors

fhg=getFHGColors();

% create figure and set width and height

hFig=figure();

set(0,'units','pixels')

Pixels= get(0,'screensize');

set(0,'units','inches')

Inches= get(0,'screensize');

Res = Pixels./Inches;

Res=Res(4);

if isfield(fig,'width')

 width_cm=fig.width;

elseif isfield(fig,'width_columns')

 width_cm=eval(['format.',style,'.width(',num2str(fig.width_columns),')']);

else

 width_cm=eval(['format.',style,'.width(format.',style,'.width_columns)']);

end

if isfield(fig,'height')

 height_cm=fig.height;

else

 height_cm=eval(['format.',style,'.height']);

end

fig_width_px=round(width_cm*Res/2.54);

fig_height_px=round(height_cm*Res/2.54);

set(hFig, 'Position', [100 100 fig_width_px fig_height_px])

% get margins

margin_hor=eval(['format.',style,'.margin_hor/width_cm']);

margin_ver=eval(['format.',style,'.margin_ver/width_cm']);

% set figure's background color

eval(['set(hFig, ''color'', format.',style,'.background_color)'])

% plot

[num_ver_subplots, num_hor_subplots]=size(fig.subplot);

num_subplot=0;

for k=1:num_ver_subplots

 for i=1:num_hor_subplots

 num_subplot=num_subplot+1;

 ax(num_subplot)=axes();

 hold on

 isheatmap=0;

		allC = cell(0);

		for l=1:length(fig.subplot{k,i}.plot);

			C = cell(0); % reset color for legend

			% get color for plot

 if isfield(fig.subplot{k, i}.plot{l},'color')

 color=eval(['fhg.',fig.subplot{k, i}.plot{l}.color]);

 else

 color=eval(['fhg.',format.word.color{floor((l-1)/3)+1}]);

 if mod(l,3)==2

 color=[1,1,1]-([1,1,1]-color)*0.7;

 elseif mod(l,3)==0

 color=[1,1,1]-([1,1,1]-color)*0.4;

 end

 end

			if isfield(fig.subplot{k, i},'xgrid')

				xgrid = fig.subplot{k, i}.xgrid;

			else

				xgrid = 'off';

			end

			if isfield(fig.subplot{k, i},'ygrid')

				ygrid = 'off';

			else

				ygrid = eval(['format.',style,'.ygrid']);

			end

			

			

			zgrid = 'off';

 % if style is given then plot in this style, if not use normal plot

 if isfield(fig.subplot{k, i}.plot{l},'style')

 % plot

 if strcmp(fig.subplot{k, i}.plot{l}.style,'plot')

					if isfield(fig.subplot{k, i}.plot{l}, 'linewidth')

						linewidth=fig.subplot{k, i}.plot{l}.linewidth;

					else

						linewidth=eval(['format.',style,'.linewidth']);

					end

					

					if isfield(fig.subplot{k, i}.plot{l}, 'linestyle')

						linestyle=fig.subplot{k, i}.plot{l}.linestyle;

					else

						linestyle=eval(['format.',style,'.linestyle']);

					end

 if isfield(fig.subplot{k, i}.plot{l},'break')

 x = fig.subplot{k, i}.plot{l}.x;

 y = fig.subplot{k, i}.plot{l}.y;

 break_start = fig.subplot{k, i}.plot{l}.break(1);

 break_end = fig.subplot{k, i}.plot{l}.break(2);

 x(y>y_break_start & y <y_break_end)=[];

 y(y>y_break_start & y <y_break_end)=[];

 % leave room for the y_break_end

 [junk,p]=min(y>=y_break_end);

 if p>y_break_end

 x=[x(1:p-1) NaN x(p:end)];

 y=[y(1:p-1) y_break_mid y(p:end)];

 end;

 % remap

 y2=y;

 y2(y2>=y_break_end)=y2(y2>=y_break_end)-y_break_mid;

 % plot

 h=plot(x,y2,'.');

 marker=fig.subplot{k, i}.plot{l}.markerstyle;

 markersize=fig.subplot{k, i}.plot{l}.markersize;

 plot(fig.subplot{k, i}.plot{l}.x,fig.subplot{k, i}.plot{l}.y,'lineWidth', linewidth, 'lineStyle', linestyle, 'Color', color, 'Marker', marker, 'MarkerSize', markersize)

 else

 if isfield(fig.subplot{k, i}.plot{l},'markerstyle')

 marker=fig.subplot{k, i}.plot{l}.markerstyle;

 markersize=fig.subplot{k, i}.plot{l}.markersize;

							if isfield(fig.subplot{k, i}.plot{l},'markerfacecolor')

								markerfacecolor=eval(['fhg.',fig.subplot{k, i}.plot{l}.markerfacecolor]);

							else

								markerfacecolor=color;

							end

 hPlot(k,i,l) = plot(fig.subplot{k, i}.plot{l}.x,fig.subplot{k, i}.plot{l}.y,'lineWidth', linewidth, 'lineStyle', linestyle, 'Color', color, 'Marker', marker, 'MarkerSize', markersize, 'MarkerFaceColor', markerfacecolor);

 elseif eval(['strcmp(format.',style,'.marker,''on'')'])

 marker=eval(['format.',style,'.markerstyle']);

 markersize=eval(['format.',style,'.markersize']);

 hPlot(k,i,l) = plot(fig.subplot{k, i}.plot{l}.x,fig.subplot{k, i}.plot{l}.y,'lineWidth', linewidth, 'lineStyle', linestyle, 'Color', color, 'Marker', marker, 'MarkerSize', markersize);

 else

 hPlot(k,i,l) = plot(fig.subplot{k, i}.plot{l}.x,fig.subplot{k, i}.plot{l}.y,'lineWidth', linewidth, 'lineStyle', linestyle, 'Color', color);

						end

						

% 						if isfield(fig.subplot{k, i}.plot{l}, 'barcolor')

% 							for n=1:length(P)

% 								C{n} = eval(['fhg.' ,fig.subplot{k, i}.plot{l}.barcolor{n}]);

% 								C(:,l) = [C(:,l);eval(['fhg.' ,fig.subplot{k, i}.plot{l}.barcolor{n}])];

% 							end

% 						else

% 							for n=1:length(P)

% 								C{n} = [1,1,1]-([1,1,1]-color)* (1-(n-1)/length(P));

% 							end

% 						end

						

% if isfield(fig.subplot{1,1}, 'xdatetick_format') && l==1

% 							xticks=fig.subplot{k, i}.plot{l}.x;

% 							tickVec = datevec(xticks);

% 							if any(strfind(fig.subplot{1,1}.xdatetick_format,'y'))

% 								yearsTick = true;else yearsTick = false;end

% 							if any(strfind(fig.subplot{1,1}.xdatetick_format,'m')) ~= 0

% 								monthsTick = true;else monthsTick = false;end

% 							if any(strfind(fig.subplot{1,1}.xdatetick_format,'d')) ~= 0

% 								daysTick = true;else daysTick = false;end

% 							if any(strfind(fig.subplot{1,1}.xdatetick_format,'H')) ~= 0

% 								hoursTick = true;else hoursTick = false;end

% 							

% 							if yearsTick && ~monthsTick

% 								xticks = unique(floor(xticks(all(tickVec(:,2:3) == 1,2),:)));

% 							end

% 							if yearsTick && monthsTick && ~daysTick

% 								xticks = unique(floor(xticks(all(tickVec(:,3) == 1,2),:)));

% 							end

% 							if yearsTick && monthsTick && daysTick && ~hoursTick

% 								xticks = unique(floor(xticks(all(tickVec(:,4) == 1,2),:)));

% 							end

% 							if yearsTick && monthsTick && daysTick && hoursTick

% 								xticks = unique(xticks(all(tickVec(:,5) == 0,2),:));

% 							end

% 							set(gca,'XTick',xticks)

% 							set(gca,'XTickLabel',datestr(xticks,fig.subplot{1,1}.xdatetick_format))

% 							xtick_label=get(gca,'xTickLabel');

% end

% if isfield(fig.subplot{1,1}, 'ydatetick_format') && l==1

% 							yticks=fig.subplot{k, i}.plot{l}.x;

% 							tickVec = datevec(yticks);

% 							if any(strfind(fig.subplot{1,1}.xdatetick_format,'y'))

% 								yearsTick = true;else yearsTick = false;end

% 							if any(strfind(fig.subplot{1,1}.xdatetick_format,'m')) ~= 0

% 								monthsTick = true;else monthsTick = false;end

% 							if any(strfind(fig.subplot{1,1}.xdatetick_format,'d')) ~= 0

% 								daysTick = true;else daysTick = false;end

% 							if any(strfind(fig.subplot{1,1}.xdatetick_format,'H')) ~= 0

% 								hoursTick = true;else hoursTick = false;end

% 							

% 							if yearsTick && ~monthsTick

% 								yticks = unique(floor(yticks(all(tickVec(:,2:3) == 1,2),:)));

% 							end

% 							if yearsTick && monthsTick

% 								yticks = unique(floor(yticks(all(tickVec(:,3) == 1,2),:)));

% 							end

% 							if yearsTick && monthsTick && daysTick

% 								yticks = unique(floor(yticks(all(tickVec(:,4) == 1,2),:)));

% 							end

% 							if yearsTick && monthsTick && daysTick

% 								yticks = unique(yticks(all(tickVec(:,5) == 0,2),:));

% 							end

% 							set(gca,'YTick',yticks)

% 							set(gca,'YTickLabel',datestr(yticks,fig.subplot{1,1}.ydatetick_format))

% 							ytick_label=get(gca,'yTickLabel');

% end

					end

					

 % scatter

 elseif strcmp(fig.subplot{k, i}.plot{l}.style,'scatter')

 marker=eval(['format.',style,'.markerstyle']);

 if isfield(fig.subplot{k,i}, 'markersize')

 markersize=fig.subplot{k,i}.markersize;

 else

 markersize=eval(['format.',style,'.markersize']);

 end

 hPlot(k,i,l) = plot(fig.subplot{k, i}.plot{l}.x,fig.subplot{k, i}.plot{l}.y,'Color', color, 'Marker', marker, 'MarkerSize', markersize, 'LineStyle', 'none');

 % surf

 elseif strcmp(fig.subplot{k, i}.plot{l}.style,'surf')

 surf(fig.subplot{k, i}.plot{l}.x, fig.subplot{k, i}.plot{l}.y, fig.subplot{k, i}.plot{l}.z)

 if isfield(fig.subplot{k, i}.plot{l}, 'shading')

 eval(['shading ' fig.subplot{k, i}.plot{l}.shading])

 end

 zgrid = 'on';

 xgrid = 'on';

 view(3)

 % stairs

 elseif strcmp(fig.subplot{k, i}.plot{l}.style,'stairs')

					if isfield(fig.subplot{k, i}.plot{l}, 'linewidth')

						linewidth=fig.subplot{k, i}.plot{l}.linewidth;

					else

						linewidth=eval(['format.',style,'.linewidth']);

					end

					

					if isfield(fig.subplot{k, i}.plot{l}, 'linestyle')

						linestyle=fig.subplot{k, i}.plot{l}.linestyle;

					else

						linestyle=eval(['format.',style,'.linestyle']);

					end

					

 if eval(['strcmp(format.',style,'.marker,''on'')'])

 marker=eval(['format.',style,'.markerstyle']);

 markersize=eval(['format.',style,'.markersize']);

 hPlot(k,i,l) = stairs(fig.subplot{k, i}.plot{l}.x,fig.subplot{k, i}.plot{l}.y,'lineWidth', linewidth, 'lineStyle', linestyle, 'Color', color, 'Marker', marker, 'MarkerSize', markersize)

 else

 hPlot(k,i,l) = stairs(fig.subplot{k, i}.plot{l}.x,fig.subplot{k, i}.plot{l}.y,'lineWidth', linewidth, 'lineStyle', linestyle, 'Color', color);

 end

 % bar

 elseif strcmp(fig.subplot{k, i}.plot{l}.style,'bar')

					

					if isfield(fig.subplot{k, i}.plot{l}, 'axislocation')

						

						% TODO: Figure out how to plot on second axis

% 						axislocation = fig.subplot{k, i}.plot{l}.axislocation;

% 						axisscale = fig.subplot{k, i}.plot{l}.axisscale;

% 						

% 						fig.subplot{k, i}.plot{l}.y = fig.subplot{k, i}.plot{l}.y * axisscale;

% 						

% 						axRight = axes('Position',get(ax(num_subplot),'Position'),...

% 							'XAxisLocation','top',...

% 							'YAxisLocation','right',...

% 							'Color','none',...

% 							'XColor','k','YColor','k');

% 						

% % 						hold(axRight,'on')

% 						linkaxes([ax(num_subplot) axRight],'x');

% 						linkaxes([ax(num_subplot) axRight],'y');

% 						% 						plot(x,y3,'Parent',axRight);

% 						

% 						set(axRight,'Ylim',get(ax,'YLim') * 1/axisscale)

% 						set(axRight,'YTick',get(ax,'YTick')* 1/axisscale)

% 						

% 						

% 						set(axRight,'XTickLabel',[]);

% 						

% % 						axis(axRight,'XAxis','off')

% 						

% 						set(axRight,'Color','w')

% % 						set(get(axRight,'XTick'),[])

% 						

% 						if isfield(fig.subplot{k, i}.plot{l}, 'barlayout')

% 							barstack = bar(fig.subplot{k, i}.plot{l}.x,fig.subplot{k, i}.plot{l}.y, 'BarLayout', fig.subplot{k, i}.plot{l}.barlayout,'Parent',axRight);

% 						else

% 							barstack = bar(fig.subplot{k, i}.plot{l}.x,fig.subplot{k, i}.plot{l}.y, 'BarLayout', 'stacked','Parent',axRight);

% 						end

% 						

% 						axes(ax)

						

					else

						

						if isfield(fig.subplot{k, i}.plot{l}, 'barlayout')

							barstack = bar(fig.subplot{k, i}.plot{l}.x,fig.subplot{k, i}.plot{l}.y, 'BarLayout', fig.subplot{k, i}.plot{l}.barlayout);

						else

							barstack = bar(fig.subplot{k, i}.plot{l}.x,fig.subplot{k, i}.plot{l}.y, 'BarLayout', 'stacked');

						end

						

						

					end

					

 P=findobj(barstack,'type','patch');

					if isfield(fig.subplot{k, i}.plot{l}, 'barcolor')

						for n=1:length(P)

							C{n} = eval(['fhg.' ,fig.subplot{k, i}.plot{l}.barcolor{n}]);

% 							C(:,l) = [C(:,l);eval(['fhg.' ,fig.subplot{k, i}.plot{l}.barcolor{n}])];

						end

					else

						for n=1:length(P)

							C{n} = [1,1,1]-([1,1,1]-color)* (1-(n-1)/length(P));

						end

					end

 %[1,1,1]-([1,1,1]-color)*0.7;

 %C=['w','k','m','g','r','y']; % make a colors list

 for n=1:length(P)

 set(P(n),'facecolor',C{n});

 set(P(n),'EdgeColor',C{n});

					end

					if isfield(fig.subplot{k, i}.plot{l}, 'text')

						

						if isfield(fig.subplot{k, i}.plot{l}, 'text_fontsize')

							fontsize=fig.subplot{k, i}.plot{l}.text_fontsize;

						else

							fontsize=eval(['format.',style,'.fontsize']);

						end

						if isfield(fig.subplot{k, i}.plot{l}, 'text_fontname')

							fontname=fig.subplot{k, i}.plot{l}.text_fontsize;

						else

							fontname=eval(['format.',style,'.fontname']);

						end

							ybuff=0;

							for iTXT=1:length(barstack)

								XDATA=get(get(barstack(iTXT),'Children'),'XData');

								YDATA=get(get(barstack(iTXT),'Children'),'YData');

								for jTXT=1:size(XDATA,2)

									x=XDATA(1,jTXT)+(XDATA(3,jTXT)-XDATA(1,jTXT))/2;

									y=YDATA(2,jTXT)+ybuff;

									t=fig.subplot{k, i}.plot{l}.text(jTXT,iTXT);

									text(x,y,t,'Color','k','HorizontalAlignment','left','Rotation',90,'FontName',fontname,'FontSize',fontsize-2);

								end

							end

					end

					

 % barh

 elseif strcmp(fig.subplot{k, i}.plot{l}.style,'barh')

					if isfield(fig.subplot{k, i}.plot{l}, 'barlayout')

						barstack = barh(fig.subplot{k, i}.plot{l}.x,fig.subplot{k, i}.plot{l}.y, 'BarLayout', fig.subplot{k, i}.plot{l}.barlayout);

					else

						barstack = barh(fig.subplot{k, i}.plot{l}.x,fig.subplot{k, i}.plot{l}.y, 'BarLayout', 'stacked');

					end

 P=findobj(barstack,'type','patch');

					if isfield(fig.subplot{k, i}.plot{l}, 'barcolor')

						for n=1:length(P)

							C{n} = eval(['fhg.' ,fig.subplot{k, i}.plot{l}.barcolor{n}]);

							C(:,l) = [C(:,l);eval(['fhg.' ,fig.subplot{k, i}.plot{l}.barcolor{n}])];

						end

					else

						for n=1:length(P)

							C{n} = [1,1,1]-([1,1,1]-color)* (1-(n-1)/length(P));

						end

					end

 %[1,1,1]-([1,1,1]-color)*0.7;

 %C=['w','k','m','g','r','y']; % make a colors list

 for n=1:length(P)

 set(P(n),'facecolor',C{n});

 set(P(n),'EdgeColor',C{n});

					end

					

				% errorbar

 elseif strcmp(fig.subplot{k, i}.plot{l}.style,'errorbar')

					mode = size(fig.subplot{k, i}.plot{l}.y,1) / size(fig.subplot{k, i}.plot{l}.x,2);

					

					if mode == 3 % upper and lower boarder are given

						

						dataSize = length(fig.subplot{k, i}.plot{l}.y) / mode;

						

						data = fig.subplot{k, i}.plot{l}.y(1:dataSize,:);

						lowerError = fig.subplot{k, i}.plot{l}.y(1+dataSize:dataSize+dataSize,:);

						upperError = fig.subplot{k, i}.plot{l}.y(1+dataSize*2:dataSize+dataSize*2,:);

							

						numgroups = size(data, 1);

						numbars = size(data, 2);

						

						groupwidth = min(0.8, numbars/(numbars+1.5));

						

						for iErrorBar = 1:numbars

							

							% Based on barweb.m by Bolu Ajiboye from MATLAB File Exchange

							

							x = (1:numgroups) - groupwidth/2 + (2*iErrorBar-1) * groupwidth / (2*numbars); % Aligning error bar with individual bar

							

							if isfield(fig.subplot{k, i}.plot{l},'color')

								colorerrorbar = eval(['fhg.' fig.subplot{k, i}.plot{l}.color]);

								errorbar(x, data(:,iErrorBar), lowerError(:,iErrorBar), upperError(:,iErrorBar),'color',colorerrorbar, 'linestyle', 'none');

							else

								errorbar(x, data(:,iErrorBar), lowerError(:,iErrorBar), upperError(:,iErrorBar),'color','k', 'linestyle', 'none');

							end

						end

					end

					

					

% 					barstack = barh(fig.subplot{k, i}.plot{l}.x,fig.subplot{k, i}.plot{l}.y, 'BarLayout', 'stacked');

					

 % period_heatmap

 elseif strcmp(fig.subplot{k, i}.plot{l}.style,'period_heatmap')

 isheatmap=1;

 time=fig.subplot{k, i}.plot{l}.x;

 data=fig.subplot{k, i}.plot{l}.y;

 time_step=time(2)-time(1);

 xticks = linspace(0,1,round(1/time_step)+1)*24;

 start_date = datevec(time(1));

 end_date = datevec(time(end));

 yticks = datenum(start_date(1),start_date(2), start_date(3)):1:datenum(end_date(1),end_date(2),end_date(3))+1;

 data = reshape(data,length(xticks)-1,length(data)/(length(xticks)-1))';

 data = [data, NaN(size(data,1),1)];

 data = [data; NaN(1,size(data,2))];

 fontweight=eval(['format.',style,'.fontweight']);

 fontsize=eval(['format.',style,'.fontsize']);

 fontname=eval(['format.',style,'.fontname']);

 pcolor(xticks, yticks, data);

 set(gca,'YDir','reverse')

 xlim([xticks(1),xticks(end)]);

 set(gca,'XTick',0:4:24)

 ygrid='off';

 shading flat

 %shading interp

 if isfield(fig.subplot{1,1}, 'ydatetick_format')

 yticks=[yticks(1)-(yticks(2)-yticks(1)), yticks];

 set(gca,'YTick',yticks)

 datetick('y',fig.subplot{1,1}.ydatetick_format,'keepticks')

 ytick_label=get(gca,'YTickLabel');

 temp_index=zeros(length(ytick_label),1);

 for m=2:length(ytick_label)

 if strcmp(ytick_label(m,:),ytick_label(m-1,:))

 temp_index(m)=1;

 end

 end

 temp_index(1)=[];

 yticks(1)=[];

 set(gca,'YTick',yticks(~temp_index))

 datetick('y',fig.subplot{1,1}.ydatetick_format,'keepticks')

 ylim([yticks(1),yticks(end)])

 end

 if isfield(fig.subplot{k, i}.plot{l},'color_limits')

 color_limits=fig.subplot{k, i}.plot{l}.color_limits;

 else

 color_limits=[nanmin(fig.subplot{k, i}.plot{l}.y), nanmax(fig.subplot{k, i}.plot{l}.y)];

 end

 caxis(color_limits)

 set(gca,'FontSize',fontsize,'FontName', fontname, 'Fontweight', fontweight);

 c = axes('Position',[0 0 1 1],'Visible','off', 'NextPlot', 'add');

 lgnd(num_subplot)=colorbar ('Location', 'SouthOutside');

 caxis(color_limits)

 if isfield(fig.subplot{k, i},'colormap_label')

 colormap_label = get(lgnd(num_subplot),'xlabel')';

 set(colormap_label,'String',fig.subplot{k, i}.colormap_label, 'FontSize',fontsize,'FontName', fontname, 'Fontweight', fontweight);

 end

 set(lgnd(num_subplot), 'Color', 'none', 'Box', 'off', 'FontSize',fontsize,'FontName', fontname,'FontWeight',fontweight)

 LegendOuterPos = get(lgnd(num_subplot),'OuterPosition');

 set(lgnd(num_subplot),'OuterPosition', [LegendOuterPos(1), 0, LegendOuterPos(3), LegendOuterPos(4),])

 LegendPos = get(lgnd(num_subplot),'Position');

 LegendPos (5) = LegendPos(4);

 LegendPos (4) = LegendPos(4) + LegendPos(2);

 axes(ax(num_subplot));

 % scatter_heatmap

 elseif strcmp(fig.subplot{k, i}.plot{l}.style,'scatter_heatmap')

 clear heatmap quantiles

 isheatmap=1;

 xdata=fig.subplot{k, i}.plot{l}.x;

 ydata=fig.subplot{k, i}.plot{l}.y;

 xsteps = fig.subplot{k, i}.plot{l}.xsteps;

 ysteps = fig.subplot{k, i}.plot{l}.ysteps;

 if nanmin(xdata) >= fig.subplot{k,i}.xlim(1) && nanmax(ydata) <= fig.subplot{k,i}.xlim(2)

 xticks = floor(fig.subplot{k,i}.xlim(1)/xsteps)*xsteps:xsteps:ceil(fig.subplot{k,i}.xlim(2)/xsteps)*xsteps+2*xsteps;

 elseif nanmin(xdata) >= fig.subplot{k,i}.xlim(1) && nanmax(ydata) >= fig.subplot{k,i}.xlim(2)

 xticks = floor(fig.subplot{k,i}.xlim(1)/xsteps)*xsteps:xsteps:ceil(nanmax(xdata)/xsteps)*xsteps+2*xsteps;

 elseif nanmin(xdata) <= fig.subplot{k,i}.xlim(1) && nanmax(ydata) <= fig.subplot{k,i}.xlim(2)

 xticks = floor(nanmin(xdata)/xsteps)*xsteps:xsteps:ceil(fig.subplot{k,i}.xlim(2)/xsteps)*xsteps+2*xsteps;

 else

 xticks = floor(nanmin(xdata)/xsteps)*xsteps:xsteps:ceil(nanmax(xdata)/xsteps)*xsteps+2*xsteps;

 end

 if nanmin(ydata) >= fig.subplot{k,i}.ylim(1) && nanmax(ydata) <= fig.subplot{k,i}.ylim(2)

 yticks = floor(fig.subplot{k,i}.ylim(1)/ysteps)*ysteps:ysteps:ceil(fig.subplot{k,i}.ylim(2)/ysteps)*ysteps;

 elseif nanmin(ydata) >= fig.subplot{k,i}.ylim(1) && nanmax(ydata) >= fig.subplot{k,i}.ylim(2)

 yticks = floor(fig.subplot{k,i}.ylim(1)/ysteps)*ysteps:ysteps:ceil(nanmax(ydata)/ysteps)*ysteps;

 elseif nanmin(ydata) <= fig.subplot{k,i}.ylim(1) && nanmax(ydata) <= fig.subplot{k,i}.ylim(2)

 yticks = floor(nanmin(ydata)/ysteps)*ysteps:ysteps:ceil(fig.subplot{k,i}.ylim(2)/ysteps)*ysteps;

 else

 yticks = floor(nanmin(ydata)/ysteps)*ysteps:ysteps:ceil(nanmax(ydata)/ysteps)*ysteps;

 end

 %xsteps = round(xsteps*10000000000)/10000000000;

 %xticks = round(xticks*10000000000)/10000000000;

 for o=1:length(xticks)-1

 for p=1:length(yticks)-1

 index1 = xdata >= xticks(o) & xdata < xticks(o+1);

 index2 = ydata >= yticks(p) & ydata < yticks(p+1);

 heatmap(p,o)=nansum(index1 & index2);

 end

 heatmap(:,o)=heatmap(:,o)/nansum(heatmap(:,o));

 end

 heatmap(isnan(heatmap))=0;

 if isfield(fig.subplot{k, i}.plot{l},'quantiles')

 heatmap_cumsum = cumsum(heatmap);

 for s = 1:length(fig.subplot{k, i}.plot{l}.quantiles)

 for o = 1:size(heatmap,2)

 if isempty(find (heatmap_cumsum(:,o) > fig.subplot{k, i}.plot{l}.quantiles(s),1, 'first'))

 quantiles(s,o) = NaN;

 else

 quantiles(s,o) = yticks(find (heatmap_cumsum(:,o) > fig.subplot{k, i}.plot{l}.quantiles(s),1, 'first'));

 end

 end

 end

 end

 index= ~isnan(xdata) & ~isnan(ydata);

 %regression_line=polyfit(xdata(index),ydata(index),1);

 xticks(end)=[];

 yticks(end)=[];

 % muss die Matrix noch gedreht werden?

%{

 start_date = datevec(time(1));

 end_date = datevec(time(end));

 yticks = datenum(start_date(1),start_date(2), start_date(3)):1:datenum(end_date(1),end_date(2),end_date(3))+1;

 data = reshape(data,length(xticks)-1,length(data)/(length(xticks)-1))';

 data = [data, NaN(size(data,1),1)];

 data = [data; NaN(1,size(data,2))];

 %}

 fontweight=eval(['format.',style,'.fontweight']);

 fontsize=eval(['format.',style,'.fontsize']);

 fontname=eval(['format.',style,'.fontname']);

 pcolor(xticks, yticks, heatmap);

 if isfield(fig.subplot{k, i}.plot{l},'quantiles')

 hold on

 for o = 1:size(quantiles,1)

 plot(xticks+xsteps/2, quantiles(o,:), 'w')

 end

 end

 %plot([min(xticks), max(xticks)],[regression_line(2)+min(xticks)*regression_line(1), regression_line(2)+max(xticks)*regression_line(1)],'w', 'LineWidth', 2)

 %set(gca,'YDir','reverse')

 xlim([xticks(1),xticks(end)]);

 %set(gca,'XTick',0:4:24)

 ygrid='off';

 shading flat

 %shading interp

 %{

 if isfield(fig.subplot{1,1}, 'ydatetick_format')

 yticks=[yticks(1)-(yticks(2)-yticks(1)), yticks];

 set(gca,'YTick',yticks)

 datetick('y',fig.subplot{1,1}.ydatetick_format,'keepticks')

 ytick_label=get(gca,'YTickLabel');

 temp_index=zeros(length(ytick_label),1);

 for m=2:length(ytick_label)

 if strcmp(ytick_label(m,:),ytick_label(m-1,:))

 temp_index(m)=1;

 end

 end

 temp_index(1)=[];

 yticks(1)=[];

 set(gca,'YTick',yticks(~temp_index))

 datetick('y',fig.subplot{1,1}.ydatetick_format,'keepticks')

 end

 %}

 ylim([yticks(1),yticks(end)])

 if isfield(fig.subplot{k, i}.plot{l},'color_limits')

 color_limits=fig.subplot{k, i}.plot{l}.color_limits;

 else

 upperlimit = sort(reshape(heatmap,[],1));

 upperlimit = upperlimit(round(length(upperlimit)*0.99));

 color_limits=[nanmin(nanmin(heatmap)), upperlimit];

 end

 caxis(color_limits)

 set(gca,'FontSize',fontsize,'FontName', fontname, 'Fontweight', fontweight);

 c = axes('Position',[0 0 1 1],'Visible','off', 'NextPlot', 'add');

 lgnd(num_subplot)=colorbar ('Location', 'SouthOutside');

 caxis(color_limits)

 colormap_label = get(lgnd(num_subplot),'xlabel')';

 set(colormap_label,'String','Relative Häufigkeit pro x-Klasse', 'FontSize',fontsize,'FontName', fontname, 'Fontweight', fontweight);

 set(lgnd(num_subplot), 'Color', 'none', 'Box', 'off', 'FontSize',fontsize,'FontName', fontname,'FontWeight',fontweight)

 LegendOuterPos = get(lgnd(num_subplot),'OuterPosition');

 colormap_labelPos=get(colormap_label,'Position');

 set(lgnd(num_subplot),'OuterPosition', [LegendOuterPos(1), 0, LegendOuterPos(3), LegendOuterPos(4),])

 LegendPos = get(lgnd(num_subplot),'Position');

 LegendPos (5) = LegendPos(4);

 LegendPos (4) = LegendPos(4) + LegendPos(2);

 axes(ax(num_subplot));

 % area

 elseif strcmp(fig.subplot{k, i}.plot{l}.style,'area')

 hPlot(k,i,l) = area(fig.subplot{k, i}.plot{l}.x,fig.subplot{k, i}.plot{l}.y);

					set(hPlot(k,i,l),'FaceColor',color,'HandleVisibility','off')

 set(hPlot(k,i,l),'EdgeColor','none')

 % patch

 elseif strcmp(fig.subplot{k, i}.plot{l}.style,'patch')

					hPlot(k,i,l) = patch(fig.subplot{k, i}.plot{l}.x,fig.subplot{k, i}.plot{l}.y,'r'); % TODO: Implement color

					set(hPlot(k,i,l),'FaceColor',color,'HandleVisibility','off')

					set(hPlot(k,i,l),'EdgeColor','none')

				% fill

 elseif strcmp(fig.subplot{k, i}.plot{l}.style,'fill')

					hPlot(k,i,l) = fill(fig.subplot{k, i}.plot{l}.x,fig.subplot{k, i}.plot{l}.y,'r'); % TODO: Implement color

					set(hPlot(k,i,l),'FaceColor',color,'HandleVisibility','off')

					set(hPlot(k,i,l),'EdgeColor','none')					

				% loglog

				elseif strcmp(fig.subplot{k, i}.plot{l}.style,'loglog')

					

					

					

					if isfield(fig.subplot{k, i}.plot{l}, 'linewidth')

						linewidth=fig.subplot{k, i}.plot{l}.linewidth;

					else

						linewidth=eval(['format.',style,'.linewidth']);

					end

					

					if isfield(fig.subplot{k, i}.plot{l}, 'linestyle')

						linestyle=fig.subplot{k, i}.plot{l}.linestyle;

					else

						linestyle=eval(['format.',style,'.linestyle']);

					end

					

					if isfield(fig.subplot{k, i}.plot{l},'markerstyle')

						markerstyle=fig.subplot{k, i}.plot{l}.markerstyle;

					else

						markerstyle=eval(['format.',style,'.markerstyle']);

					end

					

					if isfield(fig.subplot{k, i}.plot{l},'markersize')

						markersize=fig.subplot{k, i}.plot{l}.markersize;

					else

						markersize=eval(['format.',style,'.markersize']);

					end

					hPlot(k,i,l) = plot(fig.subplot{k, i}.plot{l}.x,fig.subplot{k, i}.plot{l}.y,'color',color,'linestyle',linestyle,'linewidth',linewidth,'marker',markerstyle,'markersize',markersize);

					set(ax,'XScale','log')

					set(ax,'YScale','log')

					

 % if plot style is not implemented

 else

 error ([fig.subplot{k, i}.plot{l}.style, ' plot has not been implemented, yet!'])

 end

 % if plot style is not set, normal plot is used

 else

 linewidth=eval(['format.',style,'.linewidth']);

 linestyle=eval(['format.',style,'.linestyle']);

 if isfield(fig.subplot{k, i}.plot{l},'markerstyle')

 marker=fig.subplot{k, i}.plot{l}.markerstyle;

 markersize=fig.subplot{k, i}.plot{l}.markersize;

 plot(fig.subplot{k, i}.plot{l}.x,fig.subplot{k, i}.plot{l}.y,'lineWidth', linewidth, 'lineStyle', linestyle, 'Color', color, 'Marker', marker, 'MarkerSize', markersize)

 elseif eval(['strcmp(format.',style,'.marker,''on'')'])

 marker=eval(['format.',style,'.markerstyle']);

 markersize=eval(['format.',style,'.markersize']);

 plot(fig.subplot{k, i}.plot{l}.x,fig.subplot{k, i}.plot{l}.y,'lineWidth', linewidth, 'lineStyle', linestyle, 'Color', color, 'Marker', marker, 'MarkerSize', markersize)

 else

 plot(fig.subplot{k, i}.plot{l}.x,fig.subplot{k, i}.plot{l}.y,'lineWidth', linewidth, 'lineStyle', linestyle, 'Color', color)

 end

			end

			

			

			if ~isempty(C)

				allC = [allC,C];

			end

			

 end

 % setting subplot properties

 % set xlim

 if isfield(fig.subplot{k, i},'xlim')

 xlim(fig.subplot{k, i}.xlim)

 end

 % set ylim

 if isfield(fig.subplot{k, i},'ylim')

 ylim(fig.subplot{k, i}.ylim)

 end

 % set zlim

 if isfield(fig.subplot{k, i},'zlim')

 zlim(fig.subplot{k, i}.zlim)

 end

 if isfield(fig.subplot{k,i}, 'xticks')

 xticks=fig.subplot{k, i}.xticks;

 set(gca,'XTick',xticks);

 end

 if isfield(fig.subplot{k,i}, 'yticks')

 yticks=fig.subplot{k, i}.yticks;

 set(gca,'YTick',yticks);

 end

 if isfield(fig.subplot{k,i}, 'xticks')

 xticks=fig.subplot{k, i}.xticks;

 set(gca,'XTick',xticks);

 end

 if isfield(fig.subplot{k,i}, 'xticklabels')

 xticklabels = fig.subplot{k, i}.xticklabels;

 set(gca,'XTickLabel', xticklabels);

		end

 if isfield(fig.subplot{k,i}, 'yticklabels')

 yticklabels = fig.subplot{k, i}.yticklabels;

 set(gca,'YTickLabel', yticklabels);

		end		

		

		if isfield(fig.subplot{k,i}, 'xtick_rotate')

			eval(['format.',style,'.fontsize'])

			xticklabel_rotate(xticks,fig.subplot{k,i}.xtick_rotate,xticklabels,'Fontsize',eval(['format.',style,'.fontsize']))

		end

		

		if isfield(fig.subplot{k,i}, 'xdatetick_format') % This might have to be checked

			xticks=fig.subplot{k, i}.plot{l}.x;

			tickVec = datevec(xticks);

			if any(strfind(fig.subplot{1,1}.xdatetick_format,'y'))

				yearsTick = true;else yearsTick = false;end

			if any(strfind(fig.subplot{1,1}.xdatetick_format,'m')) ~= 0

				monthsTick = true;else monthsTick = false;end

			if any(strfind(fig.subplot{1,1}.xdatetick_format,'d')) ~= 0

				daysTick = true;else daysTick = false;end

			if any(strfind(fig.subplot{1,1}.xdatetick_format,'H')) ~= 0

				hoursTick = true;else hoursTick = false;end

			if yearsTick && ~monthsTick

				xticks = unique(floor(xticks(all(tickVec(:,2:3) == 1,2),:)));

			end

			if yearsTick && monthsTick && ~daysTick

				xticks = unique(floor(xticks(all(tickVec(:,3) == 1,2),:)));

			end

			if yearsTick && monthsTick && daysTick && ~hoursTick

				xticks = unique(floor(xticks(all(tickVec(:,4) == 0,2),:)));

			end

			if yearsTick && monthsTick && daysTick && hoursTick

				xticks = unique(xticks(all(tickVec(:,5) == 0,2),:));

			end

			set(gca,'XTick',xticks)

			set(gca,'XTickLabel',datestr(xticks,fig.subplot{1,1}.xdatetick_format))

			xtick_label=get(gca,'xTickLabel');

% 			datetick('x',fig.subplot{1,1}.xdatetick_format,'keepticks')

		end

 if isfield(fig.subplot{k, i},'xlim')

 xlim(fig.subplot{k, i}.xlim)

 end

 % print xlabel

 if isfield(fig.subplot{k, i},'xlabel')

 fontweight=eval(['format.',style,'.fontweight']);

 fontsize=eval(['format.',style,'.fontsize']);

 fontname=eval(['format.',style,'.fontname']);

 xlbl(num_subplot)=xlabel(fig.subplot{k, i}.xlabel, 'FontSize',fontsize,'FontName', fontname, 'FontWeight', fontweight);

 set(xlbl(num_subplot),'margin',0.000001)

 end

 % print ylabel

 if isfield(fig.subplot{k, i},'ylabel')

 fontweight=eval(['format.',style,'.fontweight']);

 fontsize=eval(['format.',style,'.fontsize']);

 fontname=eval(['format.',style,'.fontname']);

 ylbl(num_subplot)=ylabel(fig.subplot{k, i}.ylabel, 'FontSize',fontsize,'FontName', fontname, 'FontWeight', fontweight);

 set(ylbl(num_subplot),'margin',0.000001)

 end

 % print zlabel

 if isfield(fig.subplot{k, i},'zlabel')

 fontweight=eval(['format.',style,'.fontweight']);

 fontsize=eval(['format.',style,'.fontsize']);

 fontname=eval(['format.',style,'.fontname']);

 zlbl(num_subplot)=zlabel(fig.subplot{k, i}.zlabel, 'FontSize',fontsize,'FontName', fontname, 'FontWeight', fontweight);

 set(zlbl(num_subplot),'margin',0.000001)

 end

 % insert legend

 if isfield(fig.subplot{k, i},'legend')

 fontweight=eval(['format.',style,'.fontweight']);

 fontsize=eval(['format.',style,'.fontsize']);

 fontname=eval(['format.',style,'.fontname']);

 lgnd(num_subplot)=legend(fig.subplot{k, i}.legend);

 if isfield(fig.subplot{k, i},'legend_orientation')

 set(lgnd(num_subplot), 'Orientation',fig.subplot{k, i}.legend_orientation)

 end

% if strcmp(fig.subplot{k, i}.plot{l}.style,'bar')

% for i = 1:length(get(lgnd

% set(lgnd(num_subplot), 'FaceColor', C{1});

% end

% end

 LegendPos = get(lgnd(num_subplot),'Position');

 set(lgnd(num_subplot), 'Color', 'none', 'Box', 'off', 'Position', [(i-1)/num_hor_subplots+margin_hor 1-k/num_ver_subplots+margin_ver LegendPos(3) LegendPos(4)], 'FontSize',fontsize,'FontName', fontname,'FontWeight',fontweight)

 LegendPos = get(lgnd(num_subplot),'Position');

			

			for iLegend = 1:size(fig.subplot,2)

				hasOneLgnd(iLegend) = isfield(fig.subplot{k,iLegend},'legend');

			end

			if sum(hasOneLgnd) == 1 && hasOneLgnd(i)

				posLgndSubPlotRow = LegendPos;

			end

			

 if strcmp(fig.subplot{k, i}.plot{l}.style,'plot') || strcmp(fig.subplot{k, i}.plot{l}.style,'bar') || strcmp(fig.subplot{k, i}.plot{l}.style,'barh') || strcmp(fig.subplot{k, i}.plot{l}.style,'errorbar')

 P =findobj(lgnd,'type','patch');

				allC = fliplr(allC); % To compensate color order mismatch // TODO: Should be checked by Dominik

				if ~isempty(allC)

					for m = 1:length(allC)

						set(P(m),'FaceColor',allC{m});

						ColorOrder(m,:) = allC{m};

					end

					set(lgnd(num_subplot),'ColorOrder',ColorOrder);

				end

 end

 elseif ~isheatmap

 LegendPos=[0 0 0 0];

 end

 % insert title

 if isfield(fig.subplot{k, i},'title')

 fontweight=eval(['format.',style,'.fontweight_title']);

 fontsize=eval(['format.',style,'.fontsize_title']);

 fontname=eval(['format.',style,'.fontname_title']);

 b = axes('Position',[0 0 1 1],'Visible','off', 'NextPlot', 'add');

 ttl(num_subplot)=text(0,0,fig.subplot{k, i}.title,'FontSize', fontsize, 'FontName', fontname, 'VerticalAlignment', 'top');

 set(ttl(num_subplot),'Position',[(i-1)/num_hor_subplots+margin_hor, 1-(k-1)/num_ver_subplots-margin_ver])

 ttlPos=get(ttl(num_subplot),'extent');

 else

 ttlPos=[0,0,0,0];

 end

 % set fonts for axis

 fontweight=eval(['format.',style,'.fontweight']);

 fontsize=eval(['format.',style,'.fontsize']);

 fontname=eval(['format.',style,'.fontname']);

 set(ax(num_subplot),'FontSize',fontsize,'FontName', fontname, 'Fontweight', fontweight)

 % set position of axes

 set(ax(num_subplot), 'Color', 'none', 'Box', 'off', 'YGrid', ygrid, 'XGrid', xgrid, 'ZGrid', zgrid)

		if isfield(fig.subplot{k,i}, 'xtick_rotate')

			set(ax(num_subplot),'OuterPosition',[(i-1)/num_hor_subplots+margin_hor 1-k/num_ver_subplots+LegendPos(4)+6*margin_ver 1/num_hor_subplots-2*margin_hor 1-(k-1)/num_ver_subplots-margin_ver-ttlPos(4)-(1-k/num_ver_subplots+LegendPos(4)+6*margin_ver)])

			if exist('hasOneLgnd','var')

				if sum(hasOneLgnd) == 1 && ~hasOneLgnd(i) % TODO: Test further

					set(ax(num_subplot),'OuterPosition',[(i-1)/num_hor_subplots+margin_hor 1-k/num_ver_subplots+posLgndSubPlotRow(4)+6*margin_ver 1/num_hor_subplots-2*margin_hor 1-(k-1)/num_ver_subplots-margin_ver-ttlPos(4)-(1-k/num_ver_subplots+posLgndSubPlotRow(4)+6*margin_ver)])

				end

			end

		else

			set(ax(num_subplot),'OuterPosition',[(i-1)/num_hor_subplots+margin_hor 1-k/num_ver_subplots+LegendPos(4)+2*margin_ver 1/num_hor_subplots-2*margin_hor 1-(k-1)/num_ver_subplots-margin_ver-ttlPos(4)-(1-k/num_ver_subplots+LegendPos(4)+2*margin_ver)])

			if exist('hasOneLgnd','var')

				if sum(hasOneLgnd) == 1 && ~hasOneLgnd(i) % TODO: Test further

					set(ax(num_subplot),'OuterPosition',[(i-1)/num_hor_subplots+margin_hor 1-k/num_ver_subplots+posLgndSubPlotRow(4)+2*margin_ver 1/num_hor_subplots-2*margin_hor 1-(k-1)/num_ver_subplots-margin_ver-ttlPos(4)-(1-k/num_ver_subplots+posLgndSubPlotRow(4)+2*margin_ver)])

				end

			end

		end

 set(ax(num_subplot),'LooseInset',get(gca,'TightInset'))

 % set position of legend

 AxesPos=get(ax(num_subplot),'Position');

 if isfield(fig.subplot{k, i},'legend') || isheatmap

 %LegendPos = get(lgnd(num_subplot),'Position');

 if isheatmap

 %set(ax(num_subplot),'OuterPosition',[(i-1)/num_hor_subplots+margin_hor 1-k/num_ver_subplots+LegendPos(4)+2*margin_ver 1/num_hor_subplots-2*margin_hor 1-(k-1)/num_ver_subplots-margin_ver-ttlPos(4)-(1-k/num_ver_subplots+LegendPos(4)+2*margin_ver)])

 %set(ax(num_subplot),'LooseInset',get(gca,'TightInset'))

 %LegendPos = get(lgnd(num_subplot), 'Position');

 set(lgnd(num_subplot), 'Position', [AxesPos(1) 1-k/num_ver_subplots+LegendPos(2)+margin_ver AxesPos(3) LegendPos(5)*0.85])

			else

 set(lgnd(num_subplot), 'Position', [AxesPos(1) LegendPos(2) LegendPos(3) LegendPos(4)])

 end

 a = axes('position',[(i-1)/num_hor_subplots+margin_hor 1-k/num_ver_subplots+LegendPos(4)+margin_ver 1/num_hor_subplots-2*margin_hor 1/num_ver_subplots-LegendPos(4)],'visible','off');

			if exist('hasOneLgnd','var')

				if sum(hasOneLgnd) == 1 & num_hor_subplots == 1% TODO: Test further

					line([0,1],[0,0],'Color', 'k', 'linestyle',':');

					ylim([0,1]);

				end

			end

 end

 end

end

if ~exist('hPlot','var')

	hPlot = nan;

end

if ~exist('hAxes','var')

	hFig = nan;

end

axes(ax(1))

linkaxes(ax,'x');

set(gcf, 'InvertHardCopy', 'off');

print -dbitmap

end

Functions/+Auxiliary_Functions/styleplot.m

function [hFig, ax, hPlot] = styleplot(fig, format, style)

%UNTITLED3 Summary of this function goes here

% Detailed explanation goes here

%{

fig:

style: 'word', 'ppp', 'wordwide'...

format: styleplot_format file

%}

% load format-file

load (format);

% get FHG-Colors

fhg=getFHGColors();

% create figure and set width and height

hFig=figure();

set(0,'units','pixels')

Pixels= get(0,'screensize');

set(0,'units','inches')

Inches= get(0,'screensize');

Res = Pixels./Inches;

Res=Res(4);

if isfield(fig,'width')

 width_cm=fig.width;

elseif isfield(fig,'width_columns')

 width_cm=eval(['format.',style,'.width(',num2str(fig.width_columns),')']);

else

 width_cm=eval(['format.',style,'.width(format.',style,'.width_columns)']);

end

if isfield(fig,'height')

 height_cm=fig.height;

else

 height_cm=eval(['format.',style,'.height']);

end

fig_width_px=round(width_cm*Res/2.54);

fig_height_px=round(height_cm*Res/2.54);

set(hFig, 'Position', [100 100 fig_width_px fig_height_px])

% get margins

margin_hor=eval(['format.',style,'.margin_hor/width_cm']);

margin_ver=eval(['format.',style,'.margin_ver/width_cm']);

% set figure's background color

eval(['set(hFig, ''color'', format.',style,'.background_color)'])

% plot

[num_ver_subplots, num_hor_subplots]=size(fig.subplot);

num_subplot=0;

for k=1:num_ver_subplots

 for i=1:num_hor_subplots

 num_subplot=num_subplot+1;

 ax(num_subplot)=axes();

 hold on

 isheatmap=0;

		allC = cell(0);

		for l=1:length(fig.subplot{k,i}.plot);

			C = cell(0); % reset color for legend

			% get color for plot

 if isfield(fig.subplot{k, i}.plot{l},'color')

 color=eval(['fhg.',fig.subplot{k, i}.plot{l}.color]);

 else

 color=eval(['fhg.',format.word.color{floor((l-1)/3)+1}]);

 if mod(l,3)==2

 color=[1,1,1]-([1,1,1]-color)*0.7;

 elseif mod(l,3)==0

 color=[1,1,1]-([1,1,1]-color)*0.4;

 end

 end

			if isfield(fig.subplot{k, i},'xgrid')

				xgrid = fig.subplot{k, i}.xgrid;

			else

				xgrid = 'off';

			end

			if isfield(fig.subplot{k, i},'ygrid')

				ygrid = 'off';

			else

				ygrid = eval(['format.',style,'.ygrid']);

			end

			

			

			zgrid = 'off';

 % if style is given then plot in this style, if not use normal plot

 if isfield(fig.subplot{k, i}.plot{l},'style')

 % plot

 if strcmp(fig.subplot{k, i}.plot{l}.style,'plot')

					if isfield(fig.subplot{k, i}.plot{l}, 'linewidth')

						linewidth=fig.subplot{k, i}.plot{l}.linewidth;

					else

						linewidth=eval(['format.',style,'.linewidth']);

					end

					

					if isfield(fig.subplot{k, i}.plot{l}, 'linestyle')

						linestyle=fig.subplot{k, i}.plot{l}.linestyle;

					else

						linestyle=eval(['format.',style,'.linestyle']);

					end

 if isfield(fig.subplot{k, i}.plot{l},'break')

 x = fig.subplot{k, i}.plot{l}.x;

 y = fig.subplot{k, i}.plot{l}.y;

 break_start = fig.subplot{k, i}.plot{l}.break(1);

 break_end = fig.subplot{k, i}.plot{l}.break(2);

 x(y>y_break_start & y <y_break_end)=[];

 y(y>y_break_start & y <y_break_end)=[];

 % leave room for the y_break_end

 [junk,p]=min(y>=y_break_end);

 if p>y_break_end

 x=[x(1:p-1) NaN x(p:end)];

 y=[y(1:p-1) y_break_mid y(p:end)];

 end;

 % remap

 y2=y;

 y2(y2>=y_break_end)=y2(y2>=y_break_end)-y_break_mid;

 % plot

 h=plot(x,y2,'.');

 marker=fig.subplot{k, i}.plot{l}.markerstyle;

 markersize=fig.subplot{k, i}.plot{l}.markersize;

 plot(fig.subplot{k, i}.plot{l}.x,fig.subplot{k, i}.plot{l}.y,'lineWidth', linewidth, 'lineStyle', linestyle, 'Color', color, 'Marker', marker, 'MarkerSize', markersize)

 else

 if isfield(fig.subplot{k, i}.plot{l},'markerstyle')

 marker=fig.subplot{k, i}.plot{l}.markerstyle;

 markersize=fig.subplot{k, i}.plot{l}.markersize;

							if isfield(fig.subplot{k, i}.plot{l},'markerfacecolor')

								markerfacecolor=eval(['fhg.',fig.subplot{k, i}.plot{l}.markerfacecolor]);

							else

								markerfacecolor=color;

							end

 hPlot(k,i,l) = plot(fig.subplot{k, i}.plot{l}.x,fig.subplot{k, i}.plot{l}.y,'lineWidth', linewidth, 'lineStyle', linestyle, 'Color', color, 'Marker', marker, 'MarkerSize', markersize, 'MarkerFaceColor', markerfacecolor);

 elseif eval(['strcmp(format.',style,'.marker,''on'')'])

 marker=eval(['format.',style,'.markerstyle']);

 markersize=eval(['format.',style,'.markersize']);

 hPlot(k,i,l) = plot(fig.subplot{k, i}.plot{l}.x,fig.subplot{k, i}.plot{l}.y,'lineWidth', linewidth, 'lineStyle', linestyle, 'Color', color, 'Marker', marker, 'MarkerSize', markersize);

 else

 hPlot(k,i,l) = plot(fig.subplot{k, i}.plot{l}.x,fig.subplot{k, i}.plot{l}.y,'lineWidth', linewidth, 'lineStyle', linestyle, 'Color', color);

						end

						

% 						if isfield(fig.subplot{k, i}.plot{l}, 'barcolor')

% 							for n=1:length(P)

% 								C{n} = eval(['fhg.' ,fig.subplot{k, i}.plot{l}.barcolor{n}]);

% 								C(:,l) = [C(:,l);eval(['fhg.' ,fig.subplot{k, i}.plot{l}.barcolor{n}])];

% 							end

% 						else

% 							for n=1:length(P)

% 								C{n} = [1,1,1]-([1,1,1]-color)* (1-(n-1)/length(P));

% 							end

% 						end

						

% if isfield(fig.subplot{1,1}, 'xdatetick_format') && l==1

% 							xticks=fig.subplot{k, i}.plot{l}.x;

% 							tickVec = datevec(xticks);

% 							if any(strfind(fig.subplot{1,1}.xdatetick_format,'y'))

% 								yearsTick = true;else yearsTick = false;end

% 							if any(strfind(fig.subplot{1,1}.xdatetick_format,'m')) ~= 0

% 								monthsTick = true;else monthsTick = false;end

% 							if any(strfind(fig.subplot{1,1}.xdatetick_format,'d')) ~= 0

% 								daysTick = true;else daysTick = false;end

% 							if any(strfind(fig.subplot{1,1}.xdatetick_format,'H')) ~= 0

% 								hoursTick = true;else hoursTick = false;end

% 							

% 							if yearsTick && ~monthsTick

% 								xticks = unique(floor(xticks(all(tickVec(:,2:3) == 1,2),:)));

% 							end

% 							if yearsTick && monthsTick && ~daysTick

% 								xticks = unique(floor(xticks(all(tickVec(:,3) == 1,2),:)));

% 							end

% 							if yearsTick && monthsTick && daysTick && ~hoursTick

% 								xticks = unique(floor(xticks(all(tickVec(:,4) == 1,2),:)));

% 							end

% 							if yearsTick && monthsTick && daysTick && hoursTick

% 								xticks = unique(xticks(all(tickVec(:,5) == 0,2),:));

% 							end

% 							set(gca,'XTick',xticks)

% 							set(gca,'XTickLabel',datestr(xticks,fig.subplot{1,1}.xdatetick_format))

% 							xtick_label=get(gca,'xTickLabel');

% end

% if isfield(fig.subplot{1,1}, 'ydatetick_format') && l==1

% 							yticks=fig.subplot{k, i}.plot{l}.x;

% 							tickVec = datevec(yticks);

% 							if any(strfind(fig.subplot{1,1}.xdatetick_format,'y'))

% 								yearsTick = true;else yearsTick = false;end

% 							if any(strfind(fig.subplot{1,1}.xdatetick_format,'m')) ~= 0

% 								monthsTick = true;else monthsTick = false;end

% 							if any(strfind(fig.subplot{1,1}.xdatetick_format,'d')) ~= 0

% 								daysTick = true;else daysTick = false;end

% 							if any(strfind(fig.subplot{1,1}.xdatetick_format,'H')) ~= 0

% 								hoursTick = true;else hoursTick = false;end

% 							

% 							if yearsTick && ~monthsTick

% 								yticks = unique(floor(yticks(all(tickVec(:,2:3) == 1,2),:)));

% 							end

% 							if yearsTick && monthsTick

% 								yticks = unique(floor(yticks(all(tickVec(:,3) == 1,2),:)));

% 							end

% 							if yearsTick && monthsTick && daysTick

% 								yticks = unique(floor(yticks(all(tickVec(:,4) == 1,2),:)));

% 							end

% 							if yearsTick && monthsTick && daysTick

% 								yticks = unique(yticks(all(tickVec(:,5) == 0,2),:));

% 							end

% 							set(gca,'YTick',yticks)

% 							set(gca,'YTickLabel',datestr(yticks,fig.subplot{1,1}.ydatetick_format))

% 							ytick_label=get(gca,'yTickLabel');

% end

					end

					

 % scatter

 elseif strcmp(fig.subplot{k, i}.plot{l}.style,'scatter')

 marker=eval(['format.',style,'.markerstyle']);

 if isfield(fig.subplot{k,i}, 'markersize')

 markersize=fig.subplot{k,i}.markersize;

 else

 markersize=eval(['format.',style,'.markersize']);

 end

 hPlot(k,i,l) = plot(fig.subplot{k, i}.plot{l}.x,fig.subplot{k, i}.plot{l}.y,'Color', color, 'Marker', marker, 'MarkerSize', markersize, 'LineStyle', 'none');

 % surf

 elseif strcmp(fig.subplot{k, i}.plot{l}.style,'surf')

 surf(fig.subplot{k, i}.plot{l}.x, fig.subplot{k, i}.plot{l}.y, fig.subplot{k, i}.plot{l}.z)

 if isfield(fig.subplot{k, i}.plot{l}, 'shading')

 eval(['shading ' fig.subplot{k, i}.plot{l}.shading])

 end

 zgrid = 'on';

 xgrid = 'on';

 view(3)

 % stairs

 elseif strcmp(fig.subplot{k, i}.plot{l}.style,'stairs')

					if isfield(fig.subplot{k, i}.plot{l}, 'linewidth')

						linewidth=fig.subplot{k, i}.plot{l}.linewidth;

					else

						linewidth=eval(['format.',style,'.linewidth']);

					end

					

					if isfield(fig.subplot{k, i}.plot{l}, 'linestyle')

						linestyle=fig.subplot{k, i}.plot{l}.linestyle;

					else

						linestyle=eval(['format.',style,'.linestyle']);

					end

					

 if eval(['strcmp(format.',style,'.marker,''on'')'])

 marker=eval(['format.',style,'.markerstyle']);

 markersize=eval(['format.',style,'.markersize']);

 hPlot(k,i,l) = stairs(fig.subplot{k, i}.plot{l}.x,fig.subplot{k, i}.plot{l}.y,'lineWidth', linewidth, 'lineStyle', linestyle, 'Color', color, 'Marker', marker, 'MarkerSize', markersize)

 else

 hPlot(k,i,l) = stairs(fig.subplot{k, i}.plot{l}.x,fig.subplot{k, i}.plot{l}.y,'lineWidth', linewidth, 'lineStyle', linestyle, 'Color', color);

 end

 % bar

 elseif strcmp(fig.subplot{k, i}.plot{l}.style,'bar')

					

					if isfield(fig.subplot{k, i}.plot{l}, 'axislocation')

						

						% TODO: Figure out how to plot on second axis

% 						axislocation = fig.subplot{k, i}.plot{l}.axislocation;

% 						axisscale = fig.subplot{k, i}.plot{l}.axisscale;

% 						

% 						fig.subplot{k, i}.plot{l}.y = fig.subplot{k, i}.plot{l}.y * axisscale;

% 						

% 						axRight = axes('Position',get(ax(num_subplot),'Position'),...

% 							'XAxisLocation','top',...

% 							'YAxisLocation','right',...

% 							'Color','none',...

% 							'XColor','k','YColor','k');

% 						

% % 						hold(axRight,'on')

% 						linkaxes([ax(num_subplot) axRight],'x');

% 						linkaxes([ax(num_subplot) axRight],'y');

% 						% 						plot(x,y3,'Parent',axRight);

% 						

% 						set(axRight,'Ylim',get(ax,'YLim') * 1/axisscale)

% 						set(axRight,'YTick',get(ax,'YTick')* 1/axisscale)

% 						

% 						

% 						set(axRight,'XTickLabel',[]);

% 						

% % 						axis(axRight,'XAxis','off')

% 						

% 						set(axRight,'Color','w')

% % 						set(get(axRight,'XTick'),[])

% 						

% 						if isfield(fig.subplot{k, i}.plot{l}, 'barlayout')

% 							barstack = bar(fig.subplot{k, i}.plot{l}.x,fig.subplot{k, i}.plot{l}.y, 'BarLayout', fig.subplot{k, i}.plot{l}.barlayout,'Parent',axRight);

% 						else

% 							barstack = bar(fig.subplot{k, i}.plot{l}.x,fig.subplot{k, i}.plot{l}.y, 'BarLayout', 'stacked','Parent',axRight);

% 						end

% 						

% 						axes(ax)

						

					else

						

						if isfield(fig.subplot{k, i}.plot{l}, 'barlayout')

							barstack = bar(fig.subplot{k, i}.plot{l}.x,fig.subplot{k, i}.plot{l}.y, 'BarLayout', fig.subplot{k, i}.plot{l}.barlayout);

						else

							barstack = bar(fig.subplot{k, i}.plot{l}.x,fig.subplot{k, i}.plot{l}.y, 'BarLayout', 'stacked');

						end

						

						

					end

					

 P=findobj(barstack,'type','patch');

					if isfield(fig.subplot{k, i}.plot{l}, 'barcolor')

						for n=1:length(P)

							C{n} = eval(['fhg.' ,fig.subplot{k, i}.plot{l}.barcolor{n}]);

% 							C(:,l) = [C(:,l);eval(['fhg.' ,fig.subplot{k, i}.plot{l}.barcolor{n}])];

						end

					else

						for n=1:length(P)

							C{n} = [1,1,1]-([1,1,1]-color)* (1-(n-1)/length(P));

						end

					end

 %[1,1,1]-([1,1,1]-color)*0.7;

 %C=['w','k','m','g','r','y']; % make a colors list

 for n=1:length(P)

 set(P(n),'facecolor',C{n});

 set(P(n),'EdgeColor',C{n});

					end

					if isfield(fig.subplot{k, i}.plot{l}, 'text')

						

						if isfield(fig.subplot{k, i}.plot{l}, 'text_fontsize')

							fontsize=fig.subplot{k, i}.plot{l}.text_fontsize;

						else

							fontsize=eval(['format.',style,'.fontsize']);

						end

						if isfield(fig.subplot{k, i}.plot{l}, 'text_fontname')

							fontname=fig.subplot{k, i}.plot{l}.text_fontsize;

						else

							fontname=eval(['format.',style,'.fontname']);

						end

							ybuff=0;

							for iTXT=1:length(barstack)

								XDATA=get(get(barstack(iTXT),'Children'),'XData');

								YDATA=get(get(barstack(iTXT),'Children'),'YData');

								for jTXT=1:size(XDATA,2)

									x=XDATA(1,jTXT)+(XDATA(3,jTXT)-XDATA(1,jTXT))/2;

									y=YDATA(2,jTXT)+ybuff;

									t=fig.subplot{k, i}.plot{l}.text(jTXT,iTXT);

									text(x,y,t,'Color','k','HorizontalAlignment','left','Rotation',90,'FontName',fontname,'FontSize',fontsize-2);

								end

							end

					end

					

 % barh

 elseif strcmp(fig.subplot{k, i}.plot{l}.style,'barh')

					if isfield(fig.subplot{k, i}.plot{l}, 'barlayout')

						barstack = barh(fig.subplot{k, i}.plot{l}.x,fig.subplot{k, i}.plot{l}.y, 'BarLayout', fig.subplot{k, i}.plot{l}.barlayout);

					else

						barstack = barh(fig.subplot{k, i}.plot{l}.x,fig.subplot{k, i}.plot{l}.y, 'BarLayout', 'stacked');

					end

 P=findobj(barstack,'type','patch');

					if isfield(fig.subplot{k, i}.plot{l}, 'barcolor')

						for n=1:length(P)

							C{n} = eval(['fhg.' ,fig.subplot{k, i}.plot{l}.barcolor{n}]);

							C(:,l) = [C(:,l);eval(['fhg.' ,fig.subplot{k, i}.plot{l}.barcolor{n}])];

						end

					else

						for n=1:length(P)

							C{n} = [1,1,1]-([1,1,1]-color)* (1-(n-1)/length(P));

						end

					end

 %[1,1,1]-([1,1,1]-color)*0.7;

 %C=['w','k','m','g','r','y']; % make a colors list

 for n=1:length(P)

 set(P(n),'facecolor',C{n});

 set(P(n),'EdgeColor',C{n});

					end

					

				% errorbar

 elseif strcmp(fig.subplot{k, i}.plot{l}.style,'errorbar')

					mode = size(fig.subplot{k, i}.plot{l}.y,1) / size(fig.subplot{k, i}.plot{l}.x,2);

					

					if mode == 3 % upper and lower boarder are given

						

						dataSize = length(fig.subplot{k, i}.plot{l}.y) / mode;

						

						data = fig.subplot{k, i}.plot{l}.y(1:dataSize,:);

						lowerError = fig.subplot{k, i}.plot{l}.y(1+dataSize:dataSize+dataSize,:);

						upperError = fig.subplot{k, i}.plot{l}.y(1+dataSize*2:dataSize+dataSize*2,:);

							

						numgroups = size(data, 1);

						numbars = size(data, 2);

						

						groupwidth = min(0.8, numbars/(numbars+1.5));

						

						for iErrorBar = 1:numbars

							

							% Based on barweb.m by Bolu Ajiboye from MATLAB File Exchange

							

							x = (1:numgroups) - groupwidth/2 + (2*iErrorBar-1) * groupwidth / (2*numbars); % Aligning error bar with individual bar

							

							if isfield(fig.subplot{k, i}.plot{l},'color')

								colorerrorbar = eval(['fhg.' fig.subplot{k, i}.plot{l}.color]);

								errorbar(x, data(:,iErrorBar), lowerError(:,iErrorBar), upperError(:,iErrorBar),'color',colorerrorbar, 'linestyle', 'none');

							else

								errorbar(x, data(:,iErrorBar), lowerError(:,iErrorBar), upperError(:,iErrorBar),'color','k', 'linestyle', 'none');

							end

						end

					end

					

					

% 					barstack = barh(fig.subplot{k, i}.plot{l}.x,fig.subplot{k, i}.plot{l}.y, 'BarLayout', 'stacked');

					

 % period_heatmap

 elseif strcmp(fig.subplot{k, i}.plot{l}.style,'period_heatmap')

 isheatmap=1;

 time=fig.subplot{k, i}.plot{l}.x;

 data=fig.subplot{k, i}.plot{l}.y;

 time_step=time(2)-time(1);

 xticks = linspace(0,1,round(1/time_step)+1)*24;

 start_date = datevec(time(1));

 end_date = datevec(time(end));

 yticks = datenum(start_date(1),start_date(2), start_date(3)):1:datenum(end_date(1),end_date(2),end_date(3))+1;

 data = reshape(data,length(xticks)-1,length(data)/(length(xticks)-1))';

 data = [data, NaN(size(data,1),1)];

 data = [data; NaN(1,size(data,2))];

 fontweight=eval(['format.',style,'.fontweight']);

 fontsize=eval(['format.',style,'.fontsize']);

 fontname=eval(['format.',style,'.fontname']);

 pcolor(xticks, yticks, data);

 set(gca,'YDir','reverse')

 xlim([xticks(1),xticks(end)]);

 set(gca,'XTick',0:4:24)

 ygrid='off';

 shading flat

 %shading interp

 if isfield(fig.subplot{1,1}, 'ydatetick_format')

 yticks=[yticks(1)-(yticks(2)-yticks(1)), yticks];

 set(gca,'YTick',yticks)

 datetick('y',fig.subplot{1,1}.ydatetick_format,'keepticks')

 ytick_label=get(gca,'YTickLabel');

 temp_index=zeros(length(ytick_label),1);

 for m=2:length(ytick_label)

 if strcmp(ytick_label(m,:),ytick_label(m-1,:))

 temp_index(m)=1;

 end

 end

 temp_index(1)=[];

 yticks(1)=[];

 set(gca,'YTick',yticks(~temp_index))

 datetick('y',fig.subplot{1,1}.ydatetick_format,'keepticks')

 ylim([yticks(1),yticks(end)])

 end

 if isfield(fig.subplot{k, i}.plot{l},'color_limits')

 color_limits=fig.subplot{k, i}.plot{l}.color_limits;

 else

 color_limits=[nanmin(fig.subplot{k, i}.plot{l}.y), nanmax(fig.subplot{k, i}.plot{l}.y)];

 end

 caxis(color_limits)

 set(gca,'FontSize',fontsize,'FontName', fontname, 'Fontweight', fontweight);

 c = axes('Position',[0 0 1 1],'Visible','off', 'NextPlot', 'add');

 lgnd(num_subplot)=colorbar ('Location', 'SouthOutside');

 caxis(color_limits)

 if isfield(fig.subplot{k, i},'colormap_label')

 colormap_label = get(lgnd(num_subplot),'xlabel')';

 set(colormap_label,'String',fig.subplot{k, i}.colormap_label, 'FontSize',fontsize,'FontName', fontname, 'Fontweight', fontweight);

 end

 set(lgnd(num_subplot), 'Color', 'none', 'Box', 'off', 'FontSize',fontsize,'FontName', fontname,'FontWeight',fontweight)

 LegendOuterPos = get(lgnd(num_subplot),'OuterPosition');

 set(lgnd(num_subplot),'OuterPosition', [LegendOuterPos(1), 0, LegendOuterPos(3), LegendOuterPos(4),])

 LegendPos = get(lgnd(num_subplot),'Position');

 LegendPos (5) = LegendPos(4);

 LegendPos (4) = LegendPos(4) + LegendPos(2);

 axes(ax(num_subplot));

 % scatter_heatmap

 elseif strcmp(fig.subplot{k, i}.plot{l}.style,'scatter_heatmap')

 clear heatmap quantiles

 isheatmap=1;

 xdata=fig.subplot{k, i}.plot{l}.x;

 ydata=fig.subplot{k, i}.plot{l}.y;

 xsteps = fig.subplot{k, i}.plot{l}.xsteps;

 ysteps = fig.subplot{k, i}.plot{l}.ysteps;

 if nanmin(xdata) >= fig.subplot{k,i}.xlim(1) && nanmax(ydata) <= fig.subplot{k,i}.xlim(2)

 xticks = floor(fig.subplot{k,i}.xlim(1)/xsteps)*xsteps:xsteps:ceil(fig.subplot{k,i}.xlim(2)/xsteps)*xsteps+2*xsteps;

 elseif nanmin(xdata) >= fig.subplot{k,i}.xlim(1) && nanmax(ydata) >= fig.subplot{k,i}.xlim(2)

 xticks = floor(fig.subplot{k,i}.xlim(1)/xsteps)*xsteps:xsteps:ceil(nanmax(xdata)/xsteps)*xsteps+2*xsteps;

 elseif nanmin(xdata) <= fig.subplot{k,i}.xlim(1) && nanmax(ydata) <= fig.subplot{k,i}.xlim(2)

 xticks = floor(nanmin(xdata)/xsteps)*xsteps:xsteps:ceil(fig.subplot{k,i}.xlim(2)/xsteps)*xsteps+2*xsteps;

 else

 xticks = floor(nanmin(xdata)/xsteps)*xsteps:xsteps:ceil(nanmax(xdata)/xsteps)*xsteps+2*xsteps;

 end

 if nanmin(ydata) >= fig.subplot{k,i}.ylim(1) && nanmax(ydata) <= fig.subplot{k,i}.ylim(2)

 yticks = floor(fig.subplot{k,i}.ylim(1)/ysteps)*ysteps:ysteps:ceil(fig.subplot{k,i}.ylim(2)/ysteps)*ysteps;

 elseif nanmin(ydata) >= fig.subplot{k,i}.ylim(1) && nanmax(ydata) >= fig.subplot{k,i}.ylim(2)

 yticks = floor(fig.subplot{k,i}.ylim(1)/ysteps)*ysteps:ysteps:ceil(nanmax(ydata)/ysteps)*ysteps;

 elseif nanmin(ydata) <= fig.subplot{k,i}.ylim(1) && nanmax(ydata) <= fig.subplot{k,i}.ylim(2)

 yticks = floor(nanmin(ydata)/ysteps)*ysteps:ysteps:ceil(fig.subplot{k,i}.ylim(2)/ysteps)*ysteps;

 else

 yticks = floor(nanmin(ydata)/ysteps)*ysteps:ysteps:ceil(nanmax(ydata)/ysteps)*ysteps;

 end

 %xsteps = round(xsteps*10000000000)/10000000000;

 %xticks = round(xticks*10000000000)/10000000000;

 for o=1:length(xticks)-1

 for p=1:length(yticks)-1

 index1 = xdata >= xticks(o) & xdata < xticks(o+1);

 index2 = ydata >= yticks(p) & ydata < yticks(p+1);

 heatmap(p,o)=nansum(index1 & index2);

 end

 heatmap(:,o)=heatmap(:,o)/nansum(heatmap(:,o));

 end

 heatmap(isnan(heatmap))=0;

 if isfield(fig.subplot{k, i}.plot{l},'quantiles')

 heatmap_cumsum = cumsum(heatmap);

 for s = 1:length(fig.subplot{k, i}.plot{l}.quantiles)

 for o = 1:size(heatmap,2)

 if isempty(find (heatmap_cumsum(:,o) > fig.subplot{k, i}.plot{l}.quantiles(s),1, 'first'))

 quantiles(s,o) = NaN;

 else

 quantiles(s,o) = yticks(find (heatmap_cumsum(:,o) > fig.subplot{k, i}.plot{l}.quantiles(s),1, 'first'));

 end

 end

 end

 end

 index= ~isnan(xdata) & ~isnan(ydata);

 %regression_line=polyfit(xdata(index),ydata(index),1);

 xticks(end)=[];

 yticks(end)=[];

 % muss die Matrix noch gedreht werden?

%{

 start_date = datevec(time(1));

 end_date = datevec(time(end));

 yticks = datenum(start_date(1),start_date(2), start_date(3)):1:datenum(end_date(1),end_date(2),end_date(3))+1;

 data = reshape(data,length(xticks)-1,length(data)/(length(xticks)-1))';

 data = [data, NaN(size(data,1),1)];

 data = [data; NaN(1,size(data,2))];

 %}

 fontweight=eval(['format.',style,'.fontweight']);

 fontsize=eval(['format.',style,'.fontsize']);

 fontname=eval(['format.',style,'.fontname']);

 pcolor(xticks, yticks, heatmap);

 if isfield(fig.subplot{k, i}.plot{l},'quantiles')

 hold on

 for o = 1:size(quantiles,1)

 plot(xticks+xsteps/2, quantiles(o,:), 'w')

 end

 end

 %plot([min(xticks), max(xticks)],[regression_line(2)+min(xticks)*regression_line(1), regression_line(2)+max(xticks)*regression_line(1)],'w', 'LineWidth', 2)

 %set(gca,'YDir','reverse')

 xlim([xticks(1),xticks(end)]);

 %set(gca,'XTick',0:4:24)

 ygrid='off';

 shading flat

 %shading interp

 %{

 if isfield(fig.subplot{1,1}, 'ydatetick_format')

 yticks=[yticks(1)-(yticks(2)-yticks(1)), yticks];

 set(gca,'YTick',yticks)

 datetick('y',fig.subplot{1,1}.ydatetick_format,'keepticks')

 ytick_label=get(gca,'YTickLabel');

 temp_index=zeros(length(ytick_label),1);

 for m=2:length(ytick_label)

 if strcmp(ytick_label(m,:),ytick_label(m-1,:))

 temp_index(m)=1;

 end

 end

 temp_index(1)=[];

 yticks(1)=[];

 set(gca,'YTick',yticks(~temp_index))

 datetick('y',fig.subplot{1,1}.ydatetick_format,'keepticks')

 end

 %}

 ylim([yticks(1),yticks(end)])

 if isfield(fig.subplot{k, i}.plot{l},'color_limits')

 color_limits=fig.subplot{k, i}.plot{l}.color_limits;

 else

 upperlimit = sort(reshape(heatmap,[],1));

 upperlimit = upperlimit(round(length(upperlimit)*0.99));

 color_limits=[nanmin(nanmin(heatmap)), upperlimit];

 end

 caxis(color_limits)

 set(gca,'FontSize',fontsize,'FontName', fontname, 'Fontweight', fontweight);

 c = axes('Position',[0 0 1 1],'Visible','off', 'NextPlot', 'add');

 lgnd(num_subplot)=colorbar ('Location', 'SouthOutside');

 caxis(color_limits)

 colormap_label = get(lgnd(num_subplot),'xlabel')';

 set(colormap_label,'String','Relative Häufigkeit pro x-Klasse', 'FontSize',fontsize,'FontName', fontname, 'Fontweight', fontweight);

 set(lgnd(num_subplot), 'Color', 'none', 'Box', 'off', 'FontSize',fontsize,'FontName', fontname,'FontWeight',fontweight)

 LegendOuterPos = get(lgnd(num_subplot),'OuterPosition');

 colormap_labelPos=get(colormap_label,'Position');

 set(lgnd(num_subplot),'OuterPosition', [LegendOuterPos(1), 0, LegendOuterPos(3), LegendOuterPos(4),])

 LegendPos = get(lgnd(num_subplot),'Position');

 LegendPos (5) = LegendPos(4);

 LegendPos (4) = LegendPos(4) + LegendPos(2);

 axes(ax(num_subplot));

 % area

 elseif strcmp(fig.subplot{k, i}.plot{l}.style,'area')

 hPlot(k,i,l) = area(fig.subplot{k, i}.plot{l}.x,fig.subplot{k, i}.plot{l}.y);

					set(hPlot(k,i,l),'FaceColor',color,'HandleVisibility','off')

 set(hPlot(k,i,l),'EdgeColor','none')

 % patch

 elseif strcmp(fig.subplot{k, i}.plot{l}.style,'patch')

					hPlot(k,i,l) = patch(fig.subplot{k, i}.plot{l}.x,fig.subplot{k, i}.plot{l}.y,'r'); % TODO: Implement color

					set(hPlot(k,i,l),'FaceColor',color,'HandleVisibility','off')

					set(hPlot(k,i,l),'EdgeColor','none')

				% fill

 elseif strcmp(fig.subplot{k, i}.plot{l}.style,'fill')

					hPlot(k,i,l) = fill(fig.subplot{k, i}.plot{l}.x,fig.subplot{k, i}.plot{l}.y,'r'); % TODO: Implement color

					set(hPlot(k,i,l),'FaceColor',color,'HandleVisibility','off')

					set(hPlot(k,i,l),'EdgeColor','none')					

				% loglog

				elseif strcmp(fig.subplot{k, i}.plot{l}.style,'loglog')

					

					

					

					if isfield(fig.subplot{k, i}.plot{l}, 'linewidth')

						linewidth=fig.subplot{k, i}.plot{l}.linewidth;

					else

						linewidth=eval(['format.',style,'.linewidth']);

					end

					

					if isfield(fig.subplot{k, i}.plot{l}, 'linestyle')

						linestyle=fig.subplot{k, i}.plot{l}.linestyle;

					else

						linestyle=eval(['format.',style,'.linestyle']);

					end

					

					if isfield(fig.subplot{k, i}.plot{l},'markerstyle')

						markerstyle=fig.subplot{k, i}.plot{l}.markerstyle;

					else

						markerstyle=eval(['format.',style,'.markerstyle']);

					end

					

					if isfield(fig.subplot{k, i}.plot{l},'markersize')

						markersize=fig.subplot{k, i}.plot{l}.markersize;

					else

						markersize=eval(['format.',style,'.markersize']);

					end

					hPlot(k,i,l) = plot(fig.subplot{k, i}.plot{l}.x,fig.subplot{k, i}.plot{l}.y,'color',color,'linestyle',linestyle,'linewidth',linewidth,'marker',markerstyle,'markersize',markersize);

					set(ax,'XScale','log')

					set(ax,'YScale','log')

					

 % if plot style is not implemented

 else

 error ([fig.subplot{k, i}.plot{l}.style, ' plot has not been implemented, yet!'])

 end

 % if plot style is not set, normal plot is used

 else

 linewidth=eval(['format.',style,'.linewidth']);

 linestyle=eval(['format.',style,'.linestyle']);

 if isfield(fig.subplot{k, i}.plot{l},'markerstyle')

 marker=fig.subplot{k, i}.plot{l}.markerstyle;

 markersize=fig.subplot{k, i}.plot{l}.markersize;

 plot(fig.subplot{k, i}.plot{l}.x,fig.subplot{k, i}.plot{l}.y,'lineWidth', linewidth, 'lineStyle', linestyle, 'Color', color, 'Marker', marker, 'MarkerSize', markersize)

 elseif eval(['strcmp(format.',style,'.marker,''on'')'])

 marker=eval(['format.',style,'.markerstyle']);

 markersize=eval(['format.',style,'.markersize']);

 plot(fig.subplot{k, i}.plot{l}.x,fig.subplot{k, i}.plot{l}.y,'lineWidth', linewidth, 'lineStyle', linestyle, 'Color', color, 'Marker', marker, 'MarkerSize', markersize)

 else

 plot(fig.subplot{k, i}.plot{l}.x,fig.subplot{k, i}.plot{l}.y,'lineWidth', linewidth, 'lineStyle', linestyle, 'Color', color)

 end

			end

			

			

			if ~isempty(C)

				allC = [allC,C];

			end

			

 end

 % setting subplot properties

 % set xlim

 if isfield(fig.subplot{k, i},'xlim')

 xlim(fig.subplot{k, i}.xlim)

 end

 % set ylim

 if isfield(fig.subplot{k, i},'ylim')

 ylim(fig.subplot{k, i}.ylim)

 end

 % set zlim

 if isfield(fig.subplot{k, i},'zlim')

 zlim(fig.subplot{k, i}.zlim)

 end

 if isfield(fig.subplot{k,i}, 'xticks')

 xticks=fig.subplot{k, i}.xticks;

 set(gca,'XTick',xticks);

 end

 if isfield(fig.subplot{k,i}, 'yticks')

 yticks=fig.subplot{k, i}.yticks;

 set(gca,'YTick',yticks);

 end

 if isfield(fig.subplot{k,i}, 'xticks')

 xticks=fig.subplot{k, i}.xticks;

 set(gca,'XTick',xticks);

 end

 if isfield(fig.subplot{k,i}, 'xticklabels')

 xticklabels = fig.subplot{k, i}.xticklabels;

 set(gca,'XTickLabel', xticklabels);

		end

 if isfield(fig.subplot{k,i}, 'yticklabels')

 yticklabels = fig.subplot{k, i}.yticklabels;

 set(gca,'YTickLabel', yticklabels);

		end		

		

		if isfield(fig.subplot{k,i}, 'xtick_rotate')

			eval(['format.',style,'.fontsize'])

			xticklabel_rotate(xticks,fig.subplot{k,i}.xtick_rotate,xticklabels,'Fontsize',eval(['format.',style,'.fontsize']))

		end

		

		if isfield(fig.subplot{k,i}, 'xdatetick_format') % This might have to be checked

			xticks=fig.subplot{k, i}.plot{l}.x;

			tickVec = datevec(xticks);

			if any(strfind(fig.subplot{1,1}.xdatetick_format,'y'))

				yearsTick = true;else yearsTick = false;end

			if any(strfind(fig.subplot{1,1}.xdatetick_format,'m')) ~= 0

				monthsTick = true;else monthsTick = false;end

			if any(strfind(fig.subplot{1,1}.xdatetick_format,'d')) ~= 0

				daysTick = true;else daysTick = false;end

			if any(strfind(fig.subplot{1,1}.xdatetick_format,'H')) ~= 0

				hoursTick = true;else hoursTick = false;end

			if yearsTick && ~monthsTick

				xticks = unique(floor(xticks(all(tickVec(:,2:3) == 1,2),:)));

			end

			if yearsTick && monthsTick && ~daysTick

				xticks = unique(floor(xticks(all(tickVec(:,3) == 1,2),:)));

			end

			if yearsTick && monthsTick && daysTick && ~hoursTick

				xticks = unique(floor(xticks(all(tickVec(:,4) == 0,2),:)));

			end

			if yearsTick && monthsTick && daysTick && hoursTick

				xticks = unique(xticks(all(tickVec(:,5) == 0,2),:));

			end

			set(gca,'XTick',xticks)

			set(gca,'XTickLabel',datestr(xticks,fig.subplot{1,1}.xdatetick_format))

			xtick_label=get(gca,'xTickLabel');

% 			datetick('x',fig.subplot{1,1}.xdatetick_format,'keepticks')

		end

 if isfield(fig.subplot{k, i},'xlim')

 xlim(fig.subplot{k, i}.xlim)

 end

 % print xlabel

 if isfield(fig.subplot{k, i},'xlabel')

 fontweight=eval(['format.',style,'.fontweight']);

 fontsize=eval(['format.',style,'.fontsize']);

 fontname=eval(['format.',style,'.fontname']);

 xlbl(num_subplot)=xlabel(fig.subplot{k, i}.xlabel, 'FontSize',fontsize,'FontName', fontname, 'FontWeight', fontweight);

 set(xlbl(num_subplot),'margin',0.000001)

 end

 % print ylabel

 if isfield(fig.subplot{k, i},'ylabel')

 fontweight=eval(['format.',style,'.fontweight']);

 fontsize=eval(['format.',style,'.fontsize']);

 fontname=eval(['format.',style,'.fontname']);

 ylbl(num_subplot)=ylabel(fig.subplot{k, i}.ylabel, 'FontSize',fontsize,'FontName', fontname, 'FontWeight', fontweight);

 set(ylbl(num_subplot),'margin',0.000001)

 end

 % print zlabel

 if isfield(fig.subplot{k, i},'zlabel')

 fontweight=eval(['format.',style,'.fontweight']);

 fontsize=eval(['format.',style,'.fontsize']);

 fontname=eval(['format.',style,'.fontname']);

 zlbl(num_subplot)=zlabel(fig.subplot{k, i}.zlabel, 'FontSize',fontsize,'FontName', fontname, 'FontWeight', fontweight);

 set(zlbl(num_subplot),'margin',0.000001)

 end

 % insert legend

 if isfield(fig.subplot{k, i},'legend')

 fontweight=eval(['format.',style,'.fontweight']);

 fontsize=eval(['format.',style,'.fontsize']);

 fontname=eval(['format.',style,'.fontname']);

 lgnd(num_subplot)=legend(fig.subplot{k, i}.legend);

 if isfield(fig.subplot{k, i},'legend_orientation')

 set(lgnd(num_subplot), 'Orientation',fig.subplot{k, i}.legend_orientation)

 end

% if strcmp(fig.subplot{k, i}.plot{l}.style,'bar')

% for i = 1:length(get(lgnd

% set(lgnd(num_subplot), 'FaceColor', C{1});

% end

% end

 LegendPos = get(lgnd(num_subplot),'Position');

 set(lgnd(num_subplot), 'Color', 'none', 'Box', 'off', 'Position', [(i-1)/num_hor_subplots+margin_hor 1-k/num_ver_subplots+margin_ver LegendPos(3) LegendPos(4)], 'FontSize',fontsize,'FontName', fontname,'FontWeight',fontweight)

 LegendPos = get(lgnd(num_subplot),'Position');

			

			for iLegend = 1:size(fig.subplot,2)

				hasOneLgnd(iLegend) = isfield(fig.subplot{k,iLegend},'legend');

			end

			if sum(hasOneLgnd) == 1 && hasOneLgnd(i)

				posLgndSubPlotRow = LegendPos;

			end

			

 if strcmp(fig.subplot{k, i}.plot{l}.style,'plot') || strcmp(fig.subplot{k, i}.plot{l}.style,'bar') || strcmp(fig.subplot{k, i}.plot{l}.style,'barh') || strcmp(fig.subplot{k, i}.plot{l}.style,'errorbar')

 P =findobj(lgnd,'type','patch');

				allC = fliplr(allC); % To compensate color order mismatch // TODO: Should be checked by Dominik

				if ~isempty(allC)

					for m = 1:length(allC)

						set(P(m),'FaceColor',allC{m});

						ColorOrder(m,:) = allC{m};

					end

					set(lgnd(num_subplot),'ColorOrder',ColorOrder);

				end

 end

 elseif ~isheatmap

 LegendPos=[0 0 0 0];

 end

 % insert title

 if isfield(fig.subplot{k, i},'title')

 fontweight=eval(['format.',style,'.fontweight_title']);

 fontsize=eval(['format.',style,'.fontsize_title']);

 fontname=eval(['format.',style,'.fontname_title']);

 b = axes('Position',[0 0 1 1],'Visible','off', 'NextPlot', 'add');

 ttl(num_subplot)=text(0,0,fig.subplot{k, i}.title,'FontSize', fontsize, 'FontName', fontname, 'VerticalAlignment', 'top');

 set(ttl(num_subplot),'Position',[(i-1)/num_hor_subplots+margin_hor, 1-(k-1)/num_ver_subplots-margin_ver])

 ttlPos=get(ttl(num_subplot),'extent');

 else

 ttlPos=[0,0,0,0];

 end

 % set fonts for axis

 fontweight=eval(['format.',style,'.fontweight']);

 fontsize=eval(['format.',style,'.fontsize']);

 fontname=eval(['format.',style,'.fontname']);

 set(ax(num_subplot),'FontSize',fontsize,'FontName', fontname, 'Fontweight', fontweight)

 % set position of axes

 set(ax(num_subplot), 'Color', 'none', 'Box', 'off', 'YGrid', ygrid, 'XGrid', xgrid, 'ZGrid', zgrid)

		if isfield(fig.subplot{k,i}, 'xtick_rotate')

			set(ax(num_subplot),'OuterPosition',[(i-1)/num_hor_subplots+margin_hor 1-k/num_ver_subplots+LegendPos(4)+6*margin_ver 1/num_hor_subplots-2*margin_hor 1-(k-1)/num_ver_subplots-margin_ver-ttlPos(4)-(1-k/num_ver_subplots+LegendPos(4)+6*margin_ver)])

			if exist('hasOneLgnd','var')

				if sum(hasOneLgnd) == 1 && ~hasOneLgnd(i) % TODO: Test further

					set(ax(num_subplot),'OuterPosition',[(i-1)/num_hor_subplots+margin_hor 1-k/num_ver_subplots+posLgndSubPlotRow(4)+6*margin_ver 1/num_hor_subplots-2*margin_hor 1-(k-1)/num_ver_subplots-margin_ver-ttlPos(4)-(1-k/num_ver_subplots+posLgndSubPlotRow(4)+6*margin_ver)])

				end

			end

		else

			set(ax(num_subplot),'OuterPosition',[(i-1)/num_hor_subplots+margin_hor 1-k/num_ver_subplots+LegendPos(4)+2*margin_ver 1/num_hor_subplots-2*margin_hor 1-(k-1)/num_ver_subplots-margin_ver-ttlPos(4)-(1-k/num_ver_subplots+LegendPos(4)+2*margin_ver)])

			if exist('hasOneLgnd','var')

				if sum(hasOneLgnd) == 1 && ~hasOneLgnd(i) % TODO: Test further

					set(ax(num_subplot),'OuterPosition',[(i-1)/num_hor_subplots+margin_hor 1-k/num_ver_subplots+posLgndSubPlotRow(4)+2*margin_ver 1/num_hor_subplots-2*margin_hor 1-(k-1)/num_ver_subplots-margin_ver-ttlPos(4)-(1-k/num_ver_subplots+posLgndSubPlotRow(4)+2*margin_ver)])

				end

			end

		end

 set(ax(num_subplot),'LooseInset',get(gca,'TightInset'))

 % set position of legend

 AxesPos=get(ax(num_subplot),'Position');

 if isfield(fig.subplot{k, i},'legend') || isheatmap

 %LegendPos = get(lgnd(num_subplot),'Position');

 if isheatmap

 %set(ax(num_subplot),'OuterPosition',[(i-1)/num_hor_subplots+margin_hor 1-k/num_ver_subplots+LegendPos(4)+2*margin_ver 1/num_hor_subplots-2*margin_hor 1-(k-1)/num_ver_subplots-margin_ver-ttlPos(4)-(1-k/num_ver_subplots+LegendPos(4)+2*margin_ver)])

 %set(ax(num_subplot),'LooseInset',get(gca,'TightInset'))

 %LegendPos = get(lgnd(num_subplot), 'Position');

 set(lgnd(num_subplot), 'Position', [AxesPos(1) 1-k/num_ver_subplots+LegendPos(2)+margin_ver AxesPos(3) LegendPos(5)*0.85])

			else

 set(lgnd(num_subplot), 'Position', [AxesPos(1) LegendPos(2) LegendPos(3) LegendPos(4)])

 end

 a = axes('position',[(i-1)/num_hor_subplots+margin_hor 1-k/num_ver_subplots+LegendPos(4)+margin_ver 1/num_hor_subplots-2*margin_hor 1/num_ver_subplots-LegendPos(4)],'visible','off');

			if exist('hasOneLgnd','var')

				if sum(hasOneLgnd) == 1 & num_hor_subplots == 1% TODO: Test further

					line([0,1],[0,0],'Color', 'k', 'linestyle',':');

					ylim([0,1]);

				end

			end

 end

 end

end

if ~exist('hPlot','var')

	hPlot = nan;

end

if ~exist('hAxes','var')

	hFig = nan;

end

axes(ax(1))

linkaxes(ax,'x');

set(gcf, 'InvertHardCopy', 'off');

print -dbitmap

end

Functions/Results_Evaluation/styleplot.m

function [hFig, ax, hPlot] = styleplot(fig, format, style)

%UNTITLED3 Summary of this function goes here

% Detailed explanation goes here

%{

fig:

style: 'word', 'ppp', 'wordwide'...

format: styleplot_format file

%}

% load format-file

load (format);

% get FHG-Colors

fhg=getFHGColors();

% create figure and set width and height

hFig=figure();

set(0,'units','pixels')

Pixels= get(0,'screensize');

set(0,'units','inches')

Inches= get(0,'screensize');

Res = Pixels./Inches;

Res=Res(4);

if isfield(fig,'width')

 width_cm=fig.width;

elseif isfield(fig,'width_columns')

 width_cm=eval(['format.',style,'.width(',num2str(fig.width_columns),')']);

else

 width_cm=eval(['format.',style,'.width(format.',style,'.width_columns)']);

end

if isfield(fig,'height')

 height_cm=fig.height;

else

 height_cm=eval(['format.',style,'.height']);

end

fig_width_px=round(width_cm*Res/2.54);

fig_height_px=round(height_cm*Res/2.54);

set(hFig, 'Position', [100 100 fig_width_px fig_height_px])

% get margins

margin_hor=eval(['format.',style,'.margin_hor/width_cm']);

margin_ver=eval(['format.',style,'.margin_ver/width_cm']);

% set figure's background color

eval(['set(hFig, ''color'', format.',style,'.background_color)'])

% plot

[num_ver_subplots, num_hor_subplots]=size(fig.subplot);

num_subplot=0;

for k=1:num_ver_subplots

 for i=1:num_hor_subplots

 num_subplot=num_subplot+1;

 ax(num_subplot)=axes();

 hold on

 isheatmap=0;

		allC = cell(0);

		for l=1:length(fig.subplot{k,i}.plot);

			C = cell(0); % reset color for legend

			% get color for plot

 if isfield(fig.subplot{k, i}.plot{l},'color')

 color=eval(['fhg.',fig.subplot{k, i}.plot{l}.color]);

 else

 color=eval(['fhg.',format.word.color{floor((l-1)/3)+1}]);

 if mod(l,3)==2

 color=[1,1,1]-([1,1,1]-color)*0.7;

 elseif mod(l,3)==0

 color=[1,1,1]-([1,1,1]-color)*0.4;

 end

 end

			if isfield(fig.subplot{k, i},'xgrid')

				xgrid = fig.subplot{k, i}.xgrid;

			else

				xgrid = 'off';

			end

			if isfield(fig.subplot{k, i},'ygrid')

				ygrid = 'off';

			else

				ygrid = eval(['format.',style,'.ygrid']);

			end

			

			

			zgrid = 'off';

 % if style is given then plot in this style, if not use normal plot

 if isfield(fig.subplot{k, i}.plot{l},'style')

 % plot

 if strcmp(fig.subplot{k, i}.plot{l}.style,'plot')

					if isfield(fig.subplot{k, i}.plot{l}, 'linewidth')

						linewidth=fig.subplot{k, i}.plot{l}.linewidth;

					else

						linewidth=eval(['format.',style,'.linewidth']);

					end

					

					if isfield(fig.subplot{k, i}.plot{l}, 'linestyle')

						linestyle=fig.subplot{k, i}.plot{l}.linestyle;

					else

						linestyle=eval(['format.',style,'.linestyle']);

					end

 if isfield(fig.subplot{k, i}.plot{l},'break')

 x = fig.subplot{k, i}.plot{l}.x;

 y = fig.subplot{k, i}.plot{l}.y;

 break_start = fig.subplot{k, i}.plot{l}.break(1);

 break_end = fig.subplot{k, i}.plot{l}.break(2);

 x(y>y_break_start & y <y_break_end)=[];

 y(y>y_break_start & y <y_break_end)=[];

 % leave room for the y_break_end

 [junk,p]=min(y>=y_break_end);

 if p>y_break_end

 x=[x(1:p-1) NaN x(p:end)];

 y=[y(1:p-1) y_break_mid y(p:end)];

 end;

 % remap

 y2=y;

 y2(y2>=y_break_end)=y2(y2>=y_break_end)-y_break_mid;

 % plot

 h=plot(x,y2,'.');

 marker=fig.subplot{k, i}.plot{l}.markerstyle;

 markersize=fig.subplot{k, i}.plot{l}.markersize;

 plot(fig.subplot{k, i}.plot{l}.x,fig.subplot{k, i}.plot{l}.y,'lineWidth', linewidth, 'lineStyle', linestyle, 'Color', color, 'Marker', marker, 'MarkerSize', markersize)

 else

 if isfield(fig.subplot{k, i}.plot{l},'markerstyle')

 marker=fig.subplot{k, i}.plot{l}.markerstyle;

 markersize=fig.subplot{k, i}.plot{l}.markersize;

							if isfield(fig.subplot{k, i}.plot{l},'markerfacecolor')

								markerfacecolor=eval(['fhg.',fig.subplot{k, i}.plot{l}.markerfacecolor]);

							else

								markerfacecolor=color;

							end

							if isfield(fig.subplot{k, i}.plot{l},'markeredgecolor')

								markeredgecolor=eval(['fhg.',fig.subplot{k, i}.plot{l}.markeredgecolor]);

							else

								markeredgecolor=color;

							end

							

							if isfield(fig.subplot{k, i}.plot{l},'markerspacing')

								hPlot(k,i,l) = line_fewer_markers(fig.subplot{k, i}.plot{l}.x,fig.subplot{k, i}.plot{l}.y,fig.subplot{k, i}.plot{l}.markerspacing,'lineWidth', linewidth, 'lineStyle', linestyle, 'Color', color, 'Marker', marker, 'MarkerSize', markersize, 'MarkerFaceColor', markerfacecolor, 'MarkerEdgeColor', markeredgecolor);

							else

								hPlot(k,i,l) = plot(fig.subplot{k, i}.plot{l}.x,fig.subplot{k, i}.plot{l}.y,'lineWidth', linewidth, 'lineStyle', linestyle, 'Color', color, 'Marker', marker, 'MarkerSize', markersize, 'MarkerFaceColor', markerfacecolor, 'MarkerEdgeColor', markeredgecolor);

							end

							

 elseif eval(['strcmp(format.',style,'.marker,''on'')'])

 marker=eval(['format.',style,'.markerstyle']);

 markersize=eval(['format.',style,'.markersize']);

 hPlot(k,i,l) = plot(fig.subplot{k, i}.plot{l}.x,fig.subplot{k, i}.plot{l}.y,'lineWidth', linewidth, 'lineStyle', linestyle, 'Color', color, 'Marker', marker, 'MarkerSize', markersize);

 else

 hPlot(k,i,l) = plot(fig.subplot{k, i}.plot{l}.x,fig.subplot{k, i}.plot{l}.y,'lineWidth', linewidth, 'lineStyle', linestyle, 'Color', color);

						end

						

% 						if isfield(fig.subplot{k, i}.plot{l}, 'barcolor')

% 							for n=1:length(P)

% 								C{n} = eval(['fhg.' ,fig.subplot{k, i}.plot{l}.barcolor{n}]);

% 								C(:,l) = [C(:,l);eval(['fhg.' ,fig.subplot{k, i}.plot{l}.barcolor{n}])];

% 							end

% 						else

% 							for n=1:length(P)

% 								C{n} = [1,1,1]-([1,1,1]-color)* (1-(n-1)/length(P));

% 							end

% 						end

						

% if isfield(fig.subplot{1,1}, 'xdatetick_format') && l==1

% 							xticks=fig.subplot{k, i}.plot{l}.x;

% 							tickVec = datevec(xticks);

% 							if any(strfind(fig.subplot{1,1}.xdatetick_format,'y'))

% 								yearsTick = true;else yearsTick = false;end

% 							if any(strfind(fig.subplot{1,1}.xdatetick_format,'m')) ~= 0

% 								monthsTick = true;else monthsTick = false;end

% 							if any(strfind(fig.subplot{1,1}.xdatetick_format,'d')) ~= 0

% 								daysTick = true;else daysTick = false;end

% 							if any(strfind(fig.subplot{1,1}.xdatetick_format,'H')) ~= 0

% 								hoursTick = true;else hoursTick = false;end

% 							

% 							if yearsTick && ~monthsTick

% 								xticks = unique(floor(xticks(all(tickVec(:,2:3) == 1,2),:)));

% 							end

% 							if yearsTick && monthsTick && ~daysTick

% 								xticks = unique(floor(xticks(all(tickVec(:,3) == 1,2),:)));

% 							end

% 							if yearsTick && monthsTick && daysTick && ~hoursTick

% 								xticks = unique(floor(xticks(all(tickVec(:,4) == 1,2),:)));

% 							end

% 							if yearsTick && monthsTick && daysTick && hoursTick

% 								xticks = unique(xticks(all(tickVec(:,5) == 0,2),:));

% 							end

% 							set(gca,'XTick',xticks)

% 							set(gca,'XTickLabel',datestr(xticks,fig.subplot{1,1}.xdatetick_format))

% 							xtick_label=get(gca,'xTickLabel');

% end

% if isfield(fig.subplot{1,1}, 'ydatetick_format') && l==1

% 							yticks=fig.subplot{k, i}.plot{l}.x;

% 							tickVec = datevec(yticks);

% 							if any(strfind(fig.subplot{1,1}.xdatetick_format,'y'))

% 								yearsTick = true;else yearsTick = false;end

% 							if any(strfind(fig.subplot{1,1}.xdatetick_format,'m')) ~= 0

% 								monthsTick = true;else monthsTick = false;end

% 							if any(strfind(fig.subplot{1,1}.xdatetick_format,'d')) ~= 0

% 								daysTick = true;else daysTick = false;end

% 							if any(strfind(fig.subplot{1,1}.xdatetick_format,'H')) ~= 0

% 								hoursTick = true;else hoursTick = false;end

% 							

% 							if yearsTick && ~monthsTick

% 								yticks = unique(floor(yticks(all(tickVec(:,2:3) == 1,2),:)));

% 							end

% 							if yearsTick && monthsTick

% 								yticks = unique(floor(yticks(all(tickVec(:,3) == 1,2),:)));

% 							end

% 							if yearsTick && monthsTick && daysTick

% 								yticks = unique(floor(yticks(all(tickVec(:,4) == 1,2),:)));

% 							end

% 							if yearsTick && monthsTick && daysTick

% 								yticks = unique(yticks(all(tickVec(:,5) == 0,2),:));

% 							end

% 							set(gca,'YTick',yticks)

% 							set(gca,'YTickLabel',datestr(yticks,fig.subplot{1,1}.ydatetick_format))

% 							ytick_label=get(gca,'yTickLabel');

% end

					end

					

 % scatter

 elseif strcmp(fig.subplot{k, i}.plot{l}.style,'scatter')

 marker=eval(['format.',style,'.markerstyle']);

 if isfield(fig.subplot{k,i}, 'markersize')

 markersize=fig.subplot{k,i}.markersize;

 else

 markersize=eval(['format.',style,'.markersize']);

 end

 hPlot(k,i,l) = plot(fig.subplot{k, i}.plot{l}.x,fig.subplot{k, i}.plot{l}.y,'Color', color, 'Marker', marker, 'MarkerSize', markersize, 'LineStyle', 'none');

 % surf

 elseif strcmp(fig.subplot{k, i}.plot{l}.style,'surf')

 surface(fig.subplot{k, i}.plot{l}.x, fig.subplot{k, i}.plot{l}.y, fig.subplot{k, i}.plot{l}.z)

 if isfield(fig.subplot{k, i}.plot{l}, 'shading')

 eval(['shading ' fig.subplot{k, i}.plot{l}.shading])

 end

 zgrid = 'on';

 xgrid = 'on';

 view(3)

					if isfield(fig.subplot{k, i}.plot{l}, 'caxis')

 caxis(fig.subplot{k, i}.plot{l}.caxis)

 end

					

					if isfield(fig.subplot{k, i}.plot{l}, 'colormap')

 colormap(fig.subplot{k, i}.plot{l}.colormap)

 end

 % stairs

 elseif strcmp(fig.subplot{k, i}.plot{l}.style,'stairs')

					if isfield(fig.subplot{k, i}.plot{l}, 'linewidth')

						linewidth=fig.subplot{k, i}.plot{l}.linewidth;

					else

						linewidth=eval(['format.',style,'.linewidth']);

					end

					

					if isfield(fig.subplot{k, i}.plot{l}, 'linestyle')

						linestyle=fig.subplot{k, i}.plot{l}.linestyle;

					else

						linestyle=eval(['format.',style,'.linestyle']);

					end

					

 if eval(['strcmp(format.',style,'.marker,''on'')'])

 marker=eval(['format.',style,'.markerstyle']);

 markersize=eval(['format.',style,'.markersize']);

 hPlot(k,i,l) = stairs(fig.subplot{k, i}.plot{l}.x,fig.subplot{k, i}.plot{l}.y,'lineWidth', linewidth, 'lineStyle', linestyle, 'Color', color, 'Marker', marker, 'MarkerSize', markersize)

 else

 hPlot(k,i,l) = stairs(fig.subplot{k, i}.plot{l}.x,fig.subplot{k, i}.plot{l}.y,'lineWidth', linewidth, 'lineStyle', linestyle, 'Color', color);

 end

 % bar

 elseif strcmp(fig.subplot{k, i}.plot{l}.style,'bar')

					

					if isfield(fig.subplot{k, i}.plot{l}, 'axislocation')

						

						% TODO: Figure out how to plot on second axis

% 						axislocation = fig.subplot{k, i}.plot{l}.axislocation;

% 						axisscale = fig.subplot{k, i}.plot{l}.axisscale;

% 						

% 						fig.subplot{k, i}.plot{l}.y = fig.subplot{k, i}.plot{l}.y * axisscale;

% 						

% 						axRight = axes('Position',get(ax(num_subplot),'Position'),...

% 							'XAxisLocation','top',...

% 							'YAxisLocation','right',...

% 							'Color','none',...

% 							'XColor','k','YColor','k');

% 						

% % 						hold(axRight,'on')

% 						linkaxes([ax(num_subplot) axRight],'x');

% 						linkaxes([ax(num_subplot) axRight],'y');

% 						% 						plot(x,y3,'Parent',axRight);

% 						

% 						set(axRight,'Ylim',get(ax,'YLim') * 1/axisscale)

% 						set(axRight,'YTick',get(ax,'YTick')* 1/axisscale)

% 						

% 						

% 						set(axRight,'XTickLabel',[]);

% 						

% % 						axis(axRight,'XAxis','off')

% 						

% 						set(axRight,'Color','w')

% % 						set(get(axRight,'XTick'),[])

% 						

% 						if isfield(fig.subplot{k, i}.plot{l}, 'barlayout')

% 							barstack = bar(fig.subplot{k, i}.plot{l}.x,fig.subplot{k, i}.plot{l}.y, 'BarLayout', fig.subplot{k, i}.plot{l}.barlayout,'Parent',axRight);

% 						else

% 							barstack = bar(fig.subplot{k, i}.plot{l}.x,fig.subplot{k, i}.plot{l}.y, 'BarLayout', 'stacked','Parent',axRight);

% 						end

% 						

% 						axes(ax)

						

					else

						

						if isfield(fig.subplot{k, i}.plot{l}, 'barlayout')

							barstack = bar(fig.subplot{k, i}.plot{l}.x,fig.subplot{k, i}.plot{l}.y, 'BarLayout', fig.subplot{k, i}.plot{l}.barlayout);

						else

							barstack = bar(fig.subplot{k, i}.plot{l}.x,fig.subplot{k, i}.plot{l}.y, 'BarLayout', 'stacked');

						end

						

						

					end

					

 P=findobj(barstack,'type','patch');

					if isfield(fig.subplot{k, i}.plot{l}, 'barcolor')

						for n=1:length(P)

							C{n} = eval(['fhg.' ,fig.subplot{k, i}.plot{l}.barcolor{n}]);

% 							C(:,l) = [C(:,l);eval(['fhg.' ,fig.subplot{k, i}.plot{l}.barcolor{n}])];

						end

					else

						for n=1:length(P)

							C{n} = [1,1,1]-([1,1,1]-color)* (1-(n-1)/length(P));

						end

					end

 %[1,1,1]-([1,1,1]-color)*0.7;

 %C=['w','k','m','g','r','y']; % make a colors list

 for n=1:length(P)

 set(P(n),'facecolor',C{n});

 set(P(n),'EdgeColor',C{n});

					end

					if isfield(fig.subplot{k, i}.plot{l}, 'text')

						

						if isfield(fig.subplot{k, i}.plot{l}, 'text_fontsize')

							fontsize=fig.subplot{k, i}.plot{l}.text_fontsize;

						else

							fontsize=eval(['format.',style,'.fontsize']);

						end

						if isfield(fig.subplot{k, i}.plot{l}, 'text_fontname')

							fontname=fig.subplot{k, i}.plot{l}.text_fontsize;

						else

							fontname=eval(['format.',style,'.fontname']);

						end

							ybuff=0;

							for iTXT=1:length(barstack)

								XDATA=get(get(barstack(iTXT),'Children'),'XData');

								YDATA=get(get(barstack(iTXT),'Children'),'YData');

								for jTXT=1:size(XDATA,2)

									x=XDATA(1,jTXT)+(XDATA(3,jTXT)-XDATA(1,jTXT))/2;

									y=YDATA(2,jTXT)+ybuff;

									t=fig.subplot{k, i}.plot{l}.text(jTXT,iTXT);

									text(x,y,t,'Color','k','HorizontalAlignment','left','Rotation',90,'FontName',fontname,'FontSize',fontsize-2);

								end

							end

					end

					

 % barh

 elseif strcmp(fig.subplot{k, i}.plot{l}.style,'barh')

					if isfield(fig.subplot{k, i}.plot{l}, 'barlayout')

						barstack = barh(fig.subplot{k, i}.plot{l}.x,fig.subplot{k, i}.plot{l}.y, 'BarLayout', fig.subplot{k, i}.plot{l}.barlayout);

					else

						barstack = barh(fig.subplot{k, i}.plot{l}.x,fig.subplot{k, i}.plot{l}.y, 'BarLayout', 'stacked');

					end

 P=findobj(barstack,'type','patch');

					if isfield(fig.subplot{k, i}.plot{l}, 'barcolor')

						for n=1:length(P)

							C{n} = eval(['fhg.' ,fig.subplot{k, i}.plot{l}.barcolor{n}]);

							C(:,l) = [C(:,l);eval(['fhg.' ,fig.subplot{k, i}.plot{l}.barcolor{n}])];

						end

					else

						for n=1:length(P)

							C{n} = [1,1,1]-([1,1,1]-color)* (1-(n-1)/length(P));

						end

					end

 %[1,1,1]-([1,1,1]-color)*0.7;

 %C=['w','k','m','g','r','y']; % make a colors list

 for n=1:length(P)

 set(P(n),'facecolor',C{n});

 set(P(n),'EdgeColor',C{n});

					end

					

				% errorbar

 elseif strcmp(fig.subplot{k, i}.plot{l}.style,'errorbar')

					mode = size(fig.subplot{k, i}.plot{l}.y,1) / size(fig.subplot{k, i}.plot{l}.x,2);

					

					if mode == 3 % upper and lower boarder are given

						

						dataSize = length(fig.subplot{k, i}.plot{l}.y) / mode;

						

						data = fig.subplot{k, i}.plot{l}.y(1:dataSize,:);

						lowerError = fig.subplot{k, i}.plot{l}.y(1+dataSize:dataSize+dataSize,:);

						upperError = fig.subplot{k, i}.plot{l}.y(1+dataSize*2:dataSize+dataSize*2,:);

							

						numgroups = size(data, 1);

						numbars = size(data, 2);

						

						groupwidth = min(0.8, numbars/(numbars+1.5));

						

						for iErrorBar = 1:numbars

							

							% Based on barweb.m by Bolu Ajiboye from MATLAB File Exchange

							

							x = (1:numgroups) - groupwidth/2 + (2*iErrorBar-1) * groupwidth / (2*numbars); % Aligning error bar with individual bar

							

							if isfield(fig.subplot{k, i}.plot{l},'color')

								colorerrorbar = eval(['fhg.' fig.subplot{k, i}.plot{l}.color]);

								errorbar(x, data(:,iErrorBar), lowerError(:,iErrorBar), upperError(:,iErrorBar),'color',colorerrorbar, 'linestyle', 'none');

							else

								errorbar(x, data(:,iErrorBar), lowerError(:,iErrorBar), upperError(:,iErrorBar),'color','k', 'linestyle', 'none');

							end

						end

					end

					

					

% 					barstack = barh(fig.subplot{k, i}.plot{l}.x,fig.subplot{k, i}.plot{l}.y, 'BarLayout', 'stacked');

					

 % period_heatmap

 elseif strcmp(fig.subplot{k, i}.plot{l}.style,'period_heatmap')

 isheatmap=1;

 time=fig.subplot{k, i}.plot{l}.x;

 data=fig.subplot{k, i}.plot{l}.y;

 time_step=time(2)-time(1);

 xticks = linspace(0,1,round(1/time_step)+1)*24;

 start_date = datevec(time(1));

 end_date = datevec(time(end));

 yticks = datenum(start_date(1),start_date(2), start_date(3)):1:datenum(end_date(1),end_date(2),end_date(3))+1;

 data = reshape(data,length(xticks)-1,length(data)/(length(xticks)-1))';

 data = [data, NaN(size(data,1),1)];

 data = [data; NaN(1,size(data,2))];

 fontweight=eval(['format.',style,'.fontweight']);

 fontsize=eval(['format.',style,'.fontsize']);

 fontname=eval(['format.',style,'.fontname']);

 pcolor(xticks, yticks, data);

 set(gca,'YDir','reverse')

 xlim([xticks(1),xticks(end)]);

 set(gca,'XTick',0:4:24)

 ygrid='off';

 shading flat

 %shading interp

 if isfield(fig.subplot{1,1}, 'ydatetick_format')

 yticks=[yticks(1)-(yticks(2)-yticks(1)), yticks];

 set(gca,'YTick',yticks)

 datetick('y',fig.subplot{1,1}.ydatetick_format,'keepticks')

 ytick_label=get(gca,'YTickLabel');

 temp_index=zeros(length(ytick_label),1);

 for m=2:length(ytick_label)

 if strcmp(ytick_label(m,:),ytick_label(m-1,:))

 temp_index(m)=1;

 end

 end

 temp_index(1)=[];

 yticks(1)=[];

 set(gca,'YTick',yticks(~temp_index))

 datetick('y',fig.subplot{1,1}.ydatetick_format,'keepticks')

 ylim([yticks(1),yticks(end)])

 end

 if isfield(fig.subplot{k, i}.plot{l},'color_limits')

 color_limits=fig.subplot{k, i}.plot{l}.color_limits;

 else

 color_limits=[nanmin(fig.subplot{k, i}.plot{l}.y), nanmax(fig.subplot{k, i}.plot{l}.y)];

 end

 caxis(color_limits)

 set(gca,'FontSize',fontsize,'FontName', fontname, 'Fontweight', fontweight);

 c = axes('Position',[0 0 1 1],'Visible','off', 'NextPlot', 'add');

 lgnd(num_subplot)=colorbar ('Location', 'SouthOutside');

 caxis(color_limits)

 if isfield(fig.subplot{k, i},'colormap_label')

 colormap_label = get(lgnd(num_subplot),'xlabel')';

 set(colormap_label,'String',fig.subplot{k, i}.colormap_label, 'FontSize',fontsize,'FontName', fontname, 'Fontweight', fontweight);

 end

 set(lgnd(num_subplot), 'Color', 'none', 'Box', 'off', 'FontSize',fontsize,'FontName', fontname,'FontWeight',fontweight)

 LegendOuterPos = get(lgnd(num_subplot),'OuterPosition');

 set(lgnd(num_subplot),'OuterPosition', [LegendOuterPos(1), 0, LegendOuterPos(3), LegendOuterPos(4),])

 LegendPos = get(lgnd(num_subplot),'Position');

 LegendPos (5) = LegendPos(4);

 LegendPos (4) = LegendPos(4) + LegendPos(2);

 axes(ax(num_subplot));

 % scatter_heatmap

 elseif strcmp(fig.subplot{k, i}.plot{l}.style,'scatter_heatmap')

 clear heatmap quantiles

 isheatmap=1;

 xdata=fig.subplot{k, i}.plot{l}.x;

 ydata=fig.subplot{k, i}.plot{l}.y;

 xsteps = fig.subplot{k, i}.plot{l}.xsteps;

 ysteps = fig.subplot{k, i}.plot{l}.ysteps;

 if nanmin(xdata) >= fig.subplot{k,i}.xlim(1) && nanmax(ydata) <= fig.subplot{k,i}.xlim(2)

 xticks = floor(fig.subplot{k,i}.xlim(1)/xsteps)*xsteps:xsteps:ceil(fig.subplot{k,i}.xlim(2)/xsteps)*xsteps+2*xsteps;

 elseif nanmin(xdata) >= fig.subplot{k,i}.xlim(1) && nanmax(ydata) >= fig.subplot{k,i}.xlim(2)

 xticks = floor(fig.subplot{k,i}.xlim(1)/xsteps)*xsteps:xsteps:ceil(nanmax(xdata)/xsteps)*xsteps+2*xsteps;

 elseif nanmin(xdata) <= fig.subplot{k,i}.xlim(1) && nanmax(ydata) <= fig.subplot{k,i}.xlim(2)

 xticks = floor(nanmin(xdata)/xsteps)*xsteps:xsteps:ceil(fig.subplot{k,i}.xlim(2)/xsteps)*xsteps+2*xsteps;

 else

 xticks = floor(nanmin(xdata)/xsteps)*xsteps:xsteps:ceil(nanmax(xdata)/xsteps)*xsteps+2*xsteps;

 end

 if nanmin(ydata) >= fig.subplot{k,i}.ylim(1) && nanmax(ydata) <= fig.subplot{k,i}.ylim(2)

 yticks = floor(fig.subplot{k,i}.ylim(1)/ysteps)*ysteps:ysteps:ceil(fig.subplot{k,i}.ylim(2)/ysteps)*ysteps;

 elseif nanmin(ydata) >= fig.subplot{k,i}.ylim(1) && nanmax(ydata) >= fig.subplot{k,i}.ylim(2)

 yticks = floor(fig.subplot{k,i}.ylim(1)/ysteps)*ysteps:ysteps:ceil(nanmax(ydata)/ysteps)*ysteps;

 elseif nanmin(ydata) <= fig.subplot{k,i}.ylim(1) && nanmax(ydata) <= fig.subplot{k,i}.ylim(2)

 yticks = floor(nanmin(ydata)/ysteps)*ysteps:ysteps:ceil(fig.subplot{k,i}.ylim(2)/ysteps)*ysteps;

 else

 yticks = floor(nanmin(ydata)/ysteps)*ysteps:ysteps:ceil(nanmax(ydata)/ysteps)*ysteps;

 end

 %xsteps = round(xsteps*10000000000)/10000000000;

 %xticks = round(xticks*10000000000)/10000000000;

 for o=1:length(xticks)-1

 for p=1:length(yticks)-1

 index1 = xdata >= xticks(o) & xdata < xticks(o+1);

 index2 = ydata >= yticks(p) & ydata < yticks(p+1);

 heatmap(p,o)=nansum(index1 & index2);

 end

 heatmap(:,o)=heatmap(:,o)/nansum(heatmap(:,o));

 end

 heatmap(isnan(heatmap))=0;

 if isfield(fig.subplot{k, i}.plot{l},'quantiles')

 heatmap_cumsum = cumsum(heatmap);

 for s = 1:length(fig.subplot{k, i}.plot{l}.quantiles)

 for o = 1:size(heatmap,2)

 if isempty(find (heatmap_cumsum(:,o) > fig.subplot{k, i}.plot{l}.quantiles(s),1, 'first'))

 quantiles(s,o) = NaN;

 else

 quantiles(s,o) = yticks(find (heatmap_cumsum(:,o) > fig.subplot{k, i}.plot{l}.quantiles(s),1, 'first'));

 end

 end

 end

 end

 index= ~isnan(xdata) & ~isnan(ydata);

 %regression_line=polyfit(xdata(index),ydata(index),1);

 xticks(end)=[];

 yticks(end)=[];

 % muss die Matrix noch gedreht werden?

%{

 start_date = datevec(time(1));

 end_date = datevec(time(end));

 yticks = datenum(start_date(1),start_date(2), start_date(3)):1:datenum(end_date(1),end_date(2),end_date(3))+1;

 data = reshape(data,length(xticks)-1,length(data)/(length(xticks)-1))';

 data = [data, NaN(size(data,1),1)];

 data = [data; NaN(1,size(data,2))];

 %}

 fontweight=eval(['format.',style,'.fontweight']);

 fontsize=eval(['format.',style,'.fontsize']);

 fontname=eval(['format.',style,'.fontname']);

 pcolor(xticks, yticks, heatmap);

 if isfield(fig.subplot{k, i}.plot{l},'quantiles')

 hold on

 for o = 1:size(quantiles,1)

 plot(xticks+xsteps/2, quantiles(o,:), 'w')

 end

 end

 %plot([min(xticks), max(xticks)],[regression_line(2)+min(xticks)*regression_line(1), regression_line(2)+max(xticks)*regression_line(1)],'w', 'LineWidth', 2)

 %set(gca,'YDir','reverse')

 xlim([xticks(1),xticks(end)]);

 %set(gca,'XTick',0:4:24)

 ygrid='off';

 shading flat

 %shading interp

 %{

 if isfield(fig.subplot{1,1}, 'ydatetick_format')

 yticks=[yticks(1)-(yticks(2)-yticks(1)), yticks];

 set(gca,'YTick',yticks)

 datetick('y',fig.subplot{1,1}.ydatetick_format,'keepticks')

 ytick_label=get(gca,'YTickLabel');

 temp_index=zeros(length(ytick_label),1);

 for m=2:length(ytick_label)

 if strcmp(ytick_label(m,:),ytick_label(m-1,:))

 temp_index(m)=1;

 end

 end

 temp_index(1)=[];

 yticks(1)=[];

 set(gca,'YTick',yticks(~temp_index))

 datetick('y',fig.subplot{1,1}.ydatetick_format,'keepticks')

 end

 %}

 ylim([yticks(1),yticks(end)])

 if isfield(fig.subplot{k, i}.plot{l},'color_limits')

 color_limits=fig.subplot{k, i}.plot{l}.color_limits;

 else

 upperlimit = sort(reshape(heatmap,[],1));

 upperlimit = upperlimit(round(length(upperlimit)*0.99));

 color_limits=[nanmin(nanmin(heatmap)), upperlimit];

 end

 caxis(color_limits)

 set(gca,'FontSize',fontsize,'FontName', fontname, 'Fontweight', fontweight);

 c = axes('Position',[0 0 1 1],'Visible','off', 'NextPlot', 'add');

 lgnd(num_subplot)=colorbar ('Location', 'SouthOutside');

 caxis(color_limits)

 colormap_label = get(lgnd(num_subplot),'xlabel')';

 set(colormap_label,'String','Relative Häufigkeit pro x-Klasse', 'FontSize',fontsize,'FontName', fontname, 'Fontweight', fontweight);

 set(lgnd(num_subplot), 'Color', 'none', 'Box', 'off', 'FontSize',fontsize,'FontName', fontname,'FontWeight',fontweight)

 LegendOuterPos = get(lgnd(num_subplot),'OuterPosition');

 colormap_labelPos=get(colormap_label,'Position');

 set(lgnd(num_subplot),'OuterPosition', [LegendOuterPos(1), 0, LegendOuterPos(3), LegendOuterPos(4),])

 LegendPos = get(lgnd(num_subplot),'Position');

 LegendPos (5) = LegendPos(4);

 LegendPos (4) = LegendPos(4) + LegendPos(2);

 axes(ax(num_subplot));

 % area

 elseif strcmp(fig.subplot{k, i}.plot{l}.style,'area')

					hPlot(k,i,l) = area(fig.subplot{k, i}.plot{l}.x,fig.subplot{k, i}.plot{l}.y);

					set(hPlot(k,i,l),'FaceColor',color)%,'HandleVisibility','off')

 set(hPlot(k,i,l),'EdgeColor','none')

 % patch

 elseif strcmp(fig.subplot{k, i}.plot{l}.style,'patch')

					hPlot(k,i,l) = patch(fig.subplot{k, i}.plot{l}.x,fig.subplot{k, i}.plot{l}.y,'r'); % TODO: Implement color

					set(hPlot(k,i,l),'FaceColor',color,'HandleVisibility','off')

					set(hPlot(k,i,l),'EdgeColor','none')

				% loglog

				elseif strcmp(fig.subplot{k, i}.plot{l}.style,'loglog')

					

					

					

					if isfield(fig.subplot{k, i}.plot{l}, 'linewidth')

						linewidth=fig.subplot{k, i}.plot{l}.linewidth;

					else

						linewidth=eval(['format.',style,'.linewidth']);

					end

					

					if isfield(fig.subplot{k, i}.plot{l}, 'linestyle')

						linestyle=fig.subplot{k, i}.plot{l}.linestyle;

					else

						linestyle=eval(['format.',style,'.linestyle']);

					end

					

					if isfield(fig.subplot{k, i}.plot{l},'markerstyle')

						markerstyle=fig.subplot{k, i}.plot{l}.markerstyle;

					else

						markerstyle=eval(['format.',style,'.markerstyle']);

					end

					

					if isfield(fig.subplot{k, i}.plot{l},'markersize')

						markersize=fig.subplot{k, i}.plot{l}.markersize;

					else

						markersize=eval(['format.',style,'.markersize']);

					end

					hPlot(k,i,l) = plot(fig.subplot{k, i}.plot{l}.x,fig.subplot{k, i}.plot{l}.y,'color',color,'linestyle',linestyle,'linewidth',linewidth,'marker',markerstyle,'markersize',markersize);

					set(ax,'XScale','log')

					set(ax,'YScale','log')

					

 % if plot style is not implemented

 else

 error ([fig.subplot{k, i}.plot{l}.style, ' plot has not been implemented, yet!'])

 end

 % if plot style is not set, normal plot is used

 else

 linewidth=eval(['format.',style,'.linewidth']);

 linestyle=eval(['format.',style,'.linestyle']);

 if isfield(fig.subplot{k, i}.plot{l},'markerstyle')

 marker=fig.subplot{k, i}.plot{l}.markerstyle;

 markersize=fig.subplot{k, i}.plot{l}.markersize;

 plot(fig.subplot{k, i}.plot{l}.x,fig.subplot{k, i}.plot{l}.y,'lineWidth', linewidth, 'lineStyle', linestyle, 'Color', color, 'Marker', marker, 'MarkerSize', markersize)

 elseif eval(['strcmp(format.',style,'.marker,''on'')'])

 marker=eval(['format.',style,'.markerstyle']);

 markersize=eval(['format.',style,'.markersize']);

 plot(fig.subplot{k, i}.plot{l}.x,fig.subplot{k, i}.plot{l}.y,'lineWidth', linewidth, 'lineStyle', linestyle, 'Color', color, 'Marker', marker, 'MarkerSize', markersize)

 else

 plot(fig.subplot{k, i}.plot{l}.x,fig.subplot{k, i}.plot{l}.y,'lineWidth', linewidth, 'lineStyle', linestyle, 'Color', color)

 end

			end

			

			

			if ~isempty(C)

				allC = [allC,C];

			end

			

 end

 % setting subplot properties

 % set xlim

 if isfield(fig.subplot{k, i},'xlim')

 xlim(fig.subplot{k, i}.xlim)

 end

 % set ylim

 if isfield(fig.subplot{k, i},'ylim')

 ylim(fig.subplot{k, i}.ylim)

 end

 % set zlim

 if isfield(fig.subplot{k, i},'zlim')

 zlim(fig.subplot{k, i}.zlim)

 end

 if isfield(fig.subplot{k,i}, 'xticks')

 xticks=fig.subplot{k, i}.xticks;

 set(gca,'XTick',xticks);

 end

 if isfield(fig.subplot{k,i}, 'yticks')

 yticks=fig.subplot{k, i}.yticks;

 set(gca,'YTick',yticks);

 end

 if isfield(fig.subplot{k,i}, 'xticks')

 xticks=fig.subplot{k, i}.xticks;

 set(gca,'XTick',xticks);

 end

 if isfield(fig.subplot{k,i}, 'xticklabels')

 xticklabels = fig.subplot{k, i}.xticklabels;

 set(gca,'XTickLabel', xticklabels);

		end

 if isfield(fig.subplot{k,i}, 'yticklabels')

 yticklabels = fig.subplot{k, i}.yticklabels;

 set(gca,'YTickLabel', yticklabels);

		end		

		

		if isfield(fig.subplot{k,i}, 'xtick_rotate')

			eval(['format.',style,'.fontsize'])

			xticklabel_rotate(xticks,fig.subplot{k,i}.xtick_rotate,xticklabels,'Fontsize',eval(['format.',style,'.fontsize']))

		end

		

		if isfield(fig.subplot{k,i}, 'xdatetick_format') % This might have to be checked

			xticks=fig.subplot{k, i}.plot{l}.x;

			tickVec = datevec(xticks);

			if any(strfind(fig.subplot{1,1}.xdatetick_format,'y'))

				yearsTick = true;else yearsTick = false;end

			if any(strfind(fig.subplot{1,1}.xdatetick_format,'m')) ~= 0

				monthsTick = true;else monthsTick = false;end

			if any(strfind(fig.subplot{1,1}.xdatetick_format,'d')) ~= 0

				daysTick = true;else daysTick = false;end

			if any(strfind(fig.subplot{1,1}.xdatetick_format,'H')) ~= 0

				hoursTick = true;else hoursTick = false;end

			if yearsTick && ~monthsTick

				xticks = unique(floor(xticks(all(tickVec(:,2:3) == 1,2),:)));

			end

			if yearsTick && monthsTick && ~daysTick

				xticks = unique(floor(xticks(all(tickVec(:,3) == 1,2),:)));

			end

			if yearsTick && monthsTick && daysTick && ~hoursTick

				xticks = unique(floor(xticks(all(tickVec(:,4) == 0,2),:)));

			end

			if yearsTick && monthsTick && daysTick && hoursTick

				xticks = unique(xticks(all(tickVec(:,5) == 0,2),:));

			end

			set(gca,'XTick',xticks)

			set(gca,'XTickLabel',datestr(xticks,fig.subplot{1,1}.xdatetick_format))

			xtick_label=get(gca,'xTickLabel');

% 			datetick('x',fig.subplot{1,1}.xdatetick_format,'keepticks')

		end

 if isfield(fig.subplot{k, i},'xlim')

 xlim(fig.subplot{k, i}.xlim)

 end

 % print xlabel

 if isfield(fig.subplot{k, i},'xlabel')

 fontweight=eval(['format.',style,'.fontweight']);

 fontsize=eval(['format.',style,'.fontsize']);

 fontname=eval(['format.',style,'.fontname']);

 xlbl(num_subplot)=xlabel(fig.subplot{k, i}.xlabel, 'FontSize',fontsize,'FontName', fontname, 'FontWeight', fontweight);

 set(xlbl(num_subplot),'margin',0.000001)

 end

 % print ylabel

 if isfield(fig.subplot{k, i},'ylabel')

 fontweight=eval(['format.',style,'.fontweight']);

 fontsize=eval(['format.',style,'.fontsize']);

 fontname=eval(['format.',style,'.fontname']);

 ylbl(num_subplot)=ylabel(fig.subplot{k, i}.ylabel, 'FontSize',fontsize,'FontName', fontname, 'FontWeight', fontweight);

 set(ylbl(num_subplot),'margin',0.000001)

 end

 % print zlabel

 if isfield(fig.subplot{k, i},'zlabel')

 fontweight=eval(['format.',style,'.fontweight']);

 fontsize=eval(['format.',style,'.fontsize']);

 fontname=eval(['format.',style,'.fontname']);

 zlbl(num_subplot)=zlabel(fig.subplot{k, i}.zlabel, 'FontSize',fontsize,'FontName', fontname, 'FontWeight', fontweight);

 set(zlbl(num_subplot),'margin',0.000001)

 end

 % insert legend

 if isfield(fig.subplot{k, i},'legend')

 fontweight=eval(['format.',style,'.fontweight']);

 fontsize=eval(['format.',style,'.fontsize']);

 fontname=eval(['format.',style,'.fontname']);

 lgnd(num_subplot)=legend(fig.subplot{k, i}.legend);

 if isfield(fig.subplot{k, i},'legend_orientation')

 set(lgnd(num_subplot), 'Orientation',fig.subplot{k, i}.legend_orientation)

 end

% if strcmp(fig.subplot{k, i}.plot{l}.style,'bar')

% for i = 1:length(get(lgnd

% set(lgnd(num_subplot), 'FaceColor', C{1});

% end

% end

 LegendPos = get(lgnd(num_subplot),'Position');

 set(lgnd(num_subplot), 'Color', 'none', 'Box', 'off', 'Position', [(i-1)/num_hor_subplots+margin_hor 1-k/num_ver_subplots+margin_ver LegendPos(3) LegendPos(4)], 'FontSize',fontsize,'FontName', fontname,'FontWeight',fontweight)

 LegendPos = get(lgnd(num_subplot),'Position');

			

			for iLegend = 1:size(fig.subplot,2)

				hasOneLgnd(iLegend) = isfield(fig.subplot{k,iLegend},'legend');

			end

			if sum(hasOneLgnd) == 1 && hasOneLgnd(i)

				posLgndSubPlotRow = LegendPos;

			end

			

 if strcmp(fig.subplot{k, i}.plot{l}.style,'plot') || strcmp(fig.subplot{k, i}.plot{l}.style,'bar') || strcmp(fig.subplot{k, i}.plot{l}.style,'barh') || strcmp(fig.subplot{k, i}.plot{l}.style,'errorbar')

 P =findobj(lgnd,'type','patch');

				allC = fliplr(allC); % To compensate color order mismatch // TODO: Should be checked by Dominik

				if ~isempty(allC)

					for m = 1:length(allC)

						set(P(m),'FaceColor',allC{m});

						ColorOrder(m,:) = allC{m};

					end

					set(lgnd(num_subplot),'ColorOrder',ColorOrder);

				end

 end

 elseif ~isheatmap

 LegendPos=[0 0 0 0];

 end

 % insert title

 if isfield(fig.subplot{k, i},'title')

 fontweight=eval(['format.',style,'.fontweight_title']);

 fontsize=eval(['format.',style,'.fontsize_title']);

 fontname=eval(['format.',style,'.fontname_title']);

 b = axes('Position',[0 0 1 1],'Visible','off', 'NextPlot', 'add');

 ttl(num_subplot)=text(0,0,fig.subplot{k, i}.title,'FontSize', fontsize, 'FontName', fontname, 'VerticalAlignment', 'top');

 set(ttl(num_subplot),'Position',[(i-1)/num_hor_subplots+margin_hor, 1-(k-1)/num_ver_subplots-margin_ver])

 ttlPos=get(ttl(num_subplot),'extent');

 else

 ttlPos=[0,0,0,0];

 end

 % set fonts for axis

 fontweight=eval(['format.',style,'.fontweight']);

 fontsize=eval(['format.',style,'.fontsize']);

 fontname=eval(['format.',style,'.fontname']);

 set(ax(num_subplot),'FontSize',fontsize,'FontName', fontname, 'Fontweight', fontweight)

 % set position of axes

 set(ax(num_subplot), 'Color', 'none', 'Box', 'off', 'YGrid', ygrid, 'XGrid', xgrid, 'ZGrid', zgrid)

		if isfield(fig.subplot{k,i}, 'xtick_rotate')

			set(ax(num_subplot),'OuterPosition',[(i-1)/num_hor_subplots+margin_hor 1-k/num_ver_subplots+LegendPos(4)+6*margin_ver 1/num_hor_subplots-2*margin_hor 1-(k-1)/num_ver_subplots-margin_ver-ttlPos(4)-(1-k/num_ver_subplots+LegendPos(4)+6*margin_ver)])

			if exist('hasOneLgnd','var')

				if sum(hasOneLgnd) == 1 && ~hasOneLgnd(i) % TODO: Test further

					set(ax(num_subplot),'OuterPosition',[(i-1)/num_hor_subplots+margin_hor 1-k/num_ver_subplots+posLgndSubPlotRow(4)+6*margin_ver 1/num_hor_subplots-2*margin_hor 1-(k-1)/num_ver_subplots-margin_ver-ttlPos(4)-(1-k/num_ver_subplots+posLgndSubPlotRow(4)+6*margin_ver)])

				end

			end

		else

			set(ax(num_subplot),'OuterPosition',[(i-1)/num_hor_subplots+margin_hor 1-k/num_ver_subplots+LegendPos(4)+2*margin_ver 1/num_hor_subplots-2*margin_hor 1-(k-1)/num_ver_subplots-margin_ver-ttlPos(4)-(1-k/num_ver_subplots+LegendPos(4)+2*margin_ver)])

			if exist('hasOneLgnd','var')

				if sum(hasOneLgnd) == 1 && ~hasOneLgnd(i) % TODO: Test further

					set(ax(num_subplot),'OuterPosition',[(i-1)/num_hor_subplots+margin_hor 1-k/num_ver_subplots+posLgndSubPlotRow(4)+2*margin_ver 1/num_hor_subplots-2*margin_hor 1-(k-1)/num_ver_subplots-margin_ver-ttlPos(4)-(1-k/num_ver_subplots+posLgndSubPlotRow(4)+2*margin_ver)])

				end

			end

		end

 set(ax(num_subplot),'LooseInset',get(gca,'TightInset'))

 % set position of legend

 AxesPos=get(ax(num_subplot),'Position');

 if isfield(fig.subplot{k, i},'legend') || isheatmap

 %LegendPos = get(lgnd(num_subplot),'Position');

 if isheatmap

 %set(ax(num_subplot),'OuterPosition',[(i-1)/num_hor_subplots+margin_hor 1-k/num_ver_subplots+LegendPos(4)+2*margin_ver 1/num_hor_subplots-2*margin_hor 1-(k-1)/num_ver_subplots-margin_ver-ttlPos(4)-(1-k/num_ver_subplots+LegendPos(4)+2*margin_ver)])

 %set(ax(num_subplot),'LooseInset',get(gca,'TightInset'))

 %LegendPos = get(lgnd(num_subplot), 'Position');

 set(lgnd(num_subplot), 'Position', [AxesPos(1) 1-k/num_ver_subplots+LegendPos(2)+margin_ver AxesPos(3) LegendPos(5)*0.85])

			else

 set(lgnd(num_subplot), 'Position', [AxesPos(1) LegendPos(2) LegendPos(3) LegendPos(4)])

 end

 a = axes('position',[(i-1)/num_hor_subplots+margin_hor 1-k/num_ver_subplots+LegendPos(4)+margin_ver 1/num_hor_subplots-2*margin_hor 1/num_ver_subplots-LegendPos(4)],'visible','off');

			if exist('hasOneLgnd','var')

				if sum(hasOneLgnd) == 1 & num_hor_subplots == 1% TODO: Test further

					line([0,1],[0,0],'Color', 'k', 'linestyle',':');

					ylim([0,1]);

				end

			end

 end

 end

end

if ~exist('hPlot','var')

	hPlot = nan;

end

if ~exist('hAxes','var')

	hFig = nan;

end

axes(ax(1))

linkaxes(ax,'x');

set(gcf, 'InvertHardCopy', 'off');

print -dbitmap

end

Functions/Results_Evaluation/styleplot_test.m

% Beispiel Heatmap über Stunden und Tage

clearvars fig

fig.subplot{1,1}.plot{1}.x = zeit_900; % Zeitreihe Zeit

fig.subplot{1,1}.plot{1}.y = temperatur_gradient_900; % Zeitreihe der darzustellenden Größe

fig.subplot{1,1}.plot{1}.style='period_heatmap';

% fig.subplot{1,1}.plot{1}.color_limits=[-3, 3]; % optional, gibt die Limits für die Colormap an

% fig.subplot{1,1}.title='Titel'; % optionaler Titel

fig.subplot{1,1}.xlabel='Uhrzeit (MEZ)';

% fig.subplot{1,1}.ylabel='Ylabel';

fig.subplot{1,1}.colormap_label='Temperatur Gradient [°C pro h]';

fig.subplot{1,1}.ydatetick_format='mm/yyyy';

fig.height=15;

fig.width_columns=3;

styleplot(fig, 'plot/styleplot_format_dnb.mat', 'word')

% Beispiel Scatter-Heatmap RL-Abruf-1-Min.-Durchschnitt über Last alle Zeiten

clear fig

fig.subplot{1,1}.plot{1}.x = last_60;

fig.subplot{1,1}.plot{1}.y = RL_Abruf_60;

fig.subplot{1,1}.xlabel='Last [MW]';

fig.subplot{1,1}.ylabel='RL-Abruf 1-Min.-Durchschnitt [MW]';

fig.subplot{1,1}.plot{1}.style='scatter_heatmap';

fig.subplot{1, 1}.plot{1}.xsteps=100; % gibt an in welcher Auflösung die Klassen auf der x-Achse gebildet werden sollen

fig.subplot{1, 1}.plot{1}.ysteps=100; % gibt an in welcher Auflösung die Klassen auf der y-Achse gebildet werden sollen

fig.subplot{1, 1}.plot{1}.color_limits=[0, 0.15]; % optional - gibt die Limits für die Colormap an

% fig.subplot{1, 1}.xlim=[-3000, 3000]; % optional - Limits auf der x-Achse

% fig.subplot{1, 1}.ylim=[-6000, 5000]; % optional - Limits auf der y-Achse

% fig.subplot{1, 1}.title = Zeitraum; % optional - Titel

fig.height=12;

fig.width_columns=3;

styleplot(fig, 'plot/styleplot_format_dnb.mat', 'word')

saveas(gcf,[fig.subplot{1,1}.ylabel, ' über ' fig.subplot{1,1}.xlabel ' ' Zeitraum '.fig'],'fig')

commonFunctions/syncData2Timestamp.m

function [timeStampNew, dataNew] = syncData2Timestamp(timeStampNew, timeStampOld, dataOld)

% This function assigns data with a unsteady timestamp to a generated

% timestamp having equal step sizes

%

% [timeStampNew, dataNew] = syncData2Timestamp(timeStampNew, timeStampOld, dataOld)

%

% Input:

% timeStampNew: new generated time stamp (datenum)

% timeStampOld: old unsteady timestamp (datenum)

% dataOld: Set of data that needs to be synchronized

%

% Output:	

% timeStampNew: new generated time stamp (datenum); no change

% within the function

% dataNew: synchronized set of data

%

% v1.0: Malte Jansen @ Fraunhofer IWES (Kassel)

% v1.1 (21.05.2013): Malte Jansen @ Fraunhofer IWES (Kassel), Bugfix

timeStampOld = datenum(timeStampOld);

timeStampNew = datenum(timeStampNew);

%% Shortcut if timestamps are equal

try

	if timeStampNew == timeStampOld

		dataNew = dataOld;

		return;

	end

end

%% Assign Data to Time Stamps

% Get only unique values

[~, ind] = unique(timeStampOld);

timeStampOld_uniq = timeStampOld(ind,:);

dataOld_unique = dataOld(ind,:);

% Assign to time stamp

interp_lin = interp1(timeStampOld_uniq,dataOld_unique,timeStampNew,'linear');

% Identify the interpolated values

interp_lin(any(~ismember(datevec(timeStampNew),datevec(timeStampOld_uniq)),1),:) = nan;

dataNew = interp_lin;

% % Old method

% interp_near = round(interp1(timeStampOld_uniq,dataOld_unique,time,'nearest'));

% dev = any(interp_near(:,1:end)-interp_lin(:,1:end) ~=0,2);

% indexNan = find(dev ~= 0);

% dataNew = interp_lin;

% dataNew(indexNan,2:end) = nan;

Functions/+Auxiliary_Functions/syncData2Timestamp.m

function [timeStampNew, dataNew] = syncData2Timestamp(timeStampNew, timeStampOld, dataOld)

% This function assigns data with a unsteady timestamp to a generated

% timestamp having equal step sizes

%

% [timeStampNew, dataNew] = syncData2Timestamp(timeStampNew, timeStampOld, dataOld)

%

% Input:

% timeStampNew: new generated time stamp (datenum)

% timeStampOld: old unsteady timestamp (datenum)

% dataOld: Set of data that needs to be synchronized

%

% Output:	

% timeStampNew: new generated time stamp (datenum); no change

% within the function

% dataNew: synchronized set of data

%

% v1.0: Malte Jansen @ Fraunhofer IWES (Kassel)

% v1.1 (21.05.2013): Malte Jansen @ Fraunhofer IWES (Kassel), Bugfix

timeStampOld = datenum(timeStampOld);

timeStampNew = datenum(timeStampNew);

%% Shortcut if timestamps are equal

try

	if timeStampNew == timeStampOld

		dataNew = dataOld;

		return;

	end

end

%% Assign Data to Time Stamps

% Get only unique values

[~, ind] = unique(timeStampOld);

timeStampOld_uniq = timeStampOld(ind,:);

dataOld_unique = dataOld(ind,:);

% Assign to time stamp

interp_lin = interp1(timeStampOld_uniq,dataOld_unique,timeStampNew,'linear');

% Identify the interpolated values

interp_lin(any(~ismember(datevec(timeStampNew),datevec(timeStampOld_uniq)),1),:) = nan;

dataNew = interp_lin;

% % Old method

% interp_near = round(interp1(timeStampOld_uniq,dataOld_unique,time,'nearest'));

% dev = any(interp_near(:,1:end)-interp_lin(:,1:end) ~=0,2);

% indexNan = find(dev ~= 0);

% dataNew = interp_lin;

% dataNew(indexNan,2:end) = nan;

Functions/+Violation_Offer/violationOffer.m

function violated = violationOffer(ecoImpact, actualFeedIn, offerRP, simRuns)

[offer.time,offer.data, actual.time,actual.data]...

	= Auxiliary_Functions.getCommonData(offerRP.timeSeries.time,offerRP.timeSeries.secureIDCap, ...

	actualFeedIn.time,actualFeedIn.data);

dev.time = offer.time;

dev.data = offer.data - actual.data;

%% AAP Max

windActive_MAX_AAP = ~(ecoImpact.AAP.Max_windActivatedAAP == 0 | isnan(ecoImpact.AAP.Max_windActivatedAAP));

violated.AAP.MAX.time = actual.time(windActive_MAX_AAP);

violated.AAP.MAX.isViolated = ecoImpact.AAP.Max_windActivatedAAP(windActive_MAX_AAP) > ...

	actual.data(windActive_MAX_AAP) * simRuns.installedCapacity;

violated.AAP.MAX.Capacity = ecoImpact.AAP.Max_windActivatedAAP(windActive_MAX_AAP) - ...

	actual.data(windActive_MAX_AAP) * simRuns.installedCapacity;

%% AAP Min

windActive_MIN_AAP = ~(ecoImpact.AAP.Min_windActivatedAAP == 0 | isnan(ecoImpact.AAP.Min_windActivatedAAP));

violated.AAP.MIN.time = actual.time(windActive_MIN_AAP);

violated.AAP.MIN.isViolated = ecoImpact.AAP.Min_windActivatedAAP(windActive_MIN_AAP) > ...

	actual.data(windActive_MIN_AAP) * simRuns.installedCapacity;

violated.AAP.MIN.Capacity = ecoImpact.AAP.Min_windActivatedAAP(windActive_MIN_AAP) - ...

	actual.data(windActive_MIN_AAP) * simRuns.installedCapacity;

%% BC Max

windActive_MAX_BC = ~(ecoImpact.BC.Max_windActivatedBC == 0 | isnan(ecoImpact.BC.Max_windActivatedBC));

violated.BC.MAX.time = actual.time(windActive_MIN_AAP);

violated.BC.MAX.isViolated = ecoImpact.BC.Max_windActivatedBC(windActive_MAX_BC) > ...

	actual.data(windActive_MAX_BC) * simRuns.installedCapacity;

violated.BC.MAX.Capacity = ecoImpact.BC.Max_windActivatedBC(windActive_MAX_BC) - ...

	actual.data(windActive_MAX_BC) * simRuns.installedCapacity;

%% BC Min

windActive_MIN_BC = ~(ecoImpact.BC.Min_windActivatedBC == 0 | isnan(ecoImpact.BC.Min_windActivatedBC));

violated.BC.MIN.time = actual.time(windActive_MIN_AAP);

violated.BC.MIN.isViolated = ecoImpact.BC.Min_windActivatedBC(windActive_MIN_BC) > ...

	actual.data(windActive_MIN_BC) * simRuns.installedCapacity;

violated.BC.MIN.Capacity = ecoImpact.BC.Min_windActivatedBC(windActive_MIN_BC) - ...

	actual.data(windActive_MIN_BC) * simRuns.installedCapacity;

Functions/Results_Evaluation/styleplot_format_PhD.mat

testData.mat

Functions/+Probabilistic_Forecast/calcSecureForecastKDE_independentTrain.m.orig

function [fc_prob_data, fc_prob_time] = calcSecureForecastKDE(Forec, actualFeedIn, Forec_Train, actualFeedIn_Train, securityLevel, startTime, endTime, opts)

% This function generates probabilistic forecasts for given security levels

%

% This function calculates the forecast of the possible power production

% for a given security level depending in the forecast the actual feed-in

%

% [fc_prob_data fc_prob_time] = calcSecureForecastTimeSeries(Forec_data, Forec_time, actualFeedIn_data, actualFeedIn_time, securityLevel, startTime, endTime, opts)

%

% The parameters are:

% Forec_data		: Forecast values

% Forec_time		: Forecast time stamp (datenum)

% actualFeedIn_data	: actual feed-in values

% actualFeedIn_time	: actual feed-in time stamp

% securityLevel		: desired security levels (1xn matrix)

% startTime			: datenum

% endTime			: datemum

% opts				: structs with fields smooth and preError Plese

% number of smoothed values	: double (1 is non-smoothed)

% number of preErrors (these will determine whether pre errors are used for

%

% v1 (15.08.2012) by Malte Jansen @ Fraunhofer IWES

% v1.1 (13.11.2013) by Malte Jansen @ Fraunhofer IWES: Bugfix

%% Rearrange Variables

Forec_time = Forec.time;

Forec_data = Forec.data;

actualFeedIn_time = actualFeedIn.time;

actualFeedIn_data = actualFeedIn.data;

Forec_Train_time = Forec_Train.time;

Forec_Train_data = Forec_Train.data;

actualFeedIn_Train_time = actualFeedIn_Train.time;

actualFeedIn_Train_data = actualFeedIn_Train.data;

%% Prepare Calculation

% Solve datenum problem on function call

Forec_time = datenum(datevec(Forec_time));

actualFeedIn_time = datenum(datevec(actualFeedIn_time));

days = linspace(floor(startTime),floor(endTime),(floor(endTime)-floor(startTime))+1)';

% Create equidistant time stamp

dataTimeStamp_Forec = ...

	linspace(floor(min(Forec_time)),ceil(max(Forec_time)),(ceil(max(Forec_time))-floor(min(Forec_time)))*round(1/(Forec_time(2,1)-Forec_time(1,1)))+1)';

dataTimeStamp_Forec = dataTimeStamp_Forec(1:end-1,1);

dataTimeStamp_FeedIn = ...

	linspace(floor(min(actualFeedIn_time)),ceil(max(actualFeedIn_time)),(ceil(max(actualFeedIn_time))-floor(min(actualFeedIn_time)))*round(1/(actualFeedIn_time(2,1)-actualFeedIn_time(1,1)))+1)';

dataTimeStamp_FeedIn = dataTimeStamp_FeedIn(1:end-1,1);

% Sync Data to equidistant time stamp

[Forec_time, Forec_data] = ...

	Auxiliary_Functions.syncData2Timestamp(dataTimeStamp_Forec,Forec_time,Forec_data);

[actualFeedIn_time, actualFeedIn_data] = ...

	Auxiliary_Functions.syncData2Timestamp(dataTimeStamp_FeedIn,actualFeedIn_time,actualFeedIn_data);

% Get Common Data

[Forec_time, Forec_data, actualFeedIn_time, actualFeedIn_data] = Auxiliary_Functions.getCommonData(Forec_time, Forec_data, actualFeedIn_time, actualFeedIn_data);

for iProbFC=1:length(days)

	dayFrame(iProbFC).startTime = days(iProbFC,1);

	dayFrame(iProbFC).endTime = days(iProbFC,1)+1;

end

prob = tic;

%% Calculate probabilistic forecasts

% Distributed Computing

if matlabpool('size') ~= 0

	parfor iProbFC=1:length(days)

		

		addpath(genpath('/home/mjansen/MATLAB_Functions/'));

		

		[probForecast(iProbFC).data, probForecast(iProbFC).time] ...

			= calcSecureForecast(Forec_time, Forec_data, actualFeedIn_time, actualFeedIn_data, dayFrame(iProbFC), securityLevel, opts);

		

	end

end

% Non-distributed Computing

if matlabpool('size') == 0

	for iProbFC=1:length(days)

		

		[probForecast(iProbFC).data, probForecast(iProbFC).time] ...

			= calcSecureForecast(Forec_time, Forec_data, actualFeedIn_time, actualFeedIn_data, dayFrame(iProbFC), securityLevel, opts);

		

	end

end

%% Rearrange variables

fc_prob_data = probForecast(1).data;

fc_prob_time = probForecast(1).time;

for iProbFC=2:length(days)

	fc_prob_data = [fc_prob_data; probForecast(iProbFC).data];

	fc_prob_time = [fc_prob_time; probForecast(iProbFC).time];

end

calctime = toc(prob);

fprintf(['Calculation Time of probabilistic forecast was: ' num2str(calctime) ' seconds \n']);

function [fcSecure_data, fcSecure_time] = calcSecureForecast(fcInput_time, fcInput_data, actualFeedIn_time, actualFeedIn_data, timeFrame, securityLevel, opts)

% This function is supposed to predict the possible power production for a

% given security level depending on the Day-Ahead forecast the actual

% feed-in, the lead-time and the productLength

%

% The parameters are

% securityLevel:	The desired security level of the power forecast

% Forec:			Forecast of power production

% actualFeedIn:		The actual feed in, as a time series corresponding the

%					DA forecast

% startTime:		Given start time of the Block

% endTime:			Given end time of the Block

%

% v1 (01.02.2012) by Malte Jansen @ Fraunhofer IWES

% v2 (25.07.2012) by Malte Jansen @ Fraunhofer IWES

% v2.1 (18.04.2013) by Malte Jansen @ Fraunhofer IWES, merged in one

% m-file, expanded usable data

%% Convert Time Frame to start and end

startTime = timeFrame.startTime;

endTime = timeFrame.endTime;

%% Rearrange data

fcInput.data = fcInput_data;

fcInput.time = fcInput_time;

actualFeedIn.data = actualFeedIn_data;

actualFeedIn.time = actualFeedIn_time;

% Convert Security Level

securityLevelGaussKDE = 1-securityLevel/100;

% Number of Pre-Errors

if isfield(opts,'preError')

	nPE = opts.preError;

else

	nPE = 0;

end

% Number of Steps for the Smoothing of Results

if isfield(opts,'smooth')

	nSmth = opts.smooth;

else

	nSmth = 1;

end

%% Create Kernel Data

% % OLD CODE

% % As input only data from the past can be used, otherwise the error would

% % have a representation in itself

% selectActualFeedIn.data	= actualFeedIn.data(actualFeedIn.time < datenum(startTime)-2,1);

% selecFcInput.data		= fcInput.data(fcInput.time < datenum(startTime)-2,1);

%

% [krnI krnT] = getKernelData(selectActualFeedIn, selecFcInput, nPE);

% Only data from that doesn't have have a representation in itself can be

% used. Data is used that is +- 2 days away from the calculated point for

% the forecast

selectActualFeedIn.data	= [actualFeedIn.data(actualFeedIn.time < datenum(startTime)-2,1); actualFeedIn.data(actualFeedIn.time > datenum(startTime)+2,1)];

selecFcInput.data		= [fcInput.data(fcInput.time < datenum(startTime)-2,1); fcInput.data(fcInput.time > datenum(startTime)+2,1)];

% Delete Nans and Zeros

selectActualFeedIn_noNan.data = selectActualFeedIn.data(~any(isnan([selectActualFeedIn.data,selecFcInput.data]),2),:);

selecFcInput_noNan.data = selecFcInput.data(~any(isnan([selectActualFeedIn.data,selecFcInput.data]),2),:);

selectActualFeedIn_noZero.data = selectActualFeedIn_noNan.data(~all([selectActualFeedIn_noNan.data,selecFcInput_noNan.data] == 0,2));

selecFcInput_noZero.data = selecFcInput_noNan.data(~all([selectActualFeedIn_noNan.data,selecFcInput_noNan.data] == 0,2));

selectActualFeedIn.data = selectActualFeedIn_noZero.data;

selecFcInput.data = selecFcInput_noZero.data;

% Kernel data

[krnI, krnT] = getKernelData(selectActualFeedIn, selecFcInput, nPE);

% % Alternative

% selectActualFeedIn2.data	= actualFeedIn.data(actualFeedIn.time < datenum(startTime)-2,1);

% selecFcInput2.data		= fcInput.data(fcInput.time < datenum(startTime)-2,1);

%

% [krnI2, krnT2] = getKernelData(selectActualFeedIn2, selecFcInput2, nPE);

%

% selectActualFeedIn3.data	= actualFeedIn.data(actualFeedIn.time > datenum(startTime)+2,1);

% selecFcInput3.data		= fcInput.data(fcInput.time > datenum(startTime)+2,1);

%

% [krnI3 krnT3] = getKernelData(selectActualFeedIn3, selecFcInput3, nPE);

%

% krnI4 = [krnI2; krnI3];

% krnT4 = [krnT3; krnT3];

%% Create Simulation Data

[simI] = getSimulationData(actualFeedIn, fcInput, nPE, startTime, endTime);

%% Define Options for condGaussKDE

opts.pdf = false;

opts.simTWidth_stdDev = 15;

opts.simTWidth_nVal = 500;

opts.waitbar = false;

%% Calculation

p = Probabilistic_Forecast.condGaussKDEn(krnI, krnT, simI, opts);

feedIn_low = zeros(size(simI,1),size(securityLevelGaussKDE,2));

for i = 1:size(simI,1)

	y = [0 p.cdf(i,:) 1];

	x = [-Inf p.simTRange(i,:) +Inf];

	[y,pos,~] = unique(y);

	x = x(1,pos);

% 	y = p.cdf(i,:);

% 	x = p.simTRange(i,:);

	

	try

		fcErr_low(i,:) = interp1(y,x,securityLevelGaussKDE);

		feedIn_low(i,:) = simI(i,1) + fcErr_low(i,:);

	catch error

		feedIn_low(i,:) = 0;

		warning('WarnTests:convertTest', ...

			['Secure Forecast between ' datestr(startTime) ' and ' ...

			datestr(endTime) ' at ' datestr(startTime) ' ' datestr(i*24/size(simI,1)/24,'HH:MM') ' could not be generated \n ==> 0 was used instead']);

	end

	

end

% Replace Values < 0

feedIn_low(feedIn_low < 0) = 0;

fcSecure.data = feedIn_low;

% Create Output

fcSecure_data = Auxiliary_Functions.smoothTimeSeries(fcSecure.data,nSmth);

fcSecure_time = actualFeedIn.time(find(actualFeedIn.time >= datenum(startTime), 1, 'first'):find(actualFeedIn.time < datenum(endTime), 1, 'last'));

function [krnI, krnT] = getKernelData(actualFeedIn, fcInput, nPE)

% Calculate Forecast Errors

fcError = actualFeedIn.data - fcInput.data(:,1);

ival = ~isnan(fcError);

for iIval=1:length(ival)

	ivalRow(iIval,1) = all(ival(iIval,:));

end

% Use only valid data

fcInput = fcInput.data(ival,1);

fcError = fcError(ival,:);

% Creat nPE Pre-Errors

for iPE = 1:nPE

 fcError(:,1+iPE) = circshift(fcError(:,iPE),[1 0]);

end

% Startdata without Pre-Errors

fcInput = fcInput(1+nPE:end,:);

fcError = fcError(1+nPE:end,:);

% plot(fcInput.data,fcError.data,'ob','MarkerSize',2);

% Input-Daten für CondGaussKDEn

krnI = [fcInput fcError(:,2:end)];

krnT = fcError(:,1);

function [simI] = getSimulationData(actualFeedIn, fcInput, nPE, startTime, endTime)

% Calculate Forecast Errors

fcError.data = actualFeedIn.data - fcInput.data(:,1);

fcError.data(isnan(fcError.data)) = 0;

fcError.time = actualFeedIn.time;

% Creat nPE Pre-Errors

for iPE = 1:nPE

 fcError.data(:,1+iPE) = circshift(fcError.data(:,iPE),[1 0]);

end

% Write Data to simI Array

indexStart = find(fcInput.time >= datenum(startTime), 1, 'first');

indexEnd = find(fcInput.time < datenum(endTime), 1, 'last');

simI = fcInput.data(indexStart:indexEnd);

if size(simI,1) == 1

	simI = simI';

end

% Catch NaNs

indexIsNan= isnan(simI);

if indexIsNan(1,1)

	simI(1,1) = 0;

elseif indexIsNan(end,1)

	simI(end,1) = 0;

end

for iIsNan=2:length(simI)-1

	if isnan(simI(iIsNan,1))

		simI(iIsNan,1) = mean([simI(iIsNan-1,1) simI(iIsNan+1,1)]);

	end

end

indexStart = find(fcError.time >= datenum(startTime), 1, 'first');

indexEnd = find(fcError.time < datenum(endTime), 1, 'last');

simI(:,2:nPE+1) = fcError.data(indexStart:indexEnd,2:end);

Functions/+Probabilistic_Forecast/condGaussKDEn.m.orig

function p = condGaussKDEn(krnI,krnT,simI,opts)

% Multivariate Conditional Gaussian Kernel Density Estimation

%

% Usage: p = CondGaussKDEn(krnI,krnT,simI,[opts]) returns an estimate of the

%		probability density function (pdf) and the cumulative distribution

%		function (cdf) for conditional data simI in a range for the target

%		variable (simT) given by opts.simTRange or alternatively in the area

%		[E +/- opts.simTWidth_stdDev*stdDev] with opts.simTWidth_nVar interim

%		values

%

% Input data:	krnI, krnT: (n,d-1), (n,1) kernel input data for estimation

%							(real observed data)

%							krnT =target variable (variable to be analysed)

%				simI: (s,d-1) locations to estimate p.E, p.Var, p.stdDev for target

%					 variable

%				opts: (struct) optional settings:

%					 opts.simTRange (s,t) values for 'target' to estimate

%								pdf/cdf for each dataset of simI

%								(standard setting = min(krnT):max(krnT)/100 values)

%								!if opts.simTRange is a row-vector, the range

%								will be used for each dataset of simI!

%					 opts.simTWidth_stdDev (1,1) +/-width (in standard-deviation

%								of simT) around expected value as range for simT

%					 opts.simTWidth_nVal (1,1) number of interim values in

%								simT-interval (default = 100)

%					 opts.h (1,d) manually setting of kernels' bandwidths

%					 opts.pdf true/false-switch for calculation of pdf

%							 (standard setting =true)

%					 opts.cdf true/false-switch for calculation of cdf

%							 (standard setting =true)

%					 opts.progressBar struct for creating ProgressBar-object

%							 (waitbar/progress-display)

%

% Output data:	p.dim: (1,1) number of dimensions of kernel-data (d, see above)

%				p.h: (1,d) thumb bandwidth for input data kernels

%				p.E: (s,1) expected value of the variable 'target' for simI(s,:)

%				p.Var: (s,1) variance of the variable 'target' for simI(s,:)

%				p.stdDev: (s,1) standard deviation of the variable 'target' for simI(s,:)

%				p.simTRange: (s,t) =simTRange for p.pdf/p.cdf

%				p.pdf: (s,t) pdf for simI(s,:), p.simTRange(s,t)

%				p.cdf: (s,t) cdf for simI(s,:), p.simTRange(s,t)

%

%				(rows,colums) = size of matrices:

%						d: number of dimensions/variables of kernel-data

%						n: size of kernel-data

%						s: number of locations for simulation

%						t: number of values for target variable

%

% Hints: - use either opts.simTRange OR opts.simTWidth_stdDev/opts.simTWidth_nVal

%		 if both given, opts.simTRange will be preferred

%

% See also: hist, histc, ksdensity, ecdf, cdfplot, ecdfhist

%

%

% V2.0 by Yi Cao at Cranfield University on 8th Apil 2010

% V3.0 (Conditionality) by André Baier Fraunhofer IWES on 04.07.2011

% V4.0 (Multivariate input data) by Rainer Schwinn Fraunhofer IWES on 25.08.2011

% 2016-04-14: some comments on bandwidth added (rsch, Fraunhofer IWES)

%

% general.svnRevisionlog; % log m-file revision

%--

calcPDF = true;

calcCDF = true;

simTWidthIsGiven = false;

showBar = false;

% Check input and output

narginchk(3,4);

nargoutchk(0,1);

if size(krnT,2)~=1

 error('krnT is not a column vector!');

end

if size(krnI,1)~=size(krnT,1)

 error('krnI and krnT must be of the same length!');

end

if size(krnI,2)~=size(simI,2)

 error('krnI and simI must be of the same width!');

end

if nargin==4&& isstruct(opts)

	options = fieldnames(opts);

	if(any(ismember(options,'simTRange')))

		simTRange = opts.simTRange;

	end

	if(any(ismember(options,'h')))

		h = opts.h;

	end

	if(any(ismember(options,'pdf')))

		calcPDF = opts.pdf;

	end

	if(any(ismember(options,'cdf')))

		calcCDF = opts.cdf;

	end

	if(any(ismember(options,'simTWidth_stdDev')))

		simTWidth_stdDev = opts.simTWidth_stdDev(1);

		if(any(ismember(options,'simTWidth_nVal')))

			simTWidth_nVal = opts.simTWidth_nVal(1);

		else

			simTWidth_nVal = 100;

		end

		if exist('simTRange','var')

			warning('simTRange and simTWidth are given simultaneously. Only simTRange is used');

		else

			simTWidthIsGiven = true;

		end

	end

	if(any(ismember(options,'progressBar')))

		showBar = true;

	end

elseif nargin==4

	error('opts must be a struct!')

end

if exist('simTRange','var')&& size(simTRange,1)~=size(simI,1)&& size(simTRange,1)~=1

	error('opts.simTRange must have the same number of rows as simI or be a row vector!');

end

Krn = [krnI,krnT];

[nKrn,ndim] = size(Krn);

nSimI = size(simI,1);

if ~exist('h','var')

	% rule of thumb bandwidth suggested by Bowman and Azzalini (1997) p.31 & 32

% 	s = std(Krn); % simple standard deviation as bandwidth estimator

	s = median(abs(Krn-repmat(median(Krn),nKrn,1)),1)/0.6745; % median absolute deviation estimator (more robust against extreme values)

	

 h = s*(4/((ndim+2)*nKrn))^(1/(ndim+4));

end

if simTWidthIsGiven

	simTRange = zeros(nSimI,simTWidth_nVal);

elseif ~exist('simTRange','var')

	simTRange = linspace(min(krnT)-3*h(ndim),max(krnT)+3*h(ndim),100);

end

if size(simTRange,1)==1 % repeat simTRange if only a row-vector

	simTRange = simTRange(ones(1,nSimI),:);

end

nSimT = size(simTRange,2);

% simplified Gaussian kernel function and its 1-dim integral

kerf = @(z) exp(-0.5*z);

ckerf = @(z) erfc(-z/sqrt(2))/2;

disp('start loop')

% if showBar

% 	progressBar = general.ProgressBar(opts.progressBar); % open waitbar/progress-display

% end

disp(['total runs: ' num2str(nSimI)])

for iSimI = 1:nSimI

	

	disp(['run number: ' num2str(iSimI)])

	if showBar

		progressBar.update((iSimI-1)/nSimI) % update waitbar/progress-display

	end

	

 zI = (simI(iSimI+zeros(nKrn,1),:)-krnI)./h(ones(nKrn,1),1:ndim-1);

 kerfI = kerf(sum(zI.^2,2));

 kerfISum = sum(kerfI);

 p.E(iSimI,1) = Krn(:,ndim)'*kerfI/kerfISum;

 p.Var(iSimI,1) = (Krn(:,ndim).^2+h(ndim)^2-2*Krn(:,ndim)*p.E(iSimI,1)+p.E(iSimI,1)^2)'*kerfI/kerfISum;

	p.stdDev(iSimI,1) = sqrt(p.Var(iSimI,1));

	disp(['before calc for run number ' num2str(iSimI)])

	if calcPDF|| calcCDF

		kerfI = kerfI(:,ones(nSimT,1));

		if simTWidthIsGiven

			simTRange(iSimI,:) = linspace(p.E(iSimI,1)-simTWidth_stdDev*p.stdDev(iSimI,1),...

									p.E(iSimI,1)+simTWidth_stdDev*p.stdDev(iSimI,1),nSimT);

		end

		zT = (simTRange(iSimI+zeros(1,nKrn),:)-krnT(:,ones(1,nSimT)))./h(ndim);

		if calcPDF

			disp('Start PDF calc')

			kerfT = kerf(zT.^2);

			p.pdf(iSimI,:) = sum(kerfI.*kerfT,1)/(kerfISum*h(ndim)*sqrt(2*pi));

			disp('End PDF calc')

		end

		if calcCDF

			disp('Start CDF calc')

			ckerfT = ckerf(zT);

			disp('Second step')

			p.cdf(iSimI,:) = sum(kerfI.*ckerfT,1)/kerfISum;

			disp('End CDF calc')

		end

	end

	disp(['p finished for run number ' num2str(iSimI)])

end

% if showBar

% 	progressBar.close % close waitbar/progress-display

% end

disp('end loop')

% hand over variables

p.h = h;

p.dim = ndim;

p.simI = simI;

if calcPDF|| calcCDF

	p.simTRange = simTRange;

end

