Dissertation zur Erlangung des Grades Doktor der Wirtschaftswissenschaften (Dr. rer. pol.) an der Universität Flensburg

Systemanalyse der CO₂-Sequestrierung aus Biomasse-Heizkraftwerken (Bio-KWK-CCS): Technik, Wirtschaftlichkeit, Nachhaltigkeit

Claus Hartmann Rendsburg

Oktober 2014

Betreuer: Prof. Dr. Olav Hohmeyer, Universität Flensburg Gutachter: Prof. Dr. Jens Born, Fachhochschule Flensburg Gutachter: Prof. Dr.-Ing. Ilja Tuschy, Fachhochschule Flensburg

Eidesstattliche Versicherung

Ich erkläre hiermit an Eides Statt, dass ich die vorliegende Arbeit selbstständig und ohne Hilfsmittel angefertigt habe; die aus fremden Quellen (einschließlich elektronischer Quellen, dem Internet und mündlicher Kommunikation) direkt oder indirekt übernommenen Gedanken sind ausnahmslos unter genauer Quellenangabe als solche kenntlich gemacht. Insbesondere habe ich nicht die Hilfe sogenannter Promotionsberaterinnen / Promotionsberater in Anspruch genommen. Dritte haben von mir weder unmittelbar noch mittelbar Geld oder geldwerte Leistungen für Arbeiten erhalten, die im Zusammenhang mit dem Inhalt der vorgelegten Dissertation stehen. Die Arbeit wurde bisher weder im Inland noch im Ausland in gleicher oder ähnlicher Form einer anderen Prüfungsbehörde vorgelegt.

Vorwort

Die vorliegende Arbeit ist das Ergebnis meiner nebenberuflichen Promotion an der Universität Flensburg in den Jahren 2008 bis 2014. Bei meinem Arbeitgeber, der Stadtwerke Flensburg GmbH, bedanke ich mich für das Entgegenkommen, während der ersten drei Jahre dieser Zeit in Teilzeit arbeiten zu können, und der Möglichkeit, mich mit verschiedenen Kollegen über einzelne Inhalte der Arbeit austauschen zu können.

Mein besonderer Dank gilt meinem Doktorvater und Betreuer Herrn Prof. Dr. Olav Hohmeyer, der die Durchführung der Arbeit ermöglicht und sie wissenschaftlich betreut hat. Auch die Durchführung der monatlichen Doktorandenseminare habe ich als gelungene Diskussionsplattform sowie als zusätzliche Motivationsquelle schätzen gelernt.

Desgleichen bedanke ich mich bei Herrn Prof. Dr. Jens Born für die Übernahme der Gutachtertätigkeit.

Für die inhaltliche Unterstützung im Bereich der thermodynamischen Berechnungen in der technischen Analyse und die Übernahme der Gutachtertätigkeit gilt mein Dank Herrn Prof. Dr.-Ing. Ilja Tuschy sowie für die gemeinsame Überprüfung der Ergebnisse meinem Mitdoktoranden Aiko Vogelsang.

Darüber hinaus möchte ich allen Korrekturlesern für ihre wertvollen Hinweise danken – im Einzelnen waren dies Malte Hartmann, Sabrina Hartmann, Sünje Hartwigsen, Thomas Heyer, Joachim Klima, Dirk Roschek, Dr. Tom Trittin und Dr. Aiko Vogelsang.

Ein besonderer Dank gilt meiner Ehefrau Sabrina, die mir in den vergangenen Jahren stets den Raum gegeben hat, mich mit dieser Doktorarbeit intensiv zu beschäftigen.

Inhaltsverzeichnis

Ał	bbildungsverzeichnis	VIII			
Та	abellenverzeichnis XIV				
Ał	bkürzungsverzeichnis	xvii			
Fo	ormelzeichenverzeichnis	хх			
1	Einleitung 1.1 Wissenschaftlicher Hintergrund	1 2 2 5 10 15 16			
2	Grundlagen 2.1 Grundlagen der Technik 2.1.1 Energetische Biomassenutzung 2.1.1 Energetische Biomassenutzung 2.1.1 Arten von biogenen Brennstoffen (Primärenergie) 2.1.1.2 Formen der energetischen Umwandlung (zu Sekundärenergie) 2.1.1.3 Bereitstellungskonzepte 2.1.1.3 Bereitstellungskonzepte 2.1.1.3.1 Bereitstellungskonzepte für holzartige Biomasse 2.1.1.3.2 Bereitstellungskonzepte für holzartige Biomasse 2.1.1.3.3 Bereitstellungskonzepte für Biogassubstrate 2.1.1.3.4 Brennstoffeigenschaften fester Biomasse 2.1.1.4 Brennstoffeigenschaften fester Biomasse 2.1.1.4.1 Elementarzusammensetzung 2.1.1.4.2 Brennstoffrelevante Eigenschaften 2.1.1.4.3 Physikalisch-mechanische Eigenschaften 2.1.1.4.3 Physikalisch-mechanische Eigenschaften 2.1.1.5.1 Thermo-chemische Umwandlung 2.1.1.5.2 Schadstoffbildung 2.1.1.6 Feuerungsvarianten für feste Biomasse	18 18 18 19 21 22 25 26 26 29 33 34 35 36 38			
	2.1.1.8 Biogas und Biomethan	. 41 . 41			

		2.1.1.8.2	Reinigungsverfahren	. 42
		2.1.1.8.3	Status quo Biomethan	. 43
	2.1.2	Kraft-Wärme-Ko	pplung	. 44
		2.1.2.1 Anlagen	varianten zur Strom- und Wärmeerzeugung	. 44
		2.1.2.2 Dampfk	raftprozess	. 46
		2.1.2.3 Gasturb	inenprozess	. 47
	2.1.3	CO ₂ -Sequestrieru	ng	. 49
		2.1.3.1 CO ₂ -Ab	scheidung und CO_2 -Kompression	. 49
		2.1.3.1.1	Prozessvarianten der CO_2 -Abscheidung	. 49
		2.1.3.1.2	Verfahren der CO_2 -Abtrennung	. 54
		2.1.3.1.3	CO_2 -Kompression	. 59
		2.1.3.1.4	Wirkungsgradverlust der dominierenden CO ₂ -	
			Abscheidungsvarianten	. 60
		2.1.3.1.5	Status quo CO_2 -Abscheidung	. 63
		2.1.3.2 CO_2 -Tra	ansport	. 66
		2.1.3.2.1	CO ₂ -Stoffeigenschaften für den CO ₂ -Transport	. 66
		2.1.3.2.2	Pipelinetransport	. 68
		2.1.3.2.3	Schiffstransport	. 70
		2.1.3.2.4	Bahn- und LKW-Transport	. 72
		2.1.3.2.5	Status quo CO_2 -Transport	. 72
		2.1.3.3 CO ₂ -Sp	eicherung und CO_2 -Monitoring	. 73
		2.1.3.3.1	CO_2 -Speicheroptionen	. 74
		2.1.3.3.2	CO_2 -Einlagerungsmechanismen	. 80
		2.1.3.3.3	CO_2 -Speichermechanismen	. 81
		2.1.3.3.4	CO ₂ -Monitoring	. 82
		2.1.3.3.5	Status quo CO_2 -Speicherung	. 84
2.2	Grund	lagen der Wirtsch	aftlichkeit	. 86
	2.2.1	Energetische Bior	nassenutzung	. 86
		2.2.1.1 Investiti	onskosten für Biomasse-Heizkraftwerke	. 87
		2.2.1.2 Betriebs	kosten	. 88
		2.2.1.3 Kostenz	usammensetzung für biogene Brennstoffe	. 88
		2.2.1.3.1	Holzartige Biomasse	. 88
		2.2.1.3.2	Biogas und Biomethan	. 90
		2.2.1.4 Marktp	reise für biogene Brennstoffe	. 91
		2.2.1.5 Wirtsch	aftliche Förderung	. 93
	2.2.2	Kraft-Wärme-Ko	pplung	. 95
		2.2.2.1 Investiti	onskosten für Fernwärmenetze	. 95
		2.2.2.2 Marktpi	eise für Fernwärme	. 96
		2.2.2.3 Großhai	ndelspreise für elektrische Energie	. 97
	2.2.3	CO_2 -Sequestrieru	ng	. 100
		2.2.3.1 CCS-Kc	stenkomponenten	. 100
		2.2.3.1.1	Kosten für CO ₂ -Abscheidung und CO ₂ -Kom-	
			pression	. 100
		2.2.3.1.2	Kosten für CO_2 -Transport	. 107

			2.2.3.1.3 Kosten für CO_2 -Lagerung und CO_2 -Monitoring.	113
			2.2.3.2 Marktpreisentwicklung für CO_2 -Zertifikate	114
			2.2.3.3 Wirtschaftliche Förderung	117
	2.3	Grund	lagen der Nachhaltigkeit	120
		2.3.1	Zum Begriff der Nachhaltigkeit	120
		2.3.2	Energetische Biomassenutzung	123
			2.3.2.1 CO_2 -Emissionen von biogenen Brennstoffen	125
			2.3.2.2 Nachhaltiges Biomassepotenzial	128
		2.3.3	Kraft-Wärme-Kopplung	131
			2.3.3.1 Brennstoffausnutzung	132
			2.3.3.2 Allokation der spezifischen CO_2 -Emissionen	133
		2.3.4	CO_2 -Sequestrierung	137
			2.3.4.1 CO_2 -Abscheidung	140
			2.3.4.2 CO_2 -Transport	141
			2.3.4.3 CO_2 -Speicherung	142
			2.3.4.3.1 CO_2 -Speicherkapazitäten	142
			2.3.4.3.2 CO_2 -Leckageraten	145
			2.3.4.3.3 Konkurrenz um CO_2 -Speicherkapazitäten	147
3	Tecł	nnische	Analyse	150
•	3.1	Metho	dik der technischen Analyse	150
		3.1.1	Methodik für Bio-CCS	150
		3.1.2	Methodik für KWK-CCS	157
	3.2	Analys	se der Kombination aus Biomasse und CCS	163
		3.2.1	Auswahl geeigneter Biomassen	163
		3.2.2	CCS-relevanter Brennstoffvergleich zwischen Kohle und Holz	165
			3.2.2.1 Übliche Wassergehalte und Heizwerte	165
			3.2.2.2 Relevante Emissionen	166
			3.2.2.3 Sauerstoffbedarf	168
			3.2.2.4 Spezifische CO_2 -Emissionen	168
			3.2.2.5 Rauchgas volumen und $\mathrm{CO}_2\text{-}\mathrm{Konzentration}$ im Rauchgas .	170
			$3.2.2.6 \text{Zwischenfazit} \dots \dots$	173
		3.2.3	Analyse der wesentlichen Bio-CCS-Technologiepfade	173
			3.2.3.1 Holz und Post-Combustion	175
			3.2.3.1.1 Feuerungsart	175
			3.2.3.1.2 Rauchgasqualität	176
			3.2.3.2 Holz und Oxyfuel	179
			3.2.3.3 Holz und Pre-Combustion	182
			3.2.3.4 Biomethan und Post-Combustion	184
			3.2.3.5 Weitere Bio-CCS-Technologiepfade	186
			3.2.3.5.1 Innovative CO_2 -Prozessvarianten	187
			3.2.3.5.2 CCS mit Algen als CO_2 -Speicher	188
		3.2.4	Veränderungen für CO_2 -Kompression und CO_2 -Transport	190
		3.2.5	Veränderung des spezifischen Energieaufwands	190

Inha	ltsve	erzei	chi	nis
ma	100 00	1201	om	110

		3.2.6	Wirkungsgradverlust	. 194
	3.3	Analys	e der Kombination aus KWK und CCS	. 198
		3.3.1	Kurzbeurteilung der Kombination aus KWK und den wesentlichen	
			CCS-Varianten	. 198
		3.3.2	Wirkungsgradverlust der Variante Post-Combustion mit KWK .	. 200
	3.4	Ergebr	nisse der technischen Analyse	. 202
		3.4.1	Ergebnisse für Bio-CCS	. 203
		3.4.2	Ergebnisse für KWK-CCS	. 205
Л	\\/irt	tschaftli	iche Analyse	207
-	4 1	Metho	dik der wirtschaftlichen Analyse	207
	т.1	4 1 1	Allgemeine Festlegungen	208
		4.1.1	Berechnung der Stromgestehungskosten	208
		4.1.2	Berechnung der Wärmegestehungskosten	211
		414	Berechnung der CO ₂ -Vermeidungskösten	212
		415	Sensitivitätsanalyse	212
	4.2	Param	eter	. 213
		4.2.1	Brennstoff- und CO ₂ -Zertifikatepreise	. 213
		4.2.2	Volllaststunden	. 216
		4.2.3	Elektrische und thermische Wirkungsgrade	. 217
		4.2.4	Investitions- und Betriebskosten	. 221
		4.2.5	Weitere Parameter	. 223
	4.3	Strom	gestehungskosten	. 225
		4.3.1	Stromgestehungskosten in 2020	. 225
			4.3.1.1 Post-Combustion mit CO_2 -Abscheidegrad von 50 %	. 229
			4.3.1.2 Höhere CO ₂ -Zertifikatepreise für negative CO ₂ -Emissione	en231
		4.3.2	Stromgestehungskosten in 2050	. 232
		4.3.3	Sensitivitätsanalyse der Stromgestehungskosten	. 234
			4.3.3.1 Variation der Brennstoffpreise	. 236
			4.3.3.2 Variation der CO ₂ -Transport- und CO ₂ -Speicherkosten	. 238
			4.3.3.3 Variation der Volllaststunden	. 239
			4.3.3.4 Variation der CO_2 -Zertifikatepreise	. 241
	4.4	Wärme	egestehungskosten	. 242
		4.4.1	Wärmegestehungskosten in 2020	. 242
		4.4.2	Wärmegestehungskosten in 2050	. 243
	4.5	CO_2 -V	ermeidungskosten	. 245
		4.5.1	CO_2 -Vermeidungskosten in 2020	. 245
			4.5.1.1 Post-Combustion mit CO_2 -Abscheidegrad von 50 %	. 247
		4.5.2	CO_2 -Vermeidungskosten in 2050	. 247
		4.5.3	Sensitivitätsanalyse der CO ₂ -Vermeidungskosten	. 250
	4.6	Ergebr	nisse der wirtschaftlichen Analyse	. 251
5	Ana	lyse der	^r Nachhaltigkeit	254
	5.1	Metho	dik der Analyse der Nachhaltigkeit	. 254
		5.1.1	Methodik für die CO2-Bilanzierung von Bio-KWK-CCS $\ . \ . \ .$. 254

Inhaltsverzeichnis

		5.1.2	Methodik für alternative Nutzungsformen der $\rm CO_2$ -Lagerstätten	. 260
	5.2	Param	eter	. 262
		5.2.1	Parameter für die CO_2 -Bilanzierung von Bio-KWK-CCS	. 262
		5.2.2	Parameter für alternative Nutzungsformen der CO ₂ -Lagerstätten	. 267
	5.3	CO ₂ -E	Bilanz von Bio-KWK-CCS	. 267
		5.3.1	Ergebnisse	. 269
		5.3.2	Sensitivitätsanalyse	. 278
	5.4	Vergle	ich mit Alternativen	. 284
		5.4.1	Alternative Nutzung der CO ₂ -Lagerstätten	. 286
		5.4.2	Exkurs: CO ₂ -Speicherkapazitäten für Bio-CCS	. 288
		5.4.3	Exkurs: Bio-CCS-Stromnutzung im Verkehrssektor	. 289
		5.4.4	Alternative CO_2 -Senken	. 291
			5.4.4.1 Industrielle CO_2 -Nutzung	. 291
			5.4.4.2 CO_2 -Speicherung in Algen	. 293
	5.5	Ergebi	nisse der Analyse der Nachhaltigkeit	. 295
6	Nut	zungspf	fade für Bio-KWK-CCS	300
	6.1	Anford	lerungskriterien für Bio-CCS	. 300
	6.2	Fallbei	ispiel Flensburg	. 301
		6.2.1	Randbedingungen am Standort Flensburg	. 301
		6.2.2	Konzeptentwicklung	. 304
	6.3	Anwer	ndung spotenzial für Bio-KWK-CCS in Deutschland $\ \ . \ . \ .$.	. 309
7	Schl	ussbetr	rachtung	318
	7.1	Zusam	menfassung	. 318
	7.2	Hypot	hesenprüfung	. 321
	7.3	Einord	lnung der Arbeit	. 322
8	Lite	ratur		324
Α	Anh	ang		369
	A.1	Anhan	g - Grundlagen	. 369
	A.2	Anhan	g - Technische Analyse	. 378
	A.3	Anhan	g - Wirtschaftliche Änalyse	. 388
	A.4	Anhan	g - Analyse der Nachhaltigkeit	. 392
	A.5	Anhan	g - Nutzungspfade für Bio-KWK-CCS	. 400

1.1	Atmosphärische Konzentration von Treibhausgasen in den letzten 10000	
	Jahren	3
1.2	Globaler Kohlenstoffkreislauf	4
1.3	Veränderung der mittleren globalen Jahrestemperatur in Abhängigkeit der	
	CO ₂ -Konzentration und damit einhergehende Folgen	6
1.4	$\rm CO_2$ -Emissionsszenarien für $\rm CO_2$ -Stabilisierungsniveaus zwischen 350 ppm	
	und 440 ppm	6
1.5	CO ₂ -Bilanz für unterschiedliche Energiesysteme	8
1.6	Prozessvarianten für Bio-CCS	13
1.7	Drei Säulen der Hypothese	15
1.8	Grundschema der Dissertation	16
1.9	Analyserahmen der Dissertation	17
2.1	Möglichkeiten der Energiebereitstellung aus Biomasse	20
2.2	Bereitstellungsschritte für die energetische Biomassenutzung	22
2.3	Bereitstellungskette für Holzhackschnitzel aus Waldrestholz	24
2.4	Mittlere, minimale und maximale Gehalte an C, H, O in biogenen Fest-	
	brennstoffen im Vergleich zu Braun- und Steinkohle	27
2.5	Mittlere, minimale und maximale Gehalte an N, S, Cl in biogenen Fest-	
	brennstoffen im Vergleich zu Braun- und Steinkohle	28
2.6	Mittlere, minimale und maximale Gehalte an K, Mg, Ca in biogenen	
	Festbrennstoffen	29
2.7	Ascheerweichungstemperaturen von biogenen Festbrennstoffen im Vergleich	
	zu Braun- und Steinkohle	30
2.8	Aschegehalte, flüchtige Bestandteile und Heizwerte von biogenen Fest-	
	brennstoffen im Vergleich zu Braun- und Steinkohle	32
2.9	Schüttdichte von biogenen Festbrennstoffen im Vergleich zu Braun- und	
	Steinkohle	34
2.10	Umwandlungsschritte des biogenen Brennstoffs während der Verbrennung	35
2.11	Vorschubrostfeuerung (Gegenstromprinzip)	38
2.12	Zirkulierende Wirbelschichtfeuerung	39
2.13	Verschiedene Vergasungssysteme	40
2.14	Elektrische Wirkungsgrade und Leistungsbereiche von Kraftmaschinen	
	und Kraftwerken	46
2.15	Dampfkraftprozess von Kondensations- und Gegendruckturbine im T, s-	
	Diagramm	48
2.16	Wesentliche Prozessvarianten der CO_2 -Abscheidung	50

2.17	Innovative Prozessvarianten der CO_2 -Abscheidung $\ldots \ldots \ldots \ldots \ldots$. 52
2.18	Elektrischer Wirkungsgradverlust der wesentlichen CO ₂ -Abscheidungsva-	
	rianten	. 63
2.19	Geplante CCS-Kraftwerke weltweit	. 65
2.20	Phasendiagramm (p, T-Diagramm) für CO_2	. 67
2.21	CO ₂ -Pipeline-Durchmesser in Abhängigkeit von der Pipeline-Segmentlänge	
	und der jährlichen Massenrate	. 69
2.22	Druckverlust in CO ₂ -Pipelines für verschiedene Nenndurchmesser bei	
	Fließgeschwindigkeiten von $1.5 \mathrm{m/s}$ und $2.5 \mathrm{m/s}$. 71
2.23	Dichte, Temperatur und Druck von eingelagertem CO ₂ in Abhängigkeit	
	von der Tiefe	. 81
2.24	Beitrag der Speichermechanismen im Zeitverlauf	. 82
2.25	Auswahl an realisierten und geplanten künstlichen CO ₂ -Speichern	. 84
2.26	Biomethangestehungskosten	. 91
2.27	Brennstoffpreise für Frischholzhackschnitzel, unbehandelte Altholzhack-	
	schnitzel, Holzpellets, Steinkohle und Erdgas	. 92
2.28	Vergütung für ein Biomasse-HKW (20 MW elektrische Leistung) im Rah-	
	men des EEG in den Jahren 2000 bis 2012	. 95
2.29	Durchschnittliche Fernwärmepreise zwischen 1991 und 2012	. 97
2.30	EEX-Spotmarktpreise für elektrische Energie im Tagesverlauf für die Jahre	
	2008 bis 2013	. 99
2.31	EEX-Spotmarktpreise für elektrische Energie in 2012 an den einzelnen	
	Wochentagen	. 99
2.32	Spezifische Investitionskosten der wesentlichen CO ₂ -Abscheidungsvariante	n101
2.33	Spezifische Investitionsmehrkosten für Biomassekraftwerke gegenüber Koh-	
	lekraftwerken (ohne und mit CO ₂ -Abscheidung)	. 103
2.34	Spezifische Betriebskosten der wesentlichen CO ₂ -Abscheidungsvarianten	. 104
2.35	Stromgestehungskosten der wesentlichen CO_2 -Abscheidungsvarianten	. 106
2.36	CO ₂ -Kompressionskosten für unterschiedliche Jahresbetriebsstunden in	
	Abhängigkeit vom CO_2 -Massenstrom	. 108
2.37	Transportkosten- und Kapazitätsbereiche für verschiedene CO ₂ -Transport-	
	optionen (250 km Transportdistanz)	. 109
2.38	CO ₂ -Transportkosten für Onshore-/Offshore-Pipelines sowie Schiffstrans-	
	port in Abhängigkeit vom Massenstrom und der Transportdistanz	. 110
2.39	Bandbreiten für Investitionskosten von CO ₂ -Pipelines	. 111
2.40	CO ₂ -Speicherkosten für verschiedene Speicheroptionen	. 113
2.41	Preisentwicklung für CO ₂ -Zertifikate und gehandelte Volumina an der	
	Börse EEX	. 116
2.42	Erwartete CO_2 -Zertifikatepreise für 2020	. 117
2.43	Jährliche CCS-Forschungsförderung zwischen 2000 und 2008	. 118
2.44	Bisherige CCS-Forschungsschwerpunkte	. 119
2.45	Treibhausgasbilanz der Stromerzeugung aus biogenen Festbrennstoffen .	. 127
2.46	Treibhausgasbilanz der Stromerzeugung aus biogenen Gasbrennstoffen	. 128
~		

2.48	Bioenergiepotenzial in der EU	. 130
2.49	Technisches Bioenergiepotenzial in Deutschland	. 131
2.50	Energie- und Exergiefluss für getrennte und gekoppelte Strom- und Wär-	
	meerzeugung	. 133
2.51	Spezifische CO ₂ -Emissionsfaktoren der Strom- und Wärmeerzeugung für	
	unterschiedliche Allokationsmethoden	. 139
2.52	Abgeschiedene und vermiedene CO ₂ -Emissionen am Beispiel eines Stein-	
	kohlekraftwerks	141
2.53	CO ₂ -Speicherkapazitäten in Europa	145
2.00 2.54	CO_2 -Speicherkapazitäten in Deutschland	1/6
2.01		. 140
3.1	Verwendete Elementarzusammensetzungen und Heizwerte für Holz, Braun-	
	kohle und Steinkohle	. 152
3.2	Analysierter Dampfkraftprozess im T, s-Diagramm	. 158
3.3	Anlagenschema des analysierten Dampfkraftprozesses	. 159
3.4	Vergleich der Wassergehalte und Heizwerte von Kohle und Holz	167
3.5	Sauerstoffbedarf in Bezug auf die trockene Brennstoffmasse für die vollstän-	. 101
0.0	dige Oxidation des enthaltenen Kohlenstoffs Wasserstoffs und Schwefels	
	in Kohlo und Holz	168
26	Maggan und anarging angificatio CO . Emission on für Kohle und Holz (10 $\%$. 100
5.0	Wassen- und energiespezitische OO_2 -Effissionen für Kome und Hoiz (10 / M	170
27	Wassergenalt)	. 170
ə. <i>t</i>	Massen- und energiespezitische OO_2 -Effissionen für Kome und Hoiz (50 %)	1/71
9 0	$Wassergenalt) \dots \dots$. 1/1
3.8	Heizwertspezifisches Rauchgasvolumen für Konle und Holz $(0\%, 10\%)$ und 50.07 W	170
	50% Wassergehalt)	. 172
3.9	Heizwertspezifischer Sauerstoffbedarf für die vollstandige Oxidation von	100
0.10	Kohle und Holz (10% Wassergehalt)	. 180
3.10	Energiespezifisches Rauchgasvolumen bei der Verbrennung von Kohle und	101
	Holz mit reinem Sauerstoff $(0\%, 10\% \text{ und } 50\% \text{ Wassergehalt})$. 181
3.11	Typische Zusammensetzung von Synthesegas aus Biomasse und Kohle .	. 185
3.12	Zusammensetzung der Rauchgase bei der Verbrennung von Biogas und	
	Biomethan	. 187
3.13	Spezifischer Energieaufwand zur CO_2 -Abscheidung und O_2 -Erzeugung .	. 192
3.14	Elektrischer Wirkungsgradverlust von Steinkohle und Holz bei der CCS-	
	Variante Post-Combustion	. 195
3.15	Elektrischer Wirkungsgradverlust von Erdgas und Biogas bei der CCS-	
	Variante Post-Combustion	. 196
3.16	Elektrischer Wirkungsgradverlust von Steinkohle und Holz bei der CCS-	
	Variante Oxyfuel	. 197
3.17	Elektrischer Wirkungsgradverlust von Steinkohle und Holz bei der CCS-	
	Variante Pre-Combustion	. 197
3.18	Wirkungsgradverlust durch die CCS-Variante Post-Combustion im Kon-	
	densations-, KWK-Sommer- und KWK-Winter-Betrieb	. 201
4.1	Stromgestehungskosten im Jahr 2020 (ohne KWK, ohne CCS) $\hfill \ldots \hfill \ldots$. 226

4.2	Stromgestehungskosten im Jahr 2020 (ohne KWK, mit CCS)	. 227
4.3	Stromgestehungskosten im Jahr 2020 (mit KWK, ohne CCS)	. 228
4.4	Stromgestehungskosten im Jahr 2020 (mit KWK, mit CCS)	. 229
4.5	Stromgestehungskosten im Jahr 2020 bei 50 % und 90 % bis 99 % CO_2 -	
	Abscheidegrad (ohne KWK, mit CCS)	. 230
4.6	Stromgestehungskosten im Jahr 2020 bei 50 % und 90 % bis 99 % CO ₂ -	
	Abscheidung (mit KWK, mit CCS)	. 231
4.7	Stromgestehungskosten im Jahr 2020 bei Variation der CO ₂ -Zertifikate-	
	kosten für negative CO ₂ -Emissionen (mit KWK, mit CCS)	. 232
4.8	Stromgestehungskosten im Jahr 2050 (ohne KWK, mit CCS)	. 233
4.9	Stromgestehungskosten im Jahr 2050 (mit KWK, mit CCS)	. 234
4.10	Sensitivität der Stromgestehungskosten im Jahr 2020 (IGCC/Pre-Com-	
	bustion, HHS ($w=50\%$), ohne KWK, mit CCS)	. 235
4.11	Sensitivität der Stromgestehungskosten im Jahr 2020 (IGCC/Pre-Com-	
	bustion, HHS ($w=50\%$), mit KWK, mit CCS)	. 236
4.12	Sensitivität der Stromgestehungskosten im Jahr 2020 auf Variation der	
	Brennstoffpreise (ohne KWK, mit CCS)	. 237
4.13	Sensitivität der Stromgestehungskosten im Jahr 2020 auf Variation der	
	Brennstoffpreise (mit KWK, mit CCS)	. 238
4.14	Sensitivität der Stromgestehungskosten im Jahr 2020 auf Variation der	
	CO_2 -Transport- und CO_2 -Speicherkosten (mit KWK, mit CCS)	. 239
4.15	Sensitivität der Stromgestehungskosten im Jahr 2020 auf Variation der	
	Volllaststunden (ohne KWK, mit CCS)	. 240
4.16	Sensitivität der Stromgestehungskosten im Jahr 2020 auf Variation der	
	Volllaststunden (mit KWK, mit CCS)	. 241
4.17	Sensitivität der Stromgestehungskosten im Jahr 2020 auf Variation der	
	CO ₂ -Zertifikatepreise (mit KWK, mit CCS)	. 242
4.18	Wärmegestehungskosten im Jahr 2020 (ohne CCS)	. 243
4.19	Wärmegestehungskosten im Jahr 2020 (mit CCS)	. 244
4.20	Wärmegestehungskosten im Jahr 2050 (mit CCS)	. 244
4.21	CO_2 -Vermeidungskosten im Jahr 2020 (ohne KWK) $\ldots \ldots \ldots$. 246
4.22	CO_2 -Vermeidungskosten im Jahr 2020 (mit KWK)	. 246
4.23	$\rm CO_2\text{-}Vermeidungskosten$ im Jahr 2020 bei 50 % und 90 % bis 99 % $\rm CO_2\text{-}$	
	Abscheidung (ohne KWK)	. 248
4.24	$\rm CO_2\text{-}Vermeidungskosten$ im Jahr 2020 bei 50 % und 90 % bis 99 % $\rm CO_2\text{-}$	
	Abscheidung (mit KWK)	. 248
4.25	CO_2 -Vermeidungskosten im Jahr 2050 (ohne KWK) $\ldots \ldots \ldots$. 249
4.26	CO_2 -Vermeidungskosten im Jahr 2050 (mit KWK)	. 250
4.27	Sensitivität der CO ₂ -Vermeidungskosten im Jahr 2020 (IGCC/Pre-Com-	
	bustion, HHS ($w=50\%$), ohne KWK) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$. 251
51	Paramatar für die Analyse der Nachhaltiskeit	955
ม.1 ธ.ว	CO. Bilanz oines Kohlekraftworks (ICCC/Pro Combustion)	. ∠əə 970
0.2	002-Dinanz emes Komekraitweiks (IGCC/FIe-Combustion)	. 210

5.3	CO ₂ -Bilanz eines HHS-Kraftwerks (KUP-iLUC25%-Acker, IGCC/Pre-	
	Combustion)	. 271
5.4	CO ₂ -Bilanz eines Steinkohlekraftwerks mit 30 % HHS-Zufeuerung (KUP-	
	iLUC25%-Acker, IGCC/Pre-Combustion)	. 272
5.5	CO ₂ -Bilanz untersuchter Festbrennstoffe (IGCC/Pre-Combustion, ohne	
	KWK)	. 273
5.6	CO ₂ -Bilanz untersuchter gasförmiger Brennstoffe (GuD/Post-Combustion,	
	ohne KWK)	. 274
5.7	$\rm CO_2$ -Bilanz eines Erdgaskraftwerks mit 30 % Biomethan-Zufeuerung (KUP-	
	iLUC50%-Grünland, GuD/Post-Combustion)	. 275
5.8	CO ₂ -Bilanz untersuchter Festbrennstoffe (mit KWK, IGCC/Pre-Combus-	
	tion, Produkt Strom)	. 276
5.9	CO ₂ -Bilanz untersuchter Festbrennstoffe (mit KWK, IGCC/Pre-Combus-	
	tion, Produkt Wärme)	. 276
5.10	Brennstoffmassenspezifische CO ₂ -Bilanz untersuchter Festbrennstoffe (mit	
	CCS, IGCC/Pre-Combustion)	. 277
5.11	Flächenspezifische CO ₂ -Bilanz untersuchter Festbrennstoffe (mit CCS,	
	IGCC/Pre-Combustion)	. 278
5.12	Flächenspezifische CO ₂ -Bilanz untersuchter gasförmiger Brennstoffe (mit	
	CCS, GuD/Post-Combustion)	. 279
5.13	Sensitivitätsanalyse der CO ₂ -Bilanz untersuchter Festbrennstoffe auf Va-	
	riation der CO_2 -Leckagerate (IGCC/Pre-Combustion, ohne KWK)	. 280
5.14	Sensitivitätsanalyse der CO ₂ -Bilanz untersuchter gasförmiger Brennstoffe	
	auf Variation der CO ₂ -Leckagerate (GuD/Post-Combustion, ohne KWK)	281
5.15	Sensitivitätsanalyse der CO ₂ -Bilanz untersuchter Festbrennstoffe auf Va-	
	riation der CO ₂ -Speicherbetrachtungsdauer (IGCC/Pre-Combustion, ohne	
	KWK)	. 282
5.16	Sensitivitätsanalyse der CO ₂ -Bilanz untersuchter Festbrennstoffe auf Va-	
	riation des biogenen Anteils (IGCC/Pre-Combustion, ohne KWK) $\ . \ .$. 283
5.17	Sensitivitätsanalyse der CO ₂ -Bilanz untersuchter Festbrennstoffe auf Va-	
	riation der Brennstoffherkunft (aus der Region oder den Sub-/Tropen,	
	IGCC/Pre-Combustion, ohne KWK)	. 285
5.18	Sensitivitätsanalyse der flächenspezifischen CO ₂ -Speicherkapazität für	
	CO ₂ -Einlagerung bzw. CO ₂ -Vermeidungskapazität für geothermische Wär-	
	menutzung und Wärmespeicherung	. 288
5.19	Belegung der deutschen CO_2 -Lagerstätten (14,5 Gt) mit CO_2 aus Biomasse-	
	CCS und Kohle-CCS	. 290
5.20	Jährlicher, globaler CO ₂ -Massenstrom und CO ₂ -Bindungsdauer für indus-	
	trielle CO_2 -Nutzung	. 292
5.21	Industrielles CO ₂ -Senkenpotenzial in Abhängigkeit von CO ₂ -Bindungs-	
	dauer und CO_2 -Nutzungsgrad	. 294
5.22	CO ₂ -Speicherkapazität einer Algenaufzuchtanlage auf Basis eines Bio-	
	masse-Heizkraftwerks (100 MW Feuerungswärmeleistung, 280 Mt/a $\rm CO_{2^-}$	
	Abscheidung)	. 295

6.1	Tägliche, mittlere Fernwärmeleistung 1995 bis 2011 im HKW Flensburg $% 1000$. 303
6.2	Typischer Sommer- und Winter-Wochenverlauf der Fernwärmeleistung im
	HKW Flensburg
6.3	Jahresvolllaststunden für Anlagen mit unterschiedlicher Fernwärmeleistung
	im Fernwärmenetz Flensburg \hdots
6.4	Radius der Anbauflächen für benötigte HHS-/Biomethanmengen 308
6.5	Fernwärme-Erzeugung 2009 und Fernwärmepotenzial der 100 größten
	Städte Deutschlands
6.6	Binnenschifffahrtsstraßen in Deutschland
6.7	Lage der CO ₂ -Speicherstätten in Deutschland $\ldots \ldots \ldots \ldots \ldots 315$
6.8	Höhe der negativen CO_2 -Emissionen in Abhängigkeit von der notwendigen
	CO ₂ -Transportdistanz (auf Basis der FW-Erzeugung 2009)

Tabellenverzeichnis

2.1	Zusammensetzung von Roh-Biogas und Biomethan sowie Erdgasqualität	40
0.0	$geman DVGW G200/G202 \dots G200 Al bib by Cl$	42
2.2	Kombinationen aus Prozessvarianten der CO_2 -Abscheidung und Verfahren	<u> </u>
0.0	der CO_2 -Abtrennung	60
2.3	Kommerzielle CO_2 -Speicherprojekte	85
2.4	Investitionskosten für CO_2 -Transportschiffe	112
2.5	Kosten für die CO_2 -Zwischenspeicherung	112
2.6	Verwendete Wirkungsgrade und CO ₂ -Emissionsfaktoren für CO ₂ -Alloka-	100
	tionsverfahren	138
3.1	Kenngrößen des analysierten Dampfkraftprozesses	161
3.2	Bewertungsfaktoren für die Auswahl geeigneter Biomassen für CCS (Asche-	
	schmelzverhalten, Chlorgehalt)	164
3.3	Ergebnisübersicht des Brennstoffvergleichs zwischen Kohle und Holz $\ .\ .$	174
3.4	Grenzwerte für SO_x , NO_x und Feinstaub im Rauchgas für chemische	
	Absorption	176
3.5	Ergebnisse für untersuchte KWK-CCS-Varianten	206
4.1	Untersuchte Varianten im Rahmen der wirtschaftlichen Analyse	209
4.2	Verwendete Brennstoffpreise	214
4.3	Verwendete elektrische Netto-Wirkungsgrade (ohne KWK)	218
4.4	Verwendete elektrische und thermische Netto-Wirkungsgrade (2020)	220
4.5	Verwendete spezifische Investitionskosten für (Heiz-)Kraftwerke (2020)	222
4.6	Verwendete spezifische Betriebs- und Wartungskosten für Kraftwerke und	
	Heizkraftwerke (2020)	223
5.1	Verwendete spezifische CO2-Emissionsfaktoren	264
5.2	Verwendete Parameter für Biogas-/Biomethanberechnung	265
5.3	Verwendete Parameter für CO ₂ -Transport und CO ₂ -Speicherung	266
$5.0 \\ 5.4$	Verwendete Parameter für Ressourcen- und Flächeneffizienz	266
5.5	Verwendete Parameter für Vergleich CO ₂ -Speicherung und geothermische	200
0.0	Nutzung	268
5.6	Nachverdichtungsaufwand für CO _o -Transport	284
5.0	Untersuchte Varianten für CO ₂ -Bilanz von Bio-KWK-CCS	204
0.1		200
6.1	Ergebnisse für untersuchte Bio-KWK-CCS-Konzepte in Flensburg	307
6.2	Verwendete CO ₂ -Speicherstandorte für Entfernungsberechnung	314

Tabellenverzeichnis

A.1	Verwendete Angaben für mittlere, minimale und maximale Gehalte an C,	
	H, O, N, S, Cl, K, Mg, Ca in biogenen Festbrennstoffen und in Braun-	
	und Steinkohle	369
A.2	Verwendete Angaben für mittlere, minimale und maximale Wassergehalte,	
	Aschegehalte, Heizwerte, flüchtige Bestandteile und Ascheschmelztempe-	
	raturen für biogene Festbrennstoffe sowie Braun- und Steinkohle	369
A.3	Literaturauswertung zu CO ₂ -Abscheidungskosten, Teil A	370
A.4	Literaturauswertung zu CO ₂ -Abscheidungskosten, Teil B	371
A.5	Literaturauswertung zu CO ₂ -Abscheidungskosten, Teil C	372
A.6	Literaturauswertung zu CO ₂ -Abscheidungskosten, Teil D	373
A.7	Literaturauswertung zu CO ₂ -Abscheidungskosten, Teil E	374
A.8	Literaturauswertung zu CO ₂ -Abscheidungskosten, Teil F	375
A.9	CO ₂ -Kompressionskosten für unterschiedliche Jahresbetriebsstunden in	
	Abhängigkeit vom CO ₂ -Massenstrom	376
A.10	Spezifischer Sauerstoffbedarf für die vollständige Oxidation und spezifische	
	CO ₂ -Emissionen für Kohle und Holz	378
A.11	Massenspezifische Rauchgasbestandteile für Kohle und Holz	378
A.12	Heizwertspezifische Rauchgasbestandteile für Kohle und Holz	379
A.13	CO ₂ -Anteil in den Rauchgasen und spezifischer Energieaufwand für die	
	CCS-Varianten Post-Combustion und Oxvfuel	380
A.14	Mindestsauerstoffbedarf, Rauchgaszusammensetzung, CO ₂ -Konzentration	
	in den Rauchgasen und spezifischer Energieaufwand zur MEA-Abscheidung	
	bei der Verbrennung von Biogas und Biomethan	381
A.15	Elektrischer Wirkungsgradverlust von Steinkohle/Erdgas und Holz/Biogas	
	bei den CCS-Varianten Post-Combustion, Oxyfuel und Pre-Combustion .	382
A.16	Berechnung zur Kombination Post-Combustion mit Kondensationsbetrieb	
	sowie KWK-Betrieb im Sommer und Winter. Teil A	383
A.17	Berechnung zur Kombination Post-Combustion mit Kondensationsbetrieb	
-	sowie KWK-Betrieb im Sommer und Winter. Teil B	384
A.18	Berechnung zur Kombination Post-Combustion mit Kondensationsbetrieb	
	sowie KWK-Betrieb im Sommer und Winter. Teil C	385
A.19	Berechnung zur Kombination Post-Combustion mit Kondensationsbetrieb	
-	sowie KWK-Betrieb im Sommer und Winter. Teil D	386
A.20	Verwendete Parameter für wirtschaftliche Analyse (allgemein)	388
A.21	Verwendete Parameter für wirtschaftliche Analyse (Wirkungsgrade)	388
A 22	Verwendete Parameter für wirtschaftliche Analyse (Unitaligesfaus)	000
	kosten)	389
A 23	Berechnung der Stromgestehungskosten Wärmegestehungskosten und	000
11.20	CO_{a} -Vermeidungskosten in 2020	390
Δ 24	Verwendete Parameter für die Analyse der Nachhaltigkeit (allgemein)	302
Δ 25	Verwendete Parameter für die Analyse der Nachhaltigkeit (Wirkungsgrade	302
Δ 26	Berechnung für die Analyse der Nachhaltigkeit Teil A	302
A 27	Berechnung für die Analyse der Nachhaltigkeit. Teil R	394
Δ 98	Berechnung für die Analyse der Nachhaltigkeit. Teil C.	305
11.40	Derominang fur ute manyse der machilanighen, fell C	030

Tabellenverzeichnis

Abkürzungsverzeichnis

a	Jahr
AGFW	Arbeitsgemeinschaft für Wärme und Heizkraftwirtschaft
BAFA	Bundesamt für Wirtschaft und Ausfuhrkontrolle
BGR	Bundesanstalt für Geowissenschaften und Rohstoffe
Bio-CCS	Carbon Capture and Storage auf Basis von Biomasse
Bio-KWK-CCS	Carbon Capture and Storage auf Basis von Biomasse und Kraft-Wärme-Kopplung
BMELV	Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz
BMU	Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit
BMWi	Bundesministerium für Wirtschaft und Technologie
Br	Brennstoff
С	Kohlenstoff
Ca	Kalzium
CARMEN	Centrales Agrar-Rohstoff-Marketing- und Entwicklungs-Netzwerk e. V.
CC	Carbon Capture
CCS	Carbon Capture and Storage
CH_4	Methan
Cl	Chlor
$\rm CO_2$	Kohlenstoffdioxid
DEHSt	Deutsche Emissionshandelsstelle im Umweltbundesamt
dena	Deutsche Energie-Agentur

$Abk{\"u}rzungsverzeichnis$

DEPI	Deutsches Pelletinstitut
DEPV	Deutscher Energieholz- und Pellet-Verband e.V.
dLUC	direct Land-Use Change
DWW	Druckwasserwäsche
ECX	European Climate Exchange
EEG	Erneuerbare-Energien-Gesetz
EEX	European Energy Exchange
EGR	Enhanced Gas Recovery
EOR	Enhanced Oil Recovery
FNR	Fachagentur Nachwachsende Rohstoffe e.V.
FWL	Feuerungswärmeleistung
GuD	Gas- und Dampfturbinenprozess
Н	Wasserstoff
H_2S	Schwefelwasserstoff
ha	Hektar
HD	Hochdruck
HHS	Holzhackschnitzel
HKW	Heizkraftwerk
IEA	Internationale Energieagentur
IEA GHG	IEA Greenhouse Gas Research & Development Programme
IGCC	Integrated Gasification Combined Cycle
iLUC	indirect Land-Use Change
IPCC	Intergovernmental Panel on Climate Change
Κ	Kalium
KUP	Kurzumtriebsplantage
KWK	Kraft-Wärme-Kopplung
L	Luft

$Abk{\"u}rzungsverzeichnis$

MD	Mitteldruck
MDEA	Methyldiethanolamin
MEA	Monoethanolamin
Mg	Magnesium
Ν	Stickstoff
N_2O	Lachgas
ND	Niederdruck
NGCC	Natural Gas Combined Cycle
Ο	Sauerstoff
p.a.	per anno
PC	Pulverised Coal
ppb	parts per billion
ppm	parts per million
PSA	Druckwechseladsorption
R	Rauchgas
REA	Rauchgasentschwefelungsanlage
S	Schwefel
spez.	spezifisch
SRU	Sachverständigenrat für Umweltfragen
SWFL	Stadtwerke Flensburg GmbH
THG	Treibhausgas
UNECE	United Nations Economic Commission for Europe
WBGU	Wissenschaftlicher Beirat der Bundesregierung Globale Umweltänderung
wf	wasserfrei
ZÜ	Zwischenüberhitzung

$\alpha_{ m Br,el}$	Brennstoffanteil für Stromerzeugung	%
$lpha_{ m Br,th}$	Brennstoffanteil für Wärmeerzeugung	%
$lpha_{ m EE}$	erneuerbarer Brennstoffanteil	%
$\Delta \eta_{\rm CO_2-A}$	absoluter Wirkungsgradverlust durch CO ₂ -Abschei- dung	%
$\Delta \eta_{\rm CO_2-K}$	absoluter Wirkungsgradverlust durch CO ₂ -Kompression	%
$\Delta_{ ext{PEE}}$	Primärenergieeinsparung	%
$\dot{m}_{ m CO_2}$	$\rm CO_2$ -Massenstrom	$\rm kg/s$
$\dot{m}_{ m i}$	Massenstrom im Punkt i	$\rm kg/s$
$\eta_{ m AWS}$	Wirkungsgrad des Aquiferwärmespeichers	%
$\eta_{ m BG}$	Wirkungsgrad der Biogaserzeugung	%
$\eta_{ m el,Ref}$	elektrischer Referenzwirkungsgrad	%
$\eta_{ m el}$	elektrischer Wirkungsgrad	%
$\eta_{ m th,Ref}$	thermischer Referenzwirkungsgrad	%
$\eta_{ m th}$	thermischer Wirkungsgrad	%
λ	Luftverhältnis bei der Verbrennung	1
$\mu_{ m CO_2,Br,dir,EE}$	heizwertspezifischer, direkter CO ₂ -Emissionsfaktor des erneuerbaren Brennstoffs	$\rm kg/MJ$
$\mu_{\rm CO_2,Br,dir,fos}$	heizwertspezifischer, direkter $\rm CO_2$ -Emissionsfaktor des fossilen Brennstoffs	$\rm kg/MJ$
$\mu_{\rm CO_2,Br,dir}$	heizwertspezifischer, direkter $\rm CO_2$ -Emissionsfaktor des Brennstoffs	$\rm kg/MJ$
$\mu_{\mathrm{CO}_2,\mathrm{Br},\mathrm{ind},\mathrm{Prim}}$	heizwertspezifischer, indirekter CO ₂ -Emissionsfak- tor für Primärenergieträger	$\rm kg/MJ$

$\mu_{\rm CO_2,Br,ind}$	heizwertspezifischer, indirekter CO ₂ -Emissionsfak- tor des Brennstoffs	$\rm kg/MJ$
$\mu_{\rm CO_2,el,ab,KWK}$	stromspezifischer CO_2 -Emissionsfaktor für abge- schiedene CO_2 -Emissionen (in KWK)	g/kWh
$\mu_{\mathrm{CO}_2,\mathrm{el},\mathrm{ab}}$	stromspezifischer CO ₂ -Emissionsfaktor für abge- schiedene CO ₂ -Emissionen	g/kWh
$\mu_{\rm CO_2,el,dir,KWK}$	stromspezifischer, direkter $\rm CO_2$ -Emissionsfaktor (in KWK)	g/kWh
$\mu_{ m CO_2,el,dir}$	stromspezifischer, direkter $\rm CO_2$ -Emissionsfaktor	g/kWh
$\mu_{\rm CO_2,el,ges,EE}$	gesamter, stromspezifischer $\rm CO_2$ -Emissionsfaktor für erneuerbare Energieträger	g/kWh
$\mu_{\rm CO_2, el, ges, fos}$	gesamter, stromspezifischer CO ₂ -Emissionsfaktor für fossile Energieträger	g/kWh
$\mu_{\rm CO_2, el, ges}$	gesamter, stromspezifischer $\rm CO_2$ -Emissionsfaktor	g/kWh
$\mu_{\rm CO_2,el,ind}$	stromspezifischer, indirekter $\rm CO_2$ -Emissionsfaktor	g/kWh
$\mu_{\mathrm{CO}_2,\mathrm{el},\mathrm{Leck}}$	stromspezifischer CO ₂ -Emissionsfaktor für CO ₂ - Leckagen	g/kWh
$\mu_{\rm CO_2,el,Mix}$	$\rm CO_2$ -Emissionsfaktor Strommix	g/kWh
$\mu_{\rm CO_2,el,Schiff}$	stromspezifischer CO ₂ -Emissionsfaktor für den CO_2 -Schiffstransport	g/kWh
$\mu_{\rm CO_2,el,V-Mix}$	CO ₂ -Emissionsfaktor Verdrängungs-Strommix	g/kWh
$\mu_{\rm CO_2,el,verm}$	stromspezifischer $\rm CO_2$ -Emissionsfaktor für vermiedene $\rm CO_2$ -Emissionen	g/kWh
$\mu_{\rm CO_2, Fläche}$	flächenspezifischer CO ₂ -Emissionsfaktor	$t/(ha \cdot a)$
$\mu_{\mathrm{CO}_2,\mathrm{Pipeline}}$	spezifischer CO_2 -Emissionsfaktor für den CO_2 -Pipelinetransport	t/t
$\mu_{\rm CO_2, Res}$	ressourcenspezifischer CO ₂ -Emissionsfaktor	t/t
$\mu_{\rm CO_2,Schiff}$	spezifischer CO_2 -Emissionsfaktor für den CO_2 -Schiffstransport	t/t
$\mu_{\rm CO_2,th,ab,KWK}$	wärmespezifischer CO ₂ -Emissionsfaktor für abge- schiedene CO ₂ -Emissionen (in KWK)	g/kWh
$\mu_{\rm CO_2,th,dir,KWK}$	wärmespezifischer, direkter CO_2 -Emissionsfaktor (in KWK)	g/kWh

$\mu_{\rm CO_2,th,ges}$	gesamter, wärmespezifischer $\rm CO_2$ -Emissionsfaktor	g/kWh
$\mu_{\rm CO_2,th,Mix}$	CO ₂ -Emissionsfaktor Wärmemix	g/kWh
$\phi_{\rm n/g}$	net-to-gross-Verhältnis	%
ϕ_{traps}	Anteil von Fallen am Volumen der CO_2 -Lagerstätte	%
$\psi_{\rm CO_2/R}$	CO ₂ -Konzentration im Rauchgas	%
$\psi_{\rm N_2/L}$	Stoffmengenanteil an Stickstoff in der Luft	kmol/kmol
$\psi_{\rm O_2/L}$	Stoffmengenanteil an Sauerstoff in der Luft	kmol/kmol
$ ho_{\mathrm{CO}_2}$	Dichte von CO_2	$\rm kg/m^3$
arphi	Porosität	%
A	Fläche (einer CO_2 -Lagerstätte)	$\rm km^2$
$A_{\rm CO_2}$	$\rm CO_2$ -Abscheidegrad	%
С	Massenanteil Kohlenstoff	%
D	Mächtigkeit bzw. Dicke der CO ₂ -Lagerstätte	km
E	Effizienzfaktor	%
$E_{\rm Br}$	Brennstoffenergie	GJ
$e_{ m FW,el}$	stromspezifische Fernwärmeerlöse	Euro/MWh
$e_{ m FW,th}$	wärmespezifische Fernwärmeerlöse	Euro/MWh
$E_{\rm KUP}$	Ertragsniveau Kurzumtriebsplantagen	$t/(ha \cdot a)$
$E_{\rm Q}$	Exergie der Wärme	MWh
e_{Strom}	Stromerlöse	Euro/MWh
h	Massenanteil Wasserstoff	%
$H_{\mathrm{I,wf}}$	Heizwert im wasserfreien Zustand	MJ/kg
H_{I}	Heizwert (für Festbrennstoffe)	MJ/kg
$h_{ m i}$	spezifische Enthalpie (im Punkt i)	kJ/kg
$H_{ m S}$	Brennwert (für gasförmige Brennstoffe)	$\rm kWh/m^3$
$k_{\rm B+W,el}$	stromspezifische Betriebs- und Wartungskosten	Euro/MWh
$k_{ m Br,el}$	stromspezifische Brennstoffkosten	Euro/MWh

$K_{\rm CO_2-Sp}$	Kosten für CO ₂ -Speicherung	Euro/t
$k_{\rm CO_2\text{-}Tr/Sp,el}$	stromspezifische CO ₂ -Transport- und CO ₂ -Speicher- kosten	Euro/MWh
$K_{\rm CO_2-Tr}$	Kosten für CO ₂ -Transport	Euro/t
$K_{\rm CO_2-V}$	$\rm CO_2$ -Vermeidungskosten	Euro/t
$k_{\rm CO_2-Z,el}$	strom spezifische $\mathrm{CO}_2\text{-}\mathrm{Zertifikatekosten}$	Euro/MWh
$K_{\rm CO_2-Z}$	$\rm CO_2$ -Zertifikate preis	Euro/t
$K_{\mathrm{Inv,CO}_2\text{-}\mathrm{K}}$	Investitionskosten für CO_2 -Kompression	Euro
$K_{\mathrm{Inv,el}}$	Investitionskosten	Euro/kW
$k_{\mathrm{Kap,el}}$	stromspezifische Kapitalkosten	Euro/MWh
$k_{ m SG,el}$	Stromgestehungskosten	Euro/MWh
$k_{ m WG,th}$	Wärmegestehungskosten	Euro/MWh
$l_{ m min,m}$	molarer Luftbedarf für vollständige Oxidation, bezogen auf Brennstoffmasse	kmol/kg
$m_{\rm CO_2,A,AWS}$	flächenspezifische CO ₂ -Einsparungen durch saiso- nale Wärmeeinlagerung	t/km^2
$m_{\rm CO_2,A,CCS}$	flächenspezifische CO_2 -Einlagerung	t/km^2
$m_{\rm CO_2,A,Geoth,KWK}$	flächenspezifische CO ₂ -Einsparungen durch geother- mische Erdwärmenutzung in KWK	t/km^2
$m_{\rm CO_2,A,Geoth}$	flächenspezifische CO_2 -Einsparungen durch geother- mische Erdwärmenutzung	t/km^2
$m_{\rm CO_2,eff}$	effektive CO ₂ -Speicherkapazität	kg, t
$m_{\rm CO_2,el,dir}$	direkte CO ₂ -Emissionen für den erzeugten Strom	t
$m_{\rm CO_2,th,dir}$	direkte CO ₂ -Emissionen für die erzeugte Wärme	t
$m_{\rm CO_2,theor}$	theoretische CO ₂ -Speicherkapazität	kg, t
0	Massenanteil Sauerstoff	%
$O_{\min,\mathrm{m}}$	molarer Sauerstoffbedarf für vollständige Oxidation, bezogen auf Brennstoff-Stoffmenge	kmol/kmol
$o_{\min,\mathrm{m}}$	molarer Sauerstoffbedarf für vollständige Oxidation, bezogen auf Brennstoffmasse	kmol/kg

o_{\min}	Sauerstoffbedarf für vollständige Oxidation, bezogen auf Brennstoffmasse	kg/kg
p_1	Kompressoreingangsdruck bei $\rm CO_2$ -Verdichtung	bar
p_2	Kompressorausgangsdruck bei CO_2 -Verdichtung	bar
$P_{\rm el,CO_2-K}$	elektrische Leistung für die CO ₂ -Kompression	kW
Q	Wärme	MWh
$Q_{ m ein}$	eingelagerte Wärmemenge	MWh
$Q_{\rm Leck, CO_2}$	jährliche Leckagerate des CO ₂ -Speichers	t/a
8	Massenanteil Schwefel	%
t	Zeit	a
$T_{\rm HN}$	absolute, mittlere Temperatur des Heiznetzes	Κ
T_{R}	absolute, mittlere Rücklauftemperatur	Κ
$t_{\rm R}$	mittlere Rücklauftemperatur	$^{\circ}\mathrm{C}$
T_{U}	absolute Umgebungstemperatur	Κ
$t_{ m U}$	mittlere Umgebungstemperatur	$^{\circ}\mathrm{C}$
$t_{\rm VL}$	Volllaststunden	h/a
$T_{\rm V}$	absolute, mittlere Vorlauftemperatur	Κ
$t_{ m V}$	mittlere Vorlauftemperatur	$^{\circ}\mathrm{C}$
V	Volumen der CO ₂ -Lagerstätte	${\rm km}^3$
w	Wassergehalt	%
$w_{\rm CO_2-A}$	spezifischer Energieaufwand für $\rm CO_2$ -Abscheidung	$\mathrm{GJ/t}$
$w_{\rm CO_2-K}$	spezifischer Energieaufwand für $\rm CO_2$ -Kompression	GJ/t
$W_{\rm el}$	elektrische Energie	MWh

In der vorliegenden Arbeit wird in Form einer Systemanalyse untersucht, inwiefern eine Kombination der drei Bereiche energetische Biomassenutzung, Kraft-Wärme-Kopplung (KWK) und CO₂-Sequestrierung (CCS – Carbon Capture and Storage) grundsätzlich möglich und sinnvoll ist. Unter dem Begriff CO₂-Sequestrierung wird in dieser Arbeit die Prozesskette aus CO₂-Abscheidung, CO₂-Transport und CO₂-Speicherung verstanden. Während die Nutzung von Biomasse in Heizkraftwerken bereits gängige Praxis darstellt, befindet sich die CO₂-Sequestrierung (auf Basis fossiler Energieträger) im Forschungsund Entwicklungsstadium. Eine Kombination von CCS mit Biomasse ist bislang wenig, eine Kombination mit Heizkraftwerken gar nicht untersucht worden. Die beiden Techniken der energetischen Biomassenutzung und der KWK stellen in den Planungen der deutschen Bundesregierung feste Größen im Energiesystem der Zukunft dar: Nach dem Leitszenario des Bundesumweltministeriums soll die Stromerzeugung aus Biomasse bis 2020 gegenüber 2008 nahezu verdoppelt werden. Gleichzeitig soll die in KWK erzeugte Wärme verdreifacht werden [vgl. Nitsch und Wenzel, 2009, S. 10]¹. Parallel dazu soll die CCS-Technologie bis 2030 in der Hälfte aller deutschen Kohlekraftwerke eingesetzt werden vgl. Krassuki et al., 2009, S.17]. Auch die Kombination aus Biomasse und CCS stellt für die deutsche Bundespolitik eine perspektivisch denkbare Option dar [vgl. Bundestag, 2008b, S.4]. Darüber hinaus werden der CCS-Technologie zukünftig sehr gute Exportchancen für die deutsche Wirtschaft eingeräumt [vgl. Bundesregierung, 2010, S. 20]. Die Kombination von Biomasse-Heizkraftwerken mit CCS bietet über die CO₂-Neutralität hinaus die interessante Möglichkeit, als zukünftiges Klimaschutzinstrument aus der Atmosphäre aktiv CO₂ zu entnehmen. Deshalb wird im Energiekonzept der deutschen Bundesregierung gefordert, dass bis zum Jahr 2020 ein Speicherprojekt für industrielle bzw. biogene CO_2 -Emissionen errichtet werden soll sowie die Nutzung von CO_2 als Rohstoff (z. B. in Form von Methan oder in Algenreaktoren) untersucht werden soll [vgl. Bundesregierung, 2010, S. 20].

Im Folgenden wird zunächst der wissenschaftliche Hintergrund dieser Arbeit vorgestellt. Anschließend wird die Hypothese der Dissertation formuliert, die durch mehrere

¹Um die Lesbarkeit zu erhöhen, wird bei mehrfacher Zitierung einer Literaturquelle innerhalb eines Absatzes die Quellenangabe im Anschluss an die letzte Bezugnahme aufgeführt.

Fragestellungen näher beschrieben wird, bevor die Methodik der Arbeit erläutert wird.

1.1 Wissenschaftlicher Hintergrund

Im folgenden Kapitel 1.1.1 wird zunächst die globale klimapolitische Ausgangslage dargestellt. Anschließend wird im Kapitel 1.1.2 die Notwendigkeit für negative CO_2 -Emissionen durch die CO_2 -Sequestrierung auf Basis biogener Brennstoffe (Bio-CCS) in der Zukunft erläutert und der bisherige Forschungsstand im Bereich Bio-CCS aufgezeigt (vgl. Kapitel 1.1.3).

1.1.1 Klimapolitische Ausgangslage

Seit dem Beginn der industriellen Revolution im 18. Jahrhundert ist die Menge der Treibhausgase in der Atmosphäre markant gestiegen. Die heutige Treibhausgaskonzentration liegt weit über allen Werten, die in den vergangenen Jahrtausenden aufgetreten sind (vgl. Abbildung 1.1). Zu den Treibhausgasen zählen vor allem Kohlenstoffdioxid (CO₂), Methan (CH₄) und Lachgas (N₂O). CO₂ ist dabei das mengenmäßig häufigste und wichtigste Treibhausgas, da es über den größten Strahlungsantrieb verfügt. Die Höhe des Strahlungsantriebs in W/m² gibt an, wie stark die Erwärmung der Erdatmosphäre tendenziell begünstigt wird. Während die Bandbreite in den vergangenen 650 000 Jahren bis ca. 1850 in einem Bereich von 180 ppm bis 280 ppm gelegen hat, betrug die CO₂-Konzentration im Jahr 2005 ca. 380 ppm. Zwischen 1995 und 2005 hat die CO₂-Konzentration um 1,9 ppm pro Jahr weiter zugenommen [vgl. Best et al., 2007, S. 2].

Parallel zur Steigerung der Treibhausgaskonzentration in der Atmosphäre hat sich eine Erwärmung des Klimasystems ergeben. Es besteht ein breiter wissenschaftlicher Konsens, dass die beobachteten Klimaveränderungen durch die anthropogen verursachte Zunahme der Treibhausgaskonzentration in der Atmosphäre eingeleitet worden sind. Diese Veränderungen äußern sich bislang vor allem in einer Erhöhung der mittleren globalen Temperatur (Anstieg um ca. 0,8 °C seit 1850) und des mittleren globalen Meeresspiegels (jährlicher Anstieg um 1,8 mm seit 1961 bzw. um 3,1 mm seit 1993) [vgl. Solomon et al., 2007, S. 50, S. 58].

Bei der Betrachtung des globalen Kohlenstoffkreislaufs wird deutlich, welche Mengen an Kohlenstoff in den einzelnen Bereichen (z. B. Ozeane, Atmosphäre, Boden) gespeichert sind und welcher Austausch zwischen ihnen stattfindet (vgl. Abbildung 1.2). Der Kohlenstoffgehalt der noch eingelagerten fossilen Brennstoffe wird mit 4000 Gt beziffert. Dies entspricht mehr als dem fünffachen des derzeitigen Kohlenstoffgehalts der Atmosphäre. Es ist zu erkennen, dass der Ozean derzeit als starke Kohlenstoff-Senke fungiert (2 Gt/a) und

1 Einleitung

Abbildung 1.1: Atmosphärische Konzentration von Treibhausgasen in den letzten 10000 Jahren [Best et al., 2007, S.3]

auch die Vegetation trotz anthropogener Abforstung und Landnutzungsänderung effektiv Kohlenstoff aufnimmt $(0,2 \,\mathrm{Gt/a})$. Ein zusätzlicher Kohlenstoffeintrag aus dem Bereich der fossilen Energiewandlung in Höhe von 5,5 Gt/a führt jedoch dazu, dass sich eine Netto-Einlagerung an Kohlenstoff in die Atmosphäre in Höhe von 3,3 Gt/a ergibt. Dieser Wert fällt vergleichsweise niedrig aus, da die Kohlenstoffmenge aus fossiler Energiewandlung mit 5,5 Gt/a in Abbildung 1.2 im Vergleich zum 4. Sachstandsbericht des Weltklimarats (7,2 Gt/a) deutlich geringer angegeben wird [vgl. Best et al., 2007, S.2]. Aus diesen Zahlen könnte abgeleitet werden, dass der Atmosphäre für eine ausgeglichene CO₂-Bilanz maximal 2,2 Gt/a an Kohlenstoff (knapp 8 Gt/a an CO₂) zugeführt werden dürften. In Quéré et al. [vgl. 2007, S. 1735] wird jedoch dargestellt, dass die CO₂-Aufnahmefähigkeit in den südlichen Teilen der Weltmeere bereits in den vergangenen drei Dekaden einen rückläufigen Trend aufweist, so dass die CO₂-Senkenfunktion des Ozeans nicht beliebig ausgeweitet werden kann. Um die Versauerung der Ozeane durch die CO₂-Einlagerung nicht weiter zu beschleunigen, definiert der Stern-Review als langfristiges Emissionsziel für CO₂-Äquivalente 5 Gt/a, was eine Reduktion der CO₂-Emissionen um 80 % gegenüber dem heutigen Niveau bedeutet [vgl. Stern, 2006, S. 12].

Abbildung 1.2: Globaler Kohlenstoffkreislauf [Price und Smith, 2008, S.4]

1.1.2 Notwendigkeit für Bio-CCS

In Abhängigkeit vom zukünftigen CO₂-Stabilisierungsniveau können sich globale Temperaturanstiege zwischen ca. 0 °C und 6 °C gegenüber dem vorindustriellen Temperaturniveau ergeben (vgl. Abbildung 1.3). Die negativen Folgen eines Temperaturanstiegs reichen von einer erhöhten Überflutungsgefahr (durch das Abschmelzen von Gletschern und den Anstieg des Meeresspiegels) über eine Verkürzung der Vegetationszeit und daraus folgenden Ernteausfällen bis zu einem drohenden Aussterben von bis zu 30 % aller heute existierenden Tier- und Pflanzenarten auf der Erde [vgl. Best et al., 2007, S. 31]. Starke Temperaturanstiege erhöhen das Risiko von irreversiblen Folgen, wie die abrupte Freisetzung großer Methanmengen aus dem Ozean oder die Änderung von Meeresströmungen. Um diese hohen Temperaturänderungen zu vermeiden, müssen geringe CO_2 -Stabilisierungskonzentrationen (350 ppm bis 440 ppm) angestrebt werden, was dem 2-Grad-Ziel der Europäischen Union entspricht [vgl. Europäische Kommission, 2005, S. 5]. Ein Temperaturanstieg von 1,5 °C bis 2,0 °C ist auch auf der 17. UN-Klimakonferenz in Durban erneut als gemeinsames Ziel vereinbart worden [vgl. UNFCCC, 2011, S. 8].

In Abbildung 1.4 ist auf Basis der Ergebnisse des Weltklimarats (Intergovernmental Panel on Climate Change – IPCC) dargestellt, mit welchen CO₂-Emissionsminderungsszenarien langfristig CO₂-Konzentrationen von 350 ppm bis 400 ppm und 400 ppm bis 440 ppm erreicht werden können. Hierbei sind jeweils die Ergebnisse verschiedener Szenariorechnungen als Bandbreiten dargestellt. In beiden Fällen gibt es jeweils einige Szenarien, die von einem notwendigen Netto-CO₂-Entzug aus der Atmosphäre ab dem Jahr 2070 ausgehen. In Hansen et al. [vgl. 2008, S. 226] wird gar eine Rückführung auf das Niveau von 350 ppm CO₂ gefordert, um das 2-Grad-Ziel sicher zu erreichen. Dies würde deutlich früher und sehr viel mehr negative CO₂-Emissionen verlangen. Der Sachverständigenrat für Umweltfragen geht davon aus, dass in der zweiten Hälfte des 21. Jahrhunderts globale Negativemissionen an CO₂ für die Einhaltung der Klimaschutzziele notwendig sein werden [vgl. SRU, 2009a, S. 18]. Ein Nichterreichen der CO₂-Emissionsziele in der ersten Hälfte dieses Jahrhunderts wird noch mehr negative CO₂-Emissionen in der 2. Hälfte erfordern.

Grundsätzlich sind verschiedene Optionen denkbar, um Kohlenstoffdioxid aus der Atmosphäre zu entfernen, wie beispielsweise CO_2 -Entnahme aus der Umgebungsluft, CO_2 -Bindung durch Aufforstung oder Biomasse-CCS. Die CO_2 -Entnahme bzw. das direkte Herausfiltern des CO_2 aus der Umgebungsluft führt wegen der geringen CO_2 -Konzentration in der Luft je nach zugrunde gelegtem Strompreis zu sehr hohen CO_2 -Vermeidungskosten in Höhe von mehr als 200 Euro/t bis zu mehreren Tausend Euro/t [vgl. Ranjan und Herzog, 2011, S. 2875], [vgl. Simon et al., 2011, S. 2900]. Auch wenn in einzelnen Studien CO_2 -Vermeidungskosten in Höhe von 49 Euro/t bis 80 Euro/t in

Abbildung 1.3: Veränderung der globalen mittleren Jahrestemperatur in Abhängigkeit der CO₂-Konzentration und damit einhergehende Folgen, eigene Darstellung auf Basis von Stern [2006, S.5], mit Daten aus Best et al. [2007, S. 31, S. 57]

Abbildung 1.4: CO₂-Emissionsszenarien für CO₂-Stabilisierungsniveaus zwischen 350 ppm und 440 ppm [Best et al., 2007, S. 58]

Aussicht gestellt werden [vgl. Heidel et al., 2011, S. 2868], stellt aus heutiger Sicht der natürliche Vorgang der Photosynthese die interessanteste Option des CO_2 -Entzugs aus der Atmosphäre dar. Hierbei wird das Kohlenstoffdioxid in Kohlenstoff und Sauerstoff umgewandelt. Der Kohlenstoff wird in der Biomasse eingelagert und liegt somit in konzentrierter Form vor.

Ein effektiver Aufbau an lebender Biomasse ist prinzipiell im Wasser und an Land denkbar. Dabei ist zu beachten, dass nur diejenigen CO₂-Mengen der Atmosphäre dauerhaft entnommen werden, die langfristig in Biomassebeständen gebunden bleiben. Eine Ausweitung der CO₂-Bindung im Wasser in Form von freilebenden Algen, die nach ihrer Blüte zum Meeresboden absinken, erscheint nach heutigem Wissensstand als unrealistisch, da ein verstärktes Algenwachstum (durch Eisendüngung) ein verstärktes Wachstum ihrer natürlichen Feinde (Ruderfußkrebse) nach sich zieht [vgl. Smetacek et al., 2009, S. 1 ff.].

Eine vermehrte Aufforstung könnte gewisse Mengen an Kohlenstoffdioxid in der Biomasse und in den Böden binden. Eine Abschätzung aus dem Jahr 2002 kommt zu dem Ergebnis, dass bei einer vollständigen Rückumwandlung aller bis 2000 erfolgten Landnutzungsänderungen eine Reduktion von 40 ppm bis 70 ppm erreicht werden könnte [vgl. House et al., 2002], zitiert nach WBGU [2008, S. 89 f.]. Im vierten Sachstandsbericht des IPCC wird die durch Landnutzungsänderung zwischen 1850 und 2000 freigesetzte CO₂-Menge auf 572 Gt beziffert [vgl. Fisher et al., 2007, S. 184]. Aufgrund der zwischenzeitlich angewachsenen Weltbevölkerung und des dadurch angestiegenen Nahrungsmittelbedarfs erscheint eine vollständige Rückführung in den ursprünglichen Zustand als äußerst unwahrscheinlich: In Fischedick et al. [vgl. 2007, S. 79] wird das Potenzial für CO₂-Bindung durch Aufforstung auf 100 Gt beziffert, so dass auch diese Option einen begrenzten Beitrag zur Verminderung des Klimawandels leisten können. Darauf wird jedoch in dieser Arbeit nicht näher eingegangen.

Demgegenüber erscheinen die globalen CO_2 -Speichermöglichkeiten im geologischen Untergrund mit mehr als 1700 Gt [vgl. Metz et al., 2005, S. 221] in Kombination mit der Biomasse-CO₂-Sequestrierung als diejenige Klimaschutzoption, mit der zukünftig deutlich größere Mengen an Kohlenstoffdioxid aus der Atmosphäre entfernt werden können. Diese Option hat gegenüber Alternativen den Vorteil, dass zum einen mit der Biomasse-CO₂-Sequestrierung negative CO₂-Emissionen erzeugt werden, die im Vergleich zur Aufforstung deutlich länger im geologischen Untergrund eingelagert werden können. Zum anderen können im Gegensatz zur CO₂-Sequestrierung auf Basis fossiler Energieträger nicht nur die CO₂-Emissionen in die Atmosphäre reduziert werden. Abbildung 1.5 stellt dar, dass nur die Kombination aus Bioenergie und CCS zu negativen CO₂-Emissionen führen kann: CCS auf Basis fossiler Brennstoffe bewirkt immer noch geringe Mengen an positiven

 CO_2 -Emissionen in die Atmosphäre, da der CO_2 -Abscheidegrad nicht bei 100 % liegt. Erneuerbare Energieträger wie Windkraft oder Solarenergie weisen trotz ihres CO_2 -freien Anlagenbetriebs ebenfalls geringe positive CO_2 -Emissionen auf, die überwiegend in der Herstellung der Anlagen emittiert werden. Bei Bio-CCS wird ein Großteil des CO_2 , das während des Wachstums der Biomasse aus der Atmosphäre entnommen worden sind, nach der Verbrennung abgeschieden und im Untergrund eingelagert, so dass trotz verbleibender CO_2 -Emissionen aus der Biomasseverbrennung und den vorgelagerten Prozessschritten negative CO_2 -Emissionen erreicht werden können.

Abbildung 1.5: CO₂-Bilanz für unterschiedliche Energiesysteme, eigene Darstellung auf Basis von Koornneef et al. [2011, S. 11]

Ein besonderer Vorteil von Bio-CCS ist, dass bereits in der Vergangenheit emittierte CO_2 -Emissionen wieder abgebaut werden können oder ein Ausgleich für zukünftig nur schwerlich vermeidbare CO_2 -Emissionen (z. B. durch Flugzeuge, Fahrzeuge) geschaffen werden kann [vgl. Karlsson und Byström, 2011, S. 4, S. 12]. Hierin besteht jedoch auch ein Risiko beim Einsatz von Bio-CCS, nämlich dass durch die Möglichkeit, negative CO_2 -Emissionen erzeugen zu können, andere mögliche Klimaschutzoptionen nicht konsequent genutzt werden [vgl. Azar et al., 2010, S. 201], [vgl. Azar et al., 2013, S. 6]. Des Weiteren wird Bio-CCS für besonders geeignet als Sofort-Maßnahme für abrupte Klimaveränderungen eingeschätzt [vgl. Fisher et al., 2007, S. 210]. Für diese Option werden langfristig CO_2 -Speichermöglichkeiten benötigt, die eine solche Einlagerung zu einem zukünftigen Zeitpunkt ermöglichen. Das Ziel von Bio-CCS besteht somit darin, durch erhebliche CO_2 -Einlagerungen das Maximum des CO_2 -Gehalts in der Atmosphäre abzuflachen, um irreversible Klimaveränderungen und deren Folgen zu vermeiden. Aufgrund begrenzter

Lagerflächen stellt Bio-CCS mit anschließender CO_2 -Einlagerung im Untergrund eine zeitlich befristete Lösung dar, die im Anschluss von einem geschlossenen CO_2 -Kreislauf abgelöst werden muss, der keine zusätzlichen CO_2 -Emissionen in die Atmosphäre entlässt. Nach Ansicht der Internationalen Energieagentur (IEA) stellt Bio-CCS die einzige großskalige und nahezu marktkonforme Option dar, um negative CO_2 -Emissionen zu erzeugen (global bis zu 10 Gt/a) [vgl. Dixon et al., 2012, S. 5, S. 20], [vgl. Koornneef et al., 2011, S. VIII], [vgl. EBTP/ZEP, 2012, S. 5].

Durch die Kombination von Biomasse und CO₂-Sequestrierung kann der Atmosphäre jährlich etwa 0,2 ppm an CO₂ (bei vollständiger Nutzung des nachhaltigen, weltweiten Bioenergiepotenzials) entzogen werden [vgl. WBGU, 2008, S. 137]. Legt man optimistischere Schätzungen des Bioenergiepotenzials zugrunde [vgl. Moreira, 2008, S. 22], können auch höhere Beiträge erreicht werden. Hierfür ist jedoch eine nachhaltige Biomasse-Ernte notwendig, um tatsächlich negative Emissionen zu erreichen. Hierin besteht eine zentrale Herausforderung für Bio-CCS: Bei einer wachsenden Weltbevölkerung müssen ausreichend große Flächen zur Verfügung stehen, auf denen nachhaltig Biomasse angebaut werden kann [vgl. Azar et al., 2010, S. 200], [vgl. Azar et al., 2013, S. 6]. In Popp et al. [vgl. 2011, S.7] wird aufgezeigt, dass die globale Bioenergienutzung im Jahr 2055 unter Erhaltung von schützenswerten Ökosystemen (z. B. Regenwald) mit ca. 70 EJ zwar gegenüber einer Nutzung ohne Nachhaltigkeitsgrenzen um ca. 30 % geringer ausfällt, jedoch durch die Kombination mit CCS aufgrund der Vergütung negativer CO₂-Emissionen wirtschaftlich konkurrenzfähig gemacht wird. In einer weiteren Studie wird ferner davon ausgegangen, dass mit der konsequenten Anwendung der Kombination aus Bioenergie und CO₂-Sequestrierung bis zur Mitte des 21. Jahrhunderts vorindustrielle CO₂-Konzentrationen erreicht werden können. Der Einsatz von Bio-CCS wird hierbei ebenfalls als präventive Gegenmaßnahme für abrupte Klimaveränderungen angesehen [vgl. Read und Lermit, 2003, S. 1 ff.].

Darüber hinaus kann das Wiederherstellen von ambitionierten CO_2 -Gehalten in der Atmosphäre unter Berücksichtigung von Bio-CCS mit geringeren Kosten erreicht werden [vgl. Azar et al., 2013, S. 4]. Ein Ziel von 350 ppm lässt sich nach Berechnungen von Azar et al. [vgl. 2006, S. 19] mit Bio-CCS zu deutlich geringeren volkswirtschaftlichen Kosten realisieren als komplett ohne CCS. Bei einem Einsatz von fossilem CCS liegen die globalen Kosten dazwischen. Des Weiteren sind ambitionierte Klimaschutzziele teilweise nur mit Bio-CCS erreichbar [vgl. Edenhofer et al., 2009, S. 26], da je nach Klimamodell ohne CCS eine Rückführung auf bestenfalls 375 ppm bis 450 ppm bzw. mit fossilem CCS auf 350 ppm bis 400 ppm möglich ist [vgl. Azar et al., 2010, S. 198]. Die gleichzeitige Erzeugung von Strom hat hierbei einen erheblichen Anteil an der wirtschaftlichen Vorteilhaftigkeit. Grundsätzlich könnte man auch das CO_2 bei der Verbrennung von Biomasse abscheiden,

ohne Strom (und Wärme) zu erzeugen. Diese Option würde allerdings erst bei sehr hohen Preisen für CO₂-Emissionszertifikate betriebswirtschaftlich sinnvoll werden [vgl. Smith et al., 2006, S. 2].

1.1.3 Forschungsstand im Bereich Bio-KWK-CCS

Die Kombination aus CCS und dem Einsatz von Biomasse als Brennstoff zur Erzeugung negativer CO₂-Emissionen wird in der wissenschaftlichen Literatur im Jahr 1996 das erste Mal beschrieben [vgl. Williams, 1996, S. 4], [vgl. Karlsson und Byström, 2011, S. 11]. In der Folge wird diese Kombination als Variante der fossilen CO₂-Sequestrierung diskutiert und es werden in Abhängigkeit vom Autor unter anderem die folgenden Bezeichnungen verwendet:

- BECS [vgl. Azar et al., 2006, S. 19 ff.], [vgl. Metz et al., 2005, S. 58], [vgl. Shepherd et al., 2009, S. 11],
- BECCS [vgl. Fisher et al., 2007, S. 210], [vgl. IMechE, 2013, S. 1]
- BCCS [vgl. Bonijoly et al., 2008, S. 3934],
- BIGCC [vgl. SRU, 2009a, S. 35], [vgl. Larson et al., 2005, S. 5], [vgl. Rhodes und Keith, 2005, S. 446],
- Bio-CCS [vgl. EBTP/ZEP, 2012, S. 1],
- biomass-based CCS [vgl. Metz et al., 2005, S. 402],
- biomass CCS [vgl. Cavezzali et al., 2009, S. i],
- biomass with CCS [vgl. Bennaceur et al., 2008, S. 38],
- Biomasse-CCS [vgl. Dürr, 2009, S. 2],
- biotic CCS [vgl. Grönkvist et al., 2006, S. 1083] sowie
- CCS and bioenergy [vgl. Kerr und Beck, 2009, S. 20].

In Anlehnung an EBTP/ZEP [vgl. 2012, S. 1] wird in dieser Arbeit der Begriff Bio-CCS verwendet, der in Kombination mit Kraft-Wärme-Kopplung zu Bio-KWK-CCS erweitert wird.

Die Anzahl an Studien zu CCS in Kombination mit Biomasse ist weitaus geringer als in Kombination mit fossilen Brennstoffen: So existiert bislang keine Untersuchung, in der technische und wirtschaftliche Unterschiede zwischen fossilem und biogenem CCS zusammenfassend dargestellt werden [vgl. Koornneef et al., 2011, S. 12]. Sowohl die technische Entwicklung als auch die politische Lobbyarbeit für Bio-CCS wird derzeit als weniger fortgeschritten eingeschätzt als für fossiles CCS. Wissenslücken existieren auch im Bereich der Wirtschaftlichkeit und der Nachhaltigkeit von Bio-CCS [vgl. EBTP/ZEP, 2012, S. 21], [vgl. Taylor, 2011, S. 3].

Bio-CCS nimmt in vielen Zukunftsszenarien eine wichtige Rolle ein [vgl. Finkenrath, 2011, S. 38]. Das CO₂-Senkenpotenzial für Bio-CCS im Jahr 2050 wird in Azar et al. [vgl. 2006, S. 12] auf maximal 9 Gt/a bis 27 Gt/a beziffert. Als realistisches, nachhaltiges Potenzial wird in Karlsson und Byström [vgl. 2011, S. 13] 5 Gt/a bis 10 Gt/a an CO₂ genannt. In Koornneef et al. [vgl. 2011, S. 5] wird ein technisches CO₂-Potenzial in Höhe von 10 Gt/a ermittelt, das unter Annahme eines CO_2 -Zertifikatepreises von 50 Euro/t jedoch auf ein wirtschaftliches CO₂-Potenzial von 3,5 Gt/a reduziert wird. In Ricci und Selosse [vgl. 2011, S. 12] wird auf Basis eines regionalen Bottom-Up-Modells eine globale CO₂-Speicherung durch Bio-CCS in Höhe von 2,8 Gt/a bis 5,8 Gt/a im Jahr 2050 ermittelt. Die IEA definiert für das Jahr 2050 ein CO₂-Reduktionsziel durch Bio-CCS in Höhe von $2,4\,\mathrm{Gt/a},$ was ca. $25\,\%$ der gesamten CCS-Aktivitäten ausmacht [vgl. Kerr und Beck, 2009, S. 16]. Hierfür ist ein Zwischenziel von $35 \,\mathrm{Mt/a}$ an CO_2 im Jahr 2020 vorgesehen, das durch eine Initiierung von 50 bis 100 Bio-CCS-Projekten bis zum Jahr 2013 flankiert werden müsste; aufgrund der ausreichend großen Anlagengröße erscheinen hierfür vor allem die Bioethanol- und Zellstoffindustrie als geeignet [vgl. Karlsson und Byström, 2011, S. 39 ff.]. Die Herstellung von biogenen Treibstoffen hat darüber hinaus den entscheidenden Vorteil, dass ohnehin ein nahezu reiner CO₂-Strom entsteht [vgl. EBTP/ZEP, 2012, S. 21]. Es existieren mittlerweile auch einige Kraft- oder Heizkraftwerke auf Biomassebasis in einem relevanten elektrischen Leistungsbereich (75 MW bis 250 MW² [vgl. Kerr und Beck, 2009, S. 18]). In der Regel können auch geplante CCS-Kraftwerke auf fossiler Brennstoffbasis eine anteilige Biomassemitverbrennung von 10% bis 30% ohne größere Modifikationen realisieren, so dass der Nachteil der geringeren Anlagengröße entfällt und das Volumen der aufzubauenden Biomasselogistik als realistisch eingeschätzt wird [vgl. Karlsson und Byström, 2011, S. 17 f., S. 25]. Ein besonderer Vorteil der Biomasse-Mitverbrennung in CCS-Kraftwerken wäre die frühere Marktreife gegenüber reinen Biomasse-CCS-Kraftwerken, da von vergleichsweise niedrigeren Investitionskosten und höheren Wirkungsgraden ausgegangen werden kann [vgl. Rhodes, 2007, S. 14].

In Karlsson und Byström [vgl. 2011, S. 5] wird von insgesamt 16 Bio-CCS-Projekten berichtet, die bislang weltweit durchgeführt worden sind. Davon sind ein Projekt abgeschlossen, ein Projekt im Betrieb, drei Projekte im Bau, sieben Projekte in Planung und vier Projekte in der Planungsphase beendet worden. Hierbei handelt es sich überwiegend um Projekte, die in die Bioethanolproduktion integriert werden sollen. Drei Projekte sind im Bereich der Zellstoffindustrie angesiedelt. Jeweils ein Projekt basiert auf einer

 $^{^{2}}$ Auch wenn es in der Energietechnik und Energiewirtschaft durchaus gebräuchlich ist Einheitenzeichen zu indizieren (z. B. MW_{el}), wird darauf in dieser Arbeit verzichtet, da dies der Festlegung des Internationalen Einheitensystems (SI) widerspricht [vgl. Simon und Link, 2007, S. 32]. Die entsprechenden Informationen befinden sich entweder im begleitenden Text oder in den Größenzeichen (z. B. P_{el}).
Biomasse-Vergasungsanlage, einer Biomethanaufbereitungsanlage sowie auf einem CO_2 -Speicherprojekt, für das biogenes CO_2 eingesetzt werden sollte. Bei dem letzten Projekt handelt es sich um das deutsche CO_2 -Speichererprobungsprojekt in Ketzin, bei dem jedoch in einer recht frühen Projektphase vom Einsatz biogenen CO_2 Abstand genommen worden ist.

In Finkenrath [vgl. 2011, S. 41] werden zusätzliche Forschungserkenntnisse zu Bio-CCS gefordert. Eine Ursache für die noch verhaltenen Forschungsanstrengungen kann der derzeit fehlende Anreiz für negative CO₂-Emissionen sein, da negative CO₂-Emissionen durch Bio-CCS im europäischen Emissionshandel derzeit nicht berücksichtigt werden [vgl. Finkenrath, 2011, S. 38], [vgl. Gough und Upham, 2010, S. 19], [vgl. EBTP/ZEP, 2012, S. 4]. Um diesen Anreiz zu schaffen, werden in Heidug et al. [vgl. 2012, S. 42 f.] drei Prozessschritte vorgeschlagen, an denen eine Förderung der negativen CO₂-Emissionen ansetzen könnte: Bei der CO₂-Bindung in Biomasse während des Wachstums, während der CO₂-Abtrennung bei der Biomasse-Verbrennung und bei der Speicherung des biogenen CO₂. In Koornneef et al. [vgl. 2011, S. 112] werden außer einem bislang zu niedrigen CO₂-Zertifikatepreis als zukünftige Hemmnisse für einen großskaligen Bio-CCS-Einsatz neben den bereits genannten Faktoren (fehlende technische Marktreife, nachhaltiges Biomassepotenzial, knappe CO₂-Speicherkapazitäten) auch die mangelnde gesellschaftliche Akzeptanz genannt.

Entgegen der überwiegend positiven Einschätzung von Bio-CCS in der Literatur wird in Smolker und Ernsting [vgl. 2012, S. 2] eine kritische Haltung zu Bio-CCS eingenommen. Neben dem Risiko der CO₂-Speicherung, den hohen Kosten und der Verfügbarkeit "CO₂neutraler" Biomasse wird vor allem der erhöhte Brennstoffeinsatz durch Bio-CCS kritisiert. Nach Ansicht der Autoren könnte das abgeschiedene CO₂ für eine bessere Ausbeutung vorhandener Erdöl-/Erdgaslagerstätten genutzt werden, wodurch der CO₂-Gehalt in der Atmosphäre durch Bio-CCS jedoch langfristig nicht gesenkt wird.

Für Bio-CCS bestehen mehrere Prozessvarianten. Die ersten drei in Abbildung 1.6 dargestellten Varianten (CO₂-Abscheidung nach der Verbrennung, Vergasung des Brennstoffs mit Shift-Reaktion und Verbrennung mit reinem Sauerstoff) werden bislang auch intensiv für fossile Brennstoffe untersucht (vgl. Kapitel 2.1.3.1.1). Auf die vierte Variante (biochemische Umwandlung) setzt ein Großteil der bislang untersuchten, oben genannten Bio-CCS-Projekte (Bioethanolproduktion). In der Bioethanolproduktion sind im Jahr 2009 ca. 50 Mt an negativen CO₂-Emissionen erzeugt worden [vgl. Karlsson und Byström, 2011, S. 40]. Darüber hinaus eignet sich besonders die Zellstoffindustrie aufgrund ihrer jährlichen CO₂-Emissionen (ca. 300 Mt in 2009) und ihrer typischen Anlagengrößen (CO₂-Ausstoß z. T. größer als 1 Mt/a) grundsätzlich für die Integration von Bio-CCS [vgl. Karlsson und Byström, 2011, S. 39]. Die in Kerr und Beck [vgl. 2009, S. 16] vorgeschlagene

Nutzung von synthetisch hergestellten Treibstoffen und Wasserstoff aus Biomasse wird in Karlsson und Byström [vgl. 2011, S. 39] als nicht realistisch für das Jahr 2020 angesehen. In Cavezzali et al. [vgl. 2009, S. xvii] werden auch Zuckerraffinerien sowie die Mais und Reis verarbeitende Industrie als potenzielle Anwendungsgebiete für Bio-CCS genannt.

Abbildung 1.6: Prozessvarianten für Bio-CCS, eigene Darstellung auf Basis von Rhodes und Keith [2005, S. 442]

Grundsätzlich können nach Rhodes und Keith [vgl. 2008, S. 322] alle CCS-Techniken, die bislang für fossile Energieträger entwickelt worden sind, auch für biogene Energieträger angewendet werden (vgl. Kapitel 3.2.3). Als wesentliche Unterschiede zwischen CCS und Bio-CCS werden in Karlsson und Byström [vgl. 2011, S. 17] die unterschiedliche Rauchgaszusammensetzung und die geringere Anlagengröße identifiziert, auf die in Kapitel 3.2.2 und Kapitel 4.2 näher eingegangen wird. Im Rahmen des Forschungsprojekts TESBiC (Techno-Economic Study of Biomass to Power with CO₂ Capture) wird seit dem Jahr 2011 untersucht, welche CCS-Techniken besonders aussichtsreich für Biomasse sind. Hierbei erweisen sich die niedrigen Ascheschmelztemperaturen und die hohen Alkali-Gehalte (v. a. Kalium) in der Biomasse als wichtige Auswahlkriterien [vgl. Bhave et al., 2012, S. 7 ff.], [vgl. Taylor, 2011, S. 8]. In Koornneef et al. [vgl. 2011, S. 37] werden vier Nachteile detektiert, die Bio-CCS gegenüber fossilem CCS aufweist: Installation einer Rauchgasreinigung (analog zu Kohle, jedoch für reine Holzverbrennung ohne CCS nicht notwendig), niedrigere CO_2 -Konzentration im Rauchgas, geringerer Heizwert sowie geringere Wirkungsgrade durch kleinere Anlagengröße bzw. durch niedrigere Dampfparameter.

In einer Studie der IEA ist sowohl die Mitverbrennung von Biomasse in Kohlekraftwerken als auch die alleinige Biomasseverbrennung auf Basis der CCS-Prozessvariante

Post-Combustion untersucht worden. Hierbei ist als weiterer Forschungsbedarf unter anderem die Anwendbarkeit von Bio-CCS auf KWK-Anlagen genannt worden [vgl. Cavezzali et al., 2009, S. xvii]. Auch in Gough und Upham [vgl. 2010, S. 14] wird auf die Option hingewiesen, dass Bio-CCS durchaus mit KWK kombiniert werden kann. Aufgrund der deutlich größeren Anlagendimensionen von geplanten CCS-Kraftwerken auf fossiler Basis liegt der Fokus jedoch bislang üblicherweise auf reinen Kraftwerken.

Für eine Nachhaltigkeitsanalyse von Bio-CCS sind mehrere Kriterien zu beachten, z. B. Biomasse-Verfügbarkeit, CO₂-Speicherkapazitäten, CO₂-Leckageraten, Wassernutzung und Landknappheit [vgl. Karlsson und Byström, 2011, S. 14]. Die Nachhaltigkeit der eingesetzten Biomasse stellt hierbei eine wesentliche Grundvoraussetzung dar [vgl. Rhodes und Keith, 2008, S. 321 ff.]. Deswegen sollte die Nachhaltigkeit mit Hilfe von CO₂-Bilanzen nachgewiesen werden [vgl. Karlsson und Byström, 2011, S. 16]. Bei der Ermittlung von CO₂-Bilanzen für Bio-CCS besteht noch großer Forschungsbedarf, da bisherige Studien zu deutlich unterschiedlichen Ergebnissen gekommen sind [vgl. Heidug et al., 2012, S. 43].

Bereits im Jahr 2009 hat in Edinburgh ein eintägiger Workshop zum Thema Bio-CCS stattgefunden [vgl. Gough und Upham, 2010, S. 2]. Im Oktober 2010 ist in Orléans der erste internationale Workshop zu "Biomass & Carbon Capture and Storage" durchgeführt worden. Der Schwerpunkt der Vorträge hat im politischen und wirtschaftlichen Bereich gelegen [vgl. Universität Orléans, 2010, S. 1]. Die zweite Bio-CCS-Konferenz hat im Oktober 2011 in Cardiff stattgefunden. In vier Sessions ist hierbei auf die Potenziale von Bio-CCS, Bio-CCS in der Kraftstoffproduktion und bei der Mitverbrennung in Kraftwerken sowie auf Förderinstrumente näher eingegangen worden [vgl. Universität Cardiff, 2011, S. 1]. Im Bereich der Technik wird darauf hingewiesen, dass beim Einsatz von Biomasse neben dem Wassergehalt vor allem die Neigung zu Verschlackung bzw. Verschmutzung sowie Korrosion auffällig ist, was jedoch auch für die Biomasse-Verbrennung ohne CCS zu beachten ist [vgl. Kelsall, 2011, S. 19], [vgl. Griffiths et al., 2011, S. 7]. Im Bereich der Wirtschaftlichkeit wird ausgeführt, dass eine Kombination von CCS mit KWK zu einer signifikanten Verbesserung der Wirtschaftlichkeit führt [vgl. Arasto et al., 2011, S. 11].

Da auch für die Entwicklung der CCS-Technologie auf Basis fossiler Energieträger nicht feststeht, ab wann ein kommerzieller Einsatz im industriellen Maßstab möglich ist (vgl. Kapitel 2.2.3.3), fällt diese Prognose für Bio-CCS noch schwerer. In Azar et al. [vgl. 2010, S. 202] wird davon ausgegangen, dass es noch ein halbes Jahrhundert dauern könnte, bis die technischen und gesellschaftlichen Rahmenbedingungen für einen globalen Bio-CCS-Einsatz gegeben sind. Vor dem Hintergrund der gesellschaftlichen Akzeptanz ist von besonderem Interesse, dass CCS auf Basis biogener Brennstoffe auf weniger Vorbehalte in der Bevölkerung stoßen könnte als CCS auf Basis fossiler Energieträger und somit die Akzeptanz steigern könnte [vgl. Wallquist et al., 2011, S. 80 f.],

[vgl. Koornneef et al., 2011, S. 12]. Dies kann zum einen damit begründet werden, dass Bio-CCS auch ohne funktionierende CO₂-Langzeitspeicherung trotz erhöhtem Ressourceneinsatz immer noch (nahezu) klimaneutral wäre [vgl. Rhodes, 2007, S. 66]. Zum anderen könnte die höhere Akzeptanz von Bio-CCS dadurch begünstigt werden, dass Bio-CCS zu einem späteren Zeitpunkt zur Abkehr dramatischer Klimaveränderungen alternativlos wäre, während sich zum jetzigen Zeitpunkt als Alternative für den fossilen CCS-Pfad auch der vermehrte Einsatz von erneuerbaren Energieträgern anbietet.

1.2 Hypothese

In der vorliegenden Arbeit wird CCS in Biomasse-Heizkraftwerken als mögliche Variante für einen Netto-CO₂-Entzug aus der Atmosphäre näher untersucht. Dazu wird die folgende Hypothese aufgestellt:

"Eine CO₂-Sequestrierung bei der Bioenergienutzung zur Stromund Wärmeerzeugung ist prinzipiell technisch möglich, wirtschaftlich machbar und nachhaltig sinnvoll."

Diese Hypothese wird anhand mehrerer Fragestellungen aus den Bereichen Technik, Wirtschaftlichkeit und Nachhaltigkeit untersucht, die in Abbildung 1.7 stichpunktartig zusammengefasst sind und im Folgenden näher erläutert werden.

Abbildung 1.7: Drei Säulen der Hypothese

Im Bereich der Technik wird geklärt, ob die fossilen Brennstoffe in den heute bekannten CO_2 -Abscheidungsverfahren durch den Energieträger Biomasse prinzipiell substituiert werden können. Darüber hinaus wird untersucht, welche technischen Vor- und Nachteile eine Kombination von CCS mit KWK hat.

Im Bereich der Wirtschaftlichkeit wird bestimmt, zu welchen Energiegestehungskosten (Euro/MWh) Strom und Wärme erzeugt werden können, wenn gleichzeitig CO₂

abgeschieden wird. Des Weiteren wird untersucht, zu welchen CO_2 -Vermeidungskosten negative CO_2 -Emissionen mittels Bio-KWK-CCS erzeugt werden können.

Vor dem Hintergrund der Nachhaltigkeit ist die Frage zu klären, ob Bio-KWK-CCS für sich nachhaltig ist. Dabei wird besonders auf die Aspekte Biomasseanbau und CO₂-Speicherung eingegangen. Als zweites wird ein Vergleich zu anderen Pfaden gezogen, die ebenfalls negative CO₂-Emissionen erzeugen können.

Das Ziel der Arbeit besteht darin, eine Aussage darüber zu treffen, ob eine CO_2 -Abscheidung in Biomasseheizkraftwerken grundsätzlich technisch möglich ist und welche Vor- und Nachteile sich hieraus ergeben. Auf Basis dieser Aussage werden die CO_2 -Vermeidungskosten errechnet und ermittelt, ob die Option Bio-KWK-CCS im Vergleich zu konkurrierenden CO_2 -Negativ-Emissionstechniken nachhaltig sinnvoll ist.

1.3 Methodik

Die Hypothese wird anhand einer Systemanalyse untersucht. Der Schwerpunkt liegt hierbei auf CCS und den beiden Kombinationen mit Biomasse und KWK. Die Kombination aus KWK und Biomasse ist Stand der Technik und steht nicht im Vordergrund dieser Arbeit (vgl. Abbildung 1.8).

Abbildung 1.8: Grundschema der Dissertation

Zur Beantwortung der Fragestellungen im Bereich Technik, Wirtschaftlichkeit und Nachhaltigkeit werden in Kapitel 2 die Grundlagen für diese drei Themenbereiche dargestellt. Hierbei wird jeweils auf die drei Themen energetische Biomassenutzung, Kraft-Wärme-Kopplung und CO_2 -Sequestrierung separat eingegangen. Abbildung 1.9 beschreibt die Inhalte der drei Analysen der Technik, Wirtschaftlichkeit und Nachhaltigkeit, die den Kern dieser Arbeit darstellen.

In der technischen Analyse (Kapitel 3) wird zum ersten untersucht, inwieweit fossile Energieträger, die derzeit im Fokus vieler CCS-Forschungsprojekte stehen, durch Biomasse ersetzt werden können. Hierfür werden die brennstoffrelevanten Eigenschaften

Abbildung 1.9: Analyserahmen der Dissertation

von Biomasse und von fossilen Energieträgern miteinander verglichen und die Veränderungen durch den Brennstoffwechsel analysiert. Zum zweiten werden die Vor- und Nachteile der Kombination von CCS und KWK herausgearbeitet. Hierbei wird neben der grundsätzlichen Eignung vor allem auf unterschiedliche elektrische und thermische Wirkungsgradverluste eingegangen.

Im Rahmen der wirtschaftlichen Analyse (Kapitel 4) wird auf Basis vorher definierter Parameter (für z. B. Brennstoffkosten, Wirkungsgrade, Investitionskosten etc.) berechnet, wie hoch die Gestehungskosten für Strom und Wärme aus Bio-KWK-CCS und die CO₂-Vermeidungskosten sind. Anhand einer Sensitivitätsanalyse wird ebenfalls eine Variation von ausgewählten Parametern untersucht.

In der Analyse der Nachhaltigkeit wird ebenfalls auf Basis vordefinierter Parameter zum einen mittels einer CO_2 -Bilanz berechnet, welche negativen CO_2 -Emissionen mit den unterschiedlichen Varianten erzeugt werden können. Zum anderen wird ein Vergleich zu Alternativen durchgeführt (alternative Nutzung der CO_2 -Lagerstätten, industrielle CO_2 -Nutzung, CO_2 -Einlagerung in Algen).

Im Kapitel 6 werden auf Basis der Analyse der Technik, der Wirtschaftlichkeit und der Nachhaltigkeit mögliche Nutzungspfade für Bio-KWK-CCS aufgezeigt. Hierfür werden zunächst technische, wirtschaftliche und nachhaltige Anforderungskriterien definiert. Am Beispiel Flensburg wird ein Bio-KWK-CCS-Konzept entwickelt, auf dessen Basis anschließend die Nutzungspotenziale für Bio-KWK-CCS in Deutschland ermittelt werden.

Abschließend werden in Kapitel 7 im Rahmen einer Schlussbetrachtung die Inhalte der Arbeit zusammengefasst, die Hypothese überprüft und die Arbeit in den wissenschaftlichen Kontext eingeordnet.

Im Bereich der Grundlagen werden diejenigen Themenfelder vorgestellt, die für die weitergehenden Analysen der Technik (Kapitel 3), der Wirtschaftlichkeit (Kapitel 4) und der Nachhaltigkeit (Kapitel 5) verwendet werden. Die Grundlagen sind deshalb ebenfalls in die drei Gebiete Technik, Wirtschaftlichkeit und Nachhaltigkeit untergliedert. Innerhalb dieser Gebiete wird jeweils in die drei Teilbereiche energetische Biomassenutzung, Kraft-Wärme-Kopplung und CO₂-Sequestrierung unterteilt.

2.1 Grundlagen der Technik

Die technischen Grundlagen basieren im Bereich der energetischen Biomassenutzung (Kapitel 2.1.1) und der Kraft-Wärme-Kopplung (Kapitel 2.1.2) überwiegend auf dem heutigen Stand der Technik, da bereits viele Biomasseheizkraftwerke in Deutschland betrieben werden. Da sich die CO_2 -Sequestrierung noch im Bereich der Forschung und Entwicklung befindet, wird im Kapitel 2.1.3 vor allem auf Basis durchgeführter Studien der zukünftig angestrebte Stand der Technik (ca. im Jahr 2020 bis 2030) beschrieben.

2.1.1 Energetische Biomassenutzung

Die energetische Biomassenutzung für die Strom- und Wärmeerzeugung wird im Folgenden vor allem im Vergleich zu fossilen Energieträgern (Steinkohle, Braunkohle, Erdgas) dargestellt, die bislang im Fokus der CCS-Forschung stehen. Hierzu werden die Arten von biogenen Brennstoffen als Primärenergieträger und die Formen der energetischen Umwandlung zu Sekundärenergieträgern vorgestellt, bevor bestehende Bereitstellungskonzepte aufgezeigt werden. Anschließend wird für die Festbrennstoffe auf die Brennstoffeigenschaften und das Verbrennungsverhalten näher eingegangen, bevor relevante Feuerungsund Vergasungsvarianten vorgestellt werden. In Kapitel 2.1.1.8 wird abschließend auf Biogas sowie auf Erdgasqualität aufbereitetes Biomethan näher eingegangen.

2.1.1.1 Arten von biogenen Brennstoffen (Primärenergie)

Der Bereich der biogenen Brennstoffe umfasst alle Stoffe organischer Herkunft, die noch nicht den fossilen Brennstoffen zuzuordnen sind. Als erstes fossiles Umwandlungsprodukt wird Torf angesehen. Zu den biogenen Brennstoffen zählen vor allem lebende und abgestorbene Pflanzen und Lebewesen sowie deren Rückstände [vgl. Kaltschmitt et al., 2009, S. 2].

Biogene Brennstoffe können unterteilt werden in Energiepflanzen, die eigens für die Energieumwandlung angebaut werden, und Rückstände, die als Nebenprodukt eines anderen Prozesses anfallen. Eine weitere Unterteilung nimmt man in holzartige, halmgutartige und sonstige Biomasse vor. Der Bereich der holzartigen Biomasse besteht aus Waldrestbzw. Waldschwachholz, Holz aus Kurzumtriebsplantagen oder der Landschaftspflege und behandeltem sowie unbehandeltem Altholz. Die halmgutartige Biomasse besteht aus Stroh, Heu aus der Landschaftspflege und Getreideganzpflanzen bzw. Energiegräsern. Unter sonstige Biomasse fällt z. B. Mindergetreide [vgl. Eltrop et al., 2007, S. 14 f.].

Der Schwerpunkt dieser Arbeit liegt auf biogenen Primärenergieträgern: Behandeltes Altholz als Abfallstoff wird nicht näher untersucht, da eine Kombination mit CCS aufgrund kritischer Inhaltsstoffe schwierig erscheint [vgl. Faulstich et al., 2009, S. 82].

2.1.1.2 Formen der energetischen Umwandlung (zu Sekundärenergie)

Biogene Brennstoffe können auf verschiedenen Wegen zu elektrischer Energie und Wärme umgewandelt werden (vgl. Abbildung 2.1, grün markierte Bereiche werden in dieser Arbeit betrachtet). Als Zwischenprodukte können feste, flüssige und gasförmige Energieträger erzeugt werden. Diese Sekundärenergieträger stellen eine Veredelung des Primärenergieträgers Biomasse dar, um verschiedene Eigenschaften, wie z.B. die Energiedichte, die Handhabung oder die Transportfähigkeit, zu verbessern. Ein Großteil der Veredelungsverfahren wird für den Bereich der Kraftstoffe eingesetzt, da besonders bei der mobilen Leistungsbereitstellung eine hohe Energiedichte wichtig ist [vgl. Eltrop et al., 2007, S. 19 f.]. Der Bereich der Kraftstoffe wird in dieser Arbeit nicht näher untersucht, da eine CO₂-Abscheidung aus nicht-stationären Verbrennungen äußerst unwahrscheinlich ist. Eine zentrale CO₂-Abscheidung, z.B. bei der Ethanolerzeugung, erscheint dahingegen technisch machbar und wirtschaftlich interessant [vgl. Rhodes und Keith, 2005, S. 443]. Ebenfalls besteht bei einer Umstellung des Transportsektors auf Wasserstoff oder elektrische Antriebsenergie die Möglichkeit, das CO_2 in zentralen Umwandlungsanlagen abzuscheiden [vgl. Metz et al., 2005, S. 78]. Diese beiden Technologiepfade stehen jedoch ebenfalls nicht im Fokus dieser Arbeit, auf mögliche CO₂-Einsparungen durch den Einsatz von Bio-CCS-Strom im Verkehrssektor wird in Form eines Exkurses im Kapitel 5.4.3

Abbildung 2.1: Möglichkeiten der Energiebereitstellung aus Biomasse, eigene Darstellung auf Basis von Eltrop et al. [2007, S. 19]

Da die flüssigen Kraftstoffe für den Einsatz in stationären Anlagen zu aufwändig veredelt sind, verbleiben durch ihren Ausschluss für die weitere Untersuchung nur die festen und gasförmigen Brennstoffe. Das Produkt des anaeroben Abbaus, das Biogas, wird in der Regel in dezentralen Gasmotoren verbrannt. Eine anschließende CO₂-Abtrennung erscheint wenig aussichtsreich, da es sich um geringe Anlagengrößen handelt, wodurch die spezifischen CO₂-Sequestrierungskosten deutlich erhöht werden.

Eine interessantere Option stellt hingegen die Biogas-Aufbereitung auf Erdgasqualität dar (sogenanntes Biomethan): Hierbei wird neben der Trocknung und der Entschwefelung ebenfalls bis zu 45 % CO₂ abgeschieden (vgl. Kapitel 2.1.1.8.2). Dieses CO₂ wird bislang an die Atmosphäre abgegeben. Häufig liegt jedoch ein wasser- und schwefelreiner CO₂-Strom vor, der gegebenenfalls für eine Einspeicherung geeignet wäre. Nachteilig wären jedoch die normalerweise geringen Biogasanlagengrößen, die hohe spezifische CO₂-Transportkosten bedeuten. Da der Schwerpunkt dieser Arbeit auf der CO₂-Abtrennung aus Heizkraftwerken liegt, wird dieser Aspekt nur am Rande untersucht.

Auch nach Abscheidung des im Biogas enthaltenen CO_2 weist das Verbrennungsgas des Biomethans, das vergleichbar mit Erdgas-Qualität ist, einen gewissen Kohlenstoffdioxidanteil auf, der bei der anschließenden Verbrennung in einer Gasturbine freigesetzt wird. Da die CO_2 -Abscheidung aus Gasturbinen bereits Gegenstand von CCS-Forschungsvorhaben ist, wird dieser Pfad, der zu negativen CO_2 -Emissionen in Kombination mit Kraft-Wärme-

Kopplung führen kann, in der vorliegenden Arbeit näher untersucht.

Als zweiter gasförmiger Sekundärenergieträger ist in Abbildung 2.1 das Produktgas dargestellt, das das Ergebnis der Vergasung von fester Biomasse ist. Unter Vergasung versteht man eine Teiloxidation bei einem Luftverhältnis $\lambda < 1$ (Produkt Kohlenstoffmonoxid CO), während bei einem Luftverhältnis von $\lambda > 1$ eine vollständige Oxidation des gesamten Kohlenstoffs zu Kohlenstoffdioxid (CO₂) möglich ist [vgl. Kaltschmitt et al., 2009, S. 378]. Die Vergasung ist deswegen eine äußerst interessante Option, da zum einen durch die Verbrennung der Brenngase in Gasturbinen hohe elektrische Wirkungsgrade erzielt werden können (vgl. Kapitel 2.1.2.3) und zum anderen die CO₂-Abscheidungsvariante Pre-Combustion auf einer vorgelagerten Vergasung basiert (vgl. Kapitel 2.1.3.1.1).

Im Bereich der festen Biomasse existieren zum einen ausschließlich mechanisch aufbereitete biogene Festbrennstoffe, die vor allem in Form von Holzhackschnitzeln (HHS) gehandelt werden. Zum anderen gibt es Holzpellets, ein veredelter biogener Festbrennstoff, der aus trockenem, feinem Holz (z. B. Sägemehl) gepresst wird. Ihre Elementarzusammensetzung und die brennstoffrelevanten Eigenschaften hängen vom Ausgangsmaterial ab. Diese beiden Festbrennstoffe werden in den folgenden Unterkapiteln näher beschrieben.

Daneben existiert Holzkohle, die durch thermochemische Umwandlung aus Biomasse erzeugt wird. Hierbei läuft unter Wärmeeinwirkung eine pyrolytische Zersetzung ab, die ohne zusätzlichen Sauerstoff durchgeführt wird. Durch den in der Biomasse enthaltenen Eigensauerstoff ergeben sich im geringen Umfang ebenfalls eine Teiloxidation und somit eine Vergasung zu CO [vgl. Kaltschmitt et al., 2009, S. 378 f.]. Der Wirkungsgrad der Verkohlung beträgt maximal 40 %, da die notwendige Wärme häufig durch eine teilweise Verbrennung erzeugt wird. Da sich dieser Wirkungsgrad nicht weitreichend steigern lässt, wird Holzkohle vor allem für stoffliche Zwecke (z. B. als Aktivkohle) eingesetzt [vgl. Eltrop et al., 2007, S. 21]. Für die weiteren Untersuchungen wird die Verkohlung ausgeschlossen, da sie sich aus heutiger Sicht nicht im großindustriellen Maßstab durchsetzen wird. Gleichwohl sollte die Holzkohle aufgrund der stofflichen Ähnlichkeit zur fossilen Steinkohle als zusätzliche Option betrachtet werden, falls die CO₂-Abscheidung aus biogenen Festbrennstoffen eine zu große technische Herausforderung darstellen sollte.

Der in Abbildung 2.1 dargestellte thermisch-mechanische Umwandlungsschritt in Kraft und Wärme und der abschließende Schritt der mechanisch-elektrischen Wandlung in elektrische Energie werden in Kapitel 2.1.2.1 näher ausgeführt.

2.1.1.3 Bereitstellungskonzepte

Die Bereitstellung von Biomasse für die energetische Nutzung umfasst im Wesentlichen die Schritte Ernte/Verfügbarmachung und Transport sowie gegebenenfalls Aufbereitung,

Lagerung und Trocknung (vgl. Abbildung 2.2). Die Gewinnung fossiler Energieträger unterscheidet sich zwar hinsichtlich dieser Schritte nicht erheblich, jedoch führt die geringe Energiedichte und vor allem die geringe Flächendichte biogener Energieträger zu einem erheblichen technischen Mehraufwand: Während Braunkohle überwiegend im räumlich begrenzten Tagebau, Steinkohle in untertägigen Bergbau und Erdgas/-öl per Bohrung gefördert wird, fallen die Bereitstellungsschritte für die energetische Biomassenutzung ungleich aufwändiger aus. Ein weiterer Unterschied zwischen biogenen und fossilen Brennstoffen besteht darin, dass biogene Brennstoffe während der Bereitstellung weiterhin biologisch aktiv sind und ihre Brennstoffeigenschaften verändern, während fossile Energieträger in dieser Hinsicht als inert anzusehen sind [vgl. Tyrberg, 2011, S.6].

Abbildung 2.2: Bereitstellungsschritte für die energetische Biomassenutzung [Kaltschmitt et al., 2009, S. 172]

Im Folgenden wird auf die spezifischen Prozessschritte für holzartige Biomasse, halmgutartige Biomasse sowie Biogassubstrate näher eingegangen. Hierbei kann lediglich ein kurzer Überblick über gängige Bereitstellungskonzepte gegeben werden, weitere Details können der Literatur entnommen werden, z. B. in Eltrop et al. [vgl. 2007, S. 52 ff.], Kaltschmitt et al. [vgl. 2009, S. 171 ff.], Zethræus et al. [vgl. 2012].

2.1.1.3.1 Bereitstellungskonzepte für holzartige Biomasse Die Bereitstellungskonzepte für holzartige Biomasse können in Abhängigkeit vom "Ausgangsrohstoff" sehr unterschiedlich ausfallen. Für den Einsatz in größeren Heizkraftwerken bieten sich als Produkte vor allem Holzhackschnitzel und Holzpellets an, Stückholz wird überwiegend im privaten Bereich eingesetzt. Folgende Herkunftsarten können für die Produktion von Holzhackschnitzeln und Holzpellets unterschieden werden [vgl. Eltrop et al., 2007, S. 53 ff.],

[vgl. Kaltschmitt et al., 2009, S. 196]:

- Waldrestholz (aus der Durchforstung, als Rückstände bei der Endnutzung oder als Rinde),
- Landschaftspflegeholz,
- industrielle Be- und Verarbeitungshölzer,
- Altholz und
- Holz aus Kurzumtriebsplantagen.

Abbildung 2.3 stellt exemplarisch die Bereitstellungskette für Holzhackschnitzel aus Waldrestholz dar. Hierbei wird als Ernteverfahren das teilmechanisierte Verfahren zugrunde gelegt, das ein Fällen des Baumes per Motorsäge und anschließendes Vorrücken des ganzen Baums per Seilwinde beinhaltet. Das Hacken des Waldrestholzes wird üblicherweise auf der Rückegasse bzw. der Forststraße durchgeführt, anschließend werden die Hackschnitzel in Containern mittels Lastkraftwagen abtransportiert. Daneben existieren als Ernteverfahren das motormanuelle Verfahren, bei dem der Baum im Bestand auf kürzere Längen geschnitten wird, und das vollmechanisierte Verfahren, bei dem sogenannte Harvester den Baum fällen, vorrücken, entasten, auf Maß schneiden und die Krone entfernen. Diese Verfahren ziehen wiederum andere Verfahrensschritte nach sich, auf die an dieser Stelle nicht näher eingegangen wird. Eine Zwischenlagerung der gefällten Bäume im Bestand hat den Vorteil, dass das Holz über die Blätter bzw. Nadeln schneller austrocknet und dass mit den Blättern und Nadeln wichtige Nährstoffe im Wald verbleiben. Aus dieser verschieden langen Zwischenlagerung im Bestand ergeben sich die unterschiedlichen, in Abbildung 2.3 dargestellten Bereitstellungsketten [vgl. Kaltschmitt et al., 2009, S. 188].

Bei der Bereitstellung von Landschaftspflegeholz, das regelmäßig zurückgeschnitten oder auf den Stock gesetzt wird, wird aufgrund der begrenzten Lagerkapazitäten entlang der Verkehrswege häufig auf eine Zwischenlagerung verzichtet und der Gehölzschnitt zeitnah in Holzhackschnitzel verarbeitet [vgl. Eltrop et al., 2007, S. 60].

Industrierestholz und Althölzer werden üblicherweise durch stationäre Hacker in Hackgut umgewandelt und stehen anschließend dem Brennholzmarkt zur Verfügung. "Weiße" Hackschnitzel aus rindenfreiem Holzsortimenten werden jedoch aufgrund höherer Marktpreise in der Spanplattenindustrie eingesetzt [vgl. Kaltschmitt et al., 2009, S. 195].

Bei der Bereitstellung von Holz aus Kurzumtriebsplantagen wird zwischen Stammholz-, Bündel- und Hackgutlinien unterschieden. In Stammholzlinien wird Stammholz produziert, was ein Ernteintervall von mehr als zehn Jahren notwendig macht. Hierbei kann zwar konventionelle Forsttechnik eingesetzt werden, jedoch ist die Arbeitsproduktivität im Vergleich zu den nachfolgenden Varianten relativ gering. Bei Bündellinien werden die

Abbildung 2.3: Bereitstellungskette für Holzhackschnitzel aus Waldrestholz [Kaltschmitt et al., 2009, S. 189]

Bäume bzw. Triebe geerntet und als Bündel auf dem Feld gesammelt, wo sie zeitversetzt gehackt werden. Für die Bereitstellung von Energieholz werden die Hackgutlinien bevorzugt, da sie zu den geringsten Ernte- und Transportkosten führen. Hierbei werden die Bäume mit sogenannten Feldhäckslern in einem Arbeitsgang gefällt und gehackt [vgl. Scholz et al., 2009, S. 99 ff.].

Die Holzzerkleinerung kann entweder mittels Hacken (schneidendes Verfahren), Schreddern (brechendes Verfahren) oder Zerspanen (langsam laufendes, schneidendes oder brechendes Verfahren) durchgeführt werden. Eine anschließende Feinzerkleinerung zur Einhaltung definierter Partikelgrößen wird mittels Schneid- oder Hammermühlen durchgeführt. Der spezifische, mechanische Energieeinsatz beim Hacken liegt bei 2 kWh/t bis 5 kWh/t, was unter Zugrundelegung eines Wirkungsgrads für den Antriebsmotor von 30 % einem Energiebedarf von 0.2 % bis 0.5 % der im Holz enthaltenen Energie entspricht [vgl. Eltrop et al., 2007, S. 75 ff.].

Die Aufbereitung zu Pellets stellt die qualitativ hochwertigste Form von biogenen Festbrennstoffen dar, da sie über eine hohe Homogenität, Energiedichte und Dosierfähigkeit verfügen (vgl. Kapitel 2.1.1.4.3). Als Ausgangsmaterial wird feines und trockenes Material

benötigt, da dem Material im Pelletierprozess maximal 1%-Punkte bis 2%-Punkte³ an Wasser entnommen werden, so dass sich hierfür Sägemehl anbietet. Der spezifische, mechanische Energieeinsatz für die Pelletierung (ohne Zerkleinern, Trocknen, Transport) liegt bei ca. 40 kWh/t, was ca. 1% der Energie der Holzpellets entspricht. Für den gesamten Pelletierprozess ist mit ca. 4% bis 6% der in den Pellets enthaltenen Energie zu rechnen [vgl. Eltrop et al., 2007, S. 78 f.].

2.1.1.3.2 Bereitstellungskonzepte für halmgutartige Biomasse Als wesentliches Bereitstellungskonzept für halmgutartige Biomasse haben sich in den letzten Jahren Ballen durchgesetzt, die aus dem Schwad der Mähdrescher bzw. Schwadmäher gepresst werden. Bei diesen Ballen handelt es sich entweder um Hochdruckkleinballen, Rundballen oder Quaderballen. Daneben existieren zwar weitere Bereitstellungskonzepte wie Pelletierung/Brikettierung oder trockenes/feuchtes Häckselgut, die sich jedoch in der Praxis wegen zu hoher Kosten bzw. zu geringer Schüttdichte nicht etabliert haben. Vor dem Pressen sollte das Stroh für eine gewisse Zeit auf dem Feld verbleiben, damit ein Teil der im Stroh enthaltenen Chlor- und Alkaligehalte durch Regen ausgewaschen werden kann (vgl. Kapitel 2.1.1.4.1). Der Abtransport vom Feld wird durch landwirtschaftliche Schlepper und Transportfahrzeuge durchgeführt, ein Weitertransport über größere Distanzen ist beispielsweise mittels Sattelzügen möglich [vgl. Kaltschmitt et al., 2009, S. 199 ff.], [vgl. Tyrberg, 2011, S. 24].

2.1.1.3.3 Bereitstellungskonzepte für Biogassubstrate Biogassubstrate liegen im Gegensatz zu holzartiger oder halmgutartiger Biomasse häufig mit einem deutlich höheren Wassergehalt vor. Die Silagebereitung hat sich für frisch geerntete Energiepflanzen als Konservierungsmethode durchgesetzt. Bei der Silagekonservierung werden üblicherweise selbstfahrende Feldhäcksler und Traktorgespanne zum Transport vom Feld zum Silo eingesetzt. Die möglichst fein gehäckselte Biomasse wird verdichtet und luftdicht verschlossen. Für organische Abfälle mit häufig noch höheren Wassergehalten haben sich Pumpverfahren bzw. Tankwagen etabliert, die aus Kostengründen ebenfalls nur geringe Transportdistanzen ermöglichen [vgl. Kaltschmitt et al., 2009, S. 212 f.].

³Obwohl es sich bei dem Ausdruck "%" nach dem Internationalem Einheitensystem (SI) nicht um eine Einheit, sondern lediglich um die Zahl 0,01 handelt, der keine weiteren Informationen in Form von Indizes mitgegeben werden dürfen [vgl. Thompson und Taylor, 2008, S. 20], wird in dieser Arbeit zur besseren Verständlichkeit die "Einheit" %-Punkt verwendet, um die (absolute) Differenz zwischen zwei in % angegebenen Größen darzustellen.

2.1.1.4 Brennstoffeigenschaften fester Biomasse

In diesem Abschnitt werden die biogenen Brennstoffeigenschaften dargestellt, die für eine erste technische Beurteilung der Kombination von Biomasse, KWK und CCS relevant sind. Diese werden zu den fossilen Brennstoffeigenschaften in Vergleich gesetzt, da fossile Energieträger bislang im Fokus der CCS-Forschungsaktivitäten stehen. Zunächst werden die Elementarzusammensetzung und die brennstoffrelevanten Eigenschaften vorgestellt, bevor auf die physikalisch-mechanischen Eigenschaften näher eingegangen wird.

2.1.1.4.1 Elementarzusammensetzung Pflanzliche Biomasse besteht aus insgesamt 26 biologisch notwendigen Elementen. Dabei handelt es sich zunächst um die drei Hauptelemente Kohlenstoff, Wasserstoff und Sauerstoff, die das Ergebnis der Photosynthesetätigkeit (vgl. Kapitel 2.3.2) und der Wasseraufnahme darstellen. Die sechs Hauptnährstoffe Stickstoff, Kalium, Phosphor, Kalzium, Magnesium und Schwefel sowie das Element Chlor unterstützen den stofflichen Aufbau der Biomasse. Dabei zählt Chlor im eigentlichen Sinne nicht zu den Nährstoffen, sondern stellt einen Begleitstoff des Düngemittels dar, auch wenn es einen nennenswerten Anteil hat. Darüber hinaus sind eine Reihe von Spurenelementen enthalten, bei denen es sich im Wesentlichen um Schwermetalle (z. B. Zink, Chrom und Blei) handelt, die die Aschezusammensetzung maßgeblich beeinflussen [vgl. Kaltschmitt et al., 2009, S. 338 ff.], [vgl. Eltrop et al., 2007, S. 83 f.].

Abbildung 2.4 stellt die Anteile an Kohlenstoff, Wasserstoff und Sauerstoff in verschiedenen biogenen Brennstoffen dar. Die genauen Angaben, die für die Elementaranalyse verwendet werden, sind im Anhang in Tabelle A.1 zu finden.⁴ Die gleichen Angaben sind für Steinkohle und Braunkohle enthalten, um die Unterschiede zwischen diesen Brennstoffen zu verdeutlichen. Es sind jeweils der Mittelwert, der Minimalwert und Maximalwert angegeben. Es ist zu erkennen, dass die Kohlen gegenüber den biogenen Brennstoffen einen um ca. 20%-Punkte bis 30%-Punkte höheren Kohlenstoffgehalt aufweisen. Dafür ist bei den biogenen Brennstoffen der Sauerstoffgehalt um etwa den gleichen Betrag höher als bei den Kohlen. Braunkohle nimmt hierbei eine Zwischenrolle ein, da sie erdgeschichtlich jünger als Steinkohle ist und somit der Biomasse im Kohlenstoff- und Sauerstoffgehalt ähnelt.

Die Gehalte an Stickstoff, Schwefel und Chlor werden in Abbildung 2.5 dargestellt. Diese Elemente sind bei der Verbrennung von besonderer Bedeutung, da sie den Schadstoffausstoß erheblich beeinflussen: Durch sie werden Stickstoffoxide (NO_x), Schwefeldioxide

⁴Als Datenbasis werden zehn Braunkohlesorten und 16 Steinkohlesorten (davon zehn Steinkohlesorten für Chlorgehalte) verwendet. Diese ergeben sich aus 44 Braunkohle- und 66 Steinkohlesorten in Fritsche [vgl. 2010a], da lediglich Datensätze mit zumindest mittlerer Datenqualität und bei Angabe mehrerer Jahre für die gleiche Sorte die Jahre 2005 oder 2010 verwendet werden.

Abbildung 2.4: Mittlere, minimale und maximale Gehalte an C, H, O in biogenen Festbrennstoffen im Vergleich zu Braun- und Steinkohle, eigene Darstellung mit Daten für Biomasse aus Hartmann et al. [2000b, S. 148 f.], für Kohle aus Fritsche [2010a]

 (SO_2) und Chlorwasserstoffe (HCl) gebildet [vgl. Eltrop et al., 2007, S. 84]. Diese Luftschadstoffe können sich ebenfalls im Rahmen der CO₂-Abscheidung negativ auswirken (vgl. Kapitel 2.1.3.1). Zunächst ist im Bereich der Stickstoff- und Schwefelgehalte eine deutlich größere Schwankung innerhalb der Kohlen als für die biogenen Brennstoffe festzustellen. Die Stickstoffgehalte von holzartiger Biomasse liegt mit weniger als 0,5 % deutlich unter den Werten für die Kohlen. Der hohe Maximalwert für Laubholz ist zwar in der Höhe in den Primärdaten enthalten, kann jedoch aufgrund des einmaligen Auftretens als Ausreißer angesehen werden. Der Stickstoffgehalt von Getreidekörnern liegt mit 1,9 % höher als bei den Kohlen. Die Schwefelgehalte aller Biomassen liegen deutlich unter den Schwefelgehalten der Kohlen. Den höchsten Chlorgehalt weist Getreidestroh auf, das durch die Düngung Chlor als Begleitstoff aufnimmt. Insgesamt ist festzuhalten, dass die holzartigen Biomassen, und darin vor allem Nadelholz, die geringsten Anteile an Stickstoff, Schwefel und Chlor aufweisen.

Die drei Elemente Kalium, Magnesium und Kalzium haben entscheidenden Einfluss auf die Verbrennung, da steigende Kalium- und Magnesiumgehalte im Brennstoff die Ascheerweichungstemperaturen reduzieren, während Kalzium eine entgegengesetzte Wirkung

Abbildung 2.5: Mittlere, minimale und maximale Gehalte an N, S, Cl in biogenen Festbrennstoffen im Vergleich zu Braun- und Steinkohle, eigene Darstellung mit Daten für Biomasse aus Hartmann et al. [2000b, S. 148 f.], für Kohle aus Fritsche [2010a]

hat [vgl. Hartmann et al., 2000a, S. 102 f.]. Abbildung 2.6 zeigt, dass die Magnesiumgehalte aller Biomassen einheitlich bei ca. 0,1% liegen, während es beim Kalium- und Kalziumgehalt erhebliche Unterschiede gibt: Holzartige Biomasse weist die niedrigsten Kaliumgehalte auf, während sie leicht höhere Gehalte an Kalzium beinhaltet, was deutlich höhere Ascheerweichungstemperaturen gegenüber den anderen Biomassen erwarten lässt (vgl. Kapitel 2.1.1.4.2).

Ähnlich genaue Angaben für die Gehalte an Kalium, Magnesium und Kalzium sind in der Literatur für Braun- und Steinkohle nicht vorhanden. Da sich diese Elemente jedoch in den Aschen der Brennstoffe wiederfinden lassen, gibt die Zusammensetzung der Asche einen ersten Hinweis darauf, dass die Kaliumgehalte in fossilen Festbrennstoffen sehr gering sind: Die Aschen von Stein- und Braunkohle beinhalten vor allem Siliziumdioxid (SiO₂ – Sand), Aluminiumoxide (Al₂O₃) und Eisenoxide (Fe₂O₃). Der Anteil an Kalziumoxiden bzw. die Summe aus Kalzium- und Magnesiumoxiden beträgt zwischen 3 % und 15 %. Bei einem realistischen Aschegehalt von 10 % ergibt sich überschlägig ein Kalziumbzw. Kalzium- und Magnesiumgehalt im Brennstoff von ca. 0,3 % bis 1,5 %, der in dem Bereich der untersuchten Biomassen liegt. Für Kalium werden keine Angaben bei der

Aschezusammensetzung gemacht, was auf deutlich niedrigere Gehalte hindeutet [vgl. Strauß, 2006, S. 39], [vgl. Joos, 2006, S. 27].

Abbildung 2.6: Mittlere, minimale und maximale Gehalte an K, Mg, Ca in biogenen Festbrennstoffen, eigene Darstellung mit Daten für Biomasse aus Hartmann et al. [2000b, S. 148 f.]

2.1.1.4.2 Brennstoffrelevante Eigenschaften Unter die brennstoffrelevanten Eigenschaften fallen das Ascheerweichungsverhalten, der Wassergehalt, der Aschegehalt, der Anteil an flüchtigen Bestandteilen und der Heizwert, die im Folgenden näher ausgeführt werden. Die genauen Angaben für die brennstoffrelevanten Eigenschaften sind im Anhang in Tabelle A.2 zu finden.

Ascheerweichungsverhalten Das Ascheerweichungsverhalten wird durch die Temperatur der folgenden vier Punkte definiert: Sinterbeginn (Schrumpfen auf 95 % der Ausgangsgröße), Erweichungsbeginn (Abrundung der Kanten), Halbkugelpunkt (Halbkugel-Form) und Fließpunkt (Probekörper auf 33 % der Ursprungshöhe zerflossen) [vgl. Kaltschmitt et al., 2009, S. 361]. Bereits ab dem Sinterbeginn kann es zu Verklebungen kommen, die zu Ablagerungen im Feuerraum oder an den Wärmeübertragungsflächen führen können, wodurch Hochtemperaturkorrosion begünstigt wird [vgl. Eltrop et al., 2007, S. 87 f.]. Die Ascheerweichungstemperaturen werden maßgeblich durch die Gehalte an Kalium, Magnesium und Kalzium beeinflusst (vgl. Kapitel 2.1.1.4.1).

Abbildung 2.7: Ascheerweichungstemperaturen von biogenen Festbrennstoffen im Vergleich zu Braun- und Steinkohle, eigene Darstellung mit Daten für Biomasse aus Hartmann et al. [2000b, S. 148 f.], für Steinkohle aus Jannsen [2008, Anhang 8], für Braunkohle aus Muhammadieh [2007, S. 117]

Für holzartige Brennstoffe liegen die Ascheerweichungstemperaturen oberhalb bzw. im gleichen Bereich wie für Stein- und Braunkohle (vgl. Abbildung 2.7). Der Sinterbeginn für Getreidekörner ist mit durchschnittlich 705 °C sehr niedrig; der Fließpunkt ist bereits bei 850 °C erreicht. Insgesamt liegen die Ascheerweichungstemperaturen aller nicht-holzartigen Biomassen unter den Werten für Stein- und Braunkohle.

Wassergehalt Der Wassergehalt ist das Verhältnis zwischen dem in der Biomasse enthaltenen Wasser und der feuchten Biomasse (inkl. Wasser). Dahingegen wird unter der Brennstofffeuchte das Verhältnis zwischen dem in der Biomasse enthaltenen Wasser und der trockenen Biomasse verstanden. In dieser Arbeit wird die Brennstofffeuchte nicht verwendet.

Mit zunehmendem Wassergehalt nimmt der Heizwert des Brennstoffs ab, da zum einen weniger brennbare Bestandteile im Brennstoff enthalten sind und zum anderen die im Brennstoff enthaltene Feuchtigkeit bei der Verbrennung verdampft und diese Verdampfungswärme im Rauchgas in der Regel nicht mehr genutzt werden kann. Formel 2.1 zeigt die Berechnung des Heizwertes im feuchten Zustand ($H_{\rm I}$). $H_{\rm I,wf}$ ist der Heizwert im wasserfreien Zustand und w der Wassergehalt. $\Delta h_{\rm H_2O} = 2,441 \, {\rm MJ/kg}$ stellt die Verdamp-

fungswärme von Wasser bei 25 °C dar [vgl. Hartmann et al., 2000a, S. 7].⁵ Wenn ein Teil des im Rauchgas enthaltenen Wasserdampfes auskondensiert und energetisch genutzt wird, so reduziert sich der Subtrahend im Zähler der Formel 2.1. Wird der Wasserdampf vollständig auskondensiert, so handelt es sich um den Brennwert.

$$H_{\rm I} = H_{\rm I,wf} \cdot (1 - w) - \Delta h_{\rm H_2O} \cdot w \tag{2.1}$$

Brennstoffe wie Kohle oder Biomasse verfügen immer über einen gewissen Wassergehalt, der durch die sie umgebende Luftfeuchte nach unten begrenzt ist. Der Wassergehalt von Steinkohlen schwankt zwischen 5 % und 23 % und liegt im Mittel bei 8,7 %. Rohe Braunkohle enthält mit durchschnittlich 53,4 % deutlich mehr Wasser (Schwankungsbreite von 50 % bis 56 %) [vgl. Fritsche, 2010a], während der Wassergehalt bei Braunkohlenstaub und Wirbelschichtbraunkohle auf 10 % bis 20 % reduziert wird (vgl. Kapitel 3.2.2.1). Der Wassergehalt der Biomasse kann zwischen 8 % und 65 % schwanken. Erntefrische holzartige Biomasse hat einen Wassergehalt von 45 % bis 60 %. Dieser kann durch "passive" Lufttrocknung auf 10 % bis 20 % reduziert werden. Halmgutartige Biomasse und Getreidekörner, die im Sommer geerntet werden, haben maximal 15 % Wassergehalt. Holzpellets haben in der Regel einen Wassergehalt von 7 % bis 10 %, da diese aus lufttrockenem Sägemehl hergestellt werden [vgl. Kaltschmitt et al., 2009, S.358].

Neben der Reduktion des Heizwerts hat ein hoher Wassergehalt in der Biomasse weitere Nachteile. Zum einen wird die Lagerfähigkeit eingeschränkt, da bereits ab 16 % Wassergehalt ein biologischer Substanzabbau durch Pilze und Bakterien einsetzt und sich das Risiko einer Selbstentzündung erhöht [vgl. Hartmann et al., 2000a, S. 7]. Zum anderen kann sich durch den höheren Wassergehalt die Verbrennungstemperatur und damit die Feuerungswärmeleistung im Kessel reduzieren. Darüber hinaus bewirkt der höhere Wassergehalt eine höhere Dichte der Biomasse, was unter Umständen die Transportkosten beeinflussen kann.

Aschegehalt, flüchtige Bestandteile, Heizwert Die Asche besteht unter anderem aus den anorganischen Bestandteilen, die nach der Verbrennung zurückbleiben. Der Aschegehalt eines Brennstoffs beeinflusst zum einen die Umweltauswirkungen (Staubemissionen) und zum anderen die zu entsorgenden bzw. zu verwertenden Verbrennungsrückstände [vgl. Kaltschmitt et al., 2009, S. 359]. Bei der Verbrennung in zirkulierenden Wirbelschicht-

⁵In dieser Arbeit werden grundsätzlich Größengleichungen dargestellt, die unabhängig von den verwendeten Einheiten die mathematische Beziehung zwischen Größen beschreiben [vgl. Blankenburg, 2011, S. 5]. In der Regel werden im Text und im Formelzeichenverzeichnis jedoch für alle Größen die in dieser Arbeit verwendeten Einheiten angegeben, um die Nachvollziehbarkeit der Formeln zu erhöhen.

kesseln wird die Asche als Wirbelbett verwendet (vgl. Kapitel 2.1.1.6). Die niedrigsten Aschegehalte in Bezug auf die Brennstofftrockenmasse haben die holzartigen biogenen Brennstoffe mit weniger als 1%, während Braun- und Steinkohle 8% bis 11% aufweisen (vgl. Abbildung 2.8, links). Dazwischen liegen mit 2% bis 6% die halmgutartigen Biomassen.

Abbildung 2.8: Aschegehalte, flüchtige Bestandteile und Heizwerte von biogenen Festbrennstoffen im Vergleich zu Braun- und Steinkohle, eigene Darstellung mit Daten für Biomasse aus Hartmann et al. [2000b, S. 148 f.], für Kohle aus Fritsche [2010a] (Aschegehalt und Heizwert) sowie aus Kaltschmitt et al. [2009, S. 360, S. 365] (flüchtige Bestandteile)

Die flüchtigen Bestandteile eines Brennstoffs sind diejenigen brennbaren Gase, die beim Erhitzen unter definierten Bedingungen (unter Luftausschluss, nach sieben Minuten, bei 900 °C) freigesetzt werden. Der Anteil an flüchtigen Bestandteilen bestimmt erheblich die Konstruktion des Feuerraums, da ein hoher Anteil an flüchtigen Bestandteilen einen größeren Feuerraum und eine erhöhte Sekundärluftzufuhr bedingt [vgl. Kaltschmitt et al., 2009, S. 355 f.]. Abbildung 2.8 lässt im mittleren Diagramm erkennen, dass der Anteil an flüchtigen Bestandteilen bei Biomassen zwischen 76 % und 82 % liegt, wobei sich die holzartigen Biomassen am oberen Ende befinden. Steinkohle hat dahingegen einen durchschnittlichen Anteil von 35 %. Braunkohle liegt mit 52 % dazwischen.

Der Heizwert ist die Wärmemenge je Brennstoffmasse, die bei der vollständigen Oxidation des Brennstoffs abgegeben werden kann. Dabei ist diejenige Energie nicht enthalten,

die als Kondensationswärme des Wasserdampfes im Abgas an die Umwelt abgegeben wird (außer bei Brennwerttechnik). Der spezifische Heizwert im wasserfreien Zustand ist bei der Steinkohle mit 28 MJ/kg deutlich höher als bei den biogenen Brennstoffen, die zwischen 17 MJ/kg und 19 MJ/kg liegen. Der deutlich höhere Heizwert der Steinkohle lässt sich durch den sehr geringen Sauerstoffgehalt (ca. 10 %) und dem gegenüber Biomasse hohen Anteil an Kohlenstoff und Schwefel erklären, die unter Wärmeabgabe oxidieren können (vgl. Abbildung 2.8). In der Praxis wird der Heizwert vom tatsächlichen Wassergehalt erheblich beeinflusst.

2.1.1.4.3 Physikalisch-mechanische Eigenschaften Durch die unterschiedlichen Aufbereitungstechniken werden die physikalisch-mechanischen Eigenschaften von Brennstoffen definiert. Dazu zählen unter anderem die Schüttdichte, die Größenverteilung und die Brückenbildungsneigung.

Schüttdichte Die Schüttdichte ist der Quotient aus der Masse und dem geschüttetem Volumen des Energieträgers. Mit steigendem Lufteinschluss zwischen den einzelnen Brennstoffstücken sinkt die Schüttdichte. Rohe Braun- und Steinkohlen bestehen aus Brocken unterschiedlicher Größe, die für die Verbrennung gemahlen werden, und haben eine Schüttdichte von 650 kg/m^3 bis 750 kg/m³ (Braunkohle) bzw. 750 kg/m³ bis 1000 kg/m³ (Steinkohle) [vgl. Merklinger, o. J., S. 1]. Holzartige Biomasse kann für die Verbrennung in Heizkraftwerken entweder als Rundholz, als Holzhackschnitzel oder als Holzpellets vorliegen. Dabei ist die Schüttdichte von 175 kg/m^3 bis 271 kg/m³ erreichen (bei 15 % Wassergehalt, vgl. Abbildung 2.9). Eine ebenfalls sehr hohe Schüttdichte mit 760 kg/m³ weisen Getreidekörner auf. Halmgutartige Brennstoffe werden üblicherweise zu Quaderballen von ca. 2 m Länge gepresst. Die Schüttdichte dieser Ballen liegt zwischen 140 kg/m^3 und 190 kg/m^3 .

Wird die in Abbildung 2.9 dargestellte Schüttdichte mit dem in Abbildung 2.8 dargestellten Heizwert multipliziert, so ergibt sich der volumenspezifische Energiegehalt (Energiedichte). Dieser kann bei Biomasse um den Faktor zehn kleiner sein als bei fossilen Energieträgern und ist von besonderem Interesse, wenn die Brennstoffe über größere Strecken transportiert werden. Darauf wird in der Analyse der Nachhaltigkeit in Kapitel 5 näher eingegangen.

Größenverteilung und Brückenbildung Die Partikelgrößenverteilung bei Hackgut wird beispielsweise nach der ÖNORM M7133 in drei Klassen eingeteilt: G 30, G 50 und G 100.

Abbildung 2.9: Schüttdichte von biogenen Festbrennstoffen im Vergleich zu Braun- und Steinkohle, eigene Darstellung mit Daten für Biomasse aus Eltrop et al. [2007, S. 89 f.], für Steinkohle aus Merklinger [o. J., S. 1]

Neben zulässigen Maximalwerten für Kantenlänge und Querschnitt wird ebenfalls der maximale Feinanteil begrenzt [vgl. Eltrop et al., 2007, S. 88].

Unter Brückenbildung versteht man das Entstehen von Hohlräumen bei der Brennstoffentnahme aus Pufferspeichern, wodurch die Brennstoffversorgung unterbrochen werden kann. Die Brückenbildung wird durch einen erhöhten Wassergehalt, hohe Schütthöhen und den Anteil an Überlängen begünstigt [vgl. Eltrop et al., 2007, S. 89]. Durch den niedrigen Wassergehalt und das Fehlen von Überlängen entstehen bei Steinkohlen nur selten Brücken. Ein ähnliches Verhalten weisen Holzpellets auf, so dass im Gegensatz zu Holzhackschnitzeln hier auch hohe Mitverbrennungsanteile von 50 % in konventionellen Kohlekraftwerken erreicht werden können [vgl. Vogel et al., 2011, S. 4], [vgl. Koornneef et al., 2011, S. 2].

2.1.1.5 Verbrennungsverhalten fester Biomasse

Im Folgenden wird auf die thermo-chemische Umwandlung und die Schadstoffbildung fester Biomasse näher eingegangen.

2.1.1.5.1 Thermo-chemische Umwandlung Bei der Verbrennung reagieren die brennbaren Bestandteile im Brennstoff (Kohlenstoff, Wasserstoff und Schwefel) mit Sauerstoff und setzen dabei Wärmeenergie frei. Der Vorgang der thermo-chemischen Umwandlung kann in vier Teilprozesse unterteilt werden, die sich vor allem im Temperaturniveau und im Luftverhältnis unterscheiden (vgl. Abbildung 2.10). Im engeren Sinne darf nur der vierte Teilprozess, die Oxidation, als eigentliche Verbrennung bezeichnet werden. Diese Teilprozesse finden bei der Verbrennung von Biomasse und Kohlen auf ähnliche Weise statt.

Abbildung 2.10: Umwandlungsschritte des biogenen Brennstoffs während der Verbrennung [Kaltschmitt et al., 2009, S. 398]

Während der Aufheizung und Trocknung (0 °C bis 200 °C) wird unter Wärmezufuhr das

im Brennstoff gespeicherte Wasser in Form von Wasserdampf abgegeben. Anschließend findet unter Sauerstoffausschluss die pyrolytische Zersetzung statt (200 °C bis 600 °C). Je nach Temperaturniveau kann hierbei als Hauptprodukt torrefizierte Biomasse (250 °C bis 300 °C), Holzkohle (>500 °C) oder brennbares Gas, Pyrolyseöl bzw. -koks (450 °C bis 600 °C) entstehen [vgl. Kaltschmitt et al., 2009, S. 377 ff.]. Bei Biomassen werden typischerweise 85 % der Trockenmasse als Brenngas freigesetzt (vgl. Abbildung 2.10), während bei Steinkohle der Anteil der flüchtigen Bestandteile bei maximal 30 % bis 40 % liegt (vgl. Kapitel 2.1.1.4.2).

In der anschließenden Phase der Vergasung (500 °C bis 1000 °C) wird bei lokal unterstöchiometrischer Sauerstoffzufuhr der noch vorliegende Kohlenstoff (ca. 15 % des Trockenbrennstoffs) zu Kohlenstoffmonoxid teilverbrannt. Abschließend werden die in der Pyrolyse und Vergasung (700 °C bis 1200 °C) entstandenen Brenngase unter Sauerstoffüberschuss und unter Wärmefreigabe zu Kohlenstoffdioxid und Wasserdampf oxidiert [vgl. Kaltschmitt et al., 2009, S. 380]. Dabei steht der im Brennstoff enthaltene Sauerstoff (ca. 40 % bis 50 %) für die Oxidation ebenfalls zur Verfügung, so dass der "externe" Sauerstoffbedarf gegenüber fossilen Energieträgern geringer ausfällt.

2.1.1.5.2 Schadstoffbildung Die Schadstoffbildung im Verbrennungsprozess ist vor allem deswegen von Interesse, weil das Rauchgas bei dem bislang gängigsten CO_2 -Abscheidungsverfahren mittels Monoethanolamin möglichst geringe Verunreinigungen an Staub, SO_2 , NO_x und O_2 aufweisen sollte [vgl. Fischedick et al., 2007, S. 218].

Neben Wasserdampf und Kohlenstoffdioxid, die die gewünschten Ergebnisse der vollständigen Verbrennung darstellen, ergeben sich ebenfalls Produkte unvollständiger Verbrennung und weitere Emissionen wie Staub, Schwefel- oder Stickoxide. Als Produkte unvollständiger Verbrennung werden vor allem Kohlenstoffmonoxid (CO) und Kohlenwasserstoffe (C_xH_y) verstanden, die durch eine ausreichend hohe Temperatur (mindestens $850 \,^{\circ}$ C), eine Verweilzeit von mindestens 0,5 Sekunden und eine ausreichende Verwirbelung mit genügend Verbrennungsluft weitestgehend vermieden werden können [vgl. Eltrop et al., 2007, S. 100]. Bei der Verbrennung von holzartigen Abfällen wird im Rahmen der 17. Bundesimmissionsschutzverordnung neben einer Mindesttemperatur von 850 °C sogar eine Verweilzeit von 2 Sekunden gefordert [vgl. Bundestag, 2009a, S. 5].

Zu den weiteren Emissionen zählen neben Staub, Schwefel- und Stickoxiden auch Chlorverbindungen, für die zum einen jeweils gesetzliche Emissionsgrenzwerte gelten und die zum anderen Auswirkungen auf die Auswahl des CO₂-Abscheidungsverfahrens haben können (vgl. Kapitel 3.2.2.2).

Stäube sind schwebefähige Feinpartikel von bis zu 100 µm Größe, die entweder Produkte vollständiger Verbrennung, wie z. B. Aschebestandteile, oder Produkte unvollständiger

Verbrennung, wie z. B. Ruß, sein können. Die Mehrheit der Feinpartikel bei moderner Biomasseverbrennung besteht aus Produkten vollständiger Verbrennung. Ein direkter Zusammenhang zwischen Aschegehalt und Staubemissionen besteht allerdings nicht: Halmgutartige Brennstoffe emittieren trotz geringerer Aschegehalte größere Feinpartikelmengen als holzartige Biomasse [vgl. Eltrop et al., 2007, S. 104]. Zur sicheren Einhaltung der Emissionsgrenzwerte werden Zyklone, Elektrofilter und Gewebefilter eingesetzt.

Die bei der Verbrennung entstehenden Schwefeloxide bestehen zu 99 % aus SO₂ und zu 1 % aus SO₃, die jeweils in Verbindung mit Wasserdampf zu korrosiver Schwefelsäure (H₂SO₄) reagieren können. SO₃ stellt zwar die für Schwefel höchste Oxidationsstufe dar, wird jedoch bei atmosphärischem Druck nur mit Hilfe von Katalysatoren erreicht. Neben dieser gasförmigen Freisetzung über die Abgase kann ein Teil des Schwefels, der über den Brennstoff eingetragen wird, in der Asche (vor allem mittels Kalium) eingebunden werden (je nach Staubabscheidung 40 % bis 90 %, bei halmgutartiger Biomasse 45 % bis 50 %) [vgl. Eltrop et al., 2007, S. 101 f.], [vgl. Joos, 2006, S. 85], [vgl. SWFL, 2008-2013].

Stickstoffoxide (NOx) bestehen zu 95 % aus NO und zu 5 % aus NO2. NOx kann auf drei Arten gebildet werden: Aus dem Brennstoffstickstoff, thermisch oder prompt. Die zwei letztgenannten Arten können vernachlässigt werden, da diese erst ab 1500 °C im nennenswerten Umfang entstehen können. Die Bildung von NO_x aus dem Brennstoffstickstoff nimmt ebenfalls mit sinkender Brennraumtemperatur und in unterstöchiometrischer Umgebung ab, da hier vor allem der erwünschte molekulare Stickstoff (N_2) gebildet wird. Um die NO_x-Emissionen darüber hinaus gering zu halten, können Verbrennungsluft oder Brennstoff gestuft werden oder Reduktionsmittel zugegeben werden. Bei der gestuften Luftzuführung wird im Bereich der Primärluft unterstöchiometrisch verbrannt, damit möglichst wenig Stickstoff oxidieren kann, und es wird im Bereich der Sekundärluft ausreichend Sauerstoff eingebracht, um einen möglichst optimalen CO-Ausbrand zu erreichen. Bei der Brennstoffstufung wird in die NO_x-reichen "Zwischenabgase" ein zweiter Brennstoff eingebracht, der das NO_x reduzieren soll. Bei der Zugabe von Reduktionsmitteln wird beispielsweise Ammoniak oder Harnstoff in die Brennkammer eingedüst, wodurch NO_x abgebaut wird. Abschließend ist festzuhalten, dass ein erhöhter Stickstoffgehalt im Brennstoff in der Regel auch zu höheren NO_x-Emissionen führt [vgl. Eltrop et al., 2007, S. 102 ff.].

Bei der Verbrennung von Halmgütern können Chlorverbindungen entstehen, die (zusammen mit SO_2) starke Auswirkungen auf Verschmutzung, Verschlackung und Korrosion haben können. Die Gefahr von polychlorierten Dioxinen und Furanen erscheint gering, da diese von sich aus vor allem in einem Temperaturbereich von 360 °C bis 400 °C gebildet werden, der in großen Feuerungen deutlich übertroffen wird [vgl. Eltrop et al., 2007, S. 100 f.].

2.1.1.6 Feuerungsvarianten für feste Biomasse

Um feste Biomasse zu verbrennen, existieren im Wesentlichen drei technische Varianten, die in Größenordnungen gebaut werden, die für CCS-Maßstäbe relevant sind. Aufgrund der spezifischen Investitionskosten (vgl. Kapitel 2.2.1) wird eine Anlagengröße mit einer Feuerungswärmeleistung (FWL) ab 50 MW als relevant angesehen. Die drei technischen Varianten sind Festbettfeuerungen, Wirbelschichtfeuerungen und Staubfeuerungen. Die Verfeuerung von gasförmiger Biomasse (Biomethan) wird in Kapitel 2.1.2.3 näher behandelt.

Die Vorschubrostfeuerung als Variante der Festbettfeuerung wird mit Feuerungswärmeleistungen von bis zu 50 MW bis 60 MW errichtet und ist besonders für Brennstoffe mit einem hohen Wassergehalt geeignet. Hierbei wird der Brennstoff mittels einer Förderschnecke oder einer Kolbenbeschickung seitlich in die Brennkammer eingebracht und bei Temperaturen von 1000 °C bis 2000 °C verbrannt. Der recht grobe Brennstoff wird mit Hilfe des Rosts von der Aufgabeschnecke (vgl. Abbildung 2.11, links) zum Ascheaustrag gefördert und durchläuft währenddessen die Phasen der Trocknung, Pyrolyse, Entgasung und Verbrennung [vgl. Eltrop et al., 2007, S. 120 f.], [vgl. Strauß, 2006, S. 138].

Abbildung 2.11: Vorschubrostfeuerung (Gegenstromprinzip) [Kaltschmitt et al., 2009, S. 504]

In der Wirbelschichtfeuerung wird das Wirbelbett, das zu 2% bis 5% aus Brennstoff und zu 95% bis 98% aus Inertmaterial (z. B. Sand, Asche) besteht, durch Primärlufteindüsung von unten in der Schwebe gehalten. Die Verbrennung findet bei 800 °C bis 900 °C statt, so dass nur geringe Mengen an NO_x gebildet werden und die Gefahr von Versinterungen reduziert ist. Bei der stationären Wirbelschichtfeuerung (FWL bis ca.

50 MW, neuere Anlagen bis zu 300 MW) wird der Brennstoff auf ca. 90 mm aufgemahlen und von der Primärluft in der Schwebe gehalten. Dahingegen beträgt die Brennstoffgröße bei der zirkulierenden Wirbelschichtfeuerung ca. 40 mm und das Wirbelbett wird durch eine stärkere Primärluftzugabe aus der Wirbelbrennkammer nach oben ausgetragen. Im nachgeschalteten Zyklon wird das Wirbelbett vom Rauchgas getrennt und wieder in die Wirbelbrennkammer zurückgeführt (vgl. Abbildung 2.12). Zirkulierende Wirbelschichten werden bis zu einer Feuerungswärmeleistung von 250 MW (neuere Anlagen bis zu 1000 MW) ausgeführt [vgl. Eltrop et al., 2007, S. 122 f.], [vgl. Cavezzali et al., 2009, S. F-5].

Abbildung 2.12: Zirkulierende Wirbelschichtfeuerung, eigene Darstellung auf Basis von SWFL [2008-2013]

Staubfeuerungen eignen sich vor allem für sehr feine Biomassen, die mit einem Wassergehalt von weniger als 20 % vorliegen (z. B. gemahlene Holzpellets), da der Brennstoff vor der Verbrennung auf Korngrößen von kleiner 0,1 mm zerkleinert wird. Die Staubfeuerungstechnik ist das übliche Verfahren für die Verbrennung von fossilen Kohlen und wird bei Feuerungswärmeleistungen von mehr als 1000 MW eingesetzt. Die Verbrennungstemperatur liegt mit 1400 °C deutlich über den beiden vorgenannten Verbrennungstechniken [vgl. Kaltschmitt et al., 2009, S. 520 f.], [vgl. Strauß, 2006, S. 141, S. 152].

Die Wärmeenergie in den Rauchgasen wird anschließend an das Arbeitsmedium Wasser übergeben, das zu überhitztem Wasserdampf erwärmt wird (im kleineren Leistungsbereich kann auch Thermoöl zum Einsatz kommen). Hierfür zirkuliert das Wasser in Stahlrohren, die sich an den Wänden der Brennkammer oder im späteren Rauchgasweg befinden. In der sogenannten Trommel wird der Wasserdampf vom Wasser getrennt, um diesen Dampf weiter zu überhitzen, bis die gewünschten Dampfparameter (Druck, Temperatur) für die nachfolgende Dampfturbine erreicht sind (vgl. Kapitel 2.1.2.2). Diese Überhitzungsrohre weisen die höchsten Oberflächentemperaturen und somit die größte Korrosionsgefahr auf.

2.1.1.7 Vergasungsvarianten für feste Biomasse

Neben der direkten Verbrennung der Biomasse kann als ein Zwischenschritt ebenfalls ein Produktgas erzeugt werden (vgl. Kapitel 2.1.1.2), das anschließend in einer Gasturbine mit einem höheren elektrischen Wirkungsgrad energetisch genutzt werden kann. Obwohl die Vergasung im Gegensatz zur Verbrennung noch nicht im kommerziellen Bereich betrieben wird [vgl. Eltrop et al., 2007, S. 137], wird sie näher vorgestellt, da sie elementarer Bestandteil einer der derzeit aussichtsreichsten CO₂-Abscheidungstechniken ist (vgl. Kapitel 2.1.3.1.1).

Anlagentechnisch wird bei der Vergasung zwischen dem Festbettvergaser, dem Wirbelschichtvergaser und dem Flugstromvergaser unterschieden (vgl. Abbildung 2.13). Die für die Vergasung notwendige Wärmeenergie kann entweder durch eine Teilverbrennung (autotherm) erzeugt oder von außen (allotherm) hinzugefügt werden. Als Vergasungsmittel kann Luft, Sauerstoff, Wasserdampf, Kohlenstoffdioxid oder Wasserstoff eingesetzt werden, wodurch die Zusammensetzung des Produktgases variiert. Die Produktgaszusammensetzung wird ebenfalls durch Temperatur, Druck und Biomasseart beeinflusst [vgl. Kaltschmitt et al., 2009, S. 600 ff.].

Abbildung 2.13: Verschiedene Vergasungssysteme, eigene Darstellung auf Basis von Kaltschmitt et al. [2009, S. 602]

Neben den brennbaren Gasen (H₂, CO und CH₄) und Inertgasen (H₂O und CO₂) enthält das Produktgas ebenfalls Verunreinigungen wie Teere (Kohlenwasserstoffverbindungen) und Partikel. Diese müssen herausgefiltert werden oder durch ein hohes Temperaturniveau vermieden werden, um eine anschließende Nutzung in einer Gasturbine oder einem Gasmotor ohne Ablagerungen oder Korrosion zu ermöglichen. Als Filtertechniken werden Anlagen wie Zyklone, Gewebefilter, Elektrofilter und Wäscher eingesetzt, die ebenfalls bei der Rauchgasreinigung Anwendung finden [vgl. Kaltschmitt et al., 2009, S. 628 ff.], [vgl. Larson et al., 2005, S. 10].

2.1.1.8 Biogas und Biomethan

Biogas wird mittels anaerober Fermentation aus fester bzw. flüssiger Biomasse mit Hilfe von verschiedenen Mikroorganismen erzeugt. Diese Umwandlung läuft in vier Phasen ab, in denen verschiedene Bakterien das Ausgangsmaterial zu Biogas umwandeln [vgl. Hofmann et al., 2009, S. 16 f.].

Im Folgenden werden zunächst die relevanten Gaseigenschaften vorgestellt, bevor auf die Reinigungsverfahren und den derzeitigen Status quo näher eingegangen wird.

2.1.1.8.1 Gaseigenschaften Biogas besteht hauptsächlich aus Methan und Kohlenstoffdioxid sowie aus unerwünschten Begleitstoffen wie Schwefelwasserstoff und Wasserdampf (vgl. Tabelle 2.1). Hierbei handelt es sich nicht um Massenanteile, wie für Festbrennstoffe üblich, sondern um Stoffmengen- bzw. Molanteile, die für gasförmige Brennstoffe gewöhnlich angegeben werden. In Tabelle 2.1 sind ebenfalls die Anforderungen an das aufbereitete Biogas gemäß DVGW G260/G262 enthalten, um dieses in das Erdgasnetz einspeisen zu können (sogenanntes Biomethan).

Des Weiteren müssen ein definierter Brennwert (H_S) und Wobbe-Index (W_S) eingehalten werden. Während bei Festbrennstoffen üblicherweise der Heizwert angegeben wird, wird bei gasförmigen Brennstoffen der Brennwert verwendet, da die in den Rauchgasen enthaltene Kondensationsenergie häufig genutzt wird. Der Wobbe-Index ist das Verhältnis aus dem Heizwert und der Quadratwurzel der Dichte. Die Einhaltung dieses Wertes ist für den Verbrennungsprozess sehr wichtig, da größere Abweichungen beispielsweise zu Ruß- oder CO-Bildung führen können [vgl. Nordmeyer, 2008, S. 183]. Der Brennwert von Roh-Biogas liegt in einem Bereich von 5.5 kWh/m³ bis 7.5 kWh/m³, der Brennwert von Biomethan zwischen 9,0 kWh/m³ und 11,0 kWh/m³. Für die Einspeisung in das Erdgasnetz wird ein Brennwert von 8,4 kWh/m³ bis 13,1 kWh/m³ gefordert. Der Wobbe-Index von Roh-Biogas liegt zwischen 5,5 kWh/m³ und 10,0 kWh/m³, der Wobbe-Index von Biomethan in einem Bereich von 11,0 kWh/m³ bis 15,0 kWh/m³. Für die Einspeisung in Erdgasnetze der Gruppe L (low) reichen geringere Wobbe-Indizes von $10.5 \,\mathrm{kWh/m^3}$ bis 13,0 kWh/m³, während für Erdgasnetze der Gruppe H (high) ein Wobbe-Index von 12,8 kWh/m³ bis 15,7 kWh/m³ gefordert wird [vgl. Schulte-Schulze Berndt, 2008, S. 74], [vgl. DVGW, 2008, S. 13].

Eine Aufbereitung und Einspeisung des Biogases bietet sich an, da häufig bei der direkten Verbrennung in dezentralen Blockheizkraftwerken die Wärme nicht vollständig genutzt werden kann. Für die in dieser Arbeit untersuchte Kopplung von Biogas-Heizkraftwerken

Tabelle 2.1: Zusammensetzung von Roh-Biogas und Biomethan sowie Erdgasqualität gemäß DVGW G260/G262, eigene Darstellung mit Daten aus Hofmann et al. [2009, S. 65], Schulte-Schulze Berndt [2008, S. 74], DVGW [2008, S. 13], DVGW [2011, S. 11]

Komponente	Roh-Biogas	Biomethan	$\mathrm{DVGW}~\mathrm{G260}/\mathrm{G262}$
Methan (CH_4)	45% bis $70%$	80% bis $99%$	gemäß Brennwert
Kohlenstoffdioxid (CO_2)	25% bis $55%$	$<\!1\%$ bis 5%	< 6 %
Stickstoff (N_2)	$0{,}01\%$ bis 5%	0% bis $2%$	k. A.
Sauerstoff (O_2)	$0{,}01\%$ bis 2%	0% bis $0{,}5\%$	0,5% bzw. $3,0%$
Schwefelwas- serstoff (H_2S)	$10\mathrm{mg/m^3}$ bis $30\mathrm{g/m^3}$	$< 1{\rm mg}/{\rm m}^3$	$< 5\mathrm{mg}/\mathrm{m}^3$
Wasserstoff (H_2)	$< 200\mathrm{ppm}$	$< 500\mathrm{ppm}$	< 5 %
Siloxane (SiO _x)	$<\!0.1\mathrm{mg/m^3}$ bis $5\mathrm{mg/m^3}$	$< 1{\rm mg/m^3}$	k. A.
Kohlenwasserstoffe (C_xH_y)	$< 100\mathrm{ppm}$	$< 10 \mathrm{ppm}$	<Kondensationspunkt
Wasser (H_2O)	gesättigt $(100\%$ r.F.), entspricht 3,1% (bei 25 °C und 1013 mbar)	$<\!0,\!3\mathrm{mg}/\mathrm{m}^3$	<Kondensationspunkt

mit CO₂-Abscheidung ist eine Biogas-Aufbereitung und Einspeisung in das Erdgasnetz ebenfalls notwendig, um das Biomethan zu großen Gasturbinen zu transportieren, für die es bereits Untersuchungen zur CO₂-Abscheidung gibt und die üblicherweise für den Brennstoff Erdgas ausgelegt sind.

2.1.1.8.2 Reinigungsverfahren Auch für den Einsatz in den dezentralen Blockheizkraftwerken wird das Biogas bereits entfeuchtet, da das Biogas nach dem Fermenter zu 100% wassergesättigt ist, und entschwefelt, um die Standzeit der Motoren zu verlängern. Um die nach DVGW Arbeitsblatt 260 geforderte Gasqualität zu erreichen, ist jedoch eine weitere Feinreinigung notwendig. Hierunter fallen vor allem eine Entstaubung, weitere Trocknung und Entschwefelung sowie eine CO₂-Abtrennung [vgl. Hofmann et al., 2009, S. 25 f.].

Als Entschwefelungsverfahren können biologische Verfahren im Fermenter oder einer späteren Prozessstufe zum Einsatz kommen, bei denen durch Zugabe von Sauerstoff die

Bildung von Schwefelbakterien unterstützt wird, die unerwünschten Schwefelwasserstoff in elementaren Schwefel umwandeln. Eine andere Variante ist die Entschwefelung mittels Eisenchelaten, wobei der Schwefelwasserstoff in einer Redoxreaktion zu elementarem Schwefel umgewandelt wird. Alternativ kann auch mit imprägnierter oder dotierter Aktivkohle entschwefelt werden [vgl. Kaltschmitt et al., 2009, S. 896 f.].

Für die CO₂-Abtrennung aus Biogasanlagen werden Verfahren eingesetzt, die auch für die Aufbereitung von Roh-Erdgas verwendet werden. Üblicherweise werden alkalische Aminwäschen, die Druckwechseladsorption und die Druckwasserwäsche zum Einsatz gebracht [vgl. Kaltschmitt et al., 2009, S. 897], [vgl. dena, 2012a, S. 1 f.]. Die CO₂-Abtrennung durch Aminwäschen gelingt, indem das CO_2 mit dem Absorbens eine chemische Verbindung eingeht. Anschließend wird dem Absorbens durch Wärmezugabe das CO_2 wieder ausgetrieben (vgl. Kapitel 2.1.3.1.2). Bei der Druckwechseladsorption wird das im Biogas enthaltene CO_2 unter Druck (ca. 10 bar) an Aktivkohle adsorbiert. Die Regeneration der Aktivkohle erfolgt durch Luftspülung bei atmosphärischem Druck, so dass mindestens zwei parallele Waschkolonnen benötigt werden. Im Druckwasserwäscheverfahren durchströmt das zu reinigende Biogas bei einem Druck von 10 bar eine Waschkolonne von unten nach oben, in der Wasser im Gegenstrom nach unten tropft. Hierbei werden das enthaltene CO₂ und H₂S durch die Wassertropfen absorbiert. Auch möglicherweise enthaltene Stäube und Mikroorganismen werden hierdurch entfernt [vgl. Kaltschmitt et al., 2009, S. 898 ff.]. Bei den beiden letztgenannten Verfahren liegt das Biomethan anschließend auf einem Druckniveau vor, das eine Einspeisung in das Hochdrucknetz (1 bar bis 4 bar bzw. 4 bar bis 16 bar) ermöglicht [vgl. Hofmann et al., 2009, S. 51 f.]. Hierdurch wird das Problem in Niederdrucknetzen umgangen, dass häufig im Sommer der örtliche Erdgasverbrauch unter die eingespeiste Biomethanmenge fällt vgl. Hofmann et al., 2009, S. 191 f.].

Allgemein ist bei den Biogasaufbereitungsverfahren festzuhalten, dass in diesem Bereich noch erhebliche Steigerungen der Anlageneffizienz zu erwarten sind, da viele Reinigungsverfahren erst seit kurzer Zeit in der Größenordnung von Biogasanlagen eingesetzt werden [vgl. Urban et al., 2009, S. 61]. Als besonders aussichtsreich werden die Membranverfahren eingeschätzt, die auf Basis unterschiedlicher Permeabilitäten Gasbestandteile trennen (vgl. Kapitel 2.1.3.1.2).

2.1.1.8.3 Status quo Biomethan Seit dem Jahr 2006 werden in Deutschland die ersten beiden Anlagen zur Biogasaufbereitung auf Erdgasqualität betrieben. Bereits im Jahr 2008 sind 5% der gesamten landwirtschaftlichen Biogasleistung zu Biomethan aufbereitet worden. Bis zum Januar 2012 hat sich die Anzahl der Anlagen auf 77 erhöht; bis zum Jahr 2013 wird mit einem Zuwachs auf 133 Anlagen gerechnet. Diese Anlagen erzeugen

eine Einspeiseleistung von $94\,000\,\mathrm{m^3/h}$, was bei einem Heizwert von $10\,\mathrm{kWh/m^3}$ einer Feuerungswärmeleistung von $940\,\mathrm{MW}$ entspricht. Als Biogasreinigungsverfahren gewinnt die Aminwäsche immer mehr an Bedeutung und hat mittlerweile mit 33 Anlagen die klassische Druckwechseladsorption (PSA) mit 17 Anlagen sowie die Druckwasserwäsche mit 22 Anlagen überholt [vgl. Beil, 2008, S. 16], [vgl. dena, 2012a, S. 1 f.].

Im europäischen Ausland sind bis zum Jahr 2009 rund 60 Anlagen zur Biogasaufbereitung auf Erdgasqualität (vor allem in Schweden, den Niederlanden und der Schweiz) errichtet worden [vgl. Hofmann et al., 2009, S. 34 f.]. Hier wird bevorzugt die Druckwasserwäsche verwendet (z. B. in Schweden zu 80 % bis 90 %) [vgl. Hofmann et al., 2009, S. 39 f.].

Die Ziele der Bundesregierung lassen eine deutliche Steigerung in der Zukunft erwarten: Bis 2020 sollen jährlich 6 Mrd. m³ und bis 2030 jährlich 10 Mrd. m³ erzeugt werden [vgl. Nordmeyer, 2008, S. 183]. Im Jahr 2008 ist mehr als 90 % des Biomethans im Stromsektor und weniger als 10 % im Wärmesektor eingesetzt worden. Die Verwendung von Biomethan im Kraftstoffsektor wird bislang als nicht signifikant eingeschätzt [vgl. Lokau und Nels, 2008, S. 24]. Diese Verwendung könnte jedoch zukünftig gesteigert werden, da im Rahmen der Biokraftstoff-Nachhaltigkeitsverordnung gefordert wird, dass flüssige oder gasförmige Biokraftstoffe unter Berücksichtigung aller vorgelagerten Prozessschritte ein Treibhausgas-Minderungspotenzial von 35 % ab dem Jahr 2011 und von 50 % ab dem Jahr 2017 aufweisen müssen [vgl. Bundestag, 2009c, S. 8].

2.1.2 Kraft-Wärme-Kopplung

Als Kraft-Wärme-Kopplung wird die gleichzeitige Bereitstellung von elektrischer und thermischer Energie bezeichnet. Dies geschieht überwiegend in Heizkraftwerken, in denen chemisch gebundene Energie in Form von Brennstoffen in Strom und Nutzwärme umgewandelt wird. Hierfür werden im Folgenden zunächst die Anlagenvarianten zur Stromund Wärmeerzeugung vorgestellt, bevor auf den Dampfkraft- und Gasturbinenprozess näher eingegangen wird.

2.1.2.1 Anlagenvarianten zur Strom- und Wärmeerzeugung

Ausgehend von den Zwischenprodukten bei der Verbrennung (überhitzter Wasserdampf) und bei der Vergasung (Produktgas) soll als Endprodukt bei der energetischen Biomassenutzung Strom und Wärme erzeugt werden. Das Verhältnis der produzierten elektrischen Leistung $P_{\rm el}$ zur eingesetzten Brennstoffleistung, die sich aus dem Produkt des Brennstoffmassenstroms $\dot{m}_{\rm Br}$ und dem Heizwert des Brennstoffs $H_{\rm I}$ ergibt, wird als

elektrischer Wirkungsgrad $\eta_{\rm el}$ bezeichnet (vgl. Formel 2.2).

$$\eta_{\rm el} = \frac{P_{\rm el}}{\dot{m}_{\rm Br} \cdot H_{\rm I}} \tag{2.2}$$

Der thermische Wirkungsgrad η_{th} beschreibt das Verhältnis aus (Fern-)Wärmeleistung \dot{Q} und eingesetzter Brennstoffleistung (vgl. Formel 2.3).

$$\eta_{\rm th} = \frac{\dot{Q}}{\dot{m}_{\rm Br} \cdot H_{\rm I}} \tag{2.3}$$

Mit $\eta_{\rm th}$ wird in der Literatur auch der elektrische Wirkungsgrad von Kondensationskraftwerken bezeichnet [vgl. Strauß, 2006, S. 65]. Um dieser Doppelbelegung zu entgehen, werden in in der VDI-Richtlinie 4608 die Größen Stromausbeute (β anstelle von $\eta_{\rm el}$) und Wärmeausbeute (α anstelle von $\eta_{\rm th}$) verwendet [vgl. VDI, 2005, S. 18]. Diese Größenbezeichnungen werden in dieser Arbeit jedoch nicht übernommen, da die Größe α bereits für die Brennstoffaufteilung zwischen Wärme- und Stromerzeugung verwendet wird (vgl. Kapitel 2.3.3.2), so dass $\eta_{\rm el}$ den elektrischen Wirkungsgrad und $\eta_{\rm th}$ den thermischen Wirkungsgrad bezeichnet.

Die Summe dieser beiden Wirkungsgrade wird als Brennstoffausnutzungsgrad ω bezeichnet (vgl. Formel 2.4).

$$\omega = \eta_{\rm el} + \eta_{\rm th} \tag{2.4}$$

Im Gegensatz zum elektrischen oder thermischen Wirkungsgrad beschreibt der elektrische bzw. thermische Nutzungsgrad ($\bar{\eta}_{el}$ bzw. $\bar{\eta}_{th}$) das Verhältnis aus nutzbarer elektrischer bzw. thermischer Energie und eingesetzter Brennstoffenergie über einen definierten Zeitraum, so dass hierin verschiedene Betriebszustände enthalten sein können, wie z. B. Teillastzeiten, An- oder Abfahrtszeiten [vgl. VDI, 2005, S. 19 f.].

Da die spezifischen Investitionskosten für Anlagen zur CO₂-Sequestrierung im kleinen Leistungsbereich stark ansteigen und die elektrischen Wirkungsgrade stark abnehmen [vgl. Gough und Upham, 2010, S. 17], [vgl. Klein et al., 2011, S. 2936], (vgl. Kapitel 2.2.3) wird der für CCS relevante Leistungsbereich oberhalb von 20 MW elektrischer Leistung angenommen. Nach oben ist der Leistungsbereich für Bio-KWK-CCS durch die absetzbare Fernwärmeleistung begrenzt: Um hohe Volllast-Jahresbetriebsstunden zu erreichen, sollte sich die Leistung an der Jahresganglinie der Fernwärmeleistung orientieren. Die Fernwärmeleistung variiert beispielsweise in Flensburg zwischen 40 MW und 400 MW (vgl. Kapitel 6.2.1), so dass die elektrische Leistung (auch im hocheffizienten Gas- und Dampfturbinenprozess) nicht viel mehr als 100 MW betragen sollte. In Abbildung 2.14 ist zu erkennen, dass in diesem Leistungsbereich drei Anlagenvarianten zur Verfügung

stehen: Dampfturbinen für feste Brennstoffe und Gasturbinen bzw. kombinierte Gas- und Dampfturbinen für gasförmige Brennstoffe, auf die in den beiden folgenden Kapiteln näher eingegangen wird. Da Gasmotoren bislang noch keine ausreichend großen elektrischen Leistungen (maximal 10 MW bis 20 MW) erreichen und nicht Gegenstand bisheriger CCS-Untersuchungen gewesen sind, werden diese nicht näher betrachtet.

Abbildung 2.14: Elektrische Wirkungsgrade und Leistungsbereiche von Kraftmaschinen und Kraftwerken, eigene Darstellung auf Basis von Karl [2006, S. 14], zitiert nach Brammann [2010, S. 15]

Das Produkt der Dampf- und Gasturbinen ist zum einen mechanische Arbeit (Rotationsenergie), die mittels eines Generators in elektrische Energie umgewandelt wird, und zum anderen Abwärme, die zur Erwärmung des Fernheizwassers genutzt wird. Auf diese Umwandlungsprozesse wird in dieser Arbeit nicht näher eingegangen.

2.1.2.2 Dampfkraftprozess

Im Dampfkraftprozess wird der überhitzte Wasserdampf, der im Dampferzeuger durch die Verbrennung von Brennstoffen bereit gestellt worden ist (vgl. Kapitel 2.1.1.6), in einer Dampfturbine entspannt, wodurch Rotationsenergie erzeugt wird. Grundsätzlich

können drei Dampfturbinenbauweisen unterschieden werden.

Im reinen Kondensationsbetrieb wird ausschließlich Strom erzeugt und keine Wärme ausgekoppelt (vgl. Abbildung 2.15, links). Hierfür wird der Dampf bis auf ein möglichst geringes Druckniveau entspannt, das durch das Temperaturniveau der Wärmesenke vorgegeben wird (bei Umgebungsluft- oder Fluss-/Seewasserkühlung typischerweise 20 °C bis 40 °C, entspricht einem Kondensationsdruck von ca. 25 mbar bis 70 mbar). An die Wärmesenke wird die komplette Kondensationswärme abgegeben, da die Abwärme auf diesem niedrigen Temperaturniveau nicht mehr genutzt werden kann.

Dahingegen wird im Gegendruckbetrieb der überhitzte Dampf nur soweit entspannt, bis das für die Fern- oder Prozesswärme notwendige Temperatur- bzw. Druckniveau erreicht ist. Auf diesem höheren Temperaturniveau, das je nach Vorlauftemperatur der Fernwärme im Jahresverlauf schwankt, wird der komplette Dampf kondensiert (vgl. Abbildung 2.15, rechts). Die Strom- und Fernwärmeproduktion stehen somit in einem festen Verhältnis, wodurch bei rückläufiger Fernwärmenachfrage im Sommer auch weniger elektrische Energie produziert wird. Auch wenn der elektrische Wirkungsgrad mit ca. 25 % gegenüber dem Kondensationsbetrieb deutlich geringer ausfällt, lassen sich durch die Nutzung der Kondensationswärme Brennstoffausnutzungsgrade von bis zu 90 % erreichen [vgl. Kaltschmitt et al., 2009, S. 557].

Der Entnahme-Kondensations-Betrieb löst die starre Kopplung zwischen Strom- und Wärmeproduktion auf, indem ein Teil des Dampfes auf einem definierten Druck- und Temperaturniveau an sogenannten Anzapfstellen entnommen wird. Ein reiner Kondensationsbetrieb ist weiterhin möglich, ein reiner Gegendruckbetrieb allerdings in der Regel nicht, da ein Teil des Dampfes stets über den Niederdruckteil der Turbine geleitet werden muss. Im Falle eines abschaltbaren Niederdruckteils wäre wiederum ein reiner Gegendruckbetrieb möglich [vgl. Kaltschmitt et al., 2009, S. 558].

2.1.2.3 Gasturbinenprozess

In einer Gasturbine wird die Verbrennungsluft zunächst im Kompressor verdichtet und in der Brennkammer mit dem Brennstoff (überwiegend Erdgas) vermischt. Die dabei entstehenden Rauchgase werden als Arbeitsmedium in der nachgeschaltete Turbine entspannt, so dass Rotationsenergie erzeugt wird [vgl. Strauß, 2006, S. 85]. Im Falle schlechter Gasqualität kann das Brenngas auch in einem externen Brenner verbrannt werden und die Energie an einen Wärmeträger (z. B. Luft) übergeben werden, der in der Gasturbine entspannt wird. Hierdurch reduziert sich jedoch der elektrische Wirkungsgrad. Deswegen wird dieser Fall im Folgenden nicht weiter betrachtet. Grundsätzlich werden Gasturbinen auf Erdgasbasis eingesetzt. Wenn gereinigtes Produktgas aus der Biomassevergasung

Abbildung 2.15: Dampfkraftprozess von Kondensations- und Gegendruckturbine im T, s-Diagramm [Kaltschmitt et al., 2009, S. 555]

eingesetzt wird, müssen deren Brenner jedoch angepasst werden, da das Produktgas einen niedrigeren Heizwert gegenüber Erdgas aufweist. Gasturbinen in einer Größenordnung von 20 MW elektrischer Leistung weisen üblicherweise einen elektrischen Wirkungsgrad von ca. 35% auf [vgl. Kaltschmitt et al., 2009, S. 643 ff.].

Die Abgastemperatur einer Gasturbine beträgt ca. 500 °C. Dieses Temperaturniveau ist entweder für eine erhebliche Wärmeauskopplung oder für die Beheizung eines sogenannten Abhitzekessels geeignet [vgl. Kaltschmitt et al., 2009, S. 646]. Mit Hilfe dieses Abhitzekessels kann Wasserdampf für einen Dampfturbinenprozess erzeugt werden, wodurch der elektrische Wirkungsgrad des gesamten Prozesses auf mehr als 50 % angehoben werden kann.

Der Vorteil von Gasturbinen besteht vor allem in der sauberen Verbrennung, der hohen Wechsellastfähigkeit (ohne Dampfturbine) und relativ geringen Investitionskosten gegenüber Festbrennstoffverbrennungen.

2.1.3 CO₂-Sequestrierung

Die CO₂-Sequestrierung besteht aus den drei Teilprozessen CO₂-Abscheidung, CO₂-Transport und CO₂-Speicherung. Darüber hinaus gibt es die CO₂-Kompression, die in dieser Arbeit im Rahmen der CO₂-Abscheidung behandelt wird, und das CO₂-Monitoring, das innerhalb der CO₂-Speicherung betrachtet wird. Die technischen Grundlagen dieser Teilprozesse werden in den folgenden Unterkapiteln 2.1.3.1 bis 2.1.3.3 näher vorgestellt. An deren Ende wird jeweils ein kurzer Überblick über bestehende und geplante Projekte in der CCS-Prozesskette gegeben, die sich jedoch derzeit vor allem auf fossile Brennstoffe konzentrieren.

2.1.3.1 CO₂-Abscheidung und CO₂-Kompression

Die CO_2 -Abscheidung stellt den ersten Schritt der CO_2 -Sequestrierung dar. Grundsätzlich könnte man auch das komplette Rauchgas abtransportieren und in komprimierter Form speichern. Dies hätte jedoch den Nachteil, dass bestehende Lagerstätten sehr viel schneller gefüllt wären und sich die Kosten und der Energieaufwand für die Kompression vervielfachen würden [vgl. Duckat et al., 2004, S. 10].

Im Folgenden wird zunächst auf die grundsätzlichen Prozessvarianten der CO₂-Abscheidung eingegangen, die sich derzeit für den Kraftwerksmaßstab in Entwicklung befinden (v. a. Post-Combustion, Pre-Combustion und Oxyfuel). Anschließend werden die Verfahren der CO₂-Abtrennung erläutert, bevor auf die CO₂-Kompression näher eingegangen wird. Im Kapitel 2.1.3.1.4 werden die sich ergebenden Wirkungsgradverluste der dominierenden CO_2 -Abscheidungsverfahren vorgestellt. Abschließend wird ein kurzer Status quo der CO_2 -Abscheidung gegeben.

2.1.3.1.1 Prozessvarianten der CO₂-Abscheidung Für die CO₂-Abscheidung existieren drei Prozessvarianten, für die bereits Pilotanlagen errichtet worden sind (vgl. Kapitel 2.1.3.1.5): CO₂-Abtrennung aus dem Rauchgas (Post-Combustion), CO₂-Abscheidung aus dem Brenngas nach Vergasung des Brennstoffs (Pre-Combustion) und die Verbrennung mit reinem Sauerstoff (Oxyfuel) (vgl. Abbildung 2.16). Es wird erwartet, dass diese drei Varianten bis zum Jahr 2020 bis 2030 im großindustriellen Kraftwerksmaßstab zur Verfügung stehen. Darüber hinaus befinden sich mehrere Prozessvarianten in der Entwicklung, die aus heutiger Sicht ab dem Jahr 2030 marktreif sein können [vgl. Grünwald, 2007, S. 2]: Chemical Looping, Carbonate Looping, CO₂-Abtrennung mittels Brennstoffzellen, ZECA-Prozess und AZEP-Konzept. Auf diese Prozessvarianten wird anschließend näher eingegangen.

Abbildung 2.16: Wesentliche Prozessvarianten der CO₂-Abscheidung, eigene Darstellung auf Basis von Fischedick et al. [2007, S. 58 ff.]

Post-Combustion Die Prozessvariante Post-Combustion basiert auf einem konventionellen Kraftwerk (Kohlestaubfeuerung – Pulverised Coal bzw. PC), in dem der Energieträger mit Umgebungsluft verbrannt und die CO₂-Abscheidung aus dem Rauchgas vorgenommen wird. Die CO₂-Gehalte im Rauchgas betragen bei Kohlekraftwerken 10 % bis 15 %, bei Gaskraftwerken 3 % bis 6 % [vgl. Donner und Lübbert, 2006, S. 10] – der Forschungsschwerpunkt liegt hierbei eindeutig auf dem Festbrennstoff Steinkohle (z. T. Braunkohle) und weniger auf Erdgas [vgl. Gough und Upham, 2010, S. 12]. Der CO₂-Gehalt ist vor allem wegen des sehr hohen Stickstoffanteils im Rauchgas relativ niedrig, der mit der Verbrennungsluft (ca. 79 % Stickstoffanteil) der Feuerung zugeführt wird. Das Rauchgas liegt in der Regel unter atmosphärischem Druck vor und ist zur Wirkungsgradsteigerung des Kraftwerks möglichst weit abgekühlt (ca. 150 °C ohne Brennwerttechnik, mit Brennwerttechnik niedriger). Durch den geringen CO₂-Gehalt und den atmosphärischen Druck ergibt sich ein relativ großes Rauchgasvolumen, das für die CO₂-Abscheidung gereinigt werden muss.

Die Abtrennung wird in der Regel mittels einer chemischen Rauchgaswäsche (vgl. Kapitel 2.1.3.1.2) vorgenommen, die prozessseitig der Abtrennung von Schwefeldioxid (SO₂) und Stickoxiden (NO_x) ähnelt. Da nur wenig in die bestehende Kraftwerkstechnik eingegriffen wird, eignet sich die Post-Combustion gut für die Nachrüstung bereits existierender Kraftwerke, wenn ausreichend Platz für die Installation der Rauchgaswäsche vorhanden ist [vgl. Duckat et al., 2004, S. 10]. Neben der chemischen Rauchgaswäsche wird ebenfalls der Einsatz von Adsorptions-, Membran- und Hochtemperaturverfahren diskutiert [vgl. Metz et al., 2005, S. 119 ff.], (vgl. Kapitel 2.1.3.1.2).

Pre-Combustion Bei der Pre-Combustion-Technologie wird das CO_2 aus dem Brenngas vor der Verbrennung abgeschieden. Hierfür werden Festbrennstoffe zunächst mittels Vergasung und gasförmige Brennstoffe mittels Dampfreformierung in ein Synthesegas umgewandelt, das zum Großteil aus Wasserstoff (H₂) und Kohlenstoffmonoxid (CO) besteht. In einer CO-Shift-Reaktion wird das enthaltene Kohlenstoffmonoxid anschließend unter Zugabe von Wasserdampf zu weiterem Wasserstoff und Kohlenstoffdioxid umgesetzt [vgl. Radgen et al., 2006, S. 50 ff.]. Dieses Brenngas beinhaltet neben reinem Wasserstoff zwischen 15 % und 60 % an CO₂ [vgl. Metz et al., 2005, S. 130]. Die Brenngasaufbereitung für die anschließende CO₂-Abtrennung ist bei der Vergasung von Kohle aufwändiger als bei Erdgas, da das Brenngas beispielsweise von Schwefelbestandteilen gereinigt werden muss [vgl. Radgen et al., 2006, S. 55].

Die Kohlevergasung wird bei einem Druck von ca. 60 bar durchgeführt, so dass sich die physikalische Absorption als CO_2 -Abtrennverfahren anbietet (vgl. Kapitel 2.1.3.1.2). Dahingegen wird die Dampfreformierung von gasförmigen Brennstoffen aus thermodynamischen Gründen bei 30 bar durchgeführt, so dass die chemische Absorption für die CO_2 -Abtrennung bevorzugt gewählt werden sollte [vgl. Radgen et al., 2006, S. 55], (vgl. Kapitel 2.1.3.1.2).

Nach der CO₂-Abtrennung besteht das Produktgas aus fast reinem Wasserstoff, das zur Strom- und Wärmeerzeugung in einer Gasturbine mit nachgeschalteter Dampfturbine verwendet werden kann (Gas- und Dampfturbinenprozess, GuD). Hierfür müssen allerdings noch Gasturbinen entwickelt werden, die mit reinem Wasserstoff betrieben werden können [vgl. Bennaceur et al., 2008, S. 54]. Beim Einsatz von Festbrennstoffen wird hierbei von Integrated Gasification Combined Cycle (IGCC), beim Einsatz von gasförmigen Brennstoffen von Natural Gas Combined Cycle (NGCC) bzw. Gas- und Dampfturbinenprozess (GuD) gesprochen. Neben der Verwendung in einer GuD-Anlage besteht auch die Möglichkeit zur alternativen Nutzung in einer zukünftigen Wasserstoffwirtschaft [vgl. Fischedick et al., 2007, S. 54].

Oxyfuel Im Oxyfuel-Verfahren wird als Verbrennungsluft reiner Sauerstoff verwendet. Reiner Sauerstoff als Oxidationsmittel hat gegenüber der Umgebungsluft den Vorteil, dass im Rauchgas die durchschnittlich 79 % Stickstoff der Umgebungsluft nicht enthalten sind. Die CO₂-Konzentration im Rauchgas wird dadurch deutlich erhöht. Nach Auskondensation des Wasserdampfes kann das zu 80 % bis 98 % aus CO₂ bestehende Rauchgas ohne weitere CO₂-Abtrennung der Kompression und der Aufbereitung für den Transport bzw. der Speicherung zugeführt werden [vgl. Metz et al., 2005, S. 122].

Die hohen und dadurch materialermüdenden Temperaturen bei der Verbrennung mit reinem Sauerstoff werden durch eine Rezirkulation der CO_2 -reichen Abgase reduziert.

Die Rezirkulation ermöglicht darüber hinaus eine Reduktion des Restsauerstoffgehalts im Rauchgas [vgl. Linßen et al., 2006, S. 14].

Der Nachteil dieses Verfahrens besteht darin, dass die Erzeugung von reinem Sauerstoff mittels Tieftemperaturverfahren (bei kleiner -182 °C) sehr energieintensiv ist [vgl. Linßen et al., 2006, S. 14]: Der Energieaufwand in Bezug auf die Sauerstoffmasse liegt für einen Sauerstoffstrom mit 99,5 % Sauerstoffanteil bei 210 kWh/t bis 290 kWh/t [vgl. Radgen et al., 2006, S. 55]. Der reine Sauerstoffstrom wird hierbei durch Destillation produziert, was bereits seit mehr als 100 Jahren Stand der Technik ist und bislang das einzige großindustrielle Verfahren darstellt [vgl. Metz et al., 2005, S. 127]. Innovative Verfahren zur reinen Sauerstofferzeugung mittels keramischen Membranen lassen einen um rund 50 % reduzierten Energieaufwand erwarten (147 kWh/t), falls sie auf den Kraftwerksmaßstab hochskaliert werden können [vgl. Bennaceur et al., 2008, S. 51].

Weitere Varianten In Abbildung 2.17 sind weitere Prozessvarianten der CO₂-Abscheidung dargestellt, bei denen ab dem Jahr 2030 mit einer Marktreife gerechnet wird [vgl. Grünwald, 2007, S. 2].

Abbildung 2.17: Innovative Prozessvarianten der CO₂-Abscheidung, eigene Darstellung auf Basis von Fischedick et al. [2007, S. 58 ff.], Epple und Ströhle [2008, S. 85 f.]

Beim Chemical Looping wird dem gasförmigen Brennstoff zur Verbrennung Sauerstoff in

Form von Metalloxiden (MeO) zur Verfügung gestellt. Dadurch entsteht nach Abscheidung des enthaltenen Wassers ein Rauchgas aus reinem CO_2 (ähnlich dem Oxyfuel-Verfahren). Die größte Herausforderung liegt in der Suche nach geeigneten Sauerstoffträgern, die der wiederholten Oxidation und Reduktion über längere Zeiträume standhalten [vgl. Fischedick et al., 2007, S. 60 f.].

Der Prozess des Carbonate Loopings basiert auf einer Rauchgaswäsche mit Kalk. Das im Rauchgas enthaltene CO_2 reagiert unter Wärmefreigabe in der Karbonisierung mit CaO zu CaCO₃. In der folgenden Kalzinisierung löst sich das CO₂ unter Wärmezugabe bei 900 °C und kann anschließend komprimiert werden [vgl. Epple und Ströhle, 2008, S. 85 f.].

Für die CO₂-Abtrennung mittels Brennstoffzellen erscheint die Hochtemperatur-Oxidbrennstoffzelle (Solid Oxide Fuel Cell – SOFC) am besten geeignet. Hierbei wird mittels eines nachgeschalteten Wassergas-Shift-Membran-Reaktors das Anodenrestgas aus der Brennstoffzelle, das bis zu 35 % Brenngase enthält, in CO₂ und H₂ aufgeteilt. Der Wasserstoff kann in einer Gasturbine verbrannt werden, das Kohlenstoffdioxid kann gespeichert werden [vgl. Fischedick et al., 2007, S. 58 f.].

Der ZECA-Prozess (Zero Emission Coal Alliance) verknüpft eine Hochtemperaturbrennstoffzelle mit einer Kohlevergasung und dem Prozess des Carbonate Loopings. Zunächst wird der Brennstoff mit H₂ zu CH₄ vergast. In der anschließenden Karbonisierung wird das CH₄ mit Hilfe von CaO zu H₂ und CaCO₃ umgesetzt. Der dabei entstehende Wasserstoff wird zur Hälfte dem Vergasungsprozess und zur Hälfte der Brennstoffzelle zur Stromerzeugung zugeführt. Das CO₂ wird in der Kalzinisierung aus dem CaCO₃ abgeschieden [vgl. Fischedick et al., 2007, S. 59].

Im AZEP-Prozess (Advanced Zero Emission Power Plant) wird mittels einer keramischen Hochtemperatur-Sauerstoffmembran innerhalb der Brennkammer einer Gasturbine ein reiner Sauerstoffstrom erzeugt, der mit einem gasförmigen Brennstoff oxidiert. Die heißen Verbrennungsabgase bestehen vor allem aus Kohlenstoffdioxid und Wasser, die einen nachgeschalteten Dampfturbinenprozess betreiben können (Wirkungsgraderhöhung durch GuD). Nach Auskondensation des Wassers ergibt sich ein reiner CO₂-Strom, der gespeichert werden kann [vgl. Fischedick et al., 2007, S. 59 f.].

Neben den bislang ausgeführten Prozessvarianten wird ebenfalls die Möglichkeit diskutiert, das in den Rauchgasen eines konventionellen Kraftwerks enthaltene CO_2 zur Aufzucht von Algen zu verwenden [vgl. Bennaceur et al., 2008, S. 109]. Hierfür werden die entschwefelten Rauchgase entweder in geschlossene oder offene Bioreaktoren gegeben, in denen Algen wachsen. Das CO_2 wird von den Algen im Rahmen der Photosynthese unter Lichteinfluss dazu genutzt, Biomasse und Sauerstoff zu produzieren. Algen sind hierfür besonders geeignet, da diese deutlich höhere Photosyntheseraten als vergleichbare

Landpflanzen aufweisen und somit schneller CO_2 binden können: Während Pappeln oder Weiden rund $12 t/(ha \cdot a)$ und Miscanthus rund $15 t/(ha \cdot a)$ erreichen, weisen Mikroalgen eine Produktivität von $60 t/(ha \cdot a)$ bis $100 t/(ha \cdot a)$ an Trockensubstanz auf. Dabei werden $120 t/(ha \cdot a)$ bis $200 t/(ha \cdot a)$ an CO_2 umgewandelt [vgl. RWE, 2008, S.3]. Die Algen können anschließend entweder wiederum verbrannt, in einen biogenen Treibstoff umgewandelt oder zur Herstellung von hochwertigen Produkten (Medizin, Kosmetik) verwendet werden [vgl. Moreira, 2008, S.8], [vgl. Fritsche et al., 2010, S. 35]. Nach Ansicht von Siemens könnten prinzipiell alle Produkte, die heute aus fossilen Rohstoffen hergestellt werden, zukünftig aus CO_2 hergestellt werden [vgl. Hoferichter, 2010, S. 47]. Auch wenn hiermit langfristig keine großen negativen CO_2 -Emissionen zu erreichen sind (vgl. Kapitel 5.4.4.2), wird dieses Verfahren ebenfalls in der technischen Analyse betrachtet.

2.1.3.1.2 Verfahren der CO₂-Abtrennung Für die im vorangegangenen Kapitel beschriebenen Prozessvarianten der CO₂-Abscheidung existieren verschiedene Verfahren der eigentlichen CO₂-Abtrennung aus dem Brenn- oder Rauchgasstrom. Für die Prozessvarianten mit reiner Sauerstoffverbrennung (Oxyfuel, Chemical Looping, AZEP-Prozess) entfällt dieser Schritt, da nach Trocknung des Gasstroms bereits eine für den CO₂-Transport und die CO₂-Lagerung ausreichend hohe CO₂-Konzentration vorliegt. Beim Carbonate Looping und beim ZECA-Prozess findet die CO₂-Abtrennung im Prozessschritt der Kalzinisierung statt (vgl. das folgende Hochtemperaturverfahren). Somit kommen die Verfahren der CO₂-Abtrennung ausschließlich für die Prozessvarianten Post-Combustion und Pre-Combustion zum Einsatz.

Grundsätzlich können bei der CO₂-Abtrennung Hoch- und Niedertemperaturverfahren unterschieden werden. Beim Hochtemperaturverfahren wird das Absorptionsmittel bzw. Absorbens (z. B. Oxide, Silikate) direkt in die Verbrennung, Vergasung oder Reformierung (Shift-Reaktor) gegeben, wo es sich mit dem CO₂ in einer exothermen Reaktion verbindet. Durch einen Temperaturwechsel wird das CO₂ wieder freigegeben. Der Vorteil dieser Variante gegenüber den Niedertemperaturverfahren liegt darin, dass die Brenngase für die CO₂-Abtrennung nicht gekühlt werden müssen, sondern anschließend in einer Gasturbine oder für die Dampferzeugung genutzt werden können. Es werden ein CO₂-Abscheidegrad von mehr als 90 % und ein auf die abgeschiedene CO₂-Masse bezogener Energiebedarf von ca. 0,8 GJ/t erwartet. Der CO₂-Abscheidegrad beschreibt das Verhältnis des abgeschiedenen CO₂ im Verhältnis zum im zu reinigenden Gasstrom enthaltenen CO₂. Für dieses Verfahren befinden sich die Hochtemperaturabsorbenzien, die einer ausreichenden Anzahl an Regenerationszyklen standhalten, bislang in Entwicklung. Mit einem großtechnischen Einsatz ist in 15 bis 20 Jahren zu rechnen [vgl. Fischedick et al., 2007, S. 221].

Im Bereich der Niedertemperaturverfahren werden die folgenden Arten unterschieden:

- chemische Absorptionsverfahren,
- physikalische Absorptionsverfahren,
- Adsorptionsverfahren,
- Membranverfahren und
- Tieftemperaturverfahren.

Die fünf genannten Verfahren werden bereits kommerziell eingesetzt (z. B. für die Aufbereitung von Biogas, vgl. Kapitel 2.1.1.8.2), sind jedoch noch nicht im Kraftwerksmaßstab erprobt. Alle Verfahren werden gleichermaßen dahingehend weiterentwickelt, dass sie mit einem geringeren Energieaufwand höhere CO₂-Abtrenngrade erreichen. Auch der Aspekt der CO₂-Selektivität steht im Fokus der Forschungarbeiten, um einen möglichst reinen CO₂-Strom zu erzeugen. Sie werden in den folgenden Abschnitten näher erklärt. Dabei wird neben der Wirkprinzipbeschreibung im Besonderen auf den spezifischen Energieeinsatz zur CO₂-Abtrennung und den CO₂-Abscheidegrad näher eingegangen. Auf den Aspekt der tatsächlich vermiedenen CO₂-Emissionen wird im Kapitel 5.3 vor dem Hintergrund der Nachhaltigkeit eingegangen.

Chemische Absorption Bei der chemischen Absorption wird das CO_2 an ein festes oder flüssiges Absorbens gebunden. Das CO_2 aus dem Rauchgas, das unter leichtem Druck steht und eine Temperatur von 40 °C bis 60 °C aufweist, geht mit dem Absorbens eine chemische Bindung ein und wird durch Temperaturanhebung auf 100 °C bis 140 °C dem Absorbens wieder ausgetrieben. Anschließend steht das Waschmittel bzw. Absorbens für eine erneute CO_2 -Absorption zur Verfügung [vgl. Donner und Lübbert, 2006, S. 11], [vgl. Duckat et al., 2004, S. 12], [vgl. Metz et al., 2005, S. 115].

Als Absorbenzien stehen unterschiedliche Stoffe zur Verfügung (z. B. Mono-, Di- oder Triethanolamin). Bereits seit Ende der 1970er Jahre wird Monoethanolamin (MEA) in der chemischen Großindustrie eingesetzt und ist auch heute im Kraftwerksbereich das überwiegend genutzte chemische CO₂-Absorptionsmittel. Durch Verunreinigungen im Abgas wird das MEA allerdings degradiert. Deswegen muss regelmäßig frisches MEA zugegeben werden, was das Verfahren recht ressourcenintensiv macht [vgl. Donner und Lübbert, 2006, S. 11]: Bezogen auf das abgeschiedene CO₂ müssen durchschnittlich 0.2 kg/tbis 1,6 kg/t an Absorbens eingesetzt werden [vgl. Metz et al., 2005, S. 116]. Besonders die Anwesenheit von Sauerstoff, Partikeln, Schwefeldioxid und Stickoxiden unterstützt die Degradation von MEA [vgl. Linßen et al., 2006, S. 12].

Ein weiterer Nachteil des Verfahrens liegt in dem hohen energetischen Aufwand der Lösungsmittelregeneration, da das CO_2 mit dem Absorbens eine starke chemische Bindung eingeht [vgl. Radgen et al., 2006, S. 45]. Hierdurch liegt der auf das abgeschiedene CO_2

bezogene Energieaufwand für die chemische Absorption zwischen 1,95 GJ/t [vgl. Fischedick et al., 2007, S. 219]⁶ und 2,9 GJ/t bis 3,4 GJ/t. Der Wert von 3,4 GJ/t bezieht sich auf einen CO₂-Gehalt im Rauchgas von 3% (z. B. bei Gasverbrennung), 2,9 GJ/t bezieht sich auf einen CO₂-Gehalt im Rauchgas von 14% (z. B. bei Steinkohleverbrennung) [vgl. Bennaceur et al., 2008, S. 49]. Derzeit wird nach neuen Absorbenzien geforscht, mit denen durch eine geringere chemische Bindung zwischen Absorbens und CO₂ der spezifische Energieaufwand zukünftig auf weniger als 2 GJ/t reduziert werden kann [vgl. Bennaceur et al., 2008, S. 49]. Die chemische Absorption ist bei CO₂-Konzentrationen von bis zu 15% im zu reinigenden Gasstrom aus Effizienzgründen der physikalischen Absorption vorzuziehen [vgl. Bennaceur et al., 2008, S. 50]. Der CO₂-Abscheidegrad liegt üblicherweise bei 90%, kann aber auch bis zu 98% betragen [vgl. Duckat et al., 2004, S. 12].

Physikalische Absorption Bei der physikalischen Absorption verbindet sich das CO_2 unter hohem Druck mit dem Absorbens und löst sich wieder, sobald der Druck reduziert wird. Somit muss im Gegensatz zur chemischen Absorption keine Wärmeenergie zum Lösen des CO_2 aus dem Lösungsmittel eingesetzt werden, sondern der zu reinigende Gasstrom muss für die Absorption unter Druck stehen bzw. gesetzt werden. Da mit steigender CO_2 -Konzentration der zu komprimierende Gasstrom spezifisch kleiner wird, eignet sich die physikalische Absorption für CO_2 -Konzentration von mehr als 15 % bzw. einem CO_2 -Partialdruck von mehr als 10 bar [vgl. IEA/OECD, 2004, S. 50], [vgl. Linßen et al., 2006, S. 12]. Darüber hinaus nimmt mit steigendem CO_2 -Partialdruck auch die Absorptionskapazität von physikalischen Absorbenzien nach Henrys Gesetz zu [vgl. Radgen et al., 2006, S. 52]. Für die physikalische Absorption muss der zu reinigende Gasstrom auf eine maximale Betriebstemperatur von 60 °C abgekühlt sein [vgl. Linßen et al., 2006, S. 12].

Als physikalische Lösungsmittel werden "Rectisol" (Methanol), Fluor-Wäscher (Propylen Carbonat), "Purisol" (N-Methyl Pyrrolidon) und "Selexol" eingesetzt. Selexol besteht aus Polyethylenglykol und Dimethylether und wird bei einem Großteil der geplanten CCS-Anlagen vorgesehen [vgl. Radgen et al., 2006, S. 53]. Die physikalische Absorption ist bereits relativ weit entwickelt und wird beispielsweise im Bereich der Ammoniakherstellung eingesetzt [vgl. Linßen et al., 2006, S. 12].

Mit der physikalischen Absorption können CO_2 -Abscheidegrade von 60% bis 80% erreicht werden. Der auf das abgeschiedene CO_2 bezogene Energieaufwand liegt bei

 $^{^{6}}$ Der Wert von 1,95 GJ/t erscheint recht niedrig: In Metz et al. [vgl. 2005, S. 117] wird eine Spannbreite von 2,7 GJ/t bis 3,3 GJ/t (plus 0,1 GJ/t bis 0,3 GJ/t für elektrische Energie) angegeben, die den Werten aus Bennaceur et al. [vgl. 2008, S. 49] ähnelt.

0,1 GJ/t [vgl. Fischedick et al., 2007, S. 219]. An anderer Stelle wird ein spezifischer Energieaufwand von 0,17 GJ/t bis 0,40 GJ/t angegeben. Hierbei handelt es sich (im Gegensatz zu den Angaben bei der chemischen Absorption) um elektrische Energiemengen [vgl. Göttlicher, 1999, S. 162]. Es kann nicht gesagt werden, inwiefern der spezifische Energieaufwand mit steigendem CO₂-Partialdruck abnimmt.

Adsorption Für die Adsorption von Kohlenstoffdioxid werden Feststoffe mit einer porösen Oberflächenstruktur wie Aktivkohle oder Zeolith eingesetzt. Das CO₂ aus dem Rauchgasstrom lagert sich an der Oberfläche an und wird in einem anschließenden Regenerationszyklus wieder gelöst. In Abhängigkeit vom Adsorbens wird die Regeneration durch Druckverminderung (Pressure Swing Adsorption – PSA), Temperaturerhöhung (Temperature Swing Adsorption – TSA) oder einen elektrischen Stromfluss (Electric Swing Adsorption – ESA) durchgeführt. PSA und TSA wird bereits kommerziell zur Erdgasreinigung eingesetzt [vgl. Linßen et al., 2006, S. 12], [vgl. Duckat et al., 2004, S. 13 f.].

Es werden CO_2 -Abscheidegrade von 90 % für technisch machbar gehalten. Der Energieverbrauch für die CO_2 -Adsorption auf Basis von PSA und TSA in Bezug auf das abgeschiedene CO_2 wird in der Literatur zwischen 2,0 GJ/t und 2,9 GJ/t angegeben [vgl. Metz et al., 2005, S. 119], [vgl. Fischedick et al., 2007, S. 219].

Das Adsorptionsverfahren scheint am ehesten für geringe Rauchgasströme mit relativ hoher CO_2 -Konzentration geeignet. Ein Einsatz im Kraftwerksmaßstab ist jedoch eher unrealistisch, da durch die diskontinuierliche Prozessführung die Anlagen im abwechselnden Betrieb redundant ausgelegt werden müssen [vgl. Radgen et al., 2006, S. 50]. Darüber hinaus gibt es nur wenige Adsorbenzien, die eine ausreichende Eignung für die Adsorption von CO_2 aufweisen und deren weltweite Kapazität äußerst begrenzt ist [vgl. IEA/OECD, 2004, S. 54].

Membran Die CO_2 -Abtrennung durch Membranen basiert auf der unterschiedlichen Permeabilität von einzelnen Gasbestandteilen. In Abhängigkeit vom Material der Membran können bestimmte Gase die Membran passieren [vgl. Metz et al., 2005, S. 109]. Die Selektivität und die Permeabilität für diese Gase bestimmt die Effizienz des Trennverfahrens. Besonders gut gelingt die Trennung von Gasen, die sehr unterschiedliche Molekülgrößen aufweisen [vgl. Fischedick et al., 2007, S. 218]. Bei der CO₂-Abtrennung diffundiert das CO₂ durch die Membran und wird auf der anderen Seite der Membran abgeführt (mittels einer Flüssigkeit, z. B. MEA) [vgl. Duckat et al., 2004, S. 14]. Als Membran können Polymere, Metalle oder Keramiken verwendet werden [vgl. Fischedick et al., 2007, S. 220]. Keramische Membranen haben den Vorteil, bei hohen Temperaturen

betrieben werden zu können (z. B. im IGCC-Prozess), während sie mit einem Abscheidegrad von nur 7% gegenüber Membranen aus Polymeren (ca. 57%) relativ schlecht abschneiden [vgl. IEA/OECD, 2004, S. 52]. Um entsprechend hohe CO_2 -Abscheidegrade bei großen Rauchgasvolumenströmen zu erreichen, müssen mehrere Membranen mit einer großen Oberfläche und unterschiedlichen Eigenschaften in Reihe geschaltet werden [vgl. Duckat et al., 2004, S. 14].

Da Membranen gut in den thermodynamischen Prozess eines Kraftwerks integriert werden können, werden relativ niedrige Wirkungsgradeinbußen erwartet [vgl. Linßen et al., 2006, S. 13]. Sie können beispielsweise in der Brennkammer einer Gasturbine installiert werden oder im IGCC-Prozess nach der Shift-Reaktion zum Einsatz kommen [vgl. Duckat et al., 2004, S. 14]. Die hohe Energieeffizienz der Membranen beruht darauf, dass für die CO₂-Abtrennung bereits ein relativ kleiner Druckunterschied zwischen der Membranvorderseite und -rückseite ausreichend ist [vgl. IEA/OECD, 2004, S. 52]. Durch höhere Druckunterschiede kommt es zu einem größeren CO₂-Strom durch die Membran, so dass für das Membranverfahren Gasströme unter hohem Druck bevorzugt werden [vgl. Metz et al., 2005, S. 109]. Es könnten CO₂-Abscheidegrade von bis zu 60% erreicht werden (siehe oben) und es wird von einem CO₂-spezifischen Energiebedarf von 1,15 GJ/t ausgegangen [vgl. Fischedick et al., 2007, S. 218].

In Kombination mit der Prozessvariante Pre-Combustion ist der Einsatz von Membranen auch zur Abtrennung des Wasserstoffs aus dem Brenngas, das nach der Shift-Reaktion überwiegend aus CO_2 und H_2 besteht, denkbar [vgl. Metz et al., 2005, S. 110]. Dieses Verfahren scheint bereits seit einigen Jahren konkurrenzfähig zu anderen Verfahren zu sein [vgl. Fischedick et al., 2007, S. 218].

Obwohl Membranen sich bereits an vielen Stellen im industriellen Einsatz befinden (z. B. CO_2 -Abscheidung aus Erdgas), wird noch mit erheblichem Entwicklungsaufwand gerechnet, bis ein Einsatz im Kraftwerksmaßstab realistisch erscheint [vgl. Metz et al., 2005, S. 110], [vgl. Duckat et al., 2004, S. 14]. Für die CO₂-Abtrennung aus den Rauchgasen wird mit einer Markteinführung in den nächsten 15 Jahren nicht gerechnet, da die Membran-Selektivität zwischen den Rauchgaskomponenten N₂ und CO₂ noch deutlich verbessert werden muss [vgl. Fischedick et al., 2007, S. 218].

Tieftemperaturverfahren Das Tieftemperaturverfahren (kryogene Trennung) basiert auf der Abkühlung und der anschließenden Kondensation von CO_2 bei Drücken von 4 bar bis 5 bar [vgl. Duckat et al., 2004, S. 14], [vgl. Fischedick et al., 2007, S. 218]. Durch die Abkühlung des Gasstroms ist das Verfahren vor allem bei geringen CO_2 -Gehalten sehr energieaufwändig, so dass es sich für CO_2 -Konzentrationen von mehr als 90% anbietet. Für die Abscheidung von CO_2 aus Biogas wird das Tieftemperaturverfahren bereits

stellenweise eingesetzt, ein Einsatz im Kraftwerksmaßstab ist bislang nicht erfolgt [vgl. Fischedick et al., 2007, S. 220].

Um Eisbildung zu vermeiden, muss für die kryogene Trennung zunächst das Wasser aus dem Gasstrom entfernt werden, bevor dieser abgekühlt werden kann, was einen erheblichen Nachteil darstellt [vgl. Duckat et al., 2004, S. 14]. Ein Vorteil besteht darin, dass die CO₂-Abscheidung und CO₂-Verdichtung in einem Schritt durchgeführt wird, so dass das CO₂ in flüssigem Aggregatzustand für einen möglichen Schiffstransport vorliegt [vgl. Fischedick et al., 2007, S. 220], [vgl. Duckat et al., 2004, S. 14], (vgl. Kapitel 2.1.3.2.3).

Ein CO_2 -Abscheidegrad von 90 % erscheint erreichbar. Der Energiebedarf in Bezug auf das abgeschiedene CO_2 liegt bei 4,35 GJ/t, wodurch ein zukünftiger Einsatz aus energetischer Sicht äußerst unwahrscheinlich ist, auch wenn das Verfahren technisch verfügbar ist [vgl. Fischedick et al., 2007, S. 220].

2.1.3.1.3 CO₂-Kompression Das Kohlenstoffdioxid wird nach der CO₂-Abscheidung für den CO₂-Transport verdichtet, um mit höherer Dichte mittels Pipeline, Schiff, Bahn oder LKW transportiert und anschließend unter der Erdoberfläche eingelagert zu werden. Hierfür werden Hochdruckkompressoren eingesetzt, die das CO₂ auf ca. 110 bar verdichten. Der spezifische, elektrische Energieaufwand für diese Kompression (w_{CO_2-K}) liegt bei 0,2 GJ/t bis 0,5 GJ/t [vgl. Bennaceur et al., 2008, S. 65]. In Göttlicher [vgl. 1999, S. 12] wird dieser Kompressionsaufwand mit 0,40 GJ/t bis 0,47 GJ/t angegeben.

Der eingesetzte Kompressortyp hängt vom Eingangsdruck, Ausgangsdruck, der Gaszusammensetzung und dem zu komprimierenden Volumenstrom ab. Üblicherweise liegt das CO₂ nach der Oxyfuel-Variante im drucklosen Zustand vor, nach der Post-Combustion-Variante bei ca. 1,8 bar und nach der Pre-Combustion-Variante in einem Druckbereich zwischen 1,4 bar und 3,5 bar. Im Wesentlichen werden für die CO₂-Kompression drei Verdichtertypen eingesetzt: Hubkolbenverdichter, mehrstufige Radialverdichter mit Getriebe und mehrstufige Radialverdichter auf einer Welle (ohne Getriebe). Hubkolbenverdichter sind weniger zuverlässig und können im Vergleich zu Radialverdichtern nur einen kleineren Volumenstrom komprimieren, so dass mehrere parallel geschaltet werden [vgl. McConnell et al., 2009a, S.B-17].

Für ein Kraftwerk mit einer elektrischen Bruttoleistung von 740 MW wird mit einer Kompressorleistung von 65 MW gerechnet [vgl. Irons et al., 2007, S. 90]. Bei zwei kleineren Anlagen mit einer elektrischen Bruttoleistung von 250 MW bzw. 75 MW wird die Verdichterleistung auf 28 MW bzw. 9 MW festgelegt [vgl. Cavezzali et al., 2009, S. v]. Die Verdichterleistung macht somit ca. 10% der Kraftwerksbruttoleistung aus.

Da die Kompressorentechnik bereits recht weit entwickelt ist, steht der Aspekt der CO_2 -Kompression nicht im Fokus der derzeitigen CCS-Forschung. Potenziale gibt es

jedoch noch bei der Nutzung der Abwärme, die bei der Verdichtung entsteht (z. B. für die Speisewasservorwärmung) [vgl. Clarke et al., 2004, S. 29].

2.1.3.1.4 Wirkungsgradverlust der dominierenden CO₂-Abscheidungsvarianten Aus den in Kapitel 2.1.3.1.1 genannten grundsätzlichen Prozessvarianten der CO₂-Abscheidung und den in Kapitel 2.1.3.1.2 vorgestellten Verfahren der CO₂-Abscheidung. Die sich eine Vielzahl an möglichen Anlagenkonfigurationen zur CO₂-Abscheidung. Die überwiegende Mehrheit der bisherigen Untersuchungen beschäftigt sich mit den drei Prozessvarianten Post-Combustion, Pre-Combustion und Oxyfuel, so dass nur diese in Tabelle 2.2 dargestellt sind. Die weiteren Varianten, die in Kapitel 2.1.3.1.1 vorgestellt werden, befinden sich noch in einem sehr frühen Entwicklungsstadium, so dass bislang keine konkreten Projekte geplant sind, auf die sich eine nähere Analyse stützen könnte. Lediglich das Carbonate und Chemical Looping ist in Tabelle 2.2 enthalten, weil sie zu den Hochtemperaturverfahren gehören und jeweils mit dem Verfahren der Post-/Pre-Combustion bzw. Oxyfuel kombiniert werden können.

S. 111 ff.], Bennaceur et al. [2008, S. 48], Radgen et al. [2006, S. 143 ff.]			
Prozessvariante	Post-Combustion	Pre-Combustion	Oxyfuel
Trennung von	$\mathrm{CO}_2/\mathrm{N}_2$	$\mathrm{CO}_2/\mathrm{H}_2$	O_2/N_2
Chemische Absorption	MEA	MDEA	-
Physikalische Absorption	-	Selexol , Purisol, Rectisol	-
Adsorption	Zeolith, Aktivkohle	Zeolith, Aktivkohle, Aluminium	Zeolith, Aktivkohle
Membran	Polymere Membranen	Polymere Membranen	Polymere Membranen
Tieftemperatur- verfahren	-	-	Destillation
Hochtemperatur- verfahren	Carbonate Looping	Carbonate Looping	Chemical Looping

Tabelle 2.2: Kombinationen aus Prozessvarianten der CO₂-Abscheidung und Verfahren der CO₂-Abtrennung, eigene Darstellung auf Basis von Metz et al. [2005, S. 111 ff.]. Bennaceur et al. [2008, S. 48]. Badgen et al. [2006, S. 143 ff.]

Bei dieser Vielzahl an möglichen Kombinationen wird sich in Zukunft zeigen, bei welchen Anlagenkonfigurationen die Vorteile oder Nachteile langfristig überwiegen werden, so

dass es zu einer Konzentration auf wenige Technologiepfade kommen wird. Es existieren aus heutiger Sicht vier Kombinationen, die in technischer und wirtschaftlicher Sicht am meisten Erfolg versprechen (vgl. fett gedruckte Kombinationen in Tabelle 2.2), [vgl. Linßen et al., 2006, S. 44 f.]:

- Post-Combustion mit chemischer Absorption (v.a. MEA) für Festbrennstoffe (nach Verbrennung im Kessel),
- Post-Combustion mit chemischer Absorption (v. a. MEA) für gasförmige Brennstoffe (nach Verbrennung in Gasturbine),
- Pre-Combustion mit physikalischer Absorption (v. a. Selexol) für Festbrennstoffe (nach Vergasung) und
- Oxyfuel mit kryogener Sauerstofferzeugung für Festbrennstoffe (bei Verbrennung im Kessel).

Für die Variante Post-Combustion fällt die physikalische Absorption weg, da die CO₂-Konzentration (maximal 15%) und der CO₂-Partialdruck im Rauchgas zu niedrig sind. Eine Adsorption wäre zwar prinzipiell technisch einsetzbar, kann allerdings aufgrund der diskontinuierlichen Prozessführung nur für relativ kleine Rauchgasströme eingesetzt werden (vgl. Kapitel 2.1.3.1.2) und steht somit für alle drei Varianten nicht zur Verfügung. Die Membranen kommen aufgrund der bislang sehr schlechten Membranselektivität für die Rauchgasreinigung nicht in Frage [vgl. Fischedick et al., 2007, S. 58]. Das Carbonate Looping als Hochtemperaturverfahren steht noch am Anfang seiner Entwicklung und kann aufgrund hoher Kalkoxid-Degradationsraten und hoher Reaktivität mit vorhandenem SO₂ für Post- und Pre-Combustion noch nicht eingesetzt werden [vgl. Epple und Ströhle, 2008, S. 86 f.]. Darüber hinaus hat das Carbonate Looping einen CaO-Bedarf in Bezug auf das abgeschiedene CO₂ von ca. 1,4 t/t. CaO liegt häufig nicht in reiner Form vor, so dass große Massen an Rohmaterial transportiert werden müssen [vgl. Göttlicher, 1999, S. 11].

Die Kombination von Pre-Combustion mit chemischer Absorption ist am ehesten bei niedrigen CO₂-Gehalten (15%) im Brenngas interessant, die bei der Verwendung von gasförmigen Brennstoffen auftreten können. Bei höheren CO₂-Gehalten und hohen Drücken, die in der Regel nach der Shift-Reaktion vorliegen, weist die physikalische Wäsche klare energetische Vorteile auf [vgl. Bennaceur et al., 2008, S. 50]. Der Einsatz von gasförmigen Brennstoffen in Verbindung mit Pre-Combustion steht in den bisherigen Untersuchungen allerdings nicht im Mittelpunkt [vgl. Radgen et al., 2006, S. 144]. Die Wasserstoffabtrennung mittels Membranen erscheint technisch sicher machbar und befindet sich nahe an der Kommerzialisierung [vgl. Fischedick et al., 2007, S. 58].

Die Sauerstoffherstellung für das Oxyfuel-Verfahren wird bislang eindeutig vom Tief-

temperaturverfahren mittels Destillation dominiert. Der Entwicklung von O₂-Membranen wird innerhalb der nächsten 20 Jahre die größten Chancen eingeräumt, die kryogene Luftzerlegung zu ersetzen. Für den Einsatz des Oxyfuel-Verfahrens in Gasturbinen ist zunächst die Entwicklung angepasster Gasturbinen notwendig, die mit den Stoffen CO₂ und H₂O arbeiten können, so dass der Energieträger Erdgas bislang nicht im Fokus der Forschungsprojekte steht [vgl. Fischedick et al., 2007, S. 58]. Das Carbonate Looping als Hochtemperaturverfahren befindet sich wie das Chemical Looping noch in einem frühen Stadium der Entwicklung [vgl. Epple und Ströhle, 2008, S. 86 f.].

Die im Kapitel 2.1.3.1.2 genannten Energieaufwendungen zum Abtrennen des CO_2 führen in Kombination mit den einzelnen Prozessvarianten der CO_2 -Abscheidung zu unterschiedlichen Wirkungsgradverlusten, da teilweise elektrische Energie (z. B. für Sauerstofferzeugung) und teilweise thermische Energie benötigt wird: Diese thermische Energie kann aus bereits größtenteils entspanntem Dampf gewonnen werden (z. B. für chemische Absorption).

Beim Vergleich von Literaturangaben zur Reduzierung des elektrischen Anlagenwirkungsgrads durch Integration einer CO₂-Abscheidung fällt eine große Spanne der Ergebnisse auf. Diese Differenzen lassen sich unter anderem durch unterschiedliche Annahmen bezüglich der Standortbedingungen, dem Verbrauch für Einsatzstoffe und dem Detaillierungsgrad der Modelle begründen. Ein wesentlicher Einflussfaktor sind die Druck- und Temperaturniveaus des CO₂-Stroms nach der CO₂-Abscheidung. In einer Studie für das Umweltbundesamt sind für eine Reihe an Anlagenvarianten, die in der Literatur analysiert worden sind, die Wirkungsgradverluste auf einen einheitlichen CO₂-Druck von 110 bar berechnet worden, die für Abbildung 2.18 verwendet worden sind [vgl. Radgen et al., 2006, S. 47]. Hierbei handelt es sich größtenteils um Studien aus den Jahren 1992 bis 2003, so dass die Angaben ohne CO₂-Abscheidung niedriger als die elektrischen Wirkungsgrade für neu gebaute Kraftwerke in Westeuropa ausfallen (z. B. 60 % für GuD-Anlagen oder 48 % für Dampfkraftwerke). Diese Angaben passen jedoch größenordnungsmäßig zu den elektrischen Wirkungsgraden neuerer Veröffentlichungen auf internationaler Ebene [vgl. Finkenrath, 2011, S. 24 ff.].⁷

In Abbildung 2.18 ist für jede der vier wesentlichen CO₂-Abscheidungsvarianten der elektrische Wirkungsgrad ohne und mit CO₂-Abscheidung (CC – Carbon Capture) sowie der Wirkungsgradverlust durch die CO₂-Abscheidung dargestellt. Den Überschriften der Diagramme kann entnommen werden, auf wie vielen Anlagen die Darstellung basiert. Für

⁷In Finkenrath [vgl. 2011, S. 24 ff.] wird bei den Varianten Oxyfuel und IGCC von etwas niedrigeren elektrischen Wirkungsgraden ohne CO₂-Abscheidung ausgegangen (41,6 % bzw. 41,4 %) und die Wirkungsgradreduktion durch die CO₂-Abscheidung fällt bei GuD-Anlagen mit 8,2 %-Punkten um 3,5%-Punkte deutlich niedriger aus.

Abbildung 2.18: Elektrischer Wirkungsgradverlust der wesentlichen CO₂-Abscheidungsvarianten, eigene Darstellung mit Daten aus Radgen et al. [2006, S. 143 ff.]

die Variante Post-Combustion auf Basis des Dampfprozesses (Festbrennstoffe) ergeben sich die größten Spreizungen sowie der niedrigste elektrische Wirkungsgrad ohne und mit CO_2 -Abscheidung sowie der größte Wirkungsgradverlust. Den höchsten elektrischen Wirkungsgrad weist die Post-Combustion-Variante auf Basis des Gas- und Dampfturbinenprozesses auf, den geringsten Wirkungsgradverlust hat die IGCC-Variante mit physikalischer Absorption des CO_2 aus dem Brenngas.

2.1.3.1.5 Status quo CO₂-Abscheidung Im Bereich der CO₂-Abscheidung sind bislang Demonstrationskraftwerke errichtet worden, die eine maximale Abscheidungsleistung von 100 MW erreicht haben. Für die Oxyfuel-Technologie betreibt Vattenfall seit 2008 ein Kraftwerk mit 30 MW thermischer Leistung in Schwarze Pumpe, das bis zu 50 kt/a an CO₂ abscheidet. Im Bereich der Pre-Combustion wurden in einem spanischen IGCC-Kraftwerk bislang maximal 35 kt/a an CO₂ abgeschieden (Elcogas in Puertollano) [vgl. McConnell et al., 2009b, S. 147 f.]. Darüber hinaus werden fünf IGCC-Anlagen mit einer elektrischen Gesamtleistung von 1400 MW betrieben, in denen allerdings kein CO₂ abgeschieden wird [vgl. Ogriseck und Milles, 2006, S. 4]. Die bislang größte jährliche CO₂-Abscheidungsrate aus Post-Combustion ist mit 300 kt/a in Texas realisiert worden. Dort wurden zwei Kraftwerke mit einer elektrischen Leistung von 50 MW genutzt, um das abgeschieden

 $\rm CO_2$ zur verbesserten Erdölgewinnung einzusetzen. Diese Anlagen sind jedoch nicht mehr in Betrieb [vgl. McConnell et al., 2009b, S. 147 f.]. Kraftwerke im kommerziellen Maßstab ($\rm CO_2$ -Abscheidung > 1 Mt/a) sind bislang noch nicht errichtet worden, doch es sind eine Reihe von Kraftwerken in Planung. In von Hirschhausen et al. [vgl. 2012, S. 4 ff.] wird demgegenüber aufgezeigt, dass bis zum Jahr 2012 die Projekte für eine Reihe von geplanten CCS-Kraftwerken auf Basis fossiler Brennstoffe in Deutschland und weiteren europäischen Ländern gestoppt worden sind.

In einer Studie für das Global CCS Institute ist im Jahr 2009 untersucht worden, welche CCS-Projekte sich global in welchem Status befinden. Insgesamt sind 499 CCS-Aktivitäten identifiziert worden, von denen allerdings 224 dem reinen Forschungsbereich zuzuordnen sind. Von den verbleibenden 275 Projekten sind 34 erfolgreich beendet und 28 werden nicht weiter verfolgt. Es ergeben sich 213 aktive Projekte, von denen 101 von kommerziellem Maßstab (> 1 Mt/a) sind. Bei 62 Projekten wird die ganze CCS-Prozesskette, bestehend aus CO₂-Abscheidung, CO₂-Transport und CO₂-Speicherung, demonstriert, so dass sie als integrierte Projekte bezeichnet werden können. Hiervon sind im Jahr 2009 sieben Projekte im Betrieb gewesen [vgl. McConnell et al., 2009b, S. 8 f.]. Die Anzahl der integrierten Projekte hat sich im Jahr 2010 auf 77 erhöht und ist seitdem nahezu konstant geblieben (75 Projekte in 2012). Hiervon befinden sich acht Anlagen im Betrieb [vgl. Gurney, 2011, S. 8 f.], [vgl. Gurney, 2012, S. 20, S. 178 ff.]. Im Folgenden werden jedoch die Angaben aus dem Jahr 2009 verwendet, da diese Informationen zu den eingesetzten Brennstoffen beinhalten.

In den 62 Projekten sind neben den Kraftwerksprojekten 15 Anlagen zur Flüssiggaserzeugung, drei Erdölraffinerien und drei weitere Anlagen enthalten. Für die weiteren Darstellungen werden nur die 41 geplanten Kraftwerksprojekte berücksichtigt. Bei zwei dieser Projekte werden zwei unterschiedliche Kraftwerkstypen gebaut, so dass in Abbildung 2.19 insgesamt 43 CCS-Kraftwerke enthalten sind, die bis zum Ende dieses Jahrzehnts gebaut werden sollen. Davon befinden sich 17 in der Identifikations-, 18 in der Evaluations- und acht in der Definitionsphase. Der Großteil (26 Anlagen) ist für die Jahre 2014 und 2015 geplant. Insgesamt ergeben sich 28,5 GW installierte CCS-Leistung, wodurch 90 Mt/a an CO₂ gespeichert werden sollen.

Die 43 Anlagen verteilen sich auf insgesamt 18 Länder. Der Schwerpunkt liegt mit acht Anlagen in den USA, gefolgt von China, England, Niederlande und Norwegen mit jeweils vier Anlagen. Die elektrischen Anlagenleistungen liegen zwischen 125 MW und 1600 MW. Hiervon wird jedoch in der Regel nicht aus der vollen Anlagenleistung das CO_2 abgeschieden: Im Mittel werden knapp 30 % der Gesamtanlagenleistung für die CO_2 -Abscheidung eingeplant (Angaben liegen für sieben Anlagen vor: maximal 44 %, minimal 19 %) [vgl. McConnell et al., 2009b, S. 13 ff.].

Abbildung 2.19: Geplante CCS-Kraftwerke weltweit, eigene Darstellung mit Daten aus McConnell et al. [2009b, S. 13 ff.]

Als Brennstoff wird in fast allen Anlagen (40 von 43) Steinkohle eingesetzt. In den drei übrigen Anlagen wird zweimal mit Erdgas und einmal mit Wasserstoff geplant. In sieben Anlagen ist neben Kohle auch Biomasse als Brennstoff eingeplant. Hiervon sind vier Anlagen in den Niederlanden und jeweils eine in England, Polen und Schottland geplant, die alle in den Jahren 2014 und 2015 in Betrieb gehen sollen [vgl. McConnell et al., 2009b, S. 13 ff.].

Die CO₂-Abscheidungsvariante Post-Combustion ist 23 Mal geplant, Pre-Combustion soll 18 Mal errichtet werden. Die Verbrennung mit reinem Sauerstoff (Oxyfuel) ist nur in zwei Kraftwerken vorgesehen. Erwartungsgemäß ist die CO₂-Abscheidungsvariante Pre-Combustion in fast allen Kraftwerken (16 Mal, 2 Mal keine Angabe) mit einer vorgelagerten Vergasung (IGCC) kombiniert. Die Kraftwerke mit Biomasse-Einsatz wählen in vier Fällen Pre-Combustion und in drei Fällen Post-Combustion [vgl. McConnell et al., 2009b, S. 13 ff.].

Die jährlich abgeschiedenen CO_2 -Mengen liegen in einem Bereich von 0.3 Mt/a bis 8 Mt/a und betragen pro Kraftwerk im Mittel 2.3 Mt/a. Bei einer mittleren Anlagengröße von knapp 700 MW elektrischer Leistung ergeben sich überschlägig 4.8 Mt/a, die an CO_2 abgeschieden werden könnten (Annahmen: elektrischer Wirkungsgrad 40 %, Heizwert Steinkohle 25 GJ/t, Betriebsstunden 8000 h/a, CO_2 -Emissionsfaktor Steinkohle

0,095 t/GJ). Hieraus ergibt sich ein Abscheidungsanteil von knapp 50 %, was deutlich über den 30 % liegt, die weiter oben aus den sieben Anlagendaten ermittelt worden sind [vgl. McConnell et al., 2009b, S. 13 ff.].

Auch für den Bereich der CO_2 -Abtrennung mittels Algen existieren bereits erste Projekte in der Industrie: Nach einer Pressemitteilung von Vattenfall arbeitet seit Juni 2010 eine Algenzucht, die mit Rauchgasen aus dem Heizkraftwerk Senftenberg betrieben wird. Hierbei handelt es sich um senkrecht hängende Flachplatten-Kollektoren [vgl. Happe, 2010, S. 1].

2.1.3.2 CO₂-Transport

Da bei einem Großteil der für die Zukunft geplanten CCS-Projekte der Ort der CO₂-Abscheidung und der CO₂-Speicherung räumlich nicht zusammenfallen, wird ein Transport von CO₂ notwendig sein. Energetisch ist es ebenfalls grundsätzlich sinnvoller, das anfallende CO₂ im Vergleich zu elektrischer Energie und zu Brennstoffen zu transportieren [vgl. Davison et al., 2001, S. 12]. Dieser Effekt wird sich beim Einsatz von Biomasse als Energieträger und durch die Abgabe von Fernwärme noch verstärken, so dass das abgeschiedene CO₂ mit hoher Wahrscheinlichkeit transportiert werden muss.

Grundsätzlich stehen für den Transport von CO_2 vier Optionen zur Verfügung, die teilweise bereits angewendet werden: CO_2 -Transport mittels Rohrleitung (Pipeline), Schiff, Bahn und LKW. Welche dieser vier Optionen sich im Einzelfall am besten eignet, hängt von verschiedenen Faktoren ab, wie z.B. dem jährlichen CO_2 -Strom, der Entfernung zu potenziellen CO_2 -Lagerstätten, Transportkosten oder Fragen der Sicherheit. Die vier Varianten werden in den Kapiteln 2.1.3.2.2 bis 2.1.3.2.4 technisch erläutert. In Abhängigkeit von der Transportart liegt das CO_2 entweder in fester, flüssiger oder gasartiger Form vor und es können spezifische Anforderungen an die Reinheit des CO_2 gestellt werden. Deswegen wird im Kapitel 2.1.3.2.1 zunächst auf die spezifischen Stoffeigenschaften von CO_2 für den Transport näher eingegangen.

2.1.3.2.1 CO₂-Stoffeigenschaften für den CO₂-Transport CO₂ liegt bei Umgebungsbedingungen von 1 bar und 15 °C im gasförmigen Zustand vor. Bei normalem Umgebungsdruck gefriert CO₂ unterhalb einer Temperatur von -78 °C. Dieses sogenannte Trockeneis hat eine Dichte von ca. 1550 kg/m³. Der Tripelpunkt liegt bei 5,8 bar und -55,6 °C (vgl. Abbildung 2.20). Oberhalb dieser Tripelpunkt-Temperatur kann CO₂ für Transportzwecke durch Kompression verflüssigt werden. Durch die Verflüssigung kann die Dichte des gasförmigen CO₂ von 1,85 kg/m³ auf 824 kg/m³ (bei 15 °C und 51 bar) bis 1156 kg/m³ (bei -50 °C und 7 bar) angehoben werden. Hierdurch wird der zu trans-

portierende Volumenstrom deutlich reduziert. Der kritische Punkt von CO_2 liegt bei 31,06 °C und 73,84 bar. Oberhalb von diesem Punkt kann nicht mehr zwischen flüssiger und gasförmiger Phase unterschieden werden. Die Dichte beträgt hier 464 kg/m^3 [vgl. Fischedick et al., 2007, S. 217].

Abbildung 2.20: Phasendiagramm (p, T-Diagramm) für CO₂, eigene Darstellung auf Basis von Fischedick et al. [2007, S. 217]

Üblicherweise wird CO_2 für den Transport in Pipelines im überkritischen Zustand auf eine Dichte von 1100 kg/m^3 komprimiert. Der überkritische Zustand hat gegenüber der flüssigen Phase den Vorteil, dass in Pumpen oder Kompressoren keine Kavitationseffekte auftreten, die die eingesetzten Materialien stark schädigen können. Der CO_2 -Transport per Schiff, Bahn oder LKW findet in der Regel im flüssigen bzw. überkritischen Zustand statt [vgl. Fischedick et al., 2007, S. 66], [vgl. Clarke et al., 2004, S. 99]. Hierfür spricht die höhere Dichte, die in der flüssigen Phase erreicht wird (siehe oben).

Die Herstellung von Trockeneis ist vergleichsweise energieaufwändig: Es müssen zwischen 260 kWh/t und 420 kWh/t aufgewendet werden. Die im Vergleich zum flüssigen bzw. überkritischen Zustand höhere Dichte kann diesen Mehraufwand nicht ausgleichen. Hierfür beträgt der Energieeinsatz zwischen 112 kWh/t (Verdichtung auf 110 bar) und 100 kWh/t bis 160 kWh/t (kältetechnische Verflüssigung) [vgl. Fischedick et al., 2007, S. 66 f.], [vgl. Radgen et al., 2006, S. 77].

Für den Transport müssen die Verunreinigungen im CO_2 an Wasserdampf und Schwefeldioxid möglichst gering gehalten werden, um Korrosionserscheinungen zu vermeiden. Darüber hinaus kann bei zu hohem Wasserdampfgehalt unter hohem Druck Hydratbil-

dung einsetzen, was zu Ablagerungen in Pumpen oder Rohren führt [vgl. Linßen et al., 2006, S. 25]. Bis zu einem Wassergehalt von 50 ppm können in jedem Fall konventionelle Kohlenstoffstähle verwendet werden [vgl. Fischedick et al., 2006, S. 108]. An anderer Stelle werden 580 ppm als ausreichend angesehen [vgl. Radgen et al., 2006, S. 69]. Entscheidend ist hierbei die relative Feuchte, die bei unterschiedlichen Außentemperaturen und Druckverlusten 60 % nicht überschreiten sollte, so dass keine Wasserdampfkondensation stattfindet. Unter einem Druck von 500 bar kann reines CO₂ bis zu 5000 ppm (75 °C) bzw. 2000 ppm (30 °C) an Wasser aufnehmen. Dieser Wert wird durch Verunreinigungen (z. B. H₂S, O₂, N₂) reduziert. Stickoxid-Anteile sind für den CO₂-Transport nicht relevant, beim Pipelinetransport durch bewohnte Gebiete wird ein Grenzwert für Schwefelwasserstoff (H₂S) erwartet, der unter 1500 ppm liegen dürfte [vgl. Metz et al., 2005, S. 181 f.]. Durch Verunreinigungen des CO₂ erhöht sich des Weiteren der Kompressionsaufwand und die Dichte kann sich erheblich verringern, was zu einer reduzierten Ausnutzung der Transportkapazitäten sowie der CO₂-Lagerstätten führt [vgl. Kuckshinrichs et al., 2010, S. 37].

2.1.3.2.2 Pipelinetransport Der CO_2 -Transport in Pipelines ähnelt dem langjährig erprobten Pipelinetransport von Erdöl oder Erdgas. Üblicherweise kommen bei trockenem CO_2 (vgl. Kapitel 2.1.3.2.1) konventionelle (günstigere) Kohlenstoffstähle für den Pipelinebau zum Einsatz [vgl. Fischedick et al., 2006, S. 108]. Die Auslegung der CO_2 -Pipeline hinsichtlich Druck, Größe und Zusatzaggregaten (z. B. Verdichterstationen) hängt von einer Vielzahl an Faktoren ab, wie z. B. Transportlänge, Topographie (Berge, Flüsse, am Meeresgrund etc.), Temperaturschwankungen im Jahresgang oder die bestehende Infrastruktur (Bebauung, Bahntrassen, Naturschutzgebiete etc.) [vgl. Metz et al., 2005, S. 184].

Die jährlich zu transportierende CO₂-Menge und die CO₂-Transportdistanz bestimmen den Durchmesser der CO₂-Pipeline. In Abbildung 2.21 ist für eine jährliche CO₂-Massenrate von einer, zwei und fünf Megatonnen CO₂ dargestellt, welche Durchmesser für eine bestimmte Pipelinelänge (ohne Nachverdichtung) benötigt werden. Als maximale Durchmesser werden an Land 1,4 m und zu Wasser 1,0 m angesehen [vgl. Viebahn et al., 2009, S. 50]. Für den CO₂-Transport von 1 Mt/a wird eine Kompressorleistung von ca. 200 kW benötigt. Für die doppelte Jahresmenge muss ein Kompressor mit 300 kW eingesetzt werden [vgl. McCoy, 2008, S. 37]. Hieraus lässt sich ein spezifischer Energieaufwand für den CO₂-Transport von 1,31 kWh/t bis 1,75 kWh/t berechnen. Als übliche Strömungsgeschwindigkeit werden 1,5 m/s bzw. ein Bereich von 1 m/s bis 3 m/s angesehen [vgl. Viebahn et al., 2009, S. 50], [vgl. Hendriks et al., 2004, S. 11].

Für den Pipelinetransport befindet sich das CO_2 im überkritischen Zustand [vgl.

Abbildung 2.21: CO₂-Pipeline-Durchmesser in Abhängigkeit von der Pipeline-Segmentlänge und der jährlichen Massenrate, eigene Darstellung auf Basis von McCoy [2008, S. 36]

Bundestag, 2008b, S. 14], (vgl. Kapitel 2.1.3.2.1). Auch wenn für den CO_2 -Transport im flüssigen Aggregatzustand ein geringerer Druck ausreichend wäre, so hätte dieser Zustand den Nachteil, dass bei Geländeanstiegen und dadurch sinkendem Innendruck CO_2 verdampfen könnte. Hierdurch würde ein Zwei-Phasen-Gemisch entstehen, das technisch schwer zu handhaben ist [vgl. Radgen et al., 2006, S. 66].

Da Pipelines zum Transport von CO_2 in der Regel nicht gekühlt werden, wird die Transport-Temperatur durch die Umgebungstemperatur vorgegeben. Somit kann der Aggregatzustand nur durch den induzierten Druck in der Pipeline beeinflusst werden [vgl. Linßen et al., 2006, S. 25]. Da dieser Druck an jeder Stelle der Pipeline größer als der für CO_2 kritische Druck von 73,8 bar sein muss, wird häufig ein Mindestdruck von 80 bar gefordert. Bei diesem Druck stellt sich ein optimales Verhältnis zwischen Dichte und Kompressionsaufwand ein, da eine weitere Verdichtung nur zu einem geringen Dichteanstieg führt (vgl. Kapitel 2.1.3.3.3). Durch die Reibung des CO_2 an der rauen Rohrinnenseite kommt es jedoch mit zunehmender Strecke zu einem Druckabfall. Dieser Druckabfall Δp in 10⁵ bar lässt sich mittels Formel 2.5 berechnen. Hierbei ist ρ_{CO_2} die Dichte von CO_2 unter Transportdruck in kg/m³, l die Pipeline-Länge in m, udie Fließgeschwindigkeit in m/s und d der Pipeline-Durchmesser in m. λ_P stellt den Rohrreibungskoeffizienten dar und wird für Fließgeschwindigkeiten von ca. 2 m/s bis

3 m/s annäherungsweise nach Formel 2.6 berechnet [vgl. Göttlicher, 1999, S. 160].

$$\Delta p = \rho_{\rm CO_2} \cdot \frac{l \cdot u^2}{2 \cdot d} \cdot \lambda_{\rm P} \tag{2.5}$$

$$\lambda_{\rm P} = 0,093 \cdot \frac{l}{(d \cdot 1000)^{0,249}} \tag{2.6}$$

Abbildung 2.22 stellt den Druckverlust in CO_2 -Pipelines für fünf verschiedene Nenndurchmesser bei Fließgeschwindigkeiten von 1,5 m/s und 2,5 m/s dar. Der Druckverlust ist bei einem kleinen Pipelinedurchmesser besonders groß, so dass eine Pipeline mit einem Durchmesser von 0,1 m bereits nach 50 km einen Druckverlust von ca. 150 bar (1,5 m/s)bzw. 400 bar (2,5 m/s) aufweist. Geringere Fließgeschwindigkeiten führen zu geringeren Druckverlusten, jedoch auch zu geringeren spezifischen Transportraten, was den Bau größerer Nenndurchmesser erfordert. Aufgrund des Druckverlusts muss das CO_2 entweder mit einem erhöhtem Druck eingespeist oder auf der Transportstrecke nachverdichtet werden. Diese Nachverdichtung sollte bei einem Druckabfall auf weniger als 80 bar eingeplant werden, was je nach Ausgangsdruck, Rohrinnendurchmesser und Fließgeschwindigkeit ab ca. 100 km bis 200 km Streckenlänge notwendig wird. Es existieren allerdings auch CO_2 -Pipelines mit 330 km Transportlänge ohne Nachverdichtung [vgl. Radgen et al., 2006, S. 67]. Typischerweise wird ein Eingangspipelinedruck von 110 bar bis 138 bar gewählt. Dieser kann jedoch auch bis zu 207 bar betragen, um mögliche Verdichterstationen auf der Pipelinetrasse zu vermeiden [vgl. McConnell et al., 2009a, S. B-5].

2.1.3.2.3 Schiffstransport Der Schiffstransport von CO₂ ähnelt dem konventionellen Schiffstransport von Flüssiggas. Für den Transport von Flüssiggas existieren drei Varianten: Entweder wird das Flüssiggas bei Umgebungstemperatur unter Druck transportiert oder die Temperatur wird abgesenkt, so dass bei Umgebungsdruck das Flüssiggas in flüssiger Phase vorliegt. Die dritte Variante stellt eine Mischung aus Verdichtung und Kühlung dar (Hybrid-Tank). Während für kleine Schiffe häufig Druckbehälter zum Einsatz kommen, wird für große Flüssiggasschiffe üblicherweise der gekühlte Transport angewendet. Bei sehr großen Volumina würden ansonsten sehr starke Wanddicken benötigt werden, die ein entsprechendes Tankeigengewicht nach sich ziehen, wodurch der Energiebedarf für den Transport unverhältnismäßig ansteigen würde [vgl. Radgen et al., 2006, S. 76]. Darüber hinaus ist es schwierig, Druckbehälter mit den erforderlichen Größen und Wandstärken zu schweißen [vgl. Radgen et al., 2006, S. 77].

Dem Phasendiagramm von CO_2 (vgl. Abbildung 2.20) kann entnommen werden,

Abbildung 2.22: Druckverlust in CO₂-Pipelines für verschiedene Nenndurchmesser bei Fließgeschwindigkeiten von 1,5 m/s und 2,5 m/s, eigene Berechnung mit Daten aus Göttlicher [1999, S. 160]

dass durch eine Abkühlung unter atmosphärischem Druck kein flüssiges CO_2 , sondern Trockeneis entsteht. Flüssiges CO_2 kann in einem Temperaturbereich von -55,6 °C bis +31 °C und bei einem Druck von mehr als 5,8 bar bestehen. Für den Transport von CO_2 werden bislang der Hybrid-Tank für den Schiffstransport in einem Temperaturbereich von -54 °C bis -50 °C und einem Druckbereich von 6 bar bis 7 bar favorisiert. In diesem Bereich liegen bereits Erfahrungen von Flüssiggasschiffen vor, die üblicherweise bei -50 °C und 7 bar betrieben werden [vgl. Metz et al., 2005, S. 186].

Durch äußere Wärmezufuhr wird das CO_2 in dem Hybrid-Tank auf dem Transportweg erwärmt, so dass es verdampft. Gasförmiges CO_2 hat eine geringere Dichte als flüssiges CO_2 , wodurch sich der Druck im Behälter erhöht. Da die Kühlung des Tanks zu energieaufwändig wäre, wird das gasförmige CO_2 üblicherweise in die Atmosphäre entlassen [vgl. Metz et al., 2005, S. 187]. Eine andere Möglichkeit besteht darin, das gasförmige CO_2 mittels einer Kältemaschine auf dem Schiff erneut zu kondensieren. Für diese Kühlung wird eine elektrische Leistung von 22 W/t angegeben. Diese resultierende Kühlenergie hängt somit von der transportierten CO_2 -Menge und der Transportzeit ab [vgl. Radgen et al., 2006, S. 77].

Der Schiffstransport hat gegenüber dem Pipelinetransport den Vorteil, dass bei jeder Schiffslieferung bestimmt werden kann, welcher Speicherstätte das CO_2 zugeführt werden soll. Dieser Vorteil bleibt so lange bestehen, bis ein CO_2 -Pipeline-Netz existiert, in dem eine ähnliche Flexibilität gegeben ist. Der Nachteil des Schiffstransports besteht in der Notwendigkeit, das CO_2 am Ort der Abscheidung zwischenzulagern, bevor es mittels einer (ebenfalls zu errichtenden) Verladeeinrichtung auf ein Schiff verfrachtet werden kann. Am Speicherort ist dann ebenfalls eine Entladestation vorzusehen. Je nach Beladungsgeschwindigkeit des CO_2 -Speichers kann auch am Entladungspunkt ein Zwischenspeicher notwendig sein [vgl. Radgen et al., 2006, S. 77]. Der CO_2 -Schiffstransport wird (aus wirtschaftlichen Gründen) vor allem bei längeren Distanzen (ab 1000 km) und kleineren CO_2 -Jahrestonnagen zum Einsatz kommen (vgl. Kapitel 2.2.3).

Die größten Schiffe zum Transport von Flüssiggas weisen Größen von $200\,000\,\mathrm{m^3}$ auf, wodurch 230 kt an CO₂ in flüssiger Phase transportiert werden könnten [vgl. Metz et al., 2005, S. 186]. Die technische Entwicklung konzentriert sich allerdings auf Schiffsgrößen zwischen 10 kt und 50 kt [vgl. Bennaceur et al., 2008, S. 84]. Im Bereich der Nordsee befindet sich ein CO₂-Schiff mit 1250 m³ im Einsatz. Das 1999 gebaute Schiff "Coral Carbonic" transportiert CO₂ bei einem Druck von maximal 17,9 bar und einer minimalen Temperatur von bis zu -40 °C [vgl. McConnell et al., 2009a, S. C-7]. Die tatsächlich einzusetzende Schiffsgröße hängt letztendlich von den örtlichen Gegebenheiten ab (v. a. maximaler Tiefgang, Kailänge).

Beim Entladen der Zwischenspeicher an Land oder des Schiffstanks ist darauf zu achten, dass das frei werdende Volumen durch gasförmiges CO_2 aufgefüllt wird, um keine Verunreinigungen mit Umgebungsluft zuzulassen, so dass ein reiner CO_2 -Strom gespeichert werden kann [vgl. Metz et al., 2005, S. 187].

2.1.3.2.4 Bahn- und LKW-Transport Der Transport von CO_2 per Bahn oder LKW kann aufgrund begrenzter Kapazitäten sinnvollerweise nur für Pilot- und Demonstrationsprojekte eingesetzt werden, bei denen eine hohe Flexibilität gewünscht ist. Beim LKW-Transport wird mit einer CO_2 -Ladekapazität von 20 t gerechnet, ein Ganzzug kann bis 1300 t bis 3000 t aufnehmen [vgl. Fischedick et al., 2007, S. 71].

Zum Transport des flüssigen CO_2 werden wie beim Schiffstransport Hybrid-Tanks eingesetzt. Das CO_2 wird beispielsweise bei 20 bar und -20 °C oder 12 bar bis 17 bar und -50 °C bis -70 °C transportiert [vgl. Fischedick et al., 2007, S. 71].

2.1.3.2.5 Status quo CO₂-Transport Obwohl der CO_2 -Transport das entscheidende Bindeglied zwischen CO_2 -Abscheidung und CO_2 -Speicherung darstellt, ist der Aufbau einer entsprechenden Transportinfrastruktur bislang erst wenig untersucht worden. Durchgeführte Studien haben sich bisher vor allem auf den Aspekt der Wirtschaftlichkeit konzentriert [vgl. Bundestag, 2008b, S. 15 f.].

Der Schwerpunkt bisheriger CO₂-Pipeline-Aktivitäten liegt in Nordamerika, wo bislang 5200 km CO₂-Pipelines errichtet worden sind [vgl. McConnell et al., 2009b, S. 9]. Weltweit werden mehr als 50 Mt an CO₂ pro Jahr in Pipelines transportiert [vgl. Bennaceur et al., 2008, S. 85]. Über 90 % dieser Transporte finden im US-Bundesstaat Texas statt, um das CO₂ zur verbesserten Erdölgewinnung in Erdöllagerstätten zu verpressen [vgl. Metz et al., 2005, S. 182].

 $\rm CO_2$ -Schiffstransporte haben bislang ausschließlich für die Lebensmittelindustrie stattgefunden. Weltweit sind hierfür vier kleinere Schiffe mit Hybrid-Tank im Einsatz, die $\rm CO_2$ aus der Ammoniak-Produktion in Nord-Europa transportieren. Vor allem in Norwegen und Japan wird die weitere Entwicklung von größeren Schiffen und der dazugehörigen Zwischenspeicher vorangetrieben [vgl. Fischedick et al., 2007, S. 70 f.], [vgl. Metz et al., 2005, S. 186]. Von der EU-Kommission wird seit Ende 2009 ein Projekt gefördert, das eine erste $\rm CO_2$ -Transport-Infrastruktur für kleinere und mittlere $\rm CO_2$ -Emittenten untersucht. Als Modellregionen werden Le Havre und Rotterdam mit den $\rm CO_2$ -Speicherstätten in leeren Erdöl- und Erdgasfeldern in der Nordsee verbunden. Als $\rm CO_2$ -Transportoption werden neben einer Pipeline auch Schiffe untersucht, die das $\rm CO_2$ in flüssiger Form bei -50 °C und 7 bar bis -30 °C und 15 bar transportieren [vgl. Plasynski und Deel, 2010a, S. 2].

Der CO₂-Transport mittels Bahn und LKW findet bislang nur vereinzelt im Versuchsmaßstab statt. So wird in dem von Vattenfall betriebenen Oxyfuel-Demonstrationskraftwerk am Standort Schwarze Pumpe das CO_2 mit handelsüblichen Gas-LKW abtransportiert. Der Bau einer Pipeline ist jedoch schon in Planung [vgl. Vattenfall, 2009d, S. 5].

Bei den bislang 43 geplanten CCS-Kraftwerken soll in 34 Fällen eine Pipeline zum Abtransport des CO_2 zum Einsatz kommen, bei acht Anlagen ist die Art des CO_2 -Transports noch nicht festgelegt. In lediglich einem Fall soll das CO_2 ausschließlich per Schiff befördert werden (Finnland, über 1400 km). Dreimal soll eine Kombination aus Pipeline und Schiff bzw. einmal aus Pipeline und LKW zum Einsatz kommen. Die geplanten Pipelinelängen variieren zwischen 6,4 km und 300 km und betragen im Mittel 132 km [vgl. McConnell et al., 2009b, S. 13 ff.].

2.1.3.3 CO₂-Speicherung und CO₂-Monitoring

Die Speicherung von CO_2 stellt den dritten großen Schritt der CCS-Prozesskette dar. Dass eine CO_2 -Speicherung im geologischen Untergrund grundsätzlich möglich ist, beweisen

natürliche Kohlenwasserstoff- und Kohlenstoffdioxid-Lagerstätten, die seit Jahrmillionen innerhalb bestimmter geologischer Formationen von der Atmosphäre getrennt lagern. Die CO_2 -Speicherung wird von einem CO_2 -Monitoring begleitet, das vor, während und nach der CO_2 -Einlagerung durchgeführt wird, um sicherzustellen, dass die Speicherstätte für die Einlagerung von CO_2 geeignet ist und dass ausreichend wenig CO_2 entweicht.

Im Folgenden werden die möglichen CO_2 -Speicheroptionen vorgestellt, bevor auf die CO_2 -Einlagerungs- und CO_2 -Speichermechanismen näher eingegangen wird. Abschließend wird der Aspekt des CO_2 -Monitorings dargestellt und es wird ein kurzer Status quo zur CO_2 -Speicherung gegeben.

2.1.3.3.1 CO₂-Speicheroptionen Die einzelnen Möglichkeiten der geologischen CO_2 -Speicherung verfügen allesamt über ein Reservoir, das mit einem dichten Gestein nach oben und seitlich abgeschlossen sein muss. Dieses Reservoir besitzt ein Sedimentgestein (Ablagerungsgestein), das durch seine Porosität eine entsprechende CO_2 -Lagerkapazität (in Form von Hohlräumen) bereitstellt [vgl. Duckat et al., 2004, S. 22].

Für alle CO_2 -Speicheroptionen muss vor der ersten Einlagerung sichergestellt sein, dass das Reservoir für die Langzeitspeicherung von CO_2 geeignet ist. Im "Gesetz zur Demonstration der dauerhaften Speicherung von Kohlendioxid" werden Messdaten festgelegt, die für die Charakterisierung und Bewertung der potenziellen Kohlenstoffdioxidspeicher verwendet werden. Aus diesen Messdaten (z. B. Porenvolumen, Lösungsgeschwindigkeit, Mineralisierungsgeschwindigkeit) muss anschließend ein statisches, dreidimensionales Modell der CO_2 -Speicherstätte erstellt werden. Anhand einer anschließenden Simulation des dynamischen Speicherverhaltens soll abschließend eine Risikobewertung durchgeführt werden [vgl. Bundesregierung, 2012, S. 28 ff.].

Im Folgenden werden zunächst diejenigen CO_2 -Speicheroptionen benannt, die wegen fehlender Langzeitspeichersicherheit (Ozeanspeicherung, Nutzung in aktiven Erdöl-/Erdgaslagerstätten) oder hohem energetischen Aufwand (Speicherung von Trockeneis, Mineralisierung) ausgeschlossen werden. Anschließend werden CO_2 -Speichermöglichkeiten vorgestellt, die sich für negative CO_2 -Emissionen anbieten (leere Erdöl-/Erdgasfelder, nicht abbaubare Kohleflöze, saline Aquifere). Zum Schluss werden weitere CO_2 -Speicheroptionen vorgestellt, die sich aus heutiger Sicht nicht großflächig durchsetzen werden, aber für Nischenanwendungen denkbar sind (z. B. Salzkavernen, industrielle Nutzung). Auf die Höhe der CO_2 -Speicherkapazitäten für die einzelnen Lageroptionen wird in Kapitel 2.3.4.3 vor dem Hintergrund der Nachhaltigkeit der CO_2 -Sequestrierung näher eingegangen.

Ausgeschlossene CO₂-Speicheroptionen Bei der Speicherung von CO₂ in ozeanischen Gewässern soll die natürliche CO₂-Aufnahmefähigkeit der Weltmeere künstlich erweitert

werden (vgl. Kapitel 1.1.1). Hierfür wurden bislang ausschließlich Computersimulationen und Laborexperimente durchgeführt. Ob die beiden theoretisch vorhandenen Speichermethoden (flüssiger CO_2 -See in mindestens 3000 m Tiefe und gasförmige CO_2 -Dispersion in 500 m Tiefe) in der Praxis Erfolg haben, wird wahrscheinlich nicht überprüft werden können, da bisherige Versuche in Norwegen und Hawaii am Widerstand der Bevölkerung gescheitert sind. Da die Mechanismen der Tiefsee bislang erst ansatzweise verstanden sind, erscheint ein mittel- oder langfristiger Einsatz als unrealistisch [vgl. Duckat et al., 2004, S. 24 ff.], [vgl. Bennaceur et al., 2008, S. 108]. Darüber hinaus ist im Jahr 2007 im Übereinkommen zum Schutz der Meeresumwelt des Nordost-Atlantiks (OSPAR) die Einlagerung von CO_2 in die Wassersäule oder auf den Grund des Ozeans verboten worden [vgl. Bennaceur et al., 2008, S. 108]. Des Weiteren lehnt die Bundesregierung die Einlagerung von CO₂ in der Wassersäule des Ozeans grundsätzlich ab [vgl. BMWi et al., 2007, S.9]. Weiterhin wird der Ozean (im Gegensatz zum geologischen Untergrund) als Teil der Biosphäre angesehen, so dass im Ozean eingelagerte CO_2 -Mengen relativ zeitnah wieder in die Atmosphäre gelangen können, was dem Ansatz der negativen CO₂-Emissionen widerspricht [vgl. Radgen et al., 2006, S. 88].

Die Nutzung von abgeschiedenem CO_2 zur Verbesserung der Erdöl- oder Erdgasausbeute aus aktiven Kohlenwasserstofflagerstätten (Enhanced Oil/Gas Recovery bzw. EOR/EGR) wird als CO₂-Speicheroption nicht berücksichtigt. Hierdurch gelangen neue Kohlenwasserstoffe in die Atmosphäre, die zu zusätzlichen CO₂-Emissionen führen und den Gedanken der CO₂-Negativität konterkarieren (vgl. Kapitel 2.3.4). Die Einlagerung in erschöpfte Erdöl- und Erdgasfelder wird im Folgenden hingegen mitberücksichtigt.

Die Einlagerung von CO_2 in stillgelegte Kohlebergwerke weist zunächst den technischen Vorteil auf, dass das CO_2 an den verbliebenen Kohleresten (relativ langzeitstabil) adsorbieren kann. Dem steht gegenüber, dass ehemalige Bergwerke häufig äußerst verzweigt und mit weiteren Bergwerken verbunden sind. Vor allem in Deutschland existieren Verbundbergwerke von großer Ausdehnung, bei deren Bau keine Nutzung als CO_2 -Speicherstätte vorgesehen gewesen ist. Diese Verbundbergwerke müssten mit hohem Aufwand abgedichtet werden, wobei druckresistente Schacht- und Stollenverschlüsse zunächst entwickelt und erprobt werden müssten [vgl. Radgen et al., 2006, S. 96]. Hinzu kommen häufig Deckgebirge, die das eingelagerte CO_2 nicht sicher zurückhalten würden, so dass ein erhebliches Leckagerisiko vorliegen würde. Darüber hinaus befinden sich die Bergwerke häufig in geringer Tiefe (kleiner 800 m), so dass gasförmiges CO_2 mit einer relativ kleinen Dichte eingelagert werden müsste, was die vorhandenen Speicherkapazitäten deutlich reduzieren würde [vgl. Metz et al., 2005, S. 220], [vgl. Radgen et al., 2006, S. 93]. Aus der geringen Tiefe ergibt sich weiterhin das Problem, dass bei relativ geringem Umgebungsdruck das eingelagerte, flüssige CO_2 verdampfen könnte, wodurch die Temperatur deutlich

abgesenkt wird und sich nahe der Injektionsstelle Eis bilden kann, das eine weitere Einlagerung verhindert [vgl. Radgen et al., 2006, S. 95]. Aus den vorgenannten Gründen wird die CO_2 -Einlagerung in stillgelegte Kohlebergwerke im Folgenden ausgeschlossen.

Die Lagerung von Trockeneis im Meer oder an kalten Standorten auf dem Festland wird seit einigen Jahren nicht weiter untersucht, da die Herstellung von festem CO_2 sehr energieintensiv ist (vgl. Kapitel 2.1.3.2.1). Die Einbringung von Bikarbonat, das aus abgeschiedenem CO_2 in Verbindung mit Kalkstein und Wasser entsteht, in den Ozean wird ebenfalls nicht weiter verfolgt, da diese Möglichkeit als nicht umsetzungsfähig angesehen wird [vgl. Duckat et al., 2004, S. 27].

Beim Konzept der Mineralisierung reagiert gasförmiges, konzentriertes CO_2 mit Magnesium- oder Kalziumsilikaten zu Karbonaten, in dem CO_2 fest gebunden ist, und Siliziumverbindungen. Hierbei handelt es sich um einen natürlichen Prozess, der bei der Gesteinsverwitterung zu beobachten ist. Obwohl das Verfahren eine Reihe von Vorteilen hat (exotherme Reaktion, permanente CO_2 -Speicherung ohne Leckagerisiko, weltweit ausreichend Rohstoffe vorhanden), besteht das Problem, dass der Prozess der Mineralisierung, der in der Natur über sehr lange Zeiträume (Jahre bis Jahrtausende) abläuft, nur sehr aufwändig beschleunigt werden kann. Diese beschleunigenden Maßnahmen können eine Erhöhung der Reaktionstemperatur bzw. des -drucks, Verringerung der Partikelgrößen oder der Einsatz von Katalysatoren sein, was einen zusätzlichen Energieeinsatz bedingt. Pro Tonne CO_2 werden zwei bis drei Tonnen Magnesiumsilikate benötigt, so dass ein erheblicher Aufwand für den Antransport der Silikate und für den Abtransport der Karbonate absehbar ist [vgl. Bennaceur et al., 2008, S. 108], [vgl. Radgen et al., 2006, S. 88 ff.].

Leere Erdöl- und Erdgasfelder Die CO₂-Einlagerung in erschöpfte Erdöl- und Erdgaslagerstätten erscheint als vielversprechende CO₂-Speicheroption. Hierbei muss jedoch erwähnt werden, dass aus wirtschaftlichen Gründen Erdöllagerstätten üblicherweise zu 25 % und Erdgaslagerstätten üblicherweise zu 60 % bis 90 % entleert werden, so dass die CO₂-Einlagerung in vielen Fällen mit einer weiteren Erdöl- und Erdgasförderung einhergehen wird [vgl. Radgen et al., 2006, S. 103 f.]. Die meisten bislang durchgeführten CO₂-Einlagerungen in leere Erdöl- und Erdgasfelder sind mit einer weiteren Ausbeutung dieser Felder kombiniert worden. Hierbei wird 7 % bis 19 % der ursprünglichen Erdölmenge durch CO₂ ersetzt [vgl. McConnell et al., 2009a, S. D-7]. Eine CO₂-Einlagerung mit gleichzeitiger Auslagerung weiterer, fossiler Energieträger widerspricht jedoch dem eigentlichen Ansatz der CO₂-Negativität, so dass zukünftig im Einzelfall untersucht werden muss, wie hoch die tatsächlich eingelagerten CO₂-Mengen ausfallen.

Die wirksame Speicherfunktion ist zum einen durch die über Millionen von Jahren

andauernde natürliche Kohlenwasserstofflagerung und zum anderen durch die jahrzehntelange Zwischenspeicherung von Erdgas nachgewiesen. Allerdings findet die Zwischenspeicherung von Erdgas bei geringeren Druckverhältnissen und über kürzere Zeiträume statt als dies bei der CO₂-Einlagerung beabsichtigt ist. Ein Vorteil von leeren Erdöl- und Erdgasfeldern ist die vorhandene Bohrlochinfrastruktur, die jedoch dadurch relativiert wird, dass die bestehenden Abdichtungen der Bohrlöcher unter Umständen den erhöhten Anforderungen des größeren Drucks und des CO₂ angepasst werden müssen [vgl. Duckat et al., 2004, S. 22 f.], [vgl. Bennaceur et al., 2008, S. 98].

 CO_2 weist gegenüber Erdgas eine höhere Dichte und eine höhere Viskosität (Zähflüssigkeit) auf, so dass es in der CO_2 -Lagerstätte als weniger mobil anzusehen ist [vgl. Duckat et al., 2004, S. 23].

Nicht abbaubare Kohlelagerstätten Bei nicht abbaubaren Kohlelagerstätten handelt es sich um Kohleflöze, die für einen wirtschaftlichen Abbau entweder zu tief liegen oder zu dünn sind. In diesen Kohleflözen ist Methan vorhanden, das in der Regel an den Kohlen adsorbiert ist. Dieses Methan in den Kohleporen kann durch CO_2 ersetzt werden, da CO_2 im Vergleich zu CH_4 bevorzugt an Kohle adsorbiert. Dabei kann die gegenüber Methan fünf- bis zehnfache Menge an CO_2 eingelagert werden [vgl. Bennaceur et al., 2008, S. 99].

Da es sich bei Methan um ein im Vergleich zu CO_2 viel stärkeres Treibhausgas handelt, muss das geförderte CH_4 energetisch genutzt werden, damit es wieder zu CO_2 (und H_2O) reagieren kann. Durch den geringen Kohlenstoffanteil kommt es trotz Methannutzung zu einer effektiven CO_2 -Einlagerung, die jedoch gegenüber anderen Speicheroptionen (z. B. saline Aquifere) geringer ausfällt [vgl. Radgen et al., 2006, S. 97].

Die Aufnahmefähigkeit der Kohleflöze für das einzulagernde CO_2 hängt von einer Reihe von Faktoren ab, z. B. Tiefe (maximal 1500 m), Druck, Temperatur, Kohlesorte und Permeabilität. Durch die poröse Struktur der Kohle kann durch CO_2 -Adsorption an ihrer großen Oberfläche drei- bis siebenmal so viel CO_2 eingelagert werden, wie in einer vergleichbaren leeren Erdgaslagerstätte.

Für die CO_2 -Einlagerung auf diese Art sind noch eine Reihe von technischen Fragen zu klären. Es besteht beispielsweise die Gefahr, dass durch die CO_2 -Adsorption die Kohle anschwillt, wodurch die Permeabilität, die Injektionsrate und letzten Endes die Speicherfähigkeit reduziert wird. Des Weiteren ist die Dichtigkeit des Deckgebirges ungewisser als im Fall von Erdöl- und Erdgaslagerstätten [vgl. Radgen et al., 2006, S. 99], [vgl. Bennaceur et al., 2008, S. 100 ff.].

Saline Aquifere Tiefe saline Aquifere sind Gesteinsschichten, die stark salzhaltiges Grundwasser (Sole) enthalten, das nicht als Trinkwasser oder zu Bewässerungszwecken

genutzt werden kann. Dieses Salzwasser ist nahezu stationär – aufgrund regionaler Druckunterschiede treten Fließgeschwindigkeiten von einigen Dezimetern bis zu wenigen Metern pro Jahr auf [vgl. McConnell et al., 2009a, S. D-6]. Im Gegensatz zu ehemaligen Lagerstätten für Kohlenwasserstoffe haben sie bislang keinen Langzeit-Dichtigkeitsnachweis geliefert und können entweder offen oder geschlossen sein. Durch das bislang geringe wirtschaftliche Interesse an tiefen salinen Aquiferen sind bisher nur wenige Bohrungen abgeteuft worden. Gegenüber den Erdöl- und Erdgaslagerstätten hat dies einerseits den Vorteil eines geringeren Leckagerisikos, andererseits stellt das erhöhte Fündigkeitsrisiko einen Nachteil dar.

Als Gesteinsarten kommen häufig Sandstein oder Kalkstein vor, in die Wasser gepumpt werden kann oder Flüssigkeiten eingelagert werden können. Kristalline Gesteinsarten wie Granit verfügen über keine ausreichende Porosität und Permeabilität für die CO₂-Einlagerung. Der Anteil des porösen Volumens, der mit CO₂ gefüllt werden kann, bestimmt die CO₂-Speicherkapazität. Die Bestimmung dieses Anteils ist Forschungsgegenstand mehrerer CO₂-Speicherprojekte und kann zwischen 2 % und 68 % liegen [vgl. Bennaceur et al., 2008, S. 103 f.].

Das CO_2 sollte in diese Gesteinsschichten im überkritischen Zustand und tiefer als 800 m eingelagert werden, damit das CO_2 eine hohe Dichte von 600 kg/m³ bis 800 kg/m³ aufweist und nahezu inkompressibel ist [vgl. Duckat et al., 2004, S. 23], (vgl. Kapitel 2.1.3.3.2). In Krupp [vgl. 2010, S. 51] werden CO_2 -Speichertiefen von mindestens 1000 m gefordert, da bereits geringe Verunreinigungen des CO_2 zu einer geringeren Dichte führen. Durch unterschiedliche Temperaturgradienten kann es zu unterschiedlichen CO_2 -Speichertemperaturen kommen, die die Dichte und den Aggregatzustand beeinflussen. Hierdurch können sich Änderungen bzgl. der CO_2 -Speicherkapazität und des Leckagerisikos ergeben [vgl. Bennaceur et al., 2008, S. 105].

Weitere CO_2 -Speicheroptionen Neben den bislang genannten CO_2 -Speicheroptionen gibt es weitere CO_2 -Speicheroptionen, die sich mit hoher Wahrscheinlichkeit aus verschiedenen Gründen nicht großflächig durchsetzen werden, aber eventuell für regionale Nischenanwendungen geeignet sein können.

In Salzkavernen wird seit Jahrzehnten erfolgreich Erdgas zwischengespeichert, da sie über eine hohe Injektivität verfügen. Gegen eine Einlagerung von CO_2 spricht allerdings, dass sie in der Regel recht flach liegen und die Kapazität jeder einzelnen Kaverne recht gering ist [vgl. Bennaceur et al., 2008, S. 107]. Darüber hinaus sind bei der Erdgasspeicherung bislang Speicherintervalle im Tages- bis Jahresbereich angewendet worden, während die Salzkaverne den Speicherdruck bei der CO_2 -Speicherung für Jahrhunderte bis Jahrtausende aushalten muss. Eine interessante Option könnte jedoch die

kurzzeitige CO₂-Speicherung für Pufferzwecke darstellen, falls eine Zwischenspeicherung (z. B. beim CO₂-Schiffstransport) notwendig ist [vgl. Metz et al., 2005, S. 220]. Eine Nutzungskonkurrenz könnte sich mit der Untertagedeponierung von Industrieabfällen oder mit der Nutzung als Druckluftspeicher ergeben [vgl. Donner und Lübbert, 2006, S. 25], [vgl. Oertel, 2008, S. 34]. Ein Nachteil von Salzkavernen ist, dass es aufgrund der CO₂-Einlagerung in einen Hohlraum (ähnlich wie in einem ehemaligen Kohlebergwerk) zu einer ungewollten, rapiden Entleerung kommen kann, die in der Form für Porenspeicher (Aquifere, Erdöl-/Erdgaslagerstätten) aufgrund geringerer Permeabilität und Porosität nicht möglich ist [vgl. Radgen et al., 2006, S. 124]. Bislang gibt es kein Beispielprojekt für die CO₂-Einlagerung in eine Salzkaverne [vgl. McConnell et al., 2009a, S. D-9].

Die CO_2 -Einlagerung in Gas- und Ölschiefer ist mit der CO_2 -Adsorption in tiefen Kohleflözen vergleichbar. Die geringen Tiefen dieser Lagerstätten und die sehr geringe Permeabilität der Gas- und Ölschiefer machen eine Einlagerung jedoch technisch nahezu unmöglich [vgl. Bennaceur et al., 2008, S. 107].

Eine weitere Option ist die CO_2 -Einlagerung in Basalte. Auch wenn Basalte in großen Mengen weltweit vorhanden sind, zeichnen sie sich durch eine geringe Porosität und Permeabilität sowie ein geringes Porenvolumen aus. Diese für die CO_2 -Einlagerung negativen Eigenschaften werden dadurch ausgeglichen, dass die in den Basalten enthaltenen Silikate mit CO_2 zu kohlensauren Mineralien reagieren können. Eine Verteilung des CO_2 könnte über Risse und Fissuren im Basalt geschehen, die eine gewisse Permeabilität gewährleisten. Zur langzeitigen Einlagerung ist ein abschließendes Deckgebirge notwendig. Diese Speicheroption muss zukünftig noch näher untersucht werden [vgl. Metz et al., 2005, S. 219].

Eine kombinierte CO_2 -Abscheidungs- und CO_2 -Speicheroption besteht darin, Kalkstein in Wasser aufzulösen und das Rauchgas in Form von Bläschen durch dieses Becken zu leiten. Das dabei entstehende Hydrogencarbonat (HCO₃) soll anschließend im Ozean gespeichert werden. Neben der rechtlichen Machbarkeit wird vor allem die technische Machbarkeit als äußerst unwahrscheinlich angesehen: Die Herstellung von ausreichend kleinen Bläschen wird als sehr schwierig eingeschätzt, die benötigten Becken werden extrem große Dimensionen erreichen [vgl. Bennaceur et al., 2008, S. 109].

Auch wenn CO_2 mittlerweile als dritthäufigstes Gas (hinter Sauerstoff und Stickstoff) industriell genutzt wird (z. B. für die Erzeugung von Düngemitteln oder Chemikalien), so sind die verwertbaren Mengen mit 100 Mt/a bis 200 Mt/a im Vergleich zu den prognostizierten CO_2 -Abscheidungsmengen eher gering. Derzeit werden etwa 0,5 % der jährlich emittierten CO_2 -Menge industriell genutzt. Bei einer konsequent vorangetriebenen Forcierung der CO_2 -Nutzung in der chemischen Industrie könnte dieser Anteil auf maximal 5 % ausgeweitet werden. Darüber hinaus führt die industrielle CO_2 -Nutzung in den meisten

Fällen langfristig nicht zu den gewünschten negativen CO_2 -Emissionen [vgl. Fischedick et al., 2007, S. 78], [vgl. Bennaceur et al., 2008, S. 109]. Die industrielle CO_2 -Nutzung kann sich jedoch dämpfend auf die CCS-Kosten auswirken – hierfür werden allerdings verschieden hohe Reinheitsgrade für die unterschiedlichen Einsatzzwecke gefordert [vgl. Kuckshinrichs et al., 2010, S. If.]. An der industriellen Nutzung von CO_2 wird bereits seit mehreren Jahrzehnten geforscht [vgl. Kuckshinrichs et al., 2010, S. 110]. So unterstützt das Bundesministerium für Bildung und Forschung die stoffliche Nutzung von CO_2 bis zum Jahr 2014 mit einem Fördervolumen von 100 Mio. Euro [vgl. BINE, 2010, S. 1]. In Kapitel 5.4.4.1 wird in Form eines Exkurses auf die langfristige CO_2 -Speicherkapazität der industriellen CO_2 -Nutzung näher eingegangen.

Die Verwendung von speziellen Algensorten, die CO_2 aus Gasströmen mit geringer CO_2 -Konzentration zu Karbonaten umwandeln können, befindet sich in einer frühen Phase der Forschung. Die anschließende Verwendung der Algen als Brennstoff oder Treibstoff würde allerdings auf lange Sicht nur geringe negative CO_2 -Emissionen erzeugen [vgl. Bennaceur et al., 2008, S. 109], (vgl. Kapitel 5.4.4.2).

2.1.3.3.2 CO₂-Einlagerungsmechanismen Das CO₂ wird für die Einlagerung in den Untergrund mittels einer Bohrung in die gewünschte Tiefe gepumpt. In dieser Tiefe ist das Injektionsrohr auf einer Länge von 10 m bis 100 m löchrig oder ist mit einem permeablen Filter ausgerüstet, so dass das CO₂ auf dieser Länge in die Speicherformation gepresst wird. Zunächst breitet sich das CO₂ durch den Einpressdruck aus. Weitere CO₂-Bewegung ergibt sich beispielsweise durch natürliche Druckgefälle, Auftrieb durch Dichteunterschiede, Diffusion, Auflösung im Formationsmedium oder CO₂-Adsorption an organischem Material. Während sich CO₂ im flüssigen bzw. überkritischen Zustand mit flüssigem Erdgas vermischt, hängt die Vermischung mit Erdöl von der Ölzusammensetzung, der Temperatur und dem Druck ab. Flüssiges CO₂ ist mit Salzwasser nicht mischbar, so dass es sich hierin nur langsamer ausbreiten kann. Durch den Dichteunterschied von 30 % bis 50 % steigt das CO₂ in salinen Aquiferen nach oben auf [vgl. Metz et al., 2005, S. 205].

Eine Einlagerung sollte unterhalb von 800 m vorgenommen werden, da ab hier die Temperatur- und Druckbedingungen dem überkritischen Aggregatzustand des CO₂ entsprechen: Pro 100 Tiefenmeter nimmt die Temperatur um 3 °C und der Druck um 10 bar zu [vgl. Turkovic, 2002, S. 52], (vgl. Abbildung 2.23). Eine Einlagerung in Tiefen unter 1000 m wird grundsätzlich nicht favorisiert, da zum einen die Gesteinsporosität tendenziell abnimmt und zum anderen der bohrtechnische Aufwand ansteigt [vgl. Bundestag, 2008b, S. 16].

Abbildung 2.23: Dichte, Temperatur und Druck von eingelagertem CO₂ in Abhängigkeit von der Tiefe, eigene Darstellung auf Basis von Price und Smith [2008, S. i] und eigene Berechnung mit Daten aus Turkovic [2002, S. 52]

2.1.3.3.3 CO₂-Speichermechanismen Die Speicherung von CO₂ im Untergrund wird durch physikalische und geochemische Mechanismen bewirkt. Bei den physikalischen Speichermechanismen handelt es sich um stratigrafische und strukturelle Fallen. Stratigrafische Fallen entstehen durch unterschiedliche Bodenschichten bzw. Bodenhorizonte, die sich im Laufe der Zeit gebildet haben. Strukturelle Fallen haben sich durch Bewegungen in den Erdschichten gebildet und stellen Verwerfungen oder Störungen dar. In beiden Fallen wird das CO₂ durch Gesteinsschichten mit einer geringen Permeabilität physikalisch zurückgehalten, was am Speicherbeginn den größten Beitrag zur CO₂-Speicherung liefert (vgl. Abbildung 2.24). Daneben kann sich das eingelagerte CO₂ in Gesteinsporen einlagern, was ebenfalls als physikalischer Speichermechanismus bezeichnet wird. Bei der Einlagerung muss beachtet werden, dass der eingebrachte Druck nicht dazu führen darf, dass die stratigrafischen oder strukturellen Fallen beschädigt werden [vgl. Metz et al., 2005, S. 208], [vgl. Bundestag, 2008b, S. 16].

Der erste geochemische Mechanismus ist das Auflösen des CO_2 im Formationswasser. Durch diese Auflösung liegt CO_2 nicht mehr als separate Phase vor, so dass kein Dichteunterschied mehr besteht und das CO_2 nicht mehr nach oben aufsteigt. Das mit CO_2 angereicherte Formationswasser weist eine höhere Dichte auf und sinkt ab. Hierdurch wird

die CO₂-Lösung im übrigen Formationswasser beschleunigt. Der abschließende geochemische Mechanismus der Mineralisierung setzt frühestens nach mehreren Jahrzehnten ein. Hierbei wird das CO₂ zusammen mit Wasser und Silikaten in langzeitstabile Karbonate umgewandelt [vgl. Radgen et al., 2006, S. 116], [vgl. Metz et al., 2005, S. 208].

Abbildung 2.24: Beitrag der Speichermechanismen im Zeitverlauf, eigene Darstellung auf Basis von Metz et al. [2005, S. 208], Bundestag [2008b, S. 16]

Wie für den CO₂-Transport ist es auch für die CO₂-Einlagerung wichtig, dass es sich um einen möglichst reinen CO₂-Strom handelt (vgl. Kapitel 2.1.3.2.1). Verunreinigungen im CO₂ führen dazu, dass das CO₂ zum einen weniger stark komprimiert werden kann und zum anderen das vorhandene Speichervolumen durch andere Gase besetzt wird. Hierdurch wird die CO₂-Speicherkapazität reduziert. Darüber hinaus können die Verunreinigungen in salinen Aquiferen die Geschwindigkeit und die Menge des im Wasser gelösten und mineralisierten CO₂ negativ beeinflussen. In nicht abbaubaren Kohlelagerstätten kann durch H₂S- oder SO₂-Verunreinigungen die CO₂-Speicherkapazität reduziert werden, da die H₂S- und SO₂-Adsorptionsaffinität höher ist als diejenige von CO₂. Dahingegen haben N₂-Anteile aus dem Rauchgas in dieser Hinsicht keine negativen Folgen, da CO₂ gegenüber N₂ bevorzugt an Kohle adsorbiert [vgl. Metz et al., 2005, S.220].

2.1.3.3.4 CO₂-Monitoring Das CO₂-Monitoring stellt eine Art Verbleibanalyse für das eingelagerte CO₂ dar. Hierbei sollen zum einen lokale Risiken, die durch CO₂-Austritte

für die Umwelt und Menschen in der näheren Umgebung entstehen können, und zum anderen globale Risiken vermieden werden. Die globalen Risiken bestehen darin, dass das eingelagerte CO_2 im Laufe der Zeit wieder in die Atmosphäre entweicht und den Treibhauseffekt wiederum verstärkt. Die jährlichen CO_2 -Leckageraten sollten 0,01 % nicht überschreiten, um einen langfristigen CO_2 -Entnahmeeffekt zu gewährleisten. Dieser Aspekt wird in Kapitel 2.3.4.3.2 weiter ausgeführt.

Bereits bei der Injektion wird die Injektionsrate, der Injektionsdruck und Aggregatzustand des CO_2 gemessen, um die eingelagerte CO_2 -Menge bestimmen zu können. Durch Bohrlochmessung mittels Messsonden kann die Standfestigkeit des Betons ermittelt werden, der das Bohrrohr umgibt. Weitere Messsonden können zur Temperatur- und Geräuschmessung eingesetzt werden, um Schäden in der Bohrung zu detektieren [vgl. Price und Smith, 2008, S. 22 f.].

Für die Überwachung der CO₂-Bewegungen im Untergrund können technische Verfahren zum Einsatz kommen, die bereits in der Erdöl- und Erdgasförderung verwendet werden. Hierbei handelt es sich um direkte und indirekte Methoden. Die meisten direkten Methoden werden im Bereich des CO₂-Monitorings zum ersten Mal eingesetzt, so dass sie bislang nur begrenzt verfügbar sind. Als direkte Methode kann ein Indikator (Markierungsstoff) verwendet werden, damit die Bewegung des CO₂ nachvollzogen werden kann, sobald das markierte CO₂ an einer Beobachtungsbohrung festgestellt wird. Darüber hinaus kann die Wasserzusammensetzung, die CO₂-Sättigung und der Druck im Untergrund mit Hilfe am Bohrkopf befestigter Messsonden gemessen werden [vgl. Price und Smith, 2008, S. 22], [vgl. Metz et al., 2005, S. 235 f.]. Zu den indirekten Methoden zählen vor allem seismische Messungen, die bereits weit verbreitet sind und hohe Aussagekraft haben. Des Weiteren sind akustische und elektrische Messungen prinzipiell technisch geeignet. Durch die direkten und indirekten Methoden soll überprüft werden, ob die Einlagerungsprozesse und die Verteilung des CO₂ in der Speicherformation wie geplant bzw. vorab simuliert stattfindet [vgl. Bundestag, 2008b, S. 24].

Für die Überwachung von Leckagen in die Atmosphäre können Infrarotgasanalysatoren zur lokalen CO_2 -Messung verwendet werden, die bereits vielfach eingesetzt werden. Für die Fernüberwachung bieten sich Infrarotmessungen per Flugzeug oder Satellit an, die bislang noch entwickelt werden. Weiterhin kann durch chemische Analysen des Grundwassers und des Bodens ermittelt werden, ob CO_2 aus der Speicherstätte entwichen ist. Durch die Beobachtung von Ökosystemen kann festgestellt werden, ob Veränderungen am Pflanzenwachstum oder der Artenvielfalt durch CO_2 -Freisetzung erfolgt sind [vgl. Bundestag, 2008b, S. 24], [vgl. McConnell et al., 2009b, S. 23], [vgl. Metz et al., 2005, S. 239 f.]. Eine weitere Möglichkeit des CO_2 -Monitorings besteht darin, dem CO_2 (ähnlich wie bei Erdgas) Duftstoffe beizugeben, damit es im Falle eines Austritts gerochen werden
kann [vgl. Bundesregierung, 2009, S. 12].

2.1.3.3.5 Status quo CO₂-Speicherung Weltweit existieren mehr als einhundert Projekte zur künstlichen Einlagerung von CO₂. Der Großteil dieser Projekte befindet sich in den USA und Kanada (vgl. Abbildung 2.25). Innerhalb der USA befinden sich die meisten CO₂-Lagerstätten in Texas, wo das CO₂ zur Steigerung der Erdölförderung (EOR) seit den 1970er Jahren eingesetzt wird, so dass ein wirtschaftlicher Betrieb gewährleistet ist. Auf kanadischer Seite wird das CO₂ vor allem aus Erdgas abgeschieden und zusammen mit Schwefelwasserstoff (H₂S) wieder im Untergrund verpresst [vgl. Metz et al., 2005, S. 201], [vgl. Karlsson und Byström, 2011, S. 21].

Abbildung 2.25: Auswahl an realisierten und geplanten künstlichen CO₂-Speichern, eigene Darstellung auf Basis von IEA GHG [2007, S. 7], Metz et al. [2005, S. 198], GCCSI [2013, S. 26 ff., S. 162 ff.]

Die meisten der über 100 CO₂-Speicherprojekte weisen eine relativ geringe jährliche CO_2 -Speicherrate auf. Weltweit existieren derzeit sieben CO_2 -Speicherprojekte im großindustriellen Maßstab, die mehr als 1 Mt/a an CO₂ speichern (vgl. Tabelle 2.3). Bis Ende 2008 sind alleine in saline Aquifere weltweit 20 Mt an CO₂ eingelagert worden [vgl. Plasynski und Deel, 2010b, S. 4].

Das Sleipner-Projekt in Norwegen ist das weltweit erste Projekt im kommerziellen Maßstab, in dem CO_2 in einen salinen Aquifer einlagert wird. Das zu 9% im geförderten Erdgas enthaltene CO_2 wird rund 250 km vor der norwegischen Küste unterhalb der Nordsee in einer Tiefe von 800 Metern eingelagert. Hierbei handelt es sich um die Utsira-Formation, einer Sandsteinschicht mit eingelagerter Sole in 800 m bis 1000 m Tiefe.

Projekt- name	Land	Start	CO ₂ - Quelle	Einlagerung in Mt/a	Transportart	Speicherart
Rangely	USA	1986	Erdgasauf- bereitung	1,0	Pipeline, 285 km	EOR
Sleipner	Norwegen	1996	Erdgasauf- bereitung	1,0	$\begin{array}{l} \text{Pipeline,} \\ 0\text{km} \end{array}$	Geologisch
Val Verde Pipeline	USA	1998	Erdgasauf- bereitung	1,0	$\begin{array}{l} {\rm Pipeline,}\\ 132{\rm km} \end{array}$	EOR
Weyburn	Kanada	2000	Kohlever- gasung	2,4	Pipeline, 330 km	EOR
In Salah	Algerien	2004	Erdgasauf- bereitung	1,2	$\begin{array}{l} \text{Pipeline,} \\ 14\text{km} \end{array}$	Geologisch
Salt Creek	USA	2006	Erdgasauf- bereitung	2,4	Pipeline, 201 km	EOR
Snøhvit	Norwegen	2007	Erdgasauf- bereitung	0,7	Pipeline, 160 km	Geologisch

Tabelle 2.3: Kommerzielle CO₂-Speicherprojekte, eigene Darstellung mit Daten aus Mc-Connell et al. [2009b, S. 22]

Insgesamt sollen 20 Mt an CO_2 eingespeichert werden, was einem geringen Anteil der Gesamtspeicherkapazität von 1 Gt bis 20 Gt entspricht. Bis Ende 2008 sind bereits 16,3 Mt eingelagert worden. Die Anlage wird von Statoil betrieben und vom IEA Greenhouse Gas Research & Development Programme unterstützt. Die Einlagerung wird von einem wissenschaftlichen Monitoring (z. B. mittels seismischer Messungen) begleitet, in dem die tatsächliche CO_2 -Einlagerung nachgewiesen werden konnte [vgl. Metz et al., 2005, S. 202], [vgl. McConnell et al., 2009b, S. 22].

Für die 43 weltweit in Planung befindlichen Kraftwerke (vgl. Kapitel 2.1.3.1.5) wird ausschließlich mit der CO_2 -Speicherung im Untergrund geplant. Eine Einlagerung in die Wassersäule des Ozeans ist nicht vorgesehen. In 16 Fällen soll das CO_2 in saline Aquifere eingelagert werden, in zehn Fällen sollen leere Erdöl- und Erdgasfelder verwendet werden. Der Einsatz des CO_2 für die Erdölgewinnung ist bei 14 Projekten geplant, in einem Fall soll das CO_2 für die Gasgewinnung verwendet werden [vgl. McConnell et al., 2009b, S. 13 ff.].

Das derzeit einzige CO₂-Speicherprojekt in Deutschland wird unter der Leitung vom Geoforschungszentrum Potsdam (GFZ) in Ketzin (Brandenburg, CO₂SINK) durchgeführt.

Es wird durch die Europäische Union (6. Forschungsrahmenprogramm), das Bundeswirtschaftsministerium und die Industrie gefördert. Insgesamt arbeiten in dem Projekt 18 wissenschaftliche Einrichtungen und Unternehmen aus neun Ländern, darunter die EON Energie AG, die Vattenfall Europe AG und die RWE Power AG. Es sollen insgesamt 60 kt an CO₂ in einen salinen Aquifer in einer Tiefe von 650 m injiziert werden. Seit dem Einlagerungsbeginn im Juni 2008 sind bis Juni 2010 36 kt an CO₂ eingelagert worden. Mittels zweier Beobachtungsbohrungen wird die Ausbreitung des CO₂ im Untergrund verfolgt [vgl. Schilling et al., 2009, S. 2029 ff.], [vgl. Martens et al., 2011, S. 3247].

Seit März 2008 hat RWE Dea in Kooperation mit dem Wirtschafts- und Landwirtschaftsministerium an drei Standorten in Schleswig-Holstein (Ostholstein, Nordfriesland, Nordsee) mit Hilfe von seismischen Schallwellen die Speicherfähigkeit des Untergrunds untersucht. Bei positivem Ergebnis war eine anschließende Erkundungsbohrung vorgesehen, um festzustellen, ob die salinen Formationen in ca. 1000 m Tiefe für die CO₂-Speicherung geeignet sind. Seit dem Jahr 2011 ruht die Erlaubnis für Probebohrungen jedoch, da "aufgrund der mangelnden Akzeptanz" das Projekt nicht weiter aktiv vorangetrieben wird [vgl. Haase et al., 2008, S. 1 f.], [vgl. Geisslinger und Havlicek, 2011, S. 1]. Daneben untersucht ein Forschungskonsortium unter der Koordination des Instituts für Geowissenschaften der Universität Kiel das Verhalten von eingelagertem CO_2 im Untergrund, um daraus Risikoprognosen und Langzeitprognosen ableiten zu können. Als regionale Forschungspartner sind die Stadtwerke Kiel AG und das (ehemalige) Landesamt für Natur und Umwelt (LANU) Schleswig-Holstein beteiligt [vgl. Dahmke, 2008, S. 1].

2.2 Grundlagen der Wirtschaftlichkeit

Im Bereich der Grundlagen der Wirtschaftlichkeit werden für die energetische Biomassenutzung, Kraft-Wärme-Kopplung und CO₂-Sequestrierung diejenigen finanziellen Aspekte vorgestellt, die für die wirtschaftliche Analyse in Kapitel 4 verwendet werden.

2.2.1 Energetische Biomassenutzung

Die wirtschaftlichen Grundlagen zur energetischen Biomassenutzung konzentrieren sich auf die Energieträger holzartige Biomasse und Biogas bzw. Biomethan. Diese werden im Rahmen der technischen Analyse als die aussichtsreichsten Optionen detektiert, um fossile Brennstoffe in CCS-Anlagen ersetzen zu können (vgl. Kapitel 3.2.2).

Im Folgenden werden die wesentlichen Einflussfaktoren dargelegt, die die Energiegestehungskosten bei der Strom- und Wärmeerzeugung hauptsächlich beeinflussen: Investitionskosten (für Anlagen), Betriebskosten, Brennstoffkosten sowie Brennstoffpreise.

2.2.1.1 Investitionskosten für Biomasse-Heizkraftwerke

Die Investitionskosten für ein Biomasse-HKW bestehen im Wesentlichen aus den Aufwendungen für die Bautechnik, die Maschinentechnik sowie die Elektro- und Leittechnik der Energieerzeugung [vgl. Eltrop et al., 2007, S. 195 ff.]. Die Kosten der Wärmeverteilung für ein nachgelagertes Fernwärmenetz sind hierbei nicht enthalten und werden im Kapitel 2.2.2 berücksichtigt.

Die spezifischen Investitionskosten weisen erhebliche Unterschiede auf: Liegen diese bei einem HKW mit einer elektrischen Leistung von 1 MW bei 5200 Euro/kW, so betragen diese bei einer elektrischen Leistung von 5 MW nur noch 3600 Euro/kW und bei einer elektrischen Leistung von 20 MW rund 2400 Euro/kW [vgl. Staiß, 2007, S. II-66]. Die Anlagengröße von 20 MW an elektrischer Leistung stellt die bisherige Förderobergrenze des EEG (Erneuerbare-Energien-Gesetz) dar, so dass es in Deutschland erst wenige Anlagen gibt, die größer als 20 MW sind. Es ist jedoch damit zu rechnen, dass bei zukünftig noch größeren Anlagen eine weitere Kostendegression festgestellt werden kann. In Cavezzali et al. [vgl. 2009, S. A-14 f.] wird für ein Biomassekraftwerk mit einer elektrischen Leistung von 250 MW mit spezifischen Investitionskosten in Höhe von 1350 Euro/kW gerechnet, während die spezifischen Investitionskosten für ein Biomasse-HKW mit einer elektrischen Leistung von 75 MW bei 2450 Euro/kW liegen.

Die Investitionskosten für ein Biomassekraftwerk auf Basis des Vergasungsprozesses betragen bei einer elektrischen Leistung von 4,5 MW rund 5200 Euro/kW [vgl. Obernberger und Thek, 2008, S. 6]. Im Vergleich zu einem herkömmlichen Verbrennungsprozess ergeben sich somit Investitionsmehrkosten, die durch einen höheren elektrischen Wirkungsgrad und eine größere Brennstoffflexibilität ausgeglichen werden sollen.

Im Rahmen der Analyse der Wirtschaftlichkeit wird auch die Mitverbrennung von Biomasse in bestehenden Kohlekraftwerken untersucht (vgl. Kapitel 4.1). Hierbei wird unterschieden zwischen der Zufeuerung über die Kohleförderlogistik, mit der je nach Wassergehalt und Heizwert des Brennstoffs geringere Mitverbrennungsanteile erreicht werden können, oder über einen separaten Förderweg, über den in Abhängigkeit von der Brennstoffqualität ein Mitverbrennungsanteil von bis zu 40 % erreicht werden kann. Bei Brennstoffzuführung über die bestehende Kohlelogistik wird mit Investitionskosten in Höhe von 44 Euro/kW und im Falle eines separaten Förderwegs mit 145 Euro/kW gerechnet [vgl. Rhodes, 2007, S. 26].

Für Heizkraftwerke auf Basis von Biogas werden üblicherweise relativ kleine Verbrennungsmotoren eingesetzt, die bei einer elektrischen Leistung von 1 MW spezifische Investitionskosten von 2400 Euro/kW bis 2600 Euro/kW aufweisen [vgl. Staiß, 2007, S. II-67]. In diesen Kosten ist die komplette Anlage zur Erzeugung des Biogases ent-

halten. Diese relativ kleinen Verbrennungsmotoren sind bislang nicht Gegenstand von CCS-Forschungsprojekten gewesen (vgl. Kapitel 2.1.2.1). Somit erscheint es am aussichtsreichsten, das Biogas auf Biomethanqualität aufzubereiten und anschließend in das Erdgasnetz einzuspeisen. Das Biomethan kann anschließend in größeren GuD-Anlagen zu Strom und Wärme umgewandelt werden, wo auch eine CO_2 -Abscheidung wirtschaftlicher ist. Die Investitionskosten für ein GuD-Kraftwerk mit einer elektrischen Leistung im mittleren dreistelligen MW-Bereich liegt bei 420 Euro/kW bis 700 Euro/kW [vgl. Fischedick et al., 2007, S. 153]. Diese Investitionskosten erhöhen sich bei kleineren Anlagengrößen.

2.2.1.2 Betriebskosten

Zu den Betriebskosten eines Heizkraftwerks zählt man üblicherweise die Kosten für Wartung und Instandhaltung, für Steuern und Versicherungen, für Personal sowie für Betriebsmittel und Ascheentsorgung [vgl. Eltrop et al., 2007, S. 203].

Die jährlichen Wartungs- und Instandhaltungsaufwendungen betragen ca. 1% bis 2% der Investitionskosten. Die zu zahlenden Steuern orientieren sich an der Wirtschaftlichkeit des Gesamtunternehmens und können stark variieren. Die jährlichen Versicherungskosten betragen ca. 0.5% bis 1,0% der Investitionskosten. Die Höhe der Personalkosten hängt von der Anlagengröße ab: Bei einer elektrischen Leistung von 5 MW bis 20 MW kann mit einem Personalbedarf von 4 Mannjahren bis 10 Mannjahren gerechnet werden, die jeweils mit ca. 50 000 Euro/a veranschlagt werden können. Somit ergeben sich hier ca. 1% der Investitionskosten. Die Kosten für Betriebsmittel beinhalten beispielsweise Zusatzwasser, Strombezug oder Dosiermittel für die Wasseraufbereitung. Zusammen mit den Kosten für die Ascheentsorgung kann von jährlichen Kosten in Höhe von ca. 0,1% bis 0,5% der Investitionskosten ausgegangen werden [vgl. Eltrop et al., 2007, S. 203 ff., S. 261 f.]. Nach Scholz [vgl. 2009, S. 53] betragen die gesamten jährlichen Wartungs- und Betriebskosten für Kraftwerke auf Basis von holzartiger Biomasse ca. 5% der Investitionskosten.

2.2.1.3 Kostenzusammensetzung für biogene Brennstoffe

Die Bereitstellungskosten für die Energieträger holzartige Biomasse sowie gereinigtes Biogas (Biomethan) unterscheiden sich aufgrund verschiedenartiger Behandlungsschritte und werden in den folgenden beiden Kapiteln dargestellt.

2.2.1.3.1 Holzartige Biomasse Bei der holzartigen Biomasse kann zwischen Wald-Holzhackschnitzeln und Holzhackschnitzeln aus Kurzumtriebsplantagen (KUP) unterschieden werden. Während es sich bei Wald-Holzhackschnitzeln um Schwachholz aus dem Wald bzw. der Landschaftspflege handelt, werden KUP-Hackschnitzel eigens für die Energieerzeugung angebaut.

Die Bereitstellungskosten der Wald-Holzhackschnitzel bestehen vor allem aus Maschinen- und Lohnkosten für die Bergung. Die Kosten der Waldbewirtschaftung werden üblicherweise der Nutzholzproduktion zugerechnet. Bei der Bergung werden verschiedene Verfahren unterschieden, die jeweils die Arbeitsschritte Fällen, Entasten, Vorliefern, Rücken und Hacken umfassen (vgl. Kapitel 2.1.1.3.1). Entscheidend für die Höhe der Bereitstellungskosten ist die Stärke des geernteten Holzes: Bei einem Brusthöhendurchmesser von 20 cm ergeben sich 12,2 Euro/MWh bis 14,8 Euro/MWh, während die Bereitstellungskosten bei einem Brusthöhendurchmesser von 10 cm je nach Mechanisierungsgrad 25,9 Euro/MWh bis 42,5 Euro/MWh betragen [vgl. Eltrop et al., 2007, S. 209]. Eine anschließende Lagerung in gehackter Form sollte möglichst vermieden werden, um Kosten für die Ein- und Auslagerung sowie einen Substanzverlust durch biologische Umsetzungen zu vermeiden. Um diese Nachteile zu vermeiden, bietet sich bei Bedarf eine Lagerung im Wald im ungehackten Zustand an, wodurch das Holz bei geringeren Trockenmasseverlusten schneller trocknen kann (vgl. Kapitel 2.1.1.3.1). Für den anschließenden Transport stellt bei geringen Entfernungen der LKW-Containerzug die wirtschaftlichste Lösung dar (1,2 Euro/MWh bis 2,5 Euro/MWh bei 10 km, 2,6 Euro/MWh bis 5,4 Euro/MWh bei 70 km [vgl. Eltrop et al., 2007, S. 208 ff.], [vgl. Uddin, 2004, S. 11]). Für einen HHS-Schiffstransport im Bereich der kompletten Ostsee kann mit Kosten ab ca. 10 Euro/MWh bis 15 Euro/MWh gerechnet werden, die sich erst gegenüber einem LKW-Transport von deutlich mehr als 100 km lohnen [vgl. Detlefsen et al., 2008, S. 117 f.].

Bei der Berechnung der Bereitstellungskosten aus Kurzumtriebsplantagen wird in Eltrop et al. [vgl. 2007, S. 212 ff.] von einer Nutzungsdauer von 20 Jahren und fünf bis sechs Ernten ausgegangen. Die größten Unterschiede bei den Bereitstellungskosten ergeben sich durch die Spanne der Annahme des jährlichen Trockenmassezuwachses von $6 t/(ha \cdot a)$ bis $14 t/(ha \cdot a)$. Als Bereitstellungskosten werden daraus 17,3 Euro/MWh bis 37,4 Euro/MWh errechnet. Hierin sind im Gegensatz zu den Wald-Holzhackschnitzeln Lagerkosten in Höhe von 0 Euro/MWh bis 7,6 Euro/MWh berücksichtigt, da ein Verbleib der Biomasse im ungehackten Zustand auf dem Feld in der Regel nicht möglich ist (vgl. Kapitel 2.1.1.3.1). Zu einem etwas niedrigeren Ergebnis kommt eine Studie der Fachhochschule Kiel aus dem Jahr 2009: Hier wird für Schleswig-Holstein ein KUP-HHS-Preis von 15 Euro/MWh bis 20 Euro/MWh errechnet ($10 t/(ha \cdot a)$ bis $14 t/(ha \cdot a)$ Trockenmasse-Ertrag, inkl. 20 km Transport) [vgl. Blunk et al., 2009, S. 41]. Ein ältere Studie aus dem Jahr 2004 kommt zu Biomasse-Produktionskosten aus KUP in Höhe von 15 Euro/MWh [vgl. Uddin, 2004, S. 10]. Die Transportkosten für KUP-HHS liegen nach Eltrop et al. [vgl. 2007, S. 212 ff.] konstant um ca. 0,4 Euro/MWh höher als die oben genannten Transportkosten, da hierbei von einer zusätzlichen Verladung nach der Lagerung ausgegangen wird.

Ähnliche Kostenangaben für HHS aus Landschaftspflegematerial sowie für Holzpellets sind in der Literatur nicht vorhanden [vgl. Eltrop et al., 2007, S. 218].

2.2.1.3.2 Biogas und Biomethan Die Energiegestehungskosten für Biogas bzw. auf Erdgasqualität aufbereitetes Biomethan werden vor allem von drei Faktoren beeinflusst: das Gasaufbereitungsverfahren, das eingesetzte Gärsubstrat sowie die Anlagengröße.

Als Gasaufbereitungsverfahren werden unter anderem die bereits in Kapitel 2.1.1.8.2 technisch beschriebenen Verfahren der Druckwasserwäsche (DWW) und der Druckwechseladsorption (PSA) eingesetzt. Während die Druckwechseladsorption bei kleineren Anlagen aufgrund geringerer Investitionskosten kostengünstiger ist, nähern sich die Kosten bei größeren Anlagen ($500 \text{ m}^3/\text{h}$) nahezu an. Da beim Druckwasserwäsche-Verfahren die geringeren Methanverluste bei der Aufbereitung auftreten, fallen die Energiegestehungskosten in Bezug auf den Energiegehalt bei der Druckwasserwäsche für die größeren Anlagengrößen günstiger aus. Sie betragen für Güllesubstrat zwischen 49 Euro/MWh (bei $500 \text{ m}^3/\text{h}$) und 132 Euro/MWh (bei $50 \text{ m}^3/\text{h}$) (vgl. Abbildung 2.26). Für das Gärsubstrat Maissilage liegen sie um ca. 25 Euro/MWh bis 30 Euro/MWh höher. Die Druckwechseladsorption führt bei Anlagengrößen von $500 \text{ m}^3/\text{h}$ zu ca. 1 Euro/MWh bis 2 Euro/MWh höheren Energiegestehungskosten [vgl. Hofmann et al., 2009, S. 144 f.]. Für die ebenfalls eingesetzte alkalische Aminwäsche liegen in der Literatur bislang keine vergleichbaren Energiegestehungskosten vor.

Für das Gärsubstrat Bioabfall können zwar Annahmeerlöse erzielt werden, die jedoch durch höhere Anlagen- und Betriebskosten wieder ausgeglichen werden, so dass die Biomethangestehungskosten bei Anlagengrößen von 500 m³/h mit 63 Euro/MWh bis 64 Euro/MWh zwischen den Biomethangestehungskosten für Gülle und Maissilage liegen (vgl. Abbildung 2.26). Die Substratkosten für Mais sind grundsätzlich teurer als für Gülle, da zum einen für die Maisproduktion Flächen benötigt werden und zum anderen die Bereitstellungskette aufwändiger ausfällt (vgl. Kapitel 2.1.1.3.3).

Die Kosten in Abbildung 2.26 passen größenordnungsmäßig zu Kostenangaben an anderer Stelle: Die Kosten für rohes Biogas aus Gülle liegen in Urban et al. [vgl. 2009, S. 72 ff.] bei ca. 40 Euro/MWh und aus nachwachsenden Rohstoffen bei ca. 55 Euro/MWh bis 60 Euro/MWh. Die Kosten für die Grobentschwefelung werden mit weniger als 1 Euro/MWh angegeben.

Abbildung 2.26: Biomethangestehungskosten, eigene Darstellung mit Daten aus Hofmann et al. [2009, S. 145 f.]

2.2.1.4 Marktpreise für biogene Brennstoffe

Marktpreise für biogene Brennstoffe liegen bislang vor allem für holzartige Biomasse in Form von Holzhackschnitzeln und Holzpellets vor. Das Centrale Agrar-Rohstoff-Marketingund Entwicklungs-Netzwerk (C.A.R.M.E.N.) fragt die Preise bei Herstellern ab und veröffentlicht diese quartalsweise (vgl. Abbildung 2.27). Über die letzten Jahre kann ein Preisanstieg festgestellt werden: Derzeit liegen die Preise für Frischholzhackschnitzel (Frisch-HHS) bei ca. 30 Euro/MWh und für Holzpellets bei ca. 50 Euro/MWh. Für holzartige Biomasse aus Kurzumtriebsplantagen gibt es bislang noch keinen Markt, da der Anbau sich bislang noch in einer Versuchsphase befindet [vgl. Eltrop et al., 2007, S. 223]. Die Brennstoffpreise für unbehandelte Altholzhackschnitzel (absolut reines Altholz ohne Behandlung oder Kontamination) liegen seit 2007 auf einem relativ stabilen Niveau von 10 Euro/MWh und somit deutlich unter den Marktpreisen für Frischholzhackschnitzel [vgl. EUWID, 2008–2013].

Vergleicht man diese Preise mit den in Abbildung 2.27 ebenfalls dargestellten Preisen für fossile Brennstoffe, so ist auch hier bis zum Jahr 2008 ein deutlicher Preisanstieg festzustellen. Danach sind die Preise für fossile Brennstoffe zunächst deutlich zurückgegangen, während die Preise für Holz nahezu konstant geblieben sind. Des Weiteren fallen die relativ synchronen Preisverläufe für Erdgas, Steinkohle und Rohöl in den

Abbildung 2.27: Brennstoffpreise für Frischholzhackschnitzel, unbehandelte Altholzhackschnitzel, Holzpellets, Steinkohle und Erdgas, eigene Darstellung mit Daten für Frischholz, Holzpellets, Erdgas, Heizöl und die Haushalte aus CARMEN [2013], für Industriepellets aus FOEX [2013, S. 1], für Steinkohle aus BAFA [2010], BAFA [2011], BAFA [2013a], Beitz und Grote [1997, S. L 74], für Rohöl aus BAFA [2013b], BAFA [2013c], für Erdgas aus BAFA [2013d], für Altholz aus EUWID [2008–2013]

Jahren 2004 bis 2011 auf. Um die Preise der fossilen und der erneuerbaren Energieträger vergleichen zu können, müssen zu den spezifischen Preisen für Steinkohle und Erdgas noch die spezifischen Preise für die CO₂-Zertifikate addiert werden, auf die in Kapitel 2.2.3.2 näher eingegangen wird.

Die in Abbildung 2.27 dargestellten Preise für Frischholzhackschnitzel und Holzpellets sind für Endkunden wie kleine Heizwerke (z. B. Schulen) oder Haushalte gültig. Die Preise für größere Heizkraftwerke liegen unterhalb dieser Preise. In Abbildung 2.27 werden zu den Grenzübergangspreisen für Rohöl und Erdgas ebenfalls die Haushaltspreise für Heizöl und Erdgas dargestellt. Für Haushaltskunden befindet sich der Erdgaspreis im Mittel 42 Euro/MWh und der Heizölpreis durchschnittlich 28 Euro/MWh über dem Grenzübergangspreis. Somit liegen die Kosten des Großhandelsprodukts bei ca. 34 % (Erdgas) bzw. ca. 55 % (Rohöl) des Endkundenpreises. Diese Verhältnismäßigkeiten können für die Bestimmung der Großhandelspreise für Holzhackschnitzel und Holzpellets nicht unmittelbar übernommen werden, da es sich hierbei um ein regionales Produkt

handelt, das derzeit nicht im großen Maßstab importiert wird. In Abbildung 2.27 sind Preise für Industriepellets im Ostseeraum angegeben, die zwischen 2007 und 2013 leicht aber stetig von 25 Euro/MWh auf 30 Euro/MWh angestiegen sind. Das Preisniveau stimmt mit Angaben in Koornneef et al. [vgl. 2011, S. 99] und dena [vgl. 2012b, S. 19] überein. Vergleicht man diese Preise zu den Haushaltspelletspreisen, ergibt sich hier ein Preisniveau des Großhandelspreises von etwa 62 %. Dieser Wert ist erwartungsgemäß derzeit noch höher als für Erdgas oder Rohöl, da der internationale Holzpelletsmarkt noch im Entstehen ist. Holzhackschnitzel auf Kraftwerksmaßstab können im Jahr 2012 zu Preisen von 14 Euro/MWh bis 22 Euro/MWh bezogen werden, was ca. 50 % bis 75 % der Endkundenpreise entspricht [vgl. SWFL, 2008-2013].

Werden die Holzhackschnitzel über längere Strecken transportiert, weil die regionalen Ressourcen begrenzt sind, so müssen entsprechende Transportkosten berücksichtigt werden. Da fossile Energieträger ebenfalls überwiegend aus dem Ausland importiert werden, sind die unterschiedlichen Transportdistanzen weniger entscheidend. Entscheidend ist jedoch die in Kapitel 2.1.1.4.3 eingeführte Energiedichte, die bei Holzhackschnitzeln ungefähr um den Faktor zehn geringer ist als bei Steinkohle. Hierdurch haben die Transportkosten bei Holzhackschnitzel einen deutlich höheren Anteil an den Brennstoffkosten als bei fossilen Energieträgern.

Der Markt der Biomethaneinspeisung in das Erdgasnetz hat sich in den letzten Jahren dynamisch entwickelt [vgl. dena, 2010, S. 1 f.], (vgl. Kapitel 2.1.1.8). Nichtsdestotrotz bestehen bislang keine Handelsplattformen, auf denen sich ähnlich transparente Marktpreise wie beispielsweise im Strombereich bilden. Eine Biomethan-Handelsplattform wird seit Ende 2007 von bmp greengas betrieben, wo bislang jedoch erst relativ kleine Mengen mit wenigen Handelsteilnehmern gehandelt worden sind. Häufig werden bilaterale Verträge abgeschlossen [vgl. Lokau und Nels, 2008, S. 22]. Aus internen Quellen der Stadtwerke Flensburg GmbH (SWFL) ist bekannt, dass der Marktpreis für Biomethan bei ca. 75 Euro/MWh liegt, was Angaben in dena [vgl. 2012b, S. 19] entspricht. Zusätzlich ist für den Bezug des Biomethans ein Netznutzungsentgelt an den Gasnetzbetreiber zu entrichten. Dieses beträgt bei einer Anschlussleistung von 5 MW bis 50 MW zwischen 1,60 Euro/MWh und 2,26 Euro/MWh [vgl. Brammann, 2010, S. 56]. Diese Angaben entsprechen Berechnungen in Urban et al. [vgl. 2009, S. 87 f.], wo 1,50 Euro/MWh ermittelt worden sind.

2.2.1.5 Wirtschaftliche Förderung

Der Einsatz von biogenen Brennstoffen zur Erzeugung von elektrischer und thermischer Energie stellt sich bei den Marktpreisen der vergangenen Jahre als nicht wirtschaftlich im

Vergleich zu fossilen Energieträgern dar (vgl. Kapitel 2.2.1.4). Die Berücksichtigung der Kosten für CO₂-Zertifikate (vgl. Kapitel 2.2.3.2) verkleinert diese Lücke, schließt sie jedoch bislang nicht vollständig, zumal lediglich Anlagen mit einer Feuerungswärmeleistung von mehr als 20 MW zur Teilnahme am CO₂-Emissionshandel verpflichtet sind.

In Deutschland wird bereits seit dem Jahr 1991 die Stromeinspeisung aus erneuerbaren Energien gesetzlich gefördert, indem der erzeugte Strom aus erneuerbaren Energien abgenommen und vergütet werden muss. Die Vergütungshöhe hat gemäß Stromeinspeisungsgesetz für Strom aus Biomasseanlagen mit einer maximalen Leistung von 5 MW 75 % des durchschnittlichen Endverbraucherpreises betragen [vgl. Bundestag, 1990, S. 2633 f.].

Ab dem Jahr 2000 fördert das Erneuerbare-Energien-Gesetz (EEG) den Einsatz von erneuerbaren Energieträgern zur Stromerzeugung in Deutschland, indem für die vorrangig eingespeisten Strommengen gleichbleibende Abnahmepreise für einen fest definierten Zeitraum (v. a. 20 Jahre) gewährt werden. Diese Abnahmepreise ergeben sich aus einer Grundvergütung und verschiedenen Boni. Hierbei werden für Anlagen mit einer geringeren elektrischen Leistung größere Vergütungen und Boni gewährt. Abbildung 2.28 stellt die Grundvergütung und die Boni für Biomasse-Anlagen mit einer elektrischen Leistung von 20 MW dar. Diese Leistungsgröße wird gewählt, da vor allem große Anlagen aufgrund der Größendegression für CCS geeignet wären (vgl. Kapitel 2.1.2.1). Die Grundvergütung ist in der Vergangenheit jährlich um 1,0% bis 1,5% abgesenkt und bei jeder EEG-Novellierung (schwarze, senkrechte Striche) an die aktuellen Marktbedingungen angepasst worden. Als Bonus wird bis zum Jahr 2011 lediglich der KWK-Bonus aufgeführt, da die weiteren Boni (z. B. für nachwachsende Rohstoffe oder innovative Technologien) nur für Anlagen bis zu einer elektrischen Leistung von 5 MW gewährt werden. Ab dem Jahr 2012 kommt die Managementprämie hinzu, die für die Direktvermarktung des EEG-Stroms an der Strombörse gezahlt wird.

Die EEG-Vergütung des erzeugten Stroms hat mit rund 80 Euro/MWh in den vergangenen Jahren deutlich über den Marktpreisen für elektrische Energie gelegen (ca. 50 Euro/MWh, vgl. Kapitel 2.2.2.3), so dass sich der Einsatz von Biomasse in Deutschland bislang auf EEG-geförderte Anlagen mit einer elektrischen Leistung von unter 20 MW konzentriert. Da im Rahmen des EEG die Stromerzeugung aus der Mitverbrennung von Biomasse mit fossilen Brennstoffen nicht gefördert wird, wird in Deutschland derzeit die Biomasse-Mitverbrennung in größeren Kraftwerken (fast) nicht praktiziert. Da diese Mitverbrennung bis zu 50 % jedoch technisch möglich ist und ein hohes Treibhausgasvermeidungspotenzial besitzt, wird in Vogel et al. [vgl. 2011, S. 4 ff.] gefordert, die Stromerzeugung aus der Biomasse-Mitverbrennung mit ca. 35 Euro/MWh zu fördern. Die CO₂-Vermeidungskosten der Biomasse-Mitverbrennung liegen nach dena [vgl. 2012b, S. 13] mit 43 Euro/t deutlich unter den CO₂-Vermeidungskosten aller weiteren im EEG

Abbildung 2.28: Vergütung für ein Biomasse-HKW (20 MW elektrische Leistung) im Rahmen des EEG in den Jahren 2000 bis 2012, eigene Darstellung mit Daten aus Bundestag [2000, S. 306], Bundestag [2004, S. 1920 f.], Bundestag [2008a, S. 2079 ff.], Bundestag [2011a, S. 1639 ff.]

geförderten Stromerzeugungsvarianten.

2.2.2 Kraft-Wärme-Kopplung

Für die Kraft-Wärme-Kopplung fallen Investitionskosten zum einen im Bereich des Heizkraftwerks (vgl. Kapitel 2.2.1.1) und zum anderen für den Bau des nachgelagerten Fernwärmenetzes an (vgl. Kapitel 2.2.2.1). Des Weiteren wird auf die Marktpreise für die beiden Erzeugungsprodukte Fernwärme (Kapitel 2.2.2.2) und elektrische Energie (Kapitel 2.2.2.3) näher eingegangen.

2.2.2.1 Investitionskosten für Fernwärmenetze

Die Investitionskosten für Fernwärmenetze setzen sich aus den Kosten für die Hausstationen und für die Fernwärmeleitungen zusammen. Die Hausstationen bzw. Wärmeübergabestationen bestehen vor allem aus Armaturen, Mess- und Regeleinrichtungen und sind ein entscheidendes Element für den einwandfreien Betrieb eines Fernwärmenetzes. Hierbei wird zwischen direkten und indirekten Stationen unterschieden. Während bei

direkten Stationen das Fernheizwasser des Fernwärmenetzes durch den Hauskreislauf des Verbrauchers strömt, wird bei indirekten Stationen die Wärme des Fernheizwasser mit Hilfe eines Wärmetauschers an den Hauskreislauf übertragen. Die Kosten für die indirekten Hausstationen liegen aufgrund des größeren apparativen Aufwands um 10 % bis 20 % höher als bei den direkten Stationen. Bei für Einfamilienhäuser üblichen Anschlussleistungen von 10 kW bis 20 kW liegen die spezifischen Kosten für direkte Stationen bei 510 Euro/kW bis 320 Euro/kW und sinken auf 25 Euro/kW bei einer Anschlussleistung von 1000 kW [vgl. Eltrop et al., 2007, S. 152 f., S. 200 f.].

Die Kosten für die Wärmeleitungen bestehen aus Rohrleitungskosten, Montage und Tiefbau, wobei der Tiefbau ca. 40 % bis 60 % der Kosten ausmacht. Die spezifischen Verlegekosten variieren in Abhängigkeit von dem Nenndurchmesser der Rohrleitung, der die übertragbare Leistung bestimmt. Bei kleinen Nenndurchmessern von bis zu 65 mm betragen die spezifischen Kosten knapp 400 Euro/m, bei Durchmessern von 150 mm bis 200 mm steigen diese Kosten auf ca. 800 Euro/m. Als jährliche Wartungsund Instandhaltungskosten können 2 % der Investitionskosten angenommen werden [vgl. Eltrop et al., 2007, S. 200 ff.].

2.2.2.2 Marktpreise für Fernwärme

Die Marktpreise für Fernwärme werden vom Energieeffizienzverband für Wärme, Kälte und KWK (AGFW) einmal im Jahr zum Stichtag 1. Oktober erhoben. Hierbei werden sogenannte Versorgungsfälle definiert, die sich in der Anschlussleistung (15 kW, 160 kW und 600 kW) und in der jährlichen Ausnutzungsdauer (1500 h/a, 1800 h/a, 2000 h/a) unterscheiden. Zusätzlich wird zum 1. April jedes Jahres eine Fernwärmepreisübersicht an die an der Umfrage teilnehmenden Unternehmen ausgegeben, die nur einen bestimmten Versorgungsfall betrachtet (160 kW, 1800 h/a, 288 MWh/a). Für die einzelnen Versorgungsfälle werden bei allen an der Umfrage beteiligten Unternehmen (knapp 200 in 2012) der Netto-Mischpreis ermittelt, der sich aus dem Arbeitspreis, Grundpreis und Mess-/Verrechnungspreis zusammensetzt. Der mittlere Fernwärme-Mischpreis hat im Jahr 2012 knapp 77 Euro/MWh betragen. Der Mischpreis setzt sich aus einem Arbeitspreisanteil von 79,4 %, einem Grundpreisanteil von 19,8 % und einem Verrechnungspreisanteil von 0,8 % zusammen [vgl. WIBERA, 2011a, S. 1 ff.], [vgl. WIBERA, 2011b, S. 13], [vgl. Kraft und Schmitz, 2011, S. 2 ff.], [vgl. Kraft und Schmitz, 2011, S. 3 ff.].

Parallel zu den Preisanstiegen für Steinkohle und Erdgas zwischen 2003 und 2008 (vgl. Kapitel 2.2.1.4) sind die Preise für Fernwärme ebenfalls angestiegen (vgl. Abbildung 2.29). Die durchschnittlichen Fernwärmepreise liegen in den neuen Bundesländern höher als in den alten Bundesländern.

Abbildung 2.29: Durchschnittliche Fernwärmepreise zwischen 1991 und 2012 (1800 h/a), eigene Darstellung mit Daten aus Kraft und Schmitz [2012, S.7]

Neben den Marktpreisen für Fernwärme sind für die Berechnungen in Kapitel 4 auch die Kosten der Fernwärmeverteilung von Bedeutung, da diese neben den Wärmegestehungskosten ebenfalls durch die Marktpreise gedeckt werden müssen. Nach Jochem et al. [vgl. 2000, S. 50] hängen die Kosten der Fernwärmeverteilung stark von der zu versorgenden Bebauungsstruktur ab. Im Mittel ergeben sich Kosten von ca. 20 Euro/MWh bis 25 Euro/MWh.

2.2.2.3 Großhandelspreise für elektrische Energie

Der Handel von elektrischer Energie findet im Wesentlichen auf drei Arten statt: an Strombörsen, als bilaterale Geschäfte und in Form von Regelenergie. Der Handel an Strombörsen kann wiederum in den Terminmarkt und den Spotmarkt unterteilt werden. Während auf dem Terminmarkt langfristige Kontrakte auf Monats-, Quartals- und Jahresbasis geschlossen werden, werden auf dem Spotmarkt kurzfristige Verträge über einzelne Stunden für den nächsten Tag (Day-ahead-Handel) und für den aktuellen Tag (Intraday-Handel) geschlossen. Bilaterale Geschäfte werden überwiegend telefonisch zwischen zwei Handelspartnern vereinbart. Sie werden auch OTC-Geschäfte genannt ("Over The Counter"). Im Bereich der Regelenergie werden wiederum drei Arten unterschieden: Primärreserve, Sekundärreserve und Tertiärreserve (Minutenreserve) [vgl. Maier, 2010, S. 44 f.].

Die Bereitstellung von Regelenergie stellt an den Anlagenbetrieb besondere Herausforderungen: So muss die angemeldete Leistung in der Primär- bzw. Sekundärreserve in 30 Sekunden bzw. 5 Minuten automatisch bereitgestellt werden. Die Minutenreserve muss spätestens 15 Minuten nach dem telefonischem Abruf zur Verfügung stehen. Diese relativ kurzfristigen Lastwechsel können von Kraftwerken mit Festbrennstoffen ohnehin nur in vergleichsweise geringen Leistungsbereichen realisiert werden. Durch die Integration von komplexen CO₂-Abscheidungsprozessen mit nachgelagertem CO₂-Transport sowie CO₂-Speicherung erscheint die Teilnahme am Regelenergiemarkt aus technischen Gründen relativ schwierig. Entsprechende technische Lösungen wären mit zusätzlichen Kosten verbunden (z. B. CO₂-Zwischenspeicher) [vgl. Esau et al., 2010, S. 2], (vgl. Kapitel 4.2.2). Eine Anpassung an flexible Strompreise im Bereich des Spotmarkthandels erscheint realistischer: So ist es z. B. vorstellbar, bei der Variante Post-Combustion das Waschmittel konzentriert in Niedrigpreiszeiten zu regenerieren, so dass in einzelnen Stunden die Kraftwerksleistung gezielt abgesenkt werden kann [vgl. Esau et al., 2010, S. 3]. Eine im Tagesverlauf variable CO₂-Abscheiderate führt zu wirtschaftlichen Vorteilen, indem in Stunden mit hohen Strompreisen mehr Strom erzeugt sowie weniger CO_2 abgeschieden wird und in Stunden mit niedrigen Preisen weniger Strom erzeugt sowie mehr CO₂ abgeschieden wird [vgl. Wiley et al., 2011, S. 1900]. Hierbei ist in Abhängigkeit vom betrachteten Strommarkt bereits eine Laständerungsrate von ca. 1,0 %/min ausreichend, um mit der zeitweisen Abschaltung der CO_2 -Abscheidung das Jahresergebnis um 10%erhöhen zu können [vgl. Cohen et al., 2011, S. 2609], [vgl. Chalmers et al., 2011, S. 2602]. In Nord und Bolland [vgl. 2011, S. 2561] wird dargestellt, dass CCS-Kraftwerke auf Erdgasbasis ähnliche Teillastwirkungsgrade wie GuD-Kraftwerke erreichen können, so dass sich die Einsatzflexibilität durch die CCS-Integration nicht verschlechtert.

Abbildung 2.30 zeigt die Großhandelspreise für elektrische Energie am Spotmarkt der European Energy Exchange (EEX) für die Jahre 2008 bis 2013. Hierbei sind zum einen das deutlich höhere Preisniveau in 2008 und zum anderen typische Tagesganglinien zu erkennen: Die Strompreise steigen typischerweise morgens (ab 5:00 Uhr) an und haben mittags (12:00 Uhr) und abends (19:00 Uhr) zwei Maxima im Tagesverlauf. Durch die vermehrte Solarenergieeinspeisung hat sich das Mittagsmaximum seit 2012 abgeschwächt und in den frühen Vormittagsbereich verlagert.

In Abbildung 2.31 werden für das Jahr 2012 die Spotmarktpreise für die einzelnen Wochentage im Tagesverlauf dargestellt. Das Preisniveau liegt sonntags während der Tagesstunden deutlich am niedrigsten. Ähnlich niedrig liegen die Preise am Samstag. Am Freitagnachmittag und am frühen Montagmorgen zeigen sich ebenfalls leicht niedrigere Preise als an den übrigen Werktagen, die sehr ähnlich ausfallen.

Abbildung 2.30: EEX-Spotmarktpreise für elektrische Energie im Tagesverlauf für die Jahre 2008 bis 2013, eigene Darstellung mit Daten aus SWFL [2008-2013]

Abbildung 2.31: EEX-Spotmarktpreise für elektrische Energie in 2012 an den einzelnen Wochentagen, eigene Darstellung mit Daten aus SWFL [2008-2013]

Die Integration großer Mengen erneuerbarer Energien, die vorrangig eingespeist werden, werden zukünftig vermehrt dazu führen, dass ältere Kraftwerke mit hohen Stromgestehungskosten aus dem Markt gedrängt werden. Hierdurch senkt sich zwar das Preisniveau, das jedoch durch die erhöhte Bereitstellung von Spitzenleistungen wiederum ausgeglichen wird [vgl. Groscurth und Bode, 2009, S. 20]. Negative Strompreise ergeben sich dadurch, dass zu den Zeiten hoher Stromeinspeisung aus erneuerbaren Energien konventionelle Kraftwerke teilweise für einige Stunden weiter betrieben werden, um ein Ab- und Anfahren zu vermeiden. Trotz dieser einzelnen Stunden, die überbrückt werden können, wird es zukünftig keine Kraftwerke mehr geben, die in Grundlast betrieben werden [vgl. Groscurth, o. J., S. 12, S. 19].

2.2.3 CO₂-Sequestrierung

Im Bereich der wirtschaftlichen Grundlagen der CO_2 -Sequestrierung wird zunächst in Kapitel 2.2.3.1 auf die wesentlichen CCS-Kostenkomponenten für die einzelnen CCS-Prozessschritte (CO₂-Abscheidung, CO₂-Transport, CO₂-Speicherung) eingegangen. Im Kapitel 2.2.3.2 wird die Marktpreisentwicklung für CO₂-Zertifikate beschrieben, die für die zukünftige Einführung von CCS den entscheidenden Marktimpuls darstellt. Wie die CO₂-Sequestrierung derzeit auf internationaler, europäischer sowie nationaler Ebene gefördert wird, wird in Kapitel 2.2.3.3 dargestellt. Dadurch soll eine gewisse Lücke zur Wirtschaftlichkeit überbrückt werden. Diese Wirtschaftlichkeit ist gegeben, sobald die Kosten für die CO₂-Vermeidung den Marktpreisen für CO₂-Zertifikate entsprechen.

2.2.3.1 CCS-Kostenkomponenten

Die CCS-Kostenkompenenten werden im Folgenden in die drei CCS-Prozessschritte CO₂-Abscheidung, CO₂-Transport und CO₂-Speicherung unterteilt. Hierbei können jeweils Investitionskosten und Betriebskosten unterschieden werden. Im Bereich der CO₂-Abscheidung wird ebenfalls auf die zukünftige Kostenentwicklung, Stromgestehungskosten ohne und mit CCS, CO₂-Vermeidungskosten sowie CO₂-Kompressionskosten eingegangen. Die Kosten werden jeweils in Euro des Jahres 2005 normiert angegeben. Hierfür sind Angaben aus anderen Jahren mittels des Produzenten-Preisindexes aus der UNECE-Datenbank der Vereinten Nationen hochskaliert und Angaben in US-Dollar anhand des Euro-Dollar-Wechselkurses des jeweiligen Jahres umgerechnet worden [vgl. UNECE, 2012], (vgl. Kapitel 4.1.1).

2.2.3.1.1 Kosten für CO_2 -Abscheidung und CO_2 -Kompression Sowohl die Investitionskosten als auch die Betriebskosten der CO_2 -Abscheidung variieren in der Literatur

erheblich. Ursache hierfür sind unter anderem unterschiedliche Annahmen hinsichtlich der Anlagengröße, des Bezugsjahres für die Investition, Währungsumrechnungen oder nicht eindeutig erkennbare Systemgrenzen. Da bislang keine großskaligen CCS-Kraftwerke errichtet worden sind, liegen keine Erfahrungswerte vor, so dass derzeit grundsätzlich mit Kostenannahmen gearbeitet wird, die in der Regel eine technische Weiterentwicklung in der Zukunft unterstellen.

Investitionskosten In Abbildung 2.32 sind für die drei wesentlichen CO_2 -Abscheidungsvarianten die Investitionskosten in Bezug auf die elektrische Leistung für ein Kraftwerk ohne CC (Carbon Capture), für ein Kraftwerk mit CC und die entsprechende Differenz dargestellt. Hierbei handelt es sich um Kraftwerke mit einer durchschnittlichen elektrischen Nettoleistung von knapp 480 MW (inkl. CO_2 -Abscheidung).

Abbildung 2.32: Spezifische Investitionskosten der wesentlichen CO₂-Abscheidungsvarianten, eigene Darstellung mit Daten aus Metz et al. [2005, S. 151 ff.], Fischedick et al. [2007, S. 153 ff.], Parsons et al. [2002, S. 3], David [2000, S. 42 ff.], UNECE [2012], vgl. Anhang Tabelle A.3 bis Tabelle A.8

Grundsätzlich steigen die Investitionskosten für die Integration der CO₂-Abscheidung, da zusätzliche Anlagenkomponenten installiert werden müssen (z. B. Gasreinigungsverfahren, Luftzerlegungsanlage) und auf der anderen Seite keine Komponenten eingespart werden können. Die Variante Post-Combustion in Verbindung mit GuD weist sowohl mit

als auch ohne CO₂-Abscheidung die deutlich geringsten Investitionskosten auf, so dass sich hierbei der geringste Zuwachs der Investitionskosten ergibt (ca. 450 Euro/kW). Ähnlich niedrige Zusatzkosten ergeben sich für die CCS-Variante Pre-Combustion, der eine Vergasung des Brennstoffs vorgeschaltet ist (ca. 570 Euro/kW). Für diese beiden Varianten fällt die Integration der CO₂-Abscheidung somit spezifisch kostengünstig aus, wobei die Investitionskostensteigerung bei GuD ca. 76 % beträgt, während die IGCC-Investitionskosten um lediglich ca. 33 % angehoben werden.

Die höchsten spezifischen Investitionskosten ergeben sich mit ca. 2300 Euro/kW für die CCS-Variante Post-Combustion mit Steinkohle. Gegenüber den Investitionskosten ohne CC stellt dies eine Steigerung um 69 % dar. Eine ähnliche Kostensteigerung (ca. 66 %) ergibt sich bei der Variante Oxyfuel. Hier steigen die mittleren spezifischen Investitionskosten auf ca. 2200 Euro/kW.

Die spezifischen Investitionskosten für Anlagen, in denen Biomasse eingesetzt wird, liegen üblicherweise über den spezifischen Kosten für Kraftwerke auf fossiler Basis. Der Grund hierfür ist, dass Biomasse-Kraftwerke in der Regel mit einer kleineren Anlagenleistung errichtet werden und dass sie über geringere elektrische Wirkungsgrade verfügen [vgl. Nauclér et al., 2008, S. 30]. Darüber hinaus müssen viele Anlagenteile aufgrund der geringeren spezifischen Energiedichte der Biomasse größer ausgelegt werden, um die gleichen Brennstoffleistungen erreichen zu können. Abbildung 2.33 stellt in der Literatur verfügbare Angaben zu den spezifischen Investitionskosten für Kraftwerke mit und ohne CC auf Biomassebasis gegenüber Kohle dar. Ohne CC ergeben sich Investitionsmehrkosten für IGCC-Anlagen von ca. 50 %, wenn der Brennstoff von Kohle auf Biomasse umgestellt wird. Der gleiche Brennstoffwechsel bewirkt im Falle einer zirkulierenden Wirbelschichtfeuerung eine Erhöhung der spezifischen Investitionskosten um ca. 19%bzw. eine Reduktion um ca. 13% (Q4). Dieser Rückgang ergibt sich durch eine einfachere Rauchgasreinigung, da das Rauchgas geringere Frachten an SO₂ und NO_x enthält [vgl. Cavezzali et al., 2009, S. iv]. Durchschnittlich ergeben sich Mehrkosten in Höhe von rund 30% für die Biomasse-Integration in Kraftwerke ohne CC. Bei den Kraftwerken mit CO_2 -Rückhaltung ergeben sich in einer Studie Mehrkosten von knapp 85 %. Für die gleiche IGCC-Technologie werden in zwei weiteren Studien Mehrkosten von 18% bzw. Minderkosten von knapp 20% angegeben. Diese Minderkosten werden unter anderem durch einen niedrigeren Entschwefelungsbedarf bei Biomasse begründet [vgl. Larson et al., 2005, S. 49 f.]. Im Durchschnitt liegen die Mehrkosten für die Biomasse-Integration in Kraftwerke mit CO₂-Abscheidung bei rund 30%. Angaben für Investitionsmehrkosten für Bio-CCS-Anlagen mit Kraft-Wärme-Kopplung liegen in der Literatur nicht vor [vgl. Uddin, 2004, S.8].

Abbildung 2.33: Spezifische Investitionsmehrkosten für Biomassekraftwerke gegenüber Kohlekraftwerken (ohne und mit CO₂-Abscheidung), eigene Darstellung mit Daten aus Bennaceur et al. [2008, S. 65] (Q 1), IEA/OECD [2004, S. 56] (Q 2), Koornneef et al. [2011, S. 181, S. 189] (Q 3), Cavezzali et al. [2009, S. iv] (Q 4), Azar et al. [2006, S. 4] (Q 5), Rhodes und Keith [2003, S. 4] (Q 6), Larson et al. [2005, S. 50] (Q 7)

Betriebskosten Neben den Investitionskosten fallen für den laufenden Anlagenbetrieb Betriebskosten an, die sich im Wesentlichen aus den Positionen Wartung bzw. Instandhaltung, Personal, Versicherung und Entsorgungskosten ergeben. In den Betriebskosten in Abbildung 2.34 sind somit keine Brennstoffkosten enthalten. Die Variante Oxyfuel ist nicht dargestellt, da für die Betriebskosten in der Literatur keine Daten vorliegen. Die Betriebskosten dürften jedoch in einem ähnlichen Bereich wie Post-Combustion (Dampfprozess) oder Pre-Combustion liegen, da es sich ebenfalls um eine Festbrennstoffverbrennung handelt.

Es ist ein erheblicher Betriebskostenanstieg (um ca. 105 % bzw. 95 %) bei den Post-Combustion Varianten (mit Steinkohle bzw. Erdgas) zu erkennen. Dieser Anstieg kann zum einen durch die Kosten für die chemischen Absorbenzien erklärt werden: Bei einem MEA-Preis von ca. 2000 Euro/t [vgl. Cavezzali et al., 2009, S. E 14] entstehen alleine hierdurch Betriebskosten in Bezug auf die elektrische Leistung von ca. 7 Euro/kW [vgl. Radgen et al., 2006, S. 46]. Zum anderen verteilen sich die gleichbleibenden (bzw. ansteigenden) Kosten

Abbildung 2.34: Spezifische Betriebskosten der wesentlichen CO₂-Abscheidungsvarianten, eigene Darstellung mit Daten aus Metz et al. [2005, S. 151 ff.], Fischedick et al. [2007, S. 153 ff.], Parsons et al. [2002, S. 3], David [2000, S. 42 ff.], UNECE [2012], vgl. Anhang Tabelle A.3 bis Tabelle A.8

für Personal, Versicherung, Instandhaltung etc. auf eine niedrigere elektrische Leistung, so dass die spezifischen Betriebskosten ansteigen. Die Betriebskosten für die GuD-Variante fallen grundsätzlich am niedrigsten aus, da durch den Brennstoff Erdgas die Wartungs- und Personalkosten üblicherweise geringer sind als bei einer Festbrennstoffverbrennung. Der Anstieg der spezifischen Betriebskosten für die Variante Pre-Combustion in Verbindung mit IGCC fällt mit knapp 40 % vergleichsweise gering aus. Mit Betriebskosten von ca. 78 Euro/(kW \cdot a) liegt diese Variante zwischen den beiden anderen Varianten.

Zukünftige Kostenentwicklung Die zukünftige Entwicklung der spezifischen Investitionskosten und der Betriebskosten kann mit Hilfe von Lernkurven prognostiziert werden. Hierfür werden Kostendegressionseffekte anderer Technologien (z. B. Rauchgasreinigungsanlagen, Turbinen, Kessel, Sauerstoffzerlegung) aus der Vergangenheit verwendet. Diese Kostendegressionen ergeben sich durch technische Weiterentwicklungen, Rationalisierungseffekte oder die Fertigung größerer Lose. Die Lernrate beschreibt die Reduktion der Investitions- und der Betriebskosten bei einer Verdoppelung der Stückzahl und liegt typischerweise bei 10 % bis 30 % [vgl. Fischedick et al., 2007, S. 64]. In Rubin et al. [vgl. 2007b,

S. 189 ff.] wird der CO₂-Abscheidungsprozess gängiger CCS-Varianten in Einzelschritte unterteilt, die jeweils mit insgesamt sieben bekannten Lernkurven beschrieben werden. Da einige dieser Einzelschritte (z. B. Staubfeuerung, NO_x-/SO₂-Rauchgasreinigung, Gasturbinen) bereits weit entwickelt sind, fallen die Gesamt-Lernraten deutlich geringer aus. Anhand dieser Zuordnung werden die zukünftigen Kapital- und Betriebskosten prognostiziert, die sich nach einer Lernphase von 100 GW installierter Leistung ergeben werden, was etwa 25 Jahren entspricht. Für die Investitionskosten ergeben sich Lernraten von 2,1% bis 5,0%, wobei die Variante Post-Combustion auf Basis von Steinkohle und Erdgas die geringste und die Variante Pre-Combustion auf Basis des IGCC die höchste Lernrate aufweist. Die Lernraten für die Betriebskosten betragen 3,5% bis 5,7%. Hierbei wird der Oxyfuel-Variante die geringste Lernrate und der Variante Post-Combustion auf Basis von Steinkohle die höchste Lernrate prognostiziert. Ähnliche Prognosen für die Kostenentwicklung für den CO₂-Transport und die CO₂-Lagerung liegen noch nicht vor. Da diese Kosten jedoch deutlich geringer sind als die Kosten der CO₂-Abscheidung wird eine Kostendegression in diesen Bereichen einen geringeren Einfluss haben [vgl. Rubin et al., 2007b, S. 193 ff.].

Stromgestehungskosten Die Stromgestehungskosten $(k_{SG,el})$ eines Kraftwerks ergeben sich, indem man die Summe der Kapital-, Betriebs- und Brennstoffkosten durch die erzeugte Strommenge dividiert. Die Höhe dieser Kosten hängt entscheidend von einer Reihe von Annahmen ab (z. B. Zinssatz, Abschreibungsdauer, Jahresbetriebsstunden, Brennstoffkosten). Abbildung 2.35 stellt die Stromgestehungskosten der wesentlichen CO_2 -Abscheidungsvarianten dar. In den Stromgestehungskosten sind jedoch nur die Kosten für die CO_2 -Abscheidung und die CO_2 -Kompression enthalten. Die Kosten für den CO_2 -Transport und die CO_2 -Lagerung sind nicht berücksichtigt.

Für die Variante Pre-Combustion in Kombination mit dem IGCC-Prozess ergeben sich mit ca. 19 Euro/MWh die niedrigsten zusätzlichen Stromgestehungskosten, was einer relativen Zunahme um 33 % entspricht. Zwar nehmen die Stromgestehungskosten in der Variante Post-Combustion in Verbindung mit GuD ebenfalls nur 17 Euro/MWh zu, was jedoch hier einem relativen Zuwachs von 40 % entspricht. Nichtsdestotrotz ergeben sich hier mit 62 Euro/MWh die niedrigsten Stromgestehungskosten mit CO₂-Abscheidung. Dies liegt an den relativ geringen spezifischen CO₂-Emissionen der Gasverbrennung, so dass der Einfluss hier geringer ist als bei den anderen Varianten (vgl. Kapitel 3.2.2.4). Die höchste Zunahme der Stromgestehungskosten ist bei der Variante Post-Combustion auf Basis des Dampfprozesses zu verzeichnen: Die Stromgestehungskosten erhöhen sich um 30 Euro/MWh auf 77 Euro/MWh, was einem Zuwachs um 65 % entspricht. Ähnlich stark steigen mit 61 % die Stromgestehungskosten bei der Variante Oxyfuel auf 67 Euro/MWh

Abbildung 2.35: Stromgestehungskosten der wesentlichen CO₂-Abscheidungsvarianten, eigene Darstellung mit Daten aus Metz et al. [2005, S. 151 ff.], Fischedick et al. [2007, S. 153 ff.], Parsons et al. [2002, S. 3], David [2000, S. 42 ff.], UNECE [2012], vgl. Anhang Tabelle A.3 bis Tabelle A.8

an.

 CO_2 -Vermeidungskosten Neben den Stromgestehungskosten wird ebenfalls die Höhe der CO₂-Vermeidungskosten als wirtschaftliches Bewertungskriterium verwendet. Die CO₂-Vermeidungskosten stellen das Verhältnis zwischen den Mehraufwendungen durch die CCS-Integration und den tatsächlich vermiedenen CO₂-Emissionen dar. Diese stimmen in der Regel nicht mit den abgeschiedenen CO₂-Emissionen überein, da durch den Wirkungsgradverlust zunächst mehr CO₂ für die gleiche Energiemenge freigesetzt wird (vgl. Kapitel 2.3.4). Im Mittel ergeben sich in der Literatur für die Variante Pre-Combustion mit 28 Euro/t die niedrigsten CO₂-Vermeidungskosten. Mit 32 Euro/t bzw. 43 Euro/t fallen die mittleren CO₂-Vermeidungskosten bei der Variante Oxyfuel bzw. Post-Combustion (Dampfprozess) bereits deutlich höher aus. Für die Variante Post-Combustion (GuD) liegen die CO₂-Vermeidungskosten mit 55 Euro/t am höchsten, da die CCS-Mehrkosten auf eine vergleichsweise geringe Fracht an vermiedenen CO₂-Emissionen aufgeteilt werden müssen (vgl. Anhang Tabelle A.3 bis Tabelle A.8).

Für die in Kapitel 2.1.3.1.1 eingeführte CO₂-Abscheidung und Kurzzeitlagerung in

Algen führen Berechnungen in Alabi et al. [vgl. 2009, S. 44] zu deutlich höheren CO_2 -Vermeidungskosten von mindestens 569 Euro/t.

CO₂-Kompressionskosten In Hendriks et al. [vgl. 2004, S. 9 f.] werden die Kosten für den einzusetzenden Strom, den Kapitaldienst und den Betrieb der Kompressoren für die CO₂-Kompression abgeschätzt. Hierbei hängen sowohl die Investitionskosten als auch die einzusetzende Kompressionsleistung vom CO₂-Massenstrom sowie von der Druckdifferenz ab. Die elektrische CO₂-Kompressionsleistung $P_{\rm el,CO_2-K}$ in kW wird überschlägig nach Formel 2.7 berechnet. Dabei sind $C_{\rm CO_2-K,el} = 87,85 \text{ kJ/kg}$ ein konstanter Faktor, p_1 bzw. p_2 der Kompressoreingangsdruck bzw. -ausgangsdruck in bar und $\dot{m}_{\rm CO_2}$ der CO₂-Massenstrom in kg/s [vgl. Hendriks et al., 2004, S. 10].

$$P_{\rm el,CO_2-K} = C_{\rm CO_2-K,el} \cdot \ln\left(\frac{p_2}{p_1}\right) \cdot \dot{m}_{\rm CO_2}$$

$$(2.7)$$

Die Höhe der Investitionskosten für die CO₂-Kompression $K_{\text{Inv,CO}_2-K}$ in Euro wird nach Formel 2.8 errechnet [vgl. Hendriks et al., 2004, S. 10]. $C_1 = 0.1 \times 10^6 \text{Euro}/(\text{kg/s})$ und $C_2 = 1.1 \times 10^6 \text{Euro}/(\text{kg/s})$ sind hierbei konstante Faktoren. Des Weiteren wird die Nutzungsdauer mit 15 Jahren, der Zinssatz mit 10 %, die Stromkosten mit 40 Euro/MWh sowie der Kompressoreingangsdruck bzw. -ausgangsdruck mit 1 bar bzw. 120 bar angenommen. Als jährliche Betriebskosten wird mit 5 % vom Investitionsvolumen gerechnet.

$$K_{\text{Inv,CO}_2\text{-}K} = (C_1 \cdot \dot{m}_{\text{CO}_2}^{-0,71} + C_2 \cdot \ln\left(\frac{p_2}{p_1}\right) \cdot \dot{m}_{\text{CO}_2}^{-0,60}) \cdot \dot{m}_{\text{CO}_2}$$
(2.8)

Mit steigendem CO₂-Massenstrom und steigender Jahresbetriebsstundenzahl fallen die spezifischen CO₂-Kompressionskosten (vgl. Abbildung 2.36). Bei einem CO₂-Massenstrom von mehr als ca. 40 kg/s (entspricht ca. 1,1 Gt/a bei 7500 h/a) ergeben sich bei mehr als 5000 Jahresbetriebsstunden spezifische CO₂-Kompressionskosten von ca. 8 Euro/t bis 11 Euro/t. Bei geringeren CO₂-Massenströmen steigt dieser spezifische Wert auf 12 Euro/t bis 23 Euro/t an.

2.2.3.1.2 Kosten für CO₂-Transport Für die in Kapitel 2.1.3.2 vorgestellten Arten des CO_2 -Transports (LKW, Bahn, Schiff, Pipeline) sind in Abbildung 2.37 die spezifischen Transportkosten bei einer Transportdistanz von 250 km dargestellt. Die Kosten für die notwendige Verdichtung (Pipelinetransport) bzw. Verflüssigung (Schiffstransport) sind in den Kosten nicht enthalten. Der CO₂-Transport via LKW ist mit 25 Euro/t am teuersten und lediglich für geringe Jahrestonnagen geeignet. Die Transportoptionen Pipeline und

Abbildung 2.36: CO₂-Kompressionskosten für unterschiedliche Jahresbetriebsstunden in Abhängigkeit vom CO₂-Massenstrom, eigene Berechnung mit Daten aus Hendriks et al. [2004, S. 9 f.], vgl. Anhang Tabelle A.9

Schiff weisen eine große Schnittmenge auf (ca. 0.5 Euro/t bis 3 Euro/t), während der Bahntransport ebenfalls über 5 Euro/t liegt. Hierbei kommen bei den Transportoptionen per LKW, Eisenbahn und Schiff noch zusätzliche Kosten für die Zwischenspeicherung hinzu. Der LKW- und der Bahntransport werden für den kommerziellen Betrieb allgemein ausgeschlossen und sind allenfalls als Übergangslösung bis zur Errichtung einer Pipeline oder einer CO₂-Verladeeinrichtung für den Schiffstransport geeignet [vgl. Fischedick et al., 2007, S. 71]. Somit konzentrieren sich die folgenden Ausführungen auf den CO₂-Transport per Schiff und Pipeline.

Grundsätzlich gilt, dass mit steigendem CO_2 -Massenstrom die spezifischen Transportkosten abnehmen (vgl. Abbildung 2.38, linke Seite) und dass mit steigender Transportentfernung die spezifischen Transportkosten zunehmen (vgl. Abbildung 2.38, rechte Seite). Der Pipelinetransport auf dem Festland (Onshore) fällt erwartungsgemäß günstiger aus als der Pipelinetransport durch den Ozean (Offshore). Ab einer Entfernung von rund 1000 km wird der Schiffstransport wirtschaftlicher als der Offshore-Pipelinetransport. Hierin sind für den Schiffstransport die zusätzlichen Kosten für Zwischenlagerung, Treibstoff, Ladung, Entladung und Verflüssigung enthalten [vgl. Metz et al., 2005, S. 192].

Die Kosten für den CO₂-Transport per Schiff oder Pipeline bestehen im Wesentlichen

Abbildung 2.37: Transportkosten- und Kapazitätsbereiche für verschiedene CO₂-Transportoptionen (250 km Transportdistanz), eigene Darstellung auf Basis von Odenberger und Svensson [2003], zitiert nach Fischedick et al. [2007, S. 71]

aus Investitions-, Betriebs- und Instandhaltungskosten. Im Folgenden wird zunächst auf die Kosten für den Pipelinetransport und anschließend für den Schiffstransport eingegangen.

CO₂-Pipelinetransport Für die spezifischen Investitionskosten von CO₂-Pipelines liegen eine Vielzahl an Untersuchungen vor, für die in Metz et al. [vgl. 2005, S. 191] Ober- und Untergrenzen für On-/Offshore-Pipelines definiert werden (vgl. Abbildung 2.39). Die spezifischen Investitionskosten in Mio. Euro/km zur Errichtung der CO₂-Pipelines steigen mit dem Pipelinedurchmesser an. Bei einem Pipelinedurchmesser von 100 mm (CO₂-Transportkapazität < 1 Mt/a) liegen sie bei 0,1 Mio. Euro/km bis 0,2 Mio. Euro/km. Bei Pipelinedurchmessern von 1000 mm steigen die Investitionskosten auf 0,5 Mio. Euro/km bis 0,9 Mio. Euro/km (Onshore) bzw. 0,8 Mio. Euro/km bis 1,0 Mio. Euro/km (Offshore). Hieraus ergeben sich Mehrkosten für Offshore-Pipelines in Höhe von 40 % bis 70 %, da Offshore-Pipelines in der Regel bei höheren Drücken betrieben werden und somit stärkere Rohrwanddicken benötigen [vgl. Metz et al., 2005, S. 190]. Diese Kosten hängen entscheidend vom vorliegenden Terrain ab. Eine Verlegung in hügeligem Untergrund bzw. in Wohn- oder Naturschutzgebieten kann zu Erhöhungen von 50 % bzw. 100 % führen [vgl.

Abbildung 2.38: CO₂-Transportkosten für Onshore-/Offshore-Pipelines sowie Schiffstransport in Abhängigkeit vom Massenstrom und der Transportdistanz, eigene Darstellung auf Basis von Metz et al. [2005, S. 192]

Clarke et al., 2004, S. 103]. In Radgen et al. [vgl. 2006, S. 75] werden sogar Mehrkosten um den Faktor zehn erwartet.

Die Investitions- und Betriebskosten können durch CO_2 -Zwischenverdichtungsstationen noch zusätzlich erhöht werden, falls eine Zwischenverdichtung aufgrund großer Höhendifferenzen oder langer Leitungslängen notwendig ist [vgl. Metz et al., 2005, S. 190].

Die Betriebs- und Instandhaltungskosten für CO₂-Pipelines variieren ähnlich stark wie die vorher beschriebenen Investitionskosten für CO₂-Pipelines. In Heddle et al. [vgl. 2003, S. 22] und in Bock et al. [vgl. 2003, S. 4-11] werden die jährlichen Betriebs- und Instandhaltungskosten für Onshore-Pipelines unabhängig vom Pipelinedurchmesser auf 3120 Euro/km geschätzt. Hierin sind die Kosten für eine mögliche Nachverdichtung nicht enthalten. In den gleichen Studien werden die jährlichen Betriebs- und Instandhaltungskosten für Offshore-Pipelines auf 25 200 Euro/km geschätzt [vgl. Bock et al., 2003, S. 8-5], [vgl. Heddle et al., 2003, S. 90]. An anderer Stelle werden die jährlichen Betriebs- und Instandhaltungskosten mit 2% der Investitionskosten angenommen, so dass sich wiederum eine Abhängigkeit vom Pipelinedurchmesser ergibt [vgl. Damen, 2007, S. 101]. Für Offshore-Pipelines werden die jährlichen Kosten auf 4% der Investitionskosten geschätzt [vgl. Sarv, 1999, S. 14].

Abbildung 2.39: Bandbreiten für Investitionskosten von CO₂-Pipelines, eigene Darstellung auf Basis von Metz et al. [2005, S. 191]

 CO_2 -Schiffstransport Für den CO_2 -Schiffstransport müssen Investitionen für Verflüssigungseinrichtungen, Zwischenspeicher, Transportschiffe sowie Be- und Entladevorrichtungen eingeplant werden. Als Entladeeinrichtung dient üblicherweise eine Offshore-Plattform, von der das CO_2 mittels einer senkrechten Pipeline in den Untergrund eingebracht wird. Die Zwischenspeicherung ist notwendig, um die CO_2 -Transportschiffkapazitäten möglichst effizient einzusetzen.

Tabelle 2.4 fasst Literaturangaben zu verschiedenen Schiffsgrößen zusammen. Dabei wird von flüssigem CO₂ (7 bar, -50 °C) mit einer Dichte von 1150 kg/m³ ausgegangen [vgl. Bock et al., 2003, S. 9-6]. Die Kostenangaben basieren im Wesentlichen auf Erfahrungen mit Schiffen für den Flüssigerdgas-Transport, wobei die Kosten für CO₂-Schiffe um 30 % bis 50 % höher eingeschätzt werden. Als Alternative zu eigenen Investitionskosten kann mit täglichen Chartergebühren in Höhe von 20 000 Euro für ein Schiff mit einer CO₂-Kapazität von 20 kt gerechnet werden [vgl. Metz et al., 2005, S. 190].

Die Investitionskosten für eine CO_2 -Verflüssigungsanlage mit einer Kapazität von 1 Mt/a wird in Metz et al. [vgl. 2005, S. 190] auf 28 Mio. Euro bis 40 Mio. Euro geschätzt. An anderer Stelle wird eine CO_2 -Verflüssigungsanlage mit einer Kapazität von 6,2 Mt/a auf 70 Mio. Euro geschätzt. Bei einem CO_2 -Eingangsdruck von 100 bar würden sich die

Volumen Kapazität		Investitionskosten	Quelle	
m^3	kt	Mio. Euro ₂₀₀₅	guono	
22 000	$25,\!4$	44	Bock et al. [2003, S. 9-5]	
	20 bis 30	40 bis 56	Metz et al. $[2005, S. 190]$	
	10	27	Metz et al. $[2005, S. 190]$	
	30	48	Metz et al. $[2005, S. 190]$	
	50	68	Metz et al. $[2005, S. 190]$	
22000		59	Sarv [1999, S. 14]	
135000		235	Sarv [1999, S. 14]	

Tabelle 2.4: Investitionskosten für CO₂-Transportschiffe

Investitionskosten auf 25 Mio. Euro reduzieren [vgl. IEA GHG, 2004, S. 10 f.].

Tabelle 2.5 fasst die Kosten für die CO_2 -Zwischenspeicherung in Stahltanks und Untergrundspeichern zusammen. Während Stahltanks bereits für die Lagerung von CO_2 im Einsatz sind, gibt es bei Untergrundspeichern, die deutlich geringere spezifische Zwischenspeicherungskosten erwarten lassen, bislang nur Erfahrungen mit der Zwischenlagerung von Erdgas [vgl. Clarke et al., 2004, S. 99].

Tabelle 2.5: Kosten für die CO₂-Zwischenspeicherung, eigene Darstellung mit Daten aus IEA GHG [2004, S. 12], Odenberger und Svensson [2003], zitiert nach Clarke et al. [2004, S. 101]

	-			
	Einheit	Stahltank	Stahltank	Untergrundspeicher
Volumen	m^3	3000	20500	120 000
Investitionskosten	Mio. $Euro_{2005}$	6,8	26	18
Jährliche Kosten	$\mathrm{Mio}.\mathrm{Euro}_{2005}/\mathrm{a}$	$0,\!48$	$1,\!3$	1,3
$\rm CO_2$ -Durchsatz	Mt/a	$1,\!0$	k. A.	20
Spezifische Kosten	$\mathrm{Euro}_{2005}/\mathrm{t}$	$0,\!48$	k. A.	0,06

Die Investitionskosten für die Offshore-Plattformen zum Einpressen des CO₂ in den Untergrund werden auf 120 Mio. Euro bis 200 Mio. Euro geschätzt [vgl. Sarv, 1999, S. 14], [vgl. Bock et al., 2003, S. 9-7].

Als Betriebs- und Instandhaltungskosten werden in Sarv [vgl. 1999, S. 14] 7,4% bis 8,0% der Gesamtinvestitionskosten aller Komponenten angenommen. In Bock et al. [vgl. 2003, S. 45] wird dieser Wert nach Komponenten differenziert: Als jährliche Betriebs- und

Instandhaltungskosten werden für den Schiffsbereich 4,7% veranschlagt (ohne Treibstoffkosten) und für die übrigen Bereiche jeweils 2% der Investitionskosten.

2.2.3.1.3 Kosten für CO_2 -Lagerung und CO_2 -Monitoring Als mögliche CO_2 -Lagerstätten werden diejenigen Speicheroptionen berücksichtigt, die in den Kapiteln 2.1.3.3.1 und 2.3.4 als technisch mögliche und nachhaltig sinnvolle CO_2 -Speicheroptionen definiert werden: Saline Aquifere sowie leere Erdöl- und Erdgasfelder. Für die CO_2 -Einlagerung in tiefen, nicht abbaubaren Kohlelagerstätten liegen keine Literaturangaben zu den CO_2 -Speicherkosten vor. Saline Aquifere oder leere Erdöl- und Erdgasfelder können sowohl unter dem Festland (Onshore) als auch den Ozeanen (Offshore) liegen.

Die Höhe der CO₂-Speicherkosten hängt entscheidend von den Bohrkosten und den dazugehörigen Planungskosten ab. Diese Kosten steigen zum einen mit der Tiefe des Speicherreservoirs. Zum anderen beeinflussen die Mächtigkeit bzw. Dicke und die Permeabilität des Speichers die Anzahl der Bohrungen und damit die Gesamtkosten, um einen bestimmten CO₂-Massenstrom speichern zu können [vgl. Metz et al., 2005, S. 259]. Die Bohrkosten für eine einzelne Bohrung können zwischen 0,2 Mio. Euro und 32 Mio. Euro variieren [vgl. Metz et al., 2005, S. 259].

Abbildung 2.40: CO₂-Speicherkosten für verschiedene Speicheroptionen, eigene Darstellung mit Daten aus Metz et al. [2005, S. 260], UNECE [2012]

Für die CO₂-Einlagerung in leere Erdöl- und Erdgaslagerstätten ist aufgrund jahr-

zehntelanger geologischer Erfahrungen der Öl- und Gasindustrie die Abschätzung der CO_2 -Speicherkosten grundsätzlich genauer möglich als für die CO_2 -Einlagerung in saline Aquifere [vgl. Metz et al., 2005, S. 345]. Abbildung 2.40 stellt für die drei oben genannten Speicheroptionen die Bandbreiten möglicher CO_2 -Speicherkosten unter dem Festland und unter dem Meer dar. Da leere Erdöl- oder Erdgasfelder bereits von der Lage und den Abmaßen her bekannt sind und teilweise bestehende Bohrungen und Anlagen genutzt werden können, ergeben sich hier etwas niedrigere CO_2 -Speicherkosten im Vergleich zu salinen Aquiferen. Die Onshore-Speicherung führt jeweils zu deutlich geringeren Kosten.

Das zu speichernde CO_2 sollte über möglichst geringe Anteile an NO_x , SO_x und H_2S verfügen, um deren korrosive Wirkung zu vermeiden. Die höheren Kosten zur Abscheidung dieser Stoffe werden bei den Kosten bei der CO_2 -Speicherung mehr als ausgeglichen [vgl. Metz et al., 2005, S. 259].

Die mögliche Nutzung des abgeschiedenen CO_2 zur Aufzucht von Algen (vgl. Kapitel 2.1.3.1.1) kann zu deutlich geringeren CO_2 -Transport- und " CO_2 -Speicherkosten" führen, wenn die CO_2 -Verwendung in der Nähe des (Heiz-)Kraftwerks stattfindet.

Als weitere Kosten, die die obige Darstellung nicht beinhaltet, fallen Aufwendungen für ein nachfolgendes CO_2 -Monitoring an. Hierbei wird überprüft, ob das eingelagerte CO_2 dauerhaft von der Atmosphäre getrennt lagert. Die hierfür anfallenden Überwachungskosten hängen stark von den jeweiligen Auflagen der zuständigen Behörde und den Überwachungszeiträumen ab [vgl. Metz et al., 2005, S. 259]. Obwohl es hierfür eine Reihe an technischen Vorschlägen gibt, existieren bislang nur erste Kostenschätzungen. Nach Metz et al. [vgl. 2005, S. 263] kann hierbei mit Kosten von ca. 0,02 Euro/t bis 0,04 Euro/t gerechnet werden. Hierbei ist jedoch kein Langzeitmonitoring beinhaltet, sondern maximal eine 50-jährige Überwachung über die Einlagerungszeit hinaus.

2.2.3.2 Marktpreisentwicklung für CO₂-Zertifikate

Im Dezember 1997 ist im japanischen Kyoto ein Zusatzprotokoll zur Klimarahmenkonferenz unterzeichnet worden. In diesem Kyoto-Protokoll haben sich 39 Industriestaaten dazu verpflichtet, die wichtigsten Treibhausgase im Zeitraum von 2008 bis 2012 im Durchschnitt um 5,2 % unter das Niveau von 1990 zu senken. Insgesamt haben das Kyoto-Protokoll 189 Staaten ratifiziert und es ist am 16. Februar 2005 in Kraft getreten. Die Europäische Union hat mit einer Richtlinie aus dem Oktober 2003 die Basis für ein EU-Emissionsrechtehandelssystem erschaffen, das seit Januar 2005 in Kraft ist und mittlerweile das größte Handelssystem für CO₂-Emissionsberechtigungen darstellt. Hierdurch sollen gegenüber dem Ausgangsjahr 2005 die durchschnittlichen Treibhausgasemissionen Europas bis 2012 um 8 % und bis 2020 um 21 % gesenkt werden, indem die jährlichen

 CO_2 -Emissionsmengen für mehr als 12 000 Anlagen aus der Energiewirtschaft und der emissionsintensiven Industrie begrenzt werden [vgl. DEHSt, 2010, S. 6 ff.].

Der Handel bis 2020 ist in drei Handelsperioden eingeteilt, die die Jahre 2005 bis 2007, 2008 bis 2012 und 2013 bis 2020 umfassen. Während in der ersten Handelsperiode die CO_2 -Zertifikate kostenlos zugeteilt worden sind, nimmt der Anteil der kostenlosen Zuteilung im Laufe der Zeit ab und hängt von der Effizienz und dem Inbetriebnahmezeitpunkt der Anlage ab: In 2013 werden beispielsweise nur noch 50 % der CO_2 -Zertifikate zugeteilt, der Rest wird auktioniert. Ab dem Jahr 2012 wird der europäische Luftverkehr in den CO_2 -Handel integriert. Eine Integration des Schiffverkehrs wird ebenfalls beabsichtigt [vgl. DEHSt, 2010, S. 19 ff.].

Der Großteil des CO_2 -Zertifikatehandels in der EU wird an der European Climate Exchange (ECX) in London abgewickelt: Nach einem Anteil von rund 77% in 2006 sind im Jahr 2007 knapp 87% der CO_2 -Zertifikate dort gehandelt worden. Darüber hinaus werden CO_2 -Zertifikate in Europa an der skandinavischen Börse Nordpool, der Börse EEX in Leipzig sowie der in Paris ansässigen Börse BlueNext (früher Powernext) gehandelt [vgl. Røine et al., 2008, S. 6 f.]. Abbildung 2.41 stellt die Preisentwicklung der CO_2 -Zertifikate zwischen 2006 und 2013 an der EEX dar. Die Preise spiegeln auch die CO_2 -Zertifikatepreisentwicklung der anderen Börsen wider [vgl. ECX, 2010]. Hierbei werden diejenigen Preise gezeigt, die für die CO_2 -Zertifikate des jeweils laufenden Jahres gezahlt worden sind.

In der ersten Handelsphase ist der Preis für CO_2 -Zertifikate Ende April 2006 stark eingebrochen, als bekannt geworden ist, dass in mehreren europäischen Staaten im Rahmen der nationalen Zuteilungspläne (Allokationspläne) den dortigen Unternehmen übermäßig viele CO_2 -Zertifikate zugesprochen worden sind. Es sind schlagartig große Mengen an Emissionsrechten zum Verkauf angeboten worden. Dies hat den CO_2 -Zertifikatepreis von rund 30 Euro/t auf weniger als 10 Euro/t schrumpfen lassen. Da die Zertifikate aus der ersten Handelsperiode nicht in die zweite Handelsperiode übertragen werden konnten, ist der CO_2 -Zertifikatepreis nur bis zum Ende der ersten Handelsperiode auf einem sehr niedrigen Niveau geblieben [vgl. Capoor und Ambrosi, 2006, S. 13 ff.]. Mit Beginn der zweiten Handelsperiode im Jahr 2008 hat das kumulierte Handelsvolumen deutlich angezogen und der CO_2 -Zertifikatepreis hat sich wieder auf mehr als 20 Euro/t erhöht, doch durch die Weltwirtschaftskrise und die dadurch eingesparten CO_2 -Emissionen hat sich der CO_2 -Zertifikatepreis Ende 2008 abermals erheblich reduziert. Seit Ende 2011 liegt der CO_2 -Zertifikatepreis unter 10 Euro/t, seit Januar 2013 zeitweise unter 5 Euro/t.

Die CO₂-Zertifikate der 2. Handelsperiode können in allen Jahren zwischen 2008 und 2012 eingesetzt werden und können auch in die 3. Handelsperiode ab dem Jahr 2013 übertragen werden. Somit hat der Rückgang der CO₂-Emissionen, der durch die Welt-

Abbildung 2.41: Preisentwicklung für CO₂-Zertifikate und gehandelte Volumina an der Börse EEX, eigene Darstellung mit Daten aus SWFL [2008-2013]

wirtschaftskrise bewirkt worden ist, auch noch Auswirkungen auf die 3. Handelsperiode. Deswegen wurde im Jahr 2012 von der Europäischen Kommission vorgeschlagen, dass ein Teil der CO₂-Zertifikate im Zeitraum 2013 bis 2015 zurückgehalten wird ("back-loading"), um das Angebot zu verknappen und den CO₂-Zertifikatepreis hierdurch zu erhöhen. Bei einer CO₂-Rückhaltung von 900 Mt werden CO₂-Zertifikatepreise von 12 Euro/t bis 24 Euro/t erwartet [vgl. Europäische Kommission, 2012, S. 37 f.].

Jeweils im Frühjahr der Jahre 2007, 2008 und 2009 ist von Point Carbon bei mehr als 3700 Marktakteuren eine Umfrage zur erwarteten CO_2 -Zertifikatepreisentwicklung für das Jahr 2020 durchgeführt worden (vgl. Abbildung 2.42, linke obere Ecke). Während die Einschätzungen im Jahr 2007 noch zu niedrigeren CO_2 -Preisen tendiert haben (im Mittel ca. 24 Euro/t für 2020), war die Preiserwartung im Jahr 2008 bereits bei 35 Euro/t für das Jahr 2020. Bedingt durch die Wirtschaftskrise ist diese Einschätzung im Folgejahr (2009) etwas zurückgegangen, liegt jedoch noch immer bei mehr als 30 Euro/t. Das Energiewirtschaftliche Institut der Universität zu Köln (EWI) schätzt die zukünftige CO_2 -Preisentwicklung ähnlich ein: Für 2020 rechnen sie in ihrer Referenzprognose mit einem CO_2 -Zertifikatepreis von 34 Euro/t, für 2030 mit 42 Euro/t [vgl. Borggrefe und Lochner, 2009, S. 55]. Dies entspricht auch der CO_2 -Zertifikatepreiserwartung in der Leitstudie 2010 des Bundesumweltministeriums [vgl. Wenzel und Nitsch, 2010, S. 28].

Abbildung 2.42: Erwartete CO₂-Zertifikatepreise für 2020, eigene Berechnung mit Daten aus Tvinnereim et al. [2009, S. 40]

In den IPCC-Richtlinien für nationale Treibhausgas-Inventare wird deutlich gemacht, dass die CO_2 -Abscheidung und CO_2 -Langzeitspeicherung aus biomassegefeuerten Kraftwerken zu negativen CO_2 -Emissionen führen kann und in diesem Fall auch so bewertet werden sollte [vgl. Gómez et al., 2006, S. 2.37], [vgl. Holloway et al., 2006, S. 5.8]. Im Rahmen des EU-Emissionsrechtehandels ist die Anerkennung von negativen CO_2 -Emissionen durch Bio-CCS bislang jedoch noch nicht eindeutig geregelt und bedarf noch einer zukünftigen Klarstellung [vgl. Dixon et al., 2012, S. 24], [vgl. Arasto et al., 2011, S. 12].

2.2.3.3 Wirtschaftliche Förderung

Wie die zwei voran gehenden Kapitel gezeigt haben, liegen die Kosten der CO_2 -Vermeidung durch CCS mit ca. 30 Euro/t bis 70 Euro/t deutlich über den derzeitigen und den für das Jahr 2020 erwarteten Preisen für CO_2 -Zertifikate (15 Euro/t bis 35 Euro/t). Darüber hinaus befindet sich die CO_2 -Sequestrierung, mit Fokus auf fossile Energieträger, derzeit in einer Forschungs- und Entwicklungsphase. Es wird mit einer großtechnischen und kommerziellen Verfügbarkeit zwischen 2020 und 2030 gerechnet [vgl. Bundesregierung, 2009, S. 8], [vgl. Nauclér et al., 2008, S. 16]. Um diese Entwicklung zu flankieren, wird durch die Europäische Union der Bau von bis zu zwölf großskaligen Demonstrationskraftwerken

finanziell unterstützt [vgl. Europäische Kommission, 2008, S. 3]. Bereits im fünften und im sechsten Forschungsrahmenprogramm der Europäischen Union sind zwischen 1998 und 2007 insgesamt über 100 Mio. Euro an Forschungsgeldern für CCS bereitgestellt worden. In dem von 2007 bis 2013 laufenden siebten Forschungsrahmenprogramm soll die Erforschung von CCS mit insgesamt knapp 500 Mio. Euro gefördert werden [vgl. BMWi et al., 2007, S. 20]. Die bisherigen Fortschritte der hierdurch geförderten Projekte werden in von Hirschhausen et al. [vgl. 2012, S. 4] jedoch als relativ gering eingeschätzt. Bislang ist für keines der CCS-Kraftwerke bis 2012 eine endgültige Investitionsentscheidung getroffen worden, so dass ein wirtschaftlicher CCS-Betrieb bis 2020 als unwahrscheinlich eingeschätzt wird [vgl. o. V., 2012, S. 22].

Die zwischen dem Jahr 2000 und 2008 weltweit gezahlten Fördermittel lassen einen frühen Förderschwerpunkt in den USA und seit 2002 in Kanada erkennen, bevor ab 2006 die europäischen Staaten verstärkt die CCS-Forschung fördern (vgl. Abbildung 2.43). Innerhalb der europäischen Staaten liegt der Schwerpunkt auf den drei Staaten Deutschland, Norwegen und Frankreich sowie der zentralen Forschungsförderung der EU.

Abbildung 2.43: Jährliche CCS-Forschungsförderung zwischen 2000 und 2008, eigene Darstellung mit Daten aus de Visser et al. [2009, S. 45]

In einer im Jahr 2009 veröffentlichten Studie sind 357 Einrichtungen detektiert worden, die sich mit der Weiterentwicklung von CCS beschäftigen. Der inhaltliche Schwerpunkt

liegt bislang eindeutig auf dem Bereich der Technik, während sich mit der Wirtschaftlichkeit von CCS bislang ca. 4 % der Einrichtungen beschäftigt haben (vgl. Abbildung 2.44). Die fachliche Aufteilung der Forschungs- und Entwicklungseinrichtungen ist homogener: Auch wenn der Schwerpunkt auf der CO₂-Abscheidung liegt, beschäftigen sich 27 % der Einrichtungen mit der CO₂-Speicherung und 13 % mit dem CO₂-Transport [vgl. de Visser et al., 2009, S. 137 ff.].

Abbildung 2.44: Bisherige CCS-Forschungsschwerpunkte, eigene Darstellung mit Daten aus de Visser et al. [2009, S. 137 ff.]

Bei den forschenden Einrichtungen handelt es sich vor allem um Forschungsinstitute und große Energieversorgungsunternehmen. Beispielsweise hat die Vattenfall Europe AG bereits 200 Mio. Euro in die CCS-Forschung investiert [vgl. Vattenfall, 2009c, S. 1].

Auf nationaler Ebene sind es vor allem das Bundeswirtschaftsministerium (BMWi) und das Bundesforschungsministerium (BMBF), die die Entwicklung von CCS fördern. Das BMWi finanziert das Verbundprojekt COORETEC (CO₂-Reduktions-Technologien), in dem neben der Wirkungsgradsteigerung von Kraftwerken ebenfalls die Technologien zur CO₂-Sequestrierung untersucht werden. Hierfür sind im Jahr 2008 ca. 30 Mio. Euro an Forschungsgeldern eingesetzt worden. Das BMBF fördert in Zusammenarbeit mit der Deutschen Forschungsgemeinschaft (DFG) seit 2005 im Rahmen des Verbundsprojekts GEOTECHNOLOGIEN vor allem Projekte der CO₂-Speicherung (5,4 Mio. Euro
in 2008). Ein Schwerpunkt stellt die Erkundung des Untergrunds nach geeigneten CO_2 -Lagerstätten dar. Hier liegen zwar bereits erste Schätzungen von der Bundesanstalt für Geowissenschaften und Rohstoffe und den Geologischen Diensten der Bundesländer vor, die jedoch bislang nur regional begrenzte Aussagen zulassen. Vor diesem Hintergrund ist von den genannten Einrichtungen in den Jahren 2008 bis 2011 ein CO_2 -Speicherkataster für Deutschland erstellt worden, das untersuchungswürdige Gebiete für die dauerhafte geologische CO_2 -Speicherung liefert [vgl. Bundesregierung, 2009, S. 10], [vgl. BMWi et al., 2007, S. 11], [vgl. Reinhold et al., 2011, S. 99].

2.3 Grundlagen der Nachhaltigkeit

Im Folgenden wird zunächst eine allgemeine Begriffsbestimmung der Nachhaltigkeit vorgenommen, bevor auf die Grundlagen der Nachhaltigkeit in den Bereichen Bioenergie, Kraft-Wärme-Kopplung und CO₂-Sequestrierung näher eingegangen wird.

2.3.1 Zum Begriff der Nachhaltigkeit

Der Begriff der Nachhaltigkeit ist durch den 1987 veröffentlichten Bericht der UN-Kommission für Umwelt und Entwicklung ("Brundlandt-Bericht") geprägt worden. Hierin wird von dauerhafter Entwicklung gesprochen, die die Bedürfnisse der Gegenwart befriedigt, ohne künftigen Generationen die Möglichkeit zu nehmen, ihre eigenen Bedürfnisse befriedigen zu können [vgl. Brundtland, 1987, S. 16]. Als Ur-Studie zur nachhaltigen Entwicklung gilt die im Jahr 1972 für den Club of Rome erstellte Untersuchung "Limits to Growth" vom Massachusetts Institute of Technology. Hierin wird auf Basis des Modells "Dynamik komplexer Systeme" aufgezeigt, dass bei gleichbleibenden Trends die Weltbevölkerung und der Lebensstandard innerhalb der nächsten 50 Jahren bis 100 Jahren drastisch abnehmen wird [vgl. Zeschmar-Lahl und Bergius, 2011, S. 1]. Seinen Ursprung hat der Begriff der Nachhaltigkeit jedoch im Bereich der Forstwirtschaft: Hannß Carl von Carlowitz hat bereits im frühen 18. Jahrhundert postuliert, dass der Holzeinschlag den Holzzuwachs nicht übersteigen sollte [vgl. Schmidt, 2007, S. 3]. Mit der 1992 in Rio de Janeiro durchgeführten Konferenz der Vereinten Nationen für Umwelt und Entwicklung hat sich der Begriff der Nachhaltigkeit als Leitbild in Politik sowie lokalem Umfeld (Agenda 21) etabliert [vgl. Bartol und Herkommer, 2004, S.1]. In den letzten Jahren ist der Begriff der Nachhaltigkeit jedoch in verschiedenen Zusammenhängen "inflationär und zunehmend willkürlich" verwendet worden, was ebenfalls durch eine inhaltliche Aufweichung des Begriffs begünstigt worden ist [SRU, 2002, S. 57]. Nach Steger et al. [vgl. 2004, S. 27], zitiert nach Herrmann [2009, S. 40], hat der Begriff der nachhaltigen

Entwicklung in der wissenschaftlichen und politischen Diskussion bereits im Jahr 2005 mehr als 200 unterschiedliche Definitionen aufweisen können.

Im Rahmen des Anfang der 1990er Jahre in den USA entwickelten Konzepts der ökologischen Ökonomie wird das menschliche System als Subsystem der gesamten Ökologie verstanden. Während in der klassischen Makroökonomie der natürliche Kapitalstock (z. B. Wälder, Fischbestände, Erdöl) vollständig zum Aufbau eines (anthropogenen/künstlichen) Kapitalstocks (z. B. Maschinen, Produkte) genutzt werden kann, werden hier die natürlichen Ressourcen als knapp angesehen. Mit Hilfe von Steuern, Strafen oder Subventionen kann diese Knappheit durch einen Preis am Markt signalisiert werden, der eine Umwandlung von natürlichen Ressourcen mit niedriger Entropie in Abfälle mit hoher Entropie begrenzen kann. Dem Konzept liegt die grundsätzliche Annahme zugrunde, dass es ein zu großes Risiko darstellt, davon auszugehen, dass mit zukünftigem technologischen Fortschritt die Knappheit natürlicher Ressourcen beliebig ausgeglichen werden kann. Da vorab nicht bekannt ist, wann irreversible Zustandsänderungen eintreten, sollte der natürliche Kapitalstock in vollem Umfang erhalten bleiben. Hierdurch wäre sowohl den Technologie-Pessimisten, da die natürlichen Grundlagen geschont werden, als auch den Technologie-Optimisten gedient, da der von der unsichtbaren Hand des Marktes geschaffene Preis für knappe Ressourcen die technologische Entwicklung begünstigt. Es wird postuliert, dass die Nutzung erneuerbarer Energieträger nicht größer deren Regenerationsrate sowie die Abgabe von Abfällen geringer als die natürliche Assimilationsfähigkeit sein sollte. Eine Nutzung von nicht erneuerbaren Energieträgern ist nur in dem Umfang zulässig, wie erneuerbare Energieträger als Ersatz geschaffen werden. Die Festlegung eines Nutzungsausmaßes natürlicher Ressourcen kann hierbei entweder nur für die Menschheit oder für das gesamte Ökosystem optimal sein. Dieser optimale Nutzungsgrad natürlicher Ressourcen ist jedoch schwierig festzulegen und wird mit einer Analogie zu einem Frachtschiff verdeutlicht: Auch bei optimaler Lastenverteilung auf dem Schiff (Ressourcenallokation durch Marktpreis) kann die maximale Last auf dem Schiff überschritten werden (nicht-nachhaltige Ressourcennutzung) [vgl. Costanza et al., 1991, S. 6 ff.], [vgl. Daly, 1991, S. 34 ff.]. In diesem Zusammenhang wird von schwacher Nachhaltigkeit gesprochen, wenn eine vollständige Substitution des Naturkapitalstocks durch den künstlichen Kapitalstock akzeptiert wird. Von starker Nachhaltigkeit wird gesprochen, wenn der natürliche Kapitalstock im bisherigen Umfang erhalten bleibt. Hierbei ist auch die Nutzung von nicht erneuerbaren Energieträgern möglich, solange deren Verbrauch durch die erhöhte Bereitstellung erneuerbarer Energieträger kompensiert wird [vgl. Herrmann, 2009, S. 42 ff.].

Die Enquete-Kommission "Schutz des Menschen und der Umwelt" des 13. Deutschen Bundestages hat im Jahr 1998 das abstrakte Konzept der Nachhaltigkeit weiter operatio-

nalisiert, indem konkrete Leitsätze entwickelt und Ziele, Instrumente sowie Maßnahmen definiert worden sind, damit "Nachhaltigkeit tatsächlich umgesetzt werden kann" [Bundestag, 1998, S. 3]. Besonders vorteilhaft an dieser Kommission ist gewesen, dass durch die interdisziplinäre Besetzung aus Wissenschaft und Politik eine breit anerkannte Ausgangsbasis für die weitere Nachhaltigkeitsdiskussion geschaffen werden konnte [vgl. Blohm et al., 2006, S. 93]. Im Abschlussbericht dieser Enquete-Kommission wird deutlich, dass Nachhaltigkeit neben einer ökologischen auch eine ökonomische und eine soziale Dimension aufweist. Diese drei Dimensionen stehen nicht isoliert nebeneinander, sondern sind eng miteinander verknüpft ("Drei-Säulen-Modell"). Für alle drei Dimensionen werden insgesamt 14 Regeln vorgeschlagen, die als Anregung für die weitere Diskussion angesehen werden. Im Bereich der Ökologie wird beispielsweise die Obergrenze für die Nutzungsrate von erneuerbaren Ressourcen definiert, die die natürliche Regenerationsrate nicht überschreiten sollte [vgl. Bundestag, 1998, S. 18 ff.]. Für die Beurteilung der Nachhaltigkeit der CO_2 -Sequestrierung wird im Kapitel 2.3.4 näher auf die einzelnen Regeln eingegangen.

Der Sachverständigenrat für Umweltfragen (SRU) kritisiert in seinem Umweltgutachten des Jahres 2002 das Drei-Säulen-Modell. Zwar stellt dieses Modell eine gleichrangige Behandlung der drei Zielgrößen Ökologie, Ökonomie und Soziales grundsätzlich sicher, doch hat sich in der Praxis wiederholt eine Priorisierung der Ökonomie gezeigt. Darüber hinaus lassen sich im Bereich des Umweltschutzes in der Vergangenheit die größten Defizite erkennen, die für eine zukünftige Stabilisierung die größte Herausforderung darstellen [vgl. SRU, 2002, S. 68]. Der SRU spricht sich stattdessen für das Konzept der starken Nachhaltigkeit aus, um der Nachhaltigkeitsidee der intergenerationellen Gerechtigkeit gerecht zu werden. Demgegenüber steht das Konzept der schwachen Nachhaltigkeit, das eine Substitution von Naturkapital durch andere Kapitalbestände (z.B. Sachkapital, Sozialkapital, Humankapital, Wissenskapital) zulässt, solange der Gesamtbestand an Kapitalien mindestens konstant bleibt. Des Weiteren wird der Nutzen für zukünftige Generationen systematisch niedriger bewertet, indem sie abgezinst werden (häufig auf Basis der langfristigen Kapitalmarktzinsen). Somit werden zukünftige Ereignisse schwächer bewertet, obwohl gerade Güter, die in der Zukunft absehbar knapper sein werden, eigentlich mit einer negativen Diskontrate versehen werden müssten, was zu einer erhöhten Bewertung in der Gegenwart führt. Das Konzept der starken Nachhaltigkeit geht davon aus, dass das Naturkapital nicht substituierbar ist und für zukünftige Generationen erhalten bleiben muss, da ohne Naturkapital die ökonomischen und sozialen Ziele nicht erreicht werden können [vgl. SRU, 2002, S. 59 ff.]. Darüber hinaus werden Leitplanken der zukünftigen Entwicklung definiert ("Leitplankenansatz") – beispielsweise maximal tolerierbare Grenzen für die Erderwärmung [vgl. SRU, 2002, S. 252], [vgl. WBGU, 2003, S. 115].

Die Enquete-Kommission "Nachhaltige Energieversorgung unter den Bedingungen der Globalisierung und der Liberalisierung" des 14. Deutschen Bundestages kommt im Jahr 2002 zu dem einvernehmlichen Schluss, dass das gegenwärtige Energiesystem nicht nachhaltig ist. Dies wird dadurch begründet, dass "die heutige Energiebereitstellung und -nutzung in großem Umfang Umweltkosten negiert, Raubbau an knappen Ressourcen betreibt und Risikoaspekten zu geringe Beachtung schenkt" [Bundestag, 2002, S. 27]. Im gleichen Jahr hat die deutsche Bundesregierung ihre Nachhaltigkeitsstrategie veröffentlicht, die bis in die Gegenwart den politischen Kurs für eine nachhaltige Entwicklung der Bundesregierung bestimmt [vgl. Bundesregierung, 2011, S. 1 f.]. Innerhalb dieser Nachhaltigkeitsstrategie spielt die Generationengerechtigkeit eine wichtige Rolle: So sollen beispielsweise durch heutige Schuldenaufnahme oder den Verbrauch knapper Rohstoffe die Handlungsspielräume zukünftiger Generationen nicht eingeengt werden [vgl. Bundesregierung, 2002, S. 92]. Es wird der Grundsatz formuliert, dass jede Generation ihre eigenen Aufgaben lösen muss ohne sie auf die folgenden Generationen zu übertragen. Hinsichtlich der Energieversorgung ergibt sich hieraus die Notwendigkeit, Energieeffizienz zu steigern und den Ausbau der erneuerbaren Energieträger voranzutreiben, um den Klimawandel zu begrenzen [vgl. Bundesregierung, 2002, S. 5 f.]. Die heute dominierende Nutzung von Erdöl, Erdgas und Kohle entspricht genau so wenig der Generationengerechtigkeit wie die Kernenergie, da radioaktive Abfälle über lange Zeiträume gelagert werden müssen und eine Unfallgefahr mit schwerwiegenden Folgen besteht [vgl. Bundesregierung, 2002, S. 133 f.]. Trotz der im internationalen Vergleich "vorbildlichen" nationalen Nachhaltigkeitsstrategie sollte nach Ansicht des SRU die Erhaltung der natürlichen Lebensgrundlagen weiter in den Mittelpunkt gestellt werden, indem weiteren ökologische Herausforderungen, wie z.B. der Gewässerschutz oder die Biodiversitätserhaltung, als separate Indikatoren erfasst werden [vgl. SRU, 2011a, S. 3 ff.].

2.3.2 Energetische Biomassenutzung

Die energetische Biomassenutzung unterscheidet sich von der energetischen Nutzung der fossilen Brennstoffe vor dem Hintergrund der Nachhaltigkeit insbesondere darin, dass sie im Rahmen der menschlichen Zeitvorstellung erneuerbar ist und CO_2 -neutral sein kann. CO_2 -neutral bedeutet, dass die Pflanze während ihres Wachstums mittels Photosynthese eine gewisse Menge an CO_2 , das in der Atmosphäre enthalten ist, sowie Wasser und Sonnenenergie in Sauerstoff und Kohlenhydrate umwandelt. Werden diese Pflanzen anschließend verbrannt, wird genau die Menge an CO_2 freigesetzt, die die Pflanze vormals der Atmosphäre entnommen hat. Zwar haben auch fossile Energieträger während ihres Wachstums vor Jahrmillionen der Atmosphäre CO_2 entzogen, doch sind diese CO_2 -Mengen

bereits fast genau so lange dem CO_2 -Kreislauf entzogen. Eine heutige Freisetzung dieser CO_2 -Mengen führt zu einer Erhöhung der CO_2 -Konzentration in der Atmosphäre. Durch unterschiedliche Formen der Brennstoffbereitstellung und der Landnutzungsänderung können jedoch auch bei biogenen Brennstoffen erhebliche Mengen an CO_2 emittiert werden. Hierauf wird im Kapitel 2.3.2.1 näher eingegangen. Darüber hinaus können beim Anbau von Biomasse weitere negative Folgen auftreten, wie z. B. eine erhöhte Wassernutzung bzw. Wasserverunreinigung (durch Düngemittel), Bodendegradation oder eine mögliche Reduktion der Biodiversität [vgl. Fritsche, 2008, S. 25 ff.]. Diese Aspekte werden in dieser Arbeit jedoch nicht näher betrachtet.

Neben dem geschlossenen CO_2 -Kreislauf gilt es bei der Verwendung biogener Brennstoffe auch auf einen geschlossenen Nährstoffkreislauf zu achten: Während auf landwirtschaftlichen Flächen der Nährstoffgehalt mit Hilfe von natürlichen und künstlichen Düngemitteln in der Regel "eingestellt" wird, findet eine Düngung von Waldböden in diesem Umfang bislang nicht statt. Für eine Düngung eignet sich vor allem die Grobasche biogener Brennstoffe, die aus der Brennkammer abgezogen wird, besonders gut, da hierin der größte Anteil der Mineralien eingelagert wird. Feinere Aschen (Zyklonasche, Feinstflugasche) sind weniger geeignet bzw. die Ausbringung in Deutschland verboten, da sich hierin umweltrelevante Schwermetalle deutlich stärker aufkonzentrieren [vgl. Eltrop et al., 2007, S. 165 f., S. 173]. Auch wenn die Ausbringung der Grobasche im Wald ökologische Vorteile haben kann, indem zu niedrige pH-Werte im Wald angehoben oder das Baumwachstum gesteigert werden kann, findet die Ausbringung von Grobaschen bislang nicht flächendeckend statt, da die Ausbringungslogistik (Verblasegeräte, Helikopter) noch aufwändiger als die Erntelogistik im Wald ausfällt [vgl. Kaltschmitt et al., 2009, S. 455 ff.].

Grundsätzlich muss bei der energetischen Biomassenutzung unterschieden werden, ob biogene Reststoffe verwertet oder eigens für die Strom- und Wärmeerzeugung angebaute Energiepflanzen zum Einsatz kommen. Biogene Reststoffe haben den Vorteil, dass sie in der Regel nicht in Konkurrenz zu alternativer Landnutzung stehen, sondern im Idealfall die energetische Nutzung am Ende einer Nutzungskaskade die einzig verbliebene Nutzung darstellt [vgl. WBGU, 2008, S. 217]. Biogene Reststoffe können Schlachtabfälle oder Lebensmittelreste sein, die in Biogasanlagen vergoren werden können, sowie Sägerestholz aus Sägewerken oder Altholz aus der Bau- und Möbelindustrie, das in Heizkraftwerken verbrannt werden kann. Der WBGU hält den Einsatz von Energiepflanzen aus heutiger Sicht für eine Brückentechnologie, da die global vorhandenen landwirtschaftlichen Flächen zukünftig größtenteils für die Ernährung benötigt werden. Dies wird durch eine steigende Weltbevölkerung, flächenintensive Ernährungsmuster, verstärkte Bodendegradation und Wasserknappheit begründet. Die bei der Stromerzeugung aus Wind-, Wasserund Sonnenenergie zukünftig stärker auftretenden Leistungsschwankungen sollen mit

Bioenergieanlagen auf Basis von biogenen Reststoffen sowie intelligenter Stromnachfrage (z. B. Elektromobilität) ausgeglichen werden [vgl. WBGU, 2008, S. 223 ff.]. Auch der Sachverständigenrat für Umweltfragen hält einen Beitrag der Bioenergie zur Stromversorgung nur dann für nachhaltig, wenn der Schutz der Biodiversität gewährleistet wird und wenn Nutzungskonkurrenzen gegenüber der Land- und Forstwirtschaft berücksichtigt werden. Dies kann durch eine geeignete Standortauswahl sowie dazu ökologisch passenden Anbaukulturen erreicht werden [vgl. SRU, 2009b, S. 11].

Während für Biokraftstoffe und flüssige Biobrennstoffe in der EU-Richtlinie für Erneuerbare Energien Nachhaltigkeitskriterien definiert sind, fehlen diese einheitlichen Kriterien für feste und gasförmige Biomasse, die im besonderen Maße für die Elektrizitätserzeugung eingesetzt werden [vgl. Europäisches Parlament und europäischer Rat, 2009, S. 21], [vgl. dena, 2012b, S. 10 f.].

In den folgenden beiden Unterkapiteln wird auf die CO_2 -Emissionen biogener Brennstoffe und das nachhaltige Biomassepotenzial näher eingegangen.

2.3.2.1 CO₂-Emissionen von biogenen Brennstoffen

Auch wenn bei der Verbrennung von biogenen Brennstoffen nur diejenige Menge an CO₂ freigesetzt wird, die die Pflanze während ihres Wachstums der Atmosphäre entnommen hat, können biogene Brennstoffe in der Regel nicht als komplett CO₂-neutral angesehen werden. So entstehen durch den Anbau, die Ernte, den Transport, mögliche Konversionsschritte oder die Brennstoffaufbereitung indirekte CO₂-Emissionen, die dem Brennstoff zugerechnet werden müssen [vgl. Müller-Langer et al., 2008, S. 8], [vgl. Rhodes, 2007, S. 5], (vgl. Kapitel 2.1.1.3). Bei der Umwandlung von Biogas zu Biomethan können darüber hinaus gewisse Methanemissionen möglich sein ("Methanschlupf"), die aufgrund ihrer erhöhten Klimawirksamkeit im Rahmen einer Treibhausgasbilanz ebenfalls berücksichtigt werden müssen [vgl. Holzhammer, 2008, S. 22]. Andererseits können durch die Vergärung von Gülle gegenüber der herkömmlichen Ausbringung unvergorener Gülle erhebliche CO₂-Emissionen eingespart werden, da sie nicht auf dem Feld sondern bei der gleichzeitigen Erzeugung von Strom und Wärme entstehen [vgl. Scholwin et al., 2006, S. 4].

Bei dieser Bilanzierung von Treibhausgasen (THG), die neben CO₂ auch klimarelevantes Methan oder Lachgas berücksichtigt, handelt es sich um eine Wirkungskategorie ("Global Warming Potential") der Lebensweganalyse bzw. Ökobilanz, die in der ISO 14040 beschrieben wird. Hierbei werden die für die Bereitstellung des Energieträgers notwendigen Prozesse und Materialien strukturiert erfasst und die dabei entstehenden Treibhausgasemissionen systematisch ermittelt [vgl. WBGU, 2008, S. 178 f.].

Neben diesen indirekten Treibhausgasemissionen werden ebenfalls direkte und indi-

rekte Landnutzungsänderungen berücksichtigt (direct Land-Use Change – dLUC bzw. indirect Land-Use Change – iLUC), sofern es sich bei den biogenen Brennstoffen um Energiepflanzen handelt, die eigens für die Energieerzeugung angebaut werden. Direkte Landnutzungsänderungen entstehen dadurch, dass eine vormals als Acker oder Grünland genutzte Fläche beispielsweise zur Kurzumtriebsplantage (KUP) umgewidmet wird. Da es sich bei Ackerland in der Regel um eine THG-Quelle und bei Grünland um eine THG-Senke handelt, ist die Vornutzung der KUP-Fläche bei der Treibhausgasbilanz von hoher Bedeutung: So betragen die Treibhausgasemissionen durch direkte Landnutzungsänderungen für eine KUP auf einer ehemaligen Grünlandfläche $+1255 \text{ kg/(ha \cdot a)}$ und auf einer ehemaligen Ackerfläche -1375 kg/(ha·a) [vgl. WBGU, 2008, S. 180]. Indirekte Landnutzungsänderungen ergeben sich dadurch, dass an anderer Stelle Ersatzflächen für diejenigen Flächen kultiviert werden, die für den Energiepflanzenanbau benötigt werden. Bevorraten diese Ersatzflächen einen hohen Kohlenstoffgehalt (z. B. Moorflächen), so werden bei der Kultivierung erhebliche Mengen an Treibhausgasen freigesetzt. Bei den indirekten Landnutzungsänderungen ergibt sich die Herausforderung der kausalen Zurechenbarkeit des Energiepflanzenanbaus. Um die Auswirkungen zu quantifizieren, wird davon ausgegangen, dass 25% bis 50% der durch Energiepflanzen verdrängten Anbaufläche an anderer Stelle rekultiviert wird (iLUC-Faktor). Die Differenz wird durch höhere Flächenproduktivität und Aktivierung von brach liegenden Flächen ausgeglichen [vgl. WBGU, 2008, S. 178 ff.], [vgl. Fritsche und Wiegmann, 2008, S. 6 ff.].

In Abhängigkeit vom Einsatz fossiler Treibstoffe und von der Veränderung der Landnutzung können Bioenergieträger somit CO₂-negativ, CO₂-neutral oder CO₂-positiv sein [vgl. Azar et al., 2006, S. 3]. In Abbildung 2.45 werden die Treibhausgasemissionen bei der Stromerzeugung aus biogenen Festbrennstoffen dargestellt (Bezugsjahr 2030). Hierbei ist der Umwandlungsschritt der Stromerzeugung bereits enthalten, eventuelle Koppelprodukte (z. B. Wärme im KWK-Prozess) werden mittels einer heizwertbezogenen Aufteilung zwischen Haupt- und Nebenprodukten alloziert [vgl. Fritsche und Wiegmann, 2008, S.9]. Als Referenz werden die spezifischen CO₂-Emissionen des Strommix in Deutschland im Jahr 2005 dargestellt (650 g/kWh). Die stromspezifischen, indirekten CO₂-Emissionen ("0LUC"), die durch die Brennstoffbereitstellung entstehen, liegen in einem Bereich von 34 g/kWh bis 157 g/kWh. Die direkten Landnutzungsänderungen ("dLUC") kommen bei Waldrestholz nicht zum Tragen und sind für Energiepflanzen auf Ackerflächen positiv und auf Grünland (Wiese) negativ. Den entscheidenden Einfluss auf die Treibhausgasbilanz hat die indirekte Landnutzungsänderung beim Anbau der Energiepflanzen: Während bei einem iLUC-Faktor von 25% die Treibhausgasemissionen jeweils noch unter dem Referenzwert für den deutschen Strommix liegen, führt ein iLUC-Faktor von 50% in fast allen Fällen zu höheren Treibhausgasemissionen.

Abbildung 2.45: Treibhausgasbilanz der Stromerzeugung aus biogenen Festbrennstoffen, eigene Darstellung mit Daten aus Fritsche und Wiegmann [2008, S. 29]

Die stromspezifischen, indirekten Treibhausgasemissionen zur Aufbereitung von gasförmigen Brennstoffen liegen mit 81 g/kWh bis 253 g/kWh etwas höher im Vergleich zu den Festbrennstoffen (vgl. Abbildung 2.46). Die positiven Effekte durch die direkte Landnutzungsänderung für den Anbau von Energiepflanzen auf Ackerflächen sind hier nicht enthalten, da der Maisanbau auf Ackerflächen im Unterschied zur Anlage einer KUP keine zusätzliche Kohlenstoffeinlagerung in den Boden bewirkt. Für die Variante Biomethan-GuD-HKW ist als Bezugsjahr nur das Jahr 2030 angegeben, während für andere Technologien die Jahre 2005 und 2030 bzw. nur das Jahr 2005 dargestellt werden. Bei den Technologien mit beiden Angaben ist eine Technologieentwicklung zwischen 2005 und 2030 festzustellen, die zu einem Rückgang der spezifischen THG-Emissionen um 23 % bis 28% führt. Die indirekten Landnutzungsänderungen führen bei einem iLUC-Faktor von 50% bei allen Varianten mit iLUC auf Basis des Jahres 2005 zu höheren THG-Emissionen als der Referenzwert für den deutschen Strommix, während die Varianten mit iLUC auf Basis des Jahres 2030 darunter liegen. Hierbei muss jedoch bedacht werden, dass die spezifischen THG-Emissionen des deutschen Strommix bis 2030 ebenfalls zurückgehen werden. Bei einem Rückgang von 25% läge dieser bei $488 \,\mathrm{g/kWh}$, was wiederum niedriger als alle 2030-Varianten unter Berücksichtigung eines iLUC-Faktors von 50 % wäre.

Abbildung 2.46: Treibhausgasbilanz der Stromerzeugung aus biogenen Gasbrennstoffen, eigene Darstellung mit Daten aus Fritsche und Wiegmann [2008, S. 25]

2.3.2.2 Nachhaltiges Biomassepotenzial

In der Literatur werden verschiedene Potenzialbegriffe unterschieden. Das theoretische Potenzial umfasst das maximal physikalisch nutzbare Energieangebot, das in der Realität aufgrund technischer, ökonomischer und ökologischer Einschränkungen nur zu einem geringen Anteil genutzt werden kann. Innerhalb des technischen Potenzials werden technische Einschränkungen berücksichtigt (z. B. Wirkungsgrade oder Anlagenverfügbarkeiten). Hierbei können auch teilweise strukturelle, ökologische oder rechtliche Restriktionen berücksichtigt werden, so dass in Abhängigkeit der Randbedingungen die Höhe des technischen Potenzials stark variieren kann. Eine weitere Reduktion ergibt sich durch Berücksichtigung wirtschaftlicher Konkurrenzfähigkeit, so dass sich nur das wirtschaftliche Potenzial ökonomisch sinnvoll im Vergleich zu Substitutionsprodukten aktivieren lässt. Als vierte Stufe wird in der Literatur teilweise vom erschließbaren Potenzial gesprochen, da durch Trägheit der Marktakteure oder Marktintransparenzen nicht unmittelbar das vollständige wirtschaftliche Potenzial mobilisiert werden kann [vgl. Eltrop et al., 2007, S. 23 f.]. An anderer Stelle wird vom nachhaltigen Potenzial gesprochen, indem ökologische und sozioökonomische Begrenzungen berücksichtigt werden [vgl. WBGU, 2008, S. 102].

Die Abschätzung der Größe der einzelnen Potenzialarten kann auf regionaler, nationaler

oder globaler Ebene durchgeführt werden. Abbildung 2.47 stellt technische, wirtschaftliche und nachhaltige Bioenergiepotenziale aus verschiedenen Studien auf globaler Ebene dar. Hierbei handelt es sich um Potenziale, die sich im Wesentlichen auf das Jahr 2050 beziehen. Es werden für jede Studie jeweils die minimalen und die maximalen Grenzen dargestellt, in zwei Studien stimmt die Summe der Einzelpotenziale nicht mit dem Gesamtpotenzial überein. Besonders im Bereich des Energiepflanzenanbaus auf Ackerflächen sind erhebliche Unterschiede zu erkennen, die zu globalen Bioenergiepotenzialen von bis zu 1442 EJ/a führen. Studien, die lediglich den Energiepflanzenanbau auf brach liegenden bzw. degradierten Flächen sowie Reststoffe berücksichtigen, kommen auf deutlich geringere Bioenergiepotenziale von etwa 100 EJ/a. Dies korreliert mit den Berechnungen des WBGU, der den Anbau von Energiepflanzen auf landwirtschaftlichen Flächen aufgrund Ressourcenknappheit für eine Brückentechnologie hält (vgl. Kapitel 2.3.2).

Abbildung 2.47: Globale Bioenergiepotenziale aus verschiedenen Studien, eigene Darstellung mit Daten aus WBGU [2008, S. 105]

Abbildung 2.48 stellt die nationalen Bioenergiepotenziale in der Europäischen Union dar. Hierbei werden für die Kategorien Reststoffe, Waldrestholz und Energiepflanzen jeweils zwei Potenziale aus zwei verschiedenen Quellen angeführt. Als Bezugsjahr wird jeweils das Jahr 2010 gewählt, wobei in beiden Studien eine verstärkte Umweltorientierung bei der Landschaftsnutzung unterstellt wird [vgl. Wiesenthal et al., 2006, S. 52],

[vgl. Thrän et al., 2005, S. 168]. Für die meisten Staaten liegen die beiden Bioenergiepotenziale relativ nah beisammen – die größten Unterschiede ergeben sich erneut durch unterschiedliche Annahmen beim Energiepflanzenanbau. Das jährliche Bioenergiepotenzial für alle 26 hier dargestellten Staaten liegt bei 7,9 EJ/a bis 10,3 EJ/a. Die vier Flächenstaaten Frankreich, Deutschland, Polen und Spanien steuern bereits einen Anteil von ca. 50 % bei. Während in Thrän et al. [vgl. 2005, S. 168] die Anteile für Reststoffe, Waldrestholz und Energiepflanzen mit ca. 3,5 EJ/a jeweils ca. ein Drittel ausmachen, machen die Reststoffe in Wiesenthal et al. [vgl. 2006, S. 52] mit ca. 4,0 EJ/a bereits mehr als 50 % aus. Die gleichen Verhältnismäßigkeiten zeigen sich auch am Beispiel Deutschlands, wo das Bioenergiepotenzial in Summe ca. 1,1 EJ/a bis 1,5 EJ/a beträgt.

Abbildung 2.48: Bioenergiepotenzial in der EU, eigene Darstellung mit Daten aus Wiesenthal et al. [2006, S. 52] (1), Thrän et al. [2005, S. 168] (2)

In Abbildung 2.49 werden die genannten Bioenergiepotenziale in Deutschland anhand einer weiteren Studie näher aufgegliedert. Hierbei ist ein Schwerpunkt im Bereich der Festbrennstoffe zu erkennen, die ca. 60 % des Gesamtpotenzials ausmachen. Als Biogassubstrate werden vor allem Rückstände aus der Landwirtschaft, aus Siedlungen und der Industrie berücksichtigt, die jedoch lediglich ca. 12 % bis 14 % ausmachen. Innerhalb des Bereiches der Energiepflanzen werden sowohl Festbrennstoffe, Biogassubstrate als auch Pflanzenölsubstrate bereitgestellt [vgl. Kaltschmitt et al., 2003, S. 36 f.]. An anderer Stelle

wird das Potenzial für Biogas deutlich höher eingeschätzt: Nach Nordmeyer [vgl. 2008, S. 184] wird das Biogaspotenzial im Jahr 2030 bei 23 Mrd. m^3/a bis 24 Mrd. m^3/a liegen, was bei einem Brennwert von 6.5 kWh/m^3 ca. 550 PJ/a entspricht.

Abbildung 2.49: Technisches Bioenergiepotenzial in Deutschland, eigene Darstellung mit Daten aus Kaltschmitt et al. [2003, S. 37]

2.3.3 Kraft-Wärme-Kopplung

In der Nachhaltigkeitsstrategie der Bundesregierung wird der sparsame Umgang mit Ressourcen als wesentliche Voraussetzung für die Handlungsspielräume zukünftiger Generationen angesehen [vgl. Bundesregierung, 2002, S. 9]. Bei der gekoppelten Erzeugung von Strom und Wärme wird der eingesetzte Brennstoff gegenüber der getrennten Stromund Wärmeerzeugung besser ausgenutzt. Diese stärkere Brennstoffausnutzung führt zu geringeren spezifischen CO₂-Emissionen der beiden Koppelprodukte Strom und Wärme. Auf diese beiden Aspekte wird in den folgenden Unterkapiteln näher eingegangen.

Darüber hinaus hat die gekoppelte Strom- und Wärmeerzeugung in zentralen Einheiten den Vorteil, dass die Emission von Luftschadstoffen gegenüber der dezentralen Wärmeerzeugung durch gesetzliche Vorgaben deutlich gesenkt wird. Die durch die fluktuierende Einspeisung erneuerbarer Energieträger zukünftig wichtiger werdende flexible Stromerzeugung (vgl. Kapitel 2.2.2.3) ist bei ausreichenden Kurzzeit-Wärmespeicher-

kapazitäten ebenfalls möglich. Auch der Sachverständigenrat für Umweltfragen hat in seinem Umweltgutachten des Jahres 2002 die Kraft-Wärme-Kopplung "als besonders effiziente Technik der Energieerzeugung" und als "unentbehrliches Element der nationalen Klimaschutzpolitik" anerkannt [SRU, 2002, S. 37].

Im Folgenden wird auf die Brennstoffausnutzung und die Allokation der spezifischen CO_2 -Emissionen auf die zwei Produkte Strom und Wärme näher eingegangen.

2.3.3.1 Brennstoffausnutzung

Die in einem Brennstoff enthaltene Energie kann unterschieden werden in Anergie und Exergie. Diese Unterscheidung basiert auf dem 2. Hauptsatz der Thermodynamik: Hiernach kann nicht jede Energieform vollständig in eine beliebige andere Energieform umgewandelt werden, da solche Energiewandlungsprozesse ausgeschlossen sind, bei denen Entropie vernichtet werden müsste. Die Entropie eines Systems stellt eine Zustandsgröße dar, die bei allen irreversiblen Prozessen erzeugt wird und nicht vernichtet werden kann. Während Entropie mit einem Wärmestrom transportiert werden kann, wird mechanische bzw. elektrische Leistung nie von einem Entropiestrom begleitet. Somit ist es nicht möglich, Wärmeenergie vollständig in mechanische oder elektrische Energie umzuwandeln, da hierbei Entropie vernichtet werden müsste. Mechanische und elektrische Energie können hingegen in reversibel arbeitenden Generatoren bzw. Elektromotoren vollständig ineinander umgewandelt werden. Diese Energieformen werden als Exergie bezeichnet. Exergie kann durch irreversible Prozesse auch in beschränkt umwandelbare Energieformen, wie z. B. Wärme, umgewandelt werden. Als beschränkt umwandelbare Energieform verfügt Wärme ebenfalls über einen unbeschränkt umwandelbaren Anteil (Exergie der Wärme) und über einen nicht in Exergie umwandelbaren Teil, die als Anergie bezeichnet wird. Der Anteil der Exergie einer Energieform, der maximal in Arbeit umgewandelt werden kann, hängt vom Zustand des Energieträgers und der Umgebung ab vgl. Baehr und Kabelac, 2006, S. 150 ff., S. 98 ff.].

In Abbildung 2.50 wird für die getrennte und die gekoppelte Strom- und Wärmeerzeugung der Energie- und Exergiefluss dargestellt. Bei der Kraft-Wärme-Kopplung wird der Brennstoff und vor allem die darin enthaltene Exergie deutlich effizienter genutzt, da nur einmal ein hoch irreversibler Verbrennungsprozess stattfindet, in dem Brennstoff in Wärme gewandelt wird. Der überwiegende Teil der Exergie wird dabei für die Stromerzeugung eingesetzt, nur ein geringerer Exergieteil ist Bestandteil der erzeugten Wärme. Die Exergie kann nicht vollständig dem Strom zugeordnet werden, da die Wärmeerzeugung auf einem Temperaturniveau erfolgt (80 °C bis 120 °C), das eine weitere Stromerzeugung auf einem technisch möglichen, niedrigeren Temperaturniveau (30 °C bis 40 °C)

unterbindet. Bei der reinen Stromerzeugung wird zwar der Exergiegehalt vollständig der Stromproduktion zugeführt, doch entstehen große Verluste bei der Nicht-Nutzung der Kondensationswärmeenergie des entspannten Wasserdampfes (vgl. Kapitel 2.1.2.2). Die reine Wärmeerzeugung verfügt zwar auch in dezentralen Kleinanlagen über einen hohen Brennstoffausnutzungsgrad, doch wird die hochwertige Exergie, die für die Erzeugung von mechanischer oder elektrischer Arbeit geeignet wäre, lediglich in Wärme umgewandelt. Neben der schlechteren Exergienutzung führt die getrennte Strom- und Wärmeerzeugung zu einem erhöhten Brennstoffeinsatz von ca. 35 %. Dieser Wert muss jedoch noch geringfügig reduziert werden, da die Wärme zu den Verbrauchern transportiert werden muss, wodurch elektrischer Pumpaufwand und thermische Verluste im Netz entstehen.

Abbildung 2.50: Energie- und Exergiefluss für getrennte und gekoppelte Strom- und Wärmeerzeugung [Schmitz und Schaumann, 2005, S.5]

2.3.3.2 Allokation der spezifischen CO₂-Emissionen

Durch die gekoppelte Erzeugung von Strom und Wärme können die spezifischen CO_2 -Emissionen der beiden Koppelprodukte gegenüber der getrennten Erzeugung von Strom und Wärme reduziert werden. Hierbei müssen die CO_2 -Emissionen des Gesamtprozesses auf die beiden Koppelprodukte aufgeteilt bzw. alloziert werden. In der Literatur gibt es für diese Aufteilung unterschiedliche Ansätze: Man unterschiedet die monetäre, exergetische und energetische Allokation. Bei der monetären Allokation wird die Aufteilung

entsprechend der Erlösstruktur des Fernwärme- und Stromverkaufs vorgenommen, was lediglich für einzelbetriebliche Entscheidungen sinnvoll ist [vgl. Beer et al., 2007, S. 14 f.]. Auf die beiden anderen Varianten wird im Folgenden näher eingegangen.

Im Rahmen der exergetischen Allokation wird der Exergiegehalt der beiden KWK-Produkte berücksichtigt. Während elektrische Energie einen Exergiefaktor von 1 aufweist (100 % der Energie kann in Arbeit umgewandelt werden), fällt dieser für Fernwärme deutlich niedriger aus: Wärme auf einem Temperaturniveau von 90 °C bis 140 °C hat einen Exergiefaktor von ca. 0,17 bis 0,30 [vgl. Duscha et al., 2009, S. 26]. Die Berechnung des Brennstoffanteils für die Strom- und Wärmeerzeugung ($\alpha_{Br,el}$ bzw. $\alpha_{Br,th}$) wird nach Formel 2.9 und Formel 2.10 durchgeführt. Hierbei ist W_{el} die erzeugte elektrische Energie (gleichzeitig Exergiemenge) in MWh und E_Q die Exergie der Wärme in MWh, die sich nach Formel 2.11 berechnet. Q ist dabei die Wärme in MWh, T_U die absolute Umgebungstemperatur in K und T_{HN} die absolute, thermodynamische Mitteltemperatur des Heiznetzes in K, die sich nach Formel 2.12 ergibt. t_V ist die mittlere Vorlauftemperatur in °C und t_R die mittlere Rücklauftemperatur in °C. T_V und T_R sind analog die absolute, mittlere Vor- und Rücklauftemperatur in K [vgl. Robbi und Dittmann, 2008, S. 12].

$$\alpha_{\rm Br,el(ex)} = \frac{W_{\rm el}}{W_{\rm el} + E_{\rm Q}}$$
(2.9)

$$\alpha_{\rm Br,th(ex)} = \frac{E_{\rm Q}}{W_{\rm el} + E_{\rm Q}} \tag{2.10}$$

$$E_{\rm Q} = \left(1 - \frac{T_{\rm U}}{T_{\rm HN}}\right) \cdot Q \tag{2.11}$$

$$T_{\rm HN} = \frac{t_{\rm V} - t_{\rm R}}{ln\frac{T_{\rm V}}{T_{\rm R}}}$$
(2.12)

Im Bereich der energetischen Allokation existieren verschiedene Varianten, die im Wesentlichen auf den elektrischen und thermischen Wirkungsgrad aufbauen. Bei drei Varianten wird ebenfalls zunächst der eingesetzte Brennstoff in einen Anteil für die Strom- und für die Wärmeerzeugung ($\alpha_{Br,el}$ bzw. $\alpha_{Br,th}$) aufgeteilt. Die IEA-Methode nimmt diese Aufteilung nach Formel 2.13 und Formel 2.14 vor. Hierbei steigt der Brennstoffanteil für die Stromerzeugung mit steigendem elektrischen Wirkungsgrad $(\eta_{\rm el})$ [vgl. Mauch et al., 2010, S. 12].

$$\alpha_{\rm Br,el(IEA)} = \frac{\eta_{\rm el}}{\eta_{\rm el} + \eta_{\rm th}}$$
(2.13)

$$\alpha_{\rm Br,th(IEA)} = \frac{\eta_{\rm th}}{\eta_{\rm el} + \eta_{\rm th}}$$
(2.14)

Die Wirkungsgradmethode (vgl. Formel 2.15 und Formel 2.16) kehrt diesen Mechanismus um, indem der Brennstoffanteil für den Strom mit steigendem thermischen Wirkungsgrad ($\eta_{\rm th}$) zunimmt [vgl. Mauch et al., 2010, S. 12].

$$\alpha_{\rm Br,el(WG)} = \frac{\eta_{\rm th}}{\eta_{\rm el} + \eta_{\rm th}} \tag{2.15}$$

$$\alpha_{\rm Br,th(WG)} = \frac{\eta_{\rm el}}{\eta_{\rm el} + \eta_{\rm th}}$$
(2.16)

Einen anderen Ansatz zur Aufteilung des eingesetzten Brennstoffs auf die Produkte Strom und Wärme wählt die Finnische Methode (vgl. Formel 2.17 und Formel 2.18). Hierbei werden die elektrischen und thermischen Wirkungsgrade mit definierten Referenzwirkungsgraden ($\eta_{\rm el,Ref}$ und $\eta_{\rm th,Ref}$) ins Verhältnis gesetzt. Zusätzlich wird nach Formel 2.19 eine Primärenergieeinsparung ($\Delta_{\rm PEE}$) des untersuchten Systems gegenüber dem Referenzsystem berechnet.

$$\alpha_{\rm Br,el(Fin)} = (1 - \Delta_{\rm PEE}) \cdot \frac{\eta_{\rm el}}{\eta_{\rm el,Ref}}$$
(2.17)

$$\alpha_{\rm Br,th(Fin)} = (1 - \Delta_{\rm PEE}) \cdot \frac{\eta_{\rm th}}{\eta_{\rm th,Ref}}$$
(2.18)

$$\Delta_{\text{PEE}} = 1 - \frac{1}{\frac{\eta_{\text{el}}}{\eta_{\text{el,Ref}}} + \frac{\eta_{\text{th}}}{\eta_{\text{th,Ref}}}}$$
(2.19)

Für die exergetische Allokation und die drei vorgestellten Methoden der energetischen Allokation werden anschließend nach Formel 2.20 und Formel 2.21 die direkten CO₂-Emissionen für den erzeugten Strom ($m_{\rm CO_2,el,dir}$ in t) und für die erzeugte Wärme ($m_{\rm CO_2,th,dir}$ in t) berechnet. Hierbei sind $\mu_{\rm CO_2,Br,dir}$ der heizwertspezifische, direkte CO₂-Emissionsfaktor des Brennstoffs in t/GJ und $E_{\rm Br}$ die eingesetzte Brennstoffenergie in

GJ.

$$m_{\rm CO_2, el, dir} = \mu_{\rm CO_2, Br, dir} \cdot \alpha_{\rm Br, el} \cdot E_{\rm Br}$$
(2.20)

$$m_{\rm CO_2, th, dir} = \mu_{\rm CO_2, Br, dir} \cdot \alpha_{\rm Br, th} \cdot E_{\rm Br}$$
(2.21)

Die CO₂-Emissionsfaktoren in Bezug auf den erzeugten Strom ($\mu_{CO_2,el,dir,KWK}$) und auf die erzeugte Wärme ($\mu_{CO_2,th,dir,KWK}$) ergeben sich nach Formel 2.22 und Formel 2.23 durch Division mit der erzeugten elektrischen Energie bzw. Wärme (W_{el} bzw. Q).

$$\mu_{\rm CO_2, el, dir, KWK} = \frac{m_{\rm CO_2, el, dir}}{W_{\rm el}}$$
(2.22)

$$\mu_{\rm CO_2, th, dir, KWK} = \frac{m_{\rm CO_2, th, dir}}{Q}$$
(2.23)

Die zwei weiteren Allokationsmethoden arbeiten nach dem Gutschriftsverfahren für die erzeugte Wärme bzw. den erzeugten Strom. Bei der Wärmegutschriftmethode wird der eingesetzte Brennstoff zunächst zu 100 % dem erzeugten Strom zugeschlagen. Nach Formel 2.24 werden bei der Berechnung der absoluten CO₂-Emissionen die CO₂-Emissionen der Wärmeerzeugung ($m_{CO_2,th,dir}$) subtrahiert. Diese ergeben sich auf Basis der spezifischen CO₂-Emissionen eines Referenzsystems zur Wärmeerzeugung ($\mu_{CO_2,th,Mix}$) und des thermischen Wirkungsgrads (vgl. Formel 2.25). Die Stromgutschriftmethode geht nach dem gleichen, jedoch umgekehrten Prinzip vor. Bei der Stromgutschriftmethode wird ein geeignetes Referenzsystem zur Stromerzeugung definiert ($\mu_{CO_2,el,Mix}$). Hierfür kann beispielsweise der Strommix Deutschlands zugrunde gelegt werden. Alternativ kann anhand einer Kraftwerkseinsatzplanung auf Stundenbasis untersucht werden, welche Kraftwerke durch die KWK-Stromerzeugung verdrängt werden (Verdrängungsmixmethode) [vgl. Mauch et al., 2010, S. 12 ff.]. Die Errechnung der spezifischen CO₂-Emissionen erfolgt wiederum nach Formel 2.22 und Formel 2.23.

$$m_{\rm CO_2,el,dir} = \mu_{\rm CO_2,Br,dir} \cdot E_{\rm Br} - m_{\rm CO_2,th,dir}$$
(2.24)

$$m_{\rm CO_2, th, dir} = \mu_{\rm CO_2, th, Mix} \cdot E_{\rm Br} \cdot \eta_{\rm th}$$
(2.25)

Um die Auswirkungen der einzelnen Allokationsmethoden zu verdeutlichen, werden anhand der in Tabelle 2.6 dargestellten Ausgangsdaten die spezifischen CO_2 -Emissionsfaktoren der Strom- und Wärmeerzeugung berechnet. Hierbei handelt es sich als Beispiel um einen Erdgas-KWK-Prozess – für die exergetische Allokationsmethode werden ebenfalls Annahmen zum Fernwärme- und Umgebungstemperaturniveau getroffen. Abbildung 2.51 stellt die Ergebnisse für die unterschiedlichen Allokationsmethoden dar. Hierbei sind als Extremlösung in den äußeren Balken jeweils 100 % der CO_2 -Emissionen dem Strom bzw. der Wärme zugeschlagen worden. Alle weiteren Allokationsmethoden teilen die CO_2 -Emissionen zwischen den beiden Produkten auf.

Auch wenn keine Methode unter thermodynamischen, wirtschaftlichen und ökologischen Gesichtspunkten eindeutig zu bevorzugen ist, sondern je nach Anwendungsfall besser oder schlechter geeignet ist [vgl. Mauch et al., 2010, S. 14], werden in Fritsche und Rausch [vgl. 2007, S. 7 ff.] einige Vor- und Nachteile der einzelnen Allokationsmethoden diskutiert. Bei der Stromgutschriftmethode können bei Verwendung des Verdrängungsmixes negative CO₂-Emissionen für die erzeugte Wärme auftreten (vgl. Abbildung 2.51). Auf der anderen Seite weist der produzierte Strom in der Wärmegutschriftmethode genau dann einen geringen Wert auf, wenn der elektrische Wirkungsgrad möglichst niedrig ist. Ein ähnliches Problem ergibt sich bei der IEA-Methode, da auch hier bei geringem elektrischen Wirkungsgrad ein Großteil der CO₂-Emissionen der erzeugten Wärme zugeteilt wird.

Im Rahmen der Analyse der Nachhaltigkeit (Kapitel 5) wird mit der finnischen Methode bilanziert, da diese eine verursachungsgemäße Zuordnung vornimmt und auch im Rahmen der KWK-Richtlinie der Europäischen Union zum Einsatz kommt [vgl. Europäisches Parlament und europäischer Rat, 2004, S. 10].

2.3.4 CO₂-Sequestrierung

Eine erste Analyse der Nachhaltigkeit aller drei Prozessschritte der CO₂-Sequestrierung ist in Katz [vgl. 2010, S. 170] durchgeführt worden. Hierbei ist mit Hilfe von insgesamt elf Indikatoren, die die ökonomische, ökologische und soziale Nachhaltigkeit darstellen, auf Basis eines Sach- und Wertmodells ermittelt worden, dass das Szenario mit CCS als nachhaltiger zu bewerten ist als das Szenario ohne CCS. Im Bereich der ökologischen Indikatoren spricht jedoch nur der Indikator der Emission klimarelevanter Gase für CCS, während die übrigen Indikatoren eine geringere Nachhaltigkeit bei der CCS-Einführung erwarten lassen (sonstige Emissionen, Flächen-/Wasserinanspruchnahme, kumulierter Energieaufwand).

In einem Bericht des Ausschusses für Bildung, Forschung und Technikfolgenabschätzung des deutschen Bundestages wird CCS als eine nicht nachhaltige Übergangslösung für

$2 \, Grundlagen$

Größe	Zeichen	Einheit	Wert	Quelle
Elektrischer Wirkungsgrad	$\eta_{ m el}$	%	30	Mauch et al. [2010, S. 13]
Thermischer Wirkungsgrad	$\eta_{ m th}$	%	50	Mauch et al. [2010, S. 13]
Elektrischer Referenzwirkungsgrad	$\eta_{ m el,Ref}$	%	52,5	Europäische Kom- mission [2006, S. 3]
Thermischer Referenzwirkungsgrad	$\eta_{ m th,Ref}$	%	90	Europäische Kom- mission [2006, S. 4]
Mittlere Vorlauftemperatur	$t_{ m V}$	$^{\circ}\mathrm{C}$	120	eigene Festlegung
Mittlere Rücklauftemperatur	$t_{ m R}$	$^{\circ}\mathrm{C}$	60	eigene Festlegung
Mittlere Umgebungstemperatur	$t_{ m U}$	$^{\circ}\mathrm{C}$	10	eigene Festlegung
CO ₂ -Emissionsfaktor Erdgas	$\mu_{\rm CO_2,Br,dir,Gas}$	$\rm kg/MJ$	0,056	DEHSt [2007, S. 1]
CO ₂ -Emissionsfaktor Strommix	$\mu_{\rm CO_2,el,Mix}$	g/kWh	563	UBA [2011a, S. 1]
CO ₂ -Emissionsfaktor Verdrängungs-Strommix (2005)	$\mu_{\rm CO_2,el,V-Mix}$	g/kWh	821	Mauch et al. [2010, S. 14]
CO ₂ -Emissionsfaktor Wärmemix	$\mu_{\rm CO_2, th, Mix}$	g/kWh	270	Erdmann und Dittmar [2010, S. 51]

Tabelle 2.6: Verwendete Wirkungsgrade und CO₂-Emissionsfaktoren für CO₂-Allokationsverfahren

Abbildung 2.51: Spezifische CO₂-Emissionsfaktoren der Strom- und Wärmeerzeugung für unterschiedliche Allokationsmethoden, eigene Berechnung mit Daten aus Tabelle 2.6

die Erreichung der Klimaschutzziele eingeschätzt. Es werden sieben Thesen für CCS festgehalten (z. B. keine CO₂-Speicherung im Ozean, Entwicklung eines internationalen Rechtsrahmens etc.), von denen eine These eine klare Forderung enthält: Die jährlichen Leckageraten der CO₂-Speicher dürfen 0,01% nicht überschreiten [vgl. Bundestag, 2008b, S. 40].

In Blohm et al. [vgl. 2006, S. 93 ff.] werden aus den 14 Nachhaltigkeitsleitsätzen der Enquete-Kommission "Schutz des Menschen und der Umwelt" (vgl. Kapitel 2.3) sieben Leitsätze als relevant für CCS eingeschätzt. Auf Basis dieser sieben Leitsätze werden die folgenden CCS-spezifischen Anforderungen abgeleitet:

- CCS kann aufgrund der Endlichkeit fossiler Rohstoffe und der Begrenztheit geeigneter Speicherkapazitäten allenfalls eine Übergangstechnologie sein.
- Für jede CO₂-Lagerstätte müssen Nutzungskonkurrenzen und negative Umweltfolgen ausgeschlossen werden.
- Investitionen in CCS sollten nur dann vorgenommen werden, wenn ausreichend große CO₂-Lagerstätten zur Verfügung stehen.
- Leckageraten der CO₂-Speicher müssen so niedrig sein, dass der Klimawandel

zukünftig nicht weiter begünstigt wird.

- Alle Elemente der CCS-Prozesskette dürfen keine Risiken oder Gefahren für die menschliche Gesundheit verursachen.
- CCS muss kosteneffizient sein und sich anhand der CO₂-Vermeidungskosten gegen Alternativen durchsetzen.
- Verantwortlichkeiten und Haftungsfragen für CCS müssen national und international geregelt sein (Vorsorgeprinzip und Verursacherprinzip).
- Internationale Mindeststandards für die Bewertung und Überwachung von CO₂-Speichern müssen definiert sein.

Aus politischer Sicht wird die Nachhaltigkeit von CCS derzeitig unterschiedlich bewertet: Während die Ethik-Kommission "Sichere Energieversorgung" die Lagerung von CO₂ in tiefen Lagerstätten langfristig für eine "Sackgasse" hält [Töpfer et al., 2011, S. 47], bekennt sich der Nachhaltigkeitsrat klar zu CCS und fordert die Politik auf, den Rechtsrahmen für die CO₂-Speicherung zu definieren [vgl. Rat für Nachhaltige Entwicklung, 2008, S. 8].

Im Folgenden werden für die drei Prozessschritte CO₂-Abscheidung, CO₂-Transport und CO₂-Speicherung die Grundlagen für die Analyse der Nachhaltigkeit dargelegt. Hierbei liegt der Schwerpunkt auf dem Prozessschritt der CO₂-Speicherung.

2.3.4.1 CO₂-Abscheidung

Durch die Integration einer CO₂-Abscheidung wird der elektrische (und thermische) Wirkungsgrad eines (Heiz-)Kraftwerks reduziert (vgl. Kapitel 2.1.3.1.4). Mit dieser Wirkungsgradreduktion steigen der spezifische Brennstoffbedarf und in der Folge auch die spezifischen CO₂-Emissionen zunächst an. Durch die CO₂-Abscheidung werden die CO₂-Emissionen wiederum reduziert. Es muss somit zwischen den vermiedenen und den abgeschiedenen CO₂-Emissionen unterschieden werden. Abbildung 2.52 macht diesen Zusammenhang am Beispiel eines Steinkohlekraftwerks deutlich (elektrischer Wirkungsgrad ohne CCS 49%, elektrischer Wirkungsgrad mit CCS 40%, CO₂-Abscheidegrad 88% [vgl. Fischedick et al., 2007, S. 111]). CC steht für Carbon Capture, ohne die Prozessschritte CO₂-Transport und CO₂-Speicherung. Hierbei werden zusätzlich die indirekten CO₂-Emissionen berücksichtigt, die beim Abbau, Transport und Aufbereiten der Steinkohle anfallen, so dass die stromspezifischen CO₂-Emissionen ohne CCS bei 710 g/kWh liegen. Durch die CO_2 -Abscheidung steigen die stromspezifischen CO_2 -Emissionen zunächst um 164 g/kWh auf 874 g/kWh an (vgl. "mit CC"). Von den direkten CO₂-Emissionen (832 g/kWh) werden 88% abgeschieden. Hinzu kommen die CO₂-Emissionen für den CO₂-Transport und die CO₂-Speicherung (16 g/kWh, vgl. "mit CCS"). Durch die vermiedenen

 CO_2 -Emissionen in Höhe von 552 g/kWh ergibt sich eine CO_2 -Vermeidungsrate von 77 %. Mit 732 g/kWh muss jedoch deutlich mehr CO_2 abgeschieden und eingelagert werden.

Abbildung 2.52: Abgeschiedene und vermiedene CO₂-Emissionen am Beispiel eines Steinkohlekraftwerks, eigene Darstellung auf Basis von Fischedick et al. [2007, S. 111]

In IEA/OECD [vgl. 2004, S. 65] wird dargelegt, dass eine CO₂-Abscheidung vor allem in Kraftwerken mit einem hohen Ausgangswirkungsgrad sinnvoll ist. Würde das in Abbildung 2.52 verwendete Kraftwerk über einen geringeren elektrischen Wirkungsgrad verfügen, so wären die stromspezifischen CO₂-Emissionen ohne CCS bereits deutlich höher (z. B. bei 35 % Wirkungsgrad: 946 g/kWh). Die durch die CO₂-Abscheidung induzierte Erhöhung der stromspezifischen CO₂-Emissionen würde ebenfalls deutlich stärker ausfallen, so dass auch deutlich mehr CO₂ abgeschieden werden muss (überschlägig ca. 1025 g/kWh bei Rest-CO₂-Emissionen von ca. 200 g/kWh).

2.3.4.2 CO₂-Transport

Vor dem Hintergrund der Nachhaltigkeit interessiert im Bereich des CO_2 -Transports neben dem energetischen Aufwand, auf den im Kapitel 2.1.3.2 näher eingegangen wird, vor allem die Transportsicherheit. Für die weltweit insgesamt 5600 km betriebenen CO_2 -Pipelines lässt sich festhalten, dass die Schadenshäufigkeit sehr gering ist und unter dem

Niveau für Erdgaspipelines liegt. Bislang ist noch kein Zwischenfall aufgetreten, bei dem Menschen zu Schaden gekommen sind [vgl. Bennaceur et al., 2008, S. 82]. Für Onshore- CO_2 -Pipelines in den USA wird eine jährliche Unfallrate von 0,032 Unfällen je 100 km berichtet, was für eine 500 km lange Pipeline ein Unfallintervall von durchschnittlich sechs Jahren bedeuten würde [vgl. Fischedick et al., 2007, S. 69]. Grundsätzlich kann davon ausgegangen werden, dass gesteigerte Sicherheitsanforderungen berücksichtigt werden müssen, wenn in Zukunft Pipelines in Regionen mit einer höheren Bevölkerungsdichte errichtet werden sollen [vgl. Metz et al., 2005, S. 181].

Für den CO₂-Schiffstransport liegen keine vergleichbaren Untersuchungen vor. In Fischedick et al. [vgl. 2007, S. 70] wird lediglich darauf hingewiesen, dass durch eine zusätzliche Belastung der Schifffahrtsstraßen grundsätzlich eine erhöhte Gefahr von Schiffskollisionen entstehen kann. Da der CO₂-Schiffstransport üblicherweise bei Temperaturen unterhalb der Umgebungstemperatur durchgeführt wird (vgl. Kapitel 2.1.3.2.3), entsteht während des Transports durch äußere Wärmezufuhr gasförmiges CO₂. Um eine durch das höhere spezifische Volumen verursachte Druckerhöhung im Tank zu vermeiden, muss deswegen entweder CO₂ kontrolliert abgelassen oder nachgekühlt werden [vgl. Fischedick et al., 2007, S. 70]. Beide Maßnahmen verschlechtern jedoch die CO₂-Bilanz. Inklusive der CO₂-Emissionen durch die Verbrennungsmotoren der Schiffe kann mit einem CO₂-Verlust von 3%/1000 km bis 4%/1000 km gerechnet werden [vgl. Metz et al., 2005, S. 186].

2.3.4.3 CO₂-Speicherung

Bei der CO₂-Speicherung wird im Folgenden auf die CO₂-Speicherkapazitäten, mögliche CO₂-Leckageraten und die Konkurrenzsituation um die vorhandenen CO₂-Speicher näher eingegangen.

2.3.4.3.1 CO₂-**Speicherkapazitäten** In Kapitel 2.1.3.3.1 sind für die relevanten CO_2 -Speicheroptionen (saline Aquifere, leere Erdöl- und Erdgasfelder sowie nicht abbaubare Kohlelagerstätten) die technischen Grundlagen dargelegt worden. Im Folgenden werden die globalen, europäischen und deutschen CO_2 -Speicherkapazitäten in diesen Lagerstätten dargestellt. Diese Kapazitäten können durch zukünftig auftretende Nutzungskonkurrenzen reduziert werden (vgl. Kapitel 2.3.4.3.3). Die einzelnen CO_2 -Lagerstätten sollten jeweils über eine Mindestgröße von 100 Mt verfügen, damit sich die notwendigen Infrastrukturaufwendungen amortisieren können [vgl. Viebahn et al., 2009, S. 40].

Für leere Erdöl- und Erdgasfelder können die Kapazitäten aufgrund ihrer wirtschaftlichen Nutzung relativ genau bestimmt werden. Die Tatsache, dass in diesen Feldern Kohlenwasserstoffe über Millionen von Jahren gelagert haben, macht sie zu einer aus-

sichtsreichen CO_2 -Speicheroption [vgl. Radgen et al., 2006, S. 103]. Darüber hinaus liegen für die bestehenden Erdöl- und Erdgasfelder viele Messwerte vor und es kann auf die bestehende Pipeline-Infrastruktur zurückgegriffen werden [vgl. Christensen und Holloway, 2004, S. 8]. Aufgrund ihrer geringen Größe sind Erdöllagerstätten in Deutschland aus wirtschaftlichen Gründen nicht für eine CO_2 -Speicherung geeignet [vgl. Bundesregierung, 2009, S. 3]. Wie im Kapitel 2.1.3.3.1 bereits dargelegt, führt eine CO_2 -Speicherung in Verbindung mit einer weiteren Ausbeutung noch nicht vollständig entleerter Erdöl- und Erdgasfelder nicht zu negativen CO_2 -Emissionen.

Die Bestimmung der Speicherkapazitäten in tiefen, nicht abbaubaren Kohlelagerstätten ist deutlich schwieriger. Sie hängt zunächst von der Mächtigkeit und der Ausdehnung des Kohleflözes ab. Von entscheidender Bedeutung für die Speicherkapazität ist die Porosität der Kohlelagerstätte, wodurch sich die innere Oberfläche der Kohle bestimmt, an der sich Gase adsorbieren können. Auch das regelmäßige Vorhandensein von Hohlräumen, Klüften oder Brücken begünstigt die Permeabilität des injizierten CO_2 und des frei werdenden CH_4 . Diese Permeabilität reduziert sich jedoch mit zunehmender Injektion und ist darüber hinaus von der Temperatur, dem Druck und der Feuchtigkeit der Kohle abhängig [vgl. Radgen et al., 2006, S. 99 ff.]. Über die Austauschrate (CO_2 zu CH_4) und die Permeabilität der einzelnen Kohlearten besteht noch Forschungsbedarf, so dass bisherige CO_2 -Speicherkapazitätsschätzungen große Bandbreiten aufweisen [vgl. Fischedick et al., 2007, S. 81], [vgl. Viebahn et al., 2010, S. 114].

Auch die Bestimmung der CO₂-Speicherkapazitäten in salinen Aquiferen ist mit Ungewissheiten verbunden. Zunächst wird nach Formel 2.26 die theoretische CO₂-Speicherkapazität $m_{\rm CO_2,theor}$ in kg ermittelt. Das Volumen der CO₂-Lagerstätte V in m³ ergibt sich aus der Multiplikation der unterirdischen Fläche (A) und der Mächtigkeit des Aquifers (D). φ in % stellt die Porosität der Lagerstätte dar. Der Faktor $\phi_{n/g}$ (net-to-gross-Verhältnis) in % beschränkt das Volumen auf diejenigen Bereiche, die aufgrund ihrer Porosität und Permeabilität dazu in der Lage sind CO₂ aufzunehmen. Das Volumen wird durch den Faktor ϕ_{traps} in % auf diejenigen Strukturen reduziert, die geschlossen sind und somit Fallen darstellen, was eine höhere Akzeptanz und ein einfacheres Monitoring erwarten lässt. $\rho_{\rm CO_2}$ in kg/m³ ist die Dichte von CO₂.

$$m_{\rm CO_2, theor} = V \cdot \varphi \cdot \phi_{\rm n/g} \cdot \phi_{\rm traps} \cdot \rho_{\rm CO_2} \tag{2.26}$$

Aus dieser theoretischen Kapazität wird nach Formel 2.27 die effektive CO₂-Speicherkapazität $m_{\rm CO_2,eff}$ in kg berechnet. Diese Berechnung ist notwendig, da in dem berechneten Porenvolumen bereits Wasser enthalten ist, das in einem gewissen Maße

verdrängt und komprimiert werden kann. Diese Verdrängung und Kompression wird anhand des Effizienzfaktors E berücksichtigt, der jedoch relativ unsicher ist und in verschiedenen Veröffentlichungen Werte zwischen 0,01 % und 40 % annimmt. Falls sich Eauf den gesamten Aquifer und nicht nur auf die Fallen bezieht, dann entfällt in Formel 2.26 der Faktor ϕ_{traps} . Durch ökonomische und gesetzliche Barrieren ergibt sich schließlich die praktische CO₂-Speicherkapazität [vgl. Viebahn et al., 2010, S. 119 f.].

$$m_{\rm CO_2, eff} = m_{\rm CO_2, theor} \cdot E \tag{2.27}$$

Die Höhe der weltweiten CO₂-Speicherkapazitäten liegt in einem Bereich von 100 Gt bis 200 000 Gt, wobei die meisten Abschätzungen bei ca. 1000 Gt liegen [vgl. Bennaceur et al., 2008, S. 88]. Die Aufteilung auf die einzelnen Speicherstätten (Erdöl- und Erdgasfelder sowie saline Aquifere) variiert hierbei in den einzelnen Studien erheblich [vgl. Hendriks et al., 2004, S. 27], [vgl. Metz et al., 2005, S. 221], [vgl. Blohm et al., 2006, S. 32]. Für Europa wird die CO_2 -Speicherkapazität in Bennaceur et al. [vgl. 2008, S. 88] in einem Bereich von 1 Gt bis 2499 Gt angegeben. Diese sehr große Bandbreite wird in Abbildung 2.53 anhand mehrerer Quellen näher spezifiziert. Sofern vorhanden werden hierbei jeweils die minimale, die beste ("Mit.") und die maximale Abschätzung angegeben. Die Zahl an jeder Stapelsäule stellt die Summe der besten Schätzungen dar. Falls keine besten Schätzungen vorhanden sind, werden die minimalen Schätzungen addiert. Die absolut größte Unsicherheit besteht in der Bestimmung der CO₂-Speicherkapazitäten in Aquiferen: Die Angaben variieren zwischen 1,3 Gt und 773 Gt, während die Angaben für Erdgaslagerstätten beispielsweise nur in einem Bereich von 10 Gt bis 30 Gt schwanken. Bei den CO₂-Speichermöglichkeiten in Erdöl- und Erdgaslagerstätten wird nur in Hendriks et al. [vgl. 2004, S. 48] zwischen leeren und noch produktiven Feldern unterschieden. In den weiteren Studien werden jeweils die Gesamtspeicherkapazitäten für leere und aktive Felder angegeben.

Die derzeitigen Abschätzungen der CO₂-Speicherkapazitäten in Deutschland liegen in einem Bereich von 3,9 Gt bis 47,7 Gt (vgl. Abbildung 2.54). Erwartungsgemäß führt die Einschätzung der CO₂-Lagerkapazität in Aquiferen zu den größten absoluten Schwankungen, während die Schwankungsbreite für Erdgasfelder mit 1,6 Gt bis 2,8 Gt relativ eng ist. Vor allem die Festlegung des Effizienzfaktors E führt zu erheblichen Unterschieden in den Berechnungsergebnissen. Räumlich befinden sich die Aquiferstrukturen vor allem in Norddeutschland und im Bereich der Nordsee (vgl. Kapitel 6.3).

Setzt man diese CO₂-Speicherkapazitäten in Relation zu den jährlichen CO₂-Emissionen großer Punktquellen (Kraftwerke und Industrie) in Deutschland, so ergeben sich unter Berücksichtigung eines Brennstoffmehraufwands von 30 % sowie eines CO₂-Abscheidegrads von 90 % rund 0,45 Gt an CO₂, die jährlich eingespeichert werden könnten [vgl.

Abbildung 2.53: CO₂-Speicherkapazitäten in Europa, eigene Darstellung mit Daten aus Clarke et al. [2004, S. 84], Hendriks et al. [2004, S. 48], Metz et al. [2005, S. 223], Christensen und Holloway [2004, S. 9 ff.], Vangkilde-Pedersen et al. [2009, S. 158]

Viebahn et al., 2010, S. 126]. Auf Basis der mittleren Abschätzungen in Abbildung 2.54 würden die CO_2 -Speicherstätten für einen Zeitraum von 11 Jahren bis 58 Jahren reichen. Da jedoch nicht davon ausgegangen werden kann, dass die CO_2 -Emissionen all dieser Punktquellen abgeschieden und gespeichert werden, werden in Viebahn et al. [vgl. 2010, S. 186] Szenarien für den zukünftigen CCS-Einsatz definiert. Hierbei müssen für die dort als realistisch eingeschätzten Szenarien in dem Zeitraum von 2020 bis 2050 insgesamt 0,83 Gt bis 1,77 Gt an CO_2 eingelagert werden, was rund 6 % bis 13 % der CO_2 -Emissionen großer Punktquellen entspricht. Diese Spannbreite liegt deutlich unter den heutigen Abschätzungen der CO_2 -Speicherkapazitäten.

2.3.4.3.2 CO₂-Leckageraten CO₂ ist ein geruchloses sowie grundsätzlich ungiftiges Gas, das mit einer Konzentration von derzeit ca. 0,04% Bestandteil unserer Atmosphäre ist und das wesentliche Element für das Pflanzenwachstum mittels Photosynthese darstellt (vgl. Kapitel 2.3.2). Eine natürliche CO₂-Quelle stellt beispielsweise die menschliche Atmung dar: Die ausgeatmete Luft enthält ca. 4% CO₂. Da CO₂ bei Umgebungsbedingungen (15 °C und 1 bar) mit 1,82 kg/m³ eine ca. 50 % höhere Dichte als die Umgebungsluft

Abbildung 2.54: CO₂-Speicherkapazitäten in Deutschland, eigene Darstellung mit Daten aus Christensen und Holloway [2004, S. 9 f.], Knopf et al. [2010, S. 79 f.], May [2009, S. 4], Cooretec [2003, S. 63], Vangkilde-Pedersen et al. [2009, S. 158], Viebahn et al. [2010, S. 125]

hat, kann sich CO_2 am Boden sammeln, so dass höhere CO_2 -Konzentrationen entstehen können. Eine CO_2 -Konzentration in der Atemluft von 7 % bis 8 % kann innerhalb von 30 Minuten bis 60 Minuten zum Ersticken führen [vgl. Fischedick et al., 2007, S. 217].

Auch wenn im Jahr 1986 mit dem abrupten, natürlichen CO_2 -Austritt aus dem kamerunischen Nyos-See eine Tragödie mit mehr als 1700 Opfern stattgefunden hat, wird davon ausgegangen, dass große, abrupte CO_2 -Emissionen aus CO_2 -Lagerstätten technisch nicht möglich sind [vgl. Metz et al., 2005, S. 211]. Hierbei handelt es sich um ein lokales Risiko [vgl. Blohm et al., 2006, S. 58].

Bei der Beschreibung der globalen Risiken wird sich auf die Festlegung bestimmter Leckageraten konzentriert, die zwar aufgrund der geringen Höhe der CO₂-Emissionen kein direktes Risiko für menschliches Leben darstellen, jedoch die langfristige CO₂-Bilanz der CO₂-Speicherung untergraben können. Das Umweltbundesamt fordert daher eine maximale jährliche Leckagerate von 0,01 %, so dass nach 1000 Jahren noch 90,5 % des eingelagerten CO₂ gespeichert ist. Dadurch soll sichergestellt werden, dass die CO₂-Speicherstätten nicht die wesentlichen CO₂-Emittenten der Zukunft darstellen [vgl. Becker et al., 2009, S. 4 ff., S. 13]. So könnte im ungünstigsten Fall eine hohe Leckagera-

te mit großflächiger CCS-Anwendung und erhöhter CO₂-Produktion zu einer höheren CO₂-Konzentration in der Atmosphäre führen als ein Szenario komplett ohne CCS [vgl. Blohm et al., 2006, S. 63]. Bei einer Leckagerate von 0,1% "würde langfristig allein die Leckage aus den CO₂-Lagerstätten bereits 100% der erlaubten CO₂-Emissionen verursachen", wenn man eine maximale Erderwärmung von 2 °C zugrunde legt [WBGU, 2006, S. 82]. In Metz et al. [vgl. 2005, S. 3] wird davon ausgegangen, dass in gut ausgewählten und betriebenen CO₂-Speicherstätten mit einer Wahrscheinlichkeit von 90% bis 99% nach 100 Jahren noch 99% und mit einer Wahrscheinlichkeit von 66% bis 90% nach 1000 Jahren noch 99% eingelagert sind. Die bisherigen Messungen in zwei großen Speicherprojekten (Weyburn und Sleipner) konnten bislang keine messbaren CO₂-Leckagen ermitteln [vgl. Blohm et al., 2006, S. 67]. In Krupp [vgl. 2010, S. 31 f.] wird dahingegen ausgeführt, dass die nachgewiesene CO₂-Menge im CO₂-Speicher zunehmend geringer ausfällt als die tatsächlich eingelagerte CO₂-Menge, was ein Indiz für eine mögliche CO₂-Leckage darstellt.

Leckagen können durch ein seitliches oder senkrechtes Austreten von CO_2 an die Oberfläche geschehen. Dieses kann dadurch begünstigt werden, dass das eingelagerte CO_2 in Verbindung mit Wasser korrosiv wirkt und Deckgestein oder Zementversiegelungen gefährden kann. Eine andere Möglichkeit sind unentdeckte oder bei der CO_2 -Injektion entstehende Risse im Deckgestein [vgl. Rochon et al., 2008, S. 21]. Nach bisherigem Kenntnisstand existieren kaum Möglichkeiten, um eine erkannte Leckage nachträglich zu verschließen [vgl. Becker et al., 2009, S. 5].

2.3.4.3.3 Konkurrenz um CO₂-Speicherkapazitäten Auch wenn die CO₂-Speicherkapazitäten in Deutschland und in Europa noch zu einem sehr großen Teil zur Verfügung stehen, deutet sich bereits eine Nutzungskonkurrenz um bestehende CO₂-Lagerstätten an. Hierbei geht es zum einen um eine alternative Nutzung des Untergrunds und zum anderen um die Fragestellung, ob in die CO₂-Lagerstätten das CO₂ aus fossilen Brennstoffen oder aus erneuerbaren Brennstoffen eingelagert werden sollte.

Neben der Lagerung von CO_2 können geologische Formationen im Untergrund ebenfalls für die geothermische Energieerzeugung, Druckluft-, Erdgas-, Biomethan-, Wärme- oder Kältespeicherung sowie zur Rohstoffgewinnung und Reststoffverbringung genutzt werden. Bei dieser Vielzahl an alternativen Nutzungsmöglichkeiten kann von einer Nutzungskonkurrenz ausgegangen werden [vgl. SRU, 2009a, S. 14], [vgl. Blohm et al., 2006, S. 39]. Hierbei erweist sich die große Flächeninanspruchnahme der CO_2 -Speicherung als Herausforderung: Beispielsweise wird für ein 500 MW Kraftwerk bei einer Laufzeit von 25 Jahren ein 100 m mächtiger Aquifer mit einer Fläche von 216 km² benötigt [vgl. Radgen et al., 2006, S. 117 f.]. Diese Fläche ist mit einer hohen Wahrscheinlichkeit für eine tiefengeo-

thermische Nutzung auszuschließen, da hierdurch große Mengen des eingelagerten CO_2 wieder an die Atmosphäre gefördert werden und das aggressive CO_2 -Wasser-Gemisch die Bohrung zusetzen könnte [vgl. Christensen und Holloway, 2004, S. 11], [vgl. Krupp, 2010, S. 66]. Auch eine Aufteilung der Lagerstätte (CO_2 -Einlagerung in kuppelartigen Strukturen – Geothermienutzung in strukturellen Tälern) erscheint wenig aussichtsreich, da eine "Beschränkung des Nutzungsbereichs von CCS auf Kuppeln aus physikalischen Gründen nicht gewährleistet werden kann" [Bundestag, 2008b, S. 22]. In Metz et al. [vgl. 2005, S. 217] wird zwar darauf hingewiesen, dass eine Kombination aus CO_2 -Speicherung und Hochtemperaturgeothermie in der Regel bereits deswegen ausgeschlossen werden kann, da hohe Temperaturgradienten häufig mit Verwerfungen und Brüchen im Untergrund einher gehen. Dahingegen wird in Kühn und Clauser [vgl. 2006, S. 433] von Synergieeffekten zwischen der geothermischen Energiegewinnung und der CO_2 -Speicherung gesprochen.

Die Möglichkeit zur Erdgas- oder Druckluftspeicherung könnte durch eine CO₂-Einlagerung ebenfalls ausgeschlossen werden, da es durch regelmäßige Druckschwankungen beim Ein- und Auslagern von Erdgas oder Druckluft zu Beeinflussungen des CO₂-Speicherhorizonts kommen kann [vgl. Krupp, 2010, S. 61]. Darüber hinaus können genehmigungsrechtliche Probleme auftreten, wenn es sich um die gleichen Formationen handelt oder sich diese in räumlicher Nähe zu anderen Lagerstätten befindet. Beispielsweise sind in Schleswig-Holstein bereits erste Anträge zur Untersuchung von potenziellen Druckluftspeicherstandorten in Salzstöcken in einer Tiefe von 600 m bis 1800 m unter anderem mit der Begründung abgelehnt worden, dass es für die dort geplanten Kohlekraftwerke "einen Nutzungsvorrang für CCS geben müsse" [SRU, 2009a, S. 14]. Nach Oertel [vgl. 2008, S. 34] existieren entlang der Nordseeküste zahlreiche Salzformationen, die als Druckluftspeicher überschüssige Windenergie zwischenspeichern könnten. Auch in dieser Studie wird davon ausgegangen, dass die Einlagerung des CO₂ in deutlich tiefere Erdschichten stattfinden wird, jedoch hierdurch die Nutzung der oberflächennäheren Salzkavernen ausgeschlossen werden könnte.

Eine konkurrenzfreie Nutzung leerer Erdgasspeicherstätten ist ebenfalls nicht zu vermuten: Im Zuge des Baus der neuen deutsch-russischen Nord-Stream-Pipeline werden in Norddeutschland bis zu 60 neue unterirdische Erdgasspeicher geplant [vgl. Oertel, 2008, S. 34 f.].

Es ist noch nicht absehbar, inwieweit die bereits verstärkte Nutzung geologischer Formationen zu einer verschärften Konkurrenzsituation in der Zukunft führen wird. Die Vorteilhaftigkeit der unterschiedlichen Optionen sollte zukünftig vermehrt erforscht werden [vgl. Oertel, 2008, S. 145], [vgl. Blohm et al., 2006, S. 39], [vgl. SRU, 2009a, S. 4], "möglichst bevor vollendete Tatsachen geschaffen worden sind" [Bundestag, 2008b, S. 22]. Hierbei müssten auch Nutzungsoptionen berücksichtigt werden, die aus heutiger Sicht

erst langfristig zum Tragen kommen könnten. Beispielsweise könnten in sehr trockenen Regionen die tief liegenden Salzwasserschichten zukünftig mit Hilfe von Entsalzungsanlagen für Bewässerungszwecke nutzbar gemacht werden [vgl. Metz et al., 2005, S. 217]. Das Umweltbundesamt hat der geothermischen Wärme- und Stromerzeugung bereits im Jahr 2009 eine prioritäre Stellung gegenüber der CO_2 -Speicherung eingeräumt [vgl. Becker et al., 2009, S. 6].

Die bisherigen Ausführungen konzentrieren sich auf die Konkurrenzsituation zwischen der Einlagerung von CO₂ und den alternativen Nutzungsoptionen des Untergrunds. In der wissenschaftlichen Literatur wird zwischenzeitlich die Diskussion geführt, welches CO_2 im Falle einer CO_2 -Speicherung eingelagert werden soll. Hierbei wird zwischen fossilem CO₂ (aus Braun-/Steinkohle oder Erdgas) und solchem CO₂ unterschieden, das aus der Verbrennung von erneuerbaren Energieträgern stammt (z.B. Holz oder Biogas) [vgl. von Hirschhausen et al., 2012, S. 7]. Wie in Kapitel 1.1.2 näher erläutert, besteht die klimapolitische Notwendigkeit, in der zweiten Hälfte dieses Jahrhunderts negative CO₂-Emissionen zu erzeugen. Deswegen spricht sich der Sachverständigenrat für Umweltfragen dafür aus, die begrenzten CO₂-Speicherstätten nicht für Einlagerung aus Kohlekraftwerken zu verwenden, sondern für negative CO₂-Emissionen aus Biomasse-Kraftwerken zu nutzen [vgl. SRU, 2009a, S. 18 ff.]. Erste Ergebnisse in der Literatur zeigen, dass nur mit einem konsequenten Ausbau erneuerbarer Energieträger und einem sukzessiven Rückbau der Stromerzeugung aus fossilen Energieträgern (auch mit CCS) ausreichend CO₂-Speicherkapazitäten für negative CO₂-Emissionen erhalten bleiben. In Hartmann und Hohmeyer [vgl. 2010, S. 146] wird aufgezeigt, dass unter der Voraussetzung eines niedrigen Kohle-CCS-Ausbaus bis zum Jahr 2100 lediglich 7% bis 16% der in Deutschland vorhandenen CO₂-Lagerstätten durch fossiles CO₂ belegt wären, während im hohen Kohle-CCS-Szenario mehr als 90% aller Speicherstätten belegt wären (vgl. Kapitel 5.4.2).

In der technischen Analyse wird untersucht, inwieweit eine Kombination der CO₂-Sequestrierung auf der einen Seite mit der energetischen Nutzung von Biomasse (Kapitel 3.2) und auf der anderen Seite mit Kraft-Wärme-Kopplung (Kapitel 3.3) grundsätzlich technisch möglich ist. Zunächst wird die dafür angewendete Methodik vorgestellt (Kapitel 3.1), bevor abschließend im Kapitel 3.4 die Ergebnisse der technischen Analyse zusammengefasst werden.

Da es bislang keine Demonstrationsanlagen für diese technischen Kombinationen gibt, basiert die Analyse vor allem auf theoretischen Vorüberlegungen aus der Literatur und eigenen Berechnungen. Somit kann in dieser Arbeit keine technische Machbarkeit nachgewiesen oder ausgeschlossen werden. Es werden stattdessen die spezifischen Vorund Nachteile von Bio-KWK-CCS herausgearbeitet. Dass die Kombination von CCS mit Biomasse oder Kraft-Wärme-Kopplung grundsätzlich möglich ist, ist bereits in mehreren Veröffentlichungen postuliert worden [vgl. Bennaceur et al., 2008, S. 33 ff.], [vgl. Cavezzali et al., 2009, S. xvii].

3.1 Methodik der technischen Analyse

Die Kombinationen von CCS mit dem Brennstoff Biomasse und der gekoppelten Kraft-Wärme-Erzeugung werden in der technischen Analyse als zwei isolierte Modifikationen angesehen. Der Grund hierfür ist, dass der Wechsel des Brennstoffs Veränderungen zum Beginn des Kraftwerksprozesses induziert, während die Kraft-Wärme-Kopplung zu Veränderungen in einem relativ späten Prozessschritt führt. Im Folgenden wird zunächst die Methodik für die Kombination von CCS mit Biomasse und anschließend für die Kombination mit KWK vorgestellt.

3.1.1 Methodik für Bio-CCS

Im Bereich der Kombination von CCS mit Biomasse wird vor allem der Vergleich zu den fossilen Brennstoffen (Steinkohle, Braunkohle und Erdgas) gesucht, um spezifische Vorund Nachteile festzustellen, die sich bei einem Ersatz durch biogene Energieträger ergeben.

Dieses Vorgehen wird gewählt, da die Ausführungen im Bereich der Grundlagen der CO₂-Sequestrierung (Kapitel 2.1.3) im Wesentlichen auf dem Energieträger Steinkohle basieren. Daneben gibt es einige Forschungsprojekte, die einen CCS-Einsatz mit Braunkohle und Erdgas näher untersucht haben. Auch wenn es sich hierbei jeweils um "ehemalige" Biomasse handelt, so ergeben sich gewisse Unterschiede zu "frischer" Biomasse. Auf Basis der in Kapitel 2.1.1.4 vorgestellten Brennstoffeigenschaften werden für die durchgeführte Analyse zunächst in Kapitel 3.2.1 diejenigen biogenen Festbrennstoffe ausgewählt, die am ehesten als Brennstoff für den CCS-Einsatz geeignet sind. Hierbei werden weniger bestimmte Biomassen ausgewählt, sondern vielmehr gewisse Biomassen ausgeschlossen, die aufgrund ihres Ascheschmelzverhaltens und ihrer Chlorgehalte grundsätzlich als problematisch in Biomasse-Heizkraftwerken angesehen werden. An diesem Punkt stellt sich holzartige Biomasse als aussichtsreichste Option für einen CCS-Einsatz heraus, die neben Biomethan bzw. gereinigtem Biogas in der Folge technisch analysiert wird.

Unabhängig von einzelnen CCS-Prozessvarianten wird im Kapitel 3.2.2 ein CCSrelevanter Brennstoffvergleich zwischen den fossilen und erneuerbaren Festbrennstoffen durchgeführt. Hierfür werden zunächst die üblichen Wassergehalte und die daraus resultierenden Heizwerte festgelegt, die für die weiteren Berechnungen verwendet werden. Anschließend wird für die vier Festbrennstoffe eine Elementarzusammensetzung auf Basis von Kapitel 2.1.1.4.1 grundsätzlich definiert, die die Grundlage für alle anschließenden Berechnungen darstellt (vgl. Abbildung 3.1, eine Tabelle mit den genauen Angaben ist im Anhang in Tabelle A.1 zu finden). Hierbei werden neben dem wasserfreien Brennstoff gezielt zwei Wassergehalte (10% und 50%) untersucht, die sowohl für Steinkohle (10%- roh), Braunkohle (50 % - roh, 10 % - Braunkohlenstaub) und holzartige Biomasse (50% - erntefrisch, 10% - Holzpellets) typische Wassergehalte in der Praxis darstellen. Im Bereich der technischen Grundlagen ist aufgezeigt worden, dass die Elementarzusammensetzung von allen untersuchten Brennstoffen erheblich schwanken kann. In den weiteren Berechnungen wird jedoch auf Schwankungsbereiche bewusst verzichtet, da die Schwankungsbreiten bei den wesentlichen Elementen Kohlenstoff, Sauerstoff und Wasserstoff bei der holzartigen Biomasse relativ gering sind. Einzig die Steinkohle weist beim Kohlenstoffgehalt eine hohe Schwankungsbreite von 72% bis 86% auf. Hierbei wird mit einem Mittelwert von 82,4 % gerechnet, so dass sich die Steinkohlen mit den niedrigeren Kohlenstoffgehalten im Bereich der Braunkohlen wiederfinden lassen (69%)mittlerer Kohlenstoffgehalt). Die jeweiligen Heizwerte im wasserfreien Zustand stellen ebenfalls die Mittelwerte der Literaturangaben dar und werden mittels Formel 2.1 auf die höheren Wassergehalte umgerechnet.

Auf Basis der Elementargehalte an Stickstoff, Schwefel und Chlor wird kurz auf die spezifischen Unterschiede hinsichtlich der schädlichen Rauchgasbestandteile NO_x , SO_2 und

Abbildung 3.1: Verwendete Elementarzusammensetzungen und Heizwerte für Holz, Braunkohle und Steinkohle, eigene Darstellung mit Daten für Biomasse aus Hartmann et al. [2000b, S. 148 f.], für Kohle aus Fritsche [2010a], vgl. Anhang Tabelle A.1

Chlorverbindungen eingegangen. Hierbei werden spezifische Vor- und Nachteile herausgestellt, die beispielsweise zusätzliche Anlagentechnik zur Rauchgasreinigung überflüssig machen.

Auf Basis der Elementarzusammensetzung und nach Formel 3.1 kann die Masse des für die vollständige Oxidation benötigten Sauerstoffbedarfs bezogen auf die Brennstoffmasse o_{\min} in kg/kg mittels der Massenanteile an Kohlenstoff (c), Wasserstoff (h), Schwefel (s) und Sauerstoff (o) errechnet werden [vgl. Langeheinecke et al., 2006, S. 284].

$$o_{\min} = \left(\frac{m_{O_2}}{m_{Br}}\right)_{\min} = \frac{8}{3}c + 8h + s - o$$
 (3.1)

Der Mindestsauerstoffbedarf als Stoffmenge in Bezug auf die Brennstoffmasse $o_{\min,m}$ in kmol/kg lässt sich nach Formel 3.2 bestimmen. Hieraus wird nach Formel 3.3 mittels Division durch den Stoffmengenanteil des Sauerstoffs in der Verbrennungsluft ($\psi_{O_2/L} = 0,2095$) der molare Mindestluftbedarf bezogen auf die Brennstoffmasse $l_{\min,m}$ in kmol/kg berech-

net [vgl. Langeheinecke et al., 2006, S. 285].

$$o_{\min,m} = \left(\frac{n_{O_2}}{m_{Br}}\right)_{\min} = \frac{1}{12}c + \frac{1}{4}h + \frac{1}{32}s - \frac{1}{32}o$$
(3.2)

$$l_{\rm min,m} = \left(\frac{n_{\rm L}}{m_{\rm Br}}\right)_{\rm min} = \frac{o_{\rm min,m}}{\psi_{\rm O_2/L}}$$
(3.3)

Die spezifischen CO₂-Emissionen bezogen auf die Brennstoffmasse $m_{\rm CO_2}/m_{\rm Br}$ in kg/kg werden nach Formel 3.4 berechnet [vgl. Langeheinecke et al., 2006, S. 285]. Durch Division mit dem jeweiligen Heizwert des Brennstoffs H_I wird der direkte CO₂-Emissionsfaktor des Brennstoffs in Bezug auf seinen Heizwert $\mu_{\rm CO_2,Br,dir}$ in kg/MJ bestimmt (vgl. Formel 3.5).

$$\frac{m_{\rm CO_2}}{m_{\rm Br}} = \frac{11}{3}c$$
(3.4)

$$\mu_{\rm CO_2,Br,dir} = \frac{\frac{m_{\rm CO_2}}{m_{\rm Br}}}{H_I} \tag{3.5}$$

Die spezifische Rauchgasmenge bezogen auf die Brennstoffmasse $n_{\rm R}/m_{\rm Br}$ in kmol/kg wird mittels Formel 3.6 berechnet. Die einzelnen Bestandteile des Rauchgases bestehen aus Anteilen des Brennstoffs und der Verbrennungsluft, die als trocken angenommen wird. λ stellt das Luftverhältnis zwischen tatsächlicher Verbrennungsluft und minimaler Verbrennungsluft dar. Es wird mit einem Luftüberschuss von 40 % gerechnet ($\lambda = 1,4$), der typisch für die Verbrennung in Wirbelschichtkesseln ist. Der molare Stickstoffgehalt in der Verbrennungsluft $\psi_{N_2/L}$ beträgt 0,7905 [vgl. Langeheinecke et al., 2006, S. 285].

$$\frac{n_{\rm R}}{m_{\rm Br}} = \frac{1}{12}c + \left(\frac{1}{2}h + \frac{1}{18}w\right) + \frac{1}{32}s + \frac{1}{28}n + (\lambda - 1) \cdot o_{\rm min,m} + \psi_{\rm N_2/L} \cdot \lambda \cdot l_{\rm min,m}$$
(3.6)

Gemäß Formel 3.7 werden die Stoffmengen in Rauchgasvolumina in Bezug auf die Brennstoffmasse umgeformt ($V_{\rm R}/m_{\rm Br}$ in m³/kg). Hierbei ist $V_{\rm mn} = 22.4 \,\mathrm{m}^3/\mathrm{kmol}$ das Molvolumen idealer Gase im Normzustand [vgl. Langeheinecke et al., 2006, S. 286 f.].

$$\frac{V_{\rm R}}{m_{\rm Br}} = \frac{n_{\rm R}}{m_{\rm Br}} \cdot V_{\rm mn} \tag{3.7}$$

Indem diese Rauchgasvolumina bezogen auf die Brennstoffmasse durch den Heizwert des Brennstoffs geteilt werden, erhält man die heizwertspezifischen Rauchvolumina $V_{\rm R,H_{I}}$

in m^3/MJ (vgl. Formel 3.8).

$$V_{\rm R,H_{\rm I}} = \frac{\frac{V_{\rm R}}{m_{\rm Br}}}{H_{\rm I}} \tag{3.8}$$

Die CO₂-Konzentration in den Rauchgasen $\psi_{\text{CO}_2/\text{R}}$ wird errechnet, indem das spezifische CO₂-Volumen im Rauchgas ($V_{\text{CO}_2/\text{R},\text{H}_1}$) zum Gesamtrauchgasvolumen ins Verhältnis gesetzt wird (vgl. Formel 3.9).

$$\psi_{\rm CO_2/R} = \frac{V_{\rm CO_2/R,H_I}}{V_{\rm R,H_I}}$$
(3.9)

Nach diesem grundsätzlichen CCS-relevanten Brennstoffvergleich wird für die wesentlichen CCS-Varianten, die aus heutiger Sicht am ehesten zur Marktreife gelangen werden, im Kapitel 3.2.3 untersucht, welche Veränderungen sich durch die Substitution von fossilen Energieträgern durch biogene Energieträger ergeben. Dabei wird für den jeweiligen Verbrennungs- bzw. Vergasungsprozess analysiert, welche Veränderungen der Einsatz von holzartiger Biomasse bzw. Biomethan bringen würde. Die Analyse konzentriert sich auf den Bereich der CO₂-Abscheidung, da der Wechsel des Brennstoffs hierbei die größten Auswirkungen hat. Wie im Falle von fossilem CCS wird bei Bio-CCS nahezu reines CO₂ transportiert und eingelagert. Deshalb werden die Prozessschritte CO₂-Transport und CO₂-Speicherung nicht näher betrachtet.

Für die Variante Holz und Oxyfuel ist der heizwertspezifische Sauerstoffbedarf $o_{\min,H_{\rm I}}$ von entscheidender Bedeutung. Dieser wird nach Formel 3.10 ermittelt, indem der in Formel 3.1 errechnete Sauerstoffbedarf o_{\min} durch den Heizwert geteilt wird. Die Rauchgasmenge wird wiederum nach Formel 3.6 berechnet, wobei der Stickstoffanteil an der Verbrennungsluft $\psi_{\rm N_2/L} = 0$ und der Sauerstoffanteil $\psi_{\rm O_2/L} = 1$ ist.

$$o_{\min,\mathrm{H}_{\mathrm{I}}} = \frac{o_{\min}}{H_{\mathrm{I}}} \tag{3.10}$$

Für die Kombination aus Biomethan und Post-Combustion wird auf Basis der Elementarzusammensetzung nach Tabelle 2.1 ebenfalls die Zusammensetzung der Rauchgase berechnet. Hierbei handelt es sich um einen gasförmigen Brennstoff, bei dem nicht (wie bei den Festbrennstoffen) die Massenanteile, sondern die Molanteile bekannt sind. Die Berechnung des molaren Mindestsauerstoffbedarfs bezogen auf die eingesetzte Brennstoffstoffmenge $O_{\min,m}$ in kmol/kmol erfolgt nach Formel 3.11 und die Berechnung der Rauchgasstoffmenge bezogen auf die eingesetzte Brennstoffstoffmenge $n_{\rm R}/n_{\rm Br}$ in

kmol/kmol nach Formel 3.12 [vgl. Langeheinecke et al., 2006, S. 290].

$$O_{\min,m} = \frac{1}{2} \cdot \psi_{\mathrm{H}_2/\mathrm{Br}} + 2 \cdot \psi_{\mathrm{CH}_4/\mathrm{Br}}$$
(3.11)

$$\frac{n_{\rm R}}{n_{\rm Br}} = (\psi_{\rm CH_4/Br} + \psi_{\rm CO_2/Br}) + (2 \cdot \psi_{\rm CH_4/Br} + \psi_{\rm H_2O/Br} + \psi_{\rm H_2/Br})
+ (\psi_{\rm N_2/Br} + \psi_{\rm N_2/L} \cdot \lambda \cdot \frac{O_{\rm min,m}}{\psi_{\rm O_2/L}}) + (\lambda - 1) \cdot O_{\rm min,m} \quad (3.12)$$

Im Anschluss an die wesentlichen CCS-Prozessvarianten werden im Kapitel 3.2.3.5 die innovativen CCS-Prozessvarianten auf ihre Eignung mit Holz bzw. Biomethan qualitativ bewertet. Des Weiteren wird die Option, die Rauchgase zur Aufzucht von Algen zu verwenden, technisch untersucht.

Auf mögliche Unterschiede bei der CO₂-Kompression und dem CO₂-Transport durch Bio-CCS wird in Kapitel 3.2.4 eingegangen.

Im Kapitel 3.2.5 wird für die CCS-Varianten Post-Combustion und Oxyfuel die Veränderung des spezifischen Energieaufwands berechnet, die durch einen Einsatz von Holz bzw. Biomethan/Biogas als Brennstoff bewirkt werden. Für die Variante Post-Combustion wird der spezifische Energieaufwand in Bezug auf die abgeschiedene CO₂-Masse (w_{CO_2-A} in GJ/t) nach Formel 3.13 errechnet. Hierbei wird mit der CO₂-Konzentration in den Rauchgasen ($\psi_{CO_2/R}$) zwischen zwei Stützwerten ($w_{CO_2-A,1} = 3.4$ GJ/t bei $\psi_{CO_2/R,1} = 3\%$ und $w_{CO_2-A,2} = 2.9$ GJ/t bei $\psi_{CO_2/R,2} = 14\%$) linear interpoliert [vgl. Bennaceur et al., 2008, S. 49].

$$w_{\rm CO_2-A} = w_{\rm CO_2-A,1} - \frac{\psi_{\rm CO_2/R} - \psi_{\rm CO_2/R,1}}{\psi_{\rm CO_2/R,2} - \psi_{\rm CO_2/R,1}} \cdot (w_{\rm CO_2-A,1} - w_{\rm CO_2-A,2})$$
(3.13)

Der spezifische Energieaufwand in Bezug auf die im Brennstoff enthaltene Heizenergie $(w_{\rm CO_2-A,H_I})$ wird nach Formel 3.14 berechnet. Hierbei stellen $m_{\rm CO_2}/m_{\rm Br}$ die spezifischen CO₂-Emissionen in Bezug auf die Brennstoffmasse (vgl. Formel 3.4) und $A_{\rm CO_2}$ den CO₂-Abscheidegrad dar. Für die Variante Post-Combustion wird mit einem üblichen CO₂-Abscheidegrad von 90 % gerechnet.

$$w_{\rm CO_2-A,H_I} = \frac{w_{\rm CO_2-A} \cdot \frac{m_{\rm CO_2}}{m_{\rm Br}} \cdot A_{\rm CO_2}}{H_{\rm I}}$$
(3.14)

Der spezifische Energieaufwand für die CCS-Variante Oxyfuel zur Erzeugung des benö-
tigten reinen Verbrennungssauerstoffs $w_{\rm CO_2-A,Oxy}$ wird nach Formel 3.15 durchgeführt. Hierbei sind $o_{\rm min}$ der für die Verbrennung benötigte Sauerstoff (vgl. Formel 3.1) und $w_{\rm O_2}$ der spezifischen Energieaufwand zur O₂-Erzeugung. Dieser Energieaufwand wird aus Radgen et al. [vgl. 2006, S. 55] übernommen ($w_{\rm O_2} = 250 \,\rm kWh/t$). Da es sich hierbei um elektrische Energie handelt, wird dieser Wert durch einen elektrischen Wirkungsgrad von 33 % dividiert (vgl. elektrischer Wirkungsgrad für Oxyfuel mit CO₂-Abscheidung in Abbildung 2.18), um eine Vergleichbarkeit zu den Angaben der Variante Post-Combustion zu gewährleisten.

$$w_{\rm CO_2-A,Oxy} = \frac{o_{\rm min}}{\frac{m_{\rm CO_2}}{m_{\rm Br}}} \cdot w_{\rm O_2} \tag{3.15}$$

Der spezifische Energieaufwand für die CO_2 -Abscheidung in Bezug auf die im Brennstoff enthaltene Heizenergie (w_{CO_2-A,Oxy,H_I}) wird ebenfalls nach Formel 3.14 berechnet. Hierbei wird jedoch ein Abscheidegrad von 100 % unterstellt, da üblicherweise der komplette Rauchgasstrom nach der Trocknung eingelagert werden kann [vgl. Metz et al., 2005, S. 122].

Die unterschiedlichen Wirkungsgradverluste werden ausgehend von den Wirkungsgradverlusten der wesentlichen CCS-Varianten aus der Literatur (vgl. Abbildung 2.18 in Kapitel 2.1.3.1.4) errechnet. Nach Cavezzali et al. [vgl. 2009, S. v] werden die elektrischen Wirkungsgrade für holzartige Biomasse mit 50 % Wassergehalt und für Biogas um 9%-Punkte niedriger als die Wirkungsgrade für fossile Brennstoffe angenommen. Der Grund hierfür sind die deutlich kleineren Anlagengrößen und die geringere Energiedichte. Der gesamte Wirkungsgradverlust $\Delta \eta_{\rm CC}$ setzt sich zusammen aus dem Wirkungsgradverlust für die CO₂-Abscheidung $\Delta \eta_{\rm CO_2-A}$ und für die CO₂-Kompression $\Delta \eta_{\rm CO_2-K}$ (vgl. Formel 3.16).

$$\Delta \eta_{\rm CC} = \Delta \eta_{\rm CO_2-A} + \Delta \eta_{\rm CO_2-K} \tag{3.16}$$

Zunächst wird bestimmt, welcher Anteil des Wirkungsgradverlusts auf die CO₂-Abscheidung und welcher Anteil auf die CO₂-Kompression zurückzuführen ist. Der Wirkungsgradverlust für die CO₂-Kompression $\Delta \eta_{\text{CO}_2-\text{K}}$ wird nach Formel 3.17 errechnet. Hierbei sind $w_{\text{CO}_2-\text{K}} = 0,12 \text{ MWh/t}$ der spezifische elektrische Energieaufwand für die CO₂-Kompression [vgl. Göttlicher, 1999, S. 12], (vgl. Kapitel 2.1.3.1.3), $\mu_{\text{CO}_2,\text{Br,dir}}$ der heizwertspezifische CO₂-Emissionsfaktor des Brennstoffs (vgl. Kapitel 3.2.2.4) und $A_{\text{CO}_2} = 90\%$ der CO₂-Abscheidegrad.

$$\Delta \eta_{\rm CO_2-K} = w_{\rm CO_2-K} \cdot \mu_{\rm CO_2,Br,dir} \cdot A_{\rm CO_2} \tag{3.17}$$

Der Wirkungsgradverlust für die CO₂-Abtrennung ergibt sich nach Formel 3.16.

Während die Berechnung des Wirkungsgradverlusts für die CO₂-Kompression für holzartige Biomasse und Steinkohle auf die gleiche Art durchgeführt wird, wird der Wirkungsgradverlust für die CO₂-Abscheidung für holzartige Biomasse auf Grundlage der Ergebnisse für Steinkohle berechnet. Zwei Einflussfaktoren führen zu einem veränderten Wirkungsgradverlust der CO₂-Abscheidung: Die spezifischen CO₂-Emissionen der Brennstoffe (m_{CO_2}/m_{Br}) sowie die unterschiedlichen CO₂-Konzentrationen im Rauchgas, die den spezifischen Energieaufwand der chemischen Absorption (w_{CO_2-A}) bestimmen. Diese beiden Faktoren für die Brennstoffe Holz und Steinkohle werden gemäß Formel 3.18 verwendet, um den Wirkungsgradverlust der CO₂-Abscheidung für Holz ($\Delta\eta_{CO_2-A,Holz}$) zu berechnen. Die gleiche Methodik wird für die Berechnung der Wirkungsgradverluste für Biomethan sowie Biogas verwendet. Weitere Faktoren, wie z. B. höhere Wassergehalte im Rauchgas von feuchter Biomasse oder kleinere Anlagengrößen für Biogas, werden hierbei nicht berücksichtigt.

$$\Delta \eta_{\rm CO_2-A,Holz} = \Delta \eta_{\rm CO_2-A,Steinkohle} \cdot \frac{\left(\frac{m_{\rm CO_2}}{m_{\rm Br}} \cdot w_{\rm CO_2-A}\right)_{\rm Holz}}{\left(\frac{m_{\rm CO_2}}{m_{\rm Br}} \cdot w_{\rm CO_2-A}\right)_{\rm Steinkohle}}$$
(3.18)

Für die Varianten mit Oxyfuel wird der Wirkungsgradverlust der CO₂-Abscheidung für die Holzbrennstoffe nach Formel 3.19 durchgeführt. Die unterschiedlichen CO₂-Emissionsfaktoren für Holz und Steinkohle werden analog zur Variante Post-Combustion berücksichtigt. Es werden jedoch spezifische Energieaufwände zur Sauerstofferzeugung $w_{CO_2-A,Oxy}$ (vgl. Formel 3.15) für Steinkohle und Holz verwendet, die aus den verschieden hohen Sauerstoffgehalten im Brennstoff resultieren.

$$\Delta \eta_{\rm CO_2-A,Oxy,Holz} = \Delta \eta_{\rm CO_2-A,Oxy,Steinkohle} \cdot \frac{\left(\frac{m_{\rm CO_2}}{m_{\rm Br}} \cdot w_{\rm CO_2-A,Oxy}\right)_{\rm Holz}}{\left(\frac{m_{\rm CO_2}}{m_{\rm Br}} \cdot w_{\rm CO_2-A,Oxy}\right)_{\rm Steinkohle}}$$
(3.19)

3.1.2 Methodik für KWK-CCS

In der technischen Analyse der Kombination aus KWK und CCS (Kapitel 3.3) wird untersucht, inwieweit der elektrische und der thermische Wirkungsgrad durch den CCS-Einsatz in Heizkraftwerken reduziert werden. Hierfür wird zunächst in Kapitel 3.3.1 für die wesentlichen CCS-Varianten qualitativ beurteilt, inwiefern der Einsatz in einem Heizkraftwerk zu Veränderungen hinsichtlich des Wirkungsgrads führen kann.

Für die Variante Post-Combustion in Verbindung mit KWK wird in Kapitel 3.3.2 berechnet, welche elektrischen und thermischen Wirkungsgradverluste sich durch die Integration der chemischen Absorption mittels MEA-Wäsche ergeben. Hierfür wird

ein unterkritischer Dampfkraftprozess nach dem Clausius-Rankine-Prozess als Berechnungsgrundlage genommen. Der analysierte Dampfkraftprozess ist in Abbildung 3.2 im Temperatur-Entropie-Diagramm (T, s-Diagramm) dargestellt. Die Ziffern im Diagramm bezeichnen die verschiedenen Dampfzustände, die zur besseren Orientierung ebenfalls im Anlagenschema enthalten sind (vgl. Abbildung 3.3).

Abbildung 3.2: Analysierter Dampfkraftprozess im T, s-Diagramm

In Erweiterung zum im Kapitel 2.1.2.2 dargestellten einfachen Dampfkraftprozess werden zur Verbesserung des elektrischen Wirkungsgrads eine Zwischenüberhitzung und eine zweifache regenerative Speisewasservorwärmung in den Prozess integriert. Bei der Zwischenüberhitzung (ZÜ) wird der in der Hochdruckturbine teilentspannte Dampf wieder in den Kessel zurückgeführt und auf das annähernd gleiche Temperaturniveau wie der Frischdampf erhitzt. Eine Wirkungsgradsteigerung wird dann erreicht, wenn die mittlere Temperatur der Wärmezufuhr in der ZÜ (von 2 nach 3) höher ist als die mittlere Temperatur in der Frischdampferzeugung (von 15 nach 1). Eine weitere Wirkungsgraderhöhung ergibt sich dadurch, dass der innere Wirkungsgrad der Hochdruckturbine (HD) gesteigert wird, da der Frischdampf nicht bis in das Nassdampfgebiet entspannt wird. Die höchsten Wirkungsgradsteigerungen lassen sich bei einem ZÜ-Druck von ca. 20 % des Frischdampfdrucks erreichen und betragen knapp 2%-Punkte [vgl. Strauß, 2006, S. 75 ff.].

Durch die Integration einer regenerativen Speisewasservorwärmung wird das auf mög-

lichst niedrigem Temperaturniveau anfallende Kondensat vorerwärmt, um wiederum die mittlere Temperatur der Wärmezufuhr im Kessel zu erhöhen. Hierfür werden Dampfmengen aus der Hochdruck- und der Mittel- bzw. Niederdruckturbine entnommen und die Kondensationsenergie für die Vorerwärmung genutzt. Mit einer zweifachen Speisewasservorwärmung lässt sich bereits eine elektrische Wirkungsgradsteigerung um ca. 4%-Punkte erreichen. Durch eine weitere Steigerung der Entnahmen lässt sich der Wirkungsgrad um maximal 7%-Punkte steigern [vgl. Strauß, 2006, S. 79 ff.]. In großen Kondensationskraftwerken werden üblicherweise sieben bis neun Speisewasservorwärmer verbaut, wobei jede weitere Vorwärmung einen geringeren absoluten Wirkungsgradgewinn bedeutet [vgl. Tuschy, 2010]. Auf eine Integration von weiteren Vorwärmstufen wird an dieser Stelle verzichtet, da hierdurch lediglich die Komplexität des Modells gesteigert wird, jedoch keine wesentlichen Veränderungen der Untersuchungsergebnisse zu erwarten sind: Durch zusätzliche Vorwärmstufen wird der elektrische Wirkungsgrad weiter gesteigert, so dass der absolut gleichbleibende Wirkungsgradverlust der MEA-Integration einen relativ geringeren Wirkungsgradverlust bedeutet.

Abbildung 3.3: Anlagenschema des analysierten Dampfkraftprozesses

Der elektrische Wirkungsgrad hängt entscheidend von den Frischdampfparametern (Druck, Temperatur) und den Abdampfparametern ab, die nach der Entspannung in der ND-Turbine noch vorliegen. Die Frischdampfparameter bei großen Kohlekraftwerken

betragen bis zu 600 °C und 290 bar [vgl. Schmitz und Schaumann, 2005, S. 137]. In Strauß [vgl. 2006, S. 75] werden 650 °C und 250 bar angegeben. Eine weitere Steigerung der Dampftemperatur stellt an die Werkstoffe gesteigerte Festigkeitsanforderungen, so dass deutlich teurere, austenitische Werkstoffe eingesetzt werden müssen, die den Wirkungsgradgewinn wirtschaftlich wieder aufheben. Eine Erhöhung des Frischdampfdruckes bedeutet ebenfalls einen Materialmehraufwand für Rohrleitungen und Pumpen, der nur in Kombination mit einer oder mehreren Zwischenüberhitzungen sinnvoll erscheint, da ansonsten bei zu hohem Druck bereits das Nassdampfgebiet erreicht wird [vgl. Strauß, 2006, S. 75].

Die folgenden Berechnungen basieren auf einem Frischdampfdruck von 150 bar und einer Frischdampftemperatur von 550 °C, was einem typischen Kondensationskraftwerk im Bestand bzw. einer relativ modernen KWK-Anlage entspricht. Tabelle 3.1 fasst die weiteren wesentlichen Kenngrößen des analysierten Dampfkraftprozesses zusammen. Die Werte im unteren Bereich der Tabelle basieren auf Ergebnissen des Kapitels 3.2.5. Für den KWK-Betrieb wird eine Unterscheidung in Sommer- und Winterbetrieb vorgenommen. Diese beiden Betriebsfälle unterscheiden sich dadurch, dass üblicherweise im Winter eine höhere Vorlauftemperatur für das Fernwärmenetz benötigt wird als im Sommer. Für den Sommerbetrieb wird mit einer Kondensationstemperatur von 60 °C und für den Winterbetrieb mit einer Kondensationstemperatur von 100 °C gerechnet.

Die Berechnung des elektrischen Wirkungsgrads im Wasserdampfprozess η_{el}^* wird nach Formel 3.20 durchgeführt. Hierbei sind noch keine weiteren Verluste berücksichtigt (z. B. für Feuerung, Dampferzeuger etc.). Die Bezeichnung der einzelnen Dampf- und Kondensatmassenströme \dot{m}_i in kg/s sowie Enthalpien h_i in kJ/kg orientiert sich an den Bezeichnungen im Anlagenschema (vgl. Abbildung 3.3). Dabei besteht der Zähler aus den Leistungen der drei Turbinen abzüglich der Leistungen der Speisewasserpumpen und der Nenner aus der im Kessel und in der ZÜ zugegebenen Leistung.

$$\eta_{\rm el}^* = \frac{\dot{m}_1 \cdot (h_1 - h_2) + \dot{m}_3 \cdot (h_3 - h_4) + \dot{m}_4 \cdot (h_4 - h_5) - \dot{m}_6 \cdot (h_7 - h_6)}{\dot{m}_{15} \cdot (h_1 - h_{15}) + \dot{m}_2 \cdot (h_3 - h_2)} + \frac{-\dot{m}_9 \cdot (h_{10} - h_9) - \dot{m}_{13} \cdot (h_{14} - h_{13})}{\dot{m}_{15} \cdot (h_1 - h_{15}) + \dot{m}_2 \cdot (h_3 - h_2)} \quad (3.20)$$

Im KWK-Betrieb wird neben dem elektrischen Wirkungsgrad ebenfalls der thermische Wirkungsgrad im Wasserdampfprozess η_{th}^* nach Formel 3.21 berechnet. Hierbei wird die im Zähler berechnete Kondensationsenthalpie für die Erwärmung des Fernwärmewassers

Größe	Einheit	Wert
Frischdampftemperatur	°C	550
Frischdampfdruck	bar	150
Druckverlust Kessel	%	10
ZÜ-Temperatur	°C	550
ZÜ-Druck	bar	30
Druckverlust ZÜ	%	10
Entnahme 1 (HD)	bar	30
Entnahme 2 (MD/ND)	bar	2
Wirkungsgrad HD-Turbine	%	92
Wirkungsgrad MD-/ND-Turbine	%	90
Kondensationsdruck für Stromerzeugung	bar	$0,\!05$
Kondensationstemperatur für KWK Sommer	°C	60
Kondensationstemperatur für KWK Winter	°C	100
Temperaturdifferenz HD-/MD-Vorwärmung	$^{\circ}\mathrm{C}$	3
Unterkühlung Kondensat HD-/MD-Vorwärmung	°C	3
Wirkungsgrad Speisewasserpumpen	%	90
Wirkungsgrad Feuerung	%	98
Wirkungsgrad Dampferzeuger	%	93
Wirkungsgrad Generator	%	98,5
Heizwert Steinkohle	$\mathrm{GJ/t}$	25,29
CO_2 -Emissionsfaktor	t/GJ	0,108
$\rm CO_2$ -Abscheidegrad	%	90
MEA-Energieaufwand (bezogen auf abgeschiedene CO ₂ -Masse)	MJ/kg	2,96
MEA-Regenerationstemperatur	°C	120

Tabelle 3.1: Kenngrößen des analysierten Dampfkraftprozesses, eigene Darstellung mit Daten aus Strauß [2006, S. 71 f.], Tuschy [2010], Kapitel 3.2.5

genutzt.

$$\eta_{\rm th}^* = \frac{\dot{m}_5 \cdot (h_5 - h_6)}{\dot{m}_{15} \cdot (h_1 - h_{15}) + \dot{m}_2 \cdot (h_3 - h_2)} \tag{3.21}$$

Der elektrische bzw. thermische Wirkungsgrad im Wasserdampfprozess wird mit einem weiteren Faktor $d_{\rm V,el}$ bzw. $d_{\rm V,th}$ korrigiert (vgl. Formel 3.22), um den elektrischen bzw. thermischen Wirkungsgrad zu berechnen. Der Faktor $d_{\rm V,el}$ beinhaltet Verluste in der Feuerung, im Dampferzeuger und im Generator. Hierbei kann von einem Wert von 89,5 % ausgegangen werden, der sich aus mittleren Verlusten in der Feuerung (1 % bis 3 %), im Dampferzeuger (6 % bis 8 %) und im Generator (1 % bis 2 %) ergibt [vgl. Strauß, 2006, S. 100]. Für den Faktor $d_{\rm V,th}$ wird vom gleichen Wert ausgegangen; zwar entfallen die Generatorverluste, es kommen jedoch die Fernheizpumpen im Heizkraftwerk hinzu.

$$\eta_{\rm el} = d_{\rm V,el} \cdot \eta_{\rm el}^* \qquad \eta_{\rm th} = d_{\rm V,th} \cdot \eta_{\rm th}^* \qquad (3.22)$$

Für die Integration von CCS wird ein gewisser Niederdruckdampfanteil \dot{m}_{4b} für die Regeneration des chemischen Absorbens eingesetzt. Der Dampfdruck der Entnahme 2 (nach der MD-Turbine) von 2,0 bar ist hierfür gezielt ausgelegt, da bei diesem Druck der Dampf bei 120 °C auskondensiert, was den Anforderungen des MEA-Prozesses entspricht: In der Literatur liegen Angaben für den Temperaturbereich der MEA-Regeneration von 100 °C bis 140 °C und für den Druckbereich von 2 bar bis 5 bar vor [vgl. Metz et al., 2005, S. 115], [vgl. Göttlicher, 1999, S. 45]. Der Massenstrom \dot{m}_{4b} , der für die MEA-Regeneration eingesetzt wird, fehlt in der Folge in der Niederdruckturbine zur Stromerzeugung sowie in den Heizkondensatoren zur Fernwärmeerzeugung, so dass hierdurch sowohl der elektrische als auch der thermische Wirkungsgrad reduziert werden. Der Massenstrom \dot{m}_{4b} errechnet sich nach Formel 3.23, wobei \dot{m}_{CO_2} den abgeschiedenen CO₂-Strom in kg/s und w_{CO_2-A} den spezifischen MEA-Energieaufwand in GJ/t darstellen (vgl. Formel 3.13).

$$\dot{m}_{4b} = \frac{\dot{m}_{CO_2} \cdot w_{CO_2 - A}}{h_{4b} - h_{9b}}$$
(3.23)

Der abgeschiedene CO₂-Strom $\dot{m}_{\rm CO_2}$ ergibt sich nach Formel 3.24. Hierbei sind $E_{\rm Br}$ die Feuerungswärmeleistung in kW, $\mu_{\rm CO_2,Br,dir}$ der direkte CO₂-Emissionsfaktor des Brennstoffs in g/kWh (vgl. Formel 3.5) und $A_{\rm CO_2} = 90\%$ der CO₂-Abscheidegrad.

$$\dot{m}_{\rm CO_2} = \dot{E}_{\rm Br} \cdot \mu_{\rm CO_2, Br, dir} \cdot A_{\rm CO_2} \tag{3.24}$$

Der errechnete Wirkungsgradverlust für die Variante Post-Combustion in Verbindung mit KWK wird geringer sein als die Wirkungsgradverluste für die CO₂-Abscheidung

für Bio-CCS in Kapitel 3.2.6, da in den thermodynamischen Berechnungen keine weiteren elektrischen Verluste wie für den Betrieb der Wäscher-Kolonne oder zusätzlicher Pumpen enthalten sind (vgl. Kapitel 3.3.1), sondern nur der Wirkungsgradverlust im Dampfkraftprozess berechnet wird. Um diesen Effekt mit zu berücksichtigen und vergleichbare Wirkungsgradverluste im Kondensationsprozess wie im Kapitel 3.2.6 zu erhalten (8,0 % für Steinkohle), wird für den Kondensationsprozess der elektrische Wirkungsgradverlust für Pumpen, Gebläse etc. ($\Delta \eta_{CO_2-A,Pumpen}$) nach Formel 3.25 berechnet. Hierbei wird der auf Basis des Dampfkraftprozesses errechnete Wirkungsgradverlust $\Delta \eta_{CO_2-A,DKP}$ für den Kondensationsbetrieb (5,4 %) von dem im Kapitel 3.2.6 berechneten Wirkungsgradverlust im Kondensationsbetrieb für Steinkohle ($\Delta \eta_{CO_2-A} = 8,0$ %) substrahiert. $\Delta \eta_{CO_2-A,Pumpen} = 2,6$ % wird in gleicher Höhe für die KWK-Varianten übernommen, so dass sich diese nur durch den Wirkungsgradverlust im Dampfkraftprozess $\Delta \eta_{CO_2-A,DKP}$ unterscheiden.

$$\Delta \eta_{\rm CO_2-A,Pumpen} = \Delta \eta_{\rm CO_2-A} - \Delta \eta_{\rm CO_2-A,DKP} \tag{3.25}$$

3.2 Analyse der Kombination aus Biomasse und CCS

Im Folgenden werden zunächst für den CCS-Einsatz geeignete Biomassen ausgewählt, bevor ein CCS-relevanter Brennstoffvergleich zwischen den Festbrennstoffen Holz und Kohle durchgeführt wird. Im Kapitel 3.2.3 werden die wesentlichen Technologiepfade für Bio-CCS analysiert. Um die Veränderung des spezifischen Energieaufwands und die unterschiedlichen Wirkungsgradverluste zu berechnen, werden anschließend die Veränderungen für die CO₂-Kompression und den CO₂-Transport untersucht.

3.2.1 Auswahl geeigneter Biomassen

In diesem Kapitel werden diejenigen Biomassen für die folgenden Analyseschritte ausgewählt, deren Brennstoffeigenschaften und Verbrennungsverhalten darauf schließen lassen, dass sie für den Einsatz in Heizkraftwerken und somit auch für den Einsatz mit Bio-CCS geeignet sind. In Tabelle 3.2 sind die wesentlichen Bewertungsfaktoren dargestellt, die im Kapitel 2.1.1.4 und Kapitel 2.1.1.5 im Bereich der Grundlagen näher beschrieben worden sind. Aus diesen Kapiteln sind für die einzelnen Biomassesorten sowie Steinkohle und Braunkohle ebenfalls die Werte übernommen worden. Es sind diejenigen Werte fett markiert, die mit hoher Wahrscheinlichkeit zu Problemen führen werden. Die entsprechenden Biomassen sind deswegen für einen Bio-CCS-Einsatz weniger gut geeignet. Kursiv dargestellt sind diejenigen Faktoren, die ein Risiko bedeuten können.

	Ascheschmelzverhalten				Chlor-
	Sinter- beginn	Erwei- chungs- punkt	Halb- kugel- punkt	Fließ- punkt	gehalt
	$^{\circ}\mathrm{C}$	$^{\circ}\mathrm{C}$	$^{\circ}\mathrm{C}$	$^{\circ}\mathrm{C}$	%
Steinkohle	901	1265	1411	1441	0,17
Braunkohle	k. A.	1182	1355	1441	$0,\!03$
Nadelholz	1171	1389	1521	1530	$0,\!01$
Laubholz	1190	1265	1310	1420	$0,\!02$
Getreidestroh	931	960	1168	1214	$0,\!25$
${\it Getreideganzpflanzen}$	854	886	1043	1080	0,18
Getreidekörner	705	736	797	851	$0,\!09$
Miscanthus	861	973	1097	1170	$0,\!22$

Tabelle 3.2: Bewertungsfaktoren für die Auswahl geeigneter Biomassen für CCS (Ascheschmelzverhalten, Chlorgehalt), eigene Darstellung mit Daten für Biomasse aus Hartmann et al. [2000b, S. 148 f.], Daten für Steinkohle aus Jannsen [2008, Anhang 8], Daten für Braunkohle aus Muhammadieh [2007, S. 117]

Bei den Bewertungsfaktoren handelt es sich zum einen um das Ascheschmelzverhalten. Der Sinterbeginn tritt bei Getreidekörnern bereits bei knapp über 700 °C und somit bei relativ niedrigen Temperaturen ein. Auch bei Miscanthus und Getreideganzpflanzen liegt der Sinterbeginn bei knapp über 850 °C, weil diese Brennstoffe die Getreidekörner ebenfalls enthalten. Da die Verbrennungstemperatur bereits in Wirbelschichtkesseln bei ca. 850 °C liegt, drohen durch den Einsatz von Getreidekörnern oder Getreideganzpflanzen erhebliche Ascheanbackungen im Feuerraum und an Wärmetauscherflächen, so dass diese für die weitere Analyse ausgeschlossen werden. Die Verbrennungstemperatur in Staubund Rostfeuerungen liegt in der Regel deutlich über 850 °C.

Als weiterer Bewertungsfaktor wird der Chlorgehalt näher untersucht. Hohe Chlorgehalte führen vor allem bei Getreidestroh besonders an den Wärmeübertragungsflächen zu Hochtemperatur-Chlorkorrosionen und werden deswegen für die folgende Analyse ausgeschlossen [vgl. Kaltschmitt et al., 2009, S. 510]. Darüber hinaus weist halmgutartige Biomasse im Vergleich zu holzartiger Biomasse relativ hohe Staubemissionen auf, da die bei der Halmgutverbrennung entstehenden Partikel sehr fein sind und eine geringe Dichte aufweisen [vgl. Eltrop et al., 2007, S. 104].

Es ist deutlich zu erkennen, dass holzartige Biomasse innerhalb der Biomassen die

besten Eigenschaften aufweist, um Stein- oder Braunkohle in Heizkraftwerken mit CO_2 -Abscheidung zu substituieren. Tabelle 3.2 zeigt sogar auf, dass die Ascheschmelztemperaturen von holzartiger Biomasse größtenteils höher sind als bei den beiden Kohlesorten.

Neben der holzartigen Biomasse ist an dieser Stelle auch das in Kapitel 2.1.1.7 beschriebene Biomethan zu nennen. Da Biomethan als aufbereitetes Biogas bereits Erdgasqualität aufweist, entfällt die Prüfung der Eignung und ein tiefergehender technischer Vergleich: Eine Substitution von fossilem Erdgas durch Biomethan ist problemlos möglich, da sich das Biomethan bei der Einspeisung in das Erdgasnetz ohnehin mit diesem vermischt.

3.2.2 CCS-relevanter Brennstoffvergleich zwischen Kohle und Holz

Nachdem im vorangegangenen Kapitel holzartige Festbrennstoffe (Nadelholz und Laubholz) als geeignete Biomasse festgelegt worden sind, werden diese im Folgenden mit dem fossilen Brennstoff Kohle verglichen. Dieser Vergleich wird durchgeführt, um mögliche Vor- und Nachteile für die späteren Technologiepfade herauszuarbeiten.

Wie im Kapitel 2.1.1.4.1 bereits dargestellt, unterscheidet sich die Elementarzusammensetzung von Kohlen und holzartigen Energieträgern erheblich. Kohlen weisen einen deutlich höheren Kohlenstoffgehalt auf und beinhalten dafür deutlich weniger Sauerstoff. Der Wasserstoffgehalt ist annähernd gleich. Hierdurch ergibt sich der deutlich höhere Heizwert der Kohlen (vgl. Kapitel 3.2.2.1), da sich Kohlenstoff unter einer Energiefreigabe von 393,5 kJ/mol mit Sauerstoff verbindet, während Wasserstoff bei der Oxidation lediglich 285,9 kJ/mol an Wärme abgibt [vgl. Kaltschmitt et al., 2009, S. 402].

3.2.2.1 Übliche Wassergehalte und Heizwerte

Die Begriffe Wassergehalt und Heizwert sind in der Praxis eng miteinander verknüpft, da der Wassergehalt den Heizwert entscheidend beeinflusst. Während der Wassergehalt von Steinkohle mit knapp 10% relativ gering ist, weisen Braunkohlen üblicherweise Wassergehalte von knapp über 50% auf [vgl. Schiffer und Maaßen, 2009, S. 13]. Erntefrisches Holz hat üblicherweise 50% bis 60% Wassergehalt. Ein hoher Wassergehalt macht sich vor allem an zwei Stellen negativ bemerkbar: Zum einen steigen die spezifischen Transportaufwendungen, wenn statt des Brennstoffs größtenteils Wasser transportiert wird. Zum anderen führt ein hoher Wassergehalt zu Nachteilen in der Verbrennung (niedrigere Feuerungswärmeleistung, größerer Rauchgasvolumenstrom, erhöhte Korrosionsgefahr durch Kondensatbildung). Darüber hinaus ergibt sich bei einem hohen Wassergehalt in der Biomasse durch das größere Rauchgasvolumen im Vergleich zur Steinkohleverbrennung eine niedrigere CO_2 -Konzentrationen [vgl. Cavezzali et al., 2009, S. xiv]. Dieser Aspekt wird im Kapitel 3.2.2.5 näher ausgeführt und wird im Bereich der wirtschaftlichen Analyse ebenfalls berücksichtigt.

Um diese Nachteile zu vermeiden, können sowohl Braunkohlen als auch holzartige Energieträger getrocknet und somit veredelt werden. Bislang wird zwar der überwiegende Anteil der in Deutschland geförderten Braunkohle im rohen Zustand zur Stromerzeugung eingesetzt (91%), doch es existieren zwei Veredelungsprodukte, die ebenfalls für die Stromerzeugung eingesetzt werden können: Kohlenstaub und Wirbelschichtkohle, die derzeit vor allem in der Kalk- und Zementindustrie zum Einsatz kommen. Deren Anteile haben im Jahr 2008 an der gesamten Braunkohleförderung 2,3% ausgemacht (davon 3,53 Mio. t Kohlenstaub und 0,59 Mio. t Wirbelschichtkohle). Braunkohlenstaub hat bei einem Wassergehalt von 11% einen Heizwert von 21 MJ/kg bis 23 MJ/kg. Wirbelschichtbraunkohle hat 15% bis 19% Wassergehalt und weist einen Heizwert von 19 MJ/kg bis 21 MJ/kg auf [vgl. Schiffer und Maaßen, 2009, S. 19 f., S. 61 ff.].

Holzartige Biomassen werden üblicherweise in Form von Holzhackschnitzeln eingesetzt. Bei erntefrischem Holz beträgt der Wassergehalt zwischen 45% und 60%. Lufttrockenes Holz weist in Abhängigkeit von der Jahreszeit 10% bis 20% Wassergehalt auf. Wird die holzartige Biomasse zu Holzpellets veredelt, so liegen die Wassergehalte typischerweise zwischen 7% und 10% [vgl. Kaltschmitt et al., 2009, S. 358].

In Abbildung 3.4 werden die Heizwerte für die unterschiedlichen Kohle- und Holzsorten in Abhängigkeit von den typischen Wassergehalten dargestellt. Es ist deutlich zu erkennen, dass erntefrisches Holz bei ähnlichen Wassergehalten (ca. 50 % bis 60 %) etwas niedrigere Heizwerte im Vergleich zu roher Braunkohle aufweist. Im veredelten Bereich ist zu erkennen, dass sowohl lufttrockenes Holz als auch Holzpellets bei vergleichbarem Wassergehalt (10 % bis 20 %) einen um ca. 25 % geringeren Heizwert als die aufbereitete Wirbelschichtbraunkohle bzw. Braunkohlenstaub aufweisen. Die Ursache für diese größere Differenz gegenüber den hohen Wassergehalten liegt darin, dass bei geringen Wassergehalten die übrigen Elemente (vor allem Kohlenstoff) einen stärkeren Einfluss haben. Durch diesen Effekt weist Steinkohle mit dem höchsten Kohlenstoffgehalt auch deutlich den höchsten Heizwert auf.

3.2.2.2 Relevante Emissionen

In Kapitel 2.1.1.4.1 ist aufgezeigt worden, dass die Gehalte an Stickstoff und Schwefel sowohl in Steinkohle als auch in Braunkohle erheblich höher sind als die Werte für Holz [vgl. Kapfer, 2005, S. 89], (vgl. Abbildung 2.5). Die im Brennstoff enthaltenen Stickstoffund Schwefelgehalte beeinflussen direkt die entstehenden NO_x - und SO_2 -Emissionen, die zum einen aus Gründen der Luftreinhaltung herausgefiltert werden müssen und zum anderen für die CO_2 -Abscheidung mittels chemischer Absorption äußerst gering gehalten

Abbildung 3.4: Vergleich der Wassergehalte und Heizwerte von Kohle und Holz, eigene Darstellung mit Daten für Holz aus Hartmann et al. [2000b, S. 148 f.], Kaltschmitt et al. [2009, S. 358], für Kohle aus Fritsche [2010a], Schiffer und Maaßen [2009, S. 63 ff.]

werden müssen [vgl. Karampinis und Grammelis, 2012, S. 3], (vgl. Kapitel 2.1.1.5.2). Die Chlorgehalte sind bei den Kohlen zwar etwas höher als bei holzartigen Brennstoffen, sind jedoch mit < 0.2 % noch in einem Bereich, der keine Hochtemperatur-Chlorkorrosion erwarten lässt.

Der Vergleich der Kalium-, Magnesium- und Kalziumgehalte wird an dieser Stelle nicht explizit durchgeführt. Diese drei Elemente haben einen entscheidenden Einfluss auf das Ascheschmelzverhalten, wobei Kalium und Magnesium die Ascheschmelztemperaturen absenken und Kalzium diese anhebt. Da im vorangegangenen Kapitel bereits aufgezeigt worden ist, dass vor allem Nadelholz als auch Laubholz jeweils zumindest gleich oder sogar höhere Ascheschmelztemperaturen als Braun- und Steinkohle aufweisen, kann davon ausgegangen werden, dass holzartige Brennstoffe vergleichbare Elementargehalte an Magnesium und Kalzium aufweisen. Für fossile Brennstoffe werden geringere Kaliumgehalte als für holzartige Biomasse erwartet (vgl. Kapitel 2.1.1.4.1).

3.2.2.3 Sauerstoffbedarf

Aufgrund des höheren Kohlenstoffanteils ergibt sich für Steinkohle ein deutlich höherer Sauerstoffbedarf für die Oxidation, der bei der Verbrennung zugeführt werden muss: Der Sauerstoffbedarf bezogen auf die trockene Brennstoffmasse beträgt ca. 2,6 kg/kg (vgl. Abbildung 3.5). Bei knapp 10% Sauerstoff in der Trockenmasse ergeben sich 2,48 kg/kg, die an Sauerstoff über die Verbrennungsluft zugegeben werden muss. Bei der Oxidation der im Laubholz enthaltenen brennbaren Bestandteile werden rund 1,8 kg/kg an Sauerstoff in Bezug auf die Trockenmasse benötigt, wobei im Brennstoff bereits 45% Sauerstoff enthalten sind. Es ergibt sich ein zusätzlicher spezifischer Sauerstoffbedarf von 1,33 kg/kg, was knapp 54% des Wertes für Steinkohle entspricht. Auf diesen Aspekt wird im Technologiepfad Oxyfuel näher eingegangen (vgl. Kapitel 3.2.3.2).

Abbildung 3.5: Sauerstoffbedarf in Bezug auf die trockene Brennstoffmasse für die vollständige Oxidation des enthaltenen Kohlenstoffs, Wasserstoffs und Schwefels in Kohle und Holz, eigene Berechnung mit Daten für Holz aus Hartmann et al. [2000b, S. 148 f.], für Kohle aus Fritsche [2010a], vgl. Anhang Tabelle A.10

3.2.2.4 Spezifische CO₂-Emissionen

Bei den im Folgenden dargestellten spezifischen CO_2 -Emissionen handelt es sich um die CO_2 -Emissionen, die bei der Energieumwandlung technisch abgeschieden werden können.

Inwieweit diese CO_2 -Emissionen vor dem Hintergrund einer CO_2 -Bilanz zu insgesamt negativen CO_2 -Emissionen führen können, wird im Kapitel 5 näher untersucht.

Die Höhe der CO_2 -Emissionen, die abgeschieden und gespeichert werden können, hängt direkt vom Kohlenstoffgehalt des Brennstoffs ab. Da Steinkohle in der Elementaranalyse den höchsten Kohlenstoffgehalt im wasserfreien Zustand aufweist, kann in Bezug auf die Brennstoffmasse aus trockener Steinkohle am meisten CO_2 abgeschieden werden. Dieses Verhältnis wird zusätzlich dadurch verstärkt, dass Steinkohle üblicherweise einen Wassergehalt von nur knapp 10% aufweist, während rohe Braunkohle und Holz im erntefrischen Zustand ca. 50% Wassergehalt aufweisen (vgl. Kapitel 3.2.2.1).

Abbildung 3.6 stellt für die vier untersuchten Brennstoffe zunächst die spezifischen CO₂-Emissionen bezogen auf die Brennstoffmasse dar. Hierbei ist ein Wassergehalt von 10% gewählt worden, was dem üblichen Wassergehalt von Steinkohle, Braunkohlenstaub sowie Holzpellets entspricht (vgl. Kapitel 3.2.2.1). Wie erwartet weist Steinkohle durch den hohen elementaren C-Gehalt mit 2,72 kg/kg die höchsten spezifischen CO₂-Emissionen bezogen auf die Brennstoffmasse auf. Die holzartigen Biomassen kommen durch den geringeren C-Gehalt auf brennstoffspezifische CO₂-Emissionen von 1,59 kg/kg bzw. 1,66 kg/kg, was über 40 % weniger ist. Bezieht man die CO₂-Emissionen jedoch auf den Heizwert des eingesetzten Brennstoffs, so ergeben sich deutlich kleinere Unterschiede: Braunkohlenstaub emittiert mit 0,118 kg/MJ am meisten Kohlenstoffdioxid. Laubholz liegt mit 0,097 kg/MJ knapp 20 % niedriger. Die hier berechneten Werte liegen geringfügig über den spezifischen CO₂-Emissionen, die die deutsche Emissionshandelsstelle für die Ermittlung der CO₂-Emissionen vorschreibt: Für Braunkohle betragen die spezifischen CO_2 -Emissionen dort 0,098 kg/MJ bis 0,101 kg/MJ und für Steinkohle 0,093 kg/MJ bis 0,096 kg/MJ [vgl. DEHSt, 2007, S. 1]. In Gómez et al. [vgl. 2006, S. 2.16] werden die spezifischen CO_2 -Emissionen für Braunkohle in einem Bereich von 0,091 kg/MJ bis 0,115 kg/MJ und für Steinkohle in einem Bereich von 0,095 kg/MJ bis 0,101 kg/MJ angegeben. Die Unterschiede zu dieser Studie können sich zum einen durch verschiedene Heizwerte und zum anderen dadurch ergeben, dass ein Teil des Kohlenstoffs in der Asche eingelagert wird und bei der Berechnung für Abbildung 3.6 nicht zum Abzug gebracht wird.

Ein ähnliches Bild ergibt sich bei einem Wassergehalt von 50 % (vgl. Abbildung 3.7). Hierbei handelt es sich um erntefrisches Holz bzw. um rohe Braunkohle. Steinkohle weist üblicherweise keine Wassergehalte von 50 % auf. Die auf den Heizwert bezogenen CO_2 -Emissionen von Braunkohle liegen mit 0,131 kg/MJ um ca. 11 % höher als bei einem Wassergehalt von 10 %. Dieser Anstieg ist dadurch begründet, dass der Heizwert gegenüber dem niedrigeren Wassergehalt überproportional gefallen ist: Der enthaltene Wasseranteil schmälert zum einen den Brennstoffanteil und zum anderen geht ein gewisser Energiebetrag über die Rauchgasfeuchte verloren. Der Abstand zu den holzartigen

Abbildung 3.6: Massen- und energiespezifische CO₂-Emissionen für Kohle und Holz (10% Wassergehalt), eigene Berechnung mit Daten für Holz aus Hartmann et al. [2000b, S. 148 f.], für Kohle aus Fritsche [2010a], vgl. Anhang Tabelle A.10

Biomassen bleibt annähernd gleich und beträgt etwa 15 %. Die berechneten Werte für holzartige Biomassen lassen sich auch an anderer Stelle in gleicher Größenordnung wiederfinden: Quaschning [vgl. 2002, S. 1] weist für Holz (ohne Angabe des Wassergehalts) einen CO₂-Emissionsfaktor von 0,116 kg/MJ aus. In Eggleston et al. [vgl. 1996, S. 1.6] wird für feste Biomasse ein spezifischer C-Emissionsfaktor von 29,9 t/TJ angegeben, was einem spezifischen CO₂-Emissionsfaktor von 0,110 kg/MJ entspricht. Mit 0,112 kg/MJ liegt die Angabe in Gómez et al. [vgl. 2006, S. 2.17] zwischen den beiden vorgenannten Werten und es wird darüber hinaus ein möglicher Wertebereich für spezifische CO₂-Emissionsfaktoren von 0,095 kg/MJ bis 0,132 kg/MJ für holzartige Brennstoffe definiert.

Der Verwendung der Größe spezifische CO_2 -Emissionen pro eingesetzter Energie wird dann besonders bedeutend, wenn es zukünftig darum geht, möglichst hohe negative Emissionen zu erzielen und gleichzeitig die dabei entstehende Energie zu nutzen.

3.2.2.5 Rauchgasvolumen und CO₂-Konzentration im Rauchgas

Im Folgenden wird das bei der Verbrennung anfallende Rauchgasvolumen und der darin enthaltene CO_2 -Anteil errechnet. Für die eingesetzten Brennstoffe Steinkohle, Braunkohle, Nadelholz und Laubholz wird die Rauchgasstoffmenge bei unterschiedlichen Wassergehal-

Abbildung 3.7: Massen- und energiespezifische CO_2 -Emissionen für Kohle und Holz (50 % Wassergehalt), eigene Berechnung mit Daten für Holz aus Hartmann et al. [2000b, S. 148 f.], für Kohle aus Fritsche [2010a], vgl. Anhang Tabelle A.10

ten (0%, 10%, 50%) berechnet. Abbildung 3.8 stellt die bei der Verbrennung entstehenden Rauchgasvolumina dar, die auf die spezifischen Heizwerte der Brennstoffe bezogen werden. Für Steinkohle ist nur ein Wassergehalt von 10% in der Praxis üblich. Es ist zu erkennen, dass Braunkohle bei allen untersuchten Wassergehalten das größte und die Biomassen das niedrigste spezifische Rauchgasvolumen aufweisen. Dies hängt damit zusammen, dass Biomassen höhere elementare Sauerstoffgehalte beinhalten und somit der Brennluftbedarf geringer ist. Hierdurch wird der Stickstoffgehalt in den Rauchgasen ("Ballast") reduziert. Dass sich dieser Abstand zwischen holzartiger Biomasse und den Kohlen bei größeren Wassergehalten reduziert, hängt ebenfalls mit dem hohen Sauerstoffgehalt der Biomasse zusammen: Zum einen wird durch den höheren Wassergehalt der Sauerstoffbedarf reduziert, so dass der "Ballast-Effekt" geringer wird; zum anderen haben fossile Energieträger bei gleichem Wassergehalt höhere Heizwerte, so dass sich das aus dem Wasser entstehende Rauchgasvolumen bei den Kohlen auf einen höheren Heizwert verteilen kann.

Die nur geringe Zunahme des Rauchgasvolumens durch den steigenden Wassergehalt stellt einen erheblichen Unterschied zum Brennstoffvolumen dar, das durch einen hohen Wassergehalt erheblich vergrößert wird und sich dementsprechend auf die Transportkosten auswirkt [vgl. Kaltschmitt et al., 2009, S. 585 ff.], (vgl. Kapitel 2.2.1.3).

Abbildung 3.8: Heizwertspezifisches Rauchgasvolumen für Kohle und Holz (0%, 10% und 50% Wassergehalt), eigene Berechnung mit Daten für Holz aus Hartmann et al. [2000b, S. 148 f.], für Kohle aus Fritsche [2010a], vgl. Anhang Tabelle A.11 und Tabelle A.12

Für die anschließende CO₂-Abscheidung ist die CO₂-Konzentration im Rauchgas von besonderer Bedeutung. In Abbildung 3.8 ist ebenfalls der volumenbasierte CO₂-Anteil als Prozentangabe dargestellt, was dem stofflichen Anteil entspricht. Der Massenanteil wird für die CO₂-Konzentration nicht angegeben, da die CO₂-Konzentration für die CO₂-Abscheidung im Bereich der Grundlagen ebenfalls auf volumenbasierte Angaben basiert (vgl. Kapitel 2.1.3.1.2).

Die CO₂-Konzentration ist bei niedrigen Wassergehalten am höchsten, da die enthaltene CO₂-Stoffmenge mit weniger Rauchgas ins Verhältnis gesetzt wird. Bei einem theoretischen Wassergehalt von 0% hätte Laubholz mit 13,0% die größte CO₂-Konzentration im Rauchgas. Bei einem realistischen Wassergehalt von 10% hätten alle Brennstoffe einen relativ einheitlichen CO₂-Gehalt im Rauchgas von 12,6% bis 12,8%. Mit zunehmendem Wassergehalt fällt die CO₂-Konzentration bei den Biomassen stärker als bei den fossilen Energieträgern, so dass bei einem Wassergehalt von 50% die holzartige Biomasse eine CO₂-Konzentration von nur noch 11,0% aufweist, während feuchte Braunkohle noch 11,3% an CO₂ im Rauchgas enthält. Dieser Effekt rührt daher, dass der zunehmende Wasserdampf bei dem geringeren Rauchgasvolumen der (trockenen) Biomasseverbrennung

einen größeren Einfluss hat. Diese Werte stimmen größenordnungsmäßig mit Berechnungen an anderer Stelle überein: Es werden 13 % an CO_2 im Rauchgas von Kohlekraftwerken [vgl. Radgen et al., 2006, S. 43] und 11,9 % an CO_2 im Rauchgas von Biomasse-Kraftwerken mit 50 % Wassergehalt berichtet [vgl. Cavezzali et al., 2009, S. D5-17].

Die hier vorgestellten CO₂-Konzentrationen beziehen sich auf die Rauchgaszusammensetzung, wie sie direkt nach der Verbrennung vorliegt. Üblicherweise wird die CO₂-Abtrennung im Falle der CCS-Prozessvariante Post-Combustion jedoch bei deutlich niedrigeren Temperaturen von ca. 60 °C durchgeführt (vgl. Kapitel 2.1.3.1.2). Hierdurch wird der maximale Wassergehalt, den das Rauchgas aufnehmen kann, in Bezug auf das trockene Rauchgas auf ca. 155 g/kg reduziert (eigene Berechnung mit Daten aus Beitz und Grote [1997, S. D 23, S. D 45]). Während dieser Wert von allen Brennstoffen bei einem Wassergehalt von 0% bis 30% deutlich unterschritten wird (27 g/kg bis 117 g/kg), weist holzartige Biomasse mit einem Wassergehalt von 50% aufgrund des höheren Wasserstoffgehalts im Brennstoff und des geringeren Verbrennungsluftbedarfs einen rauchgasspezifischen Wasserdampfgehalt von 175 g/kg bis 185 g/kg auf. Somit würden 20 g/kg bis 30 g/kg an Wasserdampf auskondensieren, was den CO₂-Anteil im Rauchgas um ca. 0,5%-Punkte erhöht. Dies wiederum entspricht dem CO₂-Gehalt von Braunkohle mit einem Wassergehalt von 50% (vgl. Anhang Tabelle A.13).

Die errechneten Ergebnisse bestätigen die Einschätzung von Vattenfall, dass bei der Biomasse-Verbrennung Rauchgase mit durchaus hohen CO_2 -Konzentrationen entstehen [vgl. Vattenfall, 2009a, S. 7]. In Karlsson und Byström [vgl. 2011, S. 18] wird davon ausgegangen, dass die CO_2 -Konzentration in den Rauchgasen bei der Biomasse-Verbrennung mit 14 % bis 17 % höher liegen als bei der Steinkohle-Verbrennung (13 % bis 15 %).

3.2.2.6 Zwischenfazit

In Tabelle 3.3 werden die wesentlichen Erkenntnisse des CCS-relevanten Brennstoffvergleichs zwischen Kohle und Holz dargestellt. Als Zwischenfazit kann festgehalten werden, dass Holz gegenüber Steinkohle zwar einen deutlich niedrigeren Kohlenstoffgehalt aufweist, jedoch in einer Reihe von weiteren Kategorien technische Vorteile bietet (z. B. Stickstoff- oder Schwefelgehalte).

3.2.3 Analyse der wesentlichen Bio-CCS-Technologiepfade

Im Folgenden werden die im Bereich der Grundlagen vorgestellten Methoden der CO_2 -Abscheidung (vgl. Kapitel 2.1.3.1) für ihren Einsatz in Kombination mit Biomasse näher untersucht. Nach Rhodes und Keith [vgl. 2008, S. 322] können grundsätzlich alle CCS-Techniken, die derzeit für fossile Energieträger entwickelt und erprobt werden (v. a. IGCC

Kriterium	Kohle	Holz	Kommentar
Ascheschmelz- verhalten	0	O/+	Vor allem Nadelholz weist höhere Ascheschmelztem- peraturen als die Kohlen auf.
Wassergehalt	+/-	+/-	Sowohl rohe Braunkohle als auch erntefrisches Holz weist Wassergehalte von 50 % auf. Durch Trocknung können jeweils Wassergehalte von < 20 % erreicht werden, was technische Probleme vermeidet (Korrosion, geringere Verbrennungstemperatur).
C-Gehalte	+	-	Sowohl Braun- als auch Steinkohlen weisen deutlich höhere C-Gehalte auf, was höhere CO ₂ -Emissionen erwarten lässt, die abgeschieden werden können.
O-Gehalte	-	+	Höhere Sauerstoffgehalte im Holz führen zwar zu niedrigeren Heizwerten, haben aber den Vorteil des geringeren spezifischen Sauerstoffbedarfs.
N-/S-Gehalte	-	+	Durch deutlich niedrigere Stickstoff- und Schwefelgehalte im Holz enthält das Rauchgas weniger NO_x - und SO ₂ -Emissionen.
Chlorgehalte	O/+	+	Holz weist deutlich niedrigere Chlorgehalte als Stein- kohle auf, Braunkohle ist ähnlich wie Holz.
Spez. CO ₂ - Emissionen	0	0	Die spezifischen CO ₂ -Emissionen der Kohlen bezo- gen auf den Heizwert sind ähnlich wie bei Holz.
CO ₂ -Konzen- tration im Rauchgas	+	+/0	Die CO ₂ -Konzentrationen im Rauchgas sind bei ge- ringen Wassergehalten annähernd gleich, bei höhe- ren Wassergehalten (50%) sind diese bei Biomasse etwas geringer als bei Braunkohle.

Tabelle 3.3: Ergebnisübersicht des Brennstoffvergleichs zwischen Kohle und Holz

und Oxyfuel), auch für biogene Energieträger angewendet werden. Für die Analyse werden vier Bio-CCS-Technologiepfade definiert, bei denen der CO₂-Abscheidungsprozess bislang am weitesten entwickelt ist:

- Holz in Verbindung mit Post-Combustion-Technologie,
- Holz in Verbindung mit Oxyfuel-Technologie,
- Holz in Verbindung mit Pre-Combustion-Technologie (IGCC) und
- Biomethan in Verbindung mit Post-Combustion-Technologie.

Die vier genannten Technologien werden auch von der IEA als die aussichtsreichsten CCS-Varianten eingeschätzt [vgl. Finkenrath, 2011, S. 22]. Im Rahmen des Forschungsprojekts TESBiC (Techno-Economic Study of Biomass to Power with CO₂ Capture) sind die drei Festbrennstoffvarianten ebenfalls als besonders geeignet bewertet worden [vgl. Bhave et al., 2012, S. 7 ff.]. In Kapitel 3.2.3.5 werden weitere Bio-CCS-Technologiepfade betrachtet (z. B. Chemical/Carbonate Looping oder CO_2 -Speicherung in Algen). Hierbei befindet sich die jeweilige CO_2 -Sequestrierungstechnologie noch in einer relativen frühen Entwicklungsphase.

3.2.3.1 Holz und Post-Combustion

Bislang basiert ein Großteil der weltweit geplanten CCS-Projekte auf der Post-Combustion-Technologie. Von den 23 geplanten Anlagen soll in drei Anlagen ebenfalls Biomasse eingesetzt werden (vgl. Kapitel 2.1.3.1.5).

Durch den Einsatz von Holz als Brennstoff kann sich ein Wechsel der Feuerungsart ergeben, da üblicherweise für fossile CCS-Kraftwerke Staubfeuerungen eingesetzt werden, die für die Verbrennung von erntefrischer Biomasse normalerweise nicht zum Einsatz kommen. Diese Frage wird im Kapitel 3.2.3.1.1 näher untersucht. Im Kapitel 3.2.3.1.2 werden die Veränderungen der Rauchgasqualität bei Holzverbrennung gegenüber Steinkohleverbrennung analysiert.

3.2.3.1.1 Feuerungsart Üblicherweise wird für die Verbrennung von Steinkohle die Staubfeuerungstechnik eingesetzt, die demzufolge auch häufig in Kombination mit CCS zum Einsatz kommen wird. Der Grund hierfür liegt darin, dass Staubfeuerungen bereits früher als die Wirbelschichttechnik in großen Einheiten (> 1000 MW) gebaut und somit Standard für Großkraftwerke geworden sind. Für die Verbrennung von Holz ist die Staubfeuerung weniger gut geeignet, da das Material sehr fein aufgemahlen werden muss. Einzig in Verbindung mit Holzpellets (oder Sägemehl, -staub) wäre die Staubfeuerung vorstellbar. Für die Verbrennung von gehacktem Holz werden üblicherweise die Rostfeuerungs- und die Wirbelschichttechnik eingesetzt (vgl. Kapitel 2.1.1.6).

Der Einsatz von zirkulierenden Wirbelschichtfeuerungen hätte gegenüber Staubfeuerungen mehrere Vorteile: Die Brennstoffflexibilität (auch für biogene Brennstoffe) wird deutlich erhöht, durch geringe Verbrennungstemperaturen und Kalkeindüsung können NO_x - und SO₂-Emissionen deutlich reduziert werden und die Brennstoffaufbereitung ist weniger aufwändig als für Staubfeuerungen [vgl. Vattenfall, 2009b, S. 10 f.], [vgl. Gough und Upham, 2010, S. 13]. Nach Ansicht von Alstom stellen die drei Varianten zirkulierende Wirbelschichtfeuerung, Staubfeuerung und Vergasung drei gleich geeignete Technologien für Bio-CCS dar [vgl. Kelsall, 2011, S. 19].

In einer Studie des IEA Greenhouse Gas Research & Development Programme wird als Feuerungsart für Bio-CCS im kleineren elektrischen Leistungsbereich (75 MW) die

stationäre Wirbelschicht und im größeren elektrischen Leistungsbereich (250 MW) die zirkulierende Wirbelschicht vorgeschlagen. Es wird ebenfalls ausgesagt, dass in einem darunter liegenden elektrischen Leistungsbereich (< 50 MW) die Rostfeuerung derzeit Stand der Technik ist. Über die Eignung dieser Technik in Kombination mit CCS wird allerdings keine Aussage getroffen [vgl. Cavezzali et al., 2009, S. i]. Durch die in der Rostfeuerung höheren Verbrennungstemperaturen kann jedoch eine höhere NO_x-Bildung erwartet werden.

Es kann festgehalten werden, dass sowohl für die Wirbelschichttechnik als auch für die Rostfeuerung keine Gründe vorliegen, die eine Kombination mit einer CO₂-Abscheidung mittels Post-Combustion gefährden. Es bestehen sogar einige Vorteile der Wirbelschichttechnik gegenüber der üblichen Staubfeuerung (NO_x -/SO₂-Emissionen, Brennstoffaufbereitung).

3.2.3.1.2 Rauchgasqualität Der entscheidende Parameter für die Anwendbarkeit der Post-Combustion-Technologie ist die Rauchgasqualität. Die hierfür zum Einsatz kommende chemische Rauchgaswäsche (bislang in der Regel mit MEA) stellt an das zu reinigende Rauchgas gewisse Qualitätsanforderungen. Die in Tabelle 3.4 dargestellten Grenzwerte im Rauchgas müssen durch Rauchgasreinigungsanlagen eingehalten werden, um eine übermäßige Degradation des Absorptionsmittels zu vermeiden. Bei zu hohen SO_x - oder NO_x -Gehalten würden diese mit dem Absorptionsmittel MEA zu korrosiven Salzen reagieren [vgl. Clarke et al., 2004, S. 25 f.].

Schadstoff	Grenzwert		Quelle
Senadovon	mg/m^3	ppm	e actio
SO_2	10 bis 30 (bei 6 % O_2)		Irons et al. [2007, S. 29]
$\rm SO_x$		10	Clarke et al. [2004, S. 25]
$\rm SO_x$	40	20	Cavezzali et al. $[2009, S. C-16]$
NO_2	40		Irons et al. $[2007, S. 33]$
NO_2	30	10	Cavezzali et al. $[2009, S. C-16]$
NO_x		20	Clarke et al. [2004, S. 26]
Feinstaub	5		Irons et al. [2007, S. 34]

Tabelle 3.4: Grenzwerte für $\mathrm{SO}_{\mathrm{x}},\,\mathrm{NO}_{\mathrm{x}}$ und Feinstaub im Rauchgas für chemische Absorption

Hierbei handelt es sich bei den SO₂- und NO_x-Gehalten um Grenzwerte, die deutlich

unter den gesetzlich vorgeschriebenen Grenzwerten liegen: So fordert die 13. Bundesimmissionsschutzverordnung bei der Verbrennung von Biomasse einen SO₂-Grenzwert von 200 mg/m^3 einzuhalten. Für die NO_x-Emissionen gilt bei einer Feuerungswärmeleistung zwischen 50 MW und 300 MW ein Grenzwert von 250 mg/m^3 [vgl. Bundestag, 2009b, S.5].

SO_x-Gehalte Wie im Bereich der Grundlagen der Bioenergienutzung dargestellt, hängen die entstehenden SO₂-Emissionen von den im Brennstoff enthaltenen Schwefelgehalten ab (vgl. Kapitel 2.1.1.4.1). In Abhängigkeit vom Kaliumgehalt kann ein Teil der Schwefeldioxid-Emissionen in die Asche eingebunden werden (vgl. Kapitel 2.1.1.5.2). Kohlen enthalten deutlich mehr Schwefel als Holz: Im Mittel enthält Steinkohle 44mal und Braunkohle 65-mal mehr Schwefel als Laub- und Nadelholz. Im Gegensatz zu Kohlekraftwerken kann bei Biomassekraftwerken davon ausgegangen werden, dass die Rauchgase der Holzverbrennung nicht zusätzlich mittels einer Rauchgasentschwefelungsanlage (REA) gereinigt werden müssen, wenn sie in einem Wirbelschichtkessel verbrannt werden. In Cavezzali et al. [vgl. 2009, S. iv] ist ebenfalls festgelegt worden, dass für die CO₂-Abscheidung mittels chemischer Absorption bei Steinkohleneinsatz auch im Falle der Wirbelschichttechnologie neben der Kalkeindüsung in die Brennkammer eine REA zum Einsatz kommen muss. Im Falle des Biomasseeinsatzes kann auf die REA verzichtet werden und durch Kalkeindüsung in die Brennkammer die gewünschten SO₂-Grenzwerte eingehalten werden. Auch in Koornneef et al. [vgl. 2011, S. 176] und in Rhodes [vgl. 2007, S.17] wird davon ausgegangen, dass durch eine Substitution von Steinkohle durch Biomasse die SO₂-Bildung reduziert werden kann.

Somit kann festgehalten werden, dass bei holzartiger Biomasse erwartet werden kann, dass aufgrund der deutlich niedrigeren Schwefelgehalte im Brennstoff gegenüber Steinund Braunkohle die Rauchgasentschwefelung für die CO₂-Abscheidung mittels Post-Combustion eingespart werden kann.

 NO_x -Gehalte In Kapitel 2.1.1.5.2 ist ausgeführt worden, dass ein erhöhter Stickstoffgehalt im Brennstoff in der Regel auch zu höheren NO_x -Emissionen führt. Nadelholz weist mit durchschnittlich 0,14 % den niedrigsten Stickstoffgehalt auf. Laubholz liegt mit 0,49 % deutlich darüber. Braun- und Steinkohle weisen mit 0,9 % und 1,6 % die höchsten Stickstoffgehalte auf (vgl. Abbildung 2.5 in Kapitel 2.1.1.4.1). Innerhalb der NO_x -Emissionen sind es die NO₂-Emissionen, die sich mit dem chemischen Absorptionsmittel ungewollt verbinden [vgl. Irons et al., 2007, S. 33]. Die unkritischen NO-Emissionen machen den Großteil der NO_x -Emissionen aus: Der NO_2 -Anteil an den gesamten NO_x -Emissionen beträgt bei Staubfeuerungen 3 % bis 5 % und bei Wirbelschichtfeuerungen

15 % bis 20 % [vgl. Cavezzali et al., 2009, S. C-16]. Hierbei gilt zu bedenken, dass die absoluten NO_x -Emissionen in Wirbelschichtkesseln jedoch deutlich niedriger ausfallen, so dass auch die absolute Menge der NO_2 -Emissionen in Wirbelschichtkesseln niedriger ist. Für die Verbrennung in Wirbelschichten wird in Cavezzali et al. [vgl. 2009, S. B-5 f., S. iv] generell keine Entstickungsanlage vorgesehen (auch nicht für Steinkohlen trotz der höheren Stickstoffgehalte). Hierbei sind ähnliche Stickstoffgehalte zugrunde gelegt worden (Kohle: 1,77 %, Holz: 0,3 %). Lediglich für die Kohleverbrennung in der Staubfeuerung ist eine Harnstoffeindüsung zur Entstickung vorgesehen.

Somit ist festzuhalten, dass in Hinsicht auf die Entstickung vor allem die Wahl der Feuerungsart entscheidend ist. Hierbei ist die Wirbelschichttechnik zu bevorzugen, so dass der etwas geringere Brennstoff-Stickstoffgehalt der Biomasse nicht entscheidend ist.

 CO_2 -Gehalte In Kapitel 3.2.2.5 sind die CO₂-Konzentrationen in den Rauchgasen für die Brennstoffe Steinkohle, Braunkohle und holzartige Biomasse mit unterschiedlichen Wassergehalten berechnet worden. Bei einem Wassergehalt von 10 % beträgt die volumetrische CO₂-Konzentration bei allen Energieträgern einheitlich rund 12,7 %. Bei zunehmendem Wassergehalt sinkt die CO₂-Konzentration bei Holz stärker als bei den fossilen Energieträgern ab. Diese erreicht 11,0 % bei einem Wassergehalt von 50 %.

Die vorgenannten CO_2 -Gehalte betragen in jedem Fall weniger als 15 %. Unterhalb dieser Grenze (bzw. einem CO_2 -Partialdruck von 10 bar) stellt die chemische Rauchgaswäsche (im Vergleich zur physikalischen Absorption) die effizientere Alternative dar. Die chemische Absorption weist den niedrigsten spezifischen Energieaufwand bei hohen CO_2 -Konzentrationen im Rauchgas auf (vgl. Kapitel 2.1.3.1.2).

Weitere Anforderungen an die Rauchgasqualität Neben den genannten Grenzwerten an SO_2 und NO_2 muss ebenfalls der Restsauerstoffgehalt im Rauchgas möglichst gering gehalten werden, da durch diesen zum einen die Korrosionsgefahr ansteigt und die Degradation des Absorptionsmittels zu Salzen verstärkt wird. Dies kann entweder durch die Zugabe eines Hemmstoffs, der die Sauerstoffverbindung mit dem Absorptionsmittel oder Metall verringert, oder durch eine Verbrennung mit nur geringem Sauerstoffüberschuss erreicht werden [vgl. Clarke et al., 2004, S. 25].

Die Rauchgastemperatur für die chemische Absorption mittels MEA darf maximal 50 °C betragen, um nicht die Effizienz des Waschmittels zu verringern und die MEA-Degradation zu fördern [vgl. Clarke et al., 2004, S. 25]. Diese niedrige Rauchgastemperatur wird dazu führen, dass der im Rauchgas enthaltene Wasserdampf teilweise auskondensiert. Grenzwerte für den Wassergehalt des Rauchgases für die chemische Absorption werden in der Literatur allerdings nicht genannt. Somit lässt der in der Regel höhere Wassergehalt von holzartiger Biomasse gegenüber Steinkohle in dieser Hinsicht keinen unmittelbaren Nachteil erwarten.

3.2.3.2 Holz und Oxyfuel

In den derzeit weltweit geplanten oder im Betrieb befindlichen zwei CCS-Projekten auf Basis der Oxyfuel-Technologie ist Biomasse bislang nicht eingesetzt oder ein Einsatz geplant worden [vgl. Koornneef et al., 2011, S. 178], (vgl. Kapitel 2.1.3.1.5). Im Folgenden wird darauf eingegangen, welche grundsätzlichen Vor- und Nachteile eine Substitution von Kohle durch holzartige Biomasse in einer Oxyfuel-Verbrennung hätte.

Die bisher betriebenen Oxyfuel-Anlagen mit reiner Sauerstoffverbrennung verwenden als Feuerungsart die Staubfeuerung, bei der der Brennstoff sehr fein aufgemahlen wird, bevor er in die Brennkammer eingedüst wird. Der Wassergehalt muss unter 15 % bis 20 % liegen, damit der Brennstoff eigenständig zündet [vgl. Kaltschmitt et al., 2009, S. 520]. Bei den geforderten Wassergehalten und für die notwendige Aufmahlung wären ausschließlich Holzpellets geeignet, da naturbelassenes Holz aufgrund seiner faserigen Struktur nicht so fein aufgemahlen werden kann.

Eine Kombination von Wirbelschichtfeuerung mit reiner Sauerstoffverbrennung hätte den Vorteil, dass preisgünstigere Holzhackschnitzel eingesetzt werden könnten. Diese hätten durch ihren höheren Wassergehalt weiterhin den Vorteil, dass die Verbrennung bei einer niedrigeren Temperatur ablaufen würde, was der Materialermüdung entgegenwirken würde (vgl. Kapitel 2.1.3.1.1). Neben diesen beiden Vorteilen gibt es eine wesentliche technische Herausforderung: Bei einer Wirbelschichtfeuerung wird der Großteil der Verbrennungsluft als Primärluft eingesetzt, um das Wirbelbett in der Schwebe zu halten bzw. ansteigen zu lassen [vgl. Kaltschmitt et al., 2009, S. 516]. Würde anstelle normaler Luft mit einem Sauerstoffgehalt von 21 % reiner Sauerstoff verwendet werden, so würde der Luftvolumenstrom um 79 % reduziert werden, wodurch die Fluidisierung des Bettmaterials schwierig erscheint. Eine mögliche Lösung hierfür ist eine Abgasrezirkulation, bei der die bereits gereinigten Rauchgase erneut der Feuerung zugeführt werden, um für einen ausreichend großen Luftvolumenstrom zu sorgen. Die Abgasrezirkulation wird im Bereich der Motorentechnik bereits seit Jahren erfolgreich angewendet, um die Verbrennungstemperaturen zu reduzieren [vgl. Ocik et al., 2009, S.23], [vgl. Kaltschmitt et al., 2009, S. 422 f.]. In einer spanischen Versuchsanlage soll die Kombination aus einer zirkulierenden Wirbelschichtfeuerung und reiner Sauerstoffverbrennung bei einer Feuerungswärmeleistung von 30 MW getestet werden. Hierbei ist jedoch von vornherein eingeplant, dass die Anlage sowohl mit atmosphärischer Luft als auch mit reinem Sauerstoff betrieben werden kann. Versuchsergebnisse sind bislang nicht veröffentlicht worden [vgl. CIUDEN, 2009, S.7ff.], [vgl. CIUDEN, 2012, S.11].

Im Kapitel 3.2.2.3 ist der spezifische Sauerstoffbedarf für holzartige Biomassen im Vergleich zu Stein- und Braunkohle errechnet worden. Als Ergebnis konnte festgehalten werden, dass holzartige Biomasse in Bezug auf die Trockenmasse ca. 30 % weniger Sauerstoff benötigt als Steinkohle. In Abbildung 3.9 wird der Sauerstoffbedarf zur vollständigen Oxidation in Abhängigkeit vom Heizwert dargestellt. Hierbei weisen die Brennstoffe einen Wassergehalt von 10 % auf, was Holzpellets entspricht, um den oben ausgeführten Anforderungen der Oxyfuel-Verbrennung Rechnung zu tragen. Es ist zum einen zu erkennen, dass Steinkohle in Bezug auf den enthaltenen Heizwert den geringsten Sauerstoffbedarf aufweist. Zum anderen wird deutlich, dass holzartige Biomasse zwar einen um knapp 7% bis 9% höheren Mindestsauerstoffbedarf hat, der zusätzlich benötigte Sauerstoff jedoch rund 13 % bis 17 % unter dem Wert für Steinkohle liegt. Braunkohle weist mit 0,096 kg/MJ den größten zusätzlich benötigten Sauerstoffbedarf auf.

Abbildung 3.9: Heizwertspezifischer Sauerstoffbedarf für die vollständige Oxidation von Kohle und Holz (10 % Wassergehalt), eigene Berechnung mit Daten für Holz aus Hartmann et al. [2000b, S. 148 f.], für Kohle aus Fritsche [2010a], vgl. Anhang Tabelle A.10

Abbildung 3.10 stellt die heizwertspezifischen Rauchgasvolumina dar. Wie auch bei der Verbrennung mit Luft ergeben sich bei niedrigen Wassergehalten für Braunkohle die größten spezifischen Rauchgasvolumina. Steinkohle weist jeweils das geringste Rauch-

gasvolumen auf. Die holzartige Biomasse liegt bei niedrigen Wassergehalten um ca. 5 % darunter, bei Wassergehalten von 50 % leicht über dem Wert für Braunkohle. Diese Angleichung beruht darauf, dass der steigende Wassergehalt das spezifische Rauchgasvolumen bei der Biomasse stärker ansteigen lässt als bei der Braunkohle, da sich die gleiche Menge an Wasserdampf bei der Biomasse auf einen niedrigeren Heizwert (bei gleichem Wassergehalt) als bei der Braunkohle aufteilt. Auch hier liegt jedoch der Fokus auf den Angaben mit 10 % Wassergehalt, da sich anlagentechnisch vor allem Holzpellets für die Verbrennung in Staubfeuerungen eignen.

Abbildung 3.10: Energiespezifisches Rauchgasvolumen bei der Verbrennung von Kohle und Holz mit reinem Sauerstoff (0%, 10% und 50% Wassergehalt), eigene Berechnung mit Daten für Holz aus Hartmann et al. [2000b, S. 148 f.], für Kohle aus Fritsche [2010a], vgl. Anhang Tabelle A.13

In Abbildung 3.10 ist ebenfalls die CO_2 -Konzentration im Rauchgas (als Prozentzahlen) enthalten. Es ist eindeutig zu erkennen, dass bei allen Wassergehalten die höchste CO_2 -Konzentration bei dem Rauchgas aus Steinkohle vorliegt. Die CO_2 -Konzentration in den Rauchgasen der Biomassen liegt durchschnittlich um 6 %-Punkte unter dem Wert für Braunkohle bzw. 10 %-Punkte unter dem Wert für Steinkohle. Dieser Unterschied bei der CO_2 -Konzentration in den Rauchgasen gegenüber der Variante Post-Combustion kann dadurch erklärt werden, dass Steinkohle einen deutlich höheren zusätzlichen Sauerstoffbedarf gegenüber holzartiger Biomasse aufweist und somit die Rauchgase bei der Variante Post-Combustion deutlich mehr Stickstoff enthalten. Dieser Stickstoff ist bei der Variante Oxyfuel nicht mehr enthalten, so dass hier der Effekt stärker hervortritt, dass die fossilen Energieträger einen höheren elementaren C-Gehalt aufweisen.

3.2.3.3 Holz und Pre-Combustion

Bislang werden weltweit 17 CCS-Projekte auf Basis der Pre-Combustion-Technologie geplant, von denen in vier Anlagen neben fossilen Energieträgern ebenfalls Biomasse eingesetzt werden soll (vgl. Kapitel 2.1.3.1.5). Die weltweit mehr als 350 Vergasungsanlagen ohne CCS mit einer Synthesegasleistung von ca. 43 GW werden vor allem mit Steinkohle und Öl betrieben. Der Einsatz von Biomasse findet nur äußerst begrenzt statt [vgl. Metz et al., 2005, S. 132]. An anderer Stelle wird von 60 GW installierter Synthesegasleistung berichtet, die pro Jahr um 3 GW ansteigt. Es ist somit ein Trend zur Vergasung erkennbar. Die größte derzeit betriebene Biomassevergasung (ohne CCS) befindet sich in den Niederlanden und hat eine Synthesegasleistung von 85 MW [vgl. Larson et al., 2005, S. 9 ff.]. Nach neueren Einschätzungen wird der Betrieb von Biomasse-IGCC-Anlagen aufgrund technischer Herausforderungen innerhalb der nächsten zehn Jahre nicht wirtschaftlich darstellbar sein [vgl. Rhodes und Keith, 2008, S. 322].

Wie im Kapitel 2.1.1.4.2 beschrieben, verfügt Biomasse über einen größeren Anteil an flüchtigen Bestandteilen (ca. 80%) im Vergleich zu fossilen Energieträgern. Trotz dieses Vorteils weist die Vergasung von Biomasse im Vergleich zur Kohlevergasung einen entscheidenden Nachteil auf: Bei der Vergasung von Biomasse entstehen in Abhängigkeit vom eingesetzten Vergasertyp, Vergasungsmittel und Biomassetyp unterschiedlich große Anteile an Teer, die für die anschließende Nutzung zur Strom- und Wärmeerzeugung schädlich sind (vgl. Kapitel 2.1.1.7). Bei Teeren handelt es sich um höher siedende Kohlenwasserstoffverbindungen, die in der pyrolytischen Zersetzung entstehen und eine molare Masse von mehr als 78 g/mol aufweisen (größer als Benzen) [vgl. Kaltschmitt et al., 2009, S. 625]. Die Teergehalte können entweder durch primäre Maßnahmen (innerhalb der Vergasung) oder in einer nachgeschalteten Reinigungsstufe entfernt werden. Als primäre Maßnahme wird vor allem die Zugabe von zusätzlichem Sauerstoff angesehen, so dass die Teere oxidieren können. Dies ist zwar anlagentechnisch einfach zu lösen, reduziert allerdings den Heizwert des Produktgases. Der Wirkungsgrad der Vergasung könnte hierdurch um etwa 2%-Punkte bis 3%-Punkte reduziert werden [vgl. Vanselow, 2010]. Eine andere Möglichkeit besteht darin, die Teere zu cracken. Dies kann entweder durch hohe Temperaturen (> 1200 °C) erreicht werden, was jedoch den Ascheschmelztemperaturen sehr nahe kommt, oder durch die Zugabe von Katalysatoren (z. B. Dolomit) bei mäßigen Temperaturen (750 °C bis 900 °C) realisiert werden [vgl. Larson et al., 2005, S. 10].

Die Entfernung der Teere ist für die nachgeschaltete CO₂-Abtrennung eine zwingende Voraussetzung, da diese bei Temperaturen betrieben werden muss, die deutlich unter der Kondensationstemperatur der Teere liegen [vgl. Larson et al., 2005, S. 24]. Aufgrund der Elementarzusammensetzung von Biomasse (hoher Sauerstoffgehalt) wird die Bildung von Kohlenwasserstoffen im Vergleich zu den fossilen Brennstoffen begünstigt. Im Fall von Kohlen kann der enthaltene Kohlenstoff zu einem größeren Anteil zu Kohlenmonoxid teiloxidieren, so dass weniger Teer entsteht [vgl. Vanselow, 2010].

Neben der Entstehung von Teeren gibt es weitere Bestandteile im Produktgas, die für eine anschließende Verwendung entfernt werden müssen. Hierbei handelt es sich vor allem um Alkali-Verbindungen, Ammoniak, Schwefelverbindungen und Partikel, für die es größtenteils Reinigungsverfahren gibt, die technisch verfügbar und im Bereich der Biomasse-Vergasung wirtschaftlich angewendet werden können. Die Gehalte an Alkali-Elementen (v. a. Kalium und Natrium) sind in Holzbrennstoffen und Stein-/Braunkohle vergleichbar (vgl. Kapitel 3.2.2.2), so dass es zu keinen Unterschieden bei den möglichen Belagsbildungen oder Korrosionserscheinungen kommt. Die Gehalte an Stickstoff und Schwefel sind in holzartigen Brennstoffen jedoch niedriger als in Stein- oder Braunkohle (vgl. Kapitel 3.2.2.2). Der geringere Stickstoffgehalt im Brennstoff führt zu einer geringeren Ammoniakbildung. Diese muss zwar nicht aus technischen Gründen entfernt werden, jedoch zur Einhaltung bestehender Emissionsgrenzwerte. Durch den niedrigeren Schwefelgehalt in der holzartigen Biomasse werden weniger Schwefelwasserstoffe gebildet, so dass auf eine Reinigung verzichtet werden kann. Diese Reinigung wäre jedoch nur bei Brennstoffzellen nötig, da bei der Verbrennung des Produktgases in einer Gasturbine das H₂S in SO₂ umgewandelt wird. Das SO₂ muss wiederum im Falle der Kohlevergasung nach der Gasturbine aus den Rauchgases entfernt werden, während dieser Prozessschritt bei der Biomasse-Vergasung entfallen kann. Inwieweit bei der Vergasung von holzartiger Biomasse mehr oder weniger Staub als bei der Vergasung von Kohlen entsteht, ist nicht bekannt [vgl. Larson et al., 2005, S. 12 f.].

Für die Vergasung von Biomasse im IGCC-Prozess werden bislang vor allem Anlagen mit Sauerstoff und Wasserdampf als Vergasungsmittel diskutiert. Die Vergasung mittels Sauerstoff verspricht die höheren CO₂-Abscheidegrade von mehr als 90 %. Hierfür müssen allerdings noch entscheidende technische Herausforderungen gelöst werden: Die Einbringung von großen Mengen an Biomasse in einen Hochdruck-Vergaser (ca. 30 bar) mit Sauerstoff als Vergasungsmittel wird als kritisch angesehen. Um Biomasse mit geringer Dichte einzubringen, werden vor allem Schleusbehälter eingesetzt. Diese haben den Nachteil, dass große Mengen an inertem Gas verdichtet werden müssen, was zu erheblichem Kompressionsaufwand führt [vgl. Larson et al., 2005, S. 9]. Des Weiteren weist Biomasse eine gegenüber Kohle andere Vergasungscharakteristik auf und erfordert eine intensivere Gasreinigung (siehe oben), die Anlagenanpassungen notwendig machen [vgl. Smith et al., 2006, S. 3 ff.].

In Abbildung 3.11 werden typische Synthesegaszuammensetzungen verglichen, die bei der Vergasung von Kohle und holzartiger Biomasse entstehen. Hierbei sind ausschließlich Vergasungstypen dargestellt, die mit Sauerstoff und bzw. oder Wasserdampf vergasen, da die Vergasung mit Luft hohe, unerwünschte Stickstoffanteile im Produktgas bedingt [vgl. Kaltschmitt et al., 2009, S. 619]. Obwohl die Synthesegaszusammensetzung von einer Reihe von Faktoren, z. B. Vergasungsmittel, Vergaserbauart, Temperatur und Druck abhängig ist, lässt sich erkennen, dass im Synthesegas der Holzvergasung höhere Anteile an Wasserstoff enthalten sind. Dieser höhere Anteile wird jedoch dadurch relativiert, dass in drei der vier Kohle-Synthesegasen noch große Anteile an Wasserdampf enthalten sind, die mit den noch erheblichen Anteilen an CO zu weiterem H_2 reagieren können. Das Gleiche gilt für den zunächst höheren Anteil an CO₂ im Biomasse-Synthesegas: Die deutlich größeren CO-Anteile im Kohle-Synthesegas werden in der CO-Shift-Reaktion zu CO₂ umgesetzt.

Es kann an dieser Stelle festgehalten werden, dass in der Zusammensetzung des Synthesegases keine wesentlichen Unterschiede zwischen der Vergasung von Holz und Kohle zu erkennen sind. Die deutlich höheren Elementargehalte an Sauerstoff und Wasserstoff und der typischerweise höhere Wassergehalt in holzartiger Biomasse stellen bei der Vergasung des Brennstoffs keinen Nachteil dar, da für die Vergasung ohnehin Wasserdampf oder Sauerstoff hinzugegeben wird. Die Vergasung in Wirbelschichtvergasern, die die wirtschaftlichste Lösung für größere Anlagen ab 10 MW darstellt, ist besonders für Brennstoffe mit hohen Wassergehalten, unterschiedlicher Partikelgröße und Dichte geeignet [vgl. Steinbrecher und Walter, 2001, S. 14], [vgl. Chandel und Williams, 2009, S. 11].

3.2.3.4 Biomethan und Post-Combustion

Die Kombination aus Biomethan und CO_2 -Abscheidung mittels Post-Combustion stellt technisch gesehen keinen Unterschied zur CO_2 -Abscheidung aus fossilem Erdgas dar. In Kapitel 2.1.1.8 ist ausgeführt, wie das rohe Biogas auf Erdgasqualität aufbereitet wird. Somit wird im Folgenden davon ausgegangen, dass vor allem Biomethan in Form von Erdgas eingesetzt wird. Dieses Biomethan weist eine Gaszusammensetzung auf, wie diese für die Einspeisung in das Erdgasnetz gefordert wird (vgl. Tabelle 2.1 in Kapitel 2.1.1.8). Durch die Abscheidung des CO_2 in der Biomethanaufbereitung weist Biomethan einen deutlich geringeren Kohlenstoffanteil auf. Deswegen wird im Folgenden zusätzlich "rohes Biogas" betrachtet, das lediglich vorgereinigt ist (getrocknet, H₂S entfernt). Dieses Biogas enthält noch knapp 40 % an CO_2 und soll verdeutlichen, welchen Effekt es hätte, wenn statt

Abbildung 3.11: Typische Zusammensetzung von Synthesegas aus Biomasse und Kohle, eigene Darstellung mit Daten für Holz aus Kaltschmitt et al. [2009, S. 621], für Kohle aus Linßen et al. [2006, S. 110 ff.]

Biomethan vorgereinigtes Biogas eingesetzt werden würde. Eine tatsächliche Anwendung mit vorgereinigtem Biogas erscheint jedoch unwahrscheinlich, da Biogas in Deutschland dezentral in relativ kleinen Einheiten erzeugt wird [vgl. Koornneef et al., 2011, S. 22]. Eine CO₂-Abscheidung lässt sich jedoch erst ab einer Anlagengröße von ca. 20 MW elektrischer Leistung wirtschaftlich darstellen. Darüber hinaus ist ein Transport des vorgereinigten Biogases im Erdgasnetz nicht möglich und ein unabhängiger Transport über weite Strecken erscheint zu aufwändig. Auch stellt die saisonal schwankende Substratqualität eine besondere Herausforderung für die CCS-Integration dar [vgl. EBTP/ZEP, 2012, S. 13].

Als weitere Alternative könnte das bei Aufbereitung von Biogas zu Biomethan abgeschiedene CO_2 grundsätzlich ebenfalls gespeichert werden und somit zu negativen CO_2 -Emissionen führen. Da sich diese Arbeit jedoch auf die CO_2 -Sequestrierung bei der Strom- und Wärmeerzeugung konzentriert, wird dieser Pfad hier nicht weiter verfolgt, bietet bei Bedarf jedoch einen Ansatzpunkt für zukünftige Forschungsaktivitäten.

Die spezifischen CO_2 -Emissionen betragen für Biomethan 0,054 kg/MJ, was Erdgasangaben in der Literatur entspricht [vgl. DEHSt, 2007, S. 1]. Vorgereinigtes Biogas weist spezifische CO_2 -Emissionen von 0,079 kg/MJ auf.

Abbildung 3.12 zeigt die Zusammensetzung der Rauchgase nach der Verbrennung von Biomethan und Biogas mit Umgebungsluft. Es fällt auf, dass der Anteil an Stickstoff aus der Luft, der als Inertgas enthalten ist, deutlich größer ausfällt als bei der Verbrennung von holzartiger Biomasse oder Kohle. Dies rührt daher, dass bei der Verbrennung von Biomethan, das zu 80 % bis 99 % aus Methan besteht, deutlich mehr Sauerstoff für ein stöchiometrische Verbrennung benötigt wird: Während bei holzartiger Biomasse mit einem Wassergehalt von 10 % der brennstoffspezifische Sauerstoffeinsatz lediglich 1,24 kg/kg beträgt, ist bei Biomethan ein Sauerstoffeinsatz von 1,79 kg/kg notwendig. Durch die Verbrennung mit Umgebungsluft und einem Luftüberschuss von 40 % ergeben sich insgesamt deutlich größere Rauchgasvolumina als bei der Verbrennung fester Brennstoffe. Biomethan beinhaltet im Rauchgas ebenfalls recht hohe Wasserbestandteile, da im Methan ein hoher elementarer Wasserstoffanteil vorliegt.

Es ergeben sich somit CO₂-Gehalte im Rauchgas von 7,2 % bei der Verbrennung von Biomethan und von 11,2 % bei der (theoretischen) Verbrennung von Biogas. Der höhere CO₂-Gehalt in den Biogasrauchgasen wird vor allem durch den höheren CO₂-Gehalt im Roh-Biogas verursacht. Die Ergebnisse für Biomethan korrelieren mit Berechnungen in IEA/OECD [vgl. 2004, S. 68] (7 %), liegen jedoch über den Angaben in Radgen et al. [vgl. 2006, S. 43], wo die CO₂-Konzentration in den Rauchgasen eines GuD-Kraftwerks mit 4 % angegeben wird. Die errechneten Werte liegen jeweils unter den CO₂-Gehalten im Rauchgas der Verbrennung fester Brennstoffe. Lediglich Biomasse mit einem Wassergehalt von 50 % weist eine CO₂-Konzentration von 11,0 % auf, was dem (theoretischen) Wert für vorgereinigtes Biogas entspricht.

Als CO_2 -Abtrennverfahren wird bei diesen niedrigen CO_2 -Gehalten bei Umgebungsdruck die chemische Absorption zum Einsatz kommen, die jedoch bei den im Vergleich zu Festbrennstoffen geringeren CO_2 -Gehalten relativ schlechte Wirkungsgrade aufweist (vgl. Kapitel 2.1.3.1.2).

3.2.3.5 Weitere Bio-CCS-Technologiepfade

Die in Kapitel 3.2.3.1 bis 3.2.3.4 untersuchten Verfahren werden aus heutiger Sicht am wahrscheinlichsten in Zukunft im großindustriellen Maßstabe eingesetzt werden. Im Folgenden wird für die in Kapitel 2.1.3.1.1 dargestellten innovativen Verfahren geprüft, inwieweit sie technisch für den Einsatz holzartiger Biomasse bzw. Biomethan geeignet wären. Alle diese Verfahren stimmen darin überein, dass ein nahezu reiner CO_2 -Strom erzeugt wird, der anschließend gespeichert werden kann.

Die derzeit angestrebte Lösung zur CO_2 -Speicherung sieht die CO_2 -Einlagerung in abgeschlossene Räume im Untergrund vor. Hierbei handelt es sich um eine langfristige

Abbildung 3.12: Zusammensetzung der Rauchgase bei der Verbrennung von Biogas und Biomethan, eigene Berechnung mit Daten aus Tabelle 2.1, vgl. Anhang Tabelle A.14

Deponierung mit dem Ziel, das CO_2 über lange Zeiträume dem CO_2 -Kreislauf zu entziehen. Alternativ könnte das abgeschiedene CO_2 auch in Form von lebender Biomasse (z. B. Algen) gespeichert werden. Diese Option wird im Folgenden ebenfalls technisch näher untersucht. Auf die Nachhaltigkeit dieser Maßnahmen wird in Kapitel 5.4.4.2 näher eingegangen.

3.2.3.5.1 Innovative CO₂-Prozessvarianten Die in Kapitel 2.1.3.1.1 vorgestellten innovativen Prozessvarianten der CO₂-Abscheidung lassen bei einem Wechsel von fossilen auf biogene Brennstoffe geringe Unterschiede erkennen. Auf diese kleinen Vor- und Nachteile wird im Folgenden näher eingegangen.

Das Verfahren Chemical Looping ähnelt stark dem Oxyfuel-Verfahren. Hierfür ist im Kapitel 3.2.3.2 errechnet worden, dass beim Einsatz von Biomasse ein geringerer Sauerstoffbedarf besteht und die CO₂-Konzentration in den Rauchgasen niedriger ist. Da der Brennstoff vor der Verbrennung vergast werden muss, sind hierfür ebenfalls zunächst die technischen Herausforderungen der Biomassevergasung zu lösen (vgl. Kapitel 3.2.3.3: Teerbildung, Biomasse-Eintragung).

Bei der Rauchgaswäsche mittels Kalk bei 650 °C (Carbonate Looping) scheint holzartige

Biomasse einen gewissen Vorteil aufzuweisen: Durch die geringeren Schwefelgehalte im Brennstoff beinhaltet das Rauchgas einen geringeren SO₂-Gehalt. Das im Rauchgas nach einer Kohleverbrennung vermehrt enthaltene SO₂ reagiert irreversibel mit dem Kalk, so dass der ohnehin intensive Kalkeinsatz noch weiter gesteigert wird: Auch bei der Bindung des CO₂ ist bereits nach ca. 15 Zyklen nur noch 20 % der Kalkreaktivität vorhanden [vgl. Epple und Ströhle, 2008, S. 86 f.]. Falls in Zukunft die Anzahl der Zyklen mit ausreichend hoher Reaktivität gesteigert werden kann, hätte der Einsatz von holzartiger Biomasse in diesem Verfahren somit Vorteile gegenüber Stein- oder Braunkohle.

In Bezug auf die innovativen Verfahren mittels Hochtemperaturbrennstoffzellen und ZECA-Prozess kann aus heutiger Sicht und auf Basis der bislang vorliegenden technischen Details zu den Verfahren nicht gesagt werden, inwieweit der Ersatz von Kohle durch holzartige Biomasse Vor- oder Nachteile bedeuten kann. Da der ZECA-Prozess die Verfahrensschritte Vergasung und Karbonatisierung (Carbonate Looping) beinhaltet, würden hierfür die vorher genannten, kleineren Vor- bzw. Nachteile der holzartigen Biomasse wiederum zum Tragen kommen.

Der AZEP-Prozess sieht die Verbrennung eines gasförmigen Brennnstoffs in einer Gasturbine vor, in der mittels einer integrierten Membran der Feuerung reiner Sauerstoff zugeführt wird. Da sich das hierbei zum Einsatz kommende Biomethan technisch nicht vom bisher vorgesehenen Erdgas unterscheidet, sind keine besonderen Herausforderung für die Substitution durch Biomethan zu erkennen.

3.2.3.5.2 CCS mit Algen als CO₂-Speicher Wie in Kapitel 2.1.3.1.1 eingeführt, besteht ebenfalls die Möglichkeit, die Rauchgase eines Kraftwerkes zur Aufzucht von Algen zu verwenden. Diese Rauchgase sollten ein SO₂-Gehalt von maximal 50 ppm aufweisen, da ansonsten der pH-Wert für ein optimales Algenwachstum zu niedrig wird. Bei höheren SO₂-Konzentrationen kann durch Zugabe weiterer Additive (z. B. NaOH – Natriumhydroxid) der pH-Wert wieder ausgeglichen werden. Die NO_x-Gehalte sollten 240 ppm nicht überschreiten, um das Algenwachstum nicht zu behindern [vgl. PowerPlantCCS, 2010, S. 3]. Diese Grenzwerte sind im Vergleich zu den Grenzwerten, die das Rauchgas für die CO_2 -Abtrennung mittels chemischer Absorption einhalten muss, relativ hoch (10 ppm bis 20 ppm, vgl. Kapitel 3.2.3.1). Durch die geringen Schwefel- und Stickstoffgehalte in der holzartigen Biomasse weisen diese hierbei einen gewissen Vorteil gegenüber kohleartigen Brennstoffen auf.

Für die Aufzucht der Algen existieren bislang zwei Varianten, die jeweils Vor- und Nachteile aufweisen: Offene Behälter sind zwar technisch einfacher aufgebaut und dadurch kostengünstiger, doch gegenüber den geschlossenen Systemen benötigen sie mehr Grundfläche, lassen mehr Verdunstung zu und können leichter kontaminiert werden. Durch die genauere Prozessführung ist die Algenproduktivität in geschlossenen Systemen ebenfalls höher [vgl. Rasmussen, 2008, S. 10 ff.]. Für diese geschlossenen Systeme liegt die CO_2 -Aufnahme bei $120 t/(ha \cdot a)$ bis $200 t/(ha \cdot a)$. In einer Versuchsanlage von RWE wird bei einer Fläche von 0,06 ha eine CO₂-Menge von 12 t/a aufgenommen, was einer CO_2 -Aufnahme von 200 t/(ha · a) entspricht [vgl. RWE, 2008, S. 3 ff.]. Betrachtet man ein Holzheizkraftwerk, so müssen pro MW Feuerungswärmeleistung rund 0,22 t/h holzartige Biomasse mit einem Wassergehalt von 10% und einem Heizwert von $16.5 \, \text{GJ/t}$ eingesetzt werden. Hieraus entstehen bei brennstoffmassenbezogenen CO_2 -Emissionen von ca. 1,6 t/t spezifische CO_2 -Emissionen von ca. $0.35 t/(MW \cdot h)$. Geht man von einer jährlichen Betriebszeit von 8000 h aus, so entstehen in Bezug auf die Feuerungswärmeleistung CO₂-Emissionen in Höhe von $2800 t/(MW \cdot a)$, die von Algen auf eine Fläche von mindestens 14 ha aufgenommen werden können. Für ein Kraftwerk mit einer Feuerungswärmeleistung von 100 MW würde sich eine Fläche von 14 km² ergeben, was ein Vielfaches der eigentlichen Kraftwerksfläche betragen würde. Die Ergebnisse stimmen größenordnungsmäßig mit Berechnungen an anderer Stelle überein, wo für ein Kondensationskraftwerk auf Kohlebasis mit einer elektrischen Leistung von 300 MW eine Algenfläche von 200 km² bestimmt worden ist [vgl. Göttlicher, 1999, S. 11].

Es gibt eine Reihe von unterschiedlichen Algensorten, die sogar unter extremen Umgebungsbedingungen leben können: Es existieren Spezies, die bei einer CO_2 -Konzentration von 100 % und einer Rauchgastemperatur von bis zu 80 °C überleben können. Die meisten Algensorten zeigen jedoch bei CO_2 -Konzentrationen von 5 % bis 20 % und Rauchgastemperaturen von weniger als 60 °C die besten Wachstumsraten [vgl. PowerPlantCCS, 2010, S. 6]. Die Rauchgase nach der Verbrennung von holzartiger Biomasse oder Biomethan mit Umgebungsluft weisen hierfür passende CO_2 -Gehalte auf. Eine Kombination mit der Prozessvariante Pre-Combustion erscheint schwierig, da hier die CO_2 -Konzentration üblicherweise bei mehr als 20 % liegt (vgl. Kapitel 3.2.3.3).

Eine Kombination mit der Prozessvariante Post-Combustion erscheint besonders interessant zu sein: Der spezifische Energieaufwand bei der Abscheidung von 50 % des enthaltenen CO_2 liegt bei 1,08 MJ/kg, während dieser Wert auf 1,95 MJ/kg ansteigt, wenn 90 % des enthaltenen CO_2 abgeschieden werden sollen [vgl. Fischedick et al., 2007, S. 219]. Algen könnten sich an dieser Stelle eine gute Ergänzung herausstellen, um nach der CO_2 -Abtrennung mittels chemischer Absorption das verbleibende CO_2 auf eine effizientere Art herauszufiltern. Da bei der natürlichen Photosynthese noch CO_2 der Atmosphäre (mit sehr geringen CO_2 -Gehalten) entzogen werden kann, sind mit Hilfe dieser Kombination deutlich höhere CO_2 -Abscheidegrade als die für die chemische Absorption üblichen 90 % möglich [vgl. Fischedick et al., 2007, S. 219]. Durch die Aufteilung der CO_2 -Abscheidungsleistung kann ebenfalls der berechnete Flächenbedarf für die Algenaufzucht erheblich reduziert werden.

3.2.4 Veränderungen für CO₂-Kompression und CO₂-Transport

Für einen effizienten Transport muss das CO_2 vorab verdichtet werden (vgl. Kapitel 2.1.3.2). Da es sich sowohl bei der CO_2 -Abscheidung aus fossilen Energieträgern als auch aus biogenen Brennstoffen (holzartige Biomasse, Biomethan) jeweils um einen gleichermaßen nahezu reinen CO_2 -Strom handelt, werden für die CO_2 -Kompression aus technischer Sicht keine Unterschiede erwartet [vgl. Gough und Upham, 2010, S. 16]. Lediglich die unterschiedlichen heizwertspezifischen CO_2 -Emissionsfaktoren der fossilen und biogenen Brennstoffe führen bei gleichen spezifischen CO_2 -Kompressionsaufwendungen zu unterschiedlich hohen Wirkungsgradverlusten (vgl. Kapitel 3.2.6).

Ein ähnliches Bild ergibt sich für den CO₂-Transport. Hierbei ist es vor allem wichtig, dass der Wassergehalt im CO₂ kleiner als 50 ppm ist [vgl. Fischedick et al., 2006, S. 108]. Nur so können bei der Konstruktion der Pipeline die deutlich günstigeren, einfachen Kohlenstoffstähle zum Einsatz kommen. Für den Wassergehalt im CO₂ ist es unerheblich, dass Biomasse üblicherweise hohe Wassergehalte im erntefrischen Zustand aufweist: Die für Kohlefeuerungen standardmäßig zum Einsatz kommende nasse Rauchgasentschwefelung sorgt dafür, dass das Rauchgas nach der REA zu 100 % wassergesättigt ist [vgl. Cavezzali et al., 2009, S. C-10]. Somit ist eine Trocknung des CO₂-Stroms für den Transport ohnehin notwendig. Für die einzelnen Verfahren der CO₂-Abtrennung sind keine Grenzwerte für den Wassergehalt im Rauchgas bzw. im Brenngas bekannt (vgl. Kapitel 3.2.3).

3.2.5 Veränderung des spezifischen Energieaufwands

Im Bereich der technischen Grundlagen sind für die einzelnen CO₂-Abtrennverfahren die spezifischen Energieaufwände und die Wirkungsgradverluste eines Kondensationskraftwerks auf Kohlebasis aufgezeigt worden (vgl. Kapitel 2.1.3.1). Im Folgenden wird die Veränderung des spezifischen Energieaufwands für die CO₂-Abtrennung beim Einsatz biogener Brennstoffe vorgestellt. Auf die anschließende CO₂-Kompression wird in Kapitel 3.2.6 eingegangen.

Die spezifischen Unterschiede im Energieaufwand zwischen CCS auf Basis von fossilen Energieträgern und biogenen Energieträgern ergeben sich somit im Bereich der CO₂-Abtrennvarianten. In Abbildung 3.13 ist dargestellt, mit welchem Energieaufwand bei den einzelnen Verfahren jeweils CO₂ aus fossilen und aus erneuerbaren Energieträgern abgeschieden bzw. Sauerstoff für die Verbrennung erzeugt wird. Dabei wird für holzartige Biomasse, Braun- und Steinkohle jeweils für die CO₂-Abtrennung mittels chemischer Rauchgaswäsche und für die Herstellung von Sauerstoff für die Oxyfuel-Prozessvariante angegeben, mit welchem spezifischen Energieaufwand eine Tonne CO_2 abgeschieden wird und welchen Anteil dieser Energieaufwand am Heizwert des verwendeten Brennstoffs ausmacht. Für Biomethan bzw. Biogas werden diese Angaben nur für die chemische Absorption gemacht, da diese bei den vergleichsweise geringen CO_2 -Gehalten im Rauchgas bevorzugt eingesetzt wird (vgl. Kapitel 3.2.3.4).

Die CCS-Variante Pre-Combustion wird in diesem Vergleich nicht berücksichtigt, da in Kapitel 3.2.3.3 festgestellt worden ist, dass hinsichtlich des spezifischen Energieaufwands zur CO₂-Abtrennung keine Unterschiede zwischen fossilen und biogenen Festbrennstoffen zu erkennen sind. An anderer Stelle ist man zu einem ähnlichen Ergebnis gekommen: Für ein IGCC-Kraftwerk mit CO₂-Abscheidung auf Basis von Kohle wird mit einem Wirkungsgradverlust von 6 % bis 9 % gerechnet, während bei einem Biomasse-IGCC-Kraftwerk einschließlich CO₂-Abscheidung ein Wirkungsgradverlust von 8 % eingeplant werden muss. Dabei ist jedoch zu beachten, dass die absoluten Wirkungsgrade der Steinkohlekraftwerke 9%-Punkte bis 22%-Punkte über dem Wirkungsgrad des Biomassekraftwerks liegen (26%) [vgl. Bennaceur et al., 2008, S.65]. Der niedrige elektrische Wirkungsgrad deutet darauf hin, dass es sich um eine relativ geringe Anlagengröße handelt: In Larson et al. [vgl. 2005, S. 19] wird für ein Biomasse-IGCC-Kraftwerk mit einer elektrischen Leistung von 350 MW ein elektrischer Wirkungsgrad von 39,4 % (mit CO₂-Abscheidung) bzw. 49,5% (ohne CO₂-Abscheidung) angegeben. Für eine CO₂-Abscheideleistung von 294 t/hwird für die eigentliche CO₂-Abscheidung eine elektrische Leistung von 3,8 MW und für die CO₂-Kompression eine elektrische Leistung von 31,8 MW benötigt. Auf Basis dieser Werte kann errechnet werden, dass in Bezug auf das abgeschiedene CO_2 eine elektrische Energie von $0.047 \, \text{GJ/t}$ benötigt wird. Dies entspricht bei einem elektrischen Wirkungsgrad von 33% einem spezifischen Energiebedarf ca. $0.14 \, \text{GJ/t}$. Diese Berechnung stimmt mit Ergebnissen in Fischedick et al. [vgl. 2007, S. 219] überein, wo der spezifische Energieaufwand für die physikalische Absorption mit 0,1 GJ/t angegeben wird.

Für die Variante Post-Combustion auf Basis holzartiger Brennstoffe ist auffällig, dass höhere Wassergehalte und damit niedrigere CO₂-Gehalte im Rauchgas nur zu einem geringen Anstieg des CO₂-spezifischen Energieaufwands führen: Während dieser Wert bei absolut trockenem Holz bei 2,95 GJ/t liegt, steigt er bei 50 % Wassergehalt auf 3,04 GJ/t. Dies entspricht einem Anstieg von 3,1 %. Durch die nahezu identischen CO₂-Gehalte bei vergleichbaren Wassergehalten zwischen Holz und Braun-/Steinkohle ergeben sich hierbei fast keine Differenzen. Betrachtet man jedoch den spezifischen Energieaufwand bezogen auf die enthaltene Heizenergie, so ergeben sich stärkere Unterschiede: Bei allen drei dargestellten Wassergehalten weist Braunkohle die höchsten Werte auf. Bei einem Wassergehalt von 50 % beträgt der Energieaufwand zur Abtrennung des enthaltenen CO₂ 35,6 % der im Brennstoff enthaltenen Heizenergie. Die niedrigsten Werte weisen bei allen drei

Abbildung 3.13: Spezifischer Energieaufwand zur CO₂-Abscheidung und O₂-Erzeugung, eigene Berechnung mit Daten für Holz aus Hartmann et al. [2000b, S. 148 f.], für Kohle aus Fritsche [2010a], für Biogas-/Biomethan aus Tabelle 2.1, vgl. Anhang Tabelle A.13 und Tabelle A.14

Wassergehalten holzartige Biomasse auf – bei absolut trockenem Laubholz werden 25,4% der im Brennstoff enthaltenen Heizenergie für die chemische CO₂-Abtrennung benötigt. Hierbei handelt es sich ausschließlich um den Energieaufwand für die CO₂-Abscheidung, so dass bei Berücksichtigung von CO₂-Kompression und CO₂-Transport der Anteil noch weiter ansteigt. Die holzartige Biomasse weist einen geringeren Energieverbrauch in Bezug auf die enthaltene Heizenergie auf, da aus ihr durch den niedrigeren Kohlenstoffgehalt weniger CO₂ je Heizwert abgeschieden werden kann (vgl. Kapitel 3.2.2.4).

Die CO₂-Abscheidung mittels chemischer Absorption aus gereinigtem Biogas, das durchschnittlich noch einen CO₂-Anteil von 40 % enthält, weist einen ähnlichen spezifischen Energieaufwand wie biogene oder fossile Festbrennstoffe auf (3,0 GJ/t). Aufgrund der erhöhten Energiedichte gegenüber festen Brennstoffen wird jedoch lediglich 23,8 % der enthaltenen Brennenergie für die CO₂-Abscheidung aufgewendet, was um knapp 2 %-Punkte unter dem Wert für trockenes Holz liegt. Der spezifische Energieaufwand zur CO₂-Abscheidung aus aufbereitetem Biomethan liegt zwar wegen des geringeren CO₂-Gehalts mit 3,2 GJ/t um ca. 6 % höher als bei Biogas, doch aufgrund des höheren Energiegehalts und des größeren Wasserstoffanteils im Biomethan macht der Anteil der

 CO_2 -Abscheidung lediglich 17,3 % der enthaltenen Brennenergie aus.

Der für die CCS-Prozessvariante Oxyfuel notwendige Sauerstoff lässt sich im Vergleich zur chemischen Absorption bei allen Wassergehalten mit einem niedrigeren spezifischen Energieaufwand erzeugen: Durchschnittlich liegt dieser Wert knapp 20% unter dem Wert der chemischen CO₂-Abtrennung. Da es sich hierbei um elektrische Energie handelt, ist für die Berechnung ein elektrischer Wirkungsgrad von 33% zugrunde gelegt worden. Dieses Ergebnis korreliert mit dem in Kapitel 2.1.3.1.4 aufgezeigten elektrischen Wirkungsgradverlust der wesentlichen CCS-Prozessvarianten: Dort beträgt der elektrische Wirkungsgradverlust für die Oxyfuel-Variante durchschnittlich 10,2% und liegt somit um 13% bis 16% unter den Werten für die chemische Absorption für feste und gasförmige Brennstoffe. Für alle untersuchten Wassergehalte lässt sich weiterhin feststellen, dass der spezifische Energieaufwand für die holzartige Biomasse um knapp 7 % niedriger ist als für die fossilen Brennstoffe. Dies resultiert aus den höheren Sauerstoffgehalten in der Biomasse und dem demzufolge geringeren Sauerstoffbedarf für die vollständige Verbrennung (vgl. Kapitel 3.2.3.2). Der spezifische Energieaufwand zur Sauerstofferzeugung in Bezug auf die im Brennstoff enthaltene Heizenergie beträgt ebenfalls knapp 20%weniger als der entsprechende Wert für die chemische Absorption. Im Minimum werden für absolut trockenes Laubholz 19,7 % der enthaltenen Heizenergie zur Sauerstoffaufbereitung aufgewendet. Im Maximun steigt dieser Wert auf 29,2 % für Braunkohle mit einem Wassergehalt von 50%.

Die in diesem Abschnitt berechneten Veränderungen des spezifischen Energieaufwands basieren auf einem CO₂-Abscheidegrad von 90%. Für die CCS-Prozessvariante Oxyfuel liegt der CO₂-Abscheidegrad noch höher, da der gesamte, trockene und gereinigte Rauchgasvolumenstrom eingelagert wird (vgl. Kapitel 2.1.3.1.1). Bei der CCS-Prozessvariante Post-Combustion sind jedoch niedrigere CO₂-Abscheidegrade vorstellbar: Durch den Einsatz von Biomasse ist die CO₂-Bilanz der Energieumwandlung auch ohne CCS fast CO_2 -neutral, so dass auch bei einem CO_2 -Abscheidegrad von beispielsweise 50 % noch immer CO₂ aus der Atmosphäre entfernt wird. Der Vorteil eines niedrigeren CO₂-Abscheidegrads liegt darin, dass der spezifische Energieaufwand reduziert werden kann: Der spezifische Energieaufwand bei der Abscheidung von 50% des im Rauchgasstrom enthaltenen CO₂ beträgt 1,08 MJ/kg, während dieser Wert auf 1,95 MJ/kg ansteigt, wenn 90 % des enthaltenen CO₂ abgeschieden werden sollen [vgl. Fischedick et al., 2007, S. 219]. Dieser Wert ist im Vergleich zu Angaben an anderer Stelle (ca. 2,9 GJ/t bis 3,4 GJ/t [vgl. Bennaceur et al., 2008, S. 49]) relativ niedrig, verdeutlicht aber das Verhältnis zwischen einem Abscheidegrad von 90 % und 50 %: Bei einem CO_2 -Abscheidegrad von 50 % wird lediglich $55\,\%$ der spezifischen Energie eingesetzt, die für einen Abscheidegrad von $90\,\%$ nötig wären. Hierdurch würden sich die in Abbildung 3.13 dargestellten spezifischen Ener-

gieaufwände von ca. 3,0 GJ/t auf ca. 1,7 GJ/t reduzieren. Der spezifische Energieaufwand in Bezug auf den enthaltenen Heizwert würde sich noch drastischer reduzieren, da sich ebenfalls der abgeschiedene CO₂-Strom von 90 % auf 50 % reduziert. Auf eine Variation des CO₂-Abscheidegrads und eine mögliche Mischfeuerung aus fossilen und erneuerbaren Energieträgern wird im Rahmen der wirtschaftlichen Analyse näher eingegangen (vgl. Kapitel 4.5.1.1). Ein ähnlicher Effekt für die CCS-Variante Pre-Combustion auf Basis der physikalischen Rauchgaswäsche ist nicht bekannt.

3.2.6 Wirkungsgradverlust

Die detaillierte Berechnung von Wirkungsgradverlusten auf Basis konkreter Anlagenkonfigurationen für Biomasse-CCS-Heizkraftwerke wird an dieser Stelle nicht durchgeführt. Ausgehend von den Wirkungsgradverlusten der wesentlichen CCS-Varianten (vgl. Abbildung 2.18 in Kapitel 2.1.3.1.4) wird errechnet, welche Wirkungsgradverlust-Unterschiede sich für die CO₂-Abscheidung und CO₂-Kompression bei einem Brennstoffwechsel von fossilen zu erneuerbaren Energieträgern ergeben. Die CO₂-Kompression wird hierbei ebenfalls berücksichtigt, da sie typischerweise dem Wirkungsgradverlust des Kraftwerks zugerechnet wird, weil die elektrische Kompressionsenergie den elektrischen Eigenbedarf erhöht. Aufgrund der in Kapitel 3.1.1 vorgestellten Methodik wird im Folgenden immer zunächst auf die Wirkungsgradverluste der CO₂-Kompression und anschließend auf die Wirkungsgradverluste der CO₂-Abscheidung eingegangen.

Bei Steinkohle mit einem Wassergehalt von 10% tritt für die CO₂-Kompression ein elektrischer Wirkungsgradverlust von 4,2% ein (vgl. Abbildung 3.14). Dies entspricht Berechnungen in Radgen et al. [vgl. 2006, S. 143 ff.], wo 4,4 % als CO₂-Kompressionsaufwand errechnet worden ist. Der elektrische Wirkungsgradverlust für die CO₂-Kompression liegt für holzartige Biomasse mit einem Wassergehalt von 10% aufgrund der niedrigeren spezifischen CO₂-Emissionen bei 3,8%. Bei einem Wassergehalt von 50% liegt der spezifische Energieaufwand für die CO₂-Kompression mit 4,3 % über dem Wert für Steinkohle, da die spezifischen CO₂-Emissionen hier höher sind als bei Steinkohle mit 10% Wassergehalt. Der gleiche Effekt kommt bei der Berechnung des Wirkungsgradverlusts durch die CO₂-Abscheidung zum Tragen: Aufgrund der niedrigeren CO₂-Emissionen je Energieeinheit weist der Einsatz von holzartiger Biomasse einen geringeren Wirkungsgradverlust auf. Der Unterschied gegenüber Steinkohle macht 0,75%-Punkte aus. Die etwas geringere CO_2 -Konzentration in den Rauchgasen (0,04%) führt dem gegenüber dazu, dass der elektrische Wirkungsgradverlust um 0,01 %-Punkte ansteigt und hat somit einen deutlich untergeordneten Effekt. Es lässt sich an dieser Stelle festhalten, dass der Einsatz von trockener holzartiger Biomasse den elektrischen Wirkungsgrad bei der Integration der

 CO_2 -Abscheidung um ca. 0,75 %-Punkte gegenüber Steinkohle anhebt, während feuchte Biomasse den elektrischen Wirkungsgrad um 0,5 %-Punkte absenkt.

Abbildung 3.14: Elektrischer Wirkungsgradverlust von Steinkohle und Holz bei der CCS-Variante Post-Combustion, eigene Berechnung mit Daten aus Radgen et al. [2006, S. 143 ff.], Kapitel 3.2.5, vgl. Anhang Tabelle A.15

Der Vergleich der Wirkungsgradverluste zwischen Erdgas und Biogas wird an dieser Stelle ebenfalls durchgeführt, auch wenn ein Einsatz von vorgereinigtem Biogas in ausreichend großen GuD-Anlagen als unrealistisch eingeschätzt wird (vgl. Kapitel 3.2.3.4). Zwischen Biomethan und Erdgas würden sich in dieser Hinsicht keine Unterschiede im Wirkungsgrad ergeben, da das Biomethan in das Erdgasnetz eingespeist und somit vermischt wird (vgl. Abbildung 3.15). Aufgrund der ca. 40 % höheren spezifischen CO₂-Emissionen von Biogas gegenüber Erdgas fällt die Wirkungsgradreduktion durch die CO₂-Kompression beim Biogas deutlich höher aus. Der gleiche Effekt führt zu einem deutlich höheren Wirkungsgradverlust bei der CO₂-Abscheidung: 2,75 %-Punkte müssen zusätzlich aufgewendet werden, während durch die höhere CO₂-Konzentration in den Rauchgasen der elektrische Wirkungsgrad um 0,58 %-Punkte angehoben werden kann, was in Summe zu einer Wirkungsgradreduktion durch die CO₂-Abscheidung von 2,18 %-Punkten führt. Insgesamt wird durch den Einsatz von Biogas der elektrische Wirkungsgrad model CO₂-Abscheidung von 2,18 %-Punkten führt.

Für die CCS-Variante Oxyfuel ergibt sich für den elektrischen Wirkungsgradverlust in

Abbildung 3.15: Elektrischer Wirkungsgradverlust von Erdgas und Biogas bei der CCS-Variante Post-Combustion, eigene Berechnung mit Daten aus Radgen et al. [2006, S. 143 ff.], Kapitel 3.2.5, vgl. Anhang Tabelle A.15

Abbildung 3.16 ein ähnliches Bild wie für die Variante Post-Combustion: Der Wirkungsgradverlust fällt für holzartige Biomasse mit einem Wassergehalt von 10 % aufgrund der geringeren spezifischen CO₂-Emissionen etwas niedriger aus als für Steinkohle. Die Wirkungsgradreduktion für die CO₂-Abtrennung wird zu 0,56 %-Punkten durch die geringeren spezifischen CO₂-Emissionen und zu 0,46 %-Punkten durch den geringeren Sauerstoffbedarf bewirkt. Selbst bei einem Wassergehalt von 50 % sorgt der geringere Sauerstoffbedarf der Biomasse dafür, dass der Wirkungsgradverlust mit 10,1 %-Punkten geringfügig niedriger ausfällt als im Steinkohle-Betrieb (10,2 %-Punkte).

Für die CCS-Variante Pre-Combustion ist im Kapitel 3.2.5 festgestellt worden, dass anders als für die anderen CCS-Varianten kein Unterschied beim spezifischen Energieaufwand besteht. Somit ergeben sich die geringen Unterschiede im elektrischen Wirkungsgradverlust in Abbildung 3.17 lediglich durch die Unterschiede in Bezug auf die spezifischen CO₂-Emissionen. Hierdurch ergeben sich geringe Differenzen beim Wirkungsgradverlust von maximal 0,8%-Punkten.

Die hier durchgeführten Berechnungen basieren aus Gründen der Vergleichbarkeit auf Forschungsergebnissen auf der Grundlage großer Kohlekraftwerke. Für den Einsatz trockener Biomasse in Form von Holzpellets erscheint ein Betrieb von Anlagen in einer solchen

Abbildung 3.16: Elektrischer Wirkungsgradverlust von Steinkohle und Holz bei der CCS-Variante Oxyfuel, eigene Berechnung mit Daten aus Radgen et al. [2006, S. 143 ff.], Kapitel 3.2.5, vgl. Anhang Tabelle A.15

Abbildung 3.17: Elektrischer Wirkungsgradverlust von Steinkohle und Holz bei der CCS-Variante Pre-Combustion, eigene Berechnung mit Daten aus Radgen et al. [2006, S. 143 ff.], Kapitel 3.2.5, vgl. Anhang Tabelle A.15

Größenordnung realistisch. Für Dampfkraftwerke auf Biomassebasis werden erfahrungsgemäß Dampfparameter von 410 °C bis 535 °C und 40 bar bis 135 bar gewählt. Hierbei handelt es sich bisher um relativ kleine Anlagen mit einer elektrischen Leistung von 5 MW bis 20 MW [vgl. Simon et al., 2008, S. 14]. An anderer Stelle wird von Dampftemperaturen von 480 °C bis 490 °C berichtet, die jedoch nur durch einen Festbett-Endüberhitzer erreicht werden (z. B. durch einen Fließbettkühler bei einer zirkulierenden Wirbelschichtfeuerung). Der Frischdampfdruck beträgt hierbei 87 bar. Ansonsten werden Dampftemperaturen von 420 °C bis 450 °C erreicht [vgl. Eltrop et al., 2007, S. 132 ff.]. Die Dampfparameter sowie die Anlagengröße fallen deutlich kleiner aus als für Kondensationskraftwerke auf Basis fossiler Energieträger (600 °C, 250 bar, > 800 MW, vgl. Kapitel 3.1.2). Hieraus ergibt sich die in der Methodik beschriebene Wirkungsgradreduktion um 9%-Punkte für die Kraftwerke auf Basis von feuchter Biomasse. Es muss jedoch in zukünftigen Arbeiten untersucht werden, inwieweit diese kleineren Anlagen die Wirkungsgradveränderungen durch CCS weiter beeinflussen (z. B. durch Brennstoffvortrocknung oder Skaleneffekte).

3.3 Analyse der Kombination aus KWK und CCS

Bei den bislang errichteten CCS-Demonstrationsprojekten sind üblicherweise Kondensationsturbinen zur reinen Stromerzeugung zum Einsatz gekommen. Im Folgenden werden Heizkraftwerke untersucht, die die Kondensationsenergie des Dampfes zum Aufheizen von Fernheizwasser verwenden. Hierbei kommen Gegendruckturbinen mit Anzapf- bzw. Dampfentnahmemöglichkeit für die MEA-Regeneration zum Einsatz. Im Unterkapitel 3.3.1 wird zunächst untersucht, inwieweit die Kombination aus KWK und den wesentlichen CCS-Varianten, die in Kapitel 3.2.3 definiert worden sind, zu möglichen Veränderungen hinsichtlich des Wirkungsgradverlusts führen kann. Dieses Kapitel stellt somit eine Vorauswahl für die nähere Analyse der Variante Post-Combustion in Kapitel 3.3.2 dar.

Wie auch im Kapitel 3.2 steht hierbei die CO₂-Abscheidung im Fokus, da der Verbrauch an elektrischer Energie für die CO₂-Kompression oder den CO₂-Transport von der Integration von Kraft-Wärme-Kopplung nicht beeinflusst wird.

3.3.1 Kurzbeurteilung der Kombination aus KWK und den wesentlichen CCS-Varianten

Die Kombination von KWK mit der CCS-Variante Post-Combustion stellt zunächst die interessanteste Kombination dar, da die Regeneration des chemischen Absorptionsmittels mit Hilfe von Wärme durchgeführt wird. Die Regeneration wird bei Temperaturen durchgeführt (ca. 100 °C bis 140 °C), bei denen üblicherweise der Wasserdampf für die

Fernwärmeerzeugung ohnehin kondensiert [vgl. Metz et al., 2005, S. 115]. In einem reinen Kondensationskraftwerk, das keine Fernwärme auskoppelt, kondensiert der Dampf bei deutlich geringeren Temperaturen (ca. 30 °C bis 40 °C). Für die Regeneration des chemischen Absorptionsmittels werden zwischen knapp 50 % und ca. 66 % des Niedertemperaturdampfes benötigt [vgl. Irons et al., 2007, S. 35], [vgl. Göttlicher, 1999, S. 45]. Die Kombination von KWK mit der CO₂-Abscheidungsvariante Post-Combustion wird bereits in der Biomasse-CCS-Studie der IEA empfohlen und in Kapitel 3.3.2 näher untersucht [vgl. Cavezzali et al., 2009, S. xvii]. Da auch dem Gasturbinenprozess zur Wirkungsgradsteigerung üblicherweise eine Dampfturbine nachgeschaltet ist, gelten die Ausführungen zum reinen Dampfkraftprozess ebenfalls für den Gas- und Dampfturbinenprozess. Neben der Regeneration des Waschmittels hat die Integration der Post-Combustion weitere Auswirkungen auf den elektrischen Wirkungsgrad: Die optimierte Rauchgasreinigung (vgl. Kapitel 3.2.3.1.2) sowie der Betrieb von zusätzlichen Pumpen, Gebläsen und der nachgelagerten CO₂-Kompression führen zu einem erhöhten Energieaufwand [vgl. Klebes et al., 2010, S.8]. Diese Auswirkungen werden in Kapitel 3.3.2 jedoch nicht näher untersucht, da diese sowohl für den KWK-Prozess als auch für den reinen Stromerzeugungsprozess identisch sind.

Bei der CCS-Variante Oxyfuel entsteht der wesentliche Wirkungsgradverlust durch die Herstellung des nahezu reinen Verbrennungssauerstoffs. Die Herstellung dieses Sauerstoffs wird üblicherweise mittels Tieftemperaturverfahren durchgeführt, was derzeit Stand der Technik ist. Hierbei wird die angesaugte Luft zunächst auf 6 bar verdichtet und auf Umgebungstemperatur rückgekühlt. Nach einer Reinigung von Staub, CO₂ und Wasserdampf wird die Temperatur des verdichteten Gemisches aus Sauerstoff und Stickstoff mit bereits gekühlten Gasströmen weiter abgesenkt (auf ca. -180 °C). Beim anschließenden Entspannen kühlt sich das Gemisch ab und verflüssigt sich zum Teil. Da die Siedepunkte von Sauerstoff (-183 °C) und Stickstoff (-196 °C) recht nah zusammen liegen, wird die anschließende Destillation mehrfach in einer Rektifikationssäule durchgeführt. In dieser Rektifikationssäule rieselt die bereits verflüssigte Luft (v.a. Sauerstoff, aber auch Stickstoff) von oben nach unten und sammelt sich auf mehreren Siebböden. Im Gegenstrom steigt die noch nicht verflüssigte Luft nach oben und sorgt dafür, dass an den Siebböden der in der aufsteigenden Luft enthaltenen Sauerstoff aufgrund des höheren Siedepunkts auskondensiert und im Gegenzug der bereits kondensierte Stickstoff wieder verdampft und dem nach unten hin immer reiner werdenden flüssigen Sauerstoff entzogen wird [vgl. Linde AG, o. J., S. 1 f.]. Es ist somit erkennbar, dass eine Kombination mit Kraft-Wärme-Kopplung, bei der Wärme auf einem Temperaturniveau von ca. 60 °C bis 120 °C vorhanden wäre, ohne den elektrischen Wirkungsgrad zu verschlechtern, keinen entscheidenden Effekt hat. Es werden lediglich 10 % des Energieaufwands für die Kälteer-

zeugung eingesetzt [vgl. Göttlicher, 1999, S. 19]. Somit hätte ein möglicher Einsatz einer Kältemaschine, die mit der Abwärme des KWK-Prozesses gespeist würde, nur geringe Auswirkungen auf des Gesamt-Energieaufwand für die O₂-Erzeugung und wird somit in der Folge nicht näher betrachtet.

Die Kombination von Pre-Combustion und KWK lässt im Bereich der CO₂-Abscheidung keine Synergieeffekte erkennen. Das Brenngas wird unter einem hohen Druck (30 bar bis 60 bar) dem physikalischen Absorptionsmittel zugeführt. Das CO₂ löst sich wieder von dem Absorbens, sobald der Druck reduziert wird. Es wird somit (im Gegensatz zur chemischen Absorption) keine Wärmeenergie zum Lösen des CO₂ eingesetzt. Die für die physikalische Absorption notwendigen hohen Drücke sind durch die vorgeschaltete Vergasung ohnehin gegeben (vgl. Kapitel 2.1.3.1). Einzig im vorgelagerten Vergasungsprozess könnte im Falle eines allothermen Betriebs (die zur Vergasung notwendige Wärme wird von außen zugegeben, vgl. Kapitel 2.1.1.7) ein Teil der notwendigen Wärme durch Niedertemperaturwärme bereitgestellt werden. Die für die Vergasung benötigten Temperaturen liegen jedoch deutlich über den Temperaturen, die üblicherweise für Fernwärme verwendet werden (60 °C bis 120 °C): Bei typischen Vergasungstemperaturen von 850 °C bis 950 °C erscheint eine Kombination wenig sinnvoll.

3.3.2 Wirkungsgradverlust der Variante Post-Combustion mit KWK

Die Wirkungsgradverluste der Variante Post-Combustion in Kombination mit einem Kondensationsprozess sowie einem KWK-Prozess im Sommer sowie Winter sind in Abbildung 3.18 dargestellt. Für alle drei untersuchten Fälle mit und ohne CO₂-Abscheidung werden Verluste für Kessel, Dampferzeuger und Generator in Höhe von 10,5 % unterstellt.

Für den Kondensationsprozess ohne CC ergibt sich auf Basis der in Kapitel 3.1.2 festgelegten Parameter ein elektrischer Wirkungsgrad von 41,8%. Durch die Integration der CO₂-Abscheidung sinkt dieser um 8,0%-Punkte auf 33,8%. Dieser Verlust entspricht dem Wirkungsgradverlust für die CO₂-Abscheidung in Kapitel 3.2.6 und setzt sich zusammen aus dem Wirkungsgradverlust durch die MEA-Integration im Dampf-kraftprozess (5,46%-Punkte) sowie 2,55%-Punkte Wirkungsgradverlust für die weiteren elektrischen Verluste für den MEA-Prozess (z. B. Betrieb zusätzlicher Pumpen und der Wäscher-Kolonne). Diese 2,6%-Punkte Wirkungsgradverlust für die weiteren elektrischen Verluste im MEA-Prozess treten für den KWK-Betrieb im Sommer und Winter ebenfalls in gleicher Höhe auf. Es ist gleichermaßen zu erkennen, dass im Kondensationsbetrieb mit CO₂-Abscheidung deutlich weniger Energie über den Kühlturm an die Umgebung abgegeben wird (24,4%) als im Kondensationsbetrieb ohne CO₂-Abscheidung (47,7%). Durch die Nutzung der Kondensationswärme für die MEA-Regeneration auf einem Tem-

Abbildung 3.18: Wirkungsgradverlust durch die CCS-Variante Post-Combustion im Kondensations-, KWK-Sommer- und KWK-Winter-Betrieb, eigene Berechnung mit Daten aus Holmgren [2010], Tuschy [2010], vgl. Anhang Tabelle A.16 bis Tabelle A.19

peraturniveau von 120 °C handelt es sich somit im weiteren Sinne hierbei um einen KWK-Prozess: Nach der MD-Turbine wird auf einem Druckniveau von 2 bar 52,4 % des Dampfes für die MEA-Regeneration entnommen und kondensiert anschließend vollständig aus. Hierdurch wird der Massenstrom durch die ND-Turbine deutlich reduziert. Diese Massenstromanteile stimmen mit Berechnungen an anderer Stelle überein [vgl. Irons et al., 2007, S. 35].

Im KWK-Betrieb im Sommer ohne CO_2 -Abscheidung ergibt sich ein elektrischer Bruttowirkungsgrad von 38,6 % und ein thermischer Wirkungsgrad von 50,9 %. Die Integration der MEA-Regeneration hat zur Folge, dass der elektrische Wirkungsgrad auf 32,1 % und der thermische Wirkungsgrad auf 26,1 % reduziert wird. Hieraus ergibt sich für die Stromproduktion eine relative Reduktion um ca. 17 % und für die Fernwärmeerzeugung um 49 %. Die Reduktion des elektrischen Wirkungsgrads fällt zwar mit 6,4 %-Punkten im Vergleich zum Kondensationsbetrieb geringer aus (8,0 %-Punkte), doch die Reduktion des thermischen Wirkungsgrads um 24,9 %-Punkte ist dafür umso intensiver. Die Ursache hierfür ist, dass aufgrund der MEA-Regeneration der Dampfmassenstrom durch die Heizkondensatoren um 51,3 % reduziert wird.

Im KWK-Betrieb im Winter ergeben sich durch die höhere Kondensationstemperatur (100 °C) ein geringerer elektrischer Wirkungsgrad (34,8 %) und ein höherer thermischer Wirkungsgrad (54,7 %) (vgl. rechte Seite in Abbildung 3.18). Durch die Integration der MEA-Regeneration wird der elektrische Wirkungsgrad aufgrund der ohnehin höheren Kondensationstemperatur weniger stark als im Sommer-KWK-Betrieb reduziert: Er sinkt um 4,6 %-Punkte auf 30,2 %. Der thermische Wirkungsgrad sinkt um 26,7 %-Punkte auf 28,0 %. Diese Reduktion fällt um 1,9 %-Punkte stärker aus als im Sommerbetrieb. Die Ursache hierfür liegt darin, dass in jedem Fall für die MEA-Regeneration 28,8 % der Brennstoffenergie eingesetzt werden muss und im Winter durch das um 40 °C höhere Temperaturniveau ohnehin ein größerer Anteil der Brennstoffenergie für die Fernwärmeproduktion eingesetzt wird, so dass dieser umso stärker reduziert wird. Hierfür fällt die Reduktion des elektrischen Wirkungsgrads im Winter umso geringer aus. Würde im KWK-Betrieb bei 120 °C kondensiert werden, so würde die MEA-Integration ausschließlich zu thermischen Wirkungsgradeinbußen führen und den elektrischen Wirkungsgrad nicht beeinflussen.

Die hier berechneten Wirkungsgradverluste für eine KWK-Anlage durch Integration der CCS-Variante Post-Combustion passen größenordnungsmäßig zu den Angaben in Uddin [vgl. 2004, S. 7], wo der Brennstoffausnutzungsgrad von 90 % auf 57 % reduziert wird und der Rückgang des elektrischen Wirkungsgrads 7 %-Punkte beträgt.

Würde anstelle der hier eingesetzten Steinkohle holzartige Biomasse mit einem Wassergehalt von 10 % zugrunde gelegt werden, so würden sich (wie in Kapitel 3.2.6 ausführlich beschrieben) aufgrund der geringeren spezifischen CO₂-Emissionen ebenfalls niedrigere Wirkungsgradeinbußen ergeben: Anstelle von 28,8 % werden lediglich 26,1 % der mit dem Brennstoff zugeführten Energie für die MEA-Regeneration aufgewendet. Gleichermaßen verringern sich die Wirkungsgradverluste ebenfalls um ca. 10 %: Für den KWK-Sommer-Betrieb ergeben sich beispielsweise ein elektrischer Wirkungsgradverlust von 5,8 %-Punkten statt 6,4 %-Punkten und ein thermischer Wirkungsgradverlust von 22,6 %-Punkten statt 24,9 %-Punkten.

3.4 Ergebnisse der technischen Analyse

Im Folgenden werden die Ergebnisse der technischen Analyse für die Kombination aus CCS und Biomasse (Kapitel 3.4.1) sowie aus CCS und Kraft-Wärme-Kopplung (Kapitel 3.4.2) zusammengefasst.

3.4.1 Ergebnisse für Bio-CCS

Das erste Ergebnis der technischen Analyse der Kombination aus Biomasse und CCS ist, dass holzartige Biomasse sowie Biomethan die beste Eignung unter den betrachteten biogenen Brennstoffen aufweisen, fossile Energieträger als Brennstoff in CCS-Anlagen zu ersetzen. Während Biomethan und Erdgas de facto identisch sind, weist holzartige Biomasse neben hoher Ascheschmelztemperaturen und niedriger Chlorgehalte weitere Vorteile gegenüber Stein- und Braunkohle auf: Niedrige Stickstoff- und Schwefelgehalte bewirken geringere SO₂- und NO_x-Emissionen im Vergleich zu fossilen Energieträgern, die eine einfachere Rauchgasreinigung ermöglichen. Auf der anderen Seite weist holzartige Biomasse einen deutlich geringeren elementaren Kohlenstoffgehalt auf (Holz 48 % bis 50 %, Kohlen 69 % bis 82 %), was zu niedrigeren CO₂-Mengen führt, die abgeschieden werden können. Dies wird jedoch durch den ebenfalls deutlich niedrigeren Heizwert annähernd ausgeglichen, so dass die heizwertspezifischen CO₂-Emissionen bei Holz ca. 10 % unter den Angaben von Steinkohle liegen. Der CO₂-Gehalt in den Rauchgasen beträgt bei einem gleichen Wassergehalt von 10 % für Steinkohle und für holzartige Biomasse einheitlich 12,7 %.

Bei der Analyse der wesentlichen CCS-Technologiepfade zeigt holzartige Biomasse bei der Variante Post-Combustion durch niedrige Schwefel- und Stickstoffgehalte bestimmte Vorteile auf, da für die chemische Absorption mittels Monoethanolamin geringe SO₂- und NO_x -Grenzwerte eingehalten werden müssen, um das Waschmittel nicht übermäßig zu degradieren. Die NO_x -Emissionen könnten durch den Einsatz der Wirbelschichtfeuerung, die sich für holzartige Biomasse in Form von Holzhackschnitzeln anbietet, noch weiter reduziert werden. Eine Verbrennung von Holz in derzeit für CCS üblichen Staubfeuerungen ist nur in Form von Holzpellets möglich.

Bei der Variante Oxyfuel wird der Sauerstoffbedarf in Bezug auf den Energiegehalt durch einen hohen Sauerstoffgehalt in holzartiger Biomasse gegenüber Stein- und Braunkohle bei einem Wassergehalt von 10 % um 13 % bis 24 % reduziert. Der Einsatz von holzartiger Biomasse bei der Variante Pre-Combustion lässt gewisse technische Herausforderungen erkennen, die vor allem aus der Teerbildung bei der Vergasung von Biomasse und der Einbringung von Biomasse in die Hochdruckvergasung bestehen. In Bezug auf die Produktgaszusammensetzung sind keine entscheidenden Unterschiede zwischen Holz und Kohle erkennbar. Da für die Vergasung häufig Wasserdampf beigegeben wird, stellt ein hoher Wassergehalt im Brennstoff kein Problem dar.

Die Verbrennung von gereinigtem Biogas mit einem CO₂-Anteil von knapp 40 % führt zu einer CO₂-Konzentration in den Rauchgasen von 11,2 %, während die Verbrennung von Biomethan, das fossilem Erdgas sehr ähnlich ist, zu einem CO₂-Gehalt von 7,2 % führt. Der hohe Sauerstoffbedarf des Methans führt dazu, dass das Rauchgas der Biomethanverbrennung große Anteile an Luftstickstoff enthält und somit der CO₂-Gehalt vergleichsweise gering ausfällt.

Für die innovativen CCS-Prozessvarianten können lediglich die allgemeinen Vor- und Nachteile der holzartigen Biomasse (geringerer Sauerstoffbedarf, geringere Schwefel- und Stickstoffgehalte) zu gewissen Vorteilen führen. Inwieweit Biomasse in der Zukunft geeigneter ist oder nicht, kann nur schwerlich vorausgesagt werden. Für die Kombination von Biomasse-CCS mit der Aufzucht von Algen könnte trotz großen Flächenbedarfs sprechen, dass eine Rauchgaswäsche der letzten CO₂-Anteile effizienter mit Algen durchgeführt und bei Bedarf der CO₂-Abscheidegrad auf mehr als 90 % gesteigert werden kann.

Der spezifische Energieaufwand zur CO_2 -Abtrennung mittels chemischer Absorption ist für fossile und biogene Energieträger bei allen untersuchten Wassergehalten nahezu gleich und beträgt ca. 3,0 GJ/t. Einzig für Biomethan liegt dieser Wert aufgrund der niedrigeren CO_2 -Konzentration im Rauchgas bei 3,2 GJ/t. Durch die niedrigeren spezifischen CO_2 -Emissionen von holzartiger Biomasse ist der spezifische Energieaufwand zur CO_2 -Abtrennung in Bezug auf den Heizwert bei den holzartigen Biomassen geringer als für Stein- und Braunkohle: Bei einem Wassergehalt von 10 % werden hier 26 % des Heizwerts für die CO_2 -Abscheidung berechnet, während dieser Wert für Stein- und Braunkohle 29 % bzw. 31 % beträgt. Noch niedriger ist dieser Wert für Biomethan, wo ca. 17 % des Brennwerts eingesetzt werden müssten.

Der Energieaufwand zur Erzeugung von reinem Sauerstoff für die Variante Oxyfuel lässt aufgrund des hohen Sauerstoffgehalts in holzartiger Biomasse etwas größere Unterschiede zwischen fossilen und erneuerbaren Energieträgern erkennen: Während der CO_2 -spezifische Energieaufwand für Biomasse bei einem Wassergehalt von 10 % 2,08 GJ/t beträgt, ist dieser Wert für die Kohlen 2,23 GJ/t. In Bezug auf den Heizwert sind bei gleichem Wassergehalt bei holzartiger Biomasse 20,4 % des Heizwerts für die O₂-Erzeugung vorzusehen, während für Steinkohle 24,1 % und für Braunkohle 26,2 % eingesetzt werden müssen. Somit ist erkennbar, dass der Energieaufwand für die Erzeugung von Sauerstoff allgemein niedriger ausfällt als für die CO_2 -Abscheidung mittels chemischer Absorption. Hierbei handelt es sich jedoch um elektrische Energie, die höherwertiger ist als in der chemischen Absorption eingesetzten Wärmeenergie.

Aufgrund der geringeren spezifischen CO_2 -Emissionen der holzartigen Biomasse und des geringeren Sauerstoffbedarfs bei der Variante Oxyfuel fallen auch die Wirkungsgradeinbußen geringer aus. Während bei der Variante Post-Combustion auf Basis fossiler Energieträger ein Wirkungsgradverlust von 12,2 % eingeplant werden muss, sinkt dieser auf 11,1 % bei holzartiger Biomasse mit einem Wassergehalt von 10 %. Bei einem Wassergehalt von 50 % steigt der Wirkungsgradverlust dahingegen auf 12,8 %, da die

heizwertspezifischen CO₂-Emissionen hier höher sind und die CO₂-Konzentration im Rauchgas gesunken ist. Biogas führt im Vergleich zu Biomethan bzw. fossilem Erdgas zu deutlich höheren Wirkungsgradrückgängen (14,8 % gegenüber 11,8 %), da die spezifischen CO₂-Emissionen hier erheblich höher sind. Durch den deutlich geringeren Sauerstoffbedarf der holzartigen Biomasse ist der Wirkungsgradverlust bei der Variante Oxyfuel auch bei einem Holz-Wassergehalt von 50 % noch niedriger als bei Steinkohle mit einem üblichen Wassergehalt von ca. 10 %: 10,2 % beträgt der Wirkungsgradrückgang bei Steinkohle, während dieser bei Holzpellets lediglich 8,8 % bzw. bei HHS (w=50 %) 10,1 % beträgt.

Bei der Variante Pre-Combustion kann nur aufgrund der unterschiedlichen spezifischen CO_2 -Emissionen gesagt werden, dass der Wirkungsgradverlust bei Holz mit 10 % Wassergehalt 8,3 % und mit 50 % Wassergehalt 9,4 % beträgt, während dieser Wert für Steinkohle bei 9,1 % liegt.

Allgemein ist jedoch bei den berechneten Wirkungsgradrückgängen zu beachten, dass die Annahme getroffen worden ist, dass die holzartige Biomassen in den Anlagen gleicher Größenordnung wie fossile Energieträger eingesetzt werden. Auch wenn für die Brennstoffe Holz mit 50 % Wassergehalt sowie Biogas zwar die elektrischen Wirkungsgrade jeweils um 9 %-Punkte reduziert worden sind, wird jeweils eine gleich effiziente CO_2 -Sequestrierung unterstellt. Dies macht die Ergebnisse zwar vergleichbar, muss jedoch in zukünftigen Studien noch näher untersucht werden.

3.4.2 Ergebnisse für KWK-CCS

Die Kurzbeurteilung der Kombination aus KWK und der wesentlichen CCS-Varianten in Kapitel 3.3.1 hat zum Ergebnis, dass vor allem bei der Kombination aus Post-Combustion und KWK Unterschiede gegenüber dem bislang üblichen Kondensationsbetrieb zu erwarten sind. Dies ist dadurch begründet, dass die Regeneration des chemischen Absorbens auf einem Temperaturniveau (100 °C bis 140 °C) stattfindet, auf dem im KWK-Betrieb zur Erreichung hoher Vorlauftemperaturen der Dampf zur Fernwärmeerzeugung kondensiert. Diese Fragestellung ist in Kapitel 3.3.2 näher untersucht worden. Die beiden anderen wesentlichen CCS-Methoden lassen keine Unterschiede erwarten, wenn sie in einem Heizkraftwerk statt in einem Kraftwerk zum Einsatz kommen: Bei der CCS-Variante Oxyfuel wird die Erzeugung des nahezu reinen Sauerstoffstroms durch die Integration der Kraft-Wärme-Kopplung nicht beeinflusst, zumal nur ein geringer Anteil der Arbeit für Kälteerzeugung eingesetzt wird. Für die CCS-Variante Pre-Combustion wäre das Temperaturniveau der Kondensationswärme mit 60 °C bis 100 °C eindeutig zu niedrig, um dem Vergasungsprozess im allothermen Betrieb bei ca. 900 °C Wärme zuzuführen.

Die weiteren Berechnungen untersuchen somit die Kombination aus KWK und Post

Combustion. Hierbei wird ein Dampfkraftprozess nach dem Clausius-Rankine-Prozess mit einer Frischdampftemperatur von 550 °C und einem Frischdampfdruck von 150 bar als Analysegrundlage genommen (mit einfacher Zwischenüberhitzung und zweifacher regenerativer Speisewasservorwärmung). Es wird ein reiner Kondensationsbetrieb (0,05 bar Kondensationsdruck) mit einem KWK-Sommer-Betrieb (60 °C Kondensationstemperatur) und mit einem KWK-Winter-Betrieb (100 °C Kondensationstemperatur) verglichen.

Für die notwendige Regeneration des chemischen Absorbens Monoethanolamin (MEA) werden 28,8% der im Kessel zugeführten Energie eingesetzt. Hierfür wird ein Dampfmassenstrom auf der zweiten Entnahmestufe (2 bar) verwendet, der in der Folge nicht mehr für die Stromerzeugung und im KWK-Betrieb ebenfalls nicht für die Fernwärmeerzeugung zur Verfügung steht. Für den reinen Kondensationsbetrieb ist hierdurch ein elektrischer Wirkungsgradrückgang um 5,5%-Punkte zu verzeichnen. Weitere 2,6%-Punkte werden für den Betrieb von Pumpen und Gebläsen für den MEA-Prozess benötigt. Gleichzeitig werden die sonst üblichen Kondensationsverluste im Kühlturm durch die Nutzung zur Regeneration des chemischen Absorbens um 23,3%-Punkte deutlich reduziert. Die KWK-Prozesse zeichnen sich zwar durch geringere elektrische Wirkungsgradverluste aus (6,4% im Sommer bzw. 4,6% im Winter), doch wird für die Regeneration des chemischen Absorbens ein beträchtlicher Teil der Kondensationswärme eingesetzt, der bislang überwiegend zur Erzeugung von Fernwärme eingesetzt worden ist: Der thermische Wirkungsgrad sinkt im Sommer um 24,9%-Punkte und im Winter um 26,7%-Punkte (vgl. Tabelle 3.5).

- Tablie 5.5. Eigebiisse für untersuchte KWK-005-Varianten			
	Kondensations- betrieb	KWK-Betrieb Sommer	KWK-Betrieb Winter
$\eta_{\rm el}$ ohne CC	41,8%	$38{,}6\%$	$34{,}8\%$
$\eta_{\rm el}$ mit CC	33,8%	$32{,}1\%$	30,2%
Delta	8,0%	6,4%	$4{,}6\%$
$\eta_{\rm th}$ ohne CC		50,9%	$54{,}7\%$
$\eta_{\rm th}$ mit CC		$26{,}1\%$	$28{,}0\%$
Delta		$24{,}9\%$	26,7%

Tabelle 3.5: Ergebnisse für untersuchte KWK-CCS-Varianten

Im Rahmen der wirtschaftlichen Analyse wird für die Kombination aus Biomasse, KWK und CCS ermittelt, zu welchen Gestehungskosten Strom und Wärme erzeugt sowie CO_2 vermieden werden kann. Um die Ergebnisse vergleichen zu können, werden diese Kosten auch jeweils für diejenigen Varianten berechnet, die mit fossilen Energieträgern, nicht in Kraft-Wärme-Kopplung sowie ohne CO_2 -Abscheidung betrieben werden. Als Grundlage für die Berechnungen dienen zum einen die vorhandenen Angaben in der Literatur (vgl. Kapitel 2.2) und zum anderen die eigenen Berechnungen in der technischen Analyse.

Die Berechnungen werden hierbei nicht mit festgelegten Kraftwerksgrößen (z. B. 500 MW) sondern allgemein in Kosten je erzeugter Energieeinheit durchgeführt. Biomasse-Kraftwerke sind aufgrund begrenzter regionaler Ressourcenverfügbarkeit größenmäßig begrenzt, während CCS-Anlagen eher größer gebaut werden sollten, um den Effekt der Größendegression zu nutzen [vgl. Rhodes und Keith, 2008, S. 322], [vgl. Gough und Upham, 2010, S. 17]. Diesem Umstand wird dadurch Rechnung getragen, dass zum einen die spezifischen Investitions- und Betriebskosten für Biomasse-Anlagen höher und die elektrische Wirkungsgrade niedriger angenommen werden als für fossile Anlagen.

Im Folgenden wird zunächst die Methodik der wirtschaftlichen Analyse vorgestellt, bevor die Festlegung aller zur Berechnung verwendeten Parameter erfolgt. Es folgen drei Unterkapitel, in denen die Strom- und Wärmegestehungskosten sowie die CO₂-Vermeidungskosten dargestellt werden. Darin enthalten ist für die Stromgestehungskosten und die CO₂-Vermeidungskosten jeweils eine Sensitivitätsanalyse.

4.1 Methodik der wirtschaftlichen Analyse

Bevor in den Kapiteln 4.1.2 bis 4.1.4 die Berechnung der Stromgestehungskosten, Wärmegestehungskosten sowie der CO_2 -Vermeidungskosten vorgestellt wird, werden in Kapitel 4.1.1 allgemeine Festlegungen vorgestellt, die für alle weiteren Berechnungen gelten. Abschließend wird in Kapitel 4.1.5 die Methodik der Sensitivitätsanalyse näher erläutert.

4.1.1 Allgemeine Festlegungen

Die Berechnungen basieren auf Euro des Jahres 2005. Das Jahr 2005 wird gewählt, da der Großteil der Investitions-/Betriebs- und Brennstoffkostenangaben aus den Jahren 2000 bis 2009 stammt. Für die Umrechnung der Angaben aus US-Dollar in Euro wird der Mittelwert des Wechselkurses im jeweiligen Berichtsjahr genutzt. Die Umrechnung auf die Kaufkraft des einheitlichen Bezugsjahres 2005 wird anhand von Produzentenpreisindizes der Vereinten Nationen durchgeführt [vgl. UNECE, 2012]. Hierbei wird für die Kostenangaben in US-Dollar der Index für die USA und bei Kostenangaben in Euro der Produzentenpreisindex für Deutschland verwendet. Das gewählte Vorgehen wird in dieser Form auch von der IEA angewendet [vgl. Finkenrath, 2011, S. 15]. Für die bessere Lesbarkeit wird die Indizierung (Euro₂₀₀₅) weitestgehend im Text nicht verwendet, sondern nur bei den Beschriftungen in den Abbildungen und Tabellen.

Es werden diejenigen Varianten untersucht, die sich in Kapitel 3 technisch als aussichtsreichste Varianten dargestellt haben:

- Festbrennstoff in Verbindung mit Post-Combustion-Technologie (Dampfkraftprozess),
- Festbrennstoff in Verbindung mit Oxyfuel-Technologie (Dampfkraftprozess),
- Festbrennstoff in Verbindung mit Pre-Combustion-Technologie (IGCC) und
- gasförmiger Brennstoff in Verbindung mit Post-Combustion-Technologie (Dampfkraftprozess).

Als Festbrennstoff werden hierbei Steinkohle und holzartige Biomasse mit 10 % sowie 50 % Wassergehalt untersucht, was Holzpellets und erntefrischen Holzhackschnitzeln entspricht. Die gasförmigen Brennstoffe stellen fossiles Erdgas, Biomethan (auf Erdgasqualität aufbereitet) und vorgereinigtes Biogas dar. Diese Prozesse werden sowohl mit als auch ohne CO₂-Sequestrierung sowie Kraft-Wärme-Kopplung untersucht. Hieraus ergeben sich 48 eigenständige Varianten (drei Brennstoffgruppen, vier Prozessvarianten, mit/ohne CCS, mit/ohne KWK). Die in Tabelle 4.1 vergebene Nummerierung für die untersuchten Varianten findet sich in den Ergebnisabbildungen ab Kapitel 4.3 wieder.

4.1.2 Berechnung der Stromgestehungskosten

Die Stromgestehungskosten $k_{SG,el}$ in Euro/MWh ergeben sich nach Formel 4.1.

$$k_{\rm SG,el} = k_{\rm Kap,el} + k_{\rm B+W,el} + k_{\rm Br,el} + k_{\rm CO_2-Z,el} + k_{\rm CO_2-Tr/Sp,el} - e_{\rm FW,el}$$
(4.1)

Nr. ohne KWK	Nr. mit KWK	\mathbf{CCS}	Brennstoff	Prozess
1	25		Steinkohle	Dampf
2	26		Steinkohle	IGCC
3	27		Steinkohle	Oxyfuel
4	28		Erdgas	Dampf
5	29		Holzpellets	Dampf
6	30	ohne CCS	Holzpellets	IGCC
7	31		Holzpellets	Oxyfuel
8	32		Biomethan	Dampf
9	33		HHS $(w=50\%)$	Dampf
10	34		HHS $(w=50\%)$	IGCC
11	35		HHS $(w=50\%)$	Oxyfuel
12	36		Biogas	Dampf
13	37	Post-Comb.	Steinkohle	Dampf
14	38	Pre-Comb.	Steinkohle	IGCC
15	39	Oxyfuel	Steinkohle	Oxyfuel
16	40	Post-Comb.	Erdgas	Dampf
17	41	Post-Comb.	Holzpellets	Dampf
18	42	Pre-Comb.	Holzpellets	IGCC
19	43	Oxyfuel	Holzpellets	Oxyfuel
20	44	Post-Comb.	Biomethan	Dampf
21	45	Post-Comb.	HHS $(w=50\%)$	Dampf
22	46	Pre-Comb.	HHS $(w=50\%)$	IGCC
23	47	Oxyfuel	HHS $(w=50\%)$	Oxyfuel
24	48	Post-Comb.	Biogas	Dampf

Tabelle 4.1: Untersuchte Varianten im Rahmen der wirtschaftlichen Analyse

Hierbei werden die folgenden Kostenbestandteile addiert, die jeweils in Euro je erzeugter elektrischer Energiemenge (Euro/MWh) berechnet werden:

- Kapitalkosten $(k_{\text{Kap,el}}),$
- Betriebs- und Wartungskosten $(k_{B+W,el})$,
- Brennstoffkosten $(k_{\rm Br,el})$,
- CO₂-Zertifikatekosten $(k_{\rm CO_2-Z,el})$,
- CO₂-Transport- und CO₂-Speicherkosten $(k_{\text{CO}_2-\text{Tr/Sp,el}})$ und
- stromspezifische Fernwärmeerlöse $(e_{\rm FW,el})$.

Die Kapitalkosten $k_{\text{Kap,el}}$ der einzelnen Varianten unterscheiden sich durch die jeweiligen spezifischen Investitionskosten in Bezug auf die installierte elektrische Leistung $K_{\text{Inv,el}}$ in Euro/kW sowie die jährlichen Volllaststunden t_{VL} (vgl. Formel 4.2). Der Annuitätenfaktor a_{f} in % ist für alle Varianten einheitlich und wird nach Formel 4.3 bestimmt. Hierbei ist i der Zinssatz in % und n die Nutzungsdauer in Jahren.

$$k_{\rm Kap,el} = \frac{K_{\rm Inv,el} \cdot a_{\rm f}}{t_{\rm VL}} \tag{4.2}$$

$$a_{\rm f} = \frac{i \cdot (1+i)^n}{(1+i)^n - 1} \tag{4.3}$$

Die Betriebs- und Wartungskosten pro erzeugter Stromeinheit $k_{B+W,el}$ ergeben sich nach Formel 4.4. $K_{B+W,el}$ sind die spezifischen, jährlichen Betriebs- und Wartungskosten in Euro/kW.

$$k_{\rm B+W,el} = \frac{K_{\rm B+W,el}}{t_{\rm VL}} \tag{4.4}$$

Die Brennstoffkosten pro erzeugter Stromeinheit $k_{\rm Br,el}$ berechnen sich nach Formel 4.5. Hierbei werden die heizwertspezifischen Brennstoffkosten $K_{\rm Br}$ in Euro/MWh durch den elektrischen Wirkungsgrad $\eta_{\rm el}$ dividiert. Diese Berechnungsart wird auch für die Varianten mit KWK durchgeführt. Hierbei ergeben sich aufgrund niedrigerer elektrischer Wirkungsgrade zunächst höhere spezifische Brennstoffkosten $k_{\rm Br,el}$, die anschließend durch die Wärmeerlöse wieder ausgeglichen werden.

$$k_{\rm Br,el} = \frac{K_{\rm Br}}{\eta_{\rm el}} \tag{4.5}$$

Die spezifischen Kosten für CO₂-Zertifikate $k_{\text{CO}_2\text{-}Z,\text{el}}$ ergeben sich nach Formel 4.6. Hierbei sind $K_{\text{CO}_2\text{-}Z}$ der CO₂-Zertifikatepreis in Euro/t und $\mu_{\text{CO}_2,\text{el,dir}}$ in kg/MWh die

spezifischen CO₂-Emissionen in Bezug auf die elektrische Energie, die wiederum nach Formel 4.7 bestimmt werden. Es sind $\mu_{CO_2,Br,dir}$ der heizwertspezifische, direkte CO₂-Emissionsfaktor des Brennstoffs in kg/MJ und A_{CO_2} der CO₂-Abscheidegrad in %. Hierbei werden die CO₂-Emissionen bewusst nicht gemäß den in Kapitel 2.3.3.2 vorgestellten Allokationsmethoden auf die Produkte Wärme und Strom aufgeteilt, sondern (wie auch die anderen Kosten) zunächst vollständig auf die elektrische Energie bezogen. Für die Kombinationen aus Biomasse und CCS ergeben sich für $k_{CO_2-Z,el}$ negative Kosten, da CO₂ der Atmosphäre entzogen wird.

$$k_{\rm CO_2-Z,el} = K_{\rm CO_2-Z} \cdot \mu_{\rm CO_2,el,dir} \tag{4.6}$$

$$\mu_{\rm CO_2,el,dir} = \frac{\mu_{\rm CO_2,Br,dir}}{\eta_{\rm el}} \cdot (1 - A_{\rm CO_2}) \tag{4.7}$$

Die Höhe der abgeschiedenen CO₂-Emissionen in Bezug auf die produzierte elektrische Energie $\mu_{CO_2,el,ab}$ in kg/MWh und die Kosten für CO₂-Transport und CO₂-Speicherung $K_{CO_2-Tr} + K_{CO_2-Sp}$ in Euro/t bestimmen die spezifischen Kosten für den CO₂-Transport und die CO₂-Speicherung (Formel 4.8). Die abgeschiedenen CO₂-Emissionen ($\mu_{CO_2,el,ab}$) ergeben sich nach Formel 4.9.

$$k_{\rm CO_2-Tr/Sp,el} = \mu_{\rm CO_2,el,ab} \cdot (K_{\rm CO_2-Tr} + K_{\rm CO_2-Sp})$$

$$(4.8)$$

$$\mu_{\rm CO_2,el,ab} = \frac{\mu_{\rm CO_2,Br,dir}}{\eta_{\rm el}} \cdot A_{\rm CO_2}$$
(4.9)

Für die Varianten mit Kraft-Wärme-Kopplung reduzieren die stromspezifischen Fernwärmeerlöse $e_{\rm FW,el}$ in Euro/MWh nach Formel 4.10 die Stromgestehungskosten. Hierbei sind $e_{\rm FW,th}$ die Fernwärmeerlöse je erzeugter Fernwärmeeinheit in Euro/MWh.

$$e_{\rm FW,el} = \frac{\eta_{\rm th}}{\eta_{\rm el}} \cdot e_{\rm FW,th}$$
 (4.10)

4.1.3 Berechnung der Wärmegestehungskosten

Die Berechnung der Wärmegestehungskosten $k_{\rm WG,th}$ in Euro/MWh wird für die KWK-Varianten nach Formel 4.11 durchgeführt. Hierbei werden die stromspezifischen Fernwärmeerlöse $e_{\rm FW,el}$ wiederum zu den Stromgestehungskosten addiert, da die Wärmegeste-

hungskosten berechnet werden sollen. Des Weiteren wird ein definierter, für alle Varianten konstanter Strompreis e_{Strom} in Euro/MWh subtrahiert, der für den in KWK erzeugten Strom am Strommarkt erzielt werden kann. Mit dem anschließenden Quotienten wird der Bezug von elektrischer Energie auf Fernwärme angepasst.

$$k_{\rm WG,th} = (k_{\rm SG,el} + e_{\rm FW,el} - e_{\rm Strom}) \cdot \frac{\eta_{\rm el}}{\eta_{\rm th}}$$
(4.11)

4.1.4 Berechnung der CO₂-Vermeidungskosten

Die CO₂-Vermeidungskosten $K_{\rm CO_2-V}$ in Euro/t können für diejenigen Varianten berechnet werden, bei denen CCS zum Einsatz kommt. Hierfür werden für die gleichen Varianten (mit und ohne CCS) die Stromgestehungskosten und die spezifischen CO₂-Emissionen miteinander verglichen (vgl. Formel 4.12). Die Kosten für CO₂-Zertifikate werden jeweils subtrahiert, da diese in Bezug auf die produzierte Strommenge unterschiedlich hoch ausfallen und die Höhe der CO₂-Vermeidungskosten nicht beeinflussen dürfen. Hierbei stellt $\mu_{\rm CO_2,el,verm}$ in kg/MWh die durch die CCS-Integration vermiedenen CO₂-Emissionen dar (vgl. Formel 4.13).

$$K_{\rm CO_2-V} = \frac{(k_{\rm SG,el} - k_{\rm CO_2-Z,el})_{\rm mit\ CCS} - (k_{\rm SG,el} - k_{\rm CO_2-Z,el})_{\rm ohne\ CCS}}{\mu_{\rm CO_2,el,verm}}$$
(4.12)

$$\mu_{\rm CO_2, el, verm} = (\mu_{\rm CO_2, el, dir})_{\rm ohne \, CCS} - (\mu_{\rm CO_2, el, dir})_{\rm mit \, CCS}$$
(4.13)

4.1.5 Sensitivitätsanalyse

Bei der Berechnung der Stromgestehungskosten wird ein Parametersatz mit denjenigen Angaben verwendet, der aus heutiger Sicht als am realistischen eingeschätzt wird. Diese Festlegungen werden in Kapitel 4.2 beschrieben. Im Rahmen der Sensitivitätsanalyse wird untersucht, inwiefern sich die berechneten Stromgestehungskosten und CO_2 -Vermeidungskosten verändern, wenn einzelne Parameter innerhalb realistischer Grenzen variiert werden. Alle weiteren Parameter werden während der Variation dieses einzelnen Parameters konstant gehalten.

Die folgenden Parameter werden variiert:

- Brennstoffkosten $(K_{\rm Br})$,
- CO_2 -Zertifikatepreis (K_{CO_2-Z}),

- Volllaststunden $(t_{\rm VL})$,
- Fernwärmeerlöse $(e_{\rm FW,th})$,
- elektrischer Wirkungsgrad (η_{el}) ,
- Investitionskosten $(K_{\text{Inv,el}})$ und
- CO₂-Transport- und CO₂-Speicherkosten $(K_{CO_2-Tr} + K_{CO_2-Sp})$.

Eine weitere Form der Sensitivitätsanalyse stellt der Ausblick auf das Jahr 2050 dar. Hierbei werden gleichzeitig eine Reihe von Parametern verändert, die die zukünftige technische Weiterentwicklung (z. B. Wirkungsgrade, CO₂-Abscheidegrade) sowie Preisentwicklungen (z. B. Brennstoffpreise, Investitions-/Betriebskosten) berücksichtigt.

4.2 Parameter

Im Folgenden werden die wesentlichen Parameter vorgestellt, auf denen die wirtschaftliche Analyse basiert. Alle Werte können ebenfalls dem Anhang in Tabellen A.20 bis A.22 entnommen werden.

4.2.1 Brennstoff- und CO₂-Zertifikatepreise

Bei den Preisen für fossile Brennstoffe konnten in den letzten Jahren erhebliche Preisschwankungen sowie ein langfristiger Aufwärtstrend am Brennstoffmarkt beobachtet werden (vgl. Kapitel 2.2.1.4). Ein ähnlicher Aufwärtstrend ist für die biogenen Brennstoffe in Zukunft ebenfalls zu erwarten, da sie die fossilen Energieträger zunehmend substituieren werden [vgl. Koornneef et al., 2011, S.99].

Tabelle 4.2 stellt die für die wirtschaftliche Analyse zugrunde gelegten Brennstoffpreise dar. Die Preise für die fossilen Energieträger Steinkohle und Erdgas werden für das Jahr 2020 auf Basis des Leitszenarios 2010 des Bundesumweltministeriums übernommen [vgl. Wenzel und Nitsch, 2010, S. 28]. In der genannten Studie handelt es sich hierbei um den mäßigen Preispfad, der von einem deutlichen und einem sehr niedrigen Preisanstiegspfad ergänzt wird, die ca. 25% oberhalb bzw. unterhalb des mäßigen Preisniveaus liegen. In Wenzel und Nitsch [vgl. 2010, S. 27] wird zwar ausgeführt, dass der deutliche Preisanstieg durch die zukünftigen Preiserwartungen im World Energy Outlook der IEA gestützt wird, trotzdem wird in dieser Arbeit als konservative Annahme der mäßige Preisanstieg verwendet. In der Sensitivitätsanalyse wird eine breite Brennstoffpreisvariation von 50% bis 150% untersucht. Aus dem vorgenannten Grund wird dabei den Berechnungsergebnisse > 100% besondere Bedeutung beigemessen. Die Brennstoffpreise für Steinkohle und Erdgas im Jahr 2050 werden aus Viebahn et al. [vgl. 2010, S. 219] übernommen. Hierbei handelt es sich ebenfalls um den mäßigen Preispfad.

Brennstoff	Preise in 2020 (2050)		Quelle	
	$\mathrm{Euro}_{2005}/\mathrm{GJ}$	$\mathrm{Euro}_{2005}/\mathrm{MWh}$		
Steinkohle	4,0 (6,1)	14,4 (21,8)	2020: Wenzel und Nitsch [2010, S. 28], 2050: Viebahn et al. [2010, S. 219]	
Erdgas	8,1 (12,1)	29,2 (43,6)	2020: Wenzel und Nitsch [2010, S. 28], 2050: Viebahn et al. [2010, S. 219]	
$\begin{array}{l} \text{Holzpellets} \\ (w{=}10\%) \end{array}$	10,0 (15,1)	35,9 (54,2)	eigene Festlegung auf Basis von Kapitel 2.2.1.4	
$\begin{array}{c} \text{HHS} \\ (w{=}50\%) \end{array}$	6,0 (9,1)	21,6 (32,7)	eigene Festlegung auf Basis von Kapitel 2.2.1.4	
Biogas	13,9 (20,7)	50,0 (74,7)	eigene Festlegung auf Basis von Kapitel 2.2.1.3	
Biomethan	18,1 (27,0)	65,0 (97,1)	eigene Festlegung auf Basis von Kapitel 2.2.1.4	

Tabelle 4.2: Verwendete Brennstoffpreise

Für die Preise von holzartiger Biomasse mit einem Wassergehalt von 50% (Holzhackschnitzel) und 10% (Holzpellets) liegen in der Literatur nur wenige Szenarien für zukünftige Preisentwicklungen vor. Deswegen werden die Preise auf Basis der heutigen Marktbedingungen, die in Kapitel 2.2.1.4 dargestellt sind, und der Entwicklung bis 2020 für fossile Energieträger prognostiziert. Die Holzhackschnitzelpreise betragen zur Zeit rund 18 Euro/MWh. Da die Steinkohlepreise für 2020 rund 20% über den derzeitigen Marktpreisen liegen, werden die HHS-Preise ebenfalls um 20% erhöht. Derzeit liegen die Preise für Industriepellets mit knapp 30 Euro/MWh ca. 66% über den Preisen für HHS. Diese Verhältnismäßigkeit wird für 2020 ebenfalls unterstellt, so dass sich ein Pelletspreis von ca. 36 Euro/MWh bzw. ca. 10 Euro/GJ ergibt. Die Preise für 2050 werden anhand der gleichen Preissteigerung wie für Steinkohle ermittelt, da mittel- und langfristig eine zunehmende Substitution dieser Festbrennstoffe erwartet werden kann, was zu ähnlichen Preisentwicklungen führt.

Die hier ausgeführten Brennstoffpreise stellen jeweils Grenzübergangspreise bzw. regional gültige Preise dar. Zusätzliche Kosten, wie z. B. Schiffslöschungen in kleineren Häfen bei Festbrennstoffen oder Pipelinetransport zum tatsächlichen Bestimmungsort bei gasförmigen Brennstoffen, sind in den Preisen nicht enthalten. Während diese Kosten für Steinkohle (ca. 1 Euro/MWh in Abhängigkeit von Hafenlage und Tiefgang des See-/Binnenhafens) und für gasförmige Brennstoffe (ca. 2 Euro/MWh für Netznutzungsentgelte, vgl. Kapitel 2.2.1.4) vergleichsweise gering ausfallen, können diese Kosten bei biogenen Festbrennstoffen einen erheblichen Kostenbestandteil ausmachen: In Kapitel 2.2.1.3 ist dargestellt worden, dass die Transportkosten für Holzhackschnitzel bereits bei einer Entfernung von 60 km mehr als 5 Euro/MWh betragen können. Die Kosten für einen Schiffstransport von Holzhackschnitzeln aus dem Baltikum nach Flensburg betragen beispielsweise bereits mehr als 10 Euro/MWh. Aufgrund der höheren Energiedichte von Holzpellets fallen diese Transportkosten im Vergleich dazu niedriger aus, dürften jedoch leicht über dem Niveau von Steinkohle liegen. Diese Beträge können jedoch nicht einfach zu den in Tabelle 4.2 aufgeführten Brennstoffkosten addiert werden, da bereits heute am Markt beobachtet werden kann, dass nur diejenigen biogenen Festbrennstoffe über weite Distanzen transportiert werden, die am Bestimmungsort zu marktkonformen Preisen angeboten werden können. Es ist aus heutiger Sicht ungewiss, ob bei steigender Nachfrage nach biogenen Festbrennstoffen sich für Holzhackschnitzel trotz höherer Transportkosten ein globaler Markt bilden kann, wie dies für Holzpellets bereits im Ansatz festgestellt werden kann, oder es bei einem regionalem Markt bleibt. In jedem Fall bleibt ein gewisses Preisrisiko, das durch eine breite Brennstoffpreisvariation von 50% bis 150% auch im Falle der biogenen Festbrennstoffe berücksichtigt wird.

Die Marktpreise für Biomethan einschließlich Netznutzungsgebühren liegen derzeit bei ca. 75 Euro/MWh (vgl. Kapitel 2.2.1.4). Die Biomethangestehungskosten betragen in größeren Anlagen (> $500 \text{ m}^3/\text{h}$) ca. 50 Euro/MWh (vgl. Kapitel 2.2.1.3). Für das Jahr 2020 wird ein Biomethanpreis von 65 Euro/MWh zugrunde gelegt, da zum einen die technische Weiterentwicklung bei der Biogaserzeugung und der Biogasreinigung kostensenkend, zum anderen jedoch eine mögliche Verknappung landwirtschaftlicher Produktionsflächen kostenerhöhend wirkt. Der Biogaspreis wird mit 50 Euro/MWh angenommen. Die Preisreduzierung in Höhe von 15 Euro/MWh gegenüber Biomethan wird mit der deutlich einfacheren Biogasaufbereitung begründet (vgl. Kostenkomponenten für Biomethan in Kapitel 2.2.1.3).

Als CO₂-Zertifikatepreis wird für das Jahr 2020 mit 30 Euro/t (24 Euro₂₀₀₅/t) gerechnet. Dieser Wert ist aus den Umfrageergebnissen von Point Carbon abgeleitet, die in Kapitel 2.2.3.2 näher beschrieben werden [vgl. Tvinnereim et al., 2009, S. 40]. Dies entspricht auch der Preisannahme in der Leitstudie 2010 des Bundesumweltministeriums [vgl. Wenzel und Nitsch, 2010, S. 28]. Analog zu den Brennstoffkosten wird der CO₂-Zertifikatepreis in der Sensitivitätsanalyse zwischen 50 % und 150 % variiert (15 Euro/t bis 45 Euro/t), was die Bandbreite der aus heutiger Sicht erwarteten CO₂-Zertifikatepreise darstellt. Für das Jahr 2050 wird mit einem CO₂-Zertifikatepreis in Höhe von 50 Euro/t gerechnet, was etwas über den Annahmen in der Leitstudie liegt (45 Euro/t) [vgl. Wenzel und Nitsch, 2010, S. 28]. In Kapitel 4.3.1.2 wird in Form eines Exkurses darauf eingegangen, dass zukünftig eine Tonne CO₂, die aus der Atmosphäre entnommen wird, mehr wert sein kann als eine Tonne CO₂, die in die Atmosphäre emittiert werden darf. Hierfür werden die CO₂-Zertifikatepreise für negative CO₂-Emissionen zwischen 100 % und 200 % variiert, während die CO₂-Zertifikatepreise für positive CO₂-Emissionen konstant bei 100 % gehalten werden.

4.2.2 Vollaststunden

Durch die vermehrte Einspeisung erneuerbarer Energieträger werden sich die Volllaststunden für konventionelle Kraftwerke in den nächsten Jahrzehnten deutlich reduzieren [vgl. Wenzel und Nitsch, 2010, S. 31]. Dies wird die Wirtschaftlichkeit von CCS-Kraftwerken erschweren, wenn diese nicht die zukünftig erhöhten Anforderungen an eine flexible Fahrweise erfüllen. Obwohl bislang davon ausgegangen wird, dass die Flexibilität von Kraftwerken mit CCS geringer sein wird als von Kraftwerken ohne CCS [vgl. Esau et al., 2010, S. 2 f.], gibt es nach Cooretec [vgl. 2010, S. 36] bereits einige CCS-Technologien, die die Flexibilität der Kraftwerke steigern können. In Ludig et al. [vgl. 2010, S. 2] wird davon ausgegangen, dass die Flexibilität von Kohlekraftwerken mit Post-Combustion-Technologie gegenüber Kohlekraftwerken ohne CCS gesteigert werden kann, indem kurzfristig zugunsten einer erhöhten Stromproduktion auf die CO₂-Abscheidung verzichtet wird. Vor dem Hintergrund der unterschiedlichen Aussagen in der Literatur (vgl. Kapitel 2.2.2.3) wird für die jeweils gleichen Varianten mit und ohne CCS von den identischen jährlichen Volllaststunden ausgegangen.

Für neu gebaute fossile Kraftwerke ist in den vergangenen Jahrzehnten üblicherweise mit jährlichen Volllaststunden von 7000 oder mehr Stunden gerechnet worden. Die durchschnittlichen Anzahl an Jahresvolllaststunden für Steinkohlekraftwerke im Jahr 2009 hat in Deutschland 3580 Stunden betragen. Erdgaskraftwerke haben im gleichen Zeitraum 3150 Volllaststunden aufgewiesen [vgl. Kiesel und Herkner, 2010, S. 19]. Hierin sind jedoch auch ältere Kraftwerke mit schlechteren Wirkungsgraden enthalten. In Viebahn et al. [vgl. 2010, S. 183] wird für neu errichtete CCS-Kraftwerke auf fossiler Brennstoffbasis im Jahr 2020 von 4936 Volllaststunden und im Jahr 2050 von 3589 Volllaststunden ausgegangen. Hieraus wird für die eigenen Berechnungen abgeleitet, dass die Volllaststunden für den Brennstoff Steinkohle in 2020 rund 5000 und in 2050 rund 3500 betragen. In Anlehnung an die Ist-Zahlen des Jahres 2008 werden die Volllaststunden für Erdgas in 2020 auf 3000 und in 2050 auf 2000 Volllaststunden festgelegt. Der Volllaststundenunterschied zwischen Steinkohle und Erdgas wird in 2050 bewusst geringer gewählt, da durch die vermehrte Einspeisung von erneuerbaren Energieträgern in 2050 eine flexible Kraftwerksleistung

benötigt wird, die vor allem Erdgaskraftwerke bereit stellen können.

Für die Stromerzeugung in Biomassekraftwerken auf Basis holzartiger Biomasse werden 7000 Jahresvolllaststunden zugrunde gelegt, was den Annahmen in SRU [vgl. 2011b, S. 205] entspricht. Für die Energieträger Biogas und Biomethan werden 4000 Volllaststunden unterstellt, da mit diesen flexiblen Anlagen bei zukünftig vermehrter Stromeinspeisung aus Windenergie die Stromnachfrage zu jeder Zeit gedeckt werden kann. Die Brennstoffe Biogas und Biomethan sind im Vergleich zu Holz jedoch relativ teuer. Diese Werte sind für die Jahre 2020 und 2050 identisch. Da es sich bei den Biomasse-Anlagen mit CCS um die einzige Technik handeln könnte, die der Atmosphäre zukünftig CO₂ entziehen kann, sind im Falle eines klimapolitisch notwendigen CO₂-Entzugs aus der Atmosphäre auch deutlich höhere Volllaststunden vorstellbar, die im Rahmen der Sensitivitätsanalyse abgebildet werden.

Für alle Brennstoffe wird ebenfalls die Kombination mit Kraft-Wärme-Kopplung untersucht. Hierbei werden jeweils 7000 Volllaststunden zugrunde gelegt, was für eine KWK-Anlage durchaus üblich ist. In diesen 7000 Volllaststunden wird vollständig im KWK-Modus produziert, so dass keine ungekoppelte Strom- oder Wärmeerzeugung erfolgt.

Im Rahmen der Sensitivitätsanalyse werden für alle Brennstoffe und für die KWK-Varianten die Volllaststunden zwischen 3000 und 8000 variiert.

4.2.3 Elektrische und thermische Wirkungsgrade

Für die 24 Varianten ohne KWK werden lediglich die elektrischen Wirkungsgrade festgelegt, während für die 24 Varianten im KWK-Betrieb sowohl ein elektrischer als auch ein thermischer Wirkungsgrad definiert wird (vgl. Tabelle 4.3, Anhang Tabelle A.21). Hierbei handelt es sich jeweils um Nettowirkungsgrade, mit denen direkt die Erlöse für Strom und Wärme berechnet werden. Da dies nicht Nutzungsgrade über einen gewissen Betriebszeitraum sind, in denen z. B. An- und Abfahrverluste enthalten sind (vgl. Kapitel 2.1.2.1), werden die berechneten Gestehungskosten allesamt geringfügig besser ausfallen. Dies hat jedoch nur marginale Auswirkungen auf Vergleiche zwischen den einzelnen Varianten.

Für die vier fossilen Varianten ohne KWK werden die elektrischen Wirkungsgrade für das Jahr 2020 aus der Literatur übernommen (vgl. Kapitel 2.1.3.1.4). Die Entwicklung der elektrischen Wirkungsgrade bis 2050 wird nach Viebahn et al. [vgl. 2010, S. 167] vorgenommen, indem die Wirkungsgrade jährlich um 0,1 %-Punkte bis 0,2 %-Punkte erhöht werden. Für die Varianten mit Holzpellets und Biomethan wird angenommen, dass diese Brennstoffe in den gleichen Anlagen wie fossile Energieträger eingesetzt werden können und sich somit ohne CCS die gleichen elektrischen Wirkungsgrade ergeben, auch

wenn diese Mitverbrennung im Rahmen der EEG-Förderung derzeit nicht gefördert wird (vgl. Kapitel 2.2.1.5). Die Annahme der gleichen Wirkungsgrade für Holzpellets im Vergleich zu Steinkohle wird damit begründet, dass es sich hierbei um einen Brennstoff handelt, der trotz des im Vergleich zu Steinkohle höheren Wasserstoffgehalts einen geringeren Wassergehalt aufweist, was zu einem vergleichbaren Kesselwirkungsgrad führt [vgl. Rhodes, 2007, S. 24]. Für Biomethan ergibt sich auch mit CCS der gleiche Wirkungsgrad wie mit fossilem Erdgas. Aufgrund der geringeren spezifischen CO₂-Emissionen sind die elektrischen Wirkungsgrade mit CCS für Holzpellets etwas höher als die vergleichbaren Wirkungsgrade für fossile Festbrennstoffe. Diese Wirkungsgrade werden aus Kapitel 3.2.6 übernommen.

Verfahren	ohne CCS		mit CCS	
	2020	2050	2020	2050
Steinkohle (Dampf, Post-Comb.)	$41{,}2\%$	$45{,}7\%$	$29{,}0\%$	35,0%
Steinkohle (IGCC, Pre-Comb.)	$45{,}6\%$	$51{,}6\%$	$_{36,5\%}$	$42{,}5\%$
Steinkohle (Oxyfuel)	$44{,}9\%$	$49{,}4\%$	$34{,}7\%$	$40{,}7\%$
Erdgas (GuD, Post-Comb.)	$54{,}4\%$	$57{,}4\%$	$42{,}6\%$	$48{,}6\%$
Holzpellets (Dampf, Post-Comb.)	$41{,}2\%$	$45{,}7\%$	30,1%	36,1%
Holzpellets (IGCC, Pre-Comb.)	$45{,}6\%$	$51{,}6\%$	37,3%	$43{,}3\%$
Holzpellets (Oxyfuel)	$44{,}9\%$	$49{,}4\%$	$36{,}1\%$	$42{,}1\%$
Biomethan (GuD, Post-Comb.)	$54{,}4\%$	$57{,}4\%$	$42{,}6\%$	$48{,}6\%$
HHS $(w=50\%)$ (Dampf, Post-Comb.)	$_{32,2\%}$	$39{,}7\%$	$19{,}3\%$	28,3%
HHS ($w=50\%$) (IGCC, Pre-Comb.)	$36{,}6\%$	$45{,}6\%$	$27{,}0\%$	$36{,}0\%$
HHS $(w=50\%)$ (Oxyfuel)	$35{,}9\%$	$43{,}4\%$	$25{,}8\%$	$34{,}8\%$
Biogas (GuD, Post-Comb.)	$45{,}4\%$	$51{,}4\%$	$30{,}6\%$	$39{,}6\%$

Tabelle 4.3: Verwendete elektrische Netto-Wirkungsgrade (ohne KWK), eigene Festlegung
auf Basis von Kapitel 2.1.3.1.4, Radgen et al. [vgl. 2006, S. 143 ff.]

Die elektrischen Wirkungsgrade für Holzhackschnitzel mit 50 % Wassergehalt und Biogas liegen jeweils um 9%-Punkte niedriger als die Wirkungsgrade für fossile Brennstoffe. Diese Absenkung wird aus Cavezzali et al. [vgl. 2009, S. v] übernommen und spiegelt vor allem die dort gewählte, deutlich geringere Anlagengröße des Biomassekraftwerks wider. Die in Kapitel 3.2.6 berechneten Wirkungsgradverluste mit CCS fallen für Holzhackschnitzel (w=50%) höher aus als für fossile Brennstoffe, so dass die Wirkungsgrade hier

stärker reduziert werden. In der Sensitivitätsanalyse werden die in Tabelle 4.3 definierten elektrischen Wirkungsgrade zwischen 85% und 115% variiert.

Die zugrunde liegenden elektrischen und thermischen Wirkungsgrade für die wirtschaftliche Analyse der Varianten mit Kraft-Wärme-Kopplung sind in Tabelle 4.4 dargestellt. Hierbei handelt es sich ausschließlich um die Wirkungsgrade für das Jahr 2020. Der elektrische und thermische Wirkungsgrad für den Dampfprozess ohne CCS ist aus Kapitel 3.3.2 übernommen worden. Der elektrische Wirkungsgrad ist um einen Eigenbedarf von 3,5 %-Punkten für den KWK-Mehraufwand nach unten korrigiert, so dass der Brennstoffausnutzungsgrad 86 % beträgt. Es ergibt sich durch die KWK-Integration ein elektrischer Wirkungsgradverlust von 8 %-Punkten, der in dieser Höhe auch für die Variante Oxyfuel (ohne CCS) übernommen wird, da es sich hierbei ebenfalls um einen Dampfprozess handelt. Der elektrische Wirkungsgradverlust durch die KWK-Integration beim Gasund Dampfturbinenprozess fällt deutlich geringer aus, da ein Großteil der elektrischen Leistung durch die Gasturbine erbracht wird. Lediglich die elektrische Leistung der nachgelagerten Dampfturbine wird durch die Wärmenutzung auf einem höheren Temperaturniveau reduziert. Hierbei wird von einem elektrischen Wirkungsgradverlust von 3%-Punkten ausgegangen, was dem Autor aus SWFL-internen Unterlagen als realistische Größe erscheint. Da es sich beim IGCC-Prozess ebenfalls um einen kombinierten Gasund Dampfturbinenprozess handelt, wird der gleiche elektrische Wirkungsgradrückgang durch die KWK-Integration übernommen. Die Wirkungsgrade für fossile Energieträger und Holzpellets sind identisch. Für die Heizkraftwerke auf Basis von Holzhackschnitzeln und Biogas wird ein jeweils um 9%-Punkte reduzierter elektrischer Wirkungsgrad angenommen [vgl. Cavezzali et al., 2009, S.v]. Diese 9%-Punkte werden dem thermischen Wirkungsgrad gutgeschrieben, da dieser bei kleineren Anlagen üblicherweise höher ausfällt.

Der elektrische und thermische Wirkungsgrad für die CCS-Variante Steinkohle/Post-Combustion wird aus Kapitel 3.3.2 übernommen. Dem elektrischen Wirkungsgrad werden wiederum 3,5 %-Punkte für Eigenbedarf sowie 4,2 %-Punkte für die CO₂-Kompression abgezogen (vgl. Kapitel 3.2.6). Bei den CCS-Varianten Pre-Combustion und Oxyfuel werden die elektrischen Wirkungsgrade um die gleichen Prozentsätze reduziert wie ohne KWK. Die thermischen Wirkungsgrade werden jedoch gleich behalten, da die CCS-Integration für diese Prozesse zu keinen thermischen Einbußen führt (vgl. Kapitel 3.3.1). Bei der GuD-Variante werden analog zur Steinkohle-Variante sowohl der elektrische als auch der thermische Wirkungsgrad reduziert. Durch die geringeren spezifischen CO₂-Emissionen fallen die Reduktionen jedoch geringer aus.

Für Holzpellets ergeben sich für die Variante Post-Combustion etwas höhere elektrische und thermische Wirkungsgrade. Diese Steigerung ergibt sich aus den niedrigeren

Verfahren	ohne CCS		mit CCS	
	$\eta_{ m el}$	$\eta_{ m th}$	$\eta_{ m el}$	$\eta_{ m th}$
Steinkohle (Dampf, Post-Comb.)	$_{33,2\%}$	52,8%	23,5%	$27{,}0\%$
Steinkohle (IGCC, Pre-Comb.)	$42{,}6\%$	$43{,}4\%$	33,5%	$43{,}4\%$
Steinkohle (Oxyfuel)	36,9%	$49{,}1\%$	26,7%	$49{,}1\%$
Erdgas (GuD, Post-Comb.)	$51{,}4\%$	$34{,}6\%$	$42{,}1\%$	$19{,}0\%$
Holzpellets (Dampf, Post-Comb.)	$_{33,2\%}$	52,8%	$24{,}0\%$	29,4%
Holzpellets (IGCC, Pre-Comb.)	$42{,}6\%$	$43{,}4\%$	$34{,}3\%$	$43{,}4\%$
Holzpellets (Oxyfuel)	36,9%	$49{,}1\%$	$28{,}1\%$	$49{,}1\%$
Biomethan (GuD, Post-Comb.)	$51{,}4\%$	$34{,}6\%$	$42{,}1\%$	$19{,}0\%$
HHS $(w=50\%)$ (Dampf, Post-Comb.)	$24{,}2\%$	$61{,}8\%$	14,1%	43,7%
HHS ($w=50\%$) (IGCC, Pre-Comb.)	$33{,}6\%$	$52{,}4\%$	$24{,}0\%$	$52,\!4\%$
HHS $(w=50\%)$ (Oxyfuel)	$27{,}9\%$	$58{,}1\%$	$17{,}8\%$	58,1%
Biogas (GuD, Post-Comb.)	$42{,}4\%$	$43{,}6\%$	30,7%	$21,\!3\%$

Tabelle 4.4: Verwendete elektrische und thermische Netto-Wirkungsgrade (2020), eigene Festlegung auf Basis von Kapitel 3.3.2, Strauß [vgl. 2006, S. 104], Cavezzali et al. [vgl. 2009, S. v]

spezifischen CO₂-Emissionen (vgl. Kapitel 3.3.2). Der gleiche Effekt führt zu höheren Wirkungsgraden bei den Varianten Pre-Combustion und Oxyfuel, wobei die thermischen Wirkungsgrade wiederum gleich bleiben. Die elektrischen Wirkungsgrade für Holzhackschnitzel (w=50%) werden analog ermittelt und fallen aufgrund der höheren spezifischen CO₂-Emissionen geringer aus.

Der elektrische und thermische Wirkungsgrad für Biogas werden bestimmt, indem den jeweiligen Wirkungsgraden mit KWK und ohne CCS der entsprechende CCS-Wirkungsgradverlust bei Steinkohle subtrahiert wird. Dieser CCS-Wirkungsgradverlust wird multipliziert mit dem Verhältnis aus dem CCS-Wirkungsgradverlust für Biogas ohne KWK und dem CCS-Wirkungsgradverlust für Steinkohle ohne KWK.

Im Rahmen der Sensitivitätsanalyse werden für die KWK-Anlagen die elektrischen Wirkungsgrade analog zu den reinen Kraftwerken zwischen 85% und 115% variiert. Hierbei wird jedoch bei den Varianten ohne CCS gleichzeitig der thermische Wirkungsgrad angepasst, so dass für alle Varianten ein Brennstoffausnutzungsgrad von 86% erreicht wird, da davon ausgegangen werden kann, dass eine elektrische Wirkungsgradsteigerung

gleichfalls eine Reduktion des thermischen Wirkungsgrads bedeutet. Bei den Varianten mit CCS bleibt der thermische Wirkungsgrad konstant und nur der elektrische Wirkungsgrad wird zwischen 85 % und 115 % variiert. Der thermische Wirkungsgrad wird konstant gehalten, da in der Sensitivitätsanalyse der Fortschritt der CCS-Varianten untersucht werden soll, der sich vor allem in einem geringeren elektrischen Wirkungsgradverlust niederschlagen wird. Für die Post-Combustion-Varianten könnte gleichermaßen der thermische Wirkungsgrad variiert werden, da bei einer Verbesserung der CO₂-Wäsche auch die thermischen Verluste sinken. Dieser Effekt wird jedoch nicht separat untersucht.

Die elektrischen Wirkungsgrade für 2050 ergeben sich wiederum durch Steigerungsraten von jährlich 0,1 %-Punkten bis 0,2 %-Punkten nach Viebahn et al. [vgl. 2010, S. 167]. Damit die Brennstoffausnutzungsgrade im Jahr 2050 nicht unrealistisch hoch ausfallen, werden diese konstant gehalten, so dass die elektrischen Wirkungsgradsteigerungen in gleicher Höhe zu thermischen Wirkungsgradreduzierungen führen (vgl. Anhang Tabelle A.21).

4.2.4 Investitions- und Betriebskosten

Die spezifischen Investitionskosten für die Varianten auf Basis fossiler Energieträger basieren auf den im Kapitel 2.2.3.1.1 vorgestellten Literaturangaben (vgl. Tabelle 4.5). Trotz der im Kapitel 2.2.1.1 dargestellten, zusätzlichen Investitionskosten für die Biomasse-Mitverbrennung werden analog zum Vorgehen bei den Wirkungsgraden für Holzpellets sowie Biomethan die identischen Investitionskosten angenommen, da es sich hierbei um aufbereite Brennstoffe handelt, die über die gleichen Förderwege wie der Hauptbrennstoff (Steinkohle/Erdgas) eingesetzt werden können. Im Rahmen der Sensitivitätsanalyse wird der Einfluss höherer Investitionskosten untersucht, der im Falle von Holzpellets rund 3% ausmachen könnte.

Die Investitionskosten für die Brennstoffe HHS (w=50%) sowie Biogas werden um 30% (mit und ohne CCS) erhöht. Diese Mehrkosten stellen den Mittelwert aus den in der Literatur vorhandenen Investitionskostenangaben dar (vgl. Abbildung 2.33 in Kapitel 2.2.3.1).

Als Investitionskosten für die KWK-Varianten werden die gleichen Investitionskosten aus Tabelle 4.5 wie für die Kraftwerke ohne KWK verwendet. Diese Annahme wird dadurch begründet, dass die KWK-Mehrausgaben für Heizkondensatoren oder Warmwasserleitungen durch die deutlich einfachere Turbinengeometrie und den Entfall eines Rückkühlsystems (Kühlturm bzw. Wasserkühlung) ausgeglichen werden [vgl. SWFL, 2008-2013].

Die Entwicklung der spezifischen Investitionskosten von 2020 bis 2050 wird nach Angaben in Viebahn et al. [vgl. 2010, S. 219] durchgeführt (jährlicher Kostenrückgang

Verfahren	Investitionskosten $K_{\text{Inv,el}}$ Euro ₂₀₀₅ /kW		
	ohne CCS	mit CCS	
Steinkohle (Dampf, Post-Comb.)	1352	2209	
Steinkohle (IGCC, Pre-Comb.)	1580	2108	
Steinkohle (Oxyfuel)	1308	2175	
Erdgas (GuD, Post-Comb.)	590	1039	
Holzpellets (Dampf, Post-Comb.)	1352	2209	
Holzpellets (IGCC, Pre-Comb.)	1580	2108	
Holzpellets (Oxyfuel)	1308	2175	
Biomethan (GuD, Post-Comb.)	590	1039	
HHS $(w=50\%)$ (Dampf, Post-Comb.)	1757	2977	
HHS ($w=50\%$) (IGCC, Pre-Comb.)	2054	2740	
HHS $(w=50\%)$ (Oxyfuel)	1700	2828	
Biogas (GuD, Post-Comb.)	767	1350	

Tabelle 4.5: Verwendete spezifische Investitionskosten für (Heiz-)Kraftwerke (2020), eigene Festlegung auf Basis von Kapitel 2.2.3.1.1

um 0% bis 0.9%, vgl. Anhang Tabelle A.22).

Die spezifischen Betriebs- und Wartungskosten (ohne und mit CCS) für fossile Energieträger, Holzpellets und Biomethan (vgl. Tabelle 4.6) werden aus Kapitel 2.2.3.1.1 übernommen (vgl. Abbildung 2.34). Die fehlenden Angaben für die Oxyfuel-Varianten werden als Mittelwert des Dampf- und IGCC-Prozesses angenommen. Die jährlichen Betriebs- und Wartungskosten für Kraftwerke auf Basis von HHS (w=50%) betragen nach Scholz [vgl. 2009, S. 53] 5% der Investitionskosten (ohne CCS). Da die in Tabelle 4.6 dargestellten Kosten für fossile Energieträger durchschnittlich 4,0% betragen, werden die Kosten für Holzhackschnitzel (w=50%) um 1,0%-Punkte erhöht (für alle sechs Varianten ohne und mit CCS). Der gleiche Erhöhungsfaktor wird für Biogas angewendet. Die Betriebskosten für KWK-Anlagen betragen nach Scholz [vgl. 2009, S. 53] 6,8% der Investitionskosten, so dass 2,8% der Investitionskosten als KWK-Mehrkosten für alle KWK-Varianten berücksichtigt werden.

	Betriebs- und Wartungskosten $K_{\rm B+W,el}$		
Verfahren	$\mathrm{Euro}_{2005}/(\mathrm{kW}\cdot\mathrm{a})$		
	ohne CCS	mit CCS	
Steinkohle (Dampf, Post-Comb.)	55	113	
Steinkohle (IGCC, Pre-Comb.)	56	78	
Steinkohle (Oxyfuel)	55	95	
Erdgas (GuD, Post-Comb.)	21	41	
Holzpellets (Dampf, Post-Comb.)	55	113	
Holzpellets (IGCC, Pre-Comb.)	56	78	
Holzpellets (Oxyfuel)	55	95	
Biomethan (GuD, Post-Comb.)	21	41	
HHS ($w=50\%$) (Dampf, Post-Comb.)	69	127	
HHS (w =50%) (IGCC, Pre-Comb.)	72	94	
HHS $(w=50\%)$ (Oxyfuel)	68	108	
Biogas (GuD, Post-Comb.)	26	46	
Mehrkosten KWK (Dampf)	38	38	
Mehrkosten KWK (IGCC))	44	44	
Mehrkosten KWK (Oxyfuel)	37	37	
Mehrkosten KWK (GuD)	15	15	

Tabelle 4.6: Verwendete spezifische Betriebs- und Wartungskosten für Kraftwerke und Heizkraftwerke (2020), eigene Festlegung auf Basis von Kapitel 2.2.3.1.1, Scholz [vgl. 2009, S.53]

4.2.5 Weitere Parameter

Die spezifischen CO_2 -Emissionen werden den Ergebnissen aus der technischen Analyse entnommen. Im Kapitel 3.2.2.4 ist bereits ausgeführt worden, dass die spezifischen CO_2 -Emissionen für Steinkohle mit 0,108 t/GJ im Vergleich zu Literaturwerten relativ hoch sind (0,095 t/GJ bis 0,101 t/GJ). Trotzdem wird dieser höhere Wert verwendet, da andernfalls keine entsprechenden Literaturangaben für Holzpellets vorhanden gewesen wären. Der Effekt dieser unterschiedlichen CO_2 -Emissionsfaktoren für Steinkohle auf die Stromgestehungskosten sowie CO_2 -Vermeidungskosten wird in den jeweiligen Kapiteln kurz dargestellt, indem die Berechnungen ebenfalls mit einem spezifischen CO_2 -Emissionsfaktor von 0.095 t/GJ durchgeführt werden.

Als CO₂-Abscheidegrad im Jahr 2020 wird für die CCS-Variante Post-Combustion mit 90% gerechnet (vgl. Kapitel 2.1.3.1.2). In Kapitel 3.2.3.5.2 ist bereits dargestellt worden, dass der spezifische Energieaufwand bei der Abscheidung von 90% des enthaltenen CO₂ bei 1,95 MJ/kg liegt und bei einem CO₂-Abscheidegrad von 50% auf 1,08 MJ/kg sinkt [vgl. Fischedick et al., 2007, S. 219]. Deswegen wird im Rahmen der Sensitivitätsanalyse ebenfalls dieser geringere CO₂-Abscheidegrad untersucht. Für die Variante Pre-Combustion werden wie bei Post-Combustion 90% CO₂-Abscheidegrad unterstellt. Für das Jahr 2050 wird jeweils mit einer Steigerung auf 92% gerechnet [vgl. Viebahn et al., 2010, S. 167]. Da bei der Variante Oxyfuel der gesamte Rauchgasstrom gereinigt und anschließend gespeichert wird (vgl. Kapitel 2.1.3.1.2), beträgt der CO₂-Abscheidegrad nahezu 100% [vgl. Metz et al., 2005, S. 122]. Die Berechnungen werden mit 99% durchgeführt.

Die Höhe der CO₂-Transportkosten hängt entscheidend von der jährlichen Massenrate und der Transportentfernung ab: Geringere Transportraten führen zu exponentiell steigenden spezifischen CO₂-Transportkosten, größere Transportdistanzen führen zu linear wachsenden CO₂-Transportkosten (vgl. Kapitel 2.2.3.1.2). Als mittlere CO₂-Transportkosten werden für 2020 und 2050 jeweils 5 Euro/t unterstellt. Dies entspricht bei einem Pipelinetransport von etwa 250 km Länge einer jährlichen CO₂-Massenrate von 1 Mt bis 2 Mt (vgl. Abbildung 2.37). Für die Sensitivitätsanalyse wird mit minimalen CO₂-Transportkosten von 0 Euro/t und maximalen Kosten von 20 Euro/t gerechnet. 0 Euro/t könnten anfallen, wenn sich das (Heiz-)Kraftwerk direkt an einer CO₂-Lagerstätte befindet, 20 Euro/t ergeben sich für einen CO₂-Schiffstransport von ca. 3500 km (bei einer CO₂-Rate von 6 Mt/a, vgl. Kapitel 2.2.3.1.2). Eine Veröffentlichung aus dem Jahr 2010 zeigt, dass diese Kostenobergrenzen nicht zu hoch angesetzt sind: Auf Basis eines CO₂-Transportstroms von 2,5 Mt/a ergeben sich für den Pipeline-/Schiffstransport bei einer Distanz von 180 km CO₂-Transportkosten von rund 10 Euro/t bis 13 Euro/t und bei 750 km rund 14 Euro/t bis 27 Euro/t [vgl. Nilsson, 2010, S. 27].

Als Kosten für die CO₂-Speicherung wird in 2020 mit 4 Euro/t gerechnet. Dies entspricht den mittleren technischen Kosten der CO₂-Speicherung in der Literatur (vgl. Kapitel 2.2.3.1.3). Mögliche negative Kosten für die Produktionssteigerung bei der Einlagerung in Erdöl- und Erdgaslagerstätten werden nicht berücksichtigt, da hierbei wieder neue Kohlenwasserstoffe in die Atmosphäre gelangen. Es wird jedoch im Rahmen der Sensitivitätsanalyse eine Reduktion der CO₂-Speicherkosten auf 0 Euro/t berücksichtigt, falls bestehende Bohrungen genutzt werden können. Für 2050 wird aufgrund knapper CO₂-Lagerstätten von einer Erhöhung auf 10 Euro/t ausgegangen. Aufgrund der Knappheit geeigneter Lagerstätten werden im Rahmen der Sensitivitätsanalyse die CO₂-Speicherkosten auf maximal 400 % bzw. 16 Euro/t erhöht. Grundsätzlich besteht natürlich die Möglichkeit, das CO_2 in größeren Lagerstätten (z. B. vor Norwegen oder den Niederlanden) einzulagern, so dass niedrigere CO_2 -Speicherkosten erreicht werden könnten. Hierdurch erhöhen sich jedoch wiederum die CO_2 -Transportkosten. Wegen dieser möglichen gegenseitigen Abhängigkeit werden die CO_2 -Transport- und CO_2 -Speicherkosten in der wirtschaftlichen Analyse zusammengefasst.

Wie in Kapitel 4.1.1 beschrieben, basieren die Berechnungen auf Euro des Jahres 2005. Um Kosten- und Preisangaben aus dem Jahr 2020 in Euro des Jahres 2005 umzurechnen, wird allgemein eine Preissteigerung von 1,5 %/a unterstellt, so dass sich für das Jahr 2020 ein Faktor von 1,25 und für das Jahr 2050 ein Faktor von 1,95 ergibt.

Alle Investitionen werden auf eine Nutzungsdauer von 20 Jahren umgelegt. Der Zinssatz beträgt 5,0%, so dass sich nach Formel 4.3 ein Annuitätenfaktor von 0,08 ergibt.

Für die Berechnung der Stromgestehungskosten wird für die produzierte Fernwärme eine Vergütung berücksichtigt. Diese Vergütung ergibt sich aus den Fernwärmepreisen (70 Euro/MWh bzw. 65 Euro₂₀₀₅/MWh, vgl. Kapitel 2.2.2.2) abzüglich der Kosten für die Fernwärmeverteilung und sonstiger Kosten. Die Kosten für die Fernwärmeverteilung betragen nach Jochem et al. [vgl. 2000, S. 216] durchschnittlich 36 % der gesamten Fernwärmekosten. Unter sonstige Kosten fallen Pumpenergieaufwand im Heizkraftwerk, Vertriebsund Verwaltungsaufwendungen sowie ein Gewinnanteil, die mit 20 % angenommen werden. Es ergeben sich Fernwärmeerlöse ($e_{\rm FW,th}$) in Höhe von 29 Euro/MWh (8 Euro/GJ). Dieser Wert entspricht größenordnungsmäßig den internen Betriebserfahrungen bei der Stadtwerke Flensburg GmbH.

Um auf der anderen Seite die Wärmegestehungskosten zu berechnen, wird für den produzierten Strom eine Strompreis-Vergütung (e_{Strom}) von 50 Euro/MWh angenommen. Analog zu den Brennstoffkosten werden die Erlöse für Fernwärme und Strom für das Jahr 2050 um 50% angehoben (Fernwärme: ca. 43 Euro/GJ, Strom: 75 Euro/MWh).

4.3 Stromgestehungskosten

Im Folgenden werden die auf Basis der in Kapitel 4.2 definierten Parameter berechneten Stromgestehungskosten für die Jahre 2020 und 2050 vorgestellt. Anschließend wird für die wesentlichen Kostenbestandteile eine Sensitivitätsanalyse durchgeführt.

4.3.1 Stromgestehungskosten in 2020

In Abbildung 4.1 sind die Stromgestehungskosten für die Varianten ohne KWK und ohne CCS dargestellt. Die Stromgestehungskosten für fossile Energieträger liegen auf einem Niveau von 85 Euro/MWh bis 90 Euro/MWh und somit leicht unter den Stromgeste-

hungskosten für biogene Festbrennstoffe, was Berechnungen an anderer Stelle entspricht [vgl. EBTP/ZEP, 2012, S. 21]. Trotz des höheren Brennstoffpreises weist Erdgas wegen deutlich niedrigerer Investitions- und Wartungskosten sowie geringerer spezifischer CO₂-Emissionen und höherer elektrischer Wirkungsgrade die niedrigsten Stromgestehungskosten auf. Diese Stromgestehungskosten liegen vor allem aufgrund deutlich niedriger Volllaststunden allgemein über dem Niveau der Stromgestehungskosten in der Literatur, das in Kapitel 2.2.3.1.1 vorgestellt worden ist (vgl. Abbildung 2.35). Die Stromgestehungskosten auf Holzhackschnitzeln (w=50%) liegen mit 89 Euro/MWh bis 97 Euro/MWh aufgrund niedrigerer Brennstoffkosten unter den Stromgestehungskosten aus Holzpellets (103 Euro/MWh bis 110 Euro/MWh). Die höchsten Stromgestehungskosten weisen Biogas und Biomethan mit 132 Euro/MWh bis 137 Euro/MWh auf.

Abbildung 4.1: Stromgestehungskosten im Jahr 2020 (ohne KWK, ohne CCS), eigene Berechnung mit Daten aus Kapitel 4.2

Die in Abbildung 4.2 dargestellten Stromgestehungskosten ohne KWK und mit CCS lassen erkennen, dass die Varianten mit Pre-Combustion jeweils die niedrigsten Stromgestehungskosten aufweisen (jeweils dicht gefolgt von den Oxyfuel-Varianten). Die Ursache hierfür sind die geringeren Wirkungsgradverluste bei Integration der CO₂-Abscheidung (vgl. Kapitel 4.2.3). Es liegen wiederum die Stromgestehungskosten von Steinkohle am niedrigsten, dicht gefolgt von Holzhackschnitzeln und mit größerem Abstand von den

Holzpellets. Für die Varianten mit biogenen Brennstoffen (17 bis 24) fallen für die CO_2 -Zertifikate negative Kosten an. Hierbei wird davon ausgegangen, dass die negativen CO_2 -Emissionen zu Marktpreisen für CO_2 -Zertifikate vergütet werden.

Abbildung 4.2: Stromgestehungskosten im Jahr 2020 (ohne KWK, mit CCS), eigene Berechnung mit Daten aus Kapitel 4.2

Die Stromgestehungskosten bei der gleichzeitigen Erzeugung von Strom und Fernwärme (ohne CCS) liegen deutlich niedriger als die Stromgestehungskosten bei reiner Stromerzeugung (vgl. Abbildung 4.3). Holzhackschnitzel (w=50%) weisen mit 51 Euro/MWh bis 60 Euro/MWh die niedrigsten Stromgestehungskosten auf, da in diesen Anlagen ein relativ geringer elektrischer, jedoch ein umso höherer thermischer Wirkungsgrad vorliegt: Für den Dampfprozess betragen die elektrischen und thermischen Wirkungsgrade hierbei 24,2 % und 61,8 %, während die Wirkungsgrade für Holzpellets bzw. Steinkohle bei 33,2 % und 52,8 % liegen (vgl. Kapitel 4.2.3).

Die Stromgestehungskosten für die Varianten mit KWK und mit CCS streuen innerhalb der Brennstoffgruppen am stärksten (vgl. Abbildung 4.4). Die Varianten mit Post-Combustion weisen jeweils die höchsten Stromgestehungskosten auf: Die elektrischen Wirkungsgradverluste durch die MEA-Wäsche fallen zwar mit 9%-Punkten bis 10%-Punkten ähnlich hoch wie bei Pre-Combustion oder Oxyfuel aus, doch gehen zusätzlich 18%-Punkte bis 26%-Punkte des thermischen Wirkungsgrads verloren. Hierdurch

Abbildung 4.3: Stromgestehungskosten im Jahr 2020 (mit KWK, ohne CCS), eigene Berechnung mit Daten aus Kapitel 4.2

reduzieren sich die Fernwärmeerlöse erheblich. Für die Varianten Pre-Combustion und Oxyfuel auf Basis von Holzhackschnitzel (w=50%) ergeben sich Stromgestehungskosten von 47 Euro/MWh bis 56 Euro/MWh, was durchaus im Bereich der für 2020 erwarteten Großhandelspreise für elektrische Energie liegt (ca. 70 Euro/MWh [vgl. Wenzel und Nitsch, 2010, S. 30 ff.]).

Berechnet man die Stromgestehungskosten auf Basis des geringeren CO_2 -Emissionsfaktors für Steinkohle (0,095 t/GJ ggü. 0,108 t/GJ, vgl. Kapitel 4.2.5), so ergeben sich für alle Varianten durchschnittlich um 2,1 Euro/MWh niedrigere Stromgestehungskosten (1,2 Euro/MWh bis 3,3 Euro/MWh). Die höheren Reduzierungen ergeben sich für die Varianten mit geringerem elektrischen Wirkungsgrad (Post-Combustion).

In den beiden folgenden Unterkapiteln werden die Stromgestehungskosten für zwei Sonderfälle untersucht: Post-Combustion mit einem CO_2 -Abscheidegrad von 50 % sowie die Möglichkeit, dass für negative CO_2 -Emissionen höhere CO_2 -Zertifikatepreise gezahlt werden.

Abbildung 4.4: Stromgestehungskosten im Jahr 2020 (mit KWK, mit CCS), eigene Berechnung mit Daten aus Kapitel 4.2

4.3.1.1 Post-Combustion mit CO₂-Abscheidegrad von 50 %

In Kapitel 3.2.5 ist ausgeführt worden, dass die CCS-Variante Post-Combustion bei einem CO_2 -Abscheidegrad von 50 % anstelle der hier definierten 90 % mit einem deutlich geringeren spezifischen Energieaufwand CO₂ aus den Rauchgasen herausfiltern kann: Nach Fischedick et al. [vgl. 2007, S. 219] beträgt der auf das abgeschiedene CO₂ bezogene Energieaufwand bei 50 % CO₂-Abscheidegrad lediglich 1,08 MJ/kg gegenüber 1,95 MJ/kg bei einem CO₂-Abscheidegrad von 90 %. Hieraus ergibt sich eine Reduzierung des spezifischen Energieaufwands auf 55 %. Der CO_2 -Abscheidegrad beträgt bei 50 % ebenfalls 55 % des Ausgangsniveaus (90%). Im Ergebnis verringern sich die Energieaufwendungen um ca. 69%, während der CO₂-Abscheidegrad um 45% abnimmt und somit die spezifischen CO₂-Emissionen deutlich zunehmen. Um die Auswirkungen auf die Stromgestehungskosten überschlägig beurteilen zu können, werden zum einen der CO₂-Abscheidegrad von 90 % auf 50 % reduziert und die elektrischen und thermischen Wirkungsgradverluste jeweils um 69% reduziert. Die spezifischen Investitionskosten und alle weiteren Parameter, die sich bei einem reduzierten CO₂-Abscheidegrad möglicherweise verändern, werden konstant gehalten. So kann beispielsweise davon ausgegangen werden, dass bei einem niedrigeren CO₂-Abscheidegrad die spezifischen CO₂-Transport- und CO₂-Speicherkosten

höher ausfallen werden.

Die Stromgestehungskosten fallen durch die niedrigeren CO₂-Abscheidegrade erwartungsgemäß geringer aus: Bei den Varianten ohne KWK liegen diese für die Festbrennstoffe um ca. 8 Euro/MWh bis 18 Euro/MWh niedriger, jedoch noch immer auf höherem Niveau als die Varianten Oxyfuel und Pre-Combustion (vgl. Abbildung 4.5). Für die gasförmigen Brennstoffe ist der Rückgang der Stromgestehungskosten noch deutlicher: Bei Biogas sinken die Stromgestehungskosten aufgrund hoher spezifischer CO₂-Emissionen um 34 Euro/MWh.

Abbildung 4.5: Stromgestehungskosten im Jahr 2020 bei 50% und 90% bis 99% CO₂-Abscheidegrad (ohne KWK, mit CCS), eigene Berechnung mit Daten aus Kapitel 4.2

Die Reduzierung des CO₂-Abscheidegrads für die Varianten mit KWK führt bei den Festbrennstoffen zu etwas höheren Rückgängen der Stromgestehungskosten: Sie betragen 14 Euro/MWh bis 28 Euro/MWh, da bei einem geringeren CO₂-Abscheidegrad sowohl der elektrische als auch der thermische Wirkungsgradverlust geringer ausfällt (vgl. Abbildung 4.6). Bei den KWK-Varianten liegen die Stromgestehungskosten der Varianten 37, 41 und 45 jedoch weiterhin deutlich über den Stromgestehungskosten für die entsprechenden Oxyfuel- bzw. Pre-Combustion-Varianten. Die Rückgänge für die gasförmigen Brennstoffe fallen ähnlich hoch wie ohne KWK aus, da diese Varianten durch den GuD-Prozess grundsätzlich über einen geringeren thermischen Wirkungsgrad

verfügen, der von dem geringeren CO₂-Abscheidegrad profitieren kann.

Abbildung 4.6: Stromgestehungskosten im Jahr 2020 bei 50% und 90% bis 99% CO₂-Abscheidung (mit KWK, mit CCS), eigene Berechnung mit Daten aus Kapitel 4.2

4.3.1.2 Höhere CO₂-Zertifikatepreise für negative CO₂-Emissionen

Der heutige CO₂-Emissionsrechtehandel basiert auf dem Handel von CO₂-Zertifikaten, die den Besitzer zum Ausstoß von bestimmten CO₂-Mengen berechtigen. Bei der Berechnung der Stromgestehungskosten im vorigen Abschnitt ist davon ausgegangen worden, dass für die negativen CO₂-Emissionen, die durch Bio-CCS erreicht werden, die gleichen CO₂-Zertifikatepreise gelten wie für positive CO₂-Emissionen. Vor dem Hintergrund ambitionierter Klimaschutzziele (vgl. Kapitel 1.1.2) können zukünftig jedoch große Mengen an negativen CO₂-Emissionen notwendig werden, die am Markt höher als positive CO₂-Emissionen bewertet werden können, um die wirtschaftliche Attraktivität zu fördern [vgl. Heidug et al., 2012, S. 40].

Abbildung 4.7 zeigt für die Varianten mit KWK und mit CCS, dass bei gleichen CO_2 -Zertifikatepreisen für positive und negative CO_2 -Emissionen die Stromgestehungskosten für die fünf aussichtsreichsten Varianten bei 47 Euro/MWh bis 58 Euro/MWh eng beisammen liegen. Mit steigenden CO_2 -Zertifikatepreisen für negative CO_2 -Emissionen fallen

Abbildung 4.7: Stromgestehungskosten im Jahr 2020 bei Variation der CO₂-Zertifikatekosten für negative CO₂-Emissionen (mit KWK, mit CCS), eigene Berechnung mit Daten aus Kapitel 4.2

erwartungsgemäß die Stromgestehungskosten für die Varianten mit biogenen Brennstoffen. Bei einem um 50 % höheren CO₂-Zertifikatepreis (36 Euro₂₀₀₅/t bzw. 45 Euro/t) ergeben sich für die Varianten Pre-Combustion und Oxyfuel auf Basis von Holzhackschnitzeln Stromgestehungskosten von weniger als 20 Euro/MWh bis 38 Euro/MWh. Ab einem CO₂-Zertifikatepreis von 45 Euro₂₀₀₅/t können sich für die Variante Oxyfuel sogar negative Stromgestehungskosten ergeben. Die Stromgestehungskosten der Varianten auf Basis von Holzpellets liegen auch bei einem CO₂-Zertifikatepreis von 60 Euro/t über den Werten für Steinkohle.

4.3.2 Stromgestehungskosten in 2050

Die Berechnung der Stromgestehungskosten für das Jahr 2050 basieren wiederum auf den in Kapitel 4.2 getroffenen Annahmen. Wesentliche Veränderungen sind im Bereich der Brennstoffpreise, der CO₂-Zertifikatepreise, der Volllaststunden, der Wirkungsgrade sowie der Investitions- und Betriebskosten vorgenommen worden. Es werden im Folgenden ausschließlich die Varianten mit CCS betrachtet, da hierbei die negativen CO₂-Emissionen erreicht werden können.

In Abbildung 4.8 sind die Stromgestehungskosten für das Jahr 2050 ohne KWK und mit CCS dargestellt. Für jede Variante ergeben sich höhere Stromgestehungskosten als in 2020. Die Steigerungen fallen für die Varianten mit Post-Combustion (Festbrennstoffe und gasförmige Brennstoffe) mit 23 Euro/MWh bis 42 Euro/MWh am stärksten aus. Die geringsten Stromgestehungskosten sind wie im Jahr 2020 von den Pre-Combustion-Varianten zu erwarten, dicht gefolgt von den Oxyfuel-Varianten. Die Stromgestehungskosten für HHS (w=50%) liegen etwa auf dem gleichen Niveau wie für Steinkohle.

Abbildung 4.8: Stromgestehungskosten im Jahr 2050 (ohne KWK, mit CCS), eigene Berechnung mit Daten aus Kapitel 4.2

Die Stromgestehungskosten im Jahr 2050 mit KWK fallen vor allem für die fossilen Brennstoffe erheblich niedriger aus als ohne KWK. Dies resultiert aus der deutlichen Zunahme der jährlichen Volllaststunden (7000 mit KWK, 3500 ohne KWK). Im Bereich der erneuerbaren Energieträger fallen die Steigerungen der Stromgestehungskosten gegenüber 2020 ähnlich hoch aus wie ohne KWK (13 Euro/MWh bis 42 Euro/MWh). Die wirtschaftlichsten Varianten zur Erzeugung negativer CO₂-Emissionen sind mit Stromgestehungskosten von 67 Euro/MWh bis 69 Euro/MWh abermals die Varianten Pre-Combustion und Oxyfuel auf Basis von HHS (w=50%) (vgl. Abbildung 4.9).

Abbildung 4.9: Stromgestehungskosten im Jahr 2050 (mit KWK, mit CCS), eigene Berechnung mit Daten aus Kapitel 4.2

4.3.3 Sensitivitätsanalyse der Stromgestehungskosten

Für die Sensitivitätsanalyse der Stromgestehungskosten wird zunächst anhand einer Variante gezeigt, welchen Einfluss die Variation der einzelnen Parameter auf die Stromgestehungskosten hat. Hierbei wird eine Variante näher betrachtet, die unter den erneuerbaren Energieträgern im CCS-Betrieb im Jahr 2020 vergleichsweise niedrige Stromgestehungskosten aufweist: die Variante Pre-Combustion auf Basis von Holzhackschnitzeln (w=50%) (105 Euro/MWh ohne KWK, 56 Euro/MWh mit KWK). Die Variante 47 (Oxyfuel + HHS w=50%) führt zwar mit 109 Euro/MWh (ohne KWK) bzw. 47 Euro/MWh (mit KWK) zu ähnlich niedrigen Stromgestehungskosten, jedoch wird in Kapitel 2.1.3.1.5 ausgeführt, dass bislang vor allem in IGCC-Kraftwerken Biomasse testweise eingesetzt wird.

Abbildung 4.10 stellt die Sensitivität der Stromgestehungskosten für die Variante Pre-Combustion auf Basis von Holzhackschnitzeln ohne KWK dar. Da nicht alle Parameter symmetrisch in negative wie positive Richtung verändert werden (z. B. Investitionskosten zwischen 70 % und 150 %), reichen nicht alle Linien vom Minimum bis zum Maximum. Die Variation der CO₂-Transport- und CO₂-Speicherkosten sowie der Brennstoffpreise führt zu erheblichen Veränderungen der Stromgestehungskosten: Die Stromgestehungskosten

können sich hierbei jeweils auf bis zu 140 Euro/MWh erhöhen. Da der Sensitivitätsbereich der CO_2 -Transport- und CO_2 -Speicherkosten nach unten kleiner ausfällt (minimal 0%, maximal 400%), ergeben sich hierbei nicht so niedrige Stromgestehungskosten wie bei minimalen Brennstoffkosten (ca. 65 Euro/MWh). Ebenfalls entscheidenden Einfluss hat die Anzahl der Volllaststunden: Bei einer Reduzierung der Volllaststunden von 7000 auf 3000 erhöhen sich die Stromgestehungskosten, der Wirkungsgrade und der CO_2 -Zertifikatepreise ist weniger stark.

Abbildung 4.10: Sensitivität der Stromgestehungskosten im Jahr 2020 (IGCC/Pre-Combustion, HHS (w=50%), ohne KWK, mit CCS), eigene Berechnung mit Daten aus Kapitel 4.2

Die Sensitivitäten mit KWK fallen etwas stärker aus: Von einem Ausgangsniveau von 56 Euro/MWh steigen die Stromgestehungskosten auf ca. 100 Euro/MWh bei maximalen Kosten für Brennstoff sowie CO_2 -Transport und CO_2 -Speicherung (vgl. Abbildung 4.11). Eine Reduktion der Volllaststunden auf 3000 führt zu einer Erhöhung der Stromgestehungskosten auf 124 Euro/MWh. Der Einfluss der Variation der CO_2 -Zertifikatekosten, Investitionskosten, Wirkungsgrade und Fernwärmeerlöse ist wiederum untergeordnet. Hierbei fällt jedoch auf, dass aufgrund geringerer elektrischer Wirkungsgrade der Einfluss der Wirkungsgradvariation zwischen 85 % und 115 % mit KWK deutlich geringer ausfällt: Mit KWK erhöhen bzw. reduzieren sich die Stromgestehungskosten um etwa

1,4 Euro/MWh, während diese Änderung ohne KWK ca. 18 Euro/MWh beträgt (vgl. Abbildung 4.10 und Abbildung 4.11).

Abbildung 4.11: Sensitivität der Stromgestehungskosten im Jahr 2020 (IGCC/Pre-Combustion, HHS (w=50 %), mit KWK, mit CCS), eigene Berechnung mit Daten aus Kapitel 4.2

Als wesentliche Einflussgrößen sind somit die Brennstoffpreise, die Kosten für CO_2 -Transport und CO_2 -Speicherung sowie die Volllaststunden detektiert worden, auf die im Folgenden näher eingegangen wird. Zusätzlich werden die CO_2 -Zertifikatekosten untersucht, da hierbei ein unterschiedliches Verhalten zwischen fossilen und erneuerbaren Energieträgern zu erwarten ist. Hierbei werden wieder alle Varianten mit CCS betrachtet, um zu erkennen, ob durch die Veränderung unterschiedliche Varianten zu niedrigeren Stromgestehungskosten führen.

4.3.3.1 Variation der Brennstoffpreise

Abbildung 4.12 stellt für die zwölf untersuchten Varianten mit CCS und ohne KWK dar, wie sich die Stromgestehungskosten bei einer Variation der Brennstoffkosten von 50% bis 150% ändern. Bei den fossilen Brennstoffen machen die Brennstoffkosten grundsätzlich einen geringeren Anteil an den Stromgestehungskosten aus, so dass die Variation hier zu insgesamt geringeren Schwankungen der Stromgestehungskosten führt.

Bei sehr niedrigen Brennstoffpreisen liegen die Stromgestehungskosten für alle Varianten in einem sehr engen Bereich von 67 Euro/MWh bis 108 Euro/MWh beisammen. Bei höheren Brennstoffpreisen steigen die Stromgestehungskosten für Biogas und Biomethan aufgrund des deutlich höheren Ausgangspreisniveaus überdurchschnittlich stark an. Im Bereich der Festbrennstoffe steigen die Varianten auf Basis von Post-Combustion ebenfalls stärker an, da diese die niedrigsten elektrischen Wirkungsgrade aufweisen. Somit variieren die Stromgestehungskosten bei 150 % der Brennstoffpreise zwischen 120 Euro/MWh und 270 Euro/MWh.

Abbildung 4.12: Sensitivität der Stromgestehungskosten im Jahr 2020 auf Variation der Brennstoffpreise (ohne KWK, mit CCS), eigene Berechnung mit Daten aus Kapitel 4.2

Die Variation der Brennstoffpreise bei den Varianten mit KWK führt zu einer ähnlichen Entwicklung auf niedrigerem Niveau bei den Stromgestehungskosten (vgl. Abbildung 4.13). Die Varianten mit erntefrischen Holzhackschnitzeln (w=50%) führen hierbei bei niedrigen Brennstoffpreisen zu den niedrigsten Stromgestehungskosten, die für die Variante Oxyfuel sogar unter 0 Euro/MWh fallen. Die Varianten Post-Combustion und Pre-Combustion auf Basis von HHS liegen mit Stromgestehungskosten von 7 Euro/MWh bis 11 Euro/MWh ebenfalls deutlich unter den heutigen Marktpreisen. Auffällig ist, dass die Festbrennstoffvarianten auf Basis von Post-Combustion (37, 41, 45) aufgrund der hohen thermischen Wirkungsgradeinbußen auf die Brennstoffpreissteigerungen ähnlich

sensitiv reagieren wie die gasförmigen Brennstoffe, die ohne KWK am empfindlichsten auf die Brennstoffpreisschwankungen reagiert haben.

Abbildung 4.13: Sensitivität der Stromgestehungskosten im Jahr 2020 auf Variation der Brennstoffpreise (mit KWK, mit CCS), eigene Berechnung mit Daten aus Kapitel 4.2

4.3.3.2 Variation der CO₂-Transport- und CO₂-Speicherkosten

Die Variation der CO₂-Transport- und CO₂-Speicherkosten führt für die Varianten mit und ohne KWK zu ähnlichen Veränderungen der Stromgestehungskosten, so dass in Abbildung 4.14 lediglich die Varianten mit KWK dargestellt sind. Die Varianten mit hohen spezifischen CO₂-Emissionen weisen erwartungsgemäß bei hohen Kosten für CO₂-Transport und CO₂-Speicherung die stärksten Steigerungen der Stromgestehungskosten auf. So weisen Holzhackschnitzel (w=50%) und Steinkohle bei CO₂-Transport- und CO₂-Speicherkosten von 9 Euro/t Stromgestehungskosten in einem Bereich von 47 Euro/MWh bis 58 Euro/MWh auf, während diese bei CO₂-Transport- und CO₂-Speicherkosten von 36 Euro/t auf 88 Euro/MWh bis 108 Euro/MWh ansteigen. Der Anstieg für erntefrisches Holz fällt hierbei am stärksten aus. Noch intensiver ist der Anstieg der Stromgestehungskosten für die Variante 45 (Post-Combustion + HHS), die von 60 Euro/MWh auf 152 Euro/MWh bei maximalen CO₂-Transport- und CO₂-Speicherkosten ansteigt. Die Ursache hierfür sind die hohen abgeschiedenen spezifischen CO₂-Emissionen und der vergleichsweise geringe elektrische und thermische Wirkungsgrad.

Vor dem Hintergrund der deutlichen Zunahme der Stromgestehungskosten bei steigenden CO_2 -Transport- und CO_2 -Speicherkosten wird eine CO_2 -Nutzung zur Algenproduktion deutlich interessanter. Bei einer räumlichen Konzentration von Heizkraftwerk und Algenaufzucht könnte auf die CO_2 -Transport- und CO_2 -Speicherkosten weitestgehend verzichtet werden, so dass Stromgestehungskosten von 27 Euro/MWh bis 60 Euro/MWh möglich werden.

Abbildung 4.14: Sensitivität der Stromgestehungskosten im Jahr 2020 auf Variation der CO₂-Transport- und CO₂-Speicherkosten (mit KWK, mit CCS), eigene Berechnung mit Daten aus Kapitel 4.2

4.3.3.3 Variation der Volllaststunden

Die Anzahl der Volllaststunden hat entscheidenden Einfluss auf die Stromgestehungskosten, da hiermit die Fixkosten, die 10 % bis 50 % der Stromgestehungskosten ausmachen (vgl. Kapitel 4.3.1), bei einer Zunahme der Volllaststunden von 3000 auf 7000 mehr als halbiert werden. In Abbildung 4.15 sind die Varianten ohne KWK dargestellt. Es wird deutlich, dass die Varianten auf Basis erneuerbarer Energieträger bei gleichen Volllaststunden grundsätzlich zu höheren Stromgestehungskosten führen. Durch die Annahme

von unterschiedlichen Volllaststunden zwischen 3000 und 7000 bzw. grundsätzlich höheren Volllaststunden für erneuerbare Energieträger (vgl. Kasten "Grundparameter") ergeben sich wiederum ähnlich hohe Stromgestehungskosten. Die geringeren spezifischen Investitionskosten für Varianten auf Basis gasförmiger Brennstoffe führen zu einer deutlich geringeren Sensitivität dieser Varianten für alle drei gasförmigen Brennstoffe.

Abbildung 4.15: Sensitivität der Stromgestehungskosten im Jahr 2020 auf Variation der Volllaststunden (ohne KWK, mit CCS), eigene Berechnung mit Daten aus Kapitel 4.2

Ein etwas anderes Bild ergibt sich bei der Sensitivitätsanalyse der Volllaststunden für die Varianten mit KWK (vgl. Abbildung 4.16). Die Varianten auf Basis von Holzhackschnitzeln mit 50 % Wassergehalt weisen im Vergleich zu Steinkohle und Holzpellets relativ niedrige elektrische und dafür relativ hohe thermische Wirkungsgrade auf. Dies führt dazu, dass die Stromgestehungskosten nach KWK-Integration zwischen 5000 und 8000 Volllaststunden für erntefrisches Holz und Steinkohle vergleichbar sind bzw. für die Variante Oxyfuel sogar etwas niedriger ausfallen. Grundsätzlich ist das Niveau der Stromgestehungskosten im Vergleich zu den Varianten ohne KWK aufgrund der Fernwärmeerlöse um ca. 25 Euro/MWh geringer (außer bei den Post-Combustion-Varianten wegen der deutlich geringeren thermischen Wirkungsgrade).

Abbildung 4.16: Sensitivität der Stromgestehungskosten im Jahr 2020 auf Variation der Volllaststunden (mit KWK, mit CCS), eigene Berechnung mit Daten aus Kapitel 4.2

4.3.3.4 Variation der CO₂-Zertifikatepreise

Die Variation der CO_2 -Zertikatepreise führt bei den fossilen und den erneuerbaren Energieträgern zu unterschiedlichen Auswirkungen. In Abbildung 4.17 sind die Stromgestehungskosten für die Varianten mit KWK und mit CCS dargestellt. Auf die Darstellung der Varianten ohne KWK wird verzichtet, da sich ein ähnliches Bild ergibt.

Die Stromgestehungskosten für fossile Energieträger erhöhen sich bei steigenden CO_2 -Zertifikatepreisen nur geringfügig, da sie durch die CO_2 -Sequestrierung nur noch geringe spezifische CO_2 -Emissionen emittieren. Dahingegen werden bei den erneuerbaren Energieträgern spezifisch deutlich größere Mengen an CO_2 abgeschieden und gespeichert. Da es sich hierbei um negative CO_2 -Emissionen handelt, werden die CO_2 -Zertifikatekosten den Stromgestehungskosten gutgeschrieben, so dass sich bei steigenden CO_2 -Zertifikatepreisen deutlich niedrigere Stromgestehungskosten ergeben.

Bei den als Ausgangswert gewählten 24 Euro/t ergeben sich somit ähnliche Stromgestehungskosten in Höhe von 47 Euro/MWh bis 56 Euro/MWh für die vorteilhaftesten Varianten (Pre-Combustion/Oxyfuel für Steinkohle/Holzhackschnitzel). Bei minimalen CO₂-Zertifikatepreisen (15 Euro/t) liegen die Stromgestehungskosten auf Basis von

Holzhackschnitzeln ca. 15 Euro/MWh über den Stromgestehungskosten auf Basis von Steinkohle. Bei maximalen CO_2 -Zertifikatepreisen von 45 Euro/t ergeben sich um bis zu 38 Euro/MWh niedrigere Stromgestehungskosten für Holzhackschnitzel gegenüber Steinkohle.

Abbildung 4.17: Sensitivität der Stromgestehungskosten im Jahr 2020 auf Variation der CO₂-Zertifikatepreise (mit KWK, mit CCS), eigene Berechnung mit Daten aus Kapitel 4.2

4.4 Wärmegestehungskosten

Im Folgenden werden die Wärmegestehungskosten auf Basis der in Kapitel 4.2 festgelegten Parameter für das Jahr 2020 und 2050 berechnet.

4.4.1 Wärmegestehungskosten in 2020

Die Wärmegestehungskosten im Jahr 2020 ohne CCS liegen für die Festbrennstoffe in einem Bereich von 29 Euro/MWh bis 65 Euro/MWh (vgl. Abbildung 4.18). Einzig die Wärmegestehungskosten für Biogas bzw. Biomethan liegen aufgrund niedrigerer thermischer Wirkungsgrade bei 80 Euro/MWh bzw. 131 Euro/MWh.

Die Wärmegestehungskosten bei gleichzeitiger CO₂-Sequestrierung fallen vor allem für

Abbildung 4.18: Wärmegestehungskosten im Jahr 2020 (ohne CCS), eigene Berechnung mit Daten aus Kapitel 4.2

die Varianten mit Post-Combustion deutlich höher aus (vgl. Abbildung 4.19). Für die Variante 41 (Post-Comb. + Holzpellets) erhöhen sich die Wärmegestehungskosten von 55 Euro/MWh (ohne CCS) auf 104 Euro/MWh (mit CCS). Ursache hierfür ist wiederum der starke Rückgang des thermischen Wirkungsgrads.

4.4.2 Wärmegestehungskosten in 2050

Analog zu den Stromgestehungskosten werden für die Wärmegestehungskosten im Jahr 2050 nur die Varianten mit CCS betrachtet. Gegenüber dem Jahr 2020 sind wiederum wesentliche Veränderungen bei den Brennstoffpreisen, den CO₂-Zertifikatepreisen, den Wirkungsgraden sowie den Investitions- und Wartungskosten vorgenommen worden. Zusätzlich werden die gutgeschriebenen Stromerlöse von 50 Euro/MWh aus 2020 auf 75 Euro/MWh in 2050 erhöht.

Es lässt sich ein allgemeiner Anstieg der Wärmegestehungskosten gegenüber 2020 feststellen (vgl. Abbildung 4.20). Einzig die Variante 38 (Pre-Combustion auf Basis fossiler Steinkohle) zeigt in 2050 geringere Wärmegestehungskosten als 2020 auf und liegt damit unter der vergleichbaren Variante auf Basis von Holzhackschnitzeln. Die Ursache hierfür liegt in dem absolut gleichen aber relativ unterschiedlichen Anstieg des

Abbildung 4.19: Wärmegestehungskosten im Jahr 2020 (mit CCS), eigene Berechnung mit Daten aus Kapitel 4.2

Abbildung 4.20: Wärmegestehungskosten im Jahr 2050 (mit CCS), eigene Berechnung mit Daten aus Kapitel 4.2

elektrischen Wirkungsgrads zwischen den Varianten von 2020 bis 2050. Der hohe Anstieg der Wärmegestehungskosten bei den gasförmigen Brennstoffen liegt darin begründet, dass durch den unterstellten Anstieg des elektrischen Wirkungsgrads der thermische Wirkungsgrad bis 2050 abnimmt und sich die Mehrkosten somit auf eine geringere Wärmemenge aufteilen.

4.5 CO₂-Vermeidungskosten

Im Folgenden wird auf die CO_2 -Vermeidungskosten im Jahr 2020 und 2050 eingegangen. Für das Jahr 2020 wird zusätzlich untersucht, welchen Effekt ein CO_2 -Abscheidegrad von 50% statt 90% bei der Prozessvariante Post-Combustion hätte. Abschließend wird analog zu den Stromgestehungskosten eine Sensitivitätsanalyse der CO_2 -Vermeidungskosten auf Variation der entscheidenden Parameter durchgeführt.

4.5.1 CO₂-Vermeidungskosten in 2020

Die CO_2 -Vermeidungskosten ohne KWK im Jahr 2020 betragen 33 Euro/t bis 123 Euro/t und liegen somit allesamt über der Annahme für die CO_2 -Zertifikatepreise in 2020 von 24 Euro/t⁸ (vgl. Abbildung 4.21). Die höchsten CO_2 -Vermeidungskosten liegen bei den gasförmigen Brennstoffen vor, da hier die Mehrkosten auf geringere spezifische CO_2 -Emissionen umgelegt werden. Für Biogas liegen die CO_2 -Vermeidungskosten mit 93 Euro/t aufgrund der hohen spezifischen CO_2 -Emissionen noch am niedrigsten. Bei den Festbrennstoffen schneidet die Variante Pre-Combustion für alle drei Brennstoffe am besten ab.

Die CO₂-Vermeidungskosten mit KWK fallen im Vergleich dazu geringer aus. Einzig die Variante 41 (Post-Comb. + Holzpellets) weist mit KWK geringfügig höhere CO₂-Vermeidungskosten auf. Bei den Varianten mit den geringsten CO₂-Vermeidungskosten (Pre-Combustion/Oxyfuel mit HHS) liegen diese mit 21 Euro/t bis 22 Euro/t im Bereich der für 2020 erwarteten Marktpreise in Höhe von 24 Euro/t.

Neben dem Vergleich der CO₂-Vermeidungskosten zu möglichen CO₂-Marktpreisen im Jahr 2020 ist auch ein Vergleich zu Alternativen möglich, durch die CO₂-Emissionen eingespart jedoch keine negativen CO₂-Emissionen erzeugen können (z. B. Windenergie, Bioenergie ohne CCS etc.). Die günstigsten Bio-CCS-Varianten liegen in etwa auf einem Niveau mit gasförmiger Biomasse (30 Euro/t) und Windkraft (onshore/offshore, 32 Euro/t bis 40 Euro/t) [vgl. McKinsey, 2009, S. 6].

 $^{^8}$ Hierbei handelt es sich um 24 Euro₂₀₀₅/t bzw. 30 Euro/t, da gemäß Festlegung in Kapitel 4.1.1 der Index "2005" im Text nicht aufgeführt wird.

Abbildung 4.21: CO₂-Vermeidungskosten im Jahr 2020 (ohne KWK), eigene Berechnung mit Daten aus Kapitel 4.2

Abbildung 4.22: CO₂-Vermeidungskosten im Jahr 2020 (mit KWK), eigene Berechnung mit Daten aus Kapitel 4.2

Berechnet man die CO_2 -Vermeidungskosten auf Basis des geringeren CO_2 -Emissionsfaktors für Steinkohle (0,095 t/GJ ggü. 0,108 t/GJ, vgl. Kapitel 4.2.5), so ergeben sich höhere CO_2 -Vermeidungskosten: Durchschnittlich steigen die CO_2 -Vermeidungskosten um 4 Euro/t (2 Euro/t bis 7 Euro/t), da ähnlich hohe Kosten auf einen geringeren CO_2 -Strom aufgeteilt werden müssen. Die höheren Reduzierungen ergeben sich für die Varianten mit geringerem elektrischen Wirkungsgrad (Post-Combustion).

4.5.1.1 Post-Combustion mit CO₂-Abscheidegrad von 50%

Genau wie für die Stromgestehungskosten (vgl. Kapitel 4.3.1.1) wird auch für die CO_2 -Vermeidungskosten näher untersucht, inwiefern die Ergebnisse für die Post-Combustion-Varianten verändert werden, wenn der CO_2 -Abscheidegrad von 90 % auf 50 % reduziert wird. Im Gegensatz zu den sinkenden Stromgestehungskosten ergeben sich bei einem CO_2 -Abscheidegrad von 50 % höhere CO_2 -Vermeidungskosten. Bei den Varianten ohne KWK ist der Unterschied bei den CO_2 -Vermeidungskosten auf Erdgas-Basis besonders groß (27 Euro/t, vgl. Abbildung 4.23), da hier aufgrund der geringsten CO_2 -Emissionen am wenigsten CO_2 vermieden werden kann. Beim vergleichbaren Biomethan sind die spezifischen, vermiedenen CO_2 -Emissionen höher, da 100 % der abgeschiedenen CO_2 -Emissionen vermiedene CO_2 -Emissionen sind, weil Biomethan im CCS-freien Betrieb (nach den Regeln des CO_2 -Emissionshandels) bereits CO_2 -neutral ist.

Bei den Varianten mit KWK ergibt sich wiederum ein etwas anderes Bild (vgl. Abbildung 4.24): Während für die Festbrennstoffvarianten 17 und 21 bei einem CO₂-Abscheidegrad von 90 % noch die niedrigeren CO₂-Vermeidungskosten auftreten, fallen diese für die gasförmigen Brennstoffe höher aus als mit einem CO₂-Abscheidegrad von 50 %. Für Biomethan und Biogas sind die CO₂-Vermeidungskosten bei einem CO₂-Abscheidegrad von 50 % ca. 16 Euro/t niedriger als bei einem CO₂-Abscheidegrad von 90 %. Die Ursache hierfür liegt darin, dass der bessere elektrische und thermische Wirkungsgrad bei einem CO₂-Abscheidegrad von 50 % zu deutlich geringeren spezifischen Brennstoffkosten führt.

4.5.2 CO₂-Vermeidungskosten in 2050

Die CO_2 -Vermeidungskosten fallen im Jahr 2050 höher aus als im Jahr 2020 (vgl. Abbildung 4.25). Einzig für die beiden Varianten auf Basis der gasförmigen Brennstoffe Erdgas und Biomethan ergeben sich niedrigere CO_2 -Vermeidungskosten als im Jahr 2020. Dies resultiert aus der Festlegung, dass die Investitions- und Betriebskosten für den GuD-Prozess (ohne CCS) im Gegensatz zu den Festbrennstoffvarianten zwischen 2020 und 2050 konstant gehalten werden (vgl. Kapitel 4.2). Dieser Effekt macht sich bei

Abbildung 4.23: CO₂-Vermeidungskosten im Jahr 2020 bei 50 % und 90 % bis 99 % CO₂-Abscheidung (ohne KWK), eigene Berechnung mit Daten aus Kapitel 4.2

Abbildung 4.24: CO₂-Vermeidungskosten im Jahr 2020 bei 50 % und 90 % bis 99 % CO₂-Abscheidung (mit KWK), eigene Berechnung mit Daten aus Kapitel 4.2

Erdgas am stärksten bemerkbar, während der Effekt bei Biogas aufgrund einer anderen Kostenstruktur (höhere Brennstoffkosten, mehr vermiedene CO₂-Emissionen) weniger stark hervortritt.

Abbildung 4.25: CO₂-Vermeidungskosten im Jahr 2050 (ohne KWK), eigene Berechnung mit Daten aus Kapitel 4.2

Die CO₂-Vermeidungskosten bei den KWK-Varianten liegen größtenteils unterhalb der CO₂-Vermeidungskosten ohne KWK. Erwartungsgemäß führen die Post-Combustion-Varianten teilweise zu erhöhten CO₂-Vermeidungskosten, da ein großer Teil der Wärme für die MEA-Regeneration verwendet wird. Im Vergleich zum Jahr 2020 liegen die CO₂-Vermeidungskosten allesamt auf einem höheren Niveau. Auch die niedrigsten CO₂-Vermeidungskosten liegen mit 30 Euro/t bis 36 Euro/t noch oberhalb der für 2050 angenommenen CO₂-Zertifikatepreise (26 Euro₂₀₀₅/t bzw. 50 Euro/t).

In van Vuuren et al. [vgl. 2007, S. 136 f.] werden CO_2 -Vermeidungskosten in Höhe von 150 Euro/t im Jahr 2050 ermittelt, um eine CO_2 -Konzentration von 450 ppm in der Atmosphäre zu unterschreiten. Somit wären alle untersuchten Bio-CCS-Varianten in einem solchen Szenario wirtschaftlich darstellbar.

Abbildung 4.26: CO₂-Vermeidungskosten im Jahr 2050 (mit KWK), eigene Berechnung mit Daten aus Kapitel 4.2

4.5.3 Sensitivitätsanalyse der CO₂-Vermeidungskosten

Bei der Sensitivitätsanalyse der CO₂-Vermeidungskosten wird analog zu den Stromgestehungskosten zunächst diejenige Variante untersucht, die im Jahr 2020 die niedrigsten CO₂-Vermeidungskosten aufweist: Pre-Combustion auf Basis erntefrischer Holzhackschnitzel (w=50 %) (33 Euro/t ohne KWK, 21 Euro/t mit KWK). In Abbildung 4.27 ist deutlich zu erkennen, dass die Variation der CO₂-Transport- und CO₂-Speicherkosten die stärkste Veränderung der CO₂-Vermeidungskosten bewirkt, da die CO₂-Transport- und CO₂-Speicherkosten unmittelbar zu den CO₂-Vermeidungskosten addiert werden können. Die Einflüsse aller weiteren Faktoren sind dem unterzuordnen, da die CO₂-Vermeidungskosten um maximal 8 Euro/t verändert werden – einzig für 3000 Volllaststunden erhöhen sich die CO₂-Vermeidungskosten um 11 Euro/t. Somit werden diese in der Folge nicht näher betrachtet.

Ein ähnliches Ergebnis zeigt sich für die gleiche Variante mit KWK. Hier ist das Kostenniveau insgesamt etwas niedriger. Die Variation der CO₂-Transport- und CO₂-Speicherkosten hat erneut den entscheidenden Einfluss.

Da die Variation der CO_2 -Transport- und CO_2 -Speicherkosten für alle weiteren Varianten zu ähnlich homogenen Steigerungen der CO_2 -Vermeidungskosten führt, wird hierauf

Abbildung 4.27: Sensitivität der CO₂-Vermeidungskosten im Jahr 2020 (IGCC/Pre-Combustion, HHS (w=50 %), ohne KWK), eigene Berechnung mit Daten aus Kapitel 4.2

nicht im Einzelnen eingegangen.

4.6 Ergebnisse der wirtschaftlichen Analyse

Auf Basis der im Kapitel 4.2 definierten Parameter wie beispielsweise Brennstoffkosten, Volllaststunden, Wirkungsgrade oder Investitionskosten werden die Strom- und Wärmegestehungskosten sowie die CO₂-Vermeidungskosten für das Jahr 2020 und 2050 berechnet. Für die Stromgestehungskosten und die CO₂-Vermeidungskosten werden für das Jahr 2020 ebenfalls Sensitivitätsanalysen durchgeführt. Insgesamt werden 48 Varianten untersucht: Vier Prozessvarianten (Dampfprozess, IGCC, Oxyfuel, GuD-Prozess) werden mit drei Brennstoffkategorien kombiniert (Steinkohle/Erdgas, Holzpellets/Biomethan, erntefrische Holzhackschnitzel/Biogas). Diese zwölf Kombinationen werden jeweils mit und ohne Kraft-Wärme-Kopplung sowie mit und ohne CO₂-Sequestrierung untersucht.

Die Stromgestehungskosten im Jahr 2020 ohne CCS stellen sich wie folgt dar:

 für Steinkohle, Erdgas und Holzhackschnitzel (w=50%): ohne KWK 85 Euro/MWh bis 97 Euro/MWh sowie mit KWK 51 Euro/MWh bis 60 Euro/MWh,

- für Holzpellets: ohne KWK 103 Euro/MWh bis 110 Euro/MWh sowie mit KWK 87 Euro/MWh bis 91 Euro/MWh und
- für Biomethan bzw. -gas: ohne KWK 132 Euro/MWh bzw. 137 Euro/MWh sowie mit KWK 103 Euro/MWh bzw. 119 Euro/MWh.

Durch die CCS-Integration ergeben sich eine Erhöhung und eine Auffächerung der Stromgestehungskosten: Die Variante Post-Combustion auf Basis von Festbrennstoffen führt aufgrund höherer elektrischer (und thermischer) Wirkungsgradverluste zu deutlich höheren Stromgestehungskosten. Die Varianten auf Basis der Pre-Combustion-Technologie weisen nach CCS-Integration für alle Festbrennstoffe ohne KWK mit 100 Euro/MWh bis 119 Euro/MWh die niedrigsten Stromgestehungskosten auf. Mit KWK führt die Oxyfuel-Variante für den Brennstoff Holzhackschnitzel zu leicht niedrigeren Stromgestehungskosten gegenüber der Pre-Combustion-Variante: Es ergeben sich Stromgestehungskosten in Höhe von 47 Euro/MWh bis 56 Euro/MWh, was im Bereich der erwarteten Großhandelspreise für elektrische Energie im Jahr 2020 liegt. Auch eine Reduktion des CO₂-Abscheidegrads bei den Post-Combustion-Varianten von 90 % auf 50 %, die eine effizientere CO₂-Wäsche bewirkt, führt noch immer zu höheren Stromgestehungskosten im Vergleich zu den Pre-Combustion- und Oxyfuel-Varianten. Die Stromgestehungskosten für das Jahr 2050 fallen trotz Wirkungsgradsteigerungen und Absinken der spezifischen Investitionskosten aufgrund der steigenden Brennstoffpreise für alle Varianten ohne KWK und mit CCS höher aus als in 2020 (durchschnittlich um 27 Euro/MWh). Mit KWK beträgt die Steigerung der Stromgestehungskosten in 2050 lediglich 23 Euro/MWh, da die Fernwärmeerlöse analog zu den Brennstoffpreisen ansteigen.

Die Sensitivitätsanalyse zeigt, dass die Variation der CO₂-Transport- und CO₂-Speicherkosten, der Brennstoffpreise und der jährlichen Volllaststunden die stärksten Einflüsse auf die Stromgestehungskosten hat: Bei maximalen CO₂-Transport- und CO₂-Speicherkosten in Höhe von 36 Euro/t (oder maximalen Brennstoffpreisen oder 4000 Volllaststunden) steigen die Stromgestehungskosten um rund 40 Euro/MWh an. Die anschließende Sensitivitätsanalyse dieser drei wichtigen Faktoren zeigt auf, dass auf die Veränderung der CO₂-Transport- und CO₂-Speicherkosten besonders die Brennstoffe mit hohen spezifischen CO₂-Emissionen (HHS w=50%), auf die Veränderung der Brennstoffpreise vor allem gasförmige Brennstoffe und auf die Veränderung der Volllaststunden vor allem die Festbrennstoffe aufgrund hoher Kapitalkosten sensibel reagieren.

Die Wärmegestehungskosten mit CCS im Jahr 2020 liegen bei einer angenommenen Stromvergütung von 50 Euro/MWh für die Varianten Pre-Combustion und Oxyfuel bei 28 Euro/MWh bis 65 Euro/MWh. Aufgrund des hohen Wirkungsgradverlusts für die Post-Combustion-Varianten liegen die Wärmegestehungskosten hier bei 39 Euro/MWh bis 262 Euro/MWh. Diese Wärmegestehungskosten liegen bis auf die Oxyfuel-/Pre-Combustion-Varianten auf Basis von Holzhackschnitzeln (w=50%) jeweils über den für das Jahr 2020 erwarteten Fernwärmeerlösen von knapp 30 Euro/MWh.

Die CO₂-Vermeidungskosten betragen für die Varianten ohne KWK im Jahr 2020 33 Euro/t bis 123 Euro/t. Mit KWK fallen die CO₂-Vermeidungskosten zwar in einen Bereich von 21 Euro/t bis 111 Euro/t, was in etwa den CO₂-Vermeidungskosten erneuerbarer Energieträger entspricht, liegen jedoch zum überwiegenden Teil noch immer über den für 2020 erwarteten Marktpreisen für CO₂-Zertifikate (24 Euro/t). Am niedrigsten fallen die CO₂-Vermeidungskosten erneut für die Varianten Pre-Combustion- und Oxyfuel auf Basis von HHS (w=50%) aus (21 Euro/t bis 22 Euro/t). Auch die Reduktion des CO₂-Abscheidegrads bei der Post-Combustion-Variante führt zu keiner Verbesserung: Die CO₂-Vermeidungskosten steigen ohne KWK sogar über die Werte für 90% Abscheidegrad, mit KWK bleiben sie größtenteils gleich. Die CO₂-Vermeidungskosten für 2050 fallen überwiegend höher als in 2020 aus. Die Varianten mit KWK weisen erneut niedrigere CO₂-Vermeidungskosten als ohne KWK auf. Diese liegen zwar mit minimal 30 Euro/t erneut über den für 2050 erwarteten Marktpreisen für CO₂-Zertifikate (26 Euro/t), jedoch gehen Modellberechnungen zur Einhaltung ambitionierter Klimaziele von CO₂-Vermeidungskosten von über 150 Euro/t im Jahr 2050 aus.

Die Sensitivitätsanalyse der CO_2 -Vermeidungskosten ergibt, dass der Einfluss der CO_2 -Transport- und CO_2 -Speicherkosten am einflussreichsten ist, da diese Kosten zu den CO_2 -Vermeidungskosten direkt addiert werden: So erhöhen sich die CO_2 -Vermeidungskosten bei maximalen CO_2 -Transport- und CO_2 -Speicherkosten um 27 Euro/t, während die Variation aller weiteren Faktoren die CO_2 -Vermeidungskosten um maximal 10 Euro/t verändert.

Es bleibt abschließend festzuhalten, dass die CCS-Varianten mit KWK grundsätzlich zu niedrigeren Strom-/Wärmegestehungskosten sowie CO₂-Vermeidungskosten führen. In den günstigsten Varianten (Pre-Combustion und Oxyfuel auf Basis von erntefrischen Holzhackschnitzeln) liegen die Strom-/Wärmegestehungskosten sowie CO₂-Vermeidungskosten im Bereich der erwarteten Marktpreise für 2020.

In der Analyse der Nachhaltigkeit wird untersucht, wie hoch die negativen CO_2 -Emissionen für Bio-KWK-CCS bei unterschiedlichen Prozessvarianten ausfallen. Daraus können bestimmte Mindestanforderungen an die Bio-KWK-CCS-Prozesskette definiert werden. Hierbei steht die Nachhaltigkeit der eingesetzten biogenen Brennstoffe und der CO_2 -Speicherung im Vordergrund. Die Berechnung der negativen CO_2 -Emissionen in Kapitel 5.3 wird anhand einer CO_2 -Bilanzierung durchgeführt. Hierfür wird in Kapitel 5.1 die angewandte Methodik vorgestellt. In Kapitel 5.2 werden die für die Berechnung notwendigen Parameter definiert, deren Variation in einer Sensitivitätsanalyse ebenfalls in Kapitel 5.3 untersucht wird.

Anschließend wird im Kapitel 5.4 zum einen untersucht, wie nachhaltig eine CO_2 -Einlagerung in knappen CO_2 -Lagerstätten im Vergleich zu einer alternativen Nutzung ist. Zum anderen werden für alternative CO_2 -Senken (industrielle Nutzung, CO_2 -Speicherung in Algen) analysiert, wie groß ihre CO_2 -Senkenpotenziale ausfallen können.

5.1 Methodik der Analyse der Nachhaltigkeit

Im Folgenden werden die im Rahmen der Analyse der Nachhaltigkeit angewandten Methoden vorgestellt. Hierbei wird zunächst auf die Methodik zur CO_2 -Bilanzierung von Bio-KWK-CCS eingegangen. Anschließend werden in Kapitel 5.1.2 die Methoden vorgestellt, mit der die CO_2 -Speicherung mit alternativen Nutzungsformen der potenziellen CO_2 -Lagerstätten verglichen wird.

5.1.1 Methodik für die CO₂-Bilanzierung von Bio-KWK-CCS

Im Rahmen der CO_2 -Bilanzierung von Bio-KWK-CCS werden direkte und indirekte CO_2 -Emissionen berücksichtigt, die entlang der CCS-Prozesskette auftreten (vgl. Abbildung 5.1). Durch den eingesetzten Brennstoff entstehen bei der Verbrennung direkte CO_2 -Emissionen und durch die Vorkette der Brennstoffaufbereitung fallen indirekte CO_2 -Emissionen an. Hierbei wird unterschieden, ob die CO_2 -Emissionen durch biogene oder fossile Brennstoffe verursacht werden. Der elektrische (und thermische) Wirkungsgrad

sowie der CO_2 -Abscheidegrad beeinflussen maßgeblich die spezifischen CO_2 -Emissionen, die bei der Strom- und Wärmeerzeugung mit CO_2 -Abscheidung auftreten. Weiterhin werden die spezifischen CO_2 -Emissionen addiert, die für den CO_2 -Transport anfallen. Abschließend werden langfristige CO_2 -Emissionen bei der CO_2 -Speicherung berücksichtigt, die durch die CO_2 -Leckageraten bestimmt werden. Die CO_2 -Bindungsdauer des Speicherstoffs ist im Falle einer industriellen Nutzung des abgeschiedenen CO_2 entscheidend, auf die im Kapitel 5.4.4.1 näher eingegangen wird.

Darüber hinaus können noch weitere potenzielle CO_2 -Emissionen im Prozess entstehen (z. B. durch MEA-Herstellung), die aufgrund fehlender Literaturwerte in dieser Arbeit jedoch nicht enthalten sind.

Abbildung 5.1: Parameter für die Analyse der Nachhaltigkeit

Die heizwertspezifischen, direkten CO₂-Emissionsfaktoren der Brennstoffe ($\mu_{CO_2,Br,dir}$) werden aus der technischen Analyse übernommen (vgl. Kapitel 3.2.2.4 für Festbrennstoffe bzw. Kapitel 3.2.3.4 für gasförmige Brennstoffe). Bei den heizwertspezifischen, indirekten Treibhausgasemissionen ($\mu_{CO_2,Br,ind}$) werden Literaturwerte verwendet, die im Falle der Biogaserzeugung und der Biomethanumwandlung auf den Sekundärenergieträger (Biogas, Biomethan) umgerechnet werden müssen, da in der Literatur lediglich Angaben für den Primärenergieträger ($\mu_{CO_2,Br,ind,Prim}$) vorliegen (z. B. Biomüll, Gülle oder Mais-Silage). Im Falle von Biogas wird der Faktor für die heizwertspezifischen, indirekten Treibhausgasemissionen lediglich durch den Wirkungsgrad der Biogaserzeugung (η_{BG}) dividiert. Für Biomethan wird die Berechnung des Faktors für die heizwertspezifischen, indirekten Treibhausgasemissionen ($\mu_{CO_2,Br,ind,BM}$) nach Formel 5.1 durchgeführt. Hierbei werden ebenfalls CO₂-Emissionen berücksichtigt, die bei der Biomethanaufbereitung für den prozessbedingten Strom- und Wärmeeinsatz sowie als Methanschlupf anfallen ($\mu_{CO_2,Br,ind,BM,zus}$). Die Division durch den Quotienten der Brennwerte von Biomethan ($H_{S,BM}$) und Biogas ($H_{S,BG}$) wird durchgeführt, um den Emissionsfaktor auf

den Brennwert von Biomethan zu beziehen.

$$\mu_{\rm CO_2,Br,ind,BM} = \frac{\frac{\mu_{\rm CO_2,Br,ind,Prim,BM}}{\eta_{\rm BG}} + \mu_{\rm CO_2,Br,ind,BM,zus}}{\frac{H_{\rm S,BM}}{H_{\rm S,BG}}}$$
(5.1)

Für die Varianten der Mitverbrennung von biogenen Brennstoffen mit fossilen Brennstoffen ergeben sich die heizwertspezifischen, direkten CO₂-Emissionen $\mu_{CO_2,Br,dir,Mitv}$ aus den heizwertspezifischen, direkten CO₂-Emissionen der erneuerbaren Brennstoffe ($\mu_{CO_2,Br,dir,EE}$) sowie der fossilen Brennstoffe ($\mu_{CO_2,Br,dir,fos}$) (vgl. Formel 5.2). α_{EE} stellt hierbei den erneuerbaren Brennstoffanteil und $1 - \alpha_{EE}$ den fossilen Brennstoffanteil dar. Die Berechnung der indirekten CO₂-Emissionen erfolgt analog. In den weiteren Berechnungen werden erneuerbare und fossile CO₂-Emissionen separat ausgewiesen. Nur durch diese Unterscheidung kann bei der CO₂-Abscheidung beurteilt werden, ob es sich um negative CO₂-Emissionen aus erneuerbaren Brennstoffen handelt oder ob fossile CO₂-Emissionen abgeschieden werden, die nicht zu negativen CO₂-Emissionen führen.

$$\mu_{\rm CO_2,Br,dir,Mitv} = \mu_{\rm CO_2,Br,dir,EE} \cdot \alpha_{\rm EE} + \mu_{\rm CO_2,Br,dir,fos} \cdot (1 - \alpha_{\rm EE})$$
(5.2)

Für die Berechnungen werden für die Festbrennstoffvarianten die elektrischen und thermischen Wirkungsgrade der CCS-Prozessvariante Pre-Combustion zugrunde gelegt, da diese zum einen bei der Mehrzahl der mit Biomasseeinsatz in Planung befindlichen Anlagen zum Einsatz kommen wird (vgl. Kapitel 2.1.3.1.5). Zum anderen ist die thermische Wirkungsgradreduktion bei der CCS-Prozessvariante Post-Combustion zu hoch, um einen CCS-Betrieb mit KWK wirtschaftlich darstellen zu können (vgl. Kapitel 4.3.1). Für die gasförmigen Varianten wird mit den Angaben der CCS-Prozessvariante Post-Combustion gerechnet, da dies die derzeit aussichtsreichste CCS-Prozessvariante für gasförmige Brennstoffe darstellt.

Für die Varianten ohne KWK wird der stromspezifische, direkte CO₂-Emissionsfaktor $\mu_{CO_2,el,dir}$ in g/kWh nach Formel 5.3 berechnet (identisch mit Formel 4.7 in Kapitel 4.1.2). Hierbei sind $\mu_{CO_2,Br,dir}$ der heizwertspezifische, direkte CO₂-Emissionsfaktor des Brennstoffs in kg/MJ und A_{CO_2} der CO₂-Abscheidegrad in %. Für die Varianten ohne CO₂-Abscheidung ($A_{CO_2} = 0$ %) ist somit nur der Bruch für die Berechnung relevant, da der Wert in der Klammer 1 beträgt.

$$\mu_{\rm CO_2,el,dir} = \frac{\mu_{\rm CO_2,Br,dir}}{\eta_{\rm el}} \cdot (1 - A_{\rm CO_2})$$
(5.3)

Der stromspezifische, indirekte CO_2 -Emissionsfaktor wird nach Formel 5.4 berechnet. Hier findet der CO_2 -Abscheidegrad keine Verwendung, da die CO_2 -Abscheidung im Kraftwerk keinen Einfluss auf die indirekten CO_2 -Emissionen hat.

$$\mu_{\rm CO_2,el,ind} = \frac{\mu_{\rm CO_2,Br,ind}}{\eta_{\rm el}}$$
(5.4)

Der stromspezifische CO₂-Emissionsfaktor für abgeschiedene CO₂-Emissionen $\mu_{CO_2,el,ab}$ in g/kWh wird nach Formel 5.5 berechnet (identisch mit Formel 4.9 in Kapitel 4.1.2).

$$\mu_{\rm CO_2,el,ab} = \frac{\mu_{\rm CO_2,Br,dir}}{\eta_{\rm el}} \cdot A_{\rm CO_2}$$
(5.5)

Im KWK-Betrieb müssen die spezifischen CO₂-Emissionen zunächst den beiden Produkten Strom und Wärme zugeordnet werden. Hierfür wird die finnische Methode verwendet, um die Brennstoffanteile und somit auch die CO₂-Anteile für die Stromund die Wärmeerzeugung ($\alpha_{Br,el}$ bzw. $\alpha_{Br,th}$) zu berechnen (vgl. Formel 2.17 in Kapitel 2.3.3.2). In Formel 5.6 und Formel 5.7 werden die Berechnungen der strom- bzw. wärmespezifischen, direkten CO₂-Emissionsfaktoren aufgezeigt. Auch hierbei gilt, dass der CO₂-Abscheidegrad (A_{CO_2}) nur für die Varianten mit CCS Relevanz hat.

$$\mu_{\rm CO_2, el, dir, KWK} = \frac{\mu_{\rm CO_2, Br, dir}}{\eta_{\rm el}} \cdot \alpha_{\rm Br, el} \cdot (1 - A_{\rm CO_2})$$
(5.6)

$$\mu_{\rm CO_2, th, dir, KWK} = \frac{\mu_{\rm CO_2, Br, dir}}{\eta_{\rm th}} \cdot \alpha_{\rm Br, th} \cdot (1 - A_{\rm CO_2})$$
(5.7)

Die indirekten CO₂-Emissionsfaktoren in Bezug auf die erzeugte Strom-/Wärmemenge werden ebenfalls nach Formel 5.4 unter Verwendung der Faktoren $\alpha_{\text{Br,el}}$ bzw. $\alpha_{\text{Br,th}}$ berechnet.

Die strom- bzw. wärmespezifischen CO₂-Emissionsfaktoren für abgeschiedene CO₂-Emissionen $\mu_{\text{CO}_2,\text{el,ab,KWK}}$ bzw. $\mu_{\text{CO}_2,\text{th,ab,KWK}}$ in g/kWh werden nach Formel 5.8 bzw. Formel 5.9 berechnet.

$$\mu_{\rm CO_2,el,ab,KWK} = \frac{\mu_{\rm CO_2,Br,dir}}{\eta_{\rm el}} \cdot \alpha_{\rm Br,el} \cdot A_{\rm CO_2}$$
(5.8)

$$\mu_{\rm CO_2, th, ab, KWK} = \frac{\mu_{\rm CO_2, Br, dir}}{\eta_{\rm th}} \cdot \alpha_{\rm Br, th} \cdot A_{\rm CO_2}$$
(5.9)

Im Folgenden werden der Übersichtlichkeit halber lediglich die Formeln für den elektrischen Teil der CO₂-Emissionen aufgeführt. Im Falle der KWK-Varianten werden die Formeln für den thermischen Teil analog angewendet.

Für die abgeschiedenen CO₂-Emissionen werden indirekt anfallende CO₂-Emissionen für den CO₂-Transport berücksichtigt. Hierbei werden als Varianten der Schiffstransport und der Transport mittels Pipeline mit jeweils unterschiedlichen Transportdistanzen betrachtet. Indirekte CO₂-Emissionen, die aus der Herstellung der Transportschiffe oder -pipelines entstehen, werden nicht berücksichtigt. Die CO₂-Emissionen für den Schiffstransport $\mu_{CO_2,el,Schiff}$ werden nach Formel 5.10 berechnet. Hierbei stellt $\mu_{CO_2,Schiff}$ in t/t das Verhältnis zwischen den auf dem Schiffstransport emittierten und transportierten CO₂-Mengen dar. Die emittierten CO₂-Mengen setzen sich zusammen aus verdampftem CO₂ (vgl. Kapitel 2.1.3.2.3) und den CO₂-Emissionen der Schiffsmotoren.

$$\mu_{\rm CO_2,el,Schiff} = \mu_{\rm CO_2,el,ab} \cdot \mu_{\rm CO_2,Schiff}$$
(5.10)

Für den Pipelinetransport ergeben sich bei kurzen Transportdistanzen und somit geringen Druckverlusten keine weiteren CO₂-Emissionen, da das hochverdichtete CO₂ ohne Nachverdichtung transportiert werden kann. In Abhängigkeit vom Eingangsdruck, vom Pipelinedurchmesser und von der Fließgeschwindigkeit wird ab einer Pipelinelänge von ca. 100 km bis 200 km eine Nachverdichtung notwendig (vgl. Kapitel 2.1.3.2.2). Die spezifischen CO₂-Emissionen dieser Nachverdichtung werden analog nach Formel 5.10 ermittelt, wobei sich $\mu_{CO_2,Pipeline}$ aufgrund fehlender Literaturwerte nach Formel 5.11 berechnet. Hierbei ist $E_{Pipeline}$ in kWh/t der elektrische Energieaufwand für die Nachverdichtung bezogen auf die transportierte CO₂-Masse und $\mu_{CO_2,el,Mix}$ in g/kWh der spezifische CO₂-Emissionsfaktor des eingesetzten Stroms. Hierbei kann bei längeren Pipelinedistanzen auch eine mehrfache Nachverdichtung notwendig werden, die im Faktor $E_{Pipeline}$ aufsummiert wird.

$$\mu_{\rm CO_2, Pipeline} = E_{\rm Pipeline} \cdot \mu_{\rm CO_2, el, Mix} \tag{5.11}$$

Die Berechnung der CO₂-Leckagerate $\mu_{CO_2,el,Leck}$ in g/kWh erfolgt nach Formel 5.12.

Hierbei ist $Q_{\text{Leck},\text{CO}_2}$ in t/(t·a) bzw. %/a die jährliche CO₂-Leckage in Bezug auf die eingelagerte CO₂-Masse und n_{Leck} der Betrachtungszeitraum in Jahren.

$$\mu_{\rm CO_2,el,Leck} = \mu_{\rm CO_2,el,ab} - \mu_{\rm CO_2,el,ab} \cdot (1 - Q_{\rm Leck,CO_2})^{n_{\rm Leck}}$$
(5.12)

Die Gesamthöhe der CO₂-Emissionen $\mu_{CO_2,el,ges}$ ergibt sich für fossile Brennstoffe durch Addition der einzelnen CO₂-Emissionsfaktoren nach Formel 5.13 ($\mu_{CO_2,el,ges,fos}$) und kann keine negativen Werte annehmen. Als Transportform ist hierbei exemplarisch der Schiffstransport berücksichtigt. Für erneuerbare Energieträger ($\mu_{CO_2,el,ges,EE}$) ergeben sich nach Formel 5.14 aufgrund der CO₂-neutralen Einsatzbrennstoffe zwei Änderungen, die auch zu negativen CO₂-Emissionen führen können: Die verbleibenden direkten CO₂-Emissionen ($\mu_{CO_2,el,dir}$) werden hierbei nicht berücksichtigt, da sie CO₂-neutral sind, und die abgeschiedenen CO₂-Emissionen ($\mu_{CO_2,el,ab}$) werden subtrahiert.

$$\mu_{\rm CO_2, el, ges, fos} = \mu_{\rm CO_2, el, dir} + \mu_{\rm CO_2, el, ind} + \mu_{\rm CO_2, el, Schiff} + \mu_{\rm CO_2, el, Leck}$$
(5.13)

$$\mu_{\rm CO_2,el,ges,EE} = -\mu_{\rm CO_2,el,ab} + \mu_{\rm CO_2,el,ind} + \mu_{\rm CO_2,el,Schiff} + \mu_{\rm CO_2,el,Leck}$$
(5.14)

Die Höhe der vermiedenen CO₂-Emissionen ergibt sich durch Subtraktion der Gesamthöhe der CO₂-Emissionen für die Variante mit CCS und für die gleiche Variante ohne CCS.

Mit Hilfe der anschließenden Berechnung der Ressourceneffizienz wird für die verschiedenen Maßnahmen dargestellt, wie viel Tonnen an negativen CO₂-Emissionen je Tonne eingesetztem Brennstoff erzielt werden können. Die Berechnung dieses Effizienzfaktors ($\mu_{CO_2,Res}$) erfolgt für reine Kraftwerke nach Formel 5.15. Hierbei stellt der erste Summand die negativen CO₂-Emissionen des Prozesses dar (umgerechnet auf die eingesetzte Brennstoffmasse) und der zweite Summand die CO₂-Einsparungen, die durch die Verdrängung des Strommix mit dem Emissionsfaktor $\mu_{CO_2,el,Mix}$ erzielt werden.

$$\mu_{\rm CO_2,Res} = \frac{m_{\rm CO_2,verm}}{m_{\rm Br}} = \frac{\mu_{\rm CO_2,el,ges,EE} \cdot \eta_{\rm el} \cdot H_{\rm I}}{\alpha_{\rm EE}} + \mu_{\rm CO_2,el,Mix} \cdot \eta_{\rm el} \cdot H_{\rm I}$$
(5.15)

Für die gekoppelte Strom- und Wärmeerzeugung werden zusätzlich die CO₂-Einsparungen

auf Basis des deutschen Wärmemixes gutgeschrieben (3. Summand in Formel 5.16).

$$\mu_{\rm CO_2, Res, KWK} = \frac{m_{\rm CO_2, verm}}{m_{\rm Br}} = \frac{(\mu_{\rm CO_2, el, ges, EE} \cdot \eta_{\rm el} + \mu_{\rm CO_2, th, ges, EE} \cdot \eta_{\rm th}) \cdot H_{\rm I}}{\alpha_{\rm EE}} + \mu_{\rm CO_2, el, Mix} \cdot \eta_{\rm el} \cdot H_{\rm I} + \mu_{\rm CO_2, th, Mix} \cdot \eta_{\rm th} \cdot H_{\rm I} \quad (5.16)$$

Für die Bewertung der Flächeneffizienz werden die Ergebnisse der Ressourceneffizienz $(\mu_{CO_2,Res})$ mit dem jährlichen Ertragsniveau einer Kurzumtriebsplantage (E_{KUP}) multipliziert um den flächenspezifischen CO₂-Emissionsfaktor $(\mu_{CO_2,Fläche})$ zu erhalten (vgl. Formel 5.17). Im Falle von Biogas/Biomethan wird analog das Biogasertragsniveau eines Maisanbaugebiets verwendet.

$$\mu_{\rm CO_2, Fläche} = \mu_{\rm CO_2, Res} \cdot E_{\rm KUP} \tag{5.17}$$

5.1.2 Methodik für alternative Nutzungsformen der CO₂-Lagerstätten

Für die alternativen Nutzungsformen der CO_2 -Lagerstätten wird berechnet, welche Mengen an CO_2 je Flächeneinheit einerseits eingelagert und andererseits durch alternative Nutzungsformen eingespart werden können. Die Analyse konzentriert sich auf die Nutzung der CO_2 -Lagerstätten zur geothermischen Wärmeerzeugung, zur Wärmespeicherung sowie zur gekoppelten Strom- und Wärmeerzeugung aus Erdwärme, da hier die wesentlichen Nutzungskonkurrenzen zu erwarten sind (vgl. Kapitel 5.4.1).

Wie in Kapitel 2.3.4.3.1 eingeführt, wird die Menge an eingelagertem CO₂ mittels Formel 2.27 berechnet. Da sich die Angaben für den Effizienzfaktor E auf den gesamten Aquifer beziehen (vgl. Kapitel 5.2.2), kann der Faktor ϕ_{traps} , der den Anteil von Fallen am Gesamtspeichervolumen beschreibt, weggelassen werden und wird im Folgenden nicht berücksichtigt. Durch Umstellen der Gleichung ergibt sich für die flächenspezifische CO₂-Einlagerung ($m_{\text{CO}_2,\text{A,CCS}}$ in t/km²) die Formel 5.18. Hierbei ist A die für die CO₂-Einlagerung benötigte Fläche in km² und D die Mächtigkeit bzw. Dicke der Speicherstruktur in km.

$$m_{\rm CO_2,A,CCS} = \frac{m_{\rm CO_2,eff}}{A} = \frac{V \cdot \varphi \cdot \phi_{\rm n/g} \cdot \rho_{\rm CO_2} \cdot E}{A} = D \cdot \varphi \cdot \phi_{\rm n/g} \cdot \rho_{\rm CO_2} \cdot E$$
(5.18)

Für die Berechnung der potenziellen, flächenspezifischen CO₂-Einsparungen durch geothermische Erdwärmenutzung zu Heizzwecken ($m_{\text{CO}_2,A,\text{Geoth}}$) werden anhand Formel 5.19 das technische Wärmeerzeugungspotenzial (Q) mit der hierfür geeignete Fläche (A) ins Verhältnis gesetzt und anschließend mit den spezifischen CO₂-Einsparungen durch die ersetzte Wärmemenge ($\mu_{\text{CO}_2,\text{th},\text{Mix}}$) multipliziert.

$$m_{\rm CO_2,A,Geoth} = \frac{Q}{A} \cdot \mu_{\rm CO_2,th,Mix}$$
(5.19)

Die saisonale Einspeicherung von Überschusswärme im Sommer in hydraulisch abgeschlossene Grundwasserschichten und Auslagerung dieser Wärme im Winter ist grundsätzlich unbegrenzt häufig wiederholbar. Es bestehen zwar gewisse Risiken, wie beispielsweise Ausfällungen aus dem Grundwasser durch Temperaturerhöhungen, die die Förderrate erheblich reduzieren können, oder die Gefahr von hydraulischen Kurzschlüssen in Gesteinsklüften zwischen der warmen und kalten Bohrung, die die Wärmespeicherkapazität verringern können. Diese Risiken können jedoch bei sorgsamer Auslegung der Betriebsparameter reduziert werden: So sollte eine maximale Einlagerungstemperatur von 80 °C (in Tiefen von bis zu ca. 1500 m) eingehalten werden, um die biologische und geochemische Stabilität des Untergrunds beizubehalten [vgl. Green, 2010, S. 18 f., S. 29]. Hieraus ergibt sich in Verbindung mit der Rücklauftemperatur (derzeitiges Temperaturniveau im Untergrund) eine maximale Temperaturspreizung. Aus dieser Temperaturspreizung, der spezifischen Wärmespeicherkapazität und dem nutzbaren Volumen im Untergrund ergibt sich die maximale Speicherfähigkeit im Aquiferwärmespeicher (Q_{ein}) . Ein vorhandenes Wärmepotenzial wie bei der geothermischen Wärmenutzung wird hierbei somit nicht definiert. Die flächenspezifischen CO₂-Einsparungen durch die saisonale Wärmeeinlagerung in Aquiferen $(m_{\rm CO_2,A,AWS})$ werden nach Formel 5.20 berechnet.

$$m_{\rm CO_2,A,AWS} = \frac{Q_{\rm ein} \cdot \eta_{\rm AWS} \cdot \mu_{\rm CO_2,th,Mix}}{A} \cdot t$$
(5.20)

Hierbei wird davon ausgegangen, dass es sich bei der eingelagerten Wärme um wirkliche Überschusswärme im Sommer handelt, die ohne Möglichkeit zur saisonalen Wärmespeicherung an die Atmosphäre abgegeben worden wäre. Für den Fall, dass die Wärme eigens für die Einlagerung hergestellt worden wäre, müsste der spezifische CO₂-Emissionsfaktor für die eingesparte Wärme ($\mu_{CO_2,th,Mix}$) reduziert werden. Es wird hierbei nicht berücksichtigt, dass durch die erhöhte KWK-Stromerzeugung im Sommer konventionell erzeugter Strom aus dem Strommix verdrängt werden kann. Die Berücksichtigung des spezifischen CO₂-Emissionsfaktors für Wärme ($\mu_{CO_2,th,Mix}$) wird damit begründet, dass im Winter durch die ausgelagerte Wärme Spitzenkessel substituiert werden können, die üblicherweise zur reinen Wärmeerzeugung eingesetzt werden. Zu berücksichtigen ist des Weiteren ein Wirkungsgrad (η_{AWS}), der den Quotient der ausgelagerten Wärme zur eingelagerten Wärme beschreibt, und eine Nutzungsdauer t, über die die Wärmespeicherung betrachtet wird. Bei der Berechnung der Fläche A wird davon ausgegangen, dass sich um die warme Injektionsbohrung im Sommer eine warme Blase im Untergrund mit einem bestimmten Radius bildet. Dieser Radius darf maximal den Abstand zwischen der warmen und der kalten Bohrung betragen, da andernfalls bereits aufgeheiztes Wasser durch die kalte Bohrung angesaugt wird.

Die potenziellen, flächenspezifischen CO_2 -Einsparungen durch geothermische Erdwärmenutzung zur gekoppelten Strom- und Wärmeerzeugung ($m_{CO_2,A,Geoth,KWK}$) werden nach Formel 5.21 berechnet. Im Gegensatz zur geothermischen Wärmenutzung sind vorhandene Potenzialangaben in der Literatur mit großen Unsicherheiten behaftet [vgl. Kaltschmitt et al., 2006, S. 527], so dass eine ähnliche Berechnungsmethodik wie bei der Wärmespeicherung verwendet wird. Die in einem Geothermieheizkraftwerk (netto) produzierte Wärmemenge (Q) und Strommenge (W_{el}) wird mit den jeweiligen CO₂-Emissionsfaktoren für die eingesparte Wärme und für den eingesparten Strom multipliziert. Diese Summe wird auf die Fläche A bezogen, die analog zur Wärmespeicherung berechnet wird. Der Faktor t stellt erneut die Nutzungsdauer dar, über die die geothermische Strom- und Wärmeerzeugung betrachtet wird.

$$m_{\rm CO_2,A,Geoth,KWK} = \frac{Q \cdot \mu_{\rm CO_2,th,Mix} + W_{\rm el} \cdot \mu_{\rm CO_2,el,Mix}}{A} \cdot t$$
(5.21)

5.2 Parameter

Im Folgenden werden die verwendeten Parameter vorgestellt, auf denen die Berechnungen für die CO_2 -Bilanz von Bio-KWK-CCS und für die alternativen Nutzungsformen des geologischen Untergrunds basieren. Alle Werte können ebenfalls dem Anhang in Tabellen A.24 bis A.25 entnommen werden.

5.2.1 Parameter für die CO₂-Bilanzierung von Bio-KWK-CCS

Für die Varianten der Mitverbrennung von erneuerbaren Brennstoffen in fossilen Kraftwerken oder Heizkraftwerken wird ein erneuerbarer Brennstoffanteil von 30% unterstellt, da dieser Anteil ohne erhebliche Anlagenanpassungen erreicht werden kann [vgl. Vogel et al., 2011, S. 4]. Im Rahmen der Sensitivitätsanalyse wird dieser Anteil zwischen 10% und 100% variiert. Während die 100% für Biomethan oder Holzpellets realistisch und technisch machbar erscheinen, stellt dieser hohe Anteil für Biogas und Holzhackschnitzel eine eher theoretische Betrachtung dar.

Als Heizwerte für die Festbrennstoffe bzw. Brennwerte für die gasförmigen Brennstoffe werden die in Kapitel 2.1.1.4 und Kapitel 2.1.1.8 aufgeführten Angaben verwendet.

Die heizwertspezifischen, direkten CO_2 -Emissionen der untersuchten Brennstoffe (Steinkohle, Erdgas, Holzpellets, Holzhackschnitzel, Biogas und Biomethan) werden Kapitel 3.2.2.4 entnommen und sind in Tabelle 5.1 zusammen mit den indirekten CO_2 -Emissionen dargestellt. Bei den indirekten CO_2 -Emissionen wird aufgrund der unterschiedlichen Berücksichtigung der direkten und indirekten Landnutzungsänderungen (direct/indirect Land-Use Change, vgl. Kapitel 2.3.2.1) eine Auswahl von Brennstoffen untersucht, die das untere und obere Ende möglicher indirekter Effekte darstellen: Für die beiden Brennstoffe HHS aus KUP und Biogas/-methan aus Mais werden jeweils die Variante 0LUC als untere Grenze, iLUC25%-Acker als mittlere Annahme sowie iLUC50%-Grünland als obere Grenze verwendet. Zusätzlich werden jeweils die Reststoffe entsprechend berücksichtigt (Wald-/Restholz, Biomüll/Gülle). Bei den in Tabelle 5.1 in den unteren Zeilen aufgeführten Rohstoffen (Biomüll, Gülle und Mais) handelt es sich um die indirekten CO_2 -Emissionen frei Biogasanlage. Diese werden anhand der oben genannten Formel 5.1 und der in Tabelle 5.2 dargestellten Parameter auf die Sekundärenergieträger Biogas und Biomethan umgerechnet.

Die relativ niedrigen spezifischen CO₂-Emissionen der Holzpellets im Vergleich zu den Holzhackschnitzeln ergeben sich durch geringere Methanemissionen im Herstellungsprozess. Des Weiteren handelt es sich beim Ausgangsmaterial um Sägemehl und Sägeresthölzer, so dass eine energieintensive Aufmahlung von größeren Holzstücken nicht berücksichtigt wird. Diese Annahme erscheint derzeit noch als gerechtfertigt, da in 2011 mehr als 90% der in Deutschland produzierten Holzpellets aus Sägewerksresthölzern hergestellt worden sind [vgl. DEPV, 2012, S. 3]. In dena [vgl. 2012b, S. 5] wird davon ausgegangen, dass für die Holzpelletsmitverbrennung in fossilen Kraftwerken im Jahr 2020 rund 4 Mio. t Holzpellets in Deutschland eingesetzt werden, was dem Doppelten der inländischen Produktion entspricht. Deswegen wird im Rahmen der Sensitivitätsanalyse untersucht, welchen Einfluss höhere indirekte CO₂-Emissionen bei der Herstellung von Holzpellets aus Kurzumtriebsplantagen auf die CO₂-Bilanzierung haben. Hierbei werden zwei Varianten für Holzpellets aus KUP berücksichtigt (0LUC: 0,0104 kg/MJ, iLUC50%-Grünland: 0,0606 kg/MJ [vgl. UBA, 2012b]).

Die in Tabelle 5.1 dargestellten indirekten CO_2 -Emissionsfaktoren für Holzhackschnitzel und Holzpellets basieren auf regionalen Rohstoffquellen. Sollten die Holzhackschnitzel beispielsweise aus den tropischen oder subtropischen Regenwäldern importiert werden, so
Bezeichnung	Wert	Quelle		
Direkte CO ₂ -Emissionen				
Steinkohle	$0,\!1075$	eigene Berechnung (vgl. Kapitel 3.2.2.4)		
Erdgas	0,0538	eigene Berechnung (vgl. Kapitel 3.2.3.4)		
Holzpellets ($w=10\%$)	0,0983	eigene Berechnung (vgl. Kapitel 3.2.2.4)		
HHS $(w=50\%)$	0,0983	eigene Berechnung (vgl. Kapitel 3.2.2.4)		
Biogas	0,0786	eigene Berechnung (vgl. Kapitel $3.2.3.4$)		
Biomethan	0,0538	eigene Berechnung (vgl. Kapitel $3.2.3.4$)		
Indirekte CO ₂ -Emissionen				
Steinkohle	0,0072	Fritsche [2010b]		
Erdgas	0,0086	Fritsche [2010b]		
HHS (KUP-0LUC)	0,0045	Fritsche [2010b]		
HHS (KUP-iLUC25%-Acker)	0,0167	Fritsche [2010b]		
HHS (KUP-iLUC50%-Grünland)	$0,\!0552$	Fritsche [2010b]		
HHS (Waldrestholz)	0,0073	Fritsche [2010b]		
Holzpellets (Restholz)	0,0069	Fritsche [2010b]		
Biomüll	0,0100	Fritsche und Wiegmann [2008, S. 67]		
Gülle	0,0169	Fritsche und Wiegmann [2008, S. 67]		
Mais (0LUC)	0,0121	Fritsche [2010b]		
Mais (iLUC25%-Acker)	0,0275	Fritsche [2010b]		
Mais (iLUC50%-Grünland)	$0,\!0554$	Fritsche [2010b]		

Tabelle 5.1: Verwendete spezifische CO_2 -Emissionsfaktoren in kg/MJ

würden sich aufgrund der höheren Transportaufwendungen die indirekten CO_2 -Emissionen (ohne Berücksichtigung von Landnutzungsänderungen) auf 0,021 kg/MJ (Waldrestholz) bzw. 0,024 kg/MJ (KUP) erhöhen, was in etwa einer Vervierfachung entspricht. Der gleiche Effekt entsteht bei Holzpellets, bei denen die indirekten CO_2 -Emissionen bei einem Import aus tropischen oder subtropischen Regenwäldern auf bis zu 0,015 kg/MJ (Prozessbrennstoff Holz) bzw. 0,030 kg/MJ (Prozessbrennstoff Erdgas) ansteigen würden [vgl. Europäische Kommission, 2010, S. 20 f.]. Die spezifischen CO_2 -Emissionen für den Brennstofftransport aus den Tropen fallen für Holzpellets niedriger als für Holzhackschnitzel aus, da sie über eine höhere Transportdichte verfügen [vgl. Vogel et al., 2011, S. 13]. Auf den Unterschied zwischen regionalen und sub-/tropischen Holzhackschnitzeln und Holzpellets wird im Rahmen der Sensitivitätsanalyse näher eingegangen.

Bezeichnung	Einheit	Wert	Quelle
Wirkungsgrad der Biogas- erzeugung	%	69%	Beil [2008, S. 13], Kaltschmitt et al. [2009, S. 855]
Stromeinsatz bei der Bio- methanaufbereitung	$\rm kWh/m^3$	0,28	eigene Berechnung mit Daten aus Hofmann et al. [2009, S. 61], Schulte- Schulze Berndt [2008, S. 86], Richter [2008, S. 95], de Pater [2008, S. 154], Urban et al. [2009, S. 50 ff., S. 61]
Wärmeeinsatz bei der Biomethanaufbereitung	$\rm kWh/m^3$	0,34	eigene Berechnung mit Daten aus Schulte-Schulze Berndt [2008, S. 86], Urban et al. [2009, S. 53, S. 59]
Methanschlupf	%	0,1%	eigene Berechnung mit Daten aus Schulte-Schulze Berndt [2008, S. 76 ff.], Urban et al. [2009, S. 49 ff.]
Zusätzl. CO ₂ -Emissionen der Biomethanaufberei- tung	$\rm kg/MJ$	0,0108	eigene Berechnung
Brennwertunterschied Biomethan/-gas	%	154%	eigene Berechnung mit Daten aus Tabelle 2.1

Tabelle 5.2: Verwendete Parameter für Biogas-/Biomethanberechnung

Als CO_2 -Abscheidegrade werden wie in der wirtschaftlichen Analyse sowohl für die CCS-Prozessvariante Pre-Combustion (Festbrennstoffe) als auch für die CCS-Prozessvariante Post-Combustion (gasförmige Brennstoffe) einheitlich 90 % verwendet (vgl. Kapitel 4.2.5). Für die Berechnung der Aufteilung der CO₂-Emissionen auf die Produkte Strom und Wärme nach der finnischen Methode werden die im Kapitel 2.3.3.2 definierten Referenzwirkungsgrade verwendet (vgl. Tabelle 2.6, Anhang Tabelle A.24 für Festbrennstoffe).

In Tabelle 5.3 sind die für die Berechnung der Prozessschritte CO_2 -Transport und CO_2 -Speicherung notwendigen Parameter dargestellt. Als Hauptvariante wird der CO_2 -Schiffstransport angesehen, da die gesellschaftliche und politische Stimmung in Deutschland derzeitig keine CO_2 -Speicherung unter dem deutschen Festland erwarten lässt. Beim Seetransport wird eine Transportentfernung von 1000 km unterstellt. In Metz et al. [vgl. 2005, S. 192] werden auch Angaben für eine Entfernung von 200 km und 12 000 km genannt (2,5 % bzw. 18 %), die im Rahmen der Sensitivitätsanalyse verwendet werden. Beim alternativen CO_2 -Pipelinetransport werden nur in dem Fall zusätzliche CO_2 -Emissionen emittiert, wenn aufgrund des Druckabfalls in der Pipeline eine Nachverdichtung des CO_2

notwendig wird. Hierbei werden Transportdistanzen von 100 km und 500 km, Rohrinnendurchmesser von 200 mm und 500 mm sowie Fließgeschwindigkeiten von 1,5 m/s und 2,5 m/s näher untersucht. Als Betrachtungszeitraum für die CO₂-Speicherung werden 500 Jahre festgelegt und im Rahmen einer Sensitivitätsanalyse wird zwischen 100 und 1000 Jahren variiert. Die jährliche CO₂-Leckagerate wird mit 0,01% angenommen und zwischen 0,00% und 0,1% variiert.

Bezeichnung	Einheit	Wert	Quelle
CO_2 -Emissionen Schiffs- transport (1000 km)	t/t bzw. $\%$	$3{,}50\%$	Metz et al. [2005, S. 186]
CO ₂ -Emissionen Pipe- linetransport (einmali- ge Nachverdichtung um 40 bar)	t/t bzw. %	$0,\!08\%$	eigene Berechnung mit Daten aus McCoy [2008, S. 36], UBA [2011a, S. 1]
Jährliche CO ₂ -Leckage- rate	t/t bzw. $\%$	$0{,}01\%$	Kapitel 2.3.4.3.2
Betrachtungszeitraum	a	500	eigene Festlegung

Tabelle 5.3: Verwendete Parameter für CO₂-Transport und CO₂-Speicherung

Die elektrischen und thermischen Wirkungsgrade werden aus der wirtschaftlichen Analyse übernommen (vgl. Kapitel 4.2.3, vgl. Anhang Tabelle A.25).

Für die abschließende Berechnung der brennstoff- und flächenspezifischen, negativen CO_2 -Emissionen werden zum einen spezifische CO_2 -Emissionen des deutschen Stromund Wärmemixes und zum anderen flächenspezfische Ertragsniveaus für Kurzumtriebsplantagen sowie Biogasproduktivität verwendet (vgl. Tabelle 5.4).

Bezeichnung	Einheit	Wert	Quelle
CO ₂ -Emissionen Strommix	g/kWh	563	UBA [2011a]
CO ₂ -Emissionen Wärmemix	g/kWh	270	Erdmann und Dittmar [2010, S. 51]
Ertragsniveau KUP (HHS $w=50\%$)	$t/(ha \cdot a)$	26,2	eigene Berechnung mit Da- ten aus Hofmann [2009, S. 27, S. 34]
Ertragsniveau Silomais-Biogas	${ m m}^3/({ m ha}\cdot{ m a})$	8450	FNR [2010, S. 5]

Tabelle 5.4: Verwendete Parameter für Ressourcen- und Flächeneffizienz

5.2.2 Parameter für alternative Nutzungsformen der CO₂-Lagerstätten

Für die Berechnung der eingesparten CO_2 -Emissionen durch alternative Nutzungsformen der CO_2 -Lagerstätten werden die in Tabelle 5.5 dargestellten Parameter verwendet. Hierbei werden auch Angaben für die CO_2 -Speicherung gemacht, die im Rahmen einer Sensitivitätsanalyse variiert werden (vgl. Angaben in Anhang Tabelle A.31). Die größten Unsicherheiten liegen im Bereich der Mächtigkeit der CO_2 -Speicherschichten D und des Effizienzfaktors E. Beide Faktoren beeinflussen massiv die CO_2 -Speicherkapazität, wobei eine Vergrößerung der Mächtigkeit auch eine größere geothermische Wärmenutzung bzw. saisonale Wärmespeichernutzung zur Folge hätte.

Die Angaben für die geothermische Wärmenutzung basieren auf Angaben für das komplette norddeutsche Becken, das rund ein Viertel der gesamten deutschen Landfläche ausmacht [vgl. Kaltschmitt et al., 2006, S. 486]. Somit handelt es sich um einen Durchschnittswert, der regional durchaus variieren kann.

Für die saisonale Wärmespeicherung werden Angaben aus dem Aquiferwärmespeicher in Neubrandenburg verwendet, der seit 2004 als saisonaler Wärmespeicher genutzt wird [vgl. Menzel, 2009, S. 16]. Somit handelt es sich hierbei um eine konkrete Speicherstätte innerhalb des norddeutschen Beckens, das exemplarisch für die Berechnungen verwendet wird, weil hier die für die Berechnung notwendigen Angaben vorliegen. Da es sich bei den Angaben um Jahresmengen handelt, wird eine Nutzungsdauer von 50 Jahren unterstellt. Im Rahmen der Sensitivitätsanalyse werden ebenfalls 20 und 100 Jahre untersucht. Prinzipiell ist jedoch eine zeitlich unbegrenzte Nutzung möglich – auch eine anschließende alternative Nutzung nach 50 Jahren Wärmeeinlagerung und -auslagerung ist denkbar.

Die Parameter für die geothermische Strom- und Wärmeerzeugung basieren auf dem Geothermieheizkraftwerk Unterhaching, das seit dem Jahr 2009 bis zu 3,4 MW Strom und 38 MW Fernwärme produziert [vgl. Milles, 2009, S. 2]. Hierbei handelt es sich um einen von vier Standorten, an denen in Deutschland bis zum Jahr 2013 Strom (und Wärme) aus geothermischen Quellen produziert wird [vgl. GtV, 2013, S. 1]. Als spezifische CO₂-Emissionen für die produzierte Wärme wird der gleiche Wert wie für die geothermische Wärmenutzung verwendet.

5.3 CO₂-Bilanz von Bio-KWK-CCS

Die Ergebnisse der CO₂-Bilanzierung der Kombination aus Biomasse, KWK und CCS (Bio-KWK-CCS) werden im folgenden Kapitel 5.3.1 vorgestellt, bevor im Kapitel 5.3.2 die Ergebnisse der Sensitivitätsanalyse der wesentlichen Eingangsparameter folgen.

Es werden neben den direkten CO₂-Emissionen auch die indirekten CO₂-Emissionen

Größe	Einheit	Wert	Quelle	
Angaben CO ₂ -Speicheru	ing			
Mächtigkeit (D)	km	$0,\!1$	Schilling et al. $[2009, S. 2031]$	
Effizienzfaktor (E)	%	$0{,}10\%$	Viebahn et al. $[2010, S. 122]$	
Dichte $CO_2 (\rho_{CO_2})$	t/m^3	$0,\!6$	Viebahn et al. $[2010, S. 122]$	
n/g-Verhältnis $(\phi_{\rm n/g})$	%	100%	Viebahn et al. $[2010, S. 122]$	
Porosität (φ)	%	20%	Viebahn et al. $[2010, S. 122]$	
Angaben geothermische	Wärmenutz	zung (Nor	ddeutsches Becken)	
Fläche (A)	$\rm km^2$	136000	Kaltschmitt et al. $\left[2006,\mathrm{S},486\right]$	
Technisches Wärmeerzeu- gungspotenzial (Q)	PJ	328 000	Kaltschmitt et al. [2006, S. 486]	
CO_2 -Emissionsfaktor Wär- memix ($\mu_{CO_2,th,Mix}$)	g/kWh	270	Erdmann und Dittmar [2010, S. 51]	
Angaben Aquiferwärmes	speicher Ne	ubranden	burg	
Abstand warme/kalte Bohrung	km	1,3	GTN [2009, S.1]	
Fläche (A)	km^2	$5,\!3$	eigene Berechnung	
Eingelagerte Wärmemenge (Q_{ein})	MWh/a	8000	Schmidt und Müller-Steinhagen [2005, S. 11]	
Wirkungsgrad ($\eta_{\rm WS}$)	%	75%	Menzel [2009, S. 16]	
Angaben Geothermieheizkraftwerk Unterhaching				
Abstand warme/kalte Bohrung	km	3,5	Milles [2009, S.2]	
Fläche (A)	km^2	38,5	eigene Berechnung	
Produzierte Strommenge $(W_{\rm el})$	MWh/a	21500	Milles [2009, S. 2]	
Produzierte Wärmemenge (Q)	MWh/a	47000	Milles [2009, S. 2]	
CO_2 -Emissionen Strommix $(\mu_{CO_2,el,Mix})$	g/kWh	560	UBA [2011a]	

Tabelle 5.5: Verwendete Parameter für Vergleich $\rm CO_2$ -Speicherung und geothermische Nutzung

berücksichtigt, die beispielsweise durch Brennstoffaufbereitung, CO₂-Transport und CO₂-Speicherung entstehen. Diese indirekten CO₂-Emissionen werden im Rahmen der Vereinbarungen des Kyoto-Protokolls beim CO₂-Emissionshandel derzeit nicht berücksichtigt [vgl. Kapfer, 2005, S. 65], sollten jedoch vor dem Hintergrund der Nachhaltigkeit ebenfalls berücksichtigt werden, da sie gleichermaßen klimarelevant sind und bei bestimmten Varianten nicht zu vernachlässigen sind. Die Europäische Kommission hat bereits empfohlen, dass bei der Berechnung der Treibhausgasbilanz fester und gasförmiger Biomasse beispielsweise Emissionen aus dem Anbau, der Verarbeitung und dem Transport der Rohstoffe sowie der geänderten Flächennutzung berücksichtigt werden sollten [vgl. Europäische Kommission, 2010, S. 13 ff.]. Da diese Empfehlungen jedoch freiwillig sind, sind diese bislang von keinem EU-Mitgliedsstaat explizit in nationales Recht umgesetzt worden [vgl. Vogel et al., 2011, S. 11].

5.3.1 Ergebnisse

Zur besseren Veranschaulichung der Ergebnisse wird zunächst die CO₂-Bilanz für ein reines Steinkohlekraftwerk, für ein HHS-Kraftwerk und für ein Steinkohlekraftwerk mit $30\,\%$ HHS-Mitverbrennung erläutert. Hierbei werden jeweils die spezifischen CO₂-Emissionen ohne CCS und mit CCS sowie die vermiedenen CO₂-Emissionen dargestellt. Das Steinkohlekraftwerk kann aufgrund des fossilen Brennstoffs auch mit CO₂-Abscheidung nicht in den Bereich der negativen CO₂-Emissionen vordringen (vgl. Abbildung 5.2). Die linke Säule stellt die stromspezifischen, direkten und indirekten CO₂-Emissionen dar, die ohne CO₂-Abscheidung emittiert werden. Nach Integration der CO₂-Abscheidung reduzieren sich in der mittleren Säule die direkten CO_2 -Emissionen, während die indirekten CO₂-Emissionen aufgrund des niedrigeren Wirkungsgrads ansteigen. Hinzu kommen die CO_2 -Emissionen für Transport und Speicherung des CO_2 sowie die langfristigen CO₂-Leckagen (über einen Zeitraum von 500 Jahren). Bei der Berechnung der Gesamtemissionen werden nur diejenigen CO₂-Emissionen berücksichtigt, die von einem schwarzen Rahmen umrandet sind, so dass die abgeschiedenen CO_2 -Emissionen nicht addiert oder subtrahiert werden. Die gesamten CO₂-Emissionen des CCS-Kohlekraftwerks in Bezug auf die produzierte Strommenge betragen 257 g/kWh. Es werden somit spezifische CO₂-Emissionen in Höhe von 648 g/kWh vermieden, während 954 g/kWh abgeschieden und gespeichert werden.

Wird anstelle der Steinkohle mit Holzhackschnitzeln ein erneuerbarer Brennstoff eingesetzt, so können sich bei CCS-Integration negative CO₂-Emissionen ergeben (vgl. Abbildung 5.3). Für die Berechnung der indirekten CO₂-Emissionen aus den Vorketten wird festgelegt, dass es sich um Holzhackschnitzel aus Kurzumtriebsplantagen auf

Abbildung 5.2: CO₂-Bilanz eines Kohlekraftwerks (IGCC/Pre-Combustion), eigene Berechnung mit Daten aus Kapitel 5.2

vorherigem Ackerland handelt, deren indirekte Landnutzungsänderungseffekte zu $25\,\%$ berücksichtigt werden (iLUC25 %). Die stromspezifischen CO₂-Emissionen ohne CCS sind mit 165 g/kWh deutlich niedriger als beim vergleichbaren Steinkohlekraftwerk, da die klimaneutralen direkten CO₂-Emissionen nicht berücksichtigt werden (ohne Rahmen). Die indirekten CO₂-Emissionen fallen mit 165 g/kWh aufgrund des niedrigeren Wirkungsgrads und der höheren CO_2 -Emissionen in der Vorkette jedoch fast dreimal so hoch aus wie für die Steinkohleverbrennung. Nach CCS-Integration steigen wegen des Wirkungsgradverlusts erneut die indirekten CO₂-Emissionen und es kommen die CO₂-Emissionen für CO₂-Transport, CO₂-Speicherung und CO₂-Leckage hinzu. Zusätzlich werden diejenigen klimaneutralen CO₂-Emissionen, die abgeschieden werden, subtrahiert, da diese effektiv dem CO₂-Kreislauf der Atmosphäre entzogen werden (1335 g/kWh). Insgesamt ergeben sich negative CO_2 -Emissionen in Höhe von 1000 g/kWh, was 1165 g/kWh an vermiedenen CO₂-Emissionen entspricht. Vergleicht man die CO₂-Emissionen des Kohlekraftwerks (905 g/kWh ohne CCS bzw. 257 g/kWh mit CCS) mit denen des HHS-Kraftwerks mit CCS (-1000 g/kWh), so ergeben sich sogar 1905 g/kWh bzw. 1257 g/kWh an vermiedenen CO₂-Emissionen.

Abbildung 5.4 stellt die CO_2 -Bilanz für ein Steinkohlekraftwerk mit 30 % HHS-Zufeuerung dar (gleiche Vorkette zur Berechnung der indirekten Emissionen wie in

Abbildung 5.3: CO₂-Bilanz eines HHS-Kraftwerks (KUP-iLUC25%-Acker, IGCC/Pre-Combustion), eigene Berechnung mit Daten aus Kapitel 5.2

Abbildung 5.3). Hierbei sind die stromspezifischen CO_2 -Emissionen ohne CCS durch den biogenen Anteil mit 673 g/kWh bereits niedriger als im reinen Steinkohlekraftwerk, auch wenn die indirekten CO_2 -Emissionen etwas höher ausfallen. Bei der Berechnung der Gesamt- CO_2 -Emissionen nach CCS-Integration werden sowohl die abgeschiedenen CO_2 -Emissionen aus dem Brennstoff Steinkohle als auch die direkten CO_2 -Emissionen aus dem Brennstoff Holz nicht berücksichtigt (kein Rahmen). Für die Berechnung berücksichtigt werden neben den indirekten CO_2 -Emissionen, den CO_2 -Emissionen für CO_2 -Transport, CO_2 -Speicherung und CO_2 -Leckage wiederum die verbleibenden direkten CO_2 -Emissionen aus dem Brennstoff Steinkohle. Die abgeschiedenen CO_2 -Emissionen aus dem Brennstoff Holz werden subtrahiert. Insgesamt ergeben sich leicht negative CO_2 -Emissionen in Höhe von 42 g/kWh, was 715 g/kWh an vermiedenen CO_2 -Emissionen entspricht und wofür 943 g/kWh gespeichert werden müssen.

In Abbildung 5.5 werden für alle untersuchten Festbrennstoffvarianten die stromspezifischen CO₂-Emissionen ohne CCS und mit CCS dargestellt. Die in der Legende verwendete Nummerierung unterscheidet sich von der wirtschaftlichen Analyse, da sich in der Analyse der Nachhaltigkeit auf die CCS-Prozessvariante Pre-Combustion für Festbrennstoffe bzw. Post-Combustion für gasförmige Brennstoffe konzentriert wird, dafür jedoch verschiedene Formen der Landnutzungsänderung berücksichtigt werden. Die Varianten 1, 3 und 8

Abbildung 5.4: CO₂-Bilanz eines Steinkohlekraftwerks mit 30 % HHS-Zufeuerung (KUPiLUC25%-Acker, IGCC/Pre-Combustion), eigene Berechnung mit Daten aus Kapitel 5.2

stellen hierbei die bereits gezeigten Beispiele in den Abbildungen 5.2 bis 5.4 dar. Zum einen wird deutlich, dass bei der 30 %-igen Holzzufeuerung alle untersuchten Bioenergieträger einheitlich zu negativen CO₂-Emissionen in Höhe von ca. 40 g/kWh bis 80 g/kWh gelangen. Einzig beim Anbau der Holzhackschnitzel auf ehemaligem Grünland und unter Berücksichtigung von 50 % der indirekten Landnutzungsänderungen ergeben sich positive CO₂-Emissionen in Höhe von 70 g/kWh. Dieser Effekt verstärkt sich bei der Monoverbrennung der Holzhackschnitzel bzw. Pellets: Hier liegt die Variante 9 (iLUC50 %-Grünland) bei negativen CO₂-Emissionen in Höhe von -489 g/kWh, während alle anderen Varianten negative CO₂-Emissionen in Höhe von ca. 1000 g/kWh oder mehr erzeugen. Eine Ursache für die hohen negativen CO₂-Emissionen sind die im Vergleich niedrigeren elektrischen Wirkungsgrade für die Monoverbrennung, die zu höheren stromspezifischen, direkten CO₂-Emissionen führen, die klimaneutral sind und anschließend abgeschieden werden können.

Die Höhe der auf die elektrische Energie bezogenen CO_2 -Emissionen für gasförmige Brennstoffe fällt gegenüber festen Brennstoffen grundsätzlich niedriger aus (vgl. Abbildung 5.6). Bei der Mitverbrennung von 30 % Biomethan (BM) in großen GuD-Anlagen können mit keiner der untersuchten Varianten negative CO_2 -Emissionen erreicht werden.

Abbildung 5.5: CO₂-Bilanz untersuchter Festbrennstoffe (IGCC/Pre-Combustion, ohne KWK), eigene Berechnung mit Daten aus Kapitel 5.2

Beim Einsatz von Maissilage auf Grünlandflächen unter Berücksichtigung von 50 % der indirekten Landnutzungsänderungen (Variante 17) ergeben sich mit 144 g/kWh sogar nahezu die gleichen CO₂-Emissionen wie bei fossilem Erdgas. Negative CO₂-Emissionen in Höhe von ca. 475 g/kWh bis 600 g/kWh können bei der (theoretischen) Monoverbrennung von Biogas aus Biomüll und Gülle erreicht werden. Beim Einsatz von Maissilage, die auf Grünflächen angebaut worden ist, ergeben sich bei Berücksichtigung von 50 % der indirekten Landnutzungsänderungen mit 178 g/kWh höhere CO₂-Emissionen als im CCS-Betrieb mit fossilem Erdgas.

Auf die Variante 17 (Erdgas + 30 % Biomethan iLUC50 % Grünland) wird in Abbildung 5.7 näher eingegangen. Es ist deutlich zu erkennen, dass die verbleibenden CO_2 -Emissionen nach der CCS-Integration (144 g/kWh) vor allem durch die indirekten CO_2 -Emissionen (200 g/kWh) verursacht werden, die durch die CO_2 -Abscheidung nicht reduziert werden können.

Die Verbrennung von Festbrennstoffen in Heizkraftwerken (mit KWK) führt grundsätzlich zu ähnlichen Ergebnissen wie die Verbrennung in Kraftwerken ohne KWK, jedoch fallen die spezifischen CO₂-Emissionen im KWK-Betrieb aufgrund der Aufteilung auf die Produkte Strom und Wärme geringer aus (vgl. Abbildung 5.8). So reduzieren sich beispielsweise die auf die elektrische Energie bezogenen CO₂-Emissionen der Va-

Abbildung 5.6: CO₂-Bilanz untersuchter gasförmiger Brennstoffe (GuD/Post-Combustion, ohne KWK), eigene Berechnung mit Daten aus Kapitel 5.2

riante 8 (iLUC25%-Acker) von -1000g/kWh auf -537g/kWh. Bei der Aufteilung der CO₂-Emissionen auf die Produkte Strom und Wärme erhält der Strom im Rahmen der finnischen Methode eine höhere Zuteilung und darüber hinaus fällt die Stromproduktion geringer aus als die Wärmeproduktion (vgl. Kapitel 2.3.3.2). Ein Vorzeichenwechsel, d. h. positive anstatt negativer spezifischer CO₂-Emissionen, ist jedoch bei keiner der elf untersuchten Varianten festzustellen.

Bezogen auf das Produkt Wärme fallen die spezifischen CO₂-Emissionen mit CCS-Integration in etwa halb so hoch aus wie in Bezug auf den Strom (vgl. Abbildung 5.9, z. B. bei Variante 8: $\mu_{CO_2,th,ges} = -270 \text{ g/kWh}$ gegenüber $\mu_{CO_2,el,ges} = -537 \text{ g/kWh}$). Die Aufteilung der CO₂-Emissionen auf die beiden Produkte Wärme und Strom hängt von dem Verhältnis von elektrischem und thermischem Wirkungsgrad ab. Durch die grundsätzlich höheren elektrischen Wirkungsgrade ohne CCS-Integration lässt sich hier eine andere Relation erkennen, die eher dem Verhältnis eins zu drei entspricht (z. B. bei Variante 8: $\mu_{CO_2,th,ges} = 42 \text{ g/kWh}, \mu_{CO_2,el,ges} = 114 \text{ g/kWh}$).

Ein ähnliches Bild ergibt sich bei der KWK-Integration für die gasförmigen Energieträger (ohne Abbildung, vgl. Anhang Tabelle A.26 bis Tabelle A.27): Auch hier teilen sich die spezifischen CO_2 -Emissionen in ähnlicher Art auf die zwei Produkte Strom und Wärme auf, ohne dass es eine große Veränderung an der Tendenz der Ergebnisse gibt

Abbildung 5.7: CO₂-Bilanz eines Erdgaskraftwerks mit 30 % Biomethan-Zufeuerung (KUP-iLUC50%-Grünland, GuD/Post-Combustion), eigene Berechnung mit Daten aus Kapitel 5.2

(z.B. Vorzeichenwechsel).

In Abbildung 5.10 wird die Höhe der spezifischen CO₂-Emissionen in Bezug auf die eingesetzte Brennstoffmasse dargestellt. Damit soll verdeutlicht werden, welcher Ressourceneinsatz zur Erzeugung von negativen CO₂-Emissionen benötigt wird. Für die Monoverbrennung von Steinkohle wird keine Angabe gemacht, da keine negativen CO_2 -Emissionen erreicht werden. Bei den Mitverbrennungsvarianten (Variante 2 bis 6) werden nur diejenigen CO₂-Emissionen berücksichtigt, die durch die Biomasseverbrennung entstehen. Zunächst ist festzuhalten, dass aus einer Tonne Holzpellets mit Abstand am meisten negative CO₂-Emissionen erzeugt werden können (1,9t/t) bis 2,6t/t), da die auf die Brennstoffmasse bezogenen, direkten CO_2 -Emissionen für Holzpellets (1,6 t/t)deutlich höher sind als für Holzhackschnitzel (0,9 t/t). Des Weiteren ist für alle Varianten festzuhalten, dass die negativen CO_2 -Emissionen mit KWK jeweils um ca. 27 % höher ausfallen als ohne KWK. Der Grund hierfür ist, dass bei KWK eine CO₂-Gutschrift für die verdrängte Strom- und Wärmemenge vorgenommen wird, während diese bei der reinen Stromerzeugung zwar für das Produkt Strom spezifisch höher aber insgesamt niedriger ausfällt. Beim Vergleich der Mitverbrennung zur Monoverbrennung fällt auf, dass die Mitverbrennung zu ca. 6 % höheren negativen CO₂-Emissionen pro Tonne Brennstoff führt.

Abbildung 5.8: CO₂-Bilanz untersuchter Festbrennstoffe (mit KWK, IGCC/Pre-Combustion, Produkt Strom), eigene Berechnung mit Daten aus Kapitel 5.2

Abbildung 5.9: CO₂-Bilanz untersuchter Festbrennstoffe (mit KWK, IGCC/Pre-Combustion, Produkt Wärme), eigene Berechnung mit Daten aus Kapitel 5.2

5 Analyse der Nachhaltigkeit

Die Ursache hierfür sind die besseren elektrischen Wirkungsgrade bei der Mitverbrennung in größeren (Heiz-)Kraftwerken, die in der Folge zu größeren CO₂-Gutschriften führen, da die Verdrängung von Strom höhere spezifische CO₂-Einsparungen bedeutet als von Wärme. Ein ähnliches Bild ergibt sich für gasförmige Brennstoffe: Hier fallen jedoch die negativen CO₂-Emissionen für die Mitverbrennung in großen Anlagen mit 61 % deutlich höher aus als der Einsatz in KWK-Anlagen (18 %) (vgl. Anhang Tabelle A.27).

Abbildung 5.10: Brennstoffmassenspezifische CO₂-Bilanz untersuchter Festbrennstoffe (mit CCS, IGCC/Pre-Combustion), eigene Berechnung mit Daten aus Kapitel 5.2

Für die Erzeugung von Bioenergieträgern stehen grundsätzlich begrenzte Flächenkapazitäten zur Verfügung. Daher werden in Abbildung 5.11 die flächenspezifischen, negativen CO_2 -Emissionen dargestellt. Für diejenigen Varianten, die Waldrestholz oder Sägewerksreststoffe einsetzen, wird keine Fläche benötigt, so dass bei theoretischer Division durch Null die Flächeneffizienz unendlich groß wird. Es ist wiederum zu erkennen, dass die KWK-Varianten deutlich effizienter als die Varianten ohne KWK sind (um jeweils ca. 28%) und dass die Mitverbrennung in großen und effizienten (Heiz-)Kraftwerken im Vergleich zur Monoverbrennung zu ca. 10% höheren flächenspezifischen CO_2 -Emissionen führt. Im Ergebnis lässt sich festhalten, dass bei einer Berücksichtigung von 50% indirekten Landnutzungsänderungen negative CO_2 -Emissionen zwischen $17 t/(ha \cdot a)$ und $26 t/(ha \cdot a)$ erreicht werden können.

Abbildung 5.11: Flächenspezifische CO₂-Bilanz untersuchter Festbrennstoffe (mit CCS, IGCC/Pre-Combustion), eigene Berechnung mit Daten aus Kapitel 5.2

Für gasförmige Brennstoffe fallen sowohl die brennstoff- als auch die flächenspezifischen, negativen CO₂-Emissionen mit KWK deutlich höher aus als ohne KWK. Flächenspezifisch ergibt sich ein Unterschied von ca. 24 % (vgl. Abbildung 5.12). Ebenfalls führt die Verbrennung in großen Anlagen zu deutlich höheren negativen CO₂-Emissionen. Die durchschnittlich 80 % größeren negativen CO₂-Emissionen fallen jedoch deswegen so hoch aus, weil die CO₂-Bilanz der einzelnen Varianten (ohne Strom- und Wärmegutschrift) teilweise zu positiven CO₂-Emissionen führt (vgl. obige Abbildung 5.6) und erst durch die Berücksichtigung der Strom- und Wärmegutschrift knapp unter die Nulllinie fallen. So können bereits kleine absolute Unterschiede (nahe an der Nulllinie) zu großen relativen Unterschieden führen.

5.3.2 Sensitivitätsanalyse

Im Rahmen der Sensitivitätsanalyse wird die Variation der folgenden Parameter näher untersucht:

- CO_2 -Leckagerate (0,0% bis 0,1%),
- Betrachtungszeitraum der CO₂-Speicherung (100 Jahre bis 1000 Jahre),
- biogener Anteil bei Mitverbrennung (10 % bis 100 %),

Abbildung 5.12: Flächenspezifische CO₂-Bilanz untersuchter gasförmiger Brennstoffe (mit CCS, GuD/Post-Combustion), eigene Berechnung mit Daten aus Kapitel 5.2

- CO₂-Pipelinetransport anstelle von Schiffstransport sowie Änderung der Schiffstransportdistanz,
- Holzpellets aus Kurzumtriebsplantagen statt aus Sägewerksreststoffen und
- HHS-/Holzpelletsimport aus tropischen oder subtropischen Regenwäldern anstatt aus regionalen Rohstoffquellen.

Die Ergebnisse werden jeweils für die Nicht-KWK-Varianten dargestellt. Für die KWK-Varianten fallen die Ergebnisse vergleichbar, jedoch größenmäßig geringer aus, da die CO₂-Emissionen auf die zwei Produkte Strom und Wärme aufgeteilt werden.

Die ersten beiden Parameter (CO₂-Leckagerate und der Betrachtungszeitraum der CO₂-Speicherung) führen zu Veränderungen der spezifischen CO₂-Emissionen der CO₂-Speicherung. Um jedoch den Effekt auf die Gesamt-CO₂-Bilanz zu verdeutlichen, werden in Abbildung 5.13 für die Variation der CO₂-Leckagerate die Gesamtemissionen der elf untersuchten Festbrennstoffvarianten dargestellt. Während bei der Ausgangsleckagerate von 0,01 % noch die meisten Mitverbrennungsvarianten (außer iLUC50 %-Grünland) zu negativen CO₂-Emissionen führen, können ab einer jährlichen CO₂-Leckagerate von 0,03 % keine der Varianten, in denen 30 % Holzhackschnitzel bzw. Holzpellets mitverbrannt

werden, negative CO₂-Emissionen erreichen. Die Monoverbrennungs-Kraftwerke auf Basis erneuerbarer Energieträger können dahingegen auch bei recht hohen jährlichen CO₂-Leckagerate von 0,1% negative CO₂-Emissionen aufweisen. Für die spezifischen CO₂-Emissionen aus Heizkraftwerken ergibt sich bei Variation der CO₂-Leckagerate ein ähnliches Bild auf niedrigerem Niveau, da die Emissionen auf die beiden Produkte Strom und Wärme aufgeteilt werden. Die in Kapitel 5.3.1 ebenfalls vorgestellten Ergebnisse für Ressourcenverbrauch und Flächeninanspruchnahme verändern sich analog zu den in Abbildung 5.13 dargestellten Ergebnissen.

Abbildung 5.13: Sensitivitätsanalyse der CO₂-Bilanz untersuchter Festbrennstoffe auf Variation der CO₂-Leckagerate (IGCC/Pre-Combustion, ohne KWK), eigene Berechnung mit Daten aus Kapitel 5.2

Für gasförmige Brennstoffe liegen die spezifischen CO_2 -Emissionen im Vergleich zu den Festbrennstoffen näher zusammen an der Nulllinie (vgl. Abbildung 5.14). Die Variation der CO_2 -Leckagerate hat einen geringeren Einfluss als bei den Festbrennstoffen (geringere Steigung), da bei gasförmigen Brennstoffen grundsätzlich spezifisch weniger CO_2 abgeschieden werden kann, das in der Folge aufgrund einer erhöhten CO_2 -Leckagerate wieder entweichen könnte.

Bei Variation der Betrachtungsdauer der CO_2 -Speicherung zwischen 0 Jahren und 1000 Jahren ergeben sich gegenüber der CO_2 -Leckagerate vergleichsweise geringere Veränderungen der CO_2 -Emissionen (bezogenen auf die elektrisch Energie) von maximal

Abbildung 5.14: Sensitivitätsanalyse der CO₂-Bilanz untersuchter gasförmiger Brennstoffe auf Variation der CO₂-Leckagerate (GuD/Post-Combustion, ohne KWK), eigene Berechnung mit Daten aus Kapitel 5.2

127 g/kWh (vgl. Abbildung 5.15). Hierbei stellt die Berücksichtigung von 0 Jahren eine extreme Betrachtung dar, die die Folgen einer CO_2 -Leckage völlig unberücksichtigt lässt. Der Einfluss zeigt sich ähnlich für gasförmige Brennstoffe und für Kraft-Wärme-Kopplung, die nicht separat grafisch dargestellt werden.

Die Variation des biogenen Anteils in Mitverbrennungskraftwerken kann nur bei den Varianten 2 bis 6 zu Veränderungen führen. Erwartungsgemäß erhöht sich mit höherem Anteil an erneuerbaren Energieträgern auch die Höhe der negativen CO_2 -Emissionen (vgl. Abbildung 5.16). Für die Variante KUP-HHS, bei der 50 % der indirekten Landnutzungsänderungen auf Grünland berücksichtigt werden, ergeben sich erst ab einem biogenen Anteil von 40 % negative CO_2 -Emissionen, während dies bei den anderen Varianten ab ca. 25 % der Fall ist. Diese Ergebnisse stimmen größenordnungsmäßig mit Ergebnissen in Gough und Upham [vgl. 2010, S. 15] überein, wo bei einer Mitverbrennung ab einem biogenen Anteil von ca. 20 % negative CO_2 -Emissionen erreicht werden. Ein ähnliches Bild ergibt sich für die gasförmigen Brennstoffe, nur dass die negativen CO_2 -Emissionen erst in einem Bereich von 40 % bis 60 % Biomethanzumischung erreicht werden. Biomethan auf Basis von Grünlandmais bei Berücksichtigung von 50 % iLUC erreicht die negativen CO_2 -Emissionen gar nicht.

Abbildung 5.15: Sensitivitätsanalyse der CO₂-Bilanz untersuchter Festbrennstoffe auf Variation der CO₂-Speicherbetrachtungsdauer (IGCC/Pre-Combustion, ohne KWK), eigene Berechnung mit Daten aus Kapitel 5.2

Die Variation der CO₂-Transportvariante von Schiffstransport auf Pipelinetransport führt bei kurzen Transportdistanzen zu CO₂-Einsparungen, da beim Schiffstransport über 1000 km ca. 3,5% des transportierten CO₂ emittiert wird, während beim CO₂-Pipelinetransport ohne Nachverdichtung keine weiteren CO_2 -Emissionen entstehen. Es ergeben sich Reduktionen der CO₂-Emissionen (bezogen auf die elektrische Energie) von 14 g/kWh bis 46 g/kWh. Die stärksten Reduktionen sind bei der Monoverbrennung von Holzhackschnitzeln zu verzeichnen, da diese die höchsten spezifischen, direkten CO₂-Emissionen aufweisen. Sollte der Druckverlust auf der Pipeline jedoch so groß sein, dass eine Nachverdichtung notwendig wird, werden für eine einmalige Nachverdichtung um 40 bar zusätzlich ca. 0.08% des transportierten CO₂ emittiert (vgl. Tabelle 5.3 in Kapitel 5.2.1). Tabelle 5.6 stellt für die untersuchten Pipelinelängen, -durchmesser und Fließgeschwindigkeiten dar, welche Druckverluste in der Pipeline auftreten und zu welchen spezifischen CO₂-Emissionen diese führen. Es wird deutlich, dass auch bei "ungünstigsten" Bedingungen (hohe Pipelinelänge, geringer Pipelinedurchmesser und hohe Fließgeschwindigkeit) nicht mehr als 3,5 % der transportierten CO₂-Emissionen zusätzlich emittiert werden, was dem CO₂-Schiffstransport über 1000 km entspricht. Sollte die Transportdistanz für den CO₂-Schiffstransport von 1000 km auf 12 000 km erhöht werden,

Abbildung 5.16: Sensitivitätsanalyse der CO₂-Bilanz untersuchter Festbrennstoffe auf Variation des biogenen Anteils (IGCC/Pre-Combustion, ohne KWK), eigene Berechnung mit Daten aus Kapitel 5.2

dann würden sich die CO_2 -Emissionen bezogen auf die elektrische Energie um 59 g/kWh bis 194 g/kWh erhöhen (18 % indirekte CO_2 -Emissionen). Bei einer Reduzierung der Schiffstransportdistanz auf 200 km ergibt sich eine Reduktion der CO_2 -Emissionen um 4 g/kWh bis 13 g/kWh (2,5 % indirekte CO_2 -Emissionen).

Werden für die Produktion der Holzpellets anstelle von Sägewerksreststoffen eigens dafür hergestellte Holzhackschnitzel aus Kurzumtriebsplantagen eingesetzt, so erhöhen sich die indirekten CO₂-Emissionen des Brennstoffs. Erwartungsgemäß werden hierdurch die erreichbaren negativen CO₂-Emissionen reduziert: Für die Monoverbrennung von Holzpellets reduzieren sich die negativen CO₂-Emissionen in Bezug auf die elektrische Energie von 987 g/kWh auf 940 g/kWh (0LUC) bzw. 271 g/kWh (iLUC50%-Grünland). Diese Werte liegen niedriger als die vergleichbaren Angaben für Holzhackschnitzel aus KUP, da zum einen der zusätzliche Aufwand für die Pelletierung noch hinzu kommt und zum anderen die spezifischen, direkten CO₂-Emissionen, die abgeschieden werden können, für Holzpellets niedriger sind. Für die Holzpelletsmitverbrennung ergeben sich für die Variante 0LUC noch geringfügig negative CO₂-Emissionen ($\mu_{CO_2,el,ges} = -29 \text{ g/kWh}$), für die Variante iLUC50%-Grünland bereits positive CO₂-Emissionen ($\mu_{CO_2,el,ges} = 117 \text{ g/kWh}$), die ebenfalls höher als für die vergleichbare HHS-Variante ausfallen.

Pipeline- länge in km	Pipeline- durchmesser in mm	Fließ- geschwindigkeit in m/s	Druck- verlust in bar	CO_2 - Emissionen in %
20	200	1,5	123	0,25
100	500	2,5	341	$0,\!69$
100		1,5	39	$0,\!08$
500	2,5	108	0,22	
200	1,5	613	1,23	
500	200	2,5	1703	3,43
500	1,5	195	$0,\!39$	
	500	$2,\!5$	542	1,09

Tabelle 5.6: Nachverdichtungsaufwand für CO₂-Transport, eigene Berechnung mit Daten aus McCoy [2008, S. 36], UBA [2011a], Göttlicher [1999, S. 160]

Stammen die Holzhackschnitzel und die Holzpellets nicht aus regionalen Quellen, sondern werden aus tropischen oder subtropischen Wäldern importiert, so verändern sich die spezifischen CO_2 -Emissionen für die Transportweg. Hierbei werden keine Landnutzungsänderungen in den tropischen oder subtropischen Wäldern berücksichtigt, die unter Umständen ebenfalls zu erheblichen Kohlenstoffbestandsänderungen im Boden führen können, so dass die Varianten mit Landnutzungsänderungen (Varianten 3, 4, 8 und 9) in Abbildung 5.17 nicht berücksichtigt werden. Die CO_2 -Bilanz der Varianten mit Holzhackschnitzeln verschlechtert sich durch den Brennstoffimport aufgrund des hohen spezifischen Volumens stärker als für Holzpellets, führt jedoch auch bei der Mitverbrennung in Kohlekraftwerken nicht dazu, dass die CO_2 -Bilanz insgesamt positiv wird. Der Einfluss bei den Holzpellets ist aufgrund der höheren Energiedichte geringer und führt zu spezifischen Unterschieden bei den CO_2 -Emissionen in Bezug auf die elektrische Energie von 14 g/kWh bei Holzpelletsmitverbrennung bzw. 108 g/kWh bei der Holzpellets-Monoverbrennung gegenüber dem Einsatz von regionalen Holzpellets.

5.4 Vergleich mit Alternativen

Nachdem im vorigen Kapitel dargestellt worden ist, unter welchen Bedingungen Bio-KWK-CCS zu negativen CO₂-Emissionen führen kann, wird in Kapitel 5.4.1 zunächst analysiert, wie die vorhandenen CO₂-Lagerstätten alternativ genutzt werden können. In

Abbildung 5.17: Sensitivitätsanalyse der CO₂-Bilanz untersuchter Festbrennstoffe auf Variation der Brennstoffherkunft (aus der Region oder den Sub-/Tropen, IGCC/Pre-Combustion, ohne KWK, eigene Berechnung mit Daten aus Kapitel 5.2

Form eines Exkurses wird in Kapitel 5.4.2 auf die Problematik eingegangen, inwieweit um die bestehenden CO_2 -Lagerstätten eine Nutzungskonkurrenz zwischen fossilem und erneuerbarem CO_2 entstehen kann. In einem zweiten Exkurs wird untersucht, welche Auswirkungen auf die CO_2 -Bilanz eine Nutzung des Bio-CCS-Stroms im Verkehrssektor hätte. Anschließend wird in Kapitel 5.4.4 auf alternative CO_2 -Senken eingegangen, die zur CO_2 -Einlagerung in den geologischen Untergrund bestehen.

Neben den genannten Varianten besteht auch die Möglichkeit, sogenannte Biokohle in oberflächennahe Erdschichten einzubringen, um negative CO₂-Emissionen zu erreichen. Biokohle wird durch eine stark unterstöchiometrische Verbrennung (Pyrolyse, Vergasung, vgl. Kapitel 2.1.1.2) hergestellt. Die hierbei erzeugten Synthesegase können energetisch genutzt werden. Durch das Einbringen der Biokohle in Agrarböden wird die Bodenqualität verbessert und der darin enthaltene Kohlenstoff kann für Jahrhunderte bis Jahrtausende dem Kohlenstoffkreislauf der Atmosphäre entzogen werden [vgl. Masek, 2010, S. 17], [vgl. WBGU, 2008, S. 93]. Auch wenn die Kohlenstoffsequestrierung durch Holzkohle bereits auf der Klimakonferenz in Kopenhagen im Jahr 2009 als Kohlenstoffsenke diskutiert worden ist [vgl. Bensmann, 2009, S. 66], wird auf diese Variante im Folgenden nicht näher eingegangen, da die Kombination aus Bioenergiekraftwerken und CCS in der Literatur als deutlich wirtschaftlicher eingeschätzt wird [vgl. Shepherd et al., 2009, S. 11].

5.4.1 Alternative Nutzung der CO₂-Lagerstätten

Wie im Kapitel 2.3.4.3.3 bereits ausgeführt, lässt sich bei der Nutzung der vorhandenen CO₂-Speicherkapazitäten bereits heute eine gewisse Konkurrenzsituation erkennen. Auch wenn im Rahmen der geplanten CCS-Gesetzgebung andere Nutzungsmöglichkeiten des Untergrunds, wie z. B. Geothermie und Energiespeicher, adäquat geschützt werden sollen [vgl. BMU, 2011, S. 2], geht der Bundesverband Geothermie davon aus, dass hierdurch die Geothermie-Entwicklung in weiten Teilen Deutschland über Jahre hinweg blockiert wird [vgl. o. V., 2010b, S. 32].

Aus den im Kapitel 2.3.4.3.3 vorgestellten möglichen Nutzungskonkurrenzen wird die geothermische Wärmenutzung ausgewählt, auf die im Folgenden näher eingegangen wird. Die Begründung für diese Fokussierung ist, dass in Deutschland vor allem CO_2 -Speicherkapazitäten in salinen Aquiferen bestehen und somit die geothermische Energiegewinnung die einzige Nutzungskonkurrenz für den gleichen Speicherhorizont darstellt. Alle weiteren Nutzungskonkurrenzen (z. B. Druckluft-, Erdgas-, Biomethanspeicherung sowie Reststoffverbringung) konzentrieren sich auf andere Bodenhorizonte, vor allem auf Kavernen, die in Tiefen von 600 m bis 1800 m in Salzstöcke gespült werden. Hierbei bleibt jedoch abzuwarten, inwieweit bei räumlicher Nähe zu potenziellen CO₂-Speicherstandorten genehmigungsrechtliche Festlegungen eine Nutzung einschränken können [vgl. SRU, 2009a, S. 14]. Die Nutzung von bestehenden Erdgasspeichern als CO₂-Speicherstätte erscheint aus heutiger Sicht als unwahrscheinlich: Durch die neue deutsch-russische Nord-Stream-Pipeline besteht zukünftig ein Bedarf für bis zu 60 zusätzliche unterirdische Erdgasspeicher [vgl. Oertel, 2008, S. 34 f.]. Dieser geplante Zubau lässt vermuten, dass ein langfristiger Erdgasspeicherbetrieb mit wirtschaftlichen Vorteilen verbunden sein dürfte, mit dem die einmalige CO₂-Einlagerung in den Wettbewerb treten müsste.

Bei der geothermischen Wärmenutzung wird zwischen der Nutzwärmeerzeugung (ca. $30 \,^{\circ}$ C bis $100 \,^{\circ}$ C) und der Stromerzeugung (ab ca. $100 \,^{\circ}$ C bis $150 \,^{\circ}$ C) unterschieden [vgl. BMU, 2007, S. 12 ff.]. Da die Einlagerung von CO₂ wegen des überkritischen Aggregatzustands in einer Tiefe von ca. $1000 \,^{\circ}$ m stattfinden sollte (vgl. Kapitel 2.1.3.3.1), ergeben sich bei einem mittleren Temperaturgradienten von $30 \,\text{K/km}$ eine um $30 \,\text{K}$ erhöhte Temperatur bzw. eine Temperatur von etwa $40 \,^{\circ}$ C im Untergrund [vgl. Schallenberg, 1998, S. 89]. Eine Konkurrenz mit der oberflächennahen Geothermie, die ausschließlich zu Heizzwecken mit Hilfe von Wärmepumpen eingesetzt wird, kann grundsätzlich ausgeschlossen werden, da

diese Bohrungen üblicherweise bis zu einer Tiefe von ca. 100 m reichen. Eine direkte Nutzungskonkurrenz besteht jedoch zur geothermischen Wärmegewinnung und zu saisonalen Aquiferwärmespeichern in Tiefen von etwa 1000 m. Für eine tiefengeothermische Nutzung, die zur Stromerzeugung eingesetzt wird, muss in der Regel deutlich tiefer als 1000 m gebohrt werden. Nur in Gebieten mit geothermischen Anomalien lassen sich bereits in geringeren Tiefen ausreichend hohe Temperaturen finden, die jedoch aufgrund ihres Bodenaufbaus keine Möglichkeit zur CO₂-Speicherung erwarten lassen. Bei Bohrungen in eine Tiefe von mehr als 1000 m könnten somit potenzielle CO₂-Speicherstätten durchstoßen werden. Da diese tiefen Bohrungen wahrscheinlich nicht ausreichend abgedichtet werden können, so dass ein Entweichen des CO₂ über lange Zeiträume ausgeschlossen werden kann, besteht auch hierbei eine Nutzungskonkurrenz.

Anhand der in Kapitel 5.1.2 eingeführten Formeln und der in Kapitel 5.2.2 dargestellten Parametern werden für die CO₂-Einlagerung in salinen Aquiferen sowie für die geothermische Wärme-/Stromerzeugung und saisonale Wärmespeicherung das flächenspezifische CO₂-Speicher- bzw. CO₂-Einsparungspotenzial berechnet. Anhand der mittleren Angaben für alle Parameter ergibt sich für die CO₂-Einlagerung in saline Aquifere eine flächenspezifische CO₂-Speicherkapazität von 12 kt/km^2 . Das spezifische CO₂-Einsparungspotenzial liegt für die geothermische Wärmegewinnung bei 181 kt/km^2 , für die saisonale Wärmespeicherung bei 15 kt/km^2 und für die geothermische Strom- und Wärmeerzeugung bei 32 kt/km^2 (vgl. Anhang Tabelle A.31).

In Abbildung 5.18 werden vor allem für die CO_2 -Einspeicherung alle berücksichtigten Faktoren in einem realistischen Wertebereich variiert. Für die geothermische Wärmespeicherung und die geothermische Strom-/Wärmeerzeugung wird die Nutzungsdauer zwischen 20 Jahren und 100 Jahren variiert. Bei der geothermischen Wärmenutzung werden keine Parameter variiert, da die Literaturangaben bereits ein Gesamtpotenzial für die geothermische Wärmenutzung beschrieben haben. Während die Variation der Faktoren n/g-Verhältnis, CO_2 -Dichte und Porosität nur einen untergeordneten Einfluss auf die flächenspezifische CO_2 -Speicherkapazität haben, haben sowohl der Effizienzfaktor und die Mächtigkeit der Speicherformation entscheidenden Einfluss: Bei einem Effizienzfaktor für den gesamten Aquifer von 1% werden mit einer flächenspezifischen CO_2 -Einlagerung von 120 kt/km² annähernd die Dimensionen der geothermischen Wärmenutzung erreicht.

Eine wesentliche Voraussetzung für die saisonale Wärmespeicherung in salinen Aquiferen ist eine geringe natürliche Grundwasserbewegung, damit die eingelagerte Wärme nicht im Untergrund verteilt wird [vgl. Schmidt und Müller-Steinhagen, 2005, S. 6]. Die gleiche Anforderung trifft auch für die CO₂-Einlagerung zu, wodurch die Nutzungskonkurrenz begünstigt wird. Darüber hinaus muss eine gewisse räumliche Nähe zu einem Heizkraftwerk mit dazugehörigem Fernwärmenetz gegeben sein. Hieran lässt sich bereits erkennen, dass

Abbildung 5.18: Sensitivitätsanalyse der flächenspezifischen CO₂-Speicherkapazität für CO₂-Einlagerung bzw. CO₂-Vermeidungskapazität für geothermische Wärmenutzung und Wärmespeicherung, eigene Berechnung mit Daten aus Bundesregierung [2009, S. 4 f.], Schilling et al. [2009, S. 2031], Knopf et al. [2010, S. 76 ff.], Viebahn et al. [2010, S. 122], Kaltschmitt et al. [2006, S. 486 f.], Fritsche und Rausch [2007, S. 16], GTN [2009, S. 1], Schmidt und Müller-Steinhagen [2005, S. 11], Menzel [2009, S. 16], Milles [2009, S. 2], UBA [2011a], vgl. Anhang Tabelle A.31

somit nicht das komplette norddeutsche Becken für die unterirdische Wärmespeicherung geeignet ist, da ein Wärmetransport über größere Strecken zu erheblichen Verlusten führt. So wäre beispielsweise unterhalb der Nordsee eine geothermische Wärmenutzung nur mit erheblichen Leitungsverlusten möglich und somit wenig sinnvoll.

Inwiefern das Rammen von Türmen der Offshore-Windanlagen zu relevanten Schwingungen im Untergrund führen kann, die eine CO₂-Einlagerung unterhalb der Nordsee erschweren, sollte noch tiefergehend untersucht werden.

5.4.2 Exkurs: CO₂-Speicherkapazitäten für Bio-CCS

Die CO_2 -Sequestrierung auf Basis fossiler Energieträger bietet derzeit eine Option, die weitere Energieversorgung auf Kohle-/Erdgasbasis ab dem Jahr 2020 bis 2030 mit verminderten CO_2 -Emissionen sicherzustellen. Im Gegensatz dazu werden mittels Bio-CCS

negative CO₂-Emissionen erzeugt, die die CO₂-Konzentration in der Atmosphäre reduzieren können. Vor dem Hintergrund begrenzter CO₂-Speicherkapazitäten ist schon heute eine Konkurrenz zwischen Kohle-CCS und der Entnahme von CO₂ aus der Atmosphäre durch Biomasse-CCS absehbar. In Hartmann und Hohmeyer [vgl. 2010, S. 144 ff.] ist berechnet worden, dass nur bei einem konsequenten Rückgang der energetischen Nutzung fossiler Energieträger ausreichend CO₂-Speicherkapazitäten für negative CO₂-Emissionen aus Bio-CCS verbleiben. Andernfalls sind bereits im Jahr 2100 die in Deutschland vorhandenen CO₂-Speicherstätten je nach CO₂-Einlagerungsrate zu 58% bis (rechnerisch) 122% belegt. Hierbei wären nur 6% bis 10% der Lagerstätten für Bio-CCS verwendet worden (vgl. Abbildung 5.19). Für die Berechnung sind verschiedene CCS-Nutzungspfade in der Zukunft zugrunde gelegt worden, die jährliche CO₂-Speicherraten für fossiles CO₂ zwischen ca. $25\,\mathrm{Mt/a}$ und $260\,\mathrm{Mt/a}$ berücksichtigen. Die niedrigeren $\mathrm{CO}_2\text{-}\mathrm{Speicherraten}$ orientieren sich an der Leitstudie 2008 des Bundesumweltministeriums, das einen deutlichen Rückgang der energetischen Kohlenutzung unterstellt [vgl. Nitsch, 2008, S. 182]. In diesem Fall ergibt sich, dass nur 16% der CO₂-Speicherkapazitäten durch fossiles CO₂ belegt wäre. Bei einer angenommenen Bio-CCS-Leistung von 5 GW könnte über einen Zeitraum von zwei bis fünf Jahrhunderten weiterhin negative CO₂-Emissionen von $50 \,\mathrm{Mt/a}$ erreicht werden, bis die heute abgeschätzten CO_2 -Speicherpotenziale belegt wären.

In Gassmann und Krümpel [vgl. 2009, S. 1] wird ausgeführt, dass die Einführung von CCS zu einer "Renaissance" der Kohleverstromung führen kann, so dass der in der Leitstudie dargelegte Rückgang der energetischen Kohlenutzung womöglich nicht erreicht wird und keine ausreichenden CO₂-Speicherkapazitäten für Bio-CCS zur Verfügung stehen. Da der Betrieb von CCS-Kraftwerken mit fossilen Energieträgern weiterhin effektiv zu CO₂-Emissionen in die Atmosphäre führt, würden dadurch Prophezeiungen begünstigt werden, die schon vor einigen Jahren davon ausgegangen sind, dass eine Stabilisierung auf 450 ppm wahrscheinlich nicht erreicht werden kann [vgl. Stern, 2006, S. 17].

5.4.3 Exkurs: Bio-CCS-Stromnutzung im Verkehrssektor

In Kapitel 5.3 ist dargestellt worden, in welcher Höhe negative CO_2 -Emissionen mit Bio-CCS erreicht werden und wie hoch die vermiedenen CO_2 -Emissionen gegenüber der Stromerzeugung in einem Kohlekraftwerk ausfallen können. Alternativ könnte der mit Bio-CCS produzierte Strom auch im Verkehrssektor eingesetzt werden, wodurch CO_2 -Emissionen konventioneller Treibstoffe eingespart werden.

Zur Analyse dieser Fragestellung wird auf Ergebnisse des Forschungsprojekts "OPTUM: Optimierung der Umweltentlastungspotenziale von Elektrofahrzeugen" zurückgegriffen.

5 Analyse der Nachhaltigkeit

Abbildung 5.19: Belegung der deutschen CO_2 -Lagerstätten (14,5 Gt) mit CO_2 aus Biomasse-CCS und Kohle-CCS, eigene Darstellung mit Daten aus Hartmann und Hohmeyer [2010, S. 146]

Hierin wird für das Jahr 2020 und 2030 für Deutschland unter anderem untersucht, welche CO₂-Minderungspotenziale durch Elektromobilität ausgehen [vgl. Hacker et al., 2011, S. 9].

Mit dem Einsatz einer Kilowattstunde Bio-CCS-Strom könnte ein elektrisch betriebener Kleinwagen im Jahr 2020 bei einem elektrischen Energieverbrauch von 0,16 kWh/km ca. 6,4 km weit fahren. Ein konventionelles Fahrzeug mit Verbrennungsmotor hätte auf dieser Strecke einen Benzinverbrauch von 0,281 bzw. Dieselverbrauch von 0,191 (bei einem spezifischen Kraftstoffverbrauch von 4,41/100 km bzw. 2,91/100 km). Die spezifischen CO₂-Emissionen (direkt und indirekt) von Benzin- bzw. Dieselkraftstoff werden für das Jahr 2020 mit 296,9 g/kWh (10 % Ethanol) bzw. 282,2 g/kWh (13 % Biodiesel) angegeben. Unter Zugrundelegung eines mittleren Heizwerts von 8,1 kWh/l für Benzin bzw. 9,0 kWh/l für Diesel ergeben sich CO₂-Emissionen in Höhe von 683 g (Benzin) bzw. 475 g (Diesel), die mit einer Kilowattstunde Bio-CCS-Strom vermieden werden könnten. Hierbei wird vereinfachend davon ausgegangen, dass der Bio-CCS-Strom vollständig für die Batterieladung eingesetzt werden kann (ideales Lademanagement) [vgl. Hacker et al., 2011, S. 88 ff., S. 111 f.]. Im Vergleich zu einem Kohlekraftwerk ohne CCS ($\mu_{CO_2,el,ges} = 905$ g/kWh, vgl. Abbildung 5.5) fallen die eingesparten CO₂-Emissionen für beide Verbrennungsmoto-

ren geringer aus, im Vergleich zu einem Kohleheizkraftwerk ohne CCS nur für den Diesel-Kleinwagen ($\mu_{\rm CO_2,el,ges} = 641 \, {\rm g/kWh}$, vgl. Abbildung 5.8). Da die entsprechenden CCS-Varianten niedrigere CO₂-Emissionen aufweisen ($\mu_{\rm CO_2,el,ges} = 257 \, {\rm g/kWh}$ ohne KWK, $\mu_{\rm CO_2,el,ges} = 169 \, {\rm g/kWh}$ mit KWK), führt ein Einsatz des Bio-CCS-Stroms im Verkehrssektor hierbei zu höheren vermiedenen CO₂-Emissionen.

5.4.4 Alternative CO₂-Senken

Neben der Einlagerung des abgeschiedenen CO_2 in den geologischen Untergrund besteht auch grundsätzlich die Möglichkeit, das CO_2 in stofflichen Nutzungskreisläufen zwischenzulagern. Der Vorteil bei dieser Nutzung besteht darin, dass der Kohlenstoff in existierenden Kreisläufen genutzt werden kann, ohne dass eine technisch aufwändige Einlagerung des CO_2 in den Untergrund vorgenommen werden muss.

Im Folgenden wird auf die industrielle Nutzung und die Speicherung in Algen näher eingegangen. Die Darstellung konzentriert sich vor allem auf mögliche Nutzungspotenziale und Speicherkapazitäten.

5.4.4.1 Industrielle CO₂-Nutzung

Die industrielle Nutzung von CO_2 ist in Kapitel 2.1.3.3.1 als potenzielle CO_2 -Senke eingeführt worden. An dieser Stelle wird untersucht, wie groß das Senkenpotenzial zur Erzeugung negativer CO_2 -Emissionen ausfällt.

In Metz et al. [vgl. 2005, S. 330 f.] werden zunächst drei Kriterien definiert, die als Voraussetzung erfüllt sein müssen, damit effektiv CO_2 -Emissionen eingespeichert werden können. Es muss sichergestellt sein, dass durch das für die industrielle Nutzung abgeschiedene CO_2 anderes CO_2 substituiert wird, das ohne die industrielle Nutzung nicht in die Atmosphäre gelangen würde. Andernfalls würde der bislang industriell verwendete CO_2 -Strom in der Folge direkt emittiert werden und den CO_2 -Gehalt der Atmosphäre weiter erhöhen. Des Weiteren sollten die hergestellten Produkte über eine gewisse Lebenszeit verfügen und bei der CO_2 -Bilanzierung sollten die Systemgrenzen so weit gezogen werden, dass Energie- und Massenströme, die die CO_2 -Bilanz beeinflussen, berücksichtigt werden.

Bei der Bestimmung des CO₂-Senkenpotenzials sind zwei Größen von entscheidender Bedeutung: Zum einen der Massenstrom an CO₂, der pro Zeiteinheit gebunden werden kann, und zum anderen die CO₂-Bindungsdauer im Produkt, während der das CO₂ nicht in die Atmosphäre gelangt. Abbildung 5.20 stellt diesen Zusammenhang für die derzeit weltweit verfügbaren industriellen CO₂-Nutzungspfade grafisch dar. Die jeweilige Fläche stellt das CO₂-Speicherpotenzial dar, das sich aus der Multiplikation des jährlichen

5 Analyse der Nachhaltigkeit

 CO_2 -Massenstroms und der CO_2 -Bindungsdauer ergibt. Harnstoff stellt zwar die größte industrielle CO_2 -Senke dar (65 Mt/a), bei einer maximalen CO_2 -Bindungsdauer von durchschnittlich drei Monaten ist das CO_2 -Speicherpotenzial jedoch relativ gering (ca. 16 Mt). Darüber hinaus werden Harnstoff und Methanol bereits heute überwiegend aus industriellem CO_2 hergestellt, das andernfalls in die Atmosphäre emittiert werden würde. Aufgrund einer deutlich längeren CO_2 -Bindungsdauer von mehreren Jahrzehnten bis Jahrhunderten (in Abbildung 5.20 dargestellt mit 50 Jahren) ergeben sich für Polyurethane und anorganische Carbonate deutlich größere CO_2 -Speicherpotenziale (ca. 650 Mt).

Abbildung 5.20: Jährlicher, globaler CO₂-Massenstrom und CO₂-Bindungsdauer für industrielle CO₂-Nutzung, eigene Darstellung mit Daten aus Metz et al. [2005, S. 332]

Um die tatsächliche Höhe des CO_2 -Speicherpotenzials zu veranschaulichen, wird im Folgenden auf Basis von Deutschland berechnet, welche CO_2 -Mengen über welche Zeiträume in industriellen Senken gebunden werden können. Da die entsprechenden Daten für Deutschland nicht vorliegen, werden diese im Folgenden aus den weltweiten Daten abgeleitet. Hierfür werden die CO_2 -Einlagerungen in Harnstoff und Methanol nicht berücksichtigt, da die CO_2 -Bindungsdauer mit bis zu sechs Monaten sehr kurz ist und die hierfür verwendeten CO_2 -Emissionen andernfalls in die Atmosphäre emittiert werden würden. Es verbleiben somit global 31,2 Mt/a, die an CO_2 industriell genutzt werden können. Bezogen auf die globalen CO₂-Emissionen aus fossilen Brennstoffen (ca. 26 Gt/a [vgl. Solomon et al., 2007, S. 25 f.]), ergibt sich ein Anteil von ca. 0,12 %, der von den globalen CO₂-Emissionen jährlich industriell genutzt werden kann. Setzt man diese 0,12 % ins Verhältnis zu den deutschen CO₂-Emissionen (0,96 Gt/a [vgl. UBA, 2011b, S. 1]), so ergeben sich 1,15 Mt/a, die industriell genutzt werden können. Die mittlere CO₂-Bindungsdauer wird aus den Angaben aus Abbildung 5.20 als gewichteter Mittelwert berechnet (ohne Harnstoff und Ethanol): Die CO₂-Bindungsdauer beträgt somit ca. 21,5 Jahre. Es ergibt sich hieraus ein langfristiges CO₂-Senkenpotenzial in der industriellen Anwendungen von knapp 25 Mt. Diese fallen im Vergleich zu den geologischen CO₂-Speicherkapazitäten (3900 Mt bis 47 700 Mt, vgl. Kapitel 2.3.4.3.1) relativ gering aus.

Nach Fischedick et al. [vgl. 2007, S. 78] kann die CO_2 -Nutzung in der Industrie in Zukunft maximal verzehnfacht werden. Unter optimistischen Annahmen könnten bis zu 1150 Mt an CO_2 langfristig in industriellen Produkten gespeichert werden. In Abbildung 5.21 ist deswegen in Form einer Sensitivitätsanalyse dargestellt, welche CO_2 -Senkenpotenziale bei einem höheren Nutzungsgrad von bis zu 1,2 % und einer längeren CO_2 -Bindungsdauer von bis zu 100 Jahren erreicht werden können. Der graue Pfeil markiert hierbei jeweils die Basisannahmen der durchgeführten Berechnungen.

5.4.4.2 CO₂-Speicherung in Algen

Mikroalgen weisen eine Produktivität von $60 t/(ha \cdot a)$ bis $100 t/(ha \cdot a)$ an Trockensubstanz auf, wodurch $120 t/(ha \cdot a)$ bis $200 t/(ha \cdot a)$ an CO₂ gebunden werden können (vgl. Kapitel 2.1.3.1.1 und Kapitel 3.2.3.5.2). Die Algen können anschließend entweder verbrannt, in einen biogenen Treibstoff umgewandelt oder zur Herstellung von hochwertigen Produkten (Medizin, Kosmetik) verwendet werden [vgl. Moreira, 2008, S. 8], [vgl. Fritsche et al., 2010, S. 35]. In Kapitel 3.2.3.5.2 ist für ein Pellets-Holzheizkraftwerk mit einer Feuerungswärmeleistung von 100 MW berechnet worden, dass zur Speicherung des kompletten CO₂-Stroms (280 000 t/a) eine Fläche von 14 km² benötigt wird. Aus Gründen der räumlichen Verfügbarkeit wird man daher nur einen Teil des CO₂-Stroms zur Algenaufzucht verwenden können. Im Folgenden wird exemplarisch mit einem Anteil von 10 % gerechnet.

Aus den jährlich eingelagerten CO₂-Emissionen kann jedoch noch nicht direkt abgelesen werden, wie hoch die tatsächliche CO₂-Speicherkapazität ausfällt. Hierfür kann nur diejenige CO₂-Menge berücksichtigt werden, die permanent in den Algenaufzuchtanlagen bzw. den geernteten Algen gespeichert ist. Diese Menge kann anhand der Erntezyklen berechnet werden, für die in der Literatur jedoch sehr unterschiedliche Angaben existieren: Die Angaben reichen vom Tages- bis zum Monatsrhythmus [vgl. Kroeger, 2007, S. 15, S. 20],

Abbildung 5.21: Industrielles CO₂-Senkenpotenzial in Abhängigkeit von CO₂-Bindungsdauer und CO₂-Nutzungsgrad, eigene Berechnung mit Daten aus Solomon et al. [2007, S. 25 f.], UBA [2011b, S. 1], Metz et al. [2005, S. 333], Fischedick et al. [2007, S. 78]

[vgl. Schagerl, 2008, S. 1]. Bei diesen Angaben handelt es sich um durchschnittliche Angaben, da die Algenernte permanent stattfindet, indem algenreiches Wasser aus dem Behälter gepumpt und gefiltert wird. Abbildung 5.22 stellt für die Algenaufzuchtanlage des beschriebenen Biomasse-Heizkraftwerks dar, welche Anteile der insgesamt 28 Mt/a an abgeschiedenem CO_2 dauerhaft in den Reaktoren gespeichert bleiben. Geht man von einem wöchentlichen Ernteintervall aus, so bleiben 537 t an CO_2 in der Algenaufzuchtstation dauerhaft gespeichert und somit vom CO_2 -Kreislauf der Atmosphäre getrennt. Werden die getrockneten Algen im Sinne eines geschlossenen Kreislaufs wiederum im Heizkraftwerk eingesetzt, so könnte bei einer einwöchigen Vorratslagerhaltung die gleiche Menge an CO_2 dort gebunden bleiben. Die gesamte, jährlich abgeschiedene CO_2 -Menge in Höhe von 28 000 t/a wird dementsprechend deutlich unterschritten.

Neben der direkten Verbrennung der hergestellten Algen im Heizkraftwerk besteht ebenfalls die Möglichkeit, aus den Algen flüssige Biokraftstoffe (Biogas, Biodiesel oder Biowasserstoff), medizinische oder kosmetische Produkte sowie Tierfutter herzustellen [vgl. Happe, 2010, S. 1]. Die CO₂-Speicherkapazität ermittelt sich analog zu der in Kapitel 5.4.4.1 vorgestellten industriellen Nutzung, wobei die CO₂-Bindungsdauer wiederum

Abbildung 5.22: CO₂-Speicherkapazität einer Algenaufzuchtanlage auf Basis eines Biomasse-Heizkraftwerks (100 MW Feuerungswärmeleistung, 280 Mt/a CO₂-Abscheidung), eigene Berechnung mit Daten aus Kapitel 3.2.3.5.2

entscheidend ist. Bei einer Nutzungsdauer von zwölf Monaten könnten permanent 28 Mtan CO₂ aus der Atmosphäre entfernt werden.

Grundsätzlich wird davon ausgegangen, dass für den Photosynthese-Prozess des Algenwachstums natürliches Sonnenlicht eingesetzt wird. Künstliches Licht würde die CO₂-Bilanz erheblich verschlechtern und umkehren, da nur 20 % der eingesetzten elektrischen Energie in Licht und etwa 10 % des eingestrahlten Lichts photosynthetisch in Algen umgewandelt werden können [vgl. Märkl, 2007, S. 2]. Ob schon alleine der Energieaufwand zur Filterung der Algen aus den Zuchtreaktoren heraus bereits energetisch so aufwändig ist, dass keine Netto-CO₂-Minderung mehr erreicht werden kann, ist derzeit Gegenstand von weiteren Forschungsprojekten [vgl. o. V., 2010a, S. 37]. Darüber hinaus ist entscheidend, wie die wässrigen Algen für die Verbrennung aufbereitet werden, da nur eine Nutzung von nicht benötigter Abwärme die CO₂-Bilanz nicht verschlechtern würde.

5.5 Ergebnisse der Analyse der Nachhaltigkeit

Im Rahmen der Analyse der Nachhaltigkeit wird zunächst mittels einer CO_2 -Bilanzierung untersucht, zu welchen negativen CO_2 -Emissionen Bio-KWK-CCS führen kann. Hierfür werden insgesamt 88 unterschiedliche Möglichkeiten untersucht, die sich aus 22 Varianten zusammensetzen, die jeweils mit und ohne CCS sowie mit und ohne KWK berechnet werden. Bei den jeweils elf Varianten für feste und gasförmige Brennstoffe werden fünf Varianten als Monoverbrennung, fünf Varianten als Mitverbrennung mit biogenen Brennstoffen und eine "Kontrollvariante" auf Basis fossiler Brennstoffe untersucht (vgl. Tabelle 5.7). Die fünf Varianten setzen sich ihrerseits aus zwei Reststoffvarianten zusammen (Waldrestholz/Sägewerksreststoffe bzw. Biomüll/Gülle) sowie drei Varianten, bei denen der Brennstoff eigens angebaut wird (Mais, KUP). Hierbei werden keine Landnutzungsänderungen (0LUC), direkte und 25 % indirekte Landnutzungsänderungen (iLUC25 %-Acker) sowie direkte und 50 % indirekte Landnutzungsänderungen (iLUC50 %-Grünland) berücksichtigt.

	Varianten Festbrennstoffe	Varianten gasförmige Brennstoffe
	Steinkohle	Erdgas
Mitverbrennung	Steinkohle $+$ HHS (0LUC)	Erdgas + Biomethan (0LUC)
	Steinkohle + HHS (iLUC25 %-Acker)	Erdgas + Biomethan (iLUC25 %-Acker)
	Steinkohle + HHS (iLUC50 %-Grünland)	Erdgas + Biomethan (iLUC50 %-Grünland)
	Steinkohle $+$ HHS (Waldrestholz)	Erdgas + Biomethan (Biomüll)
	Steinkohle + Pellets (Sägewerksreststof- fe)	Erdgas + Biomethan (Gülle)
ung	HHS (0LUC)	Biogas (0LUC)
noverbrennı	HHS (iLUC25 %-Acker)	Biogas (iLUC25 %-Acker)
	HHS (iLUC50 %-Grünland)	Biogas (iLUC50 %-Grünland)
	HHS (Waldrestholz)	Biogas (Biomüll)
Mo	Pellets (Sägewerksreststoffe)	Biogas (Gülle)

Tabelle 5.7: Untersuchte Varianten für CO_2 -Bilanz von Bio-KWK-CCS

Im Ergebnis lässt sich festhalten, dass bei der Monoverbrennung alle untersuchten biogenen Festbrennstoffvarianten mit CCS zu negativen CO₂-Emissionen führen ($\mu_{CO_2,el,ges}$ beträgt -354 g/kWh bis -1164 g/kWh). Die gasförmigen Varianten erzeugen grundsätzlich aufgrund der geringeren Kohlenstoffkonzentration im Brennstoff niedrigere CO₂-Emissionen. Darüber hinaus ergibt die Biogas-Variante auf Basis von Mais-Silage, die auf ehemaligem Grünland angepflanzt wird, unter Berücksichtigung von 50 % indirekten Landnutzungsänderungen keine negativen CO₂-Emissionen ($\mu_{CO_2,el,ges} = 178 \text{ g/kWh}$). Dieser Wert liegt auf dem gleichen Niveau wie die CO_2 -Emissionen bei der CCS-Variante mit fossilem Erdgas. Dieses Ergebnis stimmt mit Ausführungen in Metz et al. [vgl. 2005, S. 19, S. 42] überein, wo bereits darauf hingewiesen wird, dass Bio-CCS nur dann negative CO_2 -Emissionen erzeugen kann, wenn die Biomasse-Ernte nachhaltig ist.

Die Mitverbrennungsvarianten mit einem Anteil von 30 % erneuerbaren Brennstoffen führen für die Festbrennstoffvarianten zu leicht negativen CO₂-Emissionen ($\mu_{CO_2,el,ges}$) in Höhe von -40 g/kWh bis -80 g/kWh und für die gasförmigen Brennstoffen zu leicht positiven CO₂-Emissionen (40 g/kWh bis 80 g/kWh). Einzig die Varianten auf Grünland unter Berücksichtigung von 50 % indirekten Landnutzungsänderungen liegen deutlich darüber (70 g/kWh für Festbrennstoffe, 144 g/kWh für gasförmige Brennstoffe). Somit sollte ein gezielter Grünlandumbruch vermieden werden, um erhebliche CO₂-Emissionen aus Landnutzungsänderungen in der Landwirtschaft zu vermeiden, wie sie in Kirchner et al. [vgl. 2009, S. 159 f.] bis 2050 aufgezeigt werden.

Die Integration der Kraft-Wärme-Kopplung führt aufgrund der Aufteilung der CO_2 -Emissionen auf die beiden Produkte Strom und Wärme zu niedrigeren spezifischen CO_2 -Emissionen, hat jedoch keinen Einfluss darauf, ob die CO_2 -Emissionen im Ergebnis positiv oder negativ ausfallen.

Bei der Betrachtung des spezifischen Brennstoffeinsatzes für die Erzeugung negativer CO₂-Emissionen schneiden die Varianten mit KWK grundsätzlich besser ab: Es werden durchschnittlich um ca. 28 % mehr negative CO₂-Emissionen erzeugt, da für die verdrängte Strom- und Wärmearbeit eine CO_2 -Gutschrift berücksichtigt wird. Des Weiteren erzeugt die Mitverbrennung von biogenen Brennstoffen in fossilen (Heiz-)Kraftwerken aufgrund der höheren elektrischen Wirkungsgrade um ca. 8% mehr negative CO₂-Emissionen, so dass mit einer Tonne Holzpellets aus Sägewerksreststoffen bis zu 2,5 Tonnen an negativen CO₂-Emissionen erzielt werden können. Auch die flächenspezifischen CO₂-Emissionen fallen für die Mitverbrennungsvarianten sowie für die Varianten mit KWK jeweils höher aus, so dass negative CO_2 -Emissionen von mehr als $30 t/(ha \cdot a)$ erreicht werden können (ILUC25 %-Acker). Dieser Wert ist für die Variante HHS auf Grünland (ILUC50 %, ohne KWK) mit $16.7 t/(ha \cdot a)$ deutlich niedriger, so dass die indirekten CO₂-Emissionen des eingesetzten Brennstoffs einen entscheidenden Einfluss haben. Da biogene Reststoffe keine Flächen in Anspruch nehmen, schneiden sie in dieser Hinsicht am besten ab. Dies entspricht auch der Forderung in Fritsche et al. [vgl. 2010, S. 3], dass im Rahmen einer nachhaltigen Biomassenutzung Rohstoffe zunächst stofflich und erst die Abfälle sowie Reststoffe energetisch genutzt werden sollten.

Im Rahmen der Sensitivitätsanalyse wird der entscheidende Einfluss der jährlichen CO_2 -Leckagerate des CO_2 -Speichers deutlich: Bereits ab einer CO_2 -Leckagerate von 0,03%/a (statt 0,01%/a) führen alle Festbrennstoff-Mitverbrennungsvarianten zu positi-

ven CO₂-Emissionen. Durchschnittlich werden die stromspezifischen CO₂-Emissionen für die Festbrennstoffe um knapp 400 g/kWh erhöht, falls eine jährliche CO₂-Leckagerate von 0.1% statt 0.01% erreicht wird. Diese Zahlen verdeutlichen die Forderung des Umweltbundesamtes nach einer CO₂-Leckagerate von maximal 0,01 % [vgl. Becker et al., 2009, S. 13], (vgl. Kapitel 2.3.4.3.2). Die Variation des Betrachtungszeitraums von 500 auf bis zu 1000 Jahre hat einen vergleichsweise geringen Einfluss (Änderung der stromspezifischen CO₂-Emissionen um 19 g/kWh bis 62 g/kWh). Die Variation der biogenen Mitverbrennungsanteile zwischen 0% und 100% geht mit der erwarteten Reduktion der spezifischen CO₂-Emissionen einher, wobei gasförmige Brennstoffe erst mit einer Zumischung von 40% bis 60% Biomethan negative CO₂-Emissionen erreichen. Erhebliche Veränderungen der CO₂-Emissionen bei der Variation des CO₂-Transports ergeben sich bei Schiffstransportentfernungen von 12000 km (Zunahme um 59 g/kWh bis 194 g/kWh), während der CO₂-Pipelinetransport gegenüber dem CO₂-Schiffstransport (über 1000 km) zu einer vergleichsweise geringen Reduktion führt (14 g/kWh bis 46 g/kWh). Sollten für die Produktion von Holzpellets zukünftig statt Sägewerksreststoffen KUP-HHS eingesetzt werden, dann erzeugen diese Holzpellets deutlich weniger negative CO₂-Emissionen und schneiden schlechter ab als die vergleichbaren Holzhackschnitzelvarianten. Ein aufgrund von begrenzten regionalen Ressourcen notwendiger Import von Holzpellets oder Holzhackschnitzeln aus tropischen oder subtropischen Wäldern verschlechtert zwar die CO₂-Bilanz, führt jedoch auch bei den Mitverbrennungsvarianten immer noch zu negativen CO₂-Emissionen.

Bei der Analyse der alternativen Nutzung möglicher CO₂-Lagerstätten wird sich aufgrund der in Deutschland großen CO₂-Speicherkapazitäten in salinen Aquiferen auf die tiefe geothermische Energienutzung zur Strom- und Wärmeerzeugung sowie saisonalen Wärmespeicherung konzentriert. Im Ergebnis lässt sich festhalten, dass die CO₂-Speicherung in salinen Aquiferen auf Basis der mittleren Annahmen zu 12 kt/km² an flächenspezifischen CO₂-Einlagerungen führt, während die geothermische Wärmenutzung zu CO₂-Einsparungen von 135 kt/km², die saisonale Wärmespeicherung bei einem Betrachtungszeitraum von 50 Jahren zu 15 kt/km² und die geothermische Strom- und Wärmeerzeugung zu 32 kt/km² führt. Somit lässt sich ableiten, dass in der räumlichen Nähe zu möglichen Fernwärmenetzen die geothermische Nutzung favorisiert werden sollte und die CO₂-Speicherung in salinen Aquiferen nur in abgelegenen Regionen zum Einsatz kommen sollte, wo eine geothermische Nutzung aufgrund zu hoher Leitungsverluste ausgeschlossen werden kann (wie beispielsweise unter der Nordsee).

In einem kurzen Exkurs wird deutlich, dass auch mit CCS der geplante Rückgang des Einsatzes fossiler Brennstoffe in Deutschland weiter verfolgt werden sollte, damit ausreichend CO₂-Lagerstätten für die Erzeugung negativer CO₂-Emissionen mittels BioCCS vorhanden sind: Über einen Zeitraum von zwei bis fünf Jahrhunderten könnten 50 Mt/a an negativen CO_2 -Emissionen erzeugt werden, während bei einem erhöhten CCS-Einsatz auf Basis fossiler Energieträger bis zum Jahr 2100 ein Großteil der vorhandenen CO_2 -Speicher (14,5 Gt) belegt sein könnten und insgesamt lediglich 0,9 Gt bis 1,5 Gt an negativen CO_2 -Emissionen erzeugt würden.

Ein zweiter Exkurs hat zum Ergebnis, dass ein Einsatz des Bio-CCS-Stroms im Verkehrssektor nur dann zu höheren vermiedenen CO_2 -Emissionen führt, wenn nur noch fossile Kraftwerke mit CCS betrieben werden. Andernfalls führt eine Substitution von fossilen Kraftwerken ohne CCS zu höheren vermiedenen CO_2 -Emissionen.

Die Einlagerung des durch Bio-CCS erzeugten CO_2 in alternative CO_2 -Senken bietet lediglich begrenzte Speicherpotenziale: Im Bereich der industriellen Nutzung ergibt sich für Deutschland ein realistisches CO_2 -Potenzial von insgesamt 25 Mt, was im Promille-Bereich der CO_2 -Speicherkapazitäten in salinen Aquiferen liegt. Für die CO_2 -Einspeicherung in Algen wird auf Basis eines Kraftwerks mit einer Feuerungswärmeleistung von 100 MW berechnet, dass bei einer 10%-Nutzung der in den Rauchgasen enthaltenen CO_2 -Mengen von den jährlich produzierten 280 Mt lediglich ca. 1 Mt an CO_2 dauerhaft der Atmosphäre entzogen wird, was einem Anteil von rund 0,3% entspricht.

Abschließend lässt sich festhalten, dass die in Kapitel 2.3.4 ausgeführten CCS-Anforderungen nach Blohm et al. [vgl. 2006, S. 93 ff.] teilweise für Bio-CCS ausgebaut werden können. Im Sinne der Generationengerechtigkeit der Nachhaltigkeitsstrategie der Bundesregierung (vgl. Kapitel 2.3) kann die Erzeugung von negativen CO_2 -Emissionen nur unter den folgenden Voraussetzungen als nachhaltig betrachtet werden:

- Auch Bio-CCS kann aufgrund begrenzter CO₂-Speicherkapazitäten nur eine zeitlich begrenzte Interimslösung sein, mit der erhebliche Auswirkungen des Klimawandels vermieden werden können. Eine industrielle Nutzung des CO₂ oder Einbindung in Algen führt nur zu geringen negativen CO₂-Emissionen.
- Das Einhalten einer CO₂-Leckagerate von kleiner 0,01 % ist notwendig, um negative CO₂-Emissionen auch bei der Mitverbrennung erreichen zu können.
- Als Brennstoffe sollten mit Priorität biogene Reststoffe eingesetzt werden, da indirekte CO₂-Emissionen aus Landnutzungsänderungen andernfalls zu insgesamt positiven CO₂-Emissionen führen.
- CO₂-Einlagerung in den Untergrund sollte nur dort vorgenommen werden, wo weder eine geothermische Wärmenutzung noch saisonale Wärmeeinspeicherung in saline Aquifere möglich ist.
- CO₂-Transporte über weite Distanzen (> 10 000 km) sollten vermieden werden, um die CO₂-Negativität zu wahren.
6 Nutzungspfade für Bio-KWK-CCS

Auf Basis der technischen und der wirtschaftlichen Analyse sowie der Untersuchung der Nachhaltigkeit werden im Kapitel 6.1 Anforderungskriterien festgelegt, die für einen erfolgreichen Bio-CCS Einsatz erfüllt sein sollten. Im anschließenden Kapitel 6.2 wird anhand des Beispiels Flensburg dargestellt, wie ein Bio-CCS-Konzept entwickelt werden kann, bevor im Kapitel 6.3 das mögliche Anwendungspotenzial für Bio-KWK-CCS in Deutschland abgeschätzt wird.

6.1 Anforderungskriterien für Bio-CCS

Aus dem Bereich der technischen Analyse lassen sich die folgenden drei Anforderungskriterien für einen Einsatz von Bio-CCS ableiten, die sich vor allem auf die biogene Brennstoffauswahl konzentrieren:

- Als Brennstoff für Bio-CCS ist vor allem holzartige Biomasse (Laubholz oder Nadelholz) in Form von Holzhackschnitzeln oder Holzpellets geeignet.
- Als gasförmiger Brennstoff eignet sich Biomethan, da der Einsatz von vorgereinigtem Biogas aufgrund der dezentralen Produktion als wenig aussichtsreich eingeschätzt wird.
- Die Integration der Kraft-Wärme-Kopplung sollte aufgrund hoher thermischer Verluste nicht mit der CCS-Prozessvariante Post-Combustion kombiniert werden. Hieraus kann sich für KWK-CCS unter Umständen ein späterer Marktreifezeitpunkt ergeben, da derzeit viele Pilotanlagen mit Post-Combustion geplant werden.

Aus dem Bereich der wirtschaftlichen Analyse lassen sich die folgenden Anforderungskriterien ableiten:

- Sowohl die CO₂-Vermeidungskosten als auch die Stromgestehungskosten fallen mit KWK günstiger aus.
- Einen erheblichen Einfluss auf die Stromgestehungskosten mit CCS haben CO₂-Transport- und CO₂-Speicherkosten sowie die Brennstoffpreise und die j\u00e4hrlichen Volllaststunden, die es jeweils zu optimieren gilt.

Aus dem Bereich der Analyse der Nachhaltigkeit ergeben sich die folgenden Anforderungskriterien:

- Zur Gewährleistung negativer CO₂-Emissionen sollten schwerpunktmäßig biogene Reststoffe (Waldrestholz, Sägemehl, Biomüll, Gülle) eingesetzt werden, da Landnutzungsänderungen durch Energiepflanzen einen erheblichen Einfluss auf die CO₂-Bilanz haben.
- KWK-Anlagen erzeugen brennstoff- und anbauflächenspezifisch höhere negative CO₂-Emissionen als reine Kraftwerke.
- Zur Wahrung der negativen CO₂-Emissionen sollten die CO₂-Mengen möglichst per Pipeline abtransportiert werden. Ein Schiffstransport über mehr als 10 000 km sollte vermieden werden.

6.2 Fallbeispiel Flensburg

In diesem Abschnitt wird auf Grundlage der Stadt Flensburg und der Stadtwerke Flensburg GmbH dargestellt, wie ein entsprechendes Konzept für Bio-KWK-CCS ausgestaltet werden kann. Es wird an dieser Stelle deutlich darauf hingewiesen, dass es derzeit weder der politische Wille der Stadt Flensburg noch Bestandteil der Unternehmensziele der Stadtwerke Flensburg ist, negative CO_2 -Emissionen mittels Bio-KWK-CCS zu erzeugen.

Im Folgenden werden im Kapitel 6.2.1 zunächst die Randbedingen in Flensburg näher erläutert, bevor in Kapitel 6.2.2 das Konzept entwickelt wird.

6.2.1 Randbedingungen am Standort Flensburg

Die Stadt Flensburg hat auf einer Fläche von 57 km² eine Bevölkerungszahl von knapp 89 000 Einwohnern [vgl. Statistisches Bundesamt, 2011, S. 1]. Die Stadtwerke Flensburg GmbH (SWFL) versorgt in der Stadt Flensburg und in den umliegenden Nachbargemeinden wie beispielsweise Glücksburg, Padborg (Dänemark) und Harrislee ca. 110 000 Einwohner mit Fernwärme. Der Ausbau des Fernwärmenetzes hat in den späten 1960er Jahren begonnen. Über das heute ca. 640 km lange Fernwärmenetz werden pro Jahr ca. 950 GWh Heizenergie an die Endkunden in Flensburg und Umgebung verteilt. Rund 98 % des Wärmebedarfs in Flensburg werden damit durch die Stadtwerke Flensburg abgedeckt [vgl. SWFL, 2008-2013].

Der mit der Kraft-Wärme-Kopplung eingeschlagene Weg der umweltschonenden Energieumwandlung wird seit 2007 durch die Verfeuerung von bis zu 25 % Ersatzbrennstoffen mit einem biogenen Anteil von ca. 50 % in den bestehenden Kesselanlagen fortgesetzt. Diese Philosophie wird in dem seit Herbst 2007 laufenden Projekt "GreenCO₂ncept" weiterentwickelt, das eine Umstellung des Heizkraftwerks von fossilen Energieträgern auf erneuerbare Energieträger bis zum Jahr 2050 zum Ziel hat. Hierbei ist eine Integration von CCS derzeit nicht beabsichtigt. Im Jahr 2008 hat sich unter Beteiligung der Stadtwerke Flensburg der Klimapakt Flensburg e. V. gegründet, in dem sich eine Vielzahl an Unternehmen, Institutionen und öffentlichen Einrichtungen das Ziel gesetzt haben, den Energieverbrauch in der Region Flensburg zu senken und die CO_2 -Neutralität der gesamten Stadt Flensburg bis 2050 zu erreichen.

Im HKW Flensburg existieren im Wesentlichen sechs Kesselanlagen. Die Kessel werden grundsätzlich wärmegeführt eingesetzt, so dass in den Sommermonaten in der Regel nur ein Kessel im Teillastbereich betrieben wird, während in den Wintermonaten bis zu fünf Kessel benötigt werden, um die Fernwärmenachfrage der Stadt zu decken. 85% der Jahresarbeit decken drei zirkulierende Wirbelschichtkessel mit einer Feuerungswärmeleistung von jeweils 118 MW ab. Als Brennstoff wird in diesen Kesseln bislang hauptsächlich über den Seeweg importierte Steinkohle eingesetzt. Seit 2007 dürfen in den umgerüsteten Kesselanlagen ebenfalls Ersatzbrennstoffe (EBS) wie Gewerbeabfälle, Altholz und Klärschlamm bis zu einem Anteil von 25% mitverbrannt werden. Hinzu kommen seit 2008 steigende Mengen an Frischholz, die aufgrund der Kesselgeometrie sowie der begrenzten Rauchgaskanalquerschnitte bis zu einen Anteil von 30% zugefeuert werden können. Als weitere Anlagen bestehen zwei Kohlestaubfeuerungskessel, die bis zum Jahr 2016 durch eine GuD-Anlage ersetzt werden, und ein kombinierter Erdgas-/Heizölkessel. Mit vier Gegendruckturbinen und zwei Entnahme-Kondensationsturbinen wird elektrische Energie und anschließend Fernwärme erzeugt. Zusätzlich existiert ein Warmwasserspeicher mit einer Größe von insgesamt 28 000 m³, in den eine Wärmemenge von 1100 MWh eingelagert werden kann. Neben den genannten Anlagen existieren in der Stadt vier Reserveheizwerke an verschiedenen Stellen des Fernwärmenetzes.

Abbildung 6.1 zeigt die im HKW Flensburg abgegebene Fernwärmeleistung zwischen 1995 und 2011 (dünne graue Linien). Die fett gezeichneten Linien zeigen jeweils die minimalen und maximalen mittleren Tagesleistungen an. Es lässt sich ein Korridor erkennen, in dem die abgegebene Wärmeleistung variiert. Hierbei handelt es sich um Tagesmittelwerte, so dass die tatsächlichen Leistungsspitzen im Tagesverlauf höher bzw. niedriger ausfallen können. Durch Fernwärmenetzverluste erreichen rund 85 % der eingespeisten Wärme die Fernwärmekunden.

Abbildung 6.2 zeigt jeweils eine typische Winterwoche und eine typische Sommerwoche mit Angabe der Tagesmittelwerte und der tatsächlichen Leistungsverläufe auf 15-Minuten-Basis. Es ist zu erkennen, dass diese ca. 20 % bis 30 % höher bzw. niedriger liegen können als der Tagesmittelwert. Um diese Leistungsschwankungen im Tagesverlauf auszugleichen, wird der vorhandene Wärmespeicher eingesetzt, der bis zu einer thermischen Leistung

Abbildung 6.1: Tägliche, mittlere Fernwärmeleistung 1995 bis 2011 im HKW Flensburg, eigene Darstellung mit Daten aus SWFL [2008-2013]

von 90 MW geladen oder entladen werden kann. Durch dieses Abfangen der tagesinternen Leistungsspitzen ist somit der Verlauf der Tagesmittelwerte diejenige Leitgröße, die für die Dimensionierung der einzelnen Erzeugungseinheiten entscheidend ist.

Es ist bereits heute absehbar, dass durch zukünftig besser gedämmte Häuser, was politisch durch Fördermaßnahmen unterstützt wird, die Wärmenachfrage in Zukunft sinken wird. Eine SWFL-interne Studie aus dem Jahr 2010, die das Pestel-Institut durchgeführt hat, kommt zu dem Ergebnis, dass bis zum Jahr 2020 mit einem Fernwärmeabsatzrückgang von 11 % und bis 2035 mit einem Rückgang von 25 % gerechnet werden muss. Da sich diese Rückgänge vor allem auf die Heizenergie beziehen, wird die Fernwärmenachfrage außerhalb der Heizperiode weniger stark sinken, da die Fernwärme in den Sommermonaten überwiegend zur Bereitung von Warmwasser verwendet wird. Ein sinkender Bedarf an Warmwasser ist derzeit nicht zu erkennen. Eine Möglichkeit zum weiteren Absenken der Bedarfskurve im Sommer bestünde zwar in der Warmwassererzeugung durch solarthermische Anlagen. Dies würde jedoch die KWK-Stromproduktion im Sommer erschweren, die auch zukünftig zur elektrischen Lastdeckung in wind- und sonnenschwachen Zeiten notwendig sein wird.

Abbildung 6.2: Typischer Sommer- und Winter-Wochenverlauf der Fernwärmeleistung im HKW Flensburg, eigene Darstellung mit Daten aus SWFL [2008-2013]

6.2.2 Konzeptentwicklung

Der erste Schritt der Konzeptentwicklung besteht darin, die Bio-KWK-CCS-Anlage in ihrer Leistung zu dimensionieren. Hierbei sind vor allem das Fernwärmeabgabepotenzial, die Brennstoffverfügbarkeit und die Erreichbarkeit von ausreichend großen CO₂-Lagerstätten von entscheidender Bedeutung. Weitere Faktoren, wie die technische Einbindung in ein bestehendes HKW bzw. Fernwärmenetz oder das Vorhandensein ein adäquaten Aufstellungsfläche können im Rahmen der operativen Umsetzung in der Folge ebenfalls wichtig sein, werden jedoch an dieser Stelle noch nicht näher betrachtet.

Aus Kapitel 5.3.1 geht hervor, dass CCS-Anlagen mit KWK zu stärkeren negativen CO₂-Emissionen in Bezug auf die eingesetzte Brennstoffmasse und auf die verwendete Anbaufläche führen als Anlagen ohne KWK. In Kapitel 2.2.1.1 ist ausgeführt worden, dass aufgrund der Kostendegression größere CCS-Kraftwerke zu günstigeren Investitionskosten führen. Des Weiteren ist in Kapitel 4 berechnet worden, dass sowohl die Strom- und Wärmegestehungskosten als auch die CO₂-Vermeidungskosten entscheidend von der jährlichen Betriebsstundenzahl abhängen. Deswegen muss die Bio-KWK-CCS-Anlagengröße in Abhängigkeit von der Jahresdauerlinie der Fernwärme optimiert werden. In Abbildung 6.3 wird auf Basis der in Abbildung 6.1 eingeführten Plankurve für die Fernwärmeerzeugung in Flensburg dargestellt, mit welcher Anlagengröße welche jährlichen Volllaststunden

6 Nutzungspfade für Bio-KWK-CCS

erreicht werden können. Mit der kleinsten dargestellten Fernwärmeleistung (40 MW) kann die maximal mögliche Volllaststundenzahl von 8088 h (8760 Jahresstunden abzüglich vier Wochen Revisionszeit) erreicht werden. Ab einer thermischen Leistung von knapp über 100 MW werden weniger als 7000 Volllaststunden erreicht, was als Basisannahme für KWK-Anlagen im Rahmen der wirtschaftlichen Analyse verwendet worden ist. Bei einer Fernwärmeleistung von 100 MW wird für die Sommermonate eine Teillastfähigkeit von bis zu 40 % benötigt, die durch einen Start-/Stopp-Betrieb während Tages- und Nachtzeiten realisiert werden kann.

Abbildung 6.3: Jahresvolllaststunden für Anlagen mit unterschiedlicher Fernwärmeleistung im Fernwärmenetz Flensburg, eigene Darstellung mit Daten aus SWFL [2008-2013]

Für die folgenden Berechnungen wird eine Fernwärmeleistung von 100 MW als Ausgangsgröße definiert, wodurch sich ca. 7100 Jahresvolllaststunden ergeben. Obwohl aufgrund intermittierender Wind- und Solareinspeisung zukünftig erhebliche Preisschwankungen am Spotmarkt zu erwarten sind [vgl. Borggrefe und Lochner, 2009, S. 59], wird davon ausgegangen, dass diese Stundenzahl erreicht werden kann, da zum einen die Wärmeversorgung gesichert werden muss und zum anderen einer Anlage zur Erzeugung negativer CO_2 -Emissionen ein gewisser Nutzungsvorrang eingeräumt werden dürfte. Hierbei macht es an dieser Stelle keinen Unterschied, ob es sich um eine Einheit mit 100 MW oder mehrere, kleinere Einheiten handelt. Im konkreten Fall entspricht die Fernwärmeleistung von 100 MW derzeit in etwa der Fernwärmeerzeugung von 1,4 Kesseln im Volllastbetrieb, so dass praktischerweise zwei Module zum Einsatz kommen sollten. Zum heutigen Zeitpunkt kann noch nicht vorausgesagt werden, welche Standardgrößen sich für CCS-Heizkraftwerke am Markt etablieren werden. Der Vorteil des Einsatzes von standardisierten Modulen führt jedoch durch eine mögliche Serienproduktion zu niedrigeren spezifischen Investitionskosten. Im Falle kleinerer Module hätte das erste Modul stets höhere Volllaststunden, während die nachfolgenden Module umso geringere Volllaststunden aufweisen würden: Im Falle zweier 40 MW-Module weist das erste Modul 8088 und das zweite Modul 6896 Jahresvolllaststunden auf, so dass sich im Mittel wieder 7492 Jahresvolllaststunden ergeben (vgl. Abbildung 6.3).

Legt man für Festbrennstoffe erneut die CCS-Variante Pre-Combustion zugrunde, so ergeben sich für die geforderte Fernwärmeleistung von 100 MW bei einer Mitverbrennung von Holzpellets oder Holzhackschnitzeln eine gesamte Feuerungswärmeleistung von 230 MW und bei einer Monoverbrennung von HHS (aufgrund des besseren thermischen Wirkungsgrads) eine Feuerungswärmeleistung von 191 MW (vgl. Varianten A, B, C bzw. F, G in Tabelle 6.1). Im Falle der gasförmigen Brennstoffe ergeben sich mit 526 MW deutlich größere Feuerungswärmeleistungen, da aufgrund der hohen thermischen Verluste der CCS-Variante Post-Combustion der thermische Wirkungsgrad lediglich bei 19% bzw. 21% liegt. Vor dem Hintergrund, dass eine regionale Versorgung mit knapp $500\,\mathrm{MW}$ Biogas utopisch ist und die Variante ohnehin als eher theoretisch eingeschätzt wird (vgl. Kapitel 2.1.1.8), wird im Folgenden im Falle eines gasförmigen Brennstoffs von einer Verbrennung von Biomethan ausgegangen (Varianten D, E). Für die Mitverbrennung von Biomethan zusammen mit Erdgas ist in Kapitel 5.3.2 ermittelt worden, dass erst ab einem Biomethananteil von 40% bis 60% negative CO₂-Emissionen erzeugt werden können. Da unabhängig vom bilanziell eingesetzten Brennstoff jeweils ein Brennstoff auf Erdgasqualität verfeuert wird, wird im Folgenden ein Anteil von 100% Biomethan unterstellt um möglichst hohe negative CO₂-Emissionen zu erreichen. Hierbei ist zu beachten, dass die Strom- und Wärmegestehungskosten gegenüber den Festbrennstoffen deutlich höher ausfallen (vgl. Kapitel 4.6). Bei der festen Biomasse wird für Holzhackschnitzel und Holzpellets weiterhin mit einem biogenen Anteil von 30 % gerechnet, da anlagentechnisch eine flexible Erhöhung wie bei Biomethan nicht möglich ist, ohne dass elektrische Wirkungsgrade nach unten korrigiert werden müssten. Für Holzpellets kann der Mitverbrennungsanteil zwar tendenziell höher ausfallen (bis zu 50%), da die Verbrennungseigenschaften von veredelten Holzpellets denen von Steinkohle mehr ähneln als die Verbrennungseigenschaften von HHS [vgl. Vogel et al., 2011, S. 4], trotzdem wird der besseren Vergleichbarkeit halber für die Festbrennstoffmitverbrennung ein einheitlicher

Anteil von 30% angewendet.

Bezeichnung		Einheit	А	В	С	D	Е	F	G
Feuerungswärmeleistung		MW	230	230	230	526	526	191	191
Elektrische Leistung		MW	79	79	79	221	221	46	46
Thermische Leistung		MW	100	100	100	100	100	100	100
Abgeschiedenes CO_2		kt/a	556	577	577	652	652	490	489
Negatives CO_2		kt/a	24	26	42	155	377	367	413
Pellets-/HHS-Einsatz		kt/a	107	219	219			604	604
Biomethaneinsatz		Mio. m^3/a				374	374		
Belegte Fläche		km^2		84		443		231	
A:	30% Holzpellets	Sägewerksreste Pre-Combustion				tion			
B:	$30\%~\mathrm{HHS}$	$\rm iLUC25\%\text{-}Acker$		Pre-Combustion					
C:	$30\%~\mathrm{HHS}$	Waldrestholz		Pre-Combustion					
D:	100%Biomethan	$\rm iLUC25\%\text{-}Acker$		Post-Combustion					
E:	100%Biomethan	Biomüll		Post-Combustion					
F:	$100\%~\mathrm{HHS}$	$\rm iLUC25\%\text{-}Acker$		Pre-Combustion					
G: 100 % HHS W		Waldrestholz			Pre-Combustion				

Tabelle 6.1: Ergebnisse für untersuchte Bio-KWK-CCS-Konzepte in Flensburg, eigene Berechnung mit Daten aus Kapitel 5.2.1, vgl. Anhang Tabelle A.32

Während sich für die sieben untersuchten Varianten ähnliche Mengen an abgeschiedenen CO_2 -Emissionen ergeben (490 kt/a bis 652 kt/a), fallen die Unterschiede bei der Höhe der negativen CO_2 -Emissionen deutlicher aus: Die Monoverbrennung von Holzhackschnitzeln führt zu negativen CO_2 -Emissionen von 367 kt/a bis 413 kt/a, während bei der Mitverbrennung von 30 % Holzpellets bzw. Holzhackschnitzel nur 24 kt/a bis 42 kt/a an negativen CO_2 -Emissionen erreicht werden können (vgl. Tabelle 6.1). Die Ursache hierfür liegt in unterschiedlich hohen spezifischen CO_2 -Emissionsfaktoren ($\mu_{CO_2,el,ges}$) von -26 g/kWh bis -605 g/kWh, die für die Berechnung für die sechs Varianten zugrunde gelegt werden (vgl. Kapitel 5.3.1). Die hohen negativen CO_2 -Emissionen durch HHS-Monoverbrennung basieren auf einer jährlichen HHS-Einsatzmenge von mehr als 600 000 t/a. Dies entspricht im Falle von HHS aus KUP einer Anbaufläche von 231 km², was ca. 7,2 % der landwirtschaftlichen Anbaufläche Schleswig-Holsteins ausmacht [vgl. Blunk et al., 2009, S. 20]. Im Falle von Biomethan werden sogar 442 km² benötigt, während die Mitverbrennung von 30 % HHS zu einem vergleichweise überschaubaren Flächenbedarf von 84 km² führt.

Abbildung 6.4 stellt dar, welcher Radius für diese Anbauflächen in Abhängigkeit vom Flächennutzungsgrad benötigt wird: Bei einer Nutzung von 20 % aller Flächen wird für die HHS-Monoverbrennung bereits ein Radius von 43 km und für die 100 %-ige Biomethan-Verbrennung ein Radius von 59 km benötigt. Für die Zufeuerung von 30 % HHS wird ein Radius von 26 km benötigt. Bei diesen langen Transportwegen müssten zusätzliche indirekte CO_2 -Emissionen für den Transport berücksichtigt werden, wodurch die Höhe der negativen CO_2 -Emissionen wiederum reduziert wird.

Abbildung 6.4: Radius der Anbauflächen für benötigte HHS-/Biomethanmengen

Die Bereitstellung von 374 Mio. m^3/a Biomethan aus Bioabfällen würde bei einem durchschnittlichen Biogasertrag von ca. $100 m^3/t$ [vgl. FNR, 2010, S. 3] einem Biomüllaufkommen von rund 3,7 Mio. t/a entsprechen. Dies ist jedoch mehr als das Zehnfache des jährlichen Biomüllaufkommens von Schleswig-Holstein und Hamburg zusammen [vgl. Maier-Staud, 2011, S. 20]. Auch eine Nutzung von 220 000 t/a (Variante C) bzw. 600 000 t/a Waldrestholz (Variante G) aus regionalen Ressourcen erscheint wenig realistisch, da der gesamte Holzeinschlag in Schleswig-Holstein im Jahr 2010 bei 480 000 m³ gelegen hat, was rund 260 000 t entspricht [vgl. BMELV, 2011, S. 7]. Auf Basis der genannten Holzeinschlagszahlen kann abgeleitet werden, dass in Schleswig-Holstein auch keine 100 000 t/a an Sägewerksreststoffen entstehen, die für die entsprechende Menge an mitverbrannten Holzpellets benötigt werden. Es wird somit deutlich, dass die regionalen Brennstoffressourcen deutlich eingeschränkt sind und somit Brennstoffe importiert werden müssen, was durch die Hafenlage Flensburgs möglich ist und in den letzten Jahrzehnten

im Falle der Steinkohle bereits praktiziert worden ist. Durch diesen Brennstoffimport ergeben sich zusätzliche indirekte CO_2 -Emissionen für den Brennstoffimport. Diese fallen für Holzpellets aufgrund ihrer höheren Energiedichte im Vergleich zu Holzhackschnitzeln (vgl. Kapitel 2.1.1.4.3) geringer aus und führen insgesamt immer noch zu negativen CO_2 -Emissionen (vgl. Kapitel 5.3.2).

Die Höhe der jährlichen CO₂-Emissionen, die abgeschieden und gespeichert werden müssen, liegen mit rund 0.5 Mt/a in einem Größenbereich, der in McConnell et al. [vgl. 2009b, S. 147 f.] als (gerade) kommerziell eingeschätzt wird. In McConnell et al. [vgl. 2009a, S. 33 ff.] wird als kommerzielle Grenze eine jährliche CO₂-Speicherrate von 1 Mt/a und eine elektrische Kraftwerksleistung von 80 MW für Bio-CCS definiert, die hier unterschritten wird. Für den CO₂-Transport wird entweder eine Pipeline mit einem Durchmesser von etwa 120 mm benötigt (vgl. Anhang Tabelle A.32). Alternativ kann das CO₂ auch mittels Schiff abtransportiert werden, da zumindest für die Festbrennstoffvarianten ohnehin eine Hafeninfrastruktur für die Brennstofflogistik benötigt wird. In dem Fall müsste ein CO₂-Zwischenspeicher errichtet werden, der in Abhängigkeit von der verwendeten Schiffsgröße ein CO₂-Speichervolumen von 10 kt bis 50 kt aufweisen müsste (vgl. Kapitel 2.3.4.2). Hierdurch wäre ein wöchentlicher bis monatlicher Schiffstransport möglich. Der Zwischenspeicher hätte als Kugel einen Durchmesser von ca. 28 m bis 48 m.

6.3 Anwendungspotenzial für Bio-KWK-CCS in Deutschland

Das Anwendungspotenzial für Bio-KWK-CCS in Deutschland bemisst sich erneut an den drei Kriterien Brennstoffverfügbarkeit, Erreichbarkeit von CO_2 -Lagerkapazitäten und der Abgabemöglichkeit von Fernwärme. Da die regionale Verfügbarkeit von biogenen Festbrennstoffen für eine ausreichend große Anlagenkapazität aufgrund des großen logistischen Aufwands nicht bereitgestellt werden kann (vgl. Kapitel 6.2.2), muss hierfür ein Seehafen oder Binnenhafen für den notwendigen Festbrennstoffimport vorhanden sein. Eine Pipelineanbindung zur Versorgung mit Biomethan wäre dahingegen an den überwiegenden Standorten in Deutschland aufgrund des weit verbreiteten Erdgasnetzes bereits heute möglich. Gleichzeitig sollte eine ausreichend große Fernwärmesenke vorhanden sein, um im KWK-Prozess höhere negative CO_2 -Emissionen als in der reinen Stromerzeugung zu erreichen (vgl. Kapitel 5.3). Im Folgenden wird sich auf größere Städte in Deutschland als potenzielle Wärmesenken konzentriert, auch wenn industrielle Betriebe teilweise ebenfalls erhebliche Wärmesenken darstellen können.

Bei der Analyse von potenziellen Wärmesenken werden die 100 größten Städte in Deutschland betrachtet, in denen insgesamt ca. 27,3 Mio. Einwohner leben. Diese Städte haben eine Einwohnerzahl von mehr als 82 000 Einwohnern. In Kapitel 6.2 ist am Beispiel Flensburgs gezeigt worden, dass bei einer hohen Fernwärmeanschlussdichte bereits eine Stadt mit etwa 89000 Einwohnern genügt, um eine ausreichend große Fernwärmesenke für Bio-KWK-CCS zu bieten. In 83 dieser 100 Großstädte wird bereits heute Fernwärme erzeugt und verteilt (vgl. Anhang Tabelle A.33 und Tabelle A.34). Abbildung 6.5 stellt die 20 Städte mit der größten Fernwärmeerzeugung dar. Es wird jeweils die Fernwärmeerzeugung und das Fernwärmepotenzial gezeigt. Das Fernwärmepotenzial wird überschlägig berechnet, indem die einwohnerspezifische Fernwärmeerzeugung aus Flensburg und die dort vorliegende Anschlussdichte von 98% auf die anderen Städte übertragen wird. Hierbei werden keine strukturellen Unterschiede wie beispielsweise Industrie- oder Gewerbeintensität, Einwohnerdichte oder die räumliche Nähe zu anderen Städten berücksichtigt. So wird beispielsweise auch nicht berücksichtigt, dass mit der im HKW Flensburg erzeugten Fernwärme auch Kunden außerhalb von Flensburg versorgt werden, da auch in anderen Städten davon ausgegangen werden kann, dass anliegende Gemeinden mitversorgt werden können. Unter den 20 Städten mit der größten Fernwärmeerzeugung wird bereits heute eine durchschnittliche Fernwärmeanschlussdichte von 39% erreicht, während dieser Wert unter allen 100 größten Städten bei ca. 20 % liegt. Außer der hohen Anschlussdichte in Flensburg stechen auch Mannheim (>100%) und Gelsenkirchen (59%) hervor, was jedoch dadurch begründet wird, dass hier jeweils Fernwärmeerzeuger angesiedelt sind, die ihre Fernwärme über die Stadtgrenzen hinaus verteilen. In Summe ergibt sich für die 100 größten Städte in Deutschland eine jährliche Fernwärmeabgabe von ca. 74 TWh/a und ein abgeschätztes Fernwärmepotenzial von 356 TWh/a. Dieses Potenzial stellt jedoch eine theoretische Obergrenze dar, da sicherlich nicht in jeder Großstadt Deutschlands ein Fernwärmeanschlussgrad von nahezu 98 % erreicht werden kann. Gemäß KWK-Gesetz soll die Stromerzeugung aus Kraft-Wärme-Kopplung bis zum Jahr 2020 auf $25\,\%$ erhöht werden [vgl. Bundestag, 2011b, S. 1]. Dies entspricht gegenüber dem Ist-Stand aus dem Jahr 2010 (15,8%) einer Erhöhung um ca. 60% [vgl. UBA, 2012a, S.2].

Auf Basis des Kartenmaterials der Wasser- und Schifffahrtsverwaltung des Bundes wird bestimmt, welche der 100 größten Städte einen Zugang zu Schifffahrtsstraßen haben. Abbildung 6.6 stellt die bundesweiten Binnenschifffahrtsstraßen unter Angabe der jeweiligen Abladetiefe dar, aus der die maximale Schiffsbeladung abgeleitet werden kann. Für die weitere Analyse wird unterschieden zwischen dem Zugang zu einem Seehafen, zu einem Binnenhafen mit einem Tiefgang von mehr als drei Metern sowie zu einem Binnenhafen mit einem Tiefgang von weniger als drei Meter. Ab einem Tiefgang von drei Metern können Schiffe mit einer Beladung von mehr als 2400 Tonnen abgefertigt werden. Somit steigt bei einem kleineren Tiefgang der spezifische Transportaufwand in ökonomischer und ökologischer Hinsicht, da mehr Schiffe für eine vergleichbare Transportrate eingesetzt werden müssen. Unter den 100 größten Städten haben acht Städte einen Seehafen (blauer

Abbildung 6.5: Fernwärme-Erzeugung 2009 und Fernwärmepotenzial der 100 größten Städte Deutschlands, eigene Berechnung mit Daten aus AGFW [2010a, S. 10], AGFW [2010b, S. 1 ff.], WVV [2011, S. 2], SWG [2011, S. 2], SVB [2011, S. 1], WEVG [o.J., S. 1], SWW [2011, S. 2], ZEV [2011, S. 1], SWD [2011, S. 1 ff.], RWE [o.J., S. 1], SWL [2011, S. 2], SWK [2011, S. 11], E.ON [2008, S. 56]

Kasten in Abbildung 6.6), 13 Städte einen Binnenhafen mit einem Tiefgang von mehr als drei Metern (grüner Kasten) und 32 Städte einen Binnenhafen mit einem Tiefgang von weniger als drei Metern (gelber Kasten⁹) (vgl. Anhang Tabelle A.33 und Tabelle A.34). Somit verfügen 47 der 100 größten Städte Deutschlands über keine direkte Wasseranbindung. Dies entspricht einer Einwohnerzahl von rund 9,2 Mio. Einwohnern oder einem Drittel der berücksichtigten Einwohner. In diesen Städten bietet sich somit Bio-KWK-CCS auf Basis von Biomethan an, das mittels des Erdgas-Pipeline-Systems transportiert werden kann.

Auf Basis der städtegenauen Fernwärmeerzeugung im Jahr 2009 und der in Kapitel 6.2.2 berechneten Höhe der negativen CO_2 -Emissionen für Flensburg kann für die übrigen Städte abgeschätzt werden, welche Menge an negativen CO_2 -Emissionen erzeugt werden können. Hierfür werden von den sechs in Kapitel 6.2.2 definierten Varianten die Varianten

⁹Bei den Binnenhäfen mit einem Tiefgang von weniger als drei Metern sind die folgenden Städte nicht abgebildet: Mülheim, Wolfsburg, Offenbach, Fürth, Erlangen, Esslingen, Hanau, Lünen, Dessau-Roßlau.

Abbildung 6.6: Binnenschifffahrtsstraßen in Deutschland, eigene Darstellung auf Basis von BMVBS [2010, S. 1]

A (30 % Holzpelletsmitverbrennung), D (100 % Biomethan-Verbrennung, iLUC25 %-Acker) sowie F (100 % HHS-Verbrennung, iLUC25 %-Acker) verwendet. Die Höhe der jährlichen negativen CO₂-Emissionen hat für Flensburg 24 kt/a (Variante A), 155 kt/a (Variante D) bzw. 367 kt/a (Variante F) betragen. Da für die Festbrennstoff-Varianten A und F eine Erreichbarkeit mit See- oder Binnenschiffen notwendig ist, wird für die 47 Städte ohne Hafenanschluss die Berechnung mit Biomethan (Variante D) durchgeführt, während für die Städte mit Hafenanschluss alternativ die Pelletsmitverbrennung (Variante A) sowie die HHS-Verbrennung (Variante F) untersucht wird. In den Städten mit Wasserlage können durch die Pelletsmitverbrennung rund 1,1 Mt/a oder durch die HHS-Verbrennung rund $16.7 \,\mathrm{Mt/a}$ an negativen CO_2 -Emissionen erzeugt werden. In den 47 Städten ohne Hafen liegt dieser Wert auf Basis der Biomethan-Verbrennung bei ca. 3,1 Mt/a an negativen CO_2 -Emissionen. Hierfür müssten in Summe 5,2 Mrd. m³/a an Biomethan eingesetzt werden. Dies entspricht ungefähr dem Biomethanerzeugungsziel der Bundesregierung für das Jahr 2020 (vgl. Kapitel 2.1.1.8.3). Zusätzlich müssten rund 4.9 Mio. t/a an Holzpellets oder 27,4 Mio. t/a an Holzhackschnitzeln verfeuert werden. Im Vergleich dazu sind in Deutschland im Jahr 2007 gut 10 Mio. t an Holz energetisch zur Stromproduktion genutzt worden. Diese Nutzung kann bis zum Jahr 2020 auf Grundlage des vorhandenen Potenzials auf bis knapp 40 Mio. t/a an Holz erhöht werden [vgl. Vogel et al., 2011, S. 9]. Somit wären in Deutschland nach erster Abschätzung ausreichend Brennstoffkapazitäten vorhanden. Die jährliche Pellets-Produktionskapazität liegt mit 2,7 Mio. t im Jahr 2011 bei knapp der Hälfte des geforderten Bedarfs. Hinzu kommt ebenfalls ein inländischer Verbrauch von ca. 1,4 Mio. t/a, der eine ausreichende Versorgung mit Holzpellets aus Deutschland derzeit als schwierig erscheinen lässt [vgl. DEPI, 2011, S. 1].

Die bisherigen Berechnungen basieren auf der tatsächlichen Fernwärmeerzeugung des Jahres 2009. Führt man die Berechnung auf Basis der Fernwärmepotenziale durch, könnten sich die Angaben theoretisch verfünffachen, da die Fernwärme-Anschlussdichte im Jahr 2009 bei ca. 20 % gelegen hat. Legt man den politisch gewollten Ausbau der Kraft-Wärme-Kopplung in Deutschland zugrunde (25 % KWK-Stromerzeugung in 2020), so ergibt sich eine Erhöhung um ca. 60 %. Hieraus resultiert ein Gesamtpotenzial an negativen CO_2 -Emissionen für alle 100 größten Städte in Deutschland in Höhe von 6,6 Mt/a (Variante A und D bzw. Pellets und Biomethan) bzw. 31,6 Mt/a (Variante D und F bzw. Biomethan und HHS). Dies entspricht rund 3 % bis 13 % der CO_2 -Emissionen Deutschlands im Jahr 2050, wenn bis dahin die CO_2 -Emissionen wie geplant um mindestens 80 % gegenüber 1990 reduziert werden (1248 Mt in 1990 [vgl. UBA, 2011b, S. 1]). Bei jährlichen CO_2 -Einlagerungsraten von 6,6 Mt/a bis 31,6 Mt/a würden die CO_2 -Speicherkapazitäten in Deutschland (3,9 Gt bis 47,7 Gt, vgl. Kapitel 2.3.4.3.1) über einen Zeitraum von mehr als 120 Jahren ausreichen, um negative CO_2 -Emissionen einlagern zu können.

Da mit steigender Entfernung der CO₂-Lagerstätten zu potenziellen CO₂-Abscheidungsstandorten sowohl die CO₂-Transportkosten steigen (vgl. Kapitel 2.2.3.1.2) als auch die negativen CO₂-Emissionen reduziert werden (vgl. Kapitel 5.3.2), sollten sich geeignete Bio-CCS-KWK-Standorte in der Nähe von CO₂-Lagerstätten befinden. Die in Deutschland vorhandenen CO₂-Speicherkapazitäten konzentrieren sich auf das nördliche Drittel Deutschlands und auf den Südosten Bayerns (vgl. Abbildung 6.7).

Um die Entfernung von den 100 größten Städten Deutschlands zu den potenziellen CO_2 -Lagerstätten zu ermitteln, werden exemplarisch vier CO_2 -Speicherregionen definiert (vgl. Tabelle 6.2). Hierbei handelt es sich weniger um konkret mögliche CO_2 -Speicherstandorte, sondern um die Konzentration möglicher CO_2 -Speicherregionen auf einen geographischen Punkt, um vergleichbare Entfernungsberechnungen durchführen zu können. Die vier Speicherregionen sind in Abbildung 6.7 als grüne Punkte dargestellt.

Tabelle 6.2: Verwendete CO₂-Speicherstandorte für Entfernungsberechnung, eigene Festlegung auf Basis von Abbildung 6.7, Google [2011]

Bundesland	in der Nähe von	Breitengrad	Längengrad
Bayern	Waldkraiburg	48,21	12,40
Brandenburg	Storkow	$52,\!26$	$13,\!93$
Mecklenburg-Vorpommern	Pasewalk	$53,\!10$	$13,\!99$
Niedersachsen	Oldenburg	$53,\!14$	8,21

Die Entfernungsberechnung zweier Punkte auf der Erdoberfläche $D_{1,2}$ wird mittels Formel 6.1 durchgeführt, wobei die Entfernung auf einer idealen Kugel auf Basis von Längen- und Breitengrad berechnet wird [vgl. Heret, 2005, S. 1]. Hierbei sind $B_{1/2}$ die entsprechenden Breitengrade und $L_{1/2}$ die entsprechenden Längengrade.

$$D_{1,2} = \arccos(\sin(B_1) \cdot \sin(B_2) + \cos(B_1) \cdot \cos(B_2) \cdot \cos(L_2 - L_1))$$
(6.1)

Abbildung 6.8 stellt die Höhe der negativen CO_2 -Emissionen in Abhängigkeit von der Entfernung zwischen Heizkraftwerk und nächster CO_2 -Speicherstätte dar. Hierbei ist die Fernwärmeerzeugung des Jahres 2009 zugrunde gelegt worden. Es werden für Standorte ohne Hafen die negativen CO_2 -Emissionen aus der Biomethan-Verbrennung und für die Standorte mit Hafenanschluss die negativen CO_2 -Emissionen aus der Pelletsmitverbrennung sowie HHS-Monoverbrennung dargestellt, die alternativ eingesetzt werden können. Die Standorte ohne Hafenanschluss, in denen Biomethan eingesetzt wird, liegen tendenziell näher an möglichen CO_2 -Speicherstätten: Um 90 % der CO_2 -Emissionen aus

Abbildung 6.7: Lage der CO₂-Speicherstätten in Deutschland (orange – saline Aquifere, gelb – Erdgasfelder, grün – exemplarische Speicherregionen), eigene Darstellung auf Basis von Smid [2011, S. 1], BGR [o. J., S. 1]

Biomethananlagen abzutransportieren, reicht eine maximale Pipelinelänge von 220 km aus, während hierfür bei der Verbrennung von Holzpellets oder HHS eine Pipelinelänge von ca. 320 km benötigt wird. Dies wird dadurch verursacht, dass sich ein Großteil der Häfen in Westdeutschland entlang des Rheins befindet, von wo die Transportdistanz in die CO₂-Speicherstätten in Norddeutschland relativ weit ist. Im Rahmen der Analyse wird nicht berücksichtigt, dass gerade bei diesen Städten am Rhein die Möglichkeit besteht, die CO₂-Ströme in größeren Pipelines zusammenzufassen. Darüber hinaus kann standortspezifisch ebenfalls untersucht werden, ob ein Abtransport des CO₂ mittels Schiff sich als vorteilhaft herausstellen kann. In Kapitel 5.3.2 ist dargestellt worden, dass die indirekten CO₂-Emissionen des Pipelinetransports mit steigender Pipelinelänge anwachsen. Jedoch fallen auch bei einer Pipelinetransportdistanz von 500 km die durch die notwendige Nachverdichtung induzierten CO₂-Emissionen niedriger aus als für einen Schiffstransport über 1000 km. Die Herausforderung langer CO₂-Transporte und niedriger CO₂-Jahresmassenraten liegt eher im wirtschaftlichen Bereich, da die Variation der CO₂-Transportkosten im Rahmen der wirtschaftlichen Analyse zu entscheidenden Veränderungen bei den Stromgestehungskosten und den CO₂-Vermeidungskosten geführt hat (vgl. Kapitel 4.3.3 und 4.5.3).

Abschließend lässt sich festhalten, dass für einen potenziellen Start der Bio-KWK-CCS-Technologie sich besonders die größeren Städte mit Hafenlage in Norddeutschland eignen, da an diesen Standorten durch den Antransport von Holzpellets oder HHS per Schiff sowie den kurzen CO₂-Pipelinetransportdistanzen vergleichsweise geringe, zusätzliche indirekte CO₂-Emissionen auftreten und die Wirtschaftlichkeit hierdurch verbessert wird. Der direkte Meereszugang in Norddeutschland hat gegenüber den Binnenhäfen den Vorteil, dass die Schiffslogistik weitgehend unabhängig von äußeren Witterungseinflüssen ist: Im Jahr 2011/2012 haben die Witterungsbedingungen auf den Rhein, auf dem 80 % aller deutschen auf Flüssen transportierten Güter verschifft werden, im Sommer mit extremen Niedrigwasser und im Winter mit Eisgang erheblichen Einfluss auf den Schiffstransport genommen [vgl. dpa, 2011, S. 1], [vgl. Wiederschein, 2012, S. 2].

Abbildung 6.8: Höhe der negativen CO₂-Emissionen in Abhängigkeit von der notwendigen CO₂-Transportdistanz (auf Basis der FW-Erzeugung 2009), eigene Berechnung mit Daten aus Abbildung 6.5, Google [2011], BMVBS [2010, S. 1], BMVBS [2008, S. 1], World Shipping Register [o.J., S. 1], vgl. Anhang Tabelle A.33 und Tabelle A.34

Im Rahmen dieser Schlussbetrachtung wird zunächst eine kurze Zusammenfassung gegeben, bevor überprüft wird, ob sich die in Kapitel 1.2 aufgestellte Hypothese als richtig erwiesen hat. In Kapitel 7.3 wird die Arbeit wissenschaftlich und gesellschaftspolitisch eingeordnet, um zukünftigen Forschungsbedarf und politisch notwendige Impulse aufzuzeigen.

7.1 Zusammenfassung

Der durch anthropogene CO₂-Emissionen verursachte Klimawandel stellt eine wesentliche Herausforderung des 21. Jahrhunderts dar. Neben einer zwingenden Reduktion der Netto-CO₂-Emissionen um 80 % bis 95 % kann es in der zweiten Hälfte dieses Jahrhunderts notwendig sein, dass negative CO₂-Emissionen das Klimasystem stabilisieren. Eine aus heutiger Sicht aussichtsreiche Option hierfür ist die Kombination aus Carbon Capture and Storage (CCS) und Biomasse(heiz)kraftwerken (Bio-KWK-CCS). In dieser Arbeit wird die technische Umsetzbarkeit (Kapitel 3), die Wirtschaftlichkeit (Kapitel 4) und die Nachhaltigkeit (Kapitel 5) von Bio-KWK-CCS untersucht. Anschließend werden im Kapitel 6 Anforderungskriterien definiert und auf Basis eines Fallbeispiels (Flensburg) wird das Anwendungspotenzial für Bio-KWK-CCS in Deutschland überschlägig berechnet.

Das wesentliche Ergebnis der technischen Analyse ist, dass für die verschiedenen CO_2 -Abtrennverfahren, die derzeit auf Basis fossiler Brennstoffe untersucht werden, grundsätzlich auch biogene Brennstoffe (Holzhackschnitzel, Holzpellets, Biomethan) eingesetzt werden können. Während bei Biomethan durch die Einspeisung in das Erdgasnetz und die spätere Entnahme kein Unterschied gegenüber fossilem Erdgas festgestellt werden kann, ergeben sich bei den holzartigen Biomassen gewisse Unterschiede: Grundsätzlich ergibt die Elementaranalyse, dass die Stickstoff- und Schwefelgehalte bei Holzbrennstoffen niedriger ausfallen als für Braun- und Steinkohle, was die technisch notwendige Rauchgasreinigung für die CO_2 -Abtrennung vereinfacht. Die Elementaranalyse zeigt jedoch auch auf, dass der Kohlenstoffgehalt in holzartiger Biomasse mit ca. 48 % bis 50 % deutlich niedriger ausfällt als für Braun- und Steinkohle (69 % bis 82 %). Der deutlich niedrigeren Brennstoffe führt jedoch dazu, dass die energiebezogenen

 CO_2 -Emissionen bei 10 % Wassergehalt nur rund 10 % unter den Angaben von Steinkohle liegen. Die CO_2 -Konzentration in den Rauchgasen, die den spezifischen Energieaufwand für die CO_2 -Abtrennung entscheidend beeinflusst, fällt bei einem Wassergehalt von 10 % mit 12,7 % für alle Brennstoffe relativ einheitlich aus, während die CO_2 -Konzentration für biogene Brennstoffe mit 50 % Wassergehalt auf 11,0 % sinkt. Aufgrund des höheren Sauerstoffgehalts im Brennstoff liegt der Verbrennungssauerstoffbedarf für die CCS-Variante Oxyfuel für Holzpellets um ca. 13 % bis 24 % niedriger als für Steinkohle. Grundsätzlich lässt sich festhalten, dass Holzpellets aufgrund ihres geringeren Wassergehalts, der höheren Energiedichte und den besseren mechanischen Eigenschaften gewisse Vorteile in ihrer CCS-Eignung gegenüber Holzhackschnitzeln (Wassergehalt von 30 % bis 50 %) aufweisen, was sich vor allem am geringeren Wirkungsgradverlust festmachen lässt.

Die Kombination mit KWK bedeutet für die CCS-Varianten Pre-Combustion und Oxyfuel keine großen Änderungen, während für die CCS-Variante Post-Combustion die thermischen Wirkungsgradverluste deutlich höher ausfallen (24,9 %-Punkte bis 26,8 %-Punkte). Der Grund hierfür ist die notwendige Regeneration des chemischen Absorbens bei ca. 120 °C, für die ein erheblicher Teil der Kondensationsenergie eingesetzt wird, die üblicherweise zur Fernwärmeerzeugung genutzt wird.

Aus der wirtschaftlichen Analyse lässt sich ableiten, dass die Stromgestehungskosten mit KWK grundsätzlich niedriger ausfallen als für die reine Stromerzeugung. Für die Bio-KWK-CCS-Varianten Pre-Combustion und Oxyfuel ergeben sich die niedrigsten Stromgestehungskosten im Jahr 2020 (47 Euro/MWh bis 56 Euro/MWh für Holzhackschnitzel, 96 Euro/MWh bis 102 Euro/MWh für Holzpellets). Der Einsatz von Biomethan/-gas führt zu deutlich höheren Stromgestehungskosten (155 Euro/MWh). In der Sensitivitätsanalyse wird gezeigt, dass die drei Parameter CO₂-Transport- und CO₂-Speicherkosten, Brennstoffpreis sowie jährliche Volllaststunden den bedeutendsten Einfluss auf die Stromgestehungskosten haben. Die Höhe der CO₂-Vermeidungskosten fällt für die Varianten mit KWK wiederum günstiger aus und liegt in einem Bereich von 21 Euro/t bis 111 Euro/t. Für die beiden aussichtsreichsten Varianten (Pre-Combustion/Oxyfuel mit HHS) liegen die CO₂-Vermeidungskosten mit ca. 21 Euro/t geringfügig unterhalb der für 2020 angenommenen CO₂-Zertifikatepreise (24 Euro/t). Zur Einhaltung ambitionierter Klimaziele wird sogar mit deutlich höheren CO₂-Vermeidungskosten von über 150 Euro/t im Jahr 2050 gerechnet, die von allen Bio-CCS-Varianten unterschritten werden. Der Parameter CO₂-Transport- und CO₂-Speicherkosten hat auf die Höhe der CO₂-Vermeidungskosten den bedeutendsten Einfluss.

Im Rahmen der Analyse der Nachhaltigkeit ist ermittelt worden, dass die Monoverbrennung von biogenen Brennstoffen in CCS-Anlagen zu erheblichen negativen CO₂-Emissionen führen kann ($\mu_{CO_2,el,ges}$ beträgt -354 g/kWh bis -1164 g/kWh). Eine Ursache

hierfür sind vergleichsweise niedrige Wirkungsgrade, die zu hohen spezifischen, direkten CO₂-Emissionen führen, die klimaneutral sind und abgeschieden werden können. Lediglich die Biogasvariante auf ehemaligen Grünlandflächen führt aufgrund hoher indirekter CO₂-Emissionen zu ähnlichen CO₂-Emissionen wie die CCS-Variante mit fossilem Erdgas. Die Mitverbrennung von 30% biogenen Brennstoffen in großen, fossil befeuerten CCS-Anlagen führt für die Festbrennstoffe zu leicht negativen und für die gasförmigen Brennstoffe zu leicht positiven CO₂-Emissionen, solange kein gezielter Grünlandumbruch vorgenommen wird. Bei der Betrachtung der brennstoffbezogenen und flächenbezogenen negativen CO₂-Emissionen schneiden zum einen die KWK-Varianten aufgrund der höheren Strom- und Wärmegutschrift um ca. 20% und zum anderen die Mitverbrennungsvarianten aufgrund der höheren elektrischen Wirkungsgrade um ca. 8 % besser ab. Es ergeben sich negative CO₂-Emissionen in Bezug auf die Brennstoffmasse bzw. die Anbaufläche in Höhe von 0.6 t/t bis 2.5 t/t bzw. 7 t/(ha \cdot a) bis $37 \text{ t/(ha \cdot a)}$. Grundsätzlich hat die Nutzung von biogenen Reststoffen (Waldrestholz, Sägewerksreststoffe, Biomüll, Gülle) deutliche Vorteile, da keine Anbauflächen für die Brennstoffproduktion benötigt werden. Besonders sensitiv reagieren die Ergebnisse auf die Variation der CO₂-Leckagerate der CO₂-Speicherstätten (Basisannahme: 0.01 %/a) und auf sehr lange CO₂-Transportdistanzen (> 10 000 km). Ein Vergleich der CO₂-Speicherung in salinen Aquiferen gegenüber der geothermischen Nutzung hat das Ergebnis, dass die geothermische Nutzung zu höheren CO₂-Einsparungen führt. Durch diesen möglichen Nutzungsvorrang kann eine Reduktion der vorhandenen CO₂-Lagerstätten erfolgen, so dass die verbleibenden CO₂-Speicherstätten mit biogenem CO_2 belegt werden sollten, um ausreichend große Mengen an negativen CO_2 -Emissionen zu erzeugen. Ein Einsatz des Bio-CCS-Stroms im Verkehrssektor führt nicht zu höheren vermiedenen CO₂-Emissionen, solange fossile Kraftwerke ohne CCS substituiert werden können. Eine Nutzung des biogenen CO_2 in industriellen Prozessen bzw. zur Aufzucht von Algen verfügt lediglich über ein sehr begrenztes Potenzial (ca. 25 Mt CO₂ in Deutschland).

Anhand des Fallbeispiels Flensburg wird aufgezeigt, dass in Abhängigkeit vom eingesetzten Brennstoff pro Jahr mit einem Bio-KWK-CCS-Konzept folgende negative CO₂-Emissionen erzeugt werden können:

- 24 kt bis 42 kt bei der Holzpellets-/HHS-Mitverbrennung,
- 155 kt bis 377 kt bei der Biomethan-Monoverbrennung oder
- 367 kt bis 413 kt bei der Holzpellets-/HHS-Monoverbrennung.

Diese Werte werden anschließend für die 100 größten Städte in Deutschland adaptiert, so dass ein Bio-KWK-CCS-Potenzial für Deutschland berechnet werden kann. Hierbei wird für jede Stadt der derzeitige Fernwärmeabsatz und das Fernwärmepotenzial, die Anbindung an Wasserstraßen für eine wirtschaftliche Versorgung mit Holzbrennstoffen

sowie die Entfernung zu potenziellen CO_2 -Speicherstätten berücksichtigt. Es ergibt sich für die Städte ohne Hafenanschluss bei der Biomethan-Monoverbrennung ein Potenzial für negative CO_2 -Emissionen von ca. 3,1 Mt/a und für die Städte mit Hafenanschluss ein Potenzial von rund 1,1 Mt/a (Holzpelletsmitverbrennung) bzw. 16,7 Mt/a (HHS-Monoverbrennung). Legt man den politisch gewollten KWK-Ausbau zugrunde, so erhöhen sich die Werte um rund 60 %. Es ergeben sich CO_2 -Transportlängen zwischen Bio-KWK-CCS-Anlage und CO_2 -Speicherstätte von bis zu 420 km. Für rund 90 % der negativen CO_2 -Emissionen liegen die CO_2 -Transportdistanzen jedoch in einem Bereich von 220 km bis 320 km. Vor allem die norddeutschen Standorte weisen kurze CO_2 -Transportdistanzen und eine gute Hafenanbindung auf, so dass sich ein Start der Bio-KWK-CCS-Technologie hier anbietet.

7.2 Hypothesenprüfung

Die in Kapitel 1.2 aufgestellte Hypothese lautet:

"Eine CO₂-Sequestrierung bei der Bioenergienutzung zur Stromund Wärmeerzeugung ist prinzipiell technisch möglich, wirtschaftlich machbar und nachhaltig sinnvoll."

Die Hypothese ist in dieser Arbeit in den drei Analysen der Technik, der Wirtschaftlichkeit und der Nachhaltigkeit auf ihre Richtigkeit hin überprüft worden. Es lässt sich festhalten, dass für die derzeit in der Forschung befindlichen CCS-Varianten statt eines fossilen Brennstoffs aus technischer Sicht auch biogene Brennstoffe eingesetzt werden können (Holzpellets, Holzhackschnitzel oder Biomethan). Für die gemeinsame Stromund Wärmeproduktion eignen sich besonders die CCS-Varianten Pre-Combustion und Oxyfuel. Bei der Variante Post-Combustion wird der thermische Wirkungsgrad zu sehr reduziert. Die beiden favorisierten Varianten bieten auch unter wirtschaftlichen Gesichtspunkten die besten Potenziale, da ihre CO₂-Vermeidungskosten mit ca. 21 Euro/t bei HHS-Verbrennung auf einem marktkonformen Niveau liegen. Alle weiteren Varianten (Biomethan, Post-Combustion, ohne KWK, Holzpellets) ergeben CO₂-Vermeidungskosten von 33 Euro/t bis 123 Euro/t, so dass diese erst bei deutlich höheren CO₂-Zertifikatepreisen wirtschaftlich interessant werden.

Nachhaltig sinnvoll kann Bio-KWK-CCS nur dann sein, wenn tatsächlich negative CO_2 -Emissionen erzeugt werden. Eine Vielzahl der untersuchten Varianten führt zu negativen CO_2 -Emissionen – bei der Mitverbrennung werden für HHS/Holzpellets ab einem Anteil von 25 % bis 40 % und für Biomethan ab 40 % bis 60 % negative CO_2 -Emissionen erreicht.

Die höchsten negativen CO_2 -Emissionen weisen jedoch die Varianten der Monoverbrennung auf Basis von HHS aus Waldrestholz und Holzpellets aus Sägewerksreststoffen auf, da hierbei aufgrund relativ niedriger Wirkungsgrade vergleichsweise hohe, klimaneutrale CO_2 -Emissionsmengen abgeschieden werden können. Holzpellets führen auch in Bezug auf die eingesetzte Brennstoffmasse zu den höchsten negativen CO_2 -Emissionen. Darüber hinaus hat die Nutzung von Reststoffen den großen Vorteil, dass keine Flächen benötigt werden, so dass diese Variante vor dem Hintergrund der Nachhaltigkeit eine sehr sinnvolle Nutzung darstellt.

7.3 Einordnung der Arbeit

Diese Arbeit ist in einem Zeitraum entstanden (2008 bis 2014), in dem das Interesse an dem Thema Bio-CCS zur Erzeugung negativer CO_2 -Emissionen beständig gestiegen ist. Auch wenn die Idee für Bio-CCS bereits seit mehr als einem Jahrzehnt in der Literatur existiert, hat die Anzahl der Veröffentlichungen in den vergangenen Jahren erheblich zugenommen (vgl. Kapitel 1.1). Das Interesse an Forschungsergebnissen, die neben der Technik und der Wirtschaftlichkeit auch die Nachhaltigkeit von Bio-CCS untersuchen, ist auf mehreren Konferenzen und im direkten Kontakt mit wissenschaftlichen Einrichtungen deutlich hervorgetreten, unter anderem von Seiten der IEA. Trotz dieser Entwicklung wird CCS häufig zunächst mit fossilen Energieträgern in Verbindung gebracht. Dies bestätigt die inhaltliche Zusammenstellung der weltweit größten Konferenz zu CCS (GHGT-10 in Amsterdam), auf der sich eine von 61 Teilveranstaltungen bzw. vier von insgesamt mehr als 250 Vorträgen mit dem Thema Bio-CCS befasst haben [vgl. Hendriks et al., 2010, S. 22 ff.].

Neuartig an dieser Arbeit ist, dass die Idee für Bio-CCS mit der Kraft-Wärme-Kopplung kombiniert wird. Diese Kombination hat über den höheren Brennstoffausnutzungsgrad hinaus den Vorteil, dass auch in einem zukünftigen Energiesystem mit hoher Einspeisung auf Basis erneuerbarer Energiequellen gewährleistet werden kann, dass durch ausreichend hohe Jahresvolllaststunden große Mengen an negativen CO₂-Emissionen erzeugt werden.

Die Ausrichtung dieser Arbeit ist sehr breit, um in Form einer Systemanalyse möglichst viele Aspekte berücksichtigen zu können. Es besteht in allen drei Richtungen der Arbeit (Technik, Wirtschaftlichkeit, Nachhaltigkeit) ein erhebliches Potenzial für zukünftige Forschungsaktivitäten. Besonders im Bereich der Technik konnten im Rahmen dieser Arbeit technische Herausforderungen durch den Einsatz biogener Brennstoffe nur grundsätzlich detektiert werden, da keine eigenen Messwerte ermittelt worden sind, sondern neuartige Berechnungen auf Basis von in der Literatur bekannten Werten durchgeführt worden sind. Hier sollten in CCS-Versuchs- oder Prototypenanlagen reale Versuche mit verschiedenen

biogenen Brennstoffen durchgeführt werden, um weitere etwaige Vor- und Nachteile herauszuarbeiten. Anhand von CCS-Demonstrationsanlagen, die Biomasse einsetzen, sollten weitere Angaben für die Investitionsmehrkosten und die tatsächlichen Wirkungsgradverluste für biogene Brennstoffe ermittelt werden, um die Höhe der Strom- und Wärmegestehungskosten sowie der CO₂-Vermeidungskosten verlässlicher berechnen zu können. Auch die in dieser Arbeit eher als theoretische Möglichkeit betrachtete Option der CO₂-Abscheidung bei der Biogasaufbereitung zu Biomethan sollte zukünftig dahingehend näher untersucht werden, wie stark sich der Nachteil der geringen spezifischen Anlagegröße auf die CO₂-Vermeidungskosten auswirkt. In Laude und Ricci [vgl. 2011, S. 2909] wird zumindest für kleine Bioethanolanlagen ausgeführt, dass ab einer CO₂-Abscheideleistung von 0,1 Mt/a bereits CO₂-Vermeidungskosten in Höhe von ca. 50 Euro/t erreicht werden können. Im Bereich der Nachhaltigkeit ist ermittelt worden, dass CO₂-Lagerstätten mit einer geringen CO₂-Leckagerate entscheidend für die CO₂-Bilanz für Bio-CCS sind, so dass hierauf ein Forschungsschwerpunkt gelegt werden sollte.

Grundsätzlich wird in dieser Arbeit die Machbarkeit für einen Einsatz von biogenen Brennstoffen in CCS-Anlagen zur Erzeugung von negativen CO₂-Emissionen nachgewiesen. Nur mit (bestimmten) biogenen Brennstoffen lassen sich negative CO₂-Emissionen erreichen, die für eine Verhinderung von abrupten Klimaveränderungen in diesem Jahrhundert notwendig sein können. Füllt man die vorhandenen CO₂-Speicherstätten jedoch mit CO₂ aus fossilen Quellen, so beraubt man sich der Möglichkeit, später negative CO₂-Emissionen zu erzeugen. Um diese Nutzung zu vermeiden, sollte ein wirtschaftlicher Anreiz für den Einsatz biogener Brennstoffe in den geplanten CCS-Anlagen geschaffen werden, indem beispielsweise negative CO₂-Emissionen in den Emissionshandel integriert werden.

- AGFW (2010a). AGFW Hauptbericht 2009. Der Energieeffizienzverband für Wärme, Kälte und KWK e.V., Frankfurt am Main.
- AGFW (2010b). Bericht der allgemeinen Fernwärmeversorgung 2009. Allgemeine Angaben. Netzeinspeisung. Der Energieeffizienzverband für Wärme, Kälte und KWK e. V., Frankfurt am Main.
- Alabi, Abayomi, Martin Tampier und Eric Bibeau (2009). Microalgae technologies & processes for biofuels / bioenergy production in British Columbia: Current technology, Suitability & Barriers to Implementation. Seed Science Ltd., o. O. URL: http://www.bcic.ca/images/stories/publications/lifesciences/microalgae_report.pdf. Zugriff am 04.03.2012.
- Arasto, Antti, Eemeli Tsupari und Janne Kärki (2011). Feasibility of Bio-CCS in CHP production – A Case Study of Biomass Co-firing Plant in Finland. Präsentation auf 2. International Workshop on Biomass & CCS, Cardiff. URL: http://www.cugtrc.co.uk/files.html?id=53. Zugriff am 30.04.2012.
- Azar, Christian, Kristian Lindgren, Eric Larson und Kenneth Möllersten (2006). Carbon Capture and Storage from fossil fuels and biomass - Costs and Potential role in stabilizing the atmosphere. Climatic Change, 74: S.47-79. URL: http://www.environmental-expert.com/Files%5C6063%5Carticles% 5C6220%5Cw30h4274h130580u.pdf. Zugriff am 11.02.2010.
- Azar, Christian, Kristian Lindgren, Michael Obersteiner, Keywan Riahi, Detlef P. van Vuuren, K. Michel G. J. den Elzen, Kenneth Möllersten und Eric D. Larson (2010). The feasibility of low CO₂ concentration targets and the role of bioenergy with carbon capture and storage (BECCS). Climatic Change, 100: S. 195-202. URL: http://www.springerlink.com/content/W10Q4881225G6697/fulltext.pdf. Zugriff am 30.06.2011.
- Azar, Christian, Daniel J. A. Johansson und Niclas Mattsson (2013). Meeting global temperature targets – the role of bioenergy with carbon capture and storage. IOP Publishing.

Environmental Research Letter 8, Göteborg. URL: http://iopscience.iop.org/ 1748-9326/8/3/034004/pdf/1748-9326_8_3_034004.pdf. Zugriff am 15.11.2013.

- Baehr, Hans Dieter und Stephan Kabelac (2006). Thermodynamik. Grundlagen und technische Anwendungen. Springer, Bochum, Hamburg, 13. Auflage.
- BAFA (2010). Drittlandssteinkohlepreise. Stand: Juli 2010. Bundesamt für Wirtschaft und Ausfuhrkontrolle, Eschborn. URL: http://www.bafa.de/bafa/de/energie/ steinkohle/statistiken/energie_steinkohle_statistiken_preise.pdf. Zugriff am 27.08.2010.
- BAFA (2011). Mengen- und Preisübersicht. Bundesamt für Wirtschaft und Ausfuhrkontrolle, Eschborn. URL: http://www.bafa.de/bafa/de/energie/steinkohle/ statistiken/index.html. Zugriff am 10.02.2011.
- BAFA (2013a). Mengen- und Preisübersicht. Bundesamt für Wirtschaft und Ausfuhrkontrolle, Eschborn. URL: http://www.bafa.de/bafa/de/energie/steinkohle/ drittlandskohlepreis/. Zugriff am 15.09.2013.
- BAFA (2013b). Monatliche Entwicklung der Einfuhr Rohöl 1991 bis 2012. Bundesamt für Wirtschaft und Ausfuhrkontrolle, Eschborn. URL: http://www.bafa.de/bafa/de/energie/mineraloel_rohoel/ausgewaehlte_ statistiken/energie_1991_2010_rohoel_entwicklung.xls. Zugriff am 21.09.2013.
- BAFA (2013c). Entwicklung der Rohöleinfuhr in die Bundesrepublik Deutschland. Bundesamt für Wirtschaft und Ausfuhrkontrolle, Eschborn. URL: http://www.bafa.de/bafa/de/energie/mineraloel_rohoel/ausgewaehlte_ statistiken/energie_2009_2010_rohoel_entwicklung.xls. Zugriff am 21.09.2013.
- BAFA (2013d). Monatliche Entwicklung des Grenzübergangspreises. Bundesamt für Wirtschaft und Ausfuhrkontrolle, Eschborn. URL: http://www.bafa.de/bafa/ de/energie/erdgas/ausgewaehlte_statistiken/egasmon_xls.xls. Zugriff am 21.09.2013.
- Bartol, Arne und Erwin Herkommer (2004). Der aktuelle Begriff: Nachhaltigkeit. Wissenschaftliche Dienste des Deutschen Bundestags, Berlin. URL: http://webarchiv.bundestag.de/archive/2008/0506/wissen/analysen/2004/2004_04_06.pdf. Zugriff am 11.09.2011.
- Becker, Ralf, Alexander Boehringer, Thomas Charisse, Jörg Frauenstein, Frank Gagelmann, Harald Ginzky, Hans-Joachim Hummel, Karsten Karschunke, Kai Lipsi-

us, Christiane Lohse, Michael Marty, Klaus Müschen, Lutz Schäfer, Rainer Sternkopf und Kathrin Werner (2009). CCS – Rahmenbedingungen des Umweltschutzes für eine sich entwickelnde Technik. Umweltbundesamt, Dessau. URL: http: //www.umweltdaten.de/publikationen/fpdf-1/3804.pdf. Zugriff am 17.07.2009.

- Beer, Michael, Thomas Gobmaier, Frank Hauptmann, Wolfgang Mauch, Rainer Podhajsky, Michael Steck und Serafin von Roon (2007). EduR&D – Ganzheitliche dynamische Bewertung der KWK mit Brennstoffzellentechnologie. Forschungsstelle für Energiewirtschaft e. V., München. URL: http://www.ffe.de/download/langberichte/DL_ eduard_2007_11_21.pdf. Zugriff am 16.09.2011.
- Beil, Michael (2008). Biogasaufbereitung eine Einführung. In Biogasaufbereitung zu Biomethan. 6. Hanauer Dialog, herausgegeben von dem Institut für Solare Energieversorgungstechnik, Verein an der Universität Kassel e.V. (ISET), S. 12-17. Kassel. URL: http://www.iset.uni-kassel.de/public/hanauer_dialog/2008_ Hanauer-Dialog_Tb.pdf. Zugriff am 01.06.2012.
- Beitz, Wolfgang und Karl-Heinrich Grote (Herausgeber) (1997). Dubbel Taschenbuch für den Maschinenbau. Springer, Berlin, 19., völlig neubearbeitete Auflage.
- Bennaceur, Kamel, Dolf Gielen, Tom Kerr und Cecilia Tam (2008). CO₂ Capture and Storage. A key carbon abatement option. International Energy Agency (IEA), Paris. URL: http://www.iea.org/textbase/nppdf/free/2008/CCS_2008.pdf. Zugriff am 11.02.2010.
- Bensmann, Martin (2009). Die Kohlekocher. Neue Energie, 07/2009: S. 66–68.
- Best, Carola, Gregor Laumann, Urs Neu, Katja Pazdernik, Klaus Radunsky, Brigitte Read und Jens Tambke (2007). Vierter Sachstandsbericht des IPCC (AR4). Klimaänderung 2007: Zusammenfassungen für politische Entscheidungsträger. Intergovernmental Panel on Climate Change (IPCC), Bern. URL: http://www.bmu.de/files/ pdfs/allgemein/application/pdf/ipcc_entscheidungstraeger_gesamt.pdf. Zugriff am 10.03.2008.
- BGR (o.J.). CO₂-Emittenten und potenzielle Speicheroptionen in Erdgasfeldern. Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover. URL: http://www.bgr.bund.de/cln_101/nn_1038746/DE/Themen/Geotechnik/CO2-Speicherung/Bilder/CO2_geocapacity_g.html. Zugriff am 20.04.2009.
- Bhave, Amit, A. J. Smallbone, J. Akroyd, I. Comlekci, B. Livingston, N. Burdett, M. Insa, M. Kanniche, R. Taylor, A. Bauen, P. Fennell, N. Mac Dowell, N. Shah, J. Cleeton,

J.S. Dennis, P. Man, M. Kraft, E. Catalanotti, R. T. J. Porter, K. J. Hughes, J. Jones und M. Pourkashanian (2012). *Techno-Economic Study of Biomass to Power with* CO_2 Capture. Präsentation auf 12. APGTF Workshop, London. URL: http://www.cmclinnovations.com/TESBIC/pdf/TESBiC-ANB-CMCL-12thAPGTF.pdf. Zugriff am 30.04.2012.

- BINE (2010). Lässt sich CO2 sinnvoll nutzen? Vom Abgas zum Rohstoff. BINE Informationsdienst, Bonn. URL: http://www.bine.info/hauptnavigation/publikationen/ news/news/vom-abgas-zum-rohstoff/. Zugriff am 18.05.2012.
- Blankenburg, Klaus H. (2011). Der korrekte Umgang mit Größen, Einheiten und Gleichungen. Rohde & Schwarz GmbH & Co. KG, München. URL: http://pwrk.cachefly.net/rs/fileadmin/customer/downloads/PDF/Der_ korrekte_Umgang_mit_Groessen_Einheiten_und_Gleichungen_bro_de.pdf. Zugriff am 18.12.2013.
- Blohm, Michael, Christoph Erdmenger, Harald Ginzky, Michael Marty, Rolf Beckers, Sebastian Briem, Ulrich Clausen, Christiane Lohse, Jörg Rechenberg, Lutz Schäfer und Rainer Sternkopf (2006). Technische Abscheidung und Speicherung von CO₂ - nur eine Übergangslösung. Positionspapier des Umweltbundesamtes zu möglichen Auswirkungen, Potenzialen und Anforderungen. Umweltbundesamt, Dessau. URL: http: //www.umweltdaten.de/publikationen/fpdf-1/3074.pdf. Zugriff am 06.02.2009.
- Blunk, Lennart, Hartwig Jepsen und Bastian Kaufmann (2009). Überprüfung und Verifizierung der Brennstoffpreise für Holzhackschnitzel aus Kurzumtriebsplantagen sowie für Getreidestroh aus Schleswig-Holstein. Projektarbeit, Fachhochule Kiel, Fachbereich Agrarwirtschaft, Osterrönfeld.
- BMELV (2011). Holzmarktbericht 2010. Abschlussergebnisse für die Forst- und Holzwirtschaft des Wirtschaftsjahres 2010. Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz, Bonn. URL: http://www.bmelv. de/SharedDocs/Downloads/Landwirtschaft/Wald-Jagd/Holzmarktbericht-2010.pdf?__blob=publicationFile. Zugriff am 05.11.2011.
- BMU (2007). *Tiefe Geothermie in Deutschland*. Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit, Berlin. URL: http://www.erneuerbare-energien.de/ files/pdfs/allgemein/application/pdf/broschuere_tiefe_geothermie.pdf. Zugriff am 15.10.2011.
- BMU (2011). Kabinett verabschiedet CCS-Gesetz. Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit, Berlin. URL: http://www.bmu.de/

pressemitteilungen/aktuelle_pressemitteilungen/pm/pdf/47268.pdf. Zugriff am 01.07.2011.

- BMVBS (2008). Bundeswasserstraßen Binnenhäfen mit Schwergutumschlag. Bundesministerium für Verkehr, Bau und Stadtentwicklung, Bonn. URL: http://www.wsv.de/ service/karten_geoinformationen/bundeseinheitlich/pdf/w166b.pdf. Zugriff am 03.12.2011.
- BMVBS (2010). Binnenschifffahrt Abladetiefen. Bundesministerium für Verkehr, Bau und Stadtentwicklung, Referat WS 13, Kartenbezeichnung: "W 162 f", Bonn. URL: http://www.wsv.de/service/karten_geoinformationen/ bundeseinheitlich/pdf/w162f.pdf. Zugriff am 03.12.2011.
- BMWi, BMU und BMBF (2007). Entwicklungsstand und Perspektiven von CCS-Technologien in Deutschland. Bundesministerium für Wirtschaft und Technologie, Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit und Bundesministerium für Bildung und Forschung, Berlin. URL: http://www.bmu.de/files/pdfs/ allgemein/application/pdf/kabinettbericht_ccs.pdf. Zugriff am 25.04.2008.
- Bock, Bert, Richard Rhudy, Howard Herzog, Michael Klett, John Davison, Danial G. De La Torre Ugarte und Dale Simbeck (2003). Economic Evaluation of CO₂ Storage and Sink Enhancement Options. Muscle Shoals. URL: http://www.brbock.com/ RefFiles/40937R04.pdf. Zugriff am 09.12.2010.
- Bonijoly, D., A. Fabbri, F. Chapuis, A. Laude, O. Ricci, H. Bauer, S. Grataloup und X. Galiègue (2008). Technical and economic feasibility of the capture and geological storage of CO₂ from a bio-fuel distillery: CPER Artenay project. Energy Procedia, 1: S. 3927-3934. URL: http://sarah.antonin.free.fr/EP2009.PDF. Zugriff am 18.06.2011.
- Borggrefe, Frieder und Stefan Lochner (2009). Langfristprognosen für Strom- und Erdgaspreise. BWK, 61: S. 50–59.
- Brammann, Jens (2010). Erstellung einer Konzeptstudie für einen zukünftigen Umbau eines Reserveheizwerkes. Diplomarbeit, Universität Flensburg und Fachhochschule Flensburg.
- Brundtland, Gro Harlem (1987). Report of the World Commission on Environment and Development: Our Common Future. United Nations World Commission on Environment and Development (WCED), Oxford. URL: http://upload.wikimedia.org/ wikisource/en/d/d7/Our-common-future.pdf. Zugriff am 17.03.2011.

- Bundesregierung (2002). Perspektiven für Deutschland. Unsere Strategie für eine nachhaltige Entwicklung. Berlin. URL: http://www.bundesregierung.de/ nsc_true/Content/DE/__Anlagen/2006-2007/perspektiven-fuer-deutschlandlangfassung,templateId=raw,property=publicationFile.pdf/perspektivenfuer-deutschland-langfassung. Zugriff am 24.03.2011.
- Bundesregierung (2009). Antwort der Bundesregierung auf die Kleine Anfrage der Abgeordneten Bärbel Höhn, Hans-Josef Fell, Sylvia Kotting-Uhl, weiterer Abgeordneter und der Fraktion BÜNDNIS 90/DIE GRÜNEN. Drucksache 16/12540. CO₂-Abscheidung und -Lagerung. Berlin. URL: http://dip21.bundestag.de/dip21/btd/16/126/1612672.pdf. Zugriff am 16.07.2009.
- Bundesregierung (2010). Energiekonzept für eine umweltschonende, zuverlässige und bezahlbare Energieversorgung. Berlin. URL: http: //www.bundesregierung.de/Content/DE/_Anlagen/2012/02/energiekonzeptfinal.pdf?__blob=publicationFile&v=5. Zugriff am 25.05.2012.
- Bundesregierung (2011). Die Nationale Nachhaltigkeitsstrategie. Berlin. URL: http://www.bundesregierung.de/Webs/Breg/nachhaltigkeit/DE/Nationale-Nachhaltigkeitsstrategie/Nationale-Nachhaltigkeitsstrategie.html. Zugriff am 24.03.2011.
- Bundesregierung (2012). Gesetz zur Demonstration der dauerhaften Speicherung von Kohlendioxid (Kohlendioxid-Speicherungsgesetz - KSpG). Berlin. URL: http://www. gesetze-im-internet.de/bundesrecht/kspg/gesamt.pdf. Zugriff am 03.09.2013.
- Bundestag (1990). Gesetz über die Einspeisung von Strom aus erneuerbaren Energien in das öffentliche Netz (Stromeinspeisungsgesetz). Bundesgesetzblatt Jahrgang 1990 Teil I Nr. 67, Bonn. URL: http://www.bgbl.de/Xaver/ media.xav?SID=anonymous334924849379&bk=Bundesanzeiger_BGBl&name=bgbl% 2FBundesgesetzblatt%20Teil%20I%2F1990%2FNr.%2067%20vom%2014.12.1990% 2Fbgbl190s2633b.pdf. Zugriff am 05.04.2012.
- Bundestag (1998). Abschlußbericht der Enquete-Kommission "Schutz des Menschen und der Umwelt – Ziele und Rahmenbedingungen einer nachhaltig zukunftsverträglichen Entwicklung". Konzept Nachhaltigkeit. Vom Leitbild zur Umsetzung. Drucksache 13/11200. Bonn. URL: dipbt.bundestag.de/doc/btd/13/112/1311200.pdf. Zugriff am 25.03.2011.
- Bundestag (2000). Gesetz über den Vorrang Erneuerbarer Energien (Erneuerbare-Energien-Gesetz – EEG) sowie Änderung des Energiewirtschaftsgesetzes und des

Mineralölsteuergesetzes. Bundesgesetzblatt Jahrgang 2000 Teil I Nr. 13, Bonn. URL: http://www.bgbl.de/Xaver/media.xav?SID=anonymous334924849379&bk= Bundesanzeiger_BGBl&name=bgbl%2FBundesgesetzblatt%20Teil%20I%2F2000% 2FNr.%2013%20vom%2031.03.2000%2Fbgbl100s0305.pdf. Zugriff am 05.04.2012.

- Bundestag (2002). Endbericht der Enquete-Kommission "Nachhaltige Energieversorgung unter den Bedingungen der Globalisierung und der Liberalisierung". Drucksache 14/9400. Berlin. URL: http://dip.bundestag.de/btd/14/094/1409400.pdf. Zugriff am 25.03.2011.
- Bundestag (2004). Gesetz zur Neuregelung des Rechts der Erneuerbaren Energien im Strombereich. Bundesgesetzblatt Jahrgang 2004 Teil I Nr. 40, Bonn. URL: http://www.bgbl.de/Xaver/media.xav?SID=anonymous334924849379&bk= Bundesanzeiger_BGBl&name=bgbl%2FBundesgesetzblatt%20Teil%20I%2F2004% 2FNr.%2040%20vom%2031.07.2004%2Fbgbl104s1918.pdf. Zugriff am 05.04.2012.
- Bundestag (2008a). Gesetz zur Neuregelung des Rechts der Erneuerbaren Energien im Strombereich und zur Änderung damit zusammenhängender Vorschriften. Bundesgesetzblatt Jahrgang 2008 Teil I Nr. 49, Bonn. URL: http://www.bgbl.de/Xaver/media.xav?SID=anonymous334924849379&bk= Bundesanzeiger_BGBl&name=bgbl%2FBundesgesetzblatt%20Teil%20I%2F2008% 2FNr.%2049%20vom%2031.10.2008%2Fbgbl108s2074.pdf. Zugriff am 05.04.2012.
- Bundestag (2008b). Bericht des Ausschusses für Bildung, Forschung und Technikfolgenabschätzung (18. Ausschuss) gemäß § 56a der Geschäftsordnung. CO₂-Abscheidung und -Lagerung bei Kraftwerken. Sachstandsbericht zum Monitoring "Nachhaltige Energieversorgung". Berlin. URL: http://dip21.bundestag.de/dip21/btd/16/098/1609896. pdf. Zugriff am 20.08.2009.
- Bundestag (2009a). Siebzehnte Verordnung zur Durchführung des Bundes-Immissionsschutzgesetzes (Verordnung über die Verbrennung und die Mitverbrennung von Abfällen) (17. BImSchV). Bundesgesetzblatt Jahrgang 2009 Teil I Nr. 5 (letzte Änderung), Berlin. URL: http://www.gesetze-im-internet.de/bundesrecht/ bimschv_17/gesamt.pdf. Zugriff am 19.01.2013.
- Bundestag (2009b). Dreizehnte Verordnung zur Durchführung des Bundes-Immissionsschutzgesetzes (Verordnung über Großfeuerungs- und Gasturbinenanlagen) (13. BImSchV). Bundesgesetzblatt Jahrgang 2009 Teil I Nr. 5 (letzte Änderung), Berlin. URL: http://www.gesetze-im-internet.de/bundesrecht/bimschv_13_2004/ gesamt.pdf. Zugriff am 19.03.2010.

- Bundestag (2009c). Verordnung über Anforderungen an eine nachhaltige Herstellung von Biokraftstoffen (Biokraftstoff-Nachhaltigkeitsverordnung - Biokraft-NachV). Bundesgesetzblatt Jahrgang 2012 Teil I Nr. 55 (letzte Änderung), Berlin. URL: http: //www.gesetze-im-internet.de/bundesrecht/biokraft-nachv/gesamt.pdf. Zugriff am 22.11.2013.
- Bundestag (2011a). Gesetz zur Neuregelung des Rechtsrahmens für die Förderung Stromerzeugung aus erneuerbaren Energien. Bundesgesetzblatt Jahrgang 2011 Teil I Nr. 42, Bonn. URL: http://www.bgbl.de/Xaver/media. xav?SID=anonymous334924849379&bk=Bundesanzeiger_BGBl&name=bgbl% 2FBundesgesetzblatt%20Teil%20I%2F2011%2FNr.%2042%20vom%2004.08.2011% 2Fbgbl111s1634.pdf. Zugriff am 05.04.2012.
- Bundestag (2011b). Gesetz für die Erhaltung, die Modernisierung und den Ausbau der Kraft-Wärme-Kopplung (Kraft-Wärme-Kopplungsgesetz). Bundesgesetzblatt Jahrgang 2011 Teil I Nr. 42 (letzte Änderung), Berlin. URL: http://www.gesetze-im-internet. de/bundesrecht/kwkg_2002/gesamt.pdf. Zugriff am 22.04.2012.
- Capoor, Karan und Philippe Ambrosi (2006). State and Trends of the Carbon Market 2006. The World Bank, International Emissions Trading Association (IETA), Washington D.C. URL: http://www.ieta.org/ieta/www/pages/getfile.php?docID=1667. Zugriff am 22.11.2010.
- CARMEN (2013). Preisentwicklung bei Holzhackschnitzeln (WG 35), Holzpellets, Heizöl und Erdgas. Centrales Agrar-Rohstoff-Marketing- und Entwicklungs-Netzwerk e. V., Straubing. URL: http://www.carmen-ev.de/images/bilder/informationen/ images_hackschnitzel/WHSP_WG35_Vgl_03_11.png. Zugriff am 08.09.2013.
- Cavezzali, S., Paulo Cotone, Franco Gaspanini und Rosa Domenichini (2009). *Biomass* CCS Study. Report Number 2009-9. IEA Greenhouse Gas R&D Programme, o. O.
- Chalmers, Hannah, Matt Leach und Jon Gibbins (2011). Built-in flexibility at retrofitted power plants: what is it worth and can we afford to ignore it? Energy Procedia, 4: S.2596-2603. URL: http: //ac.els-cdn.com/S1876610211003559/1-s2.0-S1876610211003559main.pdf?_tid=ac5b8096e21d0449a8faff377486ad6e&acdnat=1337329326_ 16e1ad4df482939d422f0d93cfe2c472. Zugriff am 18.05.2012.
- Chandel, Munish und Eric Williams (2009). Synthetic Natural Gas (SNG): Technology, Environmental Implications, and Economics. Durham. URL: http://www.nicholas. duke.edu/ccpp/ccpp_pdfs/synthetic.gas.pdf. Zugriff am 26.05.2012.

- Chen, Chao und Edward S. Rubin (2008). CO₂ control technology effects on IGCC plant performance and cost. Energy Policy, 37: S. 915-924. URL: http://www.cmu.edu/ epp/iecm/rubin/PDF%20files/2009/2009a%20Chen%20Energy%20Policy.pdf. Zugriff am 18.03.2012.
- Christensen, Niels Peter und Sam Holloway (2004). Geological Storage of CO₂ from Combustion of Fossil Fuels. The GESTCO Project. Summary Report. o.O. URL: http://www.bgr.bund.de/cln_011/nn_329330/DE/Themen/Energie/Projekte/ CO2_Speicherung/Gestco/GESTCO_summary_report_2004,templateId=raw, property=publicationFile.pdf/GESTCO_summary_report_2004.pdf. Zugriff am 10.03.2008.
- CIUDEN (2009). CIUDEN's test facilities for advanced technologies on CO₂ capture and storage in coal power generation. ciudad de la energía (CIUDEN), El Bierzo. URL: http://www.ciuden.es/DOCUMENTOS_B/MARUCHI/CIUDEN%20PROJECT% 20CCS%2004A05A09APROT.PDF. Zugriff am 24.11.2010.
- CIUDEN (2012). CIUDEN completes initial oxycombustion testing phase. carbon capture journal, 25: S.11. URL: http://c182953.r53.cfl.rackcdn.com/CCJ25web. pdf. Zugriff am 02.03.2012.
- Clarke, Duncan, Branko Debeljak, Vasco de Janeiro, Gerold Göttlicher, David Graham, Niels Kirkegaard, Michael Madsen, Sauro Pasini, Bennie Stortelder, Lars Strömberg, Wolfgang vom Berg und Volker Hamacher (2004). CO₂ Capture and Storage. A VGB Report on the State of the Art. VGB PowerTech e.V., Essen. URL: http://www.vgb.org/data.o/vgborg_/Fachgremien/Umweltschutz/ VGB%20Capture%20and%20Storage.pdf. Zugriff am 03.09.2009.
- Cohen, Stuart M., Gary T. Rochelle und Michael E. Webber (2011). Optimal operation of flexible post-combustion CO₂ capture in response to volatile electricity prices. Energy Procedia, 4: S.2604-2611. URL: http://ac.els-cdn.com/S1876610211003560/1-s2.0-S1876610211003560main.pdf?_tid=aa37c5f35d1e58bf865617d017a8e3f5&acdnat=1337329539_ a2e07f18ac5dafc04e4afc54b2417646. Zugriff am 18.05.2012.
- Cooretec (2003). Forschungs- und Entwicklungskonzept für emissionsarme fossil befeuerte Kraftwerke. Bericht der COORETEC-Arbeitsgruppen. Bundesministerium für Wirtschaft und Arbeit, Berlin. URL: http://www.cooretec.de/index.php/index. php?path=publikationen&file=35. Zugriff am 04.03.2012.

- Cooretec (2010). Forschungsbeirat fordert flexible CCS-Kraftwerke. Euwid Neue Energie, 16: S. 36.
- Costanza, Robert, Herman E. Daly und Joy A. Bartholomew (1991). Goals, agenda, and policy recommendation for ecological economics. In Ecological Economics. The science and management of sustainability, herausgegeben von Robert Costanza, S. 1–20. Columbia University Press, New York, Oxford.
- Dahmke, Andreas (2008). CO2-MoPa Modellierung und Parametrisierung von CO2-Speicherung in tiefen, salinaren Formationen für Dimensionierungs- und Risikoanalysen. Kiel. URL: http://www.geotechnologien.de/forschung/forsch2.11-3c.html. Zugriff am 26.09.2008.
- Daly, Herman E. (1991). Elements of environmental macroeconomics. In Ecological Economics. The science and management of sustainability, herausgegeben von Robert Costanza, S. 34–46. Columbia University Press, New York, Oxford.
- Damen, Kay Jochem (2007). Reforming Fossil Fuel Use. The Merits, Costs and Risks of Carbon Dioxide Capture and Storage. Dissertation, Utrecht University. URL: http://igitur-archive.library.uu.nl/dissertations/2007-0403-200425/full.pdf. Zugriff am 10.12.2010.
- David, Jérémy (2000). Economic Evaluation of Leading Technology Options for Sequestration of Carbon Dioxide. Master-Thesis, Massachusetts Institute of Technology. URL: http://sequestration.mit.edu/pdf/JeremyDavid_thesis.pdf. Zugriff am 02.12.2010.
- Davison, J., P. Freund und A. Smith (2001). Putting Carbon back into the Ground. IEA Greenhouse Gas R&D Programme, Cheltenham. URL: http://www.ieagreen.org. uk/putcback.pdf. Zugriff am 10.03.2008.
- Davison, John (2006). Performance and costs of power plants with capture and storage of CO₂. IEA Greenhouse Gas R&D Programme, Cheltenham. URL: http: //info.ornl.gov/sites/carboncapture/Shared%20Documents/Background% 20Materials/Technology%20Overviews,%20Costs/J.%20Davison.pdf. Zugriff am 18.03.2012.
- de Pater, Jeroen (2008). Upgrading Using Cryogenic Technology. In Biogasaufbereitung zu Biomethan. 6. Hanauer Dialog, herausgegeben von dem Institut für Solare Energieversorgungstechnik, Verein an der Universität Kassel e.V. (ISET), S.

152-163. Kassel. URL: http://www.iset.uni-kassel.de/public/hanauer_dialog/ 2008_Hanauer-Dialog_Tb.pdf. Zugriff am 01.06.2012.

- de Visser, Erika, Rolf de Vos und Chris Hendriks (2009). Catching carbon to clear the skies. Experiences and highlights of the Dutch R&D programme on CCS. CATO, o.O. URL: http://www.co2-cato.nl/doc.php?lid=602. Zugriff am 16.07.2009.
- DEHSt (2007). Einheitliche Stoffwerte für Emissionsfaktoren, Heizwerte und Kohlenstoffgehalt für Brennstoffe, Rohstoffe und Produkte. Deutsche Emissionshandelsstelle im Umweltbundesamt, Berlin. URL: http: //www.dehst.de/cln_090/nn_476194/SharedDocs/Downloads/DE/Zuteilung_ _2008-2012/ZuV2012_Anhang01_Stoffliste,templateId=raw,property= publicationFile.pdf/ZuV2012_Anhang01_Stoffliste.pdf. Zugriff am 21.01.2011.
- DEHSt (2010). Emissionshandel und Aufgaben der DEHSt. Deutsche Emissionshandelsstelle im Umweltbundesamt, Berlin. URL: http://www.dehst.de/ cln_153/nn_717394/SharedDocs/Downloads/Publikationen__DE/Broschuere_ _Emissionshandel-DEHSt,templateId=raw,property=publicationFile.pdf/ Broschuere_Emissionshandel-DEHSt.pdf. Zugriff am 22.11.2010.
- dena (2010). *Marktentwicklung in Deutschland*. Deutsche Energie-Agentur, Berlin. URL: http://www.biogaspartner.de/index.php?id=11871. Zugriff am 27.08.2010.
- dena (2012a). *Marktentwicklung in Deutschland*. Deutsche Energie-Agentur, Berlin. URL: http://www.biogaspartner.de/index.php?id=11871. Zugriff am 12.02.2012.
- dena (2012b). Biomasse in Kohle- und Gaskraftwerken. Deutsche Energie-Agentur, Berlin. URL: http://www.dena.de/fileadmin/user_upload/Publikationen/ Erneuerbare/Dokumente/Biomasse_in_Kohle-_und_Gaskraftwerken.pdf. Zugriff am 10.01.2013.
- DEPI (2011). Pelletproduktion und Inlandsbedarf in Deutschland. Deutsches Pelletinstitut, Berlin. URL: http://www.depi.de/download/grafiken/Produktion-und-Nutzung. jpg. Zugriff am 09.12.2011.
- DEPV (2012). Deutsche Pelletsproduktion erreicht 2011 neuen Höchststand. Euwid Neue Energie, 6: S. 3.
- Detlefsen, Dirk, Levke Hansen und Clemens Jany (2008). Machbarkeitsstudie. Holzversorgung der Stadtwerke Flensburg GmbH. Hofkontor AG, Eggebek.

- Dixon, Tim, Stanley Santos und Ameena Camps (2012). IEAGHG Activities on Biomass and CCS: Techno-economic Evaluation; Global Potential; Carbon Market Issues. Präsentation auf 2. Workshop Cofiring Biomass with Coal. IEA Greenhouse Gas R&D Programme, Kopenhagen. URL: http://www.ieabcc.nl/workshops/task32_2012_ Copenhagen/Dixon.pdf. Zugriff am 28.04.2012.
- Donner, Susanne und Daniel Lübbert (2006). Kohlendioxid-arme Kraftwerke. CO₂-Sequestrierung: Stand der Technik, ökonomische und ökologische Diskussion. Wissenschaftliche Dienste des Deutschen Bundestags, Berlin. URL: http://www.bundestag. de/dokumente/analysen/2006/Kohlendioxid-arme_Kraftwerke.pdf. Zugriff am 03.09.2009.
- dpa (2011). Rekordverdächtige Trockenheit führt zu Problemen. Focus online. URL: http://www.focus.de/panorama/welt/schifffahrt-rekordverdaechtigetrockenheit-fuehrt-zu-problemen_aid_686807.html. Zugriff am 27.04.2012.
- Dürr, Dietmar (2009). Carbon Capture and Storage. Chancen und Risiken der Kohlendioxidabscheidung und -speicherung. Niederkassel. URL: http://www.energiefakten.de/pdf/ccs-inagendo-v10.pdf. Zugriff am 08.10.2009.
- Duckat, Renate, Manfred Treber, Christoph Bals und Gerold Kier (2004). CO₂-Abscheidung und -Lagerung als Beitrag zum Klimaschutz? Ergebnisse des "IPCC Workshop on Carbon Dioxide Capture and Storage" vom November 2002 und Bewertung durch Germanwatch. Germanwatch, Bonn. URL: http://www.germanwatch. org/rio/ccs04.pdf. Zugriff am 10.03.2008.
- Duscha, Markus, Frank Dünnebeil, Benjamin Gugel, Frank Kutzner, Andreas Hübner und Werner Murken (2009). Klimaschutzkonzept 2020 für die Stadt Münster. Endbericht. Auszug der Energie- und CO₂ - Bilanz der Stadt Münster. Heidelberg, Essen. URL: http://www.muenster.de/stadt/umwelt/pdf/IFEU_Gertec_ Endbericht_2010_Auszug_Bilanz.pdf. Zugriff am 16.09.2011.
- DVGW (2008). *Technische Regel. Arbeitsblatt G 260*. Deutsche Vereinigung des Gasund Wasserfaches e. V., Bonn.
- DVGW (2011). Technische Regel Arbeitsblatt. DVGW G 262 (A). Deutsche Vereinigung des Gas- und Wasserfaches e. V., Bonn.
- EBTP/ZEP (2012). Biomass with CO_2 Capture and Storage (Bio-CCS). European Biofuels Technology Platform, Zero Emissions Platform, o.O. URL:
http://bellona.org/ccs/uploads/tx_weccontentelements/filedownload/ EBTP__ZEP_Report_Bio-CCS_The_Way_Forward.pdf. Zugriff am 10.01.2013.

- ECX (2010). ECX EUA Futures Contract: Historic Data 2005-2010. European Climate Exchange. URL: http://www.ecx.eu/uploads/xls/ecxeuafuturescontract1708. xls. Zugriff am 20.11.2010.
- Edenhofer, Ottmar, Carlo Carraro, Jean-Charles Hourcade, Karsten Neuhoff, Gunnar Luderer, Christian Flachsland, Michael Jakob, Alexander Popp, Jan Steckel, Jan Strohschein, Nico Bauer, Steffen Brunner, Marian Leimbach, Hermann Lotze-Campen, Valentina Bosetti, Enrica de Cian, Massimo Tavoni, Oliver Sassi, Henri Waisman, Renaud Crassous-Doerfler, Stéphanie Monjon, Susanne Dröge, Huib van Essen, Pablo del Río und Andreas Türk (2009). The Economics of Decarbonization. Report of the RECIPE project. Potsdam-Institute for Climate Impact Research, Potsdam. URL: http://www.pik-potsdam.de/research/sustainablesolutions/research/ClimatePolicies/recipe-groupspace/working-papers/ recipe-synthesis-report. Zugriff am 07.10.2011.
- Eggleston, Simon, Jean-Yves Garnier und David Mobley (1996). Chapter 1: Energy. In Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Workbook. Volume 2: Greenhouse Gas Inventory Workbook, S. 1.1-1.73. Mexico City. URL: http: //www.ipcc-nggip.iges.or.jp/public/gl/invs5.html. Zugriff am 23.03.2012.
- Eltrop, Ludger, Konrad Raab, Hans Hartmann, Sven Schneider, Gerd Schröder, Martin Kaltschmitt, Birgit Jahraus und Peter Heinrich (2007). *Leitfaden Bioenergie. Planung, Betrieb und Wirtschaftlichkeit von Bioenergieanlagen*. Fachagentur Nachwachsende Rohstoffe e. V. (FNR), Gülzow. URL: http://fnr-server.de/cms35/fileadmin/biz/pdf/leitfaden/leitfaden_bioenergie.pdf. Zugriff am 26.09.2008.
- E.ON (2008). Geschäftsbericht 2007. Zukunft hat Herkunft. E.ON Westfalen Weser, Paderborn. URL: http://www.eon-westfalenweser.com/pages/ewa_de/Unternehmen/ Daten_%26_Fakten/Informationsmaterial/Geschftsbericht_2007.pdf. Zugriff am 27.11.2011.
- Epple, Bernd und Jochen Ströhle (2008). CO₂ Capture Based on Chemical and Carbonate Looping. VGB PowerTech, 11/2008: S. 85–89.
- Erdmann, Georg und Lars Dittmar (2010). Technologische und energiepolitische Bewertung der Perspektiven von Kraft-Wärme-Kopplung in Deutschland. Berlin. URL: http://www.ensys.tu-berlin.de/fileadmin/fg8/Downloads/

Sonstiges/2010_KWK_Studie_Langversion_FGEnsys_TUBerlin.pdf. Zugriff am 11.01.2012.

- Esau, Steve, Stuart Murray und Barry Ladbrook (2010). *Pöyry implications of increased renewable power generation*. carbon capture journal, 15: S. 2–3.
- Europäische Kommission (2005). Winning the battle against global climate change. Background paper. Brüssel. URL: http://ec.europa.eu/environment/climat/pdf/ staff_work_paper_sec_2005_180_3.pdf. Zugriff am 13.08.2010.
- Europäische Kommission (2006). Entscheidung der Kommission vom 21. Dezember 2006 zur Festlegung harmonisierter Wirkungsgrad-Referenzwerte für die getrennte Erzeugung von Strom und Wärme in Anwendung der Richtlinie 2004/8/EG des Europäischen Parlaments und des Rates. Brüssel. URL: http://eur-lex.europa.eu/LexUriServ/ LexUriServ.do?uri=0J:L:2007:032:0183:0188:DE:PDF. Zugriff am 13.05.2011.
- Europäische Kommission (2008). Unterstützung der frühzeitigen Demonstration einer nachhaltigen Stromerzeugung aus fossilen Brennstoffen. Brüssel. URL: http://eurlex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2008:0013:FIN:DE:PDF. Zugriff am 17.12.2010.
- Europäische Kommission (2010). Bericht der Kommission an den Rat und das Europäische Parlament über Nachhaltigkeitskriterien für die Nutzung fester und gasförmiger Biomasse bei Stromerzeugung, Heizung und Kühlung. Brüssel. URL: http://eurlex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2010:0011:FIN:DE:PDF. Zugriff am 11.12.2011.
- Europäische Kommission (2012). Commission Staff Working Document. Proportionate Impact Assessment. Accompanying the document Commission Regulation (EU) No .../.. of XXX amending Regulation (EU) No 1031/2010 in particular to determine the volumes of greenhouse gas emission allowances to be auctioned in 2013-2020.
 Brüssel. URL: http://ec.europa.eu/clima/policies/ets/cap/auctioning/docs/ swd_2012_xx2_en.pdf. Zugriff am 01.11.2013.
- Europäisches Parlament und europäischer Rat (2004). Richtlinie 2004/8/EG des Europäischen Parlaments und des Rates vom 11. Februar 2004 über die Förderung einer am Nutzwärmebedarf orientierten Kraft-Wärme-Kopplung im Energiebinnenmarkt und zur Änderung der Richtlinie 92/42/EWG. Brüssel. URL: http://eur-lex.europa.eu/ LexUriServ/LexUriServ.do?uri=0J:L:2004:052:0050:0060:DE:PDF. Zugriff am 15.05.2011.

- Europäisches Parlament und europäischer Rat (2009). Richtlinie 2009/28/EG des europäischen Parlaments und des Rates vom 23. April 2009 zur Förderung der Nutzung von Energie aus erneuerbaren Quellen und zur Änderung und anschließenden Aufhebung der Richtlinien 2001/77/EG und 2003/30/EG. Brüssel. URL: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=0J:L:2009:140:0016:0062:DE:PDF. Zugriff am 10.01.2013.
- EUWID (2008–2013). *Marktbericht für Altholz*. Europäischer Wirtschaftsdienst GmbH, Gernsbach. Diverse Ausgaben 2008–2013.
- Faulstich, Martin, Anna Leipprand und Uwe Eggenstein (2009). Relevanz der CCS-Technologie für die Abfallverbrennung. In 14. Fachtagung Thermische Abfallbehandlung, herausgegeben von Bernd Bilitewski, Arnd I. Urban und Martin Faulstich, S. 73-86. Kassel. URL: http://www.upress.uni-kassel.de/online/frei/978-3-89958-662-6.volltext.frei.pdf. Zugriff am 11.03.2010.
- Finkenrath, Matthias (2011). Cost and Performance of Carbon Dioxide Capture from Power Generation. International Energy Agency (IEA), Paris. URL: www.iea.org/ papers/2011/costperf_ccs_powergen.pdf. Zugriff am 27.05.2011.
- Fischedick, Manfred, Werner Günster, Hans Fahlenkamp, Hans-Joachim Meier, Frank Neumann, Gerd Oeljeklaus, Helmut Rode, Armin Schimkat, Jürgen Beigel und Dietmar Schüwer (2006). CO₂-Abtrennung im Kraftwerk. Ist eine Nachrüstung sinnvoll? VGB PowerTech, 4/2006: S. 108-117. URL: http://www.luat.uni-duisburg-essen.de/ download/pub/2006/2006-04-01-VGB_CO2-Abtrennung.pdf. Zugriff am 29.05.2009.
- Fischedick, Manfred, Andrea Esken, Andreas Pastowski, Dietmar Schüwer, Nikolaus Supersberger, Joachim Nitsch, Peter Viebahn, Andreas Bandi, Ulrich Zuberbühler und Ottmar Edenhofer (2007). *RECCS. Strukturell-ökonomisch-ökologischer Vergleich regenerativer Energietechnologien (RE) mit Carbon Capture and Storage (CCS)*. Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit (BMU), Berlin. URL: http://www.bmu.bund.de/files/pdfs/allgemein/application/pdf/reccs_ endbericht_lang.pdf. Zugriff am 26.08.2008.
- Fisher, Brian S., Nebojsa Nakicenovic, Knut Alfsen, Jan Corfee Morlot, Francisco de la Chesnaye, Jean-Charles Hourcade, Kejun Jiang, Mikiko Kainuma, Emilo La Rovere, Anna Matysek, Ashish Rana, Keywan Riahi, Richard Richels, Steven Rose, Detlef Van Vuuren und Rachel Warren (2007). Issues related to mitigation in the long term context. In Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Inter-governmental Panel on Climate Change, herausgegeben

von Bert Metz, Ogunlade Davidson, Peter Bosch, Rutu Dave und Leo Meyer, S. 169-250. Cambridge University Press, Cambridge. URL: http://www.ipcc.ch/pdf/assessment-report/ar4/wg3/ar4-wg3-chapter3.pdf. Zugriff am 29.10.2009.

- FNR (2010). Biogas Basisdaten Deutschland. Fachagentur Nachwachsende Rohstoffe e.V., Gülzow. URL: http://www.fnr-server.de/ftp/pdf/literatur/pdf_185-v8basisdaten_biogas_2010_finale-fassung.pdf. Zugriff am 19.08.2011.
- FOEX (2013). *PIX Indexes Pellet Nordic*. FOEX Indexes Ltd, Helsinki. URL: http: //www.foex.fi/uploads/bioenergy/PIX_Nordic_Pellet_History.pdf. Zugriff am 12.09.2013.
- Fritsche, Uwe R. (2008). Bioenergy Life-Cycle Analysis: Beyond Biofuels. Öko-Institut e. V., Darmstadt. URL: http://acm.eionet.europa.eu/docs/ETCACC_TP_2008_7_ LCA_bioenergy.pdf. Zugriff am 08.07.2011.
- Fritsche, Uwe R. (2010a). Globale Emissions-Modell Integrierter Systeme (GEMIS). Version 4.6. Öko-Institut e.V., Darmstadt. URL: http://www.oeko.de/service/ gemis/de/index.htm. Zugriff am 13.08.2010.
- Fritsche, Uwe R. (2010b). Ergebnisdaten aus GEMIS 4.6 als Excel-Blatt. Öko-Institut e.V., Darmstadt. URL: http://www.oeko.de/service/gemis/files/setup/g46results_aug2010daten1.xls. Zugriff am 02.07.2011.
- Fritsche, Uwe R. und Lothar Rausch (2007). Bestimmung spezifischer Treibhausgas-Emissionsfaktoren für Fernwärme. Öko-Institut e. V., Darmstadt. URL: http://www. umweltdaten.de/publikationen/fpdf-1/3476.pdf. Zugriff am 21.04.2012.
- Fritsche, Uwe R. und Kirsten Wiegmann (2008). Treibhausgasbilanzen und kumulierter Primärenergieverbrauch von Bioenergie-Konversionspfaden unter Berücksichtigung möglicher Landnutzungsänderungen. Externe Expertise für das WBGU-Hauptgutachten "Welt im Wandel: Zukunftsfähige Bioenergie und nachhaltige Landnutzung". Öko-Institut e. V., Berlin. URL: http://www.wbgu.de/fileadmin/templates/dateien/ veroeffentlichungen/hauptgutachten/jg2008/wbgu_jg2008_ex04.pdf. Zugriff am 14.04.2011.
- Fritsche, Uwe R., Klaus J. Hennenberg, Andreas Hermann, Katja Hünecke, Rocio Herrera, Horst Fehrenbach, Elvira Roth, Anna Hennecke und Jürgen Giegrich (2010). Entwicklung von Strategien und Nachhaltigkeitsstandards zur Zertifizierung von Biomasse für den internationalen Handel. Umweltbundesamt, Dessau-Roßlau. URL: www.umweltdaten.de/publikationen/fpdf-1/3960.pdf. Zugriff am 13.03.2011.

- Gassmann, Michael und Mark Krümpel (2009). Versorger investieren in Kohlestrom. Financial Times Deutschland, 15.04.2009. URL: http: //www.ftd.de/unternehmen/industrie/:Trotz-Klimadiskussion-Versorgerinvestieren-in-Kohlestrom/500405.html. Zugriff am 04.03.2012.
- GCCSI (2013). S. 26: Karte mit Projekten weltweit + Detailkarten für Europa, USA, China S. 162: Liste mit Projekten. Global CCS Institute, Melbourne. URL: http://cdn.globalccsinstitute.com/sites/default/files/ publications/116211/global-status-ccs-2013.pdf. Zugriff am 17.10.2013.
- Geisslinger, E. und T. Havlicek (2011). Vorerst keine CO2-Speicher. Schleswig-Holstein bleibt sauber. taz, 15.04.2011. URL: http://www.taz.de/!69256/. Zugriff am 04.07.2012.
- Gibson, Jacqueline, Diemo Schallehn, Zheng Que, Chen Jian, Wang Shujuan, Cao Jiang, Jon Gibbins, Mathieu Lucquiaud, Yang Yongping, Xu Gang, Duan Liqiang, Xu Zhaofeng, Hu Jicai, Li Ji Fang Mengxiang, Yan Shuiping, Luo und Zhongyang (2009). Carbon Dioxide Capture from Coal-Fired Power Plants in China. Summary Report for NZEC Work Package 3. nzec carbon capture & storage, Tsinghua, Beijing, London, Wuhan, Zhejiang. URL: http://www.nzec.info/en/assets/Reports/Techno-economic-Comparison-WP3-Final-English.pdf. Zugriff am 18.03.2012.
- Gómez, Darío R., John D. Watterson, Branca B. Americano, Chia Ha, Gregg Marland, Emmanuel Matsika, Lemmy Nenge Namayanga, Balgis Osman-Elasha, John D. Kalenga Saka, Karen Treanton und Roberta Quadrelli (2006). Chapter 2: Stationary Combustion. In Revised 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Volume 2: Energy, herausgegeben von Simon Eggleston, Leandro Buendia, Kyoko Miwa, Todd Ngara und Kiyoto Tanabe, S. 2.1–2.47. Institute for Global Environmental Strategies (IGES), Hayama. URL: http://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/ 2_Volume2/V2_2_Ch2_Stationary_Combustion.pdf. Zugriff am 23.03.2012.
- Google (2011). Google Earth. Google Inc. URL: http://www.google.de/intl/de/ earth/download/ge/agree.html. Zugriff am 26.11.2011.
- Göttlicher, Gerold (1999). Energetik der Kohlendioxidrückhaltung in Kraftwerken, Band 421. VDI-Verlag, Düsseldorf.
- Gough, Claire und Paul Upham (2010). Biomass energy with carbon capture and storage (BECCS): a review. Tyndall Centre for Climate Change Research, Manchester.

URL: http://www.tyndall.ac.uk/sites/default/files/twp147.pdf. Zugriff am 11.02.2012.

- Green, Karsten (2010). Erstellung einer Bedarfsanalyse und geeigneter Grobkonzepte zur Wärmespeicherung bei der Stadtwerke Flensburg GmbH. Bachelor-Thesis, Fachhochschule Flensburg.
- Griffiths, A. J., P. J. Bowen, N. Syred und R. Marsh (2011). Some Technology Limitations to implementation of BIO-CCS Systems. Präsentation auf 2. International Workshop on Biomass & CCS, Cardiff. URL: http://www.cu-gtrc.co.uk/files.html?id=46. Zugriff am 30.04.2012.
- Grönkvist, Stefan, Kenneth Möllersten und Kim Pingoud (2006). Equal Opportunity for Biomass in Greenhouse Gas Accounting of CO₂ Capture and Storage: A Step Towards More Cost-Effective Climate Change Mitigation Regimes. Mitigation and Adaptation Strategies for Global Change, 11: S. 1083–1096.
- Groscurth, Helmuth-M. (o. J.). Zur Wirtschaftlichkeit von Kohlekraftwerken am Beispiel des geplanten Kohlekraftwerks in Mainz. arrhenius Institut für Energie- und Klimapolitik, Hamburg. URL: http://www.die-klima-allianz.de/wp-content/uploads/ studie.pdf. Zugriff am 28.10.2010.
- Groscurth, Helmuth-M. und Sven Bode (2009). Anreize für Investitionen in konventionelle Kraftwerke - Reformbedarf im liberalisierten Strommarkt. arrhenius Institut für Energie- und Klimapolitik, Hamburg. URL: http://www.arrhenius.de/uploads/ media/arrhenius_DP2_Investionen_in_konventionelle_Kraftwerke.pdf. Zugriff am 28.10.2010.
- Grünwald, Reinhard (2007). CO2-Abscheidung und -Lagerung bei Kraftwerken. Sachstandsbericht zum Monitoring "Nachhaltige Energieversorgung". Zusammenfassung.
 Büro für Technikfolgen-Abschätzung beim Deutschen Bundestag (TAB), Berlin.
 URL: http://www.tab.fzk.de/de/projekt/zusammenfassung/ab120.htm. Zugriff am 21.02.2009.
- GTN (2009). Neubrandenburg: Bisher tiefster Aquiferwärmespeicher auf der Welt. Geothermie Neubrandenburg GmbH, Neubrandenburg. URL: http://www.gtn-online.de/cms/index.php?mact=News,cntnt01,detail, 0&cntnt01articleid=13&cntnt01returnid=53. Zugriff am 19.10.2011.
- GtV (2013). Tiefe Geothermieprojekte in Deutschland. Bundesverband Geothermie, Berlin. URL: http://www.geothermie.de/fileadmin/useruploads/aktuelles/projekte/

tiefe/deutschland/TG-Projekte_2013_Internet_16-Juli_name.pdf. Zugriff am 16.10.2013.

- Gurney, Edlyn (2011). The global status of CCS: 2011. Global CCS Institute, Canberra. URL: http://cdn.globalccsinstitute.com/sites/default/files/ publications/22562/global-status-ccs-2011.pdf. Zugriff am 06.01.2012.
- Gurney, Edlyn (2012). The global status of CCS: 2012. Global CCS Institute, Canberra. URL: http://cdn.globalccsinstitute.com/sites/default/files/ publications/47936/global-status-ccs-2012.pdf. Zugriff am 10.01.2013.
- Haase, Harald, Christian Seyfert und Uwe-Stephan Lagies (2008). Land und Energieunternehmen starten Projekt zum Klimaschutz durch CO₂-Speicherung.
 Kiel. URL: http://www.schleswig-holstein.de/ArchivSH/PI/MWV/2008/ 080312Co2Speicherung.html. Zugriff am 13.08.2010.
- Hacker, Florian, Ralph Harthan, Peter Kasten, Charlotte Loreck und Wiebke Zimmer (2011). Marktpotenziale und CO₂-Bilanz von Elektromobilität. Arbeitspakete 2 bis 5 des Forschungsvorhabens OPTUM: Optimierung der Umweltentlastungspotenziale von Elektrofahrzeugen. Öko-Institut e. V., Berlin. URL: http://www.oeko.de/oekodoc/1338/2011-002-de.pdf. Zugriff am 13.01.2013.
- Hamilton, Michael R., Howard J. Herzog und John E. Parsons (2009). Cost and U.S. public policy for new coal power plants with carbon capture and sequestration. Energy Procedia, 1: S. 4487-4494. URL: http://web.mit.edu/ceepr/www/publications/ reprints/Reprint_225_WC.pdf. Zugriff am 18.03.2012.
- Hansen, James, Makiko Sato, Pushker Kharecha, David Beerling, Robert Berner, Valerie Masson-Delmotte, Mark Pagani, Maureen Raymo, Dana L. Royer und James C. Zachos (2008). Target Atmospheric CO₂: Where Should Humanity Aim? The Open Atmospheric Science Journal, 2: S. 217-231. URL: http://www.bentham-open.org/pages/gen.php?file=217T0ASCJ.pdf&PHPSESSID=904ac14587397742a2a3c3eaecb1dc33. Zugriff am 13.08.2010.
- Happe, Axel (2010). Bau für Algenzucht mit Rauchgas begonnen. Vattenfall Europe, Berlin. URL: http://www.pressrelations.de/new/standard/result_main.cfm? aktion=jour_pm&r=405990. Zugriff am 03.06.2010.
- Hartmann, Claus und Olav Hohmeyer (2010). Knappe CO_2 -Speicherstätten für Biomasse-CCS. energiewirtschaftliche tagesfragen, 60(1/2): S. 144–148.

- Hartmann, Hans, Thorsten Böhm und Leonhard Maier (2000a). Naturbelassene biogene Festbrennstoffe: Umweltrelevante Eigenschaften und Einflussmöglichkeiten.
 Bayerisches Staatsministerium für Landesentwicklung und Umweltfragen, München. URL: http://www.tfz.bayern.de/sonstiges/27761/brennstoffqualitaet_ lfu_materialien154.pdf. Zugriff am 15.12.2009.
- Hartmann, Hans, Thorsten Böhm und Leonhard Maier (2000b). Naturbelassene biogene Festbrennstoffe: Umweltrelevante Eigenschaften und Einflussmöglichkeiten. Anhang B -D. Bayerisches Staatsministerium für Landesentwicklung und Umweltfragen, München. URL: http://www.tfz.bayern.de/sonstiges/27761/weiterer_datenanhang.pdf. Zugriff am 15.12.2009.
- Heddle, Gemma, Howard Herzog und Michael Klett (2003). The Economics of CO₂ Storage. Massachusetts Institute of Technology, Cambridge. URL: http://sequestration. mit.edu/pdf/LFEE_2003-003_RP.pdf. Zugriff am 18.03.2010.
- Heidel, Kenton, David Keith, Arvinder Singh und Geoff Holmes (2011). Process design and costing of an air-contactor for air-capture. Energy Procedia, 4: S.2861-2868. URL: http://ac.els-cdn.com/S1876610211003894/1-s2.0-S1876610211003894main.pdf?_tid=da620bbaf6c024ed357f336e9ca7b66d&acdnat=1337322604_ 8db2b8b47b5fe1e5ced791e0b26a92a2. Zugriff am 18.05.2012.
- Heidug, Wolf, Robin Smale, John Ward, Max Krahe, Adam Brown, Anselm Eisentraut, Christina Hood, Ellina Levina, Juho Lipponen, Matthias Finkenrath, Sabine Fuss und Florian Kraxner (2012). A Policy Strategy for Carbon Capture and Storage. International Energy Agency (IEA), Paris. URL: http://iea.org/papers/2012/ policy_strategy_for_ccs.pdf. Zugriff am 09.03.2012.
- Hendriks, Chris, Wina Graus und Frank van Bergen (2004). Global carbon dioxide storage potential and costs. Ecofys, TNO, Utrecht. URL: http://www.ecofys. com/com/publications/documents/GlobalCarbonDioxideStorage.pdf. Zugriff am 26.02.2009.
- Hendriks, Chris, John Gale, Wim Turkenburg, Daniel Jansen und Henk Pagnier (2010). GHGT-10 Conference Programme. Greenhouse Gas Control Technologies, Amsterdam.
- Heret, Robert (2005). Formel zur Entfernungsberechnung mit 2 Geokoordinaten. Heret Informatik Service, Liederbach. URL: http://www.koordinaten.de/informationen/ formel.shtml. Zugriff am 02.12.2011.

- Herrmann, Nicolai Tobias (2009). Regional Energy 2050. A sustainability-oriented strategic backcasting methodology for local utilities. Dissertation, Universität Flensburg.
- Hoferichter, Andrea (2010). Klimakiller oder Kassenknüller. Pictures of the Future (Siemens), S. 47-48. URL: http://www.siemens.com/innovation/pool/ de/Publikationen/Zeitschriften_pof/pof_fruehjahr_2010/pof-1-2010-ddoppel.pdf. Zugriff am 12.05.2012.
- Hofmann, Frank, André Plättner, Sönke Lulies und Frank Scholwin (2009). Einspeisung von Biogas in das Erdgasnetz. Fachagentur Nachwachsende Rohstoffe e.V. (FNR), Leipzig. URL: http://mediathek.fnr.de/downloadable/download/sample/ sample_id/241/. Zugriff am 01.06.2012.
- Hofmann, Martin (2009). Energieholzproduktion in der Landwirtschaft. Fachagentur Nachwachsende Rohstoffe e. V. (FNR), Gülzow. URL: http://www.fnr-server.de/ftp/ pdf/literatur/pdf_292-brosch_energieholzproduktion_2010_v04.pdf. Zugriff am 04.03.2012.
- Holloway, Sam, Anhar Karimjee, Makoto Akai, Riitta Pipatti und Kristin Rypdal (2006). Chapter 5: Carbon dioxide transport, injection and geological storage. In 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Volume 2: Energy, herausgegeben von Simon Eggleston, Leandro Buendia, Kyoko Miwa, Todd Ngara und Kiyoto Tanabe, S. 5.1-5.32. Institute for Global Environmental Strategies (IGES), Hayama. URL: http://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/ V2_5_Ch5_CCS.pdf. Zugriff am 29.04.2012.
- Holmgren, Magnus (2010). X Steam version 2.4: IAPWS IF97 Excel Steam Tables. URL: http://www.x-eng.com/Download_XSteam.htm. Zugriff am 11.11.2010.
- Holzhammer, Uwe (2008). Klimaschutzziele der Bundesregierung: Welche Rolle wird die Biogasaufbereitung dabei spielen und welche gesetzlichen Rahmenbedingungen werden durch die Bundesregierung hierfür geschaffen? In Biogasaufbereitung zu Biomethan. 6. Hanauer Dialog, herausgegeben von dem Institut für Solare Energieversorgungstechnik, Verein an der Universität Kassel e. V. (ISET), S. 18-33. Kassel. URL: http://www. iset.uni-kassel.de/public/hanauer_dialog/2008_Hanauer-Dialog_Tb.pdf. Zugriff am 01.06.2012.
- House, J. I., C. I. Prentice und C. Le Quére (2002). Maximum impacts of future reforestation or deforestation on atmospheric CO₂. Global Change Biology, 8: S. 1047– 1052. Zitiert nach WBGU [2008, S. 89 f.].

- IEA GHG (2004). Ship Transport of CO₂. Report PH4/30. IEA Greenhouse Gas R&D Programme, o. O. URL: http://www.ieaghg.org/docs/general_publications/PH4% 20summary%20small.pdf. Zugriff am 14.12.2010.
- IEA GHG (2007). Interactive map of all known carbon capture and storage demonstration projects. IEA Greenhouse Gas R&D Programme, o. O. URL: http: //co2captureandstorage.info/WorldMapCCSDetail.ppt. Zugriff am 10.03.2008.
- IEA/OECD (2004). Prospects für CO₂ Capture and Storage. International Energy Agency (IEA), Organisation for Economic Co-operation and Development (OECD), Paris. URL: http://www.gwpc.org/e-library/documents/co2/Report% 20IEA%20CCS%20Prospects%2011-17-2004.pdf. Zugriff am 21.04.2012.
- IMechE (2013). BECCS for electricity land-use tensions. Institution of Mechanical Engineers, London. URL: http://www.imeche.org/docs/default-source/furtherlearning/bioenergy-with-ccs.pdf?sfvrsn=0. Zugriff am 17.10.2013.
- Irons, Robin, Gnanapandithan Sekkappan, Raghbir Panesar, Jon Gibbins und Mathieu Lucquiaud (2007). CO₂ Capture Ready Plants. IEA Greenhouse Gas R&D Programme, Nottingham. URL: http://www.iea.org/Textbase/Papers/2007/CO2_ Capture_Ready_Plants.pdf. Zugriff am 09.05.2009.
- Jannsen, Sünje (2008). Alternativen zum Einsatz von Waldholzhackschnitzeln im Heizkraftwerk der Stadtwerke Flensburg. Praxisarbeit im Rahmen des gemeinsamen Studiengangs "Energie- und Umweltmanagement" der Universität Flensburg und der Fachhochschule Flensburg. Flensburg.
- Jochem, E., P. Radgen, C. Schmid, W. Mannsbart, J. Schleich, W. Pfaffenberger, W. Schulz, A. Voss, M. Blesl, U. Fahl, J. Zschernig, J. Sager, H. Fahlenkamp, D. Hölder und C. Dötsch (2000). Stragegien und Technologien einer pluralistischen Fernund Nahwärmeversorgung in einem liberalisierten Energiemarkt unter besonderer Berücksichtigung der Kraft-Wärme-Kopplung und erneuerbarer Energien. Arbeitsgemeinschaft Fernwärme e. V., Frankfurt am Main. URL: http://www.agfw.org/fileadmin/ dokumente/for/PWVorstudie.pdf. Zugriff am 27.01.2011.
- Joos, Franz (2006). Technische Verbrennung. Verbrennungstechnik, Verbrennungsmodellierung, Emissionen. Springer, Berlin.
- Kaltschmitt, Martin, Dieter Merten, Nicolle Fröhlich und Moritz Nill (2003). Energiegewinnung aus Biomasse. Externe Expertise für das WBGU-Hauptgutachten 2003

"Welt im Wandel: Energiewende zur Nachhaltigkeit". Institut für Energetik und Umwelt, Berlin, Heidelberg. URL: http://www.wbgu.de/wbgu_jg2003.html. Zugriff am 21.01.2011.

- Kaltschmitt, Martin, Wolfgang Streicher und Andreas Wiese (2006). Erneuerbare Energien. Systemtechnik, Wirtschaftlichkeit, Umweltaspekte. Springer, Berlin, Heidelberg.
- Kaltschmitt, Martin, Hans Hartmann und Hermann Hofbauer (2009). Energie aus Biomasse. Grundlagen, Techniken und Verfahren. Springer, Berlin.
- Kapfer, Margit (2005). Ökologische und ökonomische Bewertung der geologischen CO₂-Speicherung als Klimaschutzmaßnahme in Österreich. Dissertation, Universität Wien, Karl-Franzens Universität Graz. URL: http://stefan.schleicher.wifo.ac.at/ down/diss/DISS_Kapfer.pdf. Zugriff am 30.06.2011.
- Karampinis, Emmanouil und Panagiotis Grammelis (2012). Appendix Fuel behaviour. In The Bioenergy System Planners Handbook - BISYPLAN. Linnæus University, Växjö. URL: http://bisyplan.bioenarea.eu/html-files-en/fuel_behaviour_ appendix.html. Zugriff am 06.12.2013.
- Karl, Jürgen (2006). Dezentrale Energiesysteme. Neue Technologien im liberalisierten Energiemarkt. Oldenbourg, München, 2., verb. Auflage. Zitiert nach Brammann [2010, S. 15].
- Karlsson, Henrik und Lennart Byström (2011). Global Status of BEC-CS Projects 2010. Global CCS Institute, Biorecro AB, Canberra, Stockholm. URL: http://www.globalccsinstitute.com/sites/default/files/GCCSI_ Biorecro_Global_Status_of_BECCS_110302_report.pdf. Zugriff am 16.04.2011.
- Katz, Tobias (2010). Ein Beitrag zur Bewertung von Maßnahmen zur CO₂-Abscheidung und -Speicherung unter dem Aspekt der Nachhaltigkeit. Dissertation, Rheinisch-Westfälische Technische Hochschule Aachen. URL: darwin.bth.rwth-aachen.de/ opus3/volltexte/2010/3308/pdf/3308.pdf. Zugriff am 27.05.2011.
- Kelsall, Greg (2011). Alstom experience with biomass cofire and plans for coal CCS. Präsentation auf 2. International Workshop on Biomass & CCS. AL-STOM, Cardiff. URL: http://www.cu-gtrc.co.uk/files.html?id=56&PHPSESSID= 6bf7b98554c04bde714bd3bc502a6d28. Zugriff am 30.04.2012.
- Kerr, Tom und Brendan Beck (2009). Technology Roadmap Carbon capture and storage. International Energy Agency (IEA), Paris. URL: http://www.iea.org/papers/2009/ CCS_Roadmap.pdf. Zugriff am 10.01.2010.

- Kiesel, Florentine und Thomas Herkner (2010). Energiemarkt Deutschland. Zahlen und Fakten zur Gas-, Strom- und Fernwärmeversorgung. Bundesverband der Energie- und Wasserwirtschaft e. V. (BDEW), Berlin. URL: http://www.vewsaar.de/ fileadmin/dokumente/Energie/pdf/EnergieMarktDeutschland_2010.pdf. Zugriff am 17.02.2011.
- Kirchner, Almut, Michael Schlesinger, Bernd Weinmann, Peter Hofer, Vincent Rits, Marco Wünsch, Marcus Koepp, Lucas Kemper, Ute Zweers, Samuel Straßburg, Felix Chr. Matthes, Julia Busche, Verena Graichen, Wiebke Zimmer, Hauke Hermann, Gerhard Penninger und Lennart Mohr (2009). Modell Deutschland. Klimaschutz bis 2050. Vom Ziel her denken. Prognos AG, Öko-Institut e.V., Basel, Berlin. URL: http://www.wwf.de/fileadmin/fm-wwf/pdf_neu/WWF_Modell_ Deutschland_Endbericht.pdf. Zugriff am 13.03.2011.
- Klebes, Jürgen, Marinus Joormann und Sven Winter (2010). Dampfturbinen und CO₂-Abscheidung. Präsentation auf VGB Fachtagung Dampfturbinen, Lübeck.
- Klein, David, Nico Bauer, Benjamin Bodirsky, Jan Philipp Dietrich und Alexander Popp (2011). Bio-IGCC with CCS as a long-term mitigation option in a coupled energy-system and land-use model. Energy Procedia, 4: S.2933-2940. URL: http://ac.els-cdn.com/S1876610211003985/1-s2.0-S1876610211003985main.pdf?_tid=26998bbe0e09c8a294db73fea7a83bbf&acdnat=1337339296_ a59f96522049523685d5e8be3bd7abfa. Zugriff am 18.05.2012.
- Knopf, Stefan, Franz May, Christian Müller und Johannes Peter Gerling (2010). Neuberechnung möglicher Kapazitäten zur CO₂-Speicherung in tiefen Aquifer-Strukturen. energiewirtschaftliche tagesfragen, 60(4): S. 76-80. URL: http://www.bgr.bund.de/cln_ 109/nn_1038746/DE/Themen/Geotechnik/CO2-Speicherung/Downloads/ET-knopf-2010,templateId=raw,property=publicationFile.pdf/ET-knopf-2010.pdf. Zugriff am 12.09.2010.
- Koornneef, Joris, Pieter can Breevoort, Chris Hendriks, Monique Hoogwijk, Klaas Koops und Michèle Koper (2011). *Potential for biomass and carbon dioxide capture and storage*. IEAGHG, Cheltenham.
- Kraft, Manfred und Karin Schmitz (2011). Fernwärme-Preisübersicht (Stichtag: 01.10.2011). AGFW. Der Energieeffizienzverband für Wärme, Kälte und KWK e. V., Frankfurt am Main.
- Kraft, Manfred und Karin Schmitz (2012). Fernwärme-Preisübersicht (Stichtag: 01.10.2012). AGFW. Der Energieeffizienzverband für Wärme, Kälte und KWK

e.V., Frankfurt am Main. URL: https://www.agfw.de/index.php?eID=tx_ nawsecuredl&u=0&file=fileadmin/agfw/content/linkes_menue/wirtschaft_ und_markt/markt_und_preise/Preisbildung-_Anpassung/Orig_AGFW-Preisuebersicht_2012_Versand_Internetexemplar.pdf&t=1391287920&hash= 1dbefcb31a21d3ec8cdfc0052356f2164dbc169d. Zugriff am 31.01.2014.

- Krassuki, Maria, Patrick Jochum, Julia Rufin, Hannes Ortmann und Patrick Graichen (2009). Neues Denken - Neue Energie. Roadmap Energiepolitik 2020. Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit (BMU), Berlin. URL: http://energieberater.swm.de/ContentFiles/Mantel/Downloads/ roadmap_energiepolitik_bf.pdf. Zugriff am 23.04.2009.
- Kroeger, Vanessa (2007). Die ernährungsphysiologische Bedeutung von Algen für die Ernährung des Menschen und ihre Nutzung als Lebensmittel in der Zukuft. Diplomarbeit, Hochschule für Angewandte Wissenschaften Hamburg. URL: http://opus.hawhamburg.de/volltexte/2007/287/pdf/ern_y_523.pdf. Zugriff am 03.10.2011.
- Krupp, Ralf E. (2010). Geologische Kurzstudie zu den Bedingungen und möglichen Auswirkungen der dauerhaften Lagerung von CO₂ im Untergrund. Bund für Umwelt und Naturschutz Deutschland e.V. (BUND), Berlin. URL: http://www.bund.net/fileadmin/ bundnet/pdfs/klima_und_energie/20101118_klima_energie_ccs_studie.pdf. Zugriff am 26.05.2012.
- Kuckshinrichs, Wilhelm, Peter Markewitz, Jochen Linssen, Petra Zapp, Martina Peters, Burkhard Köhler, Thomas E. Müller und Walter Leitner (2010). Weltweite Innovationen bei der Entwicklung von CCS-Technologien und Möglichkeiten der Nutzung und des Recyclings von CO₂. Forschungszentrum Jülich, Jülich. URL: http://juwel.fz-juelich. de:8080/dspace/bitstream/2128/3733/1/Energie%26Umwelt_60.pdf. Zugriff am 26.05.2012.
- Kühn, Michael und Christoph Clauser (2006). Mineralische Bindung von CO₂ bei der Speicherung im Untergrund in geothermischen Reservoiren. Chemie Ingenieur Technik, 78: S. 425-434. URL: http://www.eonerc.rwth-aachen.de/global/show_document. asp?id=aaaaaaaaaabwvsu. Zugriff am 29.05.2011.
- Langeheinecke, Klaus, Peter Jany, Eugen Sapper und Gerd Thieleke (2006). *Thermodynamik für Ingenieure*. Friedr. Vieweg & Sohn Verlag | GWV Fachverlage GmbH, Wiesbaden, 6., vollständig überarbeitete und erweiterte Auflage.
- Larson, Eric D., Haiming Jin und Fuat E. Celik (2005). Gasification-Based Fuels and Electricity Production from Biomass, without and with Carbon Capture and Storage.

Princeton. URL: http://www.princeton.edu/pei/energy/publications/texts/ LarsonJinCelik-Biofuels-October-2005.pdf. Zugriff am 19.11.2009.

- Laude, Audrey und Olivia Ricci (2011). Can Carbon Capture and Storage on small sources be profitable? An application to the ethanol sector. Energy Procedia, 4: S. 2909-2917. URL: http://ac.els-cdn.com/S187661021100395X/1-s2.0-S187661021100395Xmain.pdf?_tid=0725ecf579e0ae4a44b704d63f7487a9&acdnat=1337343364_ 7ef887efaa742b5c9d206b2fee91a16a. Zugriff am 18.05.2012.
- Linde AG (o.J.). Die Luftzerlegung. Eine Erfindung von Dr. Carl von Linde. Pullach. URL: http://www.linde-gase.de/produkte/down/26204_Luftzerleger.pdf. Zugriff am 17.06.2010.
- Linßen, J., P. Markewitz, D. Martinsen und M. Walbeck (2006). Zukünftige Energieversorgung unter den Randbedingungen einer großtechnischen CO₂-Abscheidung und Speicherung. Forschungszentrum Jülich, Jülich. URL: http://www.cooretec.de/lw_ resource/datapool/Neuigkeiten/Abschlussbericht.pdf. Zugriff am 07.05.2009.
- Lokau, Bernhard und Sven Nels (2008). *Marktanalyse Biomethan für Stadtwerke Flensburg*. Flensburg.
- Ludig, Sylvie, Markus Haller und Nico Bauer (2010). long-Tackling termclimatechange together: the case of flexible CCS and fluctuarenewable energy. Energy Procedia, 4: S. 2580-2587. URL: tinghttp://ac.els-cdn.com/S1876610211003535/1-s2.0-S1876610211003535main.pdf?_tid=9c96cd77b0c875441bcca13785251f1e&acdnat=1335017138_ f6e4b751dde254404460b85d721706bf. Zugriff am 21.04.2012.
- Maier, Sven (2010). Wirtschaftlichkeitsanalyse des Baus und möglichen Einsatzes eines Elektrodenheißwasserkessels zum Einsatz negativer Regelenergie. Bachelor-Thesis, Fachhochschule Kiel, Flensburg.
- Maier-Staud, Bernd (2011). Herausforderungen für Bioenergie neue rechtliche Rahmenbedingungen. Kiel. URL: http://www.biomassenutzung-sh.de/services/files/ www2011/111006_WWW_ZET_V60%20endg%20%282%29.pdf. Zugriff am 05.11.2011.
- Märkl, Herbert (2007). Thermodynamische Analyse. Hamburg. URL: http://www.tu-harburg.de/~bt1hm/Research/ProductionOfAlgaeBiomass/ thermodynamischeAnalyse.pdf. Zugriff am 03.10.2011.

- Martens, S., A. Liebscher, F. Möller, H. Würdemann, F. Schilling, M. Kühn und CO₂ SINK Group (2011). Progress Report on the First European on-shore CO₂ Storage Site at Ketzin (Germany) – Second Year of Injection. Energy Procedia, 4: S. 3246-3253. URL: http://ac.els-cdn.com/S1876610211004401/1-s2.0-S1876610211004401main.pdf?_tid=7d1afecf48fd00d1da67b05d2483e968&acdnat=1336811993_ c410b09258e41095557758d5e1ef9393. Zugriff am 12.05.2012.
- Masek, Ondrej (2010). Carbon capture through biochar in soils. carbon capture journal, 17: S. 17.
- Mauch, Wolfang, Roger Corradini, Karin Wiesemeyer und Marco Schwentzek (2010). Allokationsmethoden für spezifische CO₂-Emissionen von Strom und Wärme aus KWK-Anlagen. energiewirtschaftliche tagesfragen, 60(9): S. 12–14. URL: http://www.ffe. de/publikationen/fachartikel/334. Zugriff am 12.05.2011.
- May, Franz (2009). Aquifer Storage: An Option for Emission Reduction in Germany. Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), Paris. URL: http://www.ifpenergiesnouvelles.fr/content/download/67940/1473478/ file/41_May.pdf. Zugriff am 22.05.2011.
- McConnell, Chai, Yukiyo Matsuda, Ashley Newman und Faust Denis d'Ambrosi (2009a). Strategic Analysis of the Global Status of Carbon Capture and Storage. Report 1: Status of Carbon Capture and Storage Projects Globally. Global CCS Institute, Canberra. URL: http://www.globalccsinstitute.com/downloads/Reports/2009/ worley/Foundation-Report-1-rev0.pdf. Zugriff am 11.03.2010.
- McConnell, Chai, Philip Toohey und Mitchell Thompson (2009b). Strategic Analysis of the Global Status of Carbon Capture and Storage. Report 5: Synthesis Report. Global CCS Institute, Canberra. URL: http://www.globalccsinstitute.com/downloads/ Status-of-CCS-WorleyParsons-Report-Synthesis.pdf. Zugriff am 08.01.2010.
- McCoy, Sean T. (2008). The Economics of CO₂ Transport by Pipeline and Storage in Saline Aquifers and Oil Reservoirs. Dissertation, Carnegie Mellon University, Pittsburgh. URL: http://wpweb2.tepper.cmu.edu/ceic/theses/Sean_McCoy_PhD_ Thesis_2008.pdf. Zugriff am 30.12.2009.
- McKinsey (2009). Kosten und Potenziale der Vermeidung von Treibhausgasemissionen in Deutschland. Aktualisierte Energieszenarien und -sensitivitäten. McKinsey & Company.
 BDI initiativ – Wirtschaft für Klimaschutz, o.O. URL: http://www.bdi.eu/

download_content/Publikation_Treibhausgasemissionen_in_Deutschland.pdf. Zugriff am 11.01.2013.

- Menzel, Dieter (2009). Natürliche "Wärmflasche" hilft sparen. Neubrandenburger Zeitung, 9. April 2009: S. 16. URL: http://www.gtn-online.de/cms/uploads/aktuell/ waermflasche.pdf. Zugriff am 19.10.2011.
- Merklinger, A. (o. J.). Schüttdichte und Böschungswinkel verschiedener Fördergüter. Merseburg. URL: http://www.hs-merseburg.de/~merkling/Tabelle_Schuttdichten. pdf. Zugriff am 18.12.2009.
- Metz, Bert, Ogunlade Davidson, Heleen de Coninck, Manuela Loos und Leo Meyer (2005). Special Report on Carbon Dioxide Capture and Storage. Intergovernmental Panel on Climate Change (IPCC), Cambridge. URL: http://arch.rivm.nl/env/int/ipcc/ pages_media/SRCCS-final/SRCCS_WholeReport.pdf. Zugriff am 10.03.2008.
- Milles, Uwe (2009). Geothermische Stromerzeugung im Verbund mit Wärmenetz. BINE Informationsdienst, Bonn. URL: https://www.geothermie-unterhaching. de/cms/geothermie/web.nsf/gfx/DC2BD8DC79256F61C1257663003BCB2B/\$file/ Projektinfo_BINE_deutsch.pdf. Zugriff am 14.10.2013.
- MIT (2007). The Future of Coal. Massachusetts Institute of Technology, Massachusetts. URL: http://web.mit.edu/coal/The_Future_of_Coal.pdf. Zugriff am 03.09.2009.
- Moreira, José Roberto (2008). Biomass for energy: Uses, present market, potential and costs. In IPCC Scoping Meeting on Renewable Energy Sources, herausgegeben von Olav Hohmeyer und Tom Trittin, S. 13–32. Intergovernmental Panel on Climate Change (IPCC), Lübeck. URL: http://www.ipcc.ch/pdf/supporting-material/ proc-renewables-lubeck.pdf. Zugriff am 12.07.2009.
- Muhammadieh, Muhammad (2007). Beitrag zur Ermittlung des Ansatzbildungspotenzials von Braunkohlen in Dampferzeugern. Dissertation, Technische Universität Bergakademie Freiberg. URL: https://fridolin.tu-freiberg.de/archiv/pdf/ VerfahrenstechnikMuhammadMuhammadieh063395.pdf. Zugriff am 17.12.2009.
- Müller-Langer, Franziska, Anastasios Perimenis, Sebastian Brauer, Daniela Thrän und Martin Kaltschmitt (2008). Technische und ökonomische Bewertung von Bioenergie-Konversionspfaden. Externe Expertise für das WBGU-Hauptgutachten "Welt im Wandel: Zukunftsfähige Bioenergie und nachhaltige Landnutzung". Deutsches BiomasseForschungsZentrum (DBFZ), Berlin. URL: http://www.wbgu.de/fileadmin/templates/

dateien/veroeffentlichungen/hauptgutachten/jg2008/wbgu_jg2008_ex06.pdf. Zugriff am 15.04.2011.

- Nauclér, Tomas, Warren Campell und Jurriaan Ruijs (2008). Carbon Capture & Storage: Assessing the Economics. McKinsey & Company, o. O. URL: http://www. mckinsey.com/clientservice/ccsi/pdf/CCS_Assessing_the_Economics.pdf. Zugriff am 06.02.2009.
- Nilsson, Per Arne (2010). CO2 shipping do the numbers add up? carbon capture journal, 15: S. 25–27.
- Nitsch, Joachim (2008). Weiterentwicklung der Ausbaustrategie Erneuerbare Energien. Leitstudie 2008. Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit (BMU), Berlin. URL: http://www.bmu.de/fileadmin/bmu-import/files/ pdfs/allgemein/application/pdf/leitstudie2008.pdf. Zugriff am 23.01.2013.
- Nitsch, Joachim und Bernd Wenzel (2009). Langfristszenarien und Strategien für den Ausbau erneuerbarer Energien in Deutschland. Leitszenario 2009.
 Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit (BMU), Berlin. URL: http://www.erneuerbare-energien.de/files/pdfs/allgemein/ application/pdf/leitszenario2009_bf.pdf. Zugriff am 05.11.2009.
- Nord, Lars O. und Olav Bolland (2011). Plant flexibility of a precombustion CO₂ capture cycle. Energy Procedia, 4: S.2556-2563. URL: http://ac.els-cdn.com/S187661021100350X/1-s2.0-S187661021100350Xmain.pdf?_tid=a76b3d69100174dfb94b34a06171ee01&acdnat=1337329869_ 1684be7fedf1d05d8a6d30f3c64a84a6. Zugriff am 18.05.2012.
- Nordmeyer, Norbert (2008). Bioerdgaseinspeisung aus Sicht eines Netzbetreibers. In Biogasaufbereitung zu Biomethan. 6. Hanauer Dialog, herausgegeben von dem Institut für Solare Energieversorgungstechnik, Verein an der Universität Kassel e. V. (ISET), S. 182-185. Kassel. URL: http://www.iset.uni-kassel.de/public/hanauer_dialog/ 2008_Hanauer-Dialog_Tb.pdf. Zugriff am 01.06.2012.
- Obernberger, Ingwald und Gerold Thek (2008). Cost assessment of selected decentralised CHP applications based on biomass combustion and biomass gasification. Graz. URL: http://www.bios-bioenergy.at/uploads/media/Paper-Obernberger-Cost-assessment-CHP-BM-comustion-gasification-2008-05-30.pdf. Zugriff am 03.06.2010.

- Ocik, Martina, Michael Nelles, Abdallah Nassour, Dieter Steinbrecht, Ralf Ketelhut und Gerhard Langpohl (2009). Dezentrale Verwertung von Ersatzbrennstoffen und heizwertreichen Sortierresten in Mecklenburg-Vorpommern. Ministerium für Wirtschaft, Arbeit und Tourismus Mecklenburg-Vorpommern, Schwerin. URL: http://service. mvnet.de/_php/download.php?datei_id=19287. Zugriff am 29.11.2013.
- Odenberger, Mikael und Rickard Svensson (2003). Transportation systems for CO₂ -Application to Carbon Sequestration. Master-Thesis, Chalmers University of Technology. Zitiert nach Clarke et al. [2004, S. 101], Fischedick et al. [2007, S. 71].
- Oertel, Dagmar (2008). Energiespeicher Stand und Perspektiven. Büro für Technikfolgen-Abschätzung beim Deutschen Bundestag (TAB), Berlin. URL: http://www.tab-beim-bundestag.de/de/pdf/publikationen/berichte/TAB-Arbeitsbericht-ab123.pdf. Zugriff am 01.06.2012.
- Ogriseck, Katrin und Uwe Milles (2006). Kraftwerke mit Kohlevergasung. Projektinfo 09/06. BINE Informationsdienst, FIZ Karlsruhe GmbH, Karlsruhe. URL: http://www.bine.info/fileadmin/content/Publikationen/Projekt-Infos/2006/Projekt-Info_09-2006/projekt_0906internet-x.pdf. Zugriff am 03.09.2009.
- o. V. (2010a). Algenzuchtpilotanlage bei HKW Blumenthal in Betrieb gegangen. Euwid Neue Energie, 15: S. 37.
- o. V. (2010b). Geothermie- und Bauernverband lehnen CCS-Entwurf wiederholt ab. Euwid Neue Energie, 18: S. 32.
- o.V. (2012). EU-Kommission hinterfragt die Zukunft von Carbon Capture and Storage (CCS). Euwid Neue Energie, 35: S. 22.
- Parsons, Edward L., Walter W. Shelton und Jennifer L. Lyons (2002). Advanced Fossil Power Systems Comparison Study. National Energy Technology Laboratory (NETL), Pittsburgh. URL: http://www.netl.doe.gov/publications/others/ techrpts/AdvFossilPowerSysCompStudy.pdf. Zugriff am 26.11.2010.
- Plasynski, Sean I. und Dawn M. Deel (2010a). Transporting CO₂ Launch of the European COCATE Project Led by IFP. National Energy Technology Laboratory (NETL). Carbon Sequestration Newsletter, February 2010: S.2. URL: http://www.netl. doe.gov/technologies/carbon_seq/refshelf/news/2010/02-10.pdf. Zugriff am 30.05.2010.

- Plasynski, Sean I. und Dawn M. Deel (2010b). Geological storage of CO₂ in saline aquifers – A review of the experience from existing storage operations. National Energy Technology Laboratory (NETL). Carbon Sequestration Newsletter, March 2010: S. 4. URL: http://www.netl.doe.gov/technologies/carbon_seq/refshelf/ news/2010/03-10.pdf. Zugriff am 30.05.2010.
- Popp, Alexander, Jan Philipp Dietrich, Hermann Lotze-Campen, David Klein, Nico Bauer, Michael Krause, Tim Beringer, Dieter Gerten und Ottmar Edenhofer (2011). The economic potential of bioenergy for climate change mitigation with special attention given to implications for the land system. Potsdam Institute for Climate Impact Research (PIK), Potsdam. URL: http://anpron.eu/wp-content/uploads/2011/08/Theeconomic-potential-of-bioenergy-for-climate-change-mitigation-withspecial-attention-given-to-implications-for-the-land-system.pdf. Zugriff am 02.09.2011.
- PowerPlantCCS (2010). Algae based Carbon Capture. o.O. URL: http://www.powerplantccs.com/ccs/cap/fut/alg/alg.html. Zugriff am 28.05.2010.
- Price, Jeffrey und Brian Smith (2008). Geologic Storage of Carbon Dioxide. Staying safely underground. IEA Greenhouse Gas R&D Programme, Virginia. URL: http:// www.ieagreen.org.uk/glossies/geostoragesafe-web.pdf. Zugriff am 03.09.2009.
- Quaschning, Volker (2002). Spezifische Kohlendioxidemissionen verschiedener Brennstoffe. o. O. URL: http://www.volker-quaschning.de/datserv/CO2-spez/index.php. Zugriff am 21.01.2011.
- Quéré, Corinne Le, Christian Rödenbeck, Erik T. Buitenhuis, Thomas J. Conway, Ray Langenfelds, Antony Gomez, Casper Labuschagne, Michel Ramonet, Takakiyo Nakazawa, Nicolas Metzl, Nathan Gillett und Martin Heimann (2007). Saturation of the Southern Ocean CO₂ Sink Due to Recent Climate Change. Science, 316: S. 1735–1737. URL: http://www.kuuvikriver.info/uploads/science/saturation_of_the_southern_ocean_CO2_sink_due_to_recent_climate_change.pdf. Zugriff am 19.06.2011.
- Radgen, Peter, Clemens Cremer, Sebastian Warkentin, Peter Gerling, Franz May und Stephan Knopf (2006). Verfahren zur CO₂-Abscheidung und -Speicherung. Abschlussbericht. Umweltbundesamt, Dessau. URL: http://www.umweltdaten.de/publikationen/ fpdf-1/3077.pdf. Zugriff am 22.02.2009.
- Ranjan, Manya und Howard J. Herzog (2011). Feasibility of air capture. Energy Procedia, 4: S. 2869–2876. URL: http://ac.

els-cdn.com/S1876610211003900/1-s2.0-S1876610211003900-main. pdf?_tid=a71173bf8c3cc0ab26e89652c94e1f3f&acdnat=1336931930_ 74c81a4d8680bcffbe76c22b1d7a8a56. Zugriff am 13.05.2012.

- Rasmussen, Mark (2008). Carbon Dioxide Capture with Algae. o.O. URL: http: //www.sartec.com/co2capture.pdf. Zugriff am 28.05.2010.
- Rat für Nachhaltige Entwicklung (2008). Position des Nachhaltigkeitsrates zu aktuellen Fragen der Klima- und Energiepolitik. Berlin. URL: http: //www.nachhaltigkeitsrat.de/uploads/media/Nachhaltigkeitsrat_zur_Klima-_und_Energiepolitik_Oktober_2008.pdf. Zugriff am 09.06.2011.
- Read, Peter und Jonathan Lermit (2003). Bio-Energy with Carbon Storage (BECS): a Sequential Decision Approach to the threat of Abrupt Climate Change. Wien. URL: http://www.etsap.org/worksh_6_2003/2003P_read.pdf. Zugriff am 11.02.2010.
- Reinhold, Klaus, Christian Müller und Cornelia Riesenberg (2011). Informationssystem Speichergesteine für den Standort Deutschland. Synthese. Abschlussbericht. Bundesanstalt für Geowissenschaften und Rohstoffe, Berlin, Hannover. URL: http://www.bgr.bund.de/DE/Themen/C02Speicherung/Downloads/ Speicherkataster_synthese.pdf?__blob=publicationFile&v=4. Zugriff am 29.07.2012.
- Rhodes, James und David Keith (2003). Biomass energy with geological sequestration of CO₂: Two for the price of one? Kyoto. URL: http://www.ucalgary.ca/~keith/ papers/55.Rhodes.2003.BiomassWithSequestration.f.pdf. Zugriff am 12.09.2008.
- Rhodes, James und David Keith (2005). Engineering economic analysis of biomass IGCC with carbon capture and storage. Biomass & Bioenergy, 29: S. 440-450. URL: http: //www.ucalgary.ca/~keith/papers/67.Rhodes.2005.BiomassCCS.e.pdf. Zugriff am 12.09.2008.
- Rhodes, James und David Keith (2008). Biomass with capture: negative emissions within social and environmental constraints: an editorial comment. Climatic Change, 87: S. 321-328. URL: http://www.springerlink.com/content/f14824w8v6757nv6/fulltext.pdf. Zugriff am 08.10.2009.
- Rhodes, James S. (2007). Carbon mitigation with biomass: An engineering, economic and policy assessment of opportunities and implications. Dissertation, Carnegie Mellon University. URL: http://people.ucalgary.ca/~keith/Thesis/TH6_Rhodes_2007. pdf. Zugriff am 19.06.2011.

- Ricci, Olivia und Sandrine Selosse (2011). Global and regional potential for bioelectricity with carbon capture and storage. University of Orleans, MINES ParisTech, Orleans, Paris. URL: http://hal-ensmp.archives-ouvertes.fr/docs/00/66/14/74/PDF/ WP_201103_Ricci-Selosse.pdf. Zugriff am 14.01.2013.
- Richter, Ulf (2008). Biogasaufbereitung mit der Druckwasserwäsche. In Biogasaufbereitung zu Biomethan. 6. Hanauer Dialog, herausgegeben von dem Institut für Solare Energieversorgungstechnik, Verein an der Universität Kassel e. V. (ISET), S. 94-96. Kassel. URL: http://www.iset.uni-kassel.de/public/hanauer_dialog/2008_Hanauer-Dialog_Tb.pdf. Zugriff am 01.06.2012.
- Røine, Kjetil, Endre Tvinnereim und Henrik Hasselknippe (2008). Carbon 2008 Post-2012 is now. Point Carbon, Kopenhagen. URL: http://www.pointcarbon.com/polopoly_ fs/1.912721!Carbon_2008_dfgrt.pdf. Zugriff am 22.11.2010.
- Robbi, Steffen und Achim Dittmann (2008). Das Spannungsfeld einer ökologischen Bewertung von KWK-Anlagen. Dresden. URL: http://tudresden.de/die_tu_dresden/fakultaeten/fakultaet_maschinenwesen/iet/ ew/aktuell/ls_kolloquium/CO2_Emissionen_Dittmann_Robbi.pdf. Zugriff am 16.09.2011.
- Rochon, Emily, Erika Bjureby, Paul Johnston, Robin Oakley, David Santillo, Nina Schulz und Gabriela von Goerne (2008). Falsche Hoffnung: Warum CO₂-Abscheidung und -Lagerung das Klima nicht retten werden. Greenpeace International, Amsterdam. URL: http://www.greenpeace.de/fileadmin/gpd/user_upload/themen/ klima/CCS_Studie_False_Hope_2008_d.pdf. Zugriff am 22.02.2009.
- Rubin, Edward S., Chao Chen und Anand B. Rao (2007a). Cost and performance of fossil fuel power plants with CO₂ capture and storage. Energy Policy, 35: S.4444-4454. URL: http://www.chemeng.mcmaster.ca/courses/che4w4/wm4W4/Rubin%20Cost%20and%20perfromance%20of%20fossil%20fuel%20power% 20plants%20with%20C02%20Energy%20Policy%202007.pdf. Zugriff am 21.04.2012.
- Rubin, Edward S., Sonia Yeh, Matt Antes, Michael Berkenpas und John Davison (2007b). Use of experience curves to estimate the future cost of power plants with CO₂ capture. International Journal of Greenhouse Gas Control, 1: S.188-197. URL: http://www.iecm-online.com/PDF%20files/2007/2007a%20Rubin% 20et%20al,%20Intl%20Jour%20of%20GHG%20(Feb).pdf. Zugriff am 25.06.2009.
- RWE (2008). Das RWE-Algenprojekt in Bergheim-Niederaussem. RWE Power AG, Köln. URL: http://www.rwe.com/web/cms/mediablob/de/2374/data/213188/1096/rwe-

power-ag/klimaschutz/innovationszentrum-kohle/algenprojekt/broschalgenprojekt.pdf. Zugriff am 28.05.2010.

- RWE (o.J.). RWE Fernwärmeversorgung Marl. RWE Vertrieb AG, Dortmund. URL: http://www.rwe.de/web/cms/de/124234/rwe-energiedienstleistungen/ produkte/rwe-favoritfernwaerme/privatkunden/rwe-fernwaerme-marl/. Zugriff am 27.11.2011.
- Sarv, Hamid (1999). Large-scale CO₂ Transportation and Deep Ocean Sequestration. Mc-Dermott Technology, Inc., Alliance. URL: http://www.osti.gov/bridge/servlets/ purl/833297-ddMwv1/native/833297.pdf. Zugriff am 10.12.2010.
- Schagerl, Michael (2008). Algenkraftwerk (Home Edition). Wien. URL: http://www.eoos. com/cms/fileadmin/medienpool/Algenkraftwerk/Datenblatt%20Plant%201.pdf. Zugriff am 03.10.2011.
- Schallenberg, Kuno (1998). Einfluß der Netztemperaturen in den Abnehmersystemen auf den Wärmegestehungspreis. In Scientific Technical Report. Geothermie Report 98-1, herausgegeben von Ernst Huenges, S. 81-95. GeoForschungsZentrum Potsdam, Potsdam. URL: http://bib.gfz-potsdam.de/pub/str9809/9809-6.pdf. Zugriff am 15.10.2011.
- Schiffer, Hans-Wilhelm und Uwe Maaßen (2009). Braunkohle in Deutschland 2009. Bundesverband Braunkohle (DEBRIV), Köln. URL: http://www.braunkohle. de/tools/download.php?filedata=1240416079.pdf&filename=Debriv_IZB_ 20090421.pdf&mimetype=application/pdf. Zugriff am 13.03.2010.
- Schilling, F., G. Borm, H. Würdemann, F. Möller, M. Kühn und CO₂ SINK Group (2009). Status Report on the First European on-shore CO₂ Storage Site at Ketzin (Germany). Energy Procedia, 1: S. 2029-2035. URL: http://www.co2sink.org/publications/ GHGT9_Schilling%20et%20al.pdf. Zugriff am 11.03.2010.
- Schmidt, Mario (2007). Hannß Carl von Carlowitz und seine Sylvicultura Oeconomica. Pforzheim. URL: http://umwelt.hs-pforzheim.de/sonstiges/historisches/ carlowitz-titel-inhalt/. Zugriff am 17.03.2011.
- Schmidt, Thomas und Hans Müller-Steinhagen (2005). Erdsonden- und Aquifer-Wärmespeicher in Deutschland. Stuttgart. URL: http://www.swt-stuttgart.de/ SWT-Forschung/Veroeffentlichungen/Puplic/05-02.pdf. Zugriff am 11.10.2011.
- Schmitz, Karl W. und Gunter Schaumann (2005). *Kraft-Wärme-Kopplung.* Springer, Berlin.

- Scholwin, Frank, Jens Michel, Gerd Schröder und Martin Kalies (2006). Ökologische Analyse einer Biogasnutzung aus nachwachsenden Rohstoffen. Leipzig. URL: http://www.fnr-server.de/ftp/pdf/literatur/pdf_273ie%20%282007% 29%20endbericht_oekobilanzen_final.pdf. Zugriff am 13.03.2010.
- Scholz, Volkhard, Felipe Ruiz Lorbacher und Hendrik Spikermann (2009). Technologien der Ernte und Rodung von Kurzumtriebsplantagen. In Anbau und Nutzung von Bäumen auf landwirtschaftlichen Flächen, herausgegeben von Tatjana Reeg, Albrecht Bemmann, Werner Konold, Dieter Murach und Heinrich Spiecker, S. 99–112. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
- Scholz, Yvonne (2009). Möglichkeiten und Grenzen der Integration verschiedener regenerativer Energiequellen zu einer 100% regenerativen Stromversorgung der Bundesrepublik Deutschland bis zum Jahr 2050. Deutsches Zentrum für Luft- und Raumfahrt (DLR), Sachverständigenrat für Umweltfragen, Berlin. URL: http: //www.umweltrat.de/SharedDocs/Downloads/DE/03_Materialien/2010_09_ MAT42_DZLR_Integration_Energiequellen_2050.pdf?__blob=publicationFile. Zugriff am 18.01.2011.
- Schulte-Schulze Berndt, Alfons (2008). Biogasaufbereitung mit der Druckwechseladsorption. In Biogasaufbereitung zu Biomethan. 6. Hanauer Dialog, herausgegeben von dem Institut für Solare Energieversorgungstechnik, Verein an der Universität Kassel e. V. (ISET), S. 72-93. Kassel. URL: http://www.iset.uni-kassel.de/public/hanauer_ dialog/2008_Hanauer-Dialog_Tb.pdf. Zugriff am 01.06.2012.
- Shepherd, John, Ken Caldeira, Peter Cox, Joanna Haigh, David Keith, Brian Launder, Georgina Mace, Gordon MacKerron, John Pyle, Steve Rayner, Catherine Redgwell und Andrew Watson (2009). *Geoengineering the climate. Science, governance and uncertainty.* The Royal Society, London. URL: http://royalsociety.org/WorkArea/ DownloadAsset.aspx?id=10768. Zugriff am 18.06.2011.
- Simon, A.J., Naluahi B. Kaahaaina, S. Julio Friedmann und Roger D. Aines (2011). Systems Analysis and Cost Estimates for Large Scale Capture of Carbon Dioxide from Air. Energy Procedia, 4: S.2893-2900. URL: http://ac.els-cdn.com/S1876610211003936/1-s2.0-S1876610211003936-main.pdf?_tid=4cf47cfc2426ae360f1a3aea1f50fcbb&acdnat=1336931898_eb72368916c09a44290748e2e06e9425. Zugriff am 13.05.2012.
- Simon, Jens und Gisela Link (2007). *PTB Mitteilungen. Themenschwerpunkt. Das In*ternationale Einheitensystem (SI). Physikalisch-Technische Bundesanstalt (PTB),

Braunschweig und Berlin. URL: http://www.ptb.de/cms/fileadmin/internet/ publikationen/DasInternationaleEinheitensystem.pdf. Zugriff am 18.12.2013.

- Simon, Ralf, Alexander Christ, Martin Deutsch und Roland Weiher (2008). Untersuchung von Biomasse- und Altholz(heiz)kraftwerken im Leistungsbereich 5 bis 20 MWel zur Erhöhung der Wirtschaftlichkeit (VGB-Nr. 302). Abschlussbericht Phase 1. Bingen. URL: http://www.tsb-energie.de/fileadmin/files/pdf/Publikationen/ Fachbeitraege/TSB_BiomasseAltholzhkw_2008.pdf. Zugriff am 08.01.2010.
- Simpson, James, Peter Cox, Geoff Ingram, Andrew Garnett und Stephanie Saunier (2009). Strategic Analysis of the Global Status of Carbon Capture and Storage. Report 2: Economic Assessment of Carbon Capture and Storage Technologies. Global CCS Institute, Canberra. URL: http://cdn.globalccsinstitute.com/sites/default/ files/publications/5751/report-2-economic-assessment-carbon-captureand-storage-technologies.pdf. Zugriff am 17.03.2012.
- Smetacek, Victor, Ulrich Bathmann und Folke Mehrtens (2009). Polarsternexpedition Lohafex gibt neue Einblicke in die Planktonökologie - Wenig atmosphärisches Kohlendioxid im Südlichen Ozean gebunden. Alfred-Wegener-Institut (AWI), Bremerhaven. URL: http://www.awi.de/index.php?id=71&type=123&cHash=0f53dece91&L= 1&tx_list_pi1[uid]=676&filename=awi.pdf. Zugriff am 13.08.2010.
- Smid, Karsten (2011). Potentielle CO₂-Endlager in Deutschland in Salzwasser führendem Tiefengestein. Greenpeace, o. O. URL: http://www.greenpeace.de/fileadmin/gpd/ user_upload/themen/klima/CO2-Lager-HuettenWerke.pdf. Zugriff am 06.11.2011.
- Smith, Steven J., Antoinette Brenkert und Jae Edmonds (2006). Biomass With Carbon Dioxide Capture and Storage In a Carbon Constrained World. College Park. URL: http://www.pnl.gov/gtsp/docs/biomass_ccs.pdf. Zugriff am 29.10.2009.
- Smolker, Rachel und Almuth Ernsting (2012). BECCS (Bioenergy with Carbon Capture and Storage): Climate saviour or dangerous hype? biofuelwatch, o. O. URL: http: //www.biofuelwatch.org.uk/wp-content/uploads/BECCS-report.pdf. Zugriff am 22.01.2013.
- Solomon, Susan, Dahe Qin, Martin Manning, R.B. Alley, T. Berntsen, N.L. Bindoff, Z. Chen, A. Chidthaisong, J.M. Gregory, G.C. Hegerl, M. Heimann, B. Hewitson, B.J. Hoskins, F. Joos, J. Jouzel, V. Kattsov, U. Lohmann, T. Matsuno, M. Molina, N. Nicholls, J. Overpeck, G. Raga, V. Ramaswamy, J. Ren, M. Rusticucci, R. Somerville, T.F. Stocker, P. Whetton, R.A. Wood und D. Wratt (2007).

Technical Summary. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, herausgegeben von Susan Solomon, Dahe Qin, Martin Manning, Zhenlin Chen, M. Marquis, K. B. Averyt, M. Tignor und H. L. Miller, S. 19-91. Cambridge University Press, Cambridge, New York. URL: http://www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-wg1-ts.pdf. Zugriff am 14.07.2011.

- SRU (2002). Umweltgutachten 2002. Für eine neue Vorreiterrolle. Sachverständigenrat für Umweltfragen, Berlin. URL: http://www.umweltrat.de/SharedDocs/Downloads/ DE/01_Umweltgutachten/2002_Umweltgutachten_Bundestagsdrucksache.pdf?__ blob=publicationFile. Zugriff am 21.04.2012.
- SRU (2009a). Abscheidung, Transport und Speicherung von Kohlendioxid. Der Gesetzesentwurf der Bundesregierung im Kontext der Energiedebatte. Stellungnahme Nr. 13. Sachverständigenrat für Umweltfragen, Berlin. URL: http://www. umweltrat.de/03stellung/downlo03/stellung/Stellung_CCS_2009_Mai.pdf. Zugriff am 07.05.2009.
- SRU (2009b). Weichenstellungen für eine nachhaltige Stromversorgung. Thesenpapier. Sachverständigenrat für Umweltfragen, Berlin. URL: http://www.umweltrat.de/ 04presse/downlo04/hintgru/2009_05_Thesen_Stromversorgung.pdf. Zugriff am 16.07.2009.
- SRU (2011a). Ökologische Leitplanken setzen, natürliche Lebensgrundlagen schützen. Empfehlungen zum Fortschrittbericht 2012 zur nationalen Nachhaltigkeitsstrategie. Kommentar zur Umweltpolitik Nr. 9. Sachverständigenrat für Umweltfragen, Berlin. URL: http://www.umweltrat.de/SharedDocs/Downloads/DE/05_Kommentare/ 2011_KOM_09_Nachhaltigkeitsstrategie.pdf?__blob=publicationFile. Zugriff am 28.12.2011.
- SRU (2011b). Wege zur 100 % erneuerbaren Stromversorgung. Sondergutachten. Sachverständigenrat für Umweltfragen, Berlin. URL: http: //www.umweltrat.de/SharedDocs/Downloads/DE/02_Sondergutachten/2011_ Sondergutachten_100Prozent_Erneuerbare.pdf?__blob=publicationFile. Zugriff am 17.02.2011.
- Staiß, Frithjof (2007). Jahrbuch Erneuerbare Energien 2007. Stiftung Energieforschung Baden-Württemberg, Bieberstein, Radebeul, 1. Auflage.

- Statistisches Bundesamt (2011). Gemeinden mit 5 000 und mehr Einwohnern nach Fläche und Bevölkerung. Wiesbaden. URL: http://www.destatis.de/jetspeed/ portal/cms/Sites/destatis/Internet/DE/Content/Statistiken/Regionales/ Gemeindeverzeichnis/Administrativ/Aktuell/07__GemeindenAktuell, property=file.xls. Zugriff am 18.11.2011.
- Steger, Ulrich, Wouter Achterberg, Kornelis Blok, Henning Bode, Walter Frenz, Corinna Gather, Gerd Hanekamp, Dieter Imboden, Matthias Jahnke, Michael Kost, Rudi Kurz, Hans Gottfried Nutzinger und Thomas Ziesemer (2004). Sustainable Development and Innovation in the Energy Sector. Springer, Heidelberg, Berlin. Zitiert nach Herrmann [2009, S. 40].
- Steinbrecher, Nils und Joachim Walter (2001). Marktübersicht dezentrale Holzvergasung: Marktanalyse 2000 für Holzvergasersysteme bis 5 MW. Öko-Institut, Darmstadt. URL: http://www.oeko.de/service/bio/dateien/de/biomarktuebersicht-2001.pdf. Zugriff am 03.06.2010.
- Stern, Nicholas (2006). Stern Review: Der wirtschaftliche Aspekt des Klimawandels. Zusammenfassung/Executive Summary. London. URL: http://www.hm-treasury. gov.uk/media/A/A/stern_longsummary_german.pdf. Zugriff am 12.04.2008.
- Strauß, Karl (2006). Kraftwerkstechnik zur Nutzung fossiler, nuklearer und regenerativer Energiequellen. VDI-Buch. Springer, Berlin, 5., völlig aktualisierte und ergänzte Auflage.
- SVB (2011). SVB in Zahlen auf einen Blick. Siegener Versorgungsbetriebe GmbH, Siegen. URL: http://www.svb-siegen.de/page.php?page=/siegen/ihre_svb/svb_in_zahlen.html&navid=65#. Zugriff am 25.11.2011.
- SWD (2011). Natürlich für Düren. Geschäftsbericht 2010. Stadtwerke Düren GmbH, Düren. URL: http://www.stadtwerke-dueren.de/ecomaXL/get_blob.php?name= Geschaeftsbericht_10.pdf. Zugriff am 27.11.2011.
- SWFL (2008-2013). Interne Daten der Stadtwerke Flensburg GmbH. Flensburg.
- SWG (2011). Geschäftsbericht 2010. Stadtwerke Göttingen AG, Göttingen. URL: http:// www.stadtwerke-goettingen.de/download/470549_geschaeftsbericht2010.pdf. Zugriff am 25.11.2011.
- SWK (2011). Jahresbericht 2010 der Stadtwerke Konstanz GmbH. Stadtwerke Konstanz GmbH, Konstanz. URL: http://stadtwerke.konstanz.de/fileadmin/

content/PDFs/Unternehmen/SWK_in_Zahlen/Jahresbericht_SWK_2010.pdf. Zugriff am 27.11.2011.

- SWL (2011). Lagebericht 2010. Stadtwerke Lünen GmbH, Lünen. URL: http://www.stadtwerke-luenen.de/swl_typo3/uploads/media/Lagebericht_ Stadtwerke_2010.pdf. Zugriff am 27.11.2011.
- SWW (2011). Geschäftsbericht 2010. Stadtwerke Witten, Witten. URL: http: //stadtwerke.contentsys.de/cs_stadtwerke/cmsfiles/gb_sw_2010.pdf. Zugriff am 27.11.2011.
- Taylor, Richard (2011). Options for biomass power with CCS: status, prospects, and risks. Präsentation auf 2. International Workshop on Biomass & CCS. E4tech, Cardiff. URL: http://www.cu-gtrc.co.uk/files.html?id=45&PHPSESSID= 6bf7b98554c04bde714bd3bc502a6d28. Zugriff am 24.03.2012.
- Thompson, Ambler und Barry N. Taylor (2008). Guide for the Use of the International System of Units (SI). National Institute of Standards and Technology (NIST), Gaithersburg. URL: http://physics.nist.gov/cuu/pdf/sp811.pdf. Zugriff am 18.12.2013.
- Thrän, Daniela, Michael Weber, Anne Scheuermann, Nicolle Fröhlich, Jürgen Zeddies, Arno Henze, Carsten Thoroe, Jörg Schweinle, Uwe Fritsche, Wolfgang Jenseit, Lothar Rausch und Klaus Schmidt (2005). Nachhaltige Biomassenutzungsstrategien im europäischen Kontext. Analyse im Spannungsfeld nationaler Vorgaben und der Konkurrenz zwischen festen, flüssigen und gasförmigen Bioenergieträgern. Institut für Energetik und Umwelt, Universität Hohenheim, Bundesforschungsanstalt für Forst- und Holzwirtschaft, Öko-Institut e. V., Leipzig. URL: http://www.bmu.de/files/pdfs/ allgemein/application/pdf/biohandel_endbericht.pdf. Zugriff am 26.04.2007.
- Töpfer, Klaus, Matthias Kleiner, Ulrich Beck, Klaus von Dohnanyi, Ulrich Fischer, Alois Glück, Jörg Hacker, Jürgen Hambrecht, Volker Hauff, Walter Hirche, Reinhard Hüttl, Weyma Lübbe, Reinhard Marx, Lucia Reisch, Ortwin Renn, Miranda Schreurs und Michael Vassiliadis (2011). Deutschlands Energiewende – Ein Gemeinschaftswerk für die Zukunft. Ethik-Kommission Sichere Energieversorgung, Berlin. URL: http://www.bundesregierung.de/Content/DE/__Anlagen/2011/05/2011-05-30abschlussbericht-ethikkommission,property=publicationFile.pdf. Zugriff am 09.06.2011.
- Turkovic, Robertino (2002). Technische und ökonomische Bewertung von Abscheidetechnologien, Transportalternativen und Speichermöglichkeiten in geologischen Formationen

für CO_2 aus fossil befeuerten Kraftwerken in Baden-Württemberg. Diplomarbeit, Universität Karlsruhe (TH).

- Tuschy, Ilja (2010). Thermodynmische Modellierung von (Heiz-)Kraftwerken. Mündliches Gespräch mit Claus Hartmann am 01.10.2010. Fachhochschule Flensburg, Flensburg.
- Tvinnereim, Endre, Kjetil Røine und Carina Heimdal (2009). Carbon 2009. Emission trading coming home. Point Carbon, Kopenhagen. URL: http://www.pointcarbon.com/polopoly_fs/1.1083376!Carbon%202009-Emission%20trading%20coming%20home.pdf. Zugriff am 21.11.2010.
- Tyrberg, Lennart (2011). Best Use of Biomass. Important aspects for sustainable RES-Chains. Energikontor Sydost AB, Växjö.
- UBA (2011a). Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix 1990-2009 und erste Schätzung 2010 im Vergleich zum Stromverbrauch. Umweltbundesamt, Dessau. URL: www.umweltbundesamt.de/energie/archiv/co2strommix.pdf. Zugriff am 15.05.2011.
- UBA (2011b). Treibhausgase deutlich unter dem Limit. Umweltbundesamt, Dessau-Roßlau. URL: http://www.umweltbundesamt.de/uba-info-presse/2011/pdf/ pd11-020_treibhausgase_deutlich_unter_dem_limit.pdf. Zugriff am 25.09.2011.
- UBA (2012a). Kraft-Wärme-Kopplung (KWK). Umweltbundesamt, Dessau-Roßlau. URL: http://www.umweltbundesamt-daten-zur-umwelt.de/umweltdaten/ public/theme.do?nodeIdent=2323. Zugriff am 22.04.2012.
- UBA (2012b). ProBas. Prozessorientierte Basisdaten für Umweltmanagement-Instrumente. Umweltbundesamt, Öko-Institut e. V., Dessau. URL: http://www. probas.umweltbundesamt.de/php/index.php? Zugriff am 12.01.2013.
- Uddin, Noim (2004). Techno-economic Assessment of a Biomass-based Cogeneration Plant with CO₂ Capture and Storage. Laxenburg. URL: www.iiasa.ac.at/Admin/ PUB/Documents/IR-04-034.pdf. Zugriff am 30.06.2011.
- UNECE (2012). Exchange Rates and PPPs by Country, Indicator and Year. Macroeconomic Overview, in Internationally Comparable Prices, by Indicator, Country and Year. Price Indices by Indicator, Country and Year. United Nations Economic Commission for Europe, o. O. URL: http://w3.unece.org/pxweb/. Zugriff am 16.03.2012.
- UNFCCC (2011). Report of the Conference of the Parties on its seventeenth session, held in Durban from 28 November to 11 December 2011. Part Two: Action taken by

the Conference of the Parties at its seventeenth session. United Nations Framework Convention on Climate Change, Durban. URL: http://unfccc.int/resource/docs/ 2011/cop17/eng/09a01.pdf#page=2. Zugriff am 27.05.2012.

- Universität Cardiff (2011). Second International Workshop on Biomass & Carbon Capture and Storage. Cardiff. URL: http://www.cu-gtrc.co.uk/categories.html?cid=55. Zugriff am 11.02.2012.
- Universität Orléans (2010). First International Workshop on Biomass & Carbon Capture and Storage. Orleans. URL: http://www.univ-orleans.fr/leo/bccs/program.php. Zugriff am 23.03.2011.
- Urban, Wolfgang, Heiko Lohmann, Kai Girod, Gregor Dachs und Christoph Zach (2009). Beseitigung technischer, rechtlicher und ökonomischer Hemmnisse bei der Einspeisung biogener Gase in das Erdgasnetz zur Reduzierung klimarelevanter Emissionen durch Aufbau und Anwendung einer georeferenzierten Datenbank. Band 4. Technologien und Kosten der Biogasaufbereitung und Einspeisung in das Erdgasnetz. Ergebnisse der Markterhebung 2007-2008. Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik (UMSICHT), BASE Technologies GmbH,, Oberhausen, Leipzig, Wuppertal, Bochum, Essen, Magdeburg, Trier. URL: http://www.biogaseinspeisung.de/download/Abschlussbericht_ Biogaseinspeisung_Band_4_Technik_Biogasaufbereitung_AP2.pdf. Zugriff am 25.05.2012.
- van Vuuren, Detlef P., Michel G. J. den Elzen, Paul L. Lucas, Bas Eickhout, Bart J. Strengers, Bas van Ruijven, Steven Wonink und Roy van Houdt (2007). Stabilizing greenhouse gas concentrations at low levels: an assessment of reduction strategies and costs. Bilthoven. URL: http://www.springerlink.com/content/1g0452x770087423/fulltext. pdf. Zugriff am 29.10.2009.
- Vangkilde-Pedersen, Thomas, Karen Lyng Anthonsen, Nikki Smith, Karen Kirk, Neele Filip, Bert van der Meer, Yann Le Gallo, Dan Bossie-Codreanu, Adam Wojcicki, Yves-Michel Le Nindre, Chris Hendriks, Finn Dalhoff und Niels Peter Christensen (2009). EU GeoCapacity. Assessing European Capacity for Geological Storage of Carbon Dioxide. o.O. URL: http://www.geology.cz/geocapacity/publications/ D16%20WP2%20Report%20storage%20capacity-red.pdf. Zugriff am 30.05.2010.
- Vanselow, Walter (2010). Vergasungswirkungsgrade für biogene und fossile Brennstoffe. Mündliches Gespräch mit Claus Hartmann am 18.05.2010. Stadtwerke Flensburg GmbH, Flensburg.

- Vattenfall (2009a). Five common misunderstandings about CCS Part II. Bridging to the Future. Newsletter on Vattenfall's project on Carbon Capture & Storage, 12: S. 67. URL: http://www.vattenfall.com/www/co2_en/co2_en/Gemeinsame_Inhalte/
 DOCUMENT/388963co2x/401837co2x/P0277108.pdf. Zugriff am 22.02.2009.
- Vattenfall (2009b). CFB an option for Oxyfuel? Bridging to the Future. Newsletter on Vattenfall's project on Carbon Capture & Storage, 12: S.10– 11. URL: http://www.vattenfall.com/www/co2_en/co2_en/Gemeinsame_Inhalte/ DOCUMENT/388963co2x/401837co2x/P0277108.pdf. Zugriff am 22.02.2009.
- Vattenfall (2009c). Energieversorgung und Klimaschutz brauchen CCS-Technologie. Vattenfall Europe AG, Berlin. URL: http://www.vattenfall.de/www/vf/vf_de/ 225583xberx/232127press/232157press/232187archi/258228press/index.jsp? pmid=166053. Zugriff am 04.09.2009.
- Vattenfall (2009d). Vattenfall explores CO₂ storage sites in Eastern Germany. Bridging to the Future. Newsletter on Vattenfall's project on Carbon Capture & Storage, 13: S. 4–5. URL: http://www2.vattenfall.com/www/co2_en/co2_en/Gemeinsame_Inhalte/DOCUMENT/388963co2x/401837co2x/P0278432.pdf. Zugriff am 31.05.2009.
- VDI (2005). VDI 4608 Blatt 1. Energiesysteme. Kraft-Wärme-Kopplung. Begriffe, Definitionen, Beispiele. Verein Deutscher Ingenieure. Beuth Verlag, Berlin.
- Versteeg, Peter und Edward S. Rubin (2011). A technical and economic assessment of ammonia-based post-combustion CO₂ capture at coalfired power plants. International Journal of Greenhouse Gas Control, 5: S.1596-1605. URL: http://www.cmu.edu/epp/iecm/IECM_Publications/2011% 20International%20Journal%20of%20Greenhouse%20Gas%20Control.pdf. Zugriff am 18.03.2012.
- Viebahn, Peter, Andrea Esken und Manfred Fischedick (2009). Energiewirtschaftliche, strukturelle und industriepolitische Analyse der Nachrüstung von Kohlekraftwerken mit einer CO₂-Rückhaltung in NRW. Wuppertal Institut für Klima, Umwelt, Energie GmbH, Wuppertal. URL: http://www.wupperinst.org/de/projekte/proj/ uploads/tx_wiprojekt/CO2_Nachruestung_NRW.pdf. Zugriff am 07.06.2009.
- Viebahn, Peter, Andrea Esken, Samuel Höller, Hans-Jochen Luhmann, Katja Pietzner und Daniel Vallentin (2010). RECCS plus. Regenerative Energien (RE) im Vergleich mit CO₂-Abtrennung und -Ablagerung (CCS). Update und Erweiterung der RECCS-Studie.
 Wuppertal Institut für Klima, Umwelt, Energie GmbH, Wuppertal. URL: http://

www.wupperinst.org/uploads/tx_wiprojekt/RECCSplus_Endbericht.pdf. Zugriff am 28.10.2010.

- Vogel, Claudia, Michael Herr, Matthias Edel und Hannes Seidl (2011). Die Mitverbrennung holzartiger Biomasse in Kohlekraftwerken. Ein Beitrag zur Energiewende und zum Klimaschutz? Deutsche Energie-Agentur GmbH (dena), Berlin. URL: http://www.dena.de/fileadmin/user_upload/Download/Pressemitteilungen/ 2011/Endbericht_Biomassenutzung_in_Kohlekraftwerken_final.pdf. Zugriff am 27.10.2011.
- von Hirschhausen, Christian, Johannes Herold, Pao-Yu Oei und Clemens Haftendorn (2012). CCTS-Technologie ein Fehlschlag – Umdenken in der Energiewende notwendig. DIW Wochenbericht, 6: S.3-9. URL: http://www.diw.de/documents/ publikationen/73/diw_01.c.392562.de/12-6.pdf. Zugriff am 27.04.2012.
- Wallquist, Lasse, Selma L'Orange Seigo, Vivianne H.M. Visschers und Michael Siegrist (2011). Public acceptance of CCS system elements: A conjoint measurement. International Journal of Greenhouse Gas Control, 6: S.77-83. URL: http://pdn.sciencedirect.com/science?_ob=MiamiImageURL&_cid=273596&_user=10&_pii=S1750583611002180&_check=y&_origin=browse&_zone=rslt_list_item&_coverDate=2012-01-31&wchp=dGLbVlk-zSkzV&md5=3fea7391dd1dd217de040894759fc4f2/1-s2.0-S1750583611002180-main.pdf. Zugriff am 09.03.2012.
- WBGU (2003). Welt im Wandel. Energiewende zur Nachhaltigkeit. Wissenschaftlicher Beirat der Bundesregierung Globale Umwelveränderung, Berlin. URL: http://www.wbgu.de/fileadmin/templates/dateien/veroeffentlichungen/ hauptgutachten/jg2003/wbgu_jg2003.pdf. Zugriff am 11.09.2011.
- WBGU (2006). Die Zukunft der Meere zu warm, zu hoch, zu sauer. Wissenschaftlicher Beirat der Bundesregierung Globale Umweltveränderungen, Berlin. URL: http://www.wbgu.de/fileadmin/templates/dateien/ veroeffentlichungen/sondergutachten/sn2006/wbgu_sn2006.pdf. Zugriff am 27.05.2011.
- WBGU (2008). Welt im Wandel. Zukunftsfähige Bioenergie und nachhaltige Landnutzung.
 Wissenschaftlicher Beirat der Bundesregierung Globale Umweltveränderungen, Berlin.
 URL: http://www.wbgu.de/wbgu_jg2008.pdf. Zugriff am 04.02.2010.
- Wenzel, Bernd und Joachim Nitsch (2010). Langfristszenarien und Strategien für den Ausbau der Erneuerbaren Energien in Deutschland bei Berücksichtigung der Entwicklung in

Europa und global. Deutsches Zentrum für Luft- und Raumfahrt (DLR), Fraunhofer Institut für Windenergie und Energiesystemtechnik (IWES), Ingenieurbüro für neue Energien (IFNE), Stuttgart, Kassel, Teltow. URL: http://erneuerbare-energien.de/ files/pdfs/allgemein/application/pdf/langfristszenarien_ee_bf.pdf. Zugriff am 10.02.2011.

- WEVG (o.J.). Wärme von der WEVG. WEVG Salzgitter GmbH & Co. KG, Salzgitter. URL: http://www.wevg.com/privatkunden/wevg-produkte/waerme/. Zugriff am 27.11.2011.
- WIBERA (2011a). Fernwärmepreisübersicht. WIBERA-Kurzumfrage zum Stichtag 1. April 2011. Wirtschaftsberatung AG Wirtschaftsprüfungsgesellschaft. Im Auftrag des AGFW, Düsseldorf.
- WIBERA (2011b). Fernwärmepreisübersicht. WIBERA-Kurzumfrage zum Stichtag 1. Oktober 2011. Wirtschaftsberatung AG Wirtschaftsprüfungsgesellschaft. Im Auftrag des AGFW, Düsseldorf.
- Wiederschein, Harald (2012). Deutschlands Flüsse werden Eiskanäle. Focus online. URL: http://www.focus.de/wissen/natur/meteorologie/wasserstrassengesperrt-deutschlands-fluesse-werden-eiskanaele_aid_710432.html. Zugriff am 27.04.2012.
- Wiesenthal, Tobias, Aphrodite Mourelatou, Jan-Erik Petersen und Peter Taylor (2006). How much bioenergy can Europe produce without harming the environment? European Environment Agency (EEA), Copenhagen. URL: http://www.eea.europa.eu/ publications/eea_report_2006_7/at_download/file. Zugriff am 04.03.2012.
- Wiley, Dianne E., Minh T. Ho und Lindsay Donde (2011). Technical and economic opportunities for flexible CO₂ capture at Australian black coal fired power plants. Energy Procedia, 4: S.1893-1900. URL: http://ac.els-cdn.com/S1876610211002657/1-s2.0-S1876610211002657main.pdf?_tid=7f8e87c10fd962a32cd82152e0b92f37&acdnat=1337329724_ 5d89f9e66203dc965e2349cf4f7e300b. Zugriff am 18.05.2012.
- Williams, Robert H. (1996). Fuel Decarbonization for Fuel Cell Applications and Sequestration of the Separated CO₂. Princeton. URL: http://www.princeton.edu/pei/ energy/publications/reports/No.295.pdf. Zugriff am 18.06.2011.
- World Shipping Register (o.J.). World Sea Ports. Germany. o.O. URL: http://e-ships.net/country/Germany.htm. Zugriff am 18.11.2011.

- WVV (2011). Geschäfts- und Nachhaltigkeitsbericht 2010. Würzburger Versorgungsund Verkehrs-GmbH (WVV), Würzburg. URL: http://www.wvv.de/media/ downloads/downloadcenter/header/unternehmen/ueber_uns/zahlen_fakten_ geschaeftsberichte/Geschaefts-_und_Nachhaltigkeitsbericht_2010.pdf. Zugriff am 25.11.2011.
- Zeschmar-Lahl, Barbara und Susanne Bergius (2011). Lexikon der Nachhaltigkeit. Aachener Stiftung Kathy Beys, Aachen. URL: http://www.nachhaltigkeit.info/ artikel/meadows_u_a_die_grenzen_des_wachstums_1972_1373.htm. Zugriff am 09.06.2011.
- Zethræus, Björn, Gianni Picchi, Lapo Casini, Jakub Sandak, Anna Sandak, Emmanouil Karampinis, Panagiotis Grammelis, Ülo Kask, Livia Kask und Janita Andrijevskaja (2012). BISYPLAN web-based handbook. The Bioenergy System Planners Handbook BISYPLAN. Linnæus University, Växjö. URL: http://bisyplan.bioenarea.eu/html-files-en/Handbook-intro.html. Zugriff am 06.12.2013.
- ZEV (2011). Zahlen und Fakten. Zwickauer Energieversorgung, Zwickau. URL: http: //www.zev-energie.de/zahlen_fakten.asp. Zugriff am 27.11.2011.

A Anhang

A.1 Anhang - Grundlagen

Tabelle A.1: Verwendete Angaben für mittlere, minimale und maximale Gehalte an C, H, O, N, S, Cl, K, Mg, Ca in biogenen Festbrennstoffen und in Braun- und Steinkohle, eigene Darstellung mit Daten für Biomasse aus Hartmann et al. [2000b, S. 148 f.], für Kohle aus Fritsche [2010a]

		С			н			0	
	Min.	Mit.	Max.	Min.	Mit.	Max.	Min.	Mit.	Max.
		in %			in %			in %	
Steinkohle	71,9	82,4	86,2	2,8	4,6	8,9	7,2	9,9	16,3
Braunkohle	67,3	69,2	70,3	5,0	5,4	5,9	19,3	22,5	26,0
Nadelholz	46,6	50,0	52,9	5,6	6,3	6,8		42,8	
Laubholz	46,8	47,8	49,7	5,7	6,2	6,5		45,0	
Getreidestroh	41,7	45,1	47,7	5,2	5,9	6,4		42,9	
Getreideganzpflanzen	41,9	45,3	47,9	5,5	6,1	6,9		43,2	
Getreidekörner	41,6	44,3	47,6	5,8	6,4	7,1		45,2	
Miscanthus	45,2	47,5	49,1	5,4	6,2	6,6		41,7	
	1	NI	I		c	Ĩ		CI	
	Min	IN N/i+	Max	Min	5 Mit	Mox	Min	Mi+	Mox
	IVIIII.	in 9/	iviax.	IVIII I.	in 9/	iviax.	IVIII I.	in 9/	iviax.
Stoinkohlo	1 1 2	1 61	2 21	0.58	1 21	3 77	0.12	0.17	0.33
Braunkohlo	0.68	0.87	2,21	0,50	1,01	3,11	0,12	0,17	0,33
Nadelbolz	0,00	0,07	0.28	0,00	0.02	0,00	0,00	0,03	0,13
	0,07	0,14	2,20	0,01	0,02	0,00	0,00	0,01	0,02
Cotroidostrob	0,11	0,49	2,00	0,01	0,04	0,22	0,01	0,02	0,07
Cotroidogonzoflanzon	0,30	1 16	1 50	0,01	0,07	0,13	0,01	0,20	0,55
Getreideganzphanzen	0,00	1,10	1,00	0,00	0,14	0,25	0,04	0,10	0,40
Misconthus	0.20	0.72	2,41	0,01	0,11	0,15	0,04	0,09	0,51
Wiscantinus	0,39	0,75	1,31	0,05	0,15	0,33	0,05	0,22	0,50
		к	I		Mg	I		Ca	
	Min.	Mit.	Max.	Min.	Mit.	Max.	Min.	Mit.	Max.
		in %			in %			in %	
Steinkohle									
Braunkohle									
Nadelholz	0,07	0,13	0,23	0,03	0,08	0,16	0,24	0,59	1,39
Laubholz	0,11	0,27	0,90	0,03	0,05	0,19	0,06	0,35	0,94
Getreidestroh	0,40	1,06	1,74	0,04	0,06	0,11	0,23	0,31	0,41
Getreideganzpflanzen	0,55	0,87	1,06	0,08	0,10	0,13	0,16	0,19	0,24
Getreidekörner	0,41	0,57	0,72	0,06	0,10	0,14	0,05	0,06	0,08
Miscanthus	0,45	0,72	1,08	0,03	0,06	0,09	0,09	0,16	0,26

A Anhang

Tabelle A.2: Verwendete Angaben für mittlere, minimale und maximale Wassergehalte, Aschegehalte, Heizwerte, flüchtige Bestandteile und Ascheschmelztemperaturen für biogene Festbrennstoffe sowie Braun- und Steinkohle, eigene Darstellung mit Daten für Biomasse aus Hartmann et al. [2000b, S. 148 f.], für Kohle aus Fritsche [2010a] (Aschegehalt und Heizwert), Kaltschmitt et al. [2009, S. 360 und S. 365] (flüchtige Bestandteile), Jannsen [2008, Anhang 8] (Ascheschmelztemperaturen bei Steinkohle), Muhammadieh [2007, S. 117] (Ascheschmelztemperaturen bei Braunkohle)

	Wa	ssergel	nalt	Aso	chegeh	alt	Hei	zwert (wf)	Flücht.	Bestar	ndteile
	Min.	Mit.	Max.	Min.	Mit.	Max.	Min.	Mit.	Max.	Min.	Mit.	Max.
		in %			in %		ir	n MJ/kg	3		in %	
Steinkohle	5,3	8,7	22,8	3,7	10,6	25,2	24,5	28,4	31,2	6,0	34,7	45,0
Braunkohle	50,0	53,4	56,0	3,9	8,4	12,1	20,3	21,8	24,7	45,0	52,1	63,0
Nadelholz				0,2	0,8	2,2	18,6	18,8	19,1	77,5	82,2	85,0
Laubholz				0,3	0,6	1,2	18,3	18,4	18,7	77,4	83,2	86,1
Getreidestroh				3,9	5,7	8,0	16,8	17,2	17,6	74,5	76,2	78,9
Getreideganzpflanzen				3,2	4,2	5,7	16,8	17,1	17,8	76,4	78,2	79,6
Getreidekörner				1,8	2,3	3,2	16,7	17,0	17,3	79,2	80,8	82,1
Miscanthus				2,3	3,9	5,6	17,3	17,7	18,0	75,8	77,6	79,9
			_			_						
	Sin	terbegi	nn	Erweid	chungs	punkt	Halb	kugelp	unkt	Fl	ießpunl	kt
	Min.	Mit.	Max.	Min.	Mit.	Max.	Min.	Mit.	Max.	Min.	Mit.	Max.
		in °C			in °C			in °C			in °C	
Steinkohle		901			1265			1411			1441	
Braunkohle					1182			1355			1441	
Nadelholz	1030	1171	1340	1170	1389	1640	1210	1521	1700	1270	1530	1700
Laubholz	1140	1190	1240	1260	1265	1270	1310	1310	1310	1340	1420	1500
Getreidestroh	820	931	1161	830	960	1163	1046	1168	1368	1100	1214	1425
Getreideganzpflanzen	782	854	990	802	886	1020	942	1043	1215	976	1080	1272
	102					-						
Getreidekörner	644	705	813	666	736	848	734	797	942	796	851	1117

A Anhang

Tabelle A.3: Literaturauswertung zu CO₂-Abscheidungskosten, Teil A, eigene Berechnung mit Daten aus Metz et al. [2005, S. 151 ff.], Fischedick et al. [2007, S. 153 ff.], Finkenrath [2011, S. 24 ff.], Parsons et al. [2002, S. 3], David [2000, S. 42 ff.], UNECE [2012]

Quelle		Parsons 2002b	Parsons 2002b	Simbeck II 2002	EA GHG IE 2004	EA GHG F 2004 a	Rubin et 1. 2005	NETL 2002	Rao & S Rubin 2002	tobbs & Clark V 2005	Villiams 2002 II	EA 2003	Ecofys H 2004	S 1994	Smelser et al., S 1991	imbeck, C E	Stork ngineering orsultancy, 1999
zitiert in		IPCC 2005, S.	IPCC 2005, S. 151	IPCC 2005, S. 1 151	IPCC 2005, S. 2	IPCC 2005, S. 2 151	IPCC 005, S. 2 151	IPCC 2005, S. 2 151	IPCC 2005, S. 2 151	IPCC F 1005, S. 2	ischedic F k et al. 2007, S. 1 153 ff.	ischedic F k et al. 2007, S. 153 ff.	Fischedic k et al. 2007, S. 2 153 ff.	David 2000, S. 2 45	David 000, S. 2 45	David 000, S. D 45	avid 2000, S. 45
Bezugsjahr für Kosten		2000	2000	2000	2004	2004	2002	2002	2000	2003	2000	2000	2000	1992	1990	1996	1997
Technologie		PC	ЪС	S	ЪС	ЪС	ЪС	S	ЪС	ЪС	РС	ЪС	S	ЪС	РС	РС	РС
Ohne CC	MMM	467	ROR	620	76.8	764	624	307	76.7	VCV	460		500	600	613.3	100	501
EI. Netto-Wirkungsgrad	wiw %	42,2	44,8	44,5	44,0	43,7	40,9	38,9	36,1	43,4	42,7	44,0	42,0	41,0	36,1	944 4,4	45,6
Investition	US\$/kW	1281	1161	1486	1319	1265	1205	1268	1236	1891	1425	1086	1085	1150	1129	1300	1022
Betrieb, Wartung	US\$/(kW·a)											000		38,8	67,7	51,9	47,3
Berrep, wartung Stromgestehungskosten Stromgestehungskosten	US\$/MWh Euro/MWh	51,5	51,0	42,9	43,9	42,8	46,1	42,3	49,2	44,5	519	33,U 41.5	0,00 43.9	42,5	47,8	47,1	39,8
Mit CC											2	P.					
CCS-Technologie El. Netto-Leistuna	MM	MEA 329	MEA 367	MEA 408	MEA 666	KS-1 676	MEA 492	MEA 283	MEA 326	MEA 311	MEA 330	MEA	MEA 385	MEA 462	MEA 338.1	MEA 336.5	MEA 362
EI. Netto-Wirkungsgrad	%	30,1	32,5	34,9	34,8	35,4	31,1	27,7	25,4	31,8	31,0	36,0	33,7	31,5	23,8	37,4	33,0
Investition Investition	US\$/kW Euro/kW	2219	1943	2578	1894	2007	1936	2373	2163	3252	2385	1823	1880	2073	2484	2022	1856
Delta Investitionskosten	US\$/kW	938	782	1092	575	742	731	1105	927	1361	1		1	923	1355	722	834
Detta Investitionskosten Betrieb. Wartung	LUSS/(kW·a)										960	131	795	84.8	196.4	80.8	88.0
Betrieb, Wartung	Euro/(kW·a)										129,0	78,0	79,7				
Delta Betrieb, Wartung Delta Betrieb, Wartung	US\$/(kW·a) Euro/(kW·a)													46,0	128,8	28,9	40,7
Stromgestehungskosten	US\$/MWh	85,6	82,4	70,9	62,4	63,0	74,1	76,6	87,0	74,3				73,7	104,4	69,8	68,6
Stromgestenungskosten Delta Stromgestehungskosten	US\$/MWh	34,1	31,4	28,0	18,5	20,2	28,0	37,8	37,8	29,8	908	6'79	94,8	31,2	56,6	22,7	28,8
Delta Stromgestehungskosten	Euro/MWh										28,7	21,4	20,9				
CO2-ruce automose and CO2-Vermeidungskosten	US\$/F	5 5	64	£ 4	67	1 8	6 4	- 64	47	8 8				45	73	39	20
Korrekturfaktor Währung		1,0827	1,0827	1,0827	0,8039	0,8039	1,0575	1,0575	1,0827	0,8840				0,7704	0,7853	0,7876	0,8818
Korrekturfaktor Jahr US\$ Korrekturfaktor Jahr Euro		0,843	0,843	0,843	0,932	0,932	0,833	0,833	0,843	0,878	0.904	0.904	0.904	0,744	0,738	0,811	0,811
Investition ohne CC	E uro ₂₀₀₅ /kW	1645	1491	1909	1138	1091	1530	1610	1587	1904	1576	1201	1200	1191	1201	1262	1111
Investition mit CC	E uro ₂₀₀₅ /kW	2850	2495	3311	1634	1731	2458	3013	2778	3274	2638	2017	2080	2147	2643	1964	2018
Delta Investition	E uro ₂₀₀₅ /kW	1205	1004	1403	496	640	928	1403	1191	1370	1062	815	879	956	1442	701	907
Betrieb, Wartung ohne CC	Euro ₂₀₀₅ /(kW·a)										80	37	55	40	72	50	51
Betrieb, Wartung mit CC	Euro ₂₀₀₅ /(kW·a)										143	86	88	88	209	78	96
Delta Betrieb, Wartung	Euro ₂₀₀₅ /(kW·a)										63	50	33	48	137	28	44
k so,el ohne CC	Euro ₂₀₀₅ /MWh	66,1	65,5	55,1	37,9	36,9	58,5	53,7	63,2	44,8	57,4	45,9	48,6	44,0	50,9	45,7	43,3
K SG, el mit CC	Euro ₂₀₀₅ /MWh	109,9	105,8	91,1 26.0	53,8 16.0	54,3 17.4	94,1 26.5	97,2 43.5	111,7	74,8	89,2	69,6 22.7	7,17	76,3	111,1 60.3	67,8	74,6
CO2-Vermeidungskosten	Euro ₂₀₀₉ /t	99 99	59 83	22	25	27	21 21	22	2'n	38	10	103	103	47	78Z	38	<u>,</u> 2

Tabelle A.4: Literaturauswertung zu CO₂-Abscheidungskosten, Teil B, eigene Berechnung mit Daten aus Metz et al. [2005, S. 151 ff.], Fischedick et al. [2007, S. 153 ff.], Finkenrath [2011, S. 24 ff.], Parsons et al. [2002, S. 3], David [2000, S. 42 ff.], UNECE [2012]

Quelle 21811 in 21811 in 21812 in March 2512 Chron 2 Chromotogia Chromotogia 1 March 2612 Chromotogia 1 March 2612 Chromosethiung 1 March 2612 Chromosethiung 2 March 2612 2 March 2612	MW %% USS,RW USS,RW USS,RW USS,RW USS,RW USS,RW USS,RW USS,RW Euro,AW Euro,AW Euro,AW Euro,AW Euro,AW Euro,AW MW MW Euro,AW MW MW Euro,AW MW MW Euro,AW MW MW Euro,AW MW MW Euro,AW MW MW MW MW MW MW MW MW MW MW MW MW MW	Rubin 2007; 2007; 2007; 2007; 2007; 2007; 2007; 2007; 2005; 2005; 41;3; 1442; 2005; 50,0 60,0 80,0 80,0 30,0 1159; 1159; 1159; 1159; 1159; 1156;	MIT 2007, (2007, (2007, 2009) (MIT) 1, 2009 (MIT) 2009 (MIT) 1, 5,204 (MIT) 1, 5,204 (MIT) 1, 5,204 (MIT) 1, 2,207 (MIT) 1, 2,207 (MIT) 2,	Dawaen Dawaen 2002 2003 2003 2005 2005 2005 2005 2005	Devision Devision Caracterizat	EPRI (EPRI) (EPR	EFRI (EFRI) (EFR	EFRI H EFRI H EFRI FDC FDC FDC FDC FDC FDC FDC FDC	MIT 02007 200900 2 200900 2 200900 2 2007 1010 0 2007 2007 2007 2007 2007 2007 2007 2007 2007 2007 1010 1010 1010 2007 2007 2008 2007 1010 1010 2008 2007 1010 100 1010	NETL NETL NETL NETL NETL NETL NETL NETL	KETL SIS METL SIS METL (C SIS) METL (C SIS) META MEA SIS SIS SIS SIS SIS SIS SIS SI	mmean Si mmean Si mmean Si mmean Si Si Si Si Mi h h Si Si Si Mi h h h h h h h h h h h h h h h h h h	mingeon consider consider consider consider consider consider constraint, procession in the constraint constra	Ibean et al. 2009 4.2009 MCEC0 MCEC0 MCEC0 FC FC FC FC FC FC FC FC FC FC FC FC FC	Min Max PC PC PC 559 1909 559 1909 737 201	Mit Pre- 2555 20 20 20 20 20 20 20 20 20 20 20 20 20	00000 002 2 002 2 0 002 2 0 002 2 0 002 2 0 002 2 0 0 0 0 0 0 0 0 0 0 0 0 0	11. ЕА 202 Б 202 Б 21. 2 21.	0440 IEA 004 2 155 5 776 NJ 775 3 839 8 838 8 848 8 84	044 Rv 004 al. 004 al. 004 al. 004 al. 004 al. 004 al. 004 al. 004 al. 004 al. 004 al. 11.8 005 al. 01.3 0	0.001 Flat Ru CCC CCC CCC CCC CCC CCC CCC CCC CCC CC	Direction CCC C	005 005 005 005 005 005 005 005 005 005
Delta Betrieb, Wartung	Euro ₂₀₀₅ /(kW·a)													l	28 137	58							
Keo Johne CC	Eurome/MWh	32.1	315	44.3	44.3	39.8	40.5	46.9	45.0	418	42.4	45.0	45.0	32.8	31.5 66.1	46.5	43.9	44.1	27.0	27.0	44.8	56.4	50.3
	Euro2005/IM T	34,1	0,10	0 0 0 0	4 0 0	0'AC	C,U4	40'A	10,04 0,07	4 - 'a 4 - 'a	4 c 4	40,U	40'0	34,0	31,0 00,1	40,5 7 E E	43,4	-,44 -, -	0,12	0,12	6,44 5 7 0	50'4	2002
K SGA MITUU	EURO2005/MIVVII	51,4	0,42 U r 00	0,10	62,3	1,88	0'02	1,11	72,0	72,6	75,2	1/11	72,0	51,4	51,4 111,7	76,5	74,4	61,3	38,0	37,2	67,8	1,77	72,5
Delta K so.el	Euro ₂₀₀₅ /MWh	19,3	22,5	16,7	18,0	28,9	29,6	30,8	27,0	30,8	32,8	32,8	27,0	18,6	16,0 60,2	30,0	30,4	17,3	11,0	10,2	23,0	20,7	22,2
CO ₂ -Vermeidungskosten	Euro ₂₀₀₆ /t	28	26	27	27	39	39	4	37	4	4	48	44	27	25 78	43	95	57	35	32	75	64	68
	-	* Angaben f	für Stromge	estehungs	osten und	CO ₂ -Verme	dungskost	en bezieher	n sich auf di	as Jahr 20'				1									

Tabelle A.5: Literaturauswertung zu CO₂-Abscheidungskosten, Teil C, eigene Berechnung mit Daten aus Metz et al. [2005, S. 151 ff.], Fischedick et al. [2007, S. 153 ff.], Finkenrath [2011, S. 24 ff.], Parsons et al. [2002, S. 3], David [2000, S. 42 ff.], UNECE [2012]

Mit			C NGCC	535	22					104	101	9													JZ 590	11 1039	06 449	41 21	58 41	33 20	,4 44,5	,0 62,1	,4 17,6	95 55	
Min Ma			GCCNGC																						399 8(699 14'	266 70	14 4	23	6	27,0 56	37,2 81	9,5 30	28	
Simpson t al. 2009 (GCCSI)	inkenrath 2011, S. 34	2009*	NGCC N	560	55,9 957			67,0		q	404 1 a 1	1870	010	<u>813</u>				96,0		29,0		90	0,7170 1,098		625	1221	596				43,0	61,7	18,6	58	hr 201u.
Melien 2009 e ¹ (CCP) (inkenrath F 2011, S. 3 34	2008*	NGCC	395	58,0 1245			86,0		fac	100	1767	001	770				110,0		24,0		75	0,6799		703	966	295				55,3	70,7	15,4	48	h auf das Ja
Melien 2009 (CCP)	inkenrath F 2011, S. 34	2008*	NGCC	395	58,0 1245			86,0		oac	7 07	1786	3	3				110,0		24,0		76	0,6799		703	1009	306				55,3	7,07	15,4	49	eziehen sıcı
Melien 2009 (CCP)	inkenrath F 2011, S. 34	2008*	NGCC	395	58,0 1245			86,0		Lat	200	1741	100	490				110,0		24,0		75	0,6799		703	983	280				55,3	7,07	15,4	48	igskosten b
Melien 2009 (CCP)	inkenrath F 2011, S. 34	2008*	NGCC	395	58,0 1245			86,0			220	2358		5111				126,0		40,0		128	0,6799		703	1332	629				55,3	81,0	25,7	82	-Vermeidur
NETL 2008+ 2010 (NETL)	inkerrath F 2011, S. 34	2007*	NGCC	555	55,2 718			64,0		10	4 4 7 4	1497		RU				92,0	0.00	28,0		87	0,7297 1,097		478	966	518				41,1	59,1	18,0	56	en und CO
Davison 2006; 2avezzali t al. 2009 GHG IA)	inkenrath F 2011, S. 34	2005*	NGCC	776	55,6 499			76,0		000	760	887	000	388				95,0		19,0		60	0,8038 1,000		401	713	312				48,8	61,0	12,2	39	tehungskost
Davison 2006; 2avezzali C t al. 2009 e GHG IA) (inkenrath F 2011, S. 34	2005*	NGCC	776	55,6 499			76,0		600	700	869	010	3/0				98,0	0.00	22,0		69	0,8038 1,000		401	669	297				48,8	63,0	14,1	4	r Stromges
Rubin 2007; Chen 2008; 2011 e 2011 e (CMU) (inkenrath F 2011, S. 34	2005*	NGCC	507	55,2 671			64,0		664	4 1 1	1091	007	420				84,0	0.00	20,0		62	0,8038		539	877	338				41,1	54,0	12,9	40	Angabentu
Chiesa et Consorni, 1999	David F 2000, S	1995	NGCC	373,2	53,3 53,3		14,5	33,0		MEA	1 1 1	807	010	9/7	23,7	;	9,2	42,9	0	0 0		29	0,7645 0,793		512	778	266	14	23	6	31,8	41,4	9,5	28	•
Stork Stork ingineering (onsultancy, 0	Javid 2000, S. 49	1995	NGCC	062	56,2 414		14,5	29,4		MEA	000 7 7 1	786	010	3/2	29,6		15,1	43,6		14,2		46	0,7645 0,793		399	758	359	14	29	15	28,3	42,0	13,7	4	
Bolland and E Saether, C	David 2000, S. E 49	1990	NGCC	721,2	52,2 754		17,71	39,1		MEA 645.2	145	1317	001	500	34,2		16,4	57,7	0	18,6		53	0,7853 0,738		802	1401	599	19	36	17	41,6	61,4	19,8	56	
Simbeck,	David 2000, S. 2 49	1996	NGCC	400	60,0 485		19,7	30,7		MEA	1,000	1135	010	000	45,3		25,6	51,7		21,0		77	0,7876 0,811		471	1102	631	19	44	25	29,8	50,2	20,4	75	
Ecofys 2004	Fischedic k et al. 2007, S. 153.ff.	2000	NGCC	500	58,0	480	37.3	47.1	-	110		0'70	890	410	<u>+</u>	51,7			64,3	17,2				0,904	531	985	454	41	57	16	52,1	71,1	19,0		
EA 2003	Fischedic k et al. 2007, S. 153 ff.	2000	NGCC		28'0	424	14.8	43.5			510	0.00	850	9CV	420	35,0			57,7	14,2				0,904	469	940	471	16	39	22	48,1	63,8	15,7		
Williams 2002	Fischedic k et al. 2007, S. 153 ff.	2000	NGCC	385	53,6	590	23.3	49.7	-	010	12.2	10,0	1125	535		52,8			71,2	21,5				0,904	653	1244	592	26	58	33	25,0	78,8	23,8		
				MW	% US\$/kW	Euro/kW	US\$/(KW·a) Fum//kW·a)	US\$/MWh Euro/MWh			WW 02	US\$/kW	Euro/kW	U S\$/KVV	US\$/(kW·a)	Euro/(kW·a)	US\$/(kW·a)	US\$/MWh	Euro/MWh	US\$/MWh Euro/MWh	US\$/t	US\$/t			Euro ₂₀₀₅ /kW	Euro ₂₀₀₅ /kW	E uro ₂₀₀₅ /kW	Euro ₂₀₀₅ /(kW·a)	Euro ₂₀₀₅ /(kW·a)	Euro ₂₀₀₅ /(kW·a)	Euro ₂₀₀₅ /MWh	Euro ₂₀₀₅ /MWh	Euro ₂₀₀₅ /MWh	Euro ₂₀₀₅ /t	
Quelle	zitiert in	Bezuasiahr für Kosten	Technologie	Ohne CC El. Netto-Leistung	EI. Netto-Wirkungsgrad Investition	Investition	Betrieb, Wartung Betrieh Wartung	Stromgestehungskosten Stromgestehungskosten	MitCC	CCS-Technologie	EI. Netto-Leistung	EI. Iveiru-winkungsgrau Investition	Investition	Detra Investritoriskosten Detra Invæstritoriskosten	Betrieb, Wartung	Betrieb, Wartung	Delta Betrieb, Wartung	Stromgestehungskosten	Stromgestehungskosten	Delta Stromgestehungskosten Delta Stromgestehungskosten	CO2-Rückhaltungskosten	CO ₂ -Vermeidungskosten	Korrekturfaktor Währung Korrekturfaktor Jahr US\$	Korrekturfaktor Jahr Euro	Investition ohne CC	Investition mit CC	Delta Investition	Betrieb, Wartung ohne CC	Betrieb, Wartung mit CC	Delta Betrieb, Wartung	k so,el ohne CC	k so,el mit CC	Delta k _{SG,el}	CO ₂ -Vermeidungskosten	

Tabelle A.6: Literaturauswertung zu CO₂-Abscheidungskosten, Teil D, eigene Berechnung mit Daten aus Metz et al. [2005, S. 151 ff.], Fischedick et al. [2007, S. 153 ff.], Finkenrath [2011, S. 24 ff.], Parsons et al. [2002, S. 3], David [2000, S. 42 ff.], UNECE [2012]

Mit			Oxy	529 41	F				484	32											1308	2175	867				41,6	67,0	32	4
Max			0x0																		1774	2872	1362				53,7	87,3	46	ř
ŭ			Oxy																		559	827	268				32,8	44,3	17	2
Gibson et al. 2009 (NZEC)	Finkenrat h 2011, S. 31	2009*	Oxy	824 43 0	856		51,0		673	35,6	007	410			0.99	2122	18,0		27	0,7170 1,098	559	827	268				32,8	44,3	17	:
Simpson et al. 2009 (GCCSI)	Finkenrat h 2011, S. 31	2009*	Oxy	550 46.8	2716		70'0		550	34,7	0020	1269			106.0	200	36,0		50	0,7170 1,098	1774	2602	829				45,0	68,1	107	010.
simpson et al. 2009 GCCSI)	Finkenrat h 2011, S. 31	2009*	Oxy	550 414	2587		70,0		550	30,8	1	1534			112.0	2	42,0		52	0,7170 1,098	1689	2691	1002				45,0	72,0	33	das Jahr 20
NETL 2008+ 1 2010 (NETL)	Finkenrat F h 2011, S. 31	2007*	0xy	550 40.2	2048		63,0		550	30,7	700	1773			119.0		56,0		72	0,7297 1,097	1362	2542	1179				40,5	76,5	46	n sich auf (
NETL 2008 + 2010	inkennat F า2011, S.31	2007*	Oxy	550 40 a	1938		59,0		549	31,6	220	1553			108.0	200	49,0		99	0,7297 1,097	1289	2322	1033				37,9	69,4 24 E	640	an beziehe
NETL 2008 + 2010 NETL)	inkenrat F 2011, S. 31	2007*	Oxy	550 30.4	2003		62,0		550	31,4	200	1160			100.0	-	38,0		46	0,7297 1,097	1332	2104	772				39,8	64,3	t 98	dungskost
NETL 2008 + 1 2010 NETL) (inkenrat F 1.2011, h S.31	2007*	Oxy	550 40.6	1851		56,0		550	29,5	0000	1235			0.7.6	2	41,0		47	0,7297 1,097	1231	2053	821				36,0	62,3	30	02-Vermei
NETL 2010 + 1	inkennat F 2011, h S.31	2007*	Oxy	550 40.6	1851		56,0		550	32,5	0000	1242			0.66	2	40,0		52	0,7297 1,097	1231	2057	826				36,0	61,7	33	sten und C
2008 + 2010 2010 - 2010	inkennat F 12011, I S.31	2007*	Oxy	550 41 4	1579		61,0		550	30,7	0007	1081			100.0	200	39,0		49	0,7297 1,097	1050	1769	719				39,2	64,3 25 4	3	stehungska
MIT 2007, 2009 (MIT)	inkenrat F 2011, I S. 31	2005*	Oxy	500	1330		59,0		500	32,1	000	570			84.0	5	25,0		35	0,8038 1,000	1069	1527	458				37,9	54,0	-'o	ir Stromge
Davison 2006; avezzali etal. ⊢ 2009 3HGIA)	inkenrat F 2011, I S.31	2005*	Oxy	758	1408		69'0		532	35,4 2206	0077	797			101.0	2	32,0		49	0,8038 1,000	1132	1772	641				44,3	64,9	34	Angaben fi
Vsakala etal. 2003 ((IPCC F 1005, S. 1 164	2003	Oxy	193 37 0	1500		45,3	0×0	197	31,3	017	1232			70.5	2	25,2		30	0,8840 0,878	1510	2750	1239				45,6	71,0	t 02	3
Vsakala et al. 2003	IPCC 005, S. 2	2003	Oxy	193 37.0	1500		45,3	0×0	135	25,8	2002	1354			82.5	0	37,2		45	0,8840 0,878	1510	2872	1362				45,6	83,1	45	2
Dillon et al. 2005	IPCC 2005, S. 2	2003	Oxy	677	1260		44,0	0×0	532	35,4	100	597			612	1	17,2		27	0,8840 0,878	1269	1870	601				44,3	61,6	24	i
Parsons et al. 2002 et	Parsons et al. 2002, S. 2 3	2002	Oxy	396,8 38 a	1268		42,3	Ŵ	298,4	30,5	2077	991			68.8	200	26,5			1,0575 0,833	1610	2868	1258				53,7	87,3	0,00	
				MW %	US\$/kW	Euro/kw US\$/(kW·a) Euro/(kW·a)	US\$/MWh Euro/MWh		MW	% 11 CC ////	Euro/kW	U S\$/kW	US\$/(kW·a)	Euro/(KW·a) US\$/(kW·a)	Euro/(kW·a)	Euro/MWh	US\$/MWh Fun/Wh	US\$/t	US\$/t		Euro ₂₀₀₅ /kW	Euro ₂₀₀₅ /KW	Euro ₂₀₀₅ /kW	Euro ₂₀₀₅ /(kW·a)	Euro ₂₀₀₅ /(KW·a)	Euro ₂₀₀₅ /(kW·a)	Euro ₂₀₀₅ /MWh	Euro ₂₀₀₅ /MWh	Euro2005 mm	
Quelle	zitiert in	Bezugsjahr für Kosten	Technologie	Ohne CC El. Netto-Leistung El Natio-Mitchmeerrad	Investition	investriton Betrieb, Wartung Betrieb, Wartung	Stromgestehungskosten Stromgestehungskosten	Mit CC CCS-Technologie	EI. Netto-Leistung	EI. Netto-Wirkungsgrad	Investition	Delta Investitionskosten	Deta Investitionskosten Betrieb, Wartung	Betrieb, Wartung Delta Betrieb, Wartung	Delta Betrieb, Wartung Stromoestehumskosten	Stromgestehungskosten	Delta Stromgestehungskosten Delta Stromgestehungskosten	CO ₂ -Rückhaltungskosten	CO2-Vermeidungskosten	Korrekturfaktor Währung Korrekturfaktor Jahr US\$ Korrekturfaktor Jahr Euro	Investition ohne CC	Investition mit CC	Delta Investition	Betrieb, Wartung ohne CC	Betrieb, Wartung mit CC	Delta Betrieb, Wartung	K so,el ohne CC	K SG, Mit CC	COVermeidungskosten	

Tabelle A.7: Literaturauswertung zu CO₂-Abscheidungskosten, Teil E, eigene Berechnung mit Daten aus Metz et al. [2005, S. 151 ff.], Fischedick et al. [2007, S. 153 ff.], Finkenrath [2011, S. 24 ff.], Parsons et al. [2002, S. 3], David [2000, S. 42 ff.], UNECE [2012]

				:	ā	:	1		-							ē		:	Sondorell E	Stork ngineering
	NETL 2002	NE TL 2002	2 NEI 200	rL Parsc 2002	b 200: b 200:	eck Nsak. 2 al. 20	aet IEA (003 201	3HG IEA 0 33 200	3HG IEA (33 201	BHG Rubi 03 al.20	n et Rubin 005 al.20	et Willia 05 200	ms 2 IEA 200	Ecofys 3 2004	Doctor et al., 1997	Chiesa et al., 1998	Simbeck, 1998	Hendriks, 1994	ietal., C 1991	onsultancy, 1999
	IPCC	IPCC	Del PO	C IPC	C PC	C PC	o B B B B B B B B B B B B B B B B B B B	S PC	S PC	CC PC	o BC	A et et	adic Fischec al. ketal soors	ic Fischedi	c David	David	David	David	David	OOOC Prive
	156	156	15(3 156	a. 2000, 156	0. 2000 151	6 15	6 15	6 15	, J. 2003	, J. 2003, 5003, 6 156	d. 2001	ff. 153.ff	. 153 ff.	42	42	42	42	42	aviu 2000, S. 42
	2002	2002	200	12 200.	0 200.	0 200	33 20	20(32 20	02 200	11 200	1 200	0 2000	2000	1995	1996	1996	1992	1990	1997
	IGCC	1900	190	00	C 160	000	00	00	CC 190	00	00	000	C 1600	IGCC	IGCC	IGCC	IGCC	IGCC	IGCC	IGCC
	4	6 4	5	571 4	125 5	521		827	827	776	527	527	425	20	0 413.5	404.1	400	009	431.6	408
	47	4 4	3,7	39,1 4	4,8	14,6		38,0	38,0	43,1	39,1	1,0,1	13,1 46	5,0 47,	0 38,2	43,7	47,3	43,6	36,8	46,3
N N	13.	70 13	74	169 1.	251 1-	486 1	565	1187	1187	1371 1	311 1	311	557 13	35 168	1332	1536	1300	1265	1600	1471
\$/(KW-8	a) 2)												- C U	0	61,1	38,1	51,9	42,7	68,3	63,1
	a) 40	,6 4(7 6'C	43,4 4	7,7 4	3,0	53,0	45,0	45,0	48,0	48,3		10 0'ac	5 i	20'8	50,6	46,5	45,0	58,5	52,3
0/I/I/VL	_												24,1	10 24	0					
	Selexo	I Selexc	ol Sele:	xol Selex	col Selex	col Sele.	xol Sele	xol Selexo	ol, NS Sele	exol Sele	xol Selex	col Sele:	xol Selexc	ol Selexol	Selexol	Selexol	Selexol	Selexol	Selexol	Selexol
<	Ř	51 3	59	457 -	404	455		730	742	676	492	492	365	8	5 377,5	345,6	314,4	500	347,4	382
101000	940	4 5	50	31,3	8,5	0.62	31,5	31,5	32.0	34,5	33.8	8 9	37,0 40	0,0	34,8	37,3	37,2	36,3	29,6	38,2
ro/kW	.77	2	- 18	T. RhC	844	7 /00	8/13		4	1860	148	148	022 17	33 237	199/	1913	/9/1	6671	7617	52022
S\$/kW	90	00	23	380 է	593 {	581	614	308	227	489	437	437			355	377	467	534	552	733
ICO/KW													465 3	69 86	0	6 24	6 24	0 12	100 5	07.0
5-WN/01	a) a)												72,0 55	s,0 87,	200	ĩ	ĩ	010	0'07	e' 10
S\$/(kW·a	a)														12,5	9,2	4.6	19,1	55,2	34,8
S\$/MWh	a) 62	9 9	4,4	59,9 6	5,8 5	7.7	71,5	56,0	54,0	63,0	62,6 7	0'6,			61,8	62,2	62,5	62,1	82,3	76,3
HWW/orr	÷	-	Ļ	L		!	L	0	0	0			35,6 55	i,7 69,	2					
uwww/@ur	77	°. -	0	0,01		4,4	6'0	0	0,8	0'61	5 2	, v v	13,5 10	,71 0,0	2					
S\$/t		22	19	18	30	21		13	1	19	17	21								
S\$/t		37	23	23	28	22	23	16	13	24	20	25			18	18	27	24	31	42
	1,05,0,85	75 1,05 33 0,8	75 1,0 33 0,	833 0,8	827 1,0	827 0,£ 343 0,	8840 1,1 878 0)575 1,(,833 0)575 1,1 ,833 0	0575 1,1 ,833 0	166 1,1 ,853 0,	166 853			0,7645 0,793	0,7876	0,7876 0,811	0,7704 0,744	0,7853 0,738	0,8818 0,811
/n/	M 179	12	44	10.4 14	207 46	000	572	, E07	202	1740	140	745 0,	904 0,9	77 1,00	4 1204	001	1727	1940	1703	1500
	000						200	000	100		000		101 222	201 L		10101	1718	1000	0000	3055
uro ₂₀₀₆ /K/	M 114	1 02 1 02	3 2	482	762 2	746	618	391	288	621	212	572	514 4	40 76	342	366	454	222	587	797
uro ₂₀₀₅ /(k	(W·a)	1		1	1								99	41 6	4 59	37	50	4	73	69
uro ₂₀₀₅ /(k	<w·a)< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>80</td><td>61 9</td><td>7 71</td><td>46</td><td>46</td><td>64</td><td>131</td><td>106</td></w·a)<>												80	61 9	7 71	46	46	64	131	106
uro ₂₀₀₅ /(k	<w·a)< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>4</td><td>20 3</td><td>3 12</td><td>6</td><td>4-</td><td>20</td><td>59</td><td>38</td></w·a)<>												4	20 3	3 12	6	4-	20	59	38
uro ₂₀₀₅ /M	1Wh 51	5 5	6'1	55,1 6	1,3 5	5,2 1	53,4	57,1	57,1	6'09	63,2 7	3 6'6,	57,6 45	9'6 57'	3 49,0	49,1	45,2	46,6	62,2	56,9
M/ ₃₀₀₂ OIL	1Wh 79	,9 9	6, 1,6	76,0 8	4,5 7	.4,1	72,0	71,1	68,6	80,0	81,9 10	13,4	72,6 61	,6 76,	9 59,6	60,4	60,7	64,3	87,6	83,0
uro ₂₀₀₅ /M	///h 28	,3 17	2, 1,7	20,9 2	3,2 1	. 6'8	18,6	14,0	11,4	19,0	18,7 2	3,6 '	14,9 12	2,1 19,	6 10,6	11,3	15,5	17,7	25,3	26,1
Jro ₂₀₀₅ /t	7	24	29	59	36	28	23	20	17	90	26	33			17	. 17	26	25	ŝ	46

Tabelle A.8: Literaturauswertung zu CO₂-Abscheidungskosten, Teil F, eigene Berechnung mit Daten aus Metz et al. [2005, S. 151 ff.], Fischedick et al. [2007, S. 153 ff.], Finkenrath [2011, S. 24 ff.], Parsons et al. [2002, S. 3], David [2000, S. 42 ff.], UNECE [2012]

Mit			0000	562	42					493	35													9 1580	2 2108	3 566	3 56	1 78	9 22	9 53,5	4 71,1	9 19,3	7 28	
lin Max			CC IGC(029 229.	961 288.	288 114	37 7	46 13	4	33,4 79,	15,6 103,	10,6 46,	17 4	
äbson et al. 009 (NZEC)	Finkenrath 2011, S. 27	2009*	IGCC IG							662	36,8	1471						73,0					0,7170 1,098	÷	961						46,9 4	46,9 1	1	
Simpson et al. 2009 G (GCCSI) 20	Finkenrath 2011, S. 27	2009*	IGCC	636	43,2	3521		88,0		517	33,6	4373	050	709				115,0			:	41	0,7170 1,098	2299	2856	556				56,5	73,9	17,3	26	
EPRI 2009 (EPRI)	Finkenrath 2011, S. 27	2008*	IGCC	603	41,2	2984		92,0		507	32,3	3940	OEC	ace				126,0			i	51	0,6799 1,204	1685	2225	540				59,1	81,0	21,8	33	
EPRI 2009 (EPRI)	Finkenrath 2011, S. 27	2008*	IGCC	573	41,0	3239		86,0		482	32,3	4221	000	796				118,0			1	45	0,6799	1829	2384	555				55,3	75,8	20,6	29	
Rubin 2007; Chen 2008; Versteeg 2011 (CMU)	Firkenrath 2011, S. 27	2008*	IGCC	538	40,0	1823		52,0		495	34,5	2513	000	080				71,0			:	26	0,6799	1029	1419	390				33,4	45,6	12,2	17 Jahr 2010.	
4ETL 2008 +	Finkenrath 2011, S. 27	2007*	IGCC	629	44,2	2716		81,0		497	32,8	3904	0011	1188				120,0			1	62	0,7297 1,097	1807	2597	260				52,0	77,1	25,1	40 n sich auf das ,	
4ETL 2008 + N	Finkenrath 2011, S. 27	2007*	IGCC	625	41,7	2351		73,0		514	32,6	3466	1444	<u>0</u>				109,0			1	53	0,7297 1,097	1564	2306	742				46,9	70'0	23,1	34 kosten beziehe	
NETL 2008 + N	Finkenrath 2011, S. 27	2007*	IGCC	622	40,9	2447		76,0		543	34,3	3334	200	88/				104,0			1	42	0,7297 1,097	1628	2218	590				48,8	66,8	18,0	27) ₂ -Vermeidungs	
Davison 2006; Cavezzali et al. 2009 (GHG IA)	Finkenrath 2011, S. 27	2005*	IGCC	826	38,0	1439		75,0		730	31,5	1815	920	3/0				95,0			:	0E	0,8038 1,000	1157	1459	302				48,2	61,0	12,9	19 skosten und CC	
Davison 2006; Cavezzali et al. 2009 (GHG IA)	Finkenrath 2011, S. 27	2005*	IGCC	776	43,1	1613		69'0		676	34,5	2204	504	IAC				102,0			1	53	0,8038 1,000	1297	1772	475				44,3	65,5	21,2	34 romgestehungs	
MIT 2007, Hamiton 2009 (MIT)	Finkenrath 2011, S. 27	2005*	IGCC	500	40,3	1430		62,0		500	32,7	1890	USV	460				83,0			:	53	0,8038 1,000	1149	1519	370				39,8	53,3	13,5	19 Angaben für St	,
				MW	%	US\$/kW Euro/kW	US\$/(kW·a)	US\$/MWh		MW	%	US\$/kW	EURO/KW	US\$/KW Euro/KW	US\$/(kW·a)	Euro/(kW·a)	Euro/(kW·a)	US\$/MWh	Euro/MWh US\$/MWh	Euro/MWh	US\$/t	US\$/I		Euro ₂₀₀₅ /KW	E uro ₂₀₀₅ /KW	Euro ₂₀₀₅ /KW	Euro ₂₀₀₅ /(kW·a)	Euro ₂₀₀₅ /(kW·a)	Euro ₂₀₀₅ /(kW·a)	Euro ₂₀₀₅ /MWh	Euro ₂₀₀₅ /MWh	Euro ₂₀₀₅ /MWh	Euro ₂₀₀₉ /t	
Quelle	zitiert in	Bezugsjahr für Kosten	Technologie	Ohne CC El. Netto-Leistung	EI. Netto-Wirkungsgrad	Investition	Betrieb, Wartung	Stromgestehungskosten Stromgestehungskosten	Mit CC	El. Netto-Leistuna	EI. Netto-Wirkungsgrad	Investition	Investition	Detta Investitionskosten Detta Investitionskosten	Betrieb, Wartung	Betrieb, Wartung Delta Betrieh Wartung	Delta Betrieb, Wartung	Stromgestehungskosten	Stromgestehungskosten Delta Stromoestehungskosten	Delta Stromgestehungskosten	CO ₂ -Rückhaltungskosten	CO2-Vermelaungskosten	Korrekturfaktor Währung Korrekturfaktor Jahr US\$ Korrekturfaktor Jahr Furo	Investition ohne CC	Investition mit CC	Delta Investition	Betrieb, Wartung ohne CC	Betrieb, Wartung mit CC	Delta Betrieb, Wartung	k so, il ohne CC	k so,el mit CC	Delta k _{SG,el}	CO ₂ -Vermeidungskosten	

Tabelle A.9: CO₂-Kompressionskosten für unterschiedliche Jahresbetriebsstunden in Abhängigkeit vom CO₂-Massenstrom, eigene Berechnung mit Daten aus Hendriks et al. [2004, S.9 f.]

Eingangsdruck	bar	1									
Ausgangsdruck	bar	120									
Abschreibedauer	а	15									
Zinssatz	%	10%									
Stromkosten	Euro/MWh	40									
Betrieb & Wartung	%	5%									
Preisindex 2004		95,8									
CO ₂ -Massenstrom	kg/s	10	20	30	40	50	60	70	80	90	100
Investitionskosten	Mio. Euro	13,42	17,69	20,80	23,32	25,49	27,41	29,15	30,75	32,23	33,61
Betrieb und Wartung	Mio. Euro/a	0,67	0,88	1,04	1,17	1,27	1,37	1,46	1,54	1,61	1,68
Kapitaldienst	Mio. Euro/a	1,57	2,06	2,43	2,72	2,97	3,20	3,40	3,59	3,76	3,92
Stromverbrauch	MW	4,21	8,41	12,62	16,82	21,03	25,23	29,44	33,65	37,85	42,06
8500 Betriebsstunder	n p.a.	-									
CO ₂ -Massenrate	Mt/a	0,3	0,6	0,9	1,2	1,5	1,8	2,1	2,4	2,8	3,1
Stromkosten	Mio. Euro/a	1,43	2,86	4,29	5,72	7,15	8,58	10,01	11,44	12,87	14,30
Betrieb und Wartung	Mio. Euro/a	0,67	0,88	1,04	1,17	1,27	1,37	1,46	1,54	1,61	1,68
Kapitaldienst	Mio. Euro/a	1,57	2,06	2,43	2,72	2,97	3,20	3,40	3,59	3,76	3,92
Gesamtkosten	Mio. Euro/a	3,67	5,81	7,76	9,61	11,40	13,15	14,87	16,56	18,24	19,90
Spez. Kosten	Euro ₂₀₀₅ /t	12,51	9,91	8,82	8,19	7,78	7,48	7,25	7,06	6,91	6,79
7500 Betriebsstunde	n p.a.										
CO ₂ -Massenrate	Mt/a	0,3	0,5	0,8	1,1	1,4	1,6	1,9	2,2	2,4	2,7
Stromkosten	Mio. Euro/a	1,26	2,52	3,79	5,05	6,31	7,57	8,83	10,09	11,36	12,62
Betrieb und Wartung	Mio. Euro/a	0,67	0,88	1,04	1,17	1,27	1,37	1,46	1,54	1,61	1,68
Kapitaldienst	Mio. Euro/a	1,57	2,06	2,43	2,72	2,97	3,20	3,40	3,59	3,76	3,92
Gesamtkosten	Mio. Euro/a	3,50	5,47	7,25	8,93	10,56	12,14	13,69	15,22	16,73	18,22
Spez. Kosten	Euro ₂₀₀₅ /t	13,53	10,58	9,34	8,64	8,16	7,82	7,56	7,35	7,19	7,04
6500 Betriebsstunde	n p.a.										
CO ₂ -Massenrate	Mt/a	0.2	0.5	0.7	0.9	1.2	1.4	1.6	1.9	2.1	2.3
Stromkosten	Mio Euro/a	1.09	2 19	3.28	4.37	5 47	6 56	7 65	8 75	9.84	10 94
Betrieb und Wartung	Mio. Euro/a	0.67	0.88	1 04	1 17	1 27	1 37	1 46	1 54	1 61	1 68
Kapitaldienst	Mio. Euro/a	1.57	2.06	2.43	2.72	2.97	3.20	3.40	3.59	3.76	3.92
Gesamtkosten	Mio. Euro/a	3,33	5,14	6,75	8,26	9,72	11,13	12,51	13,87	15,21	16,54
Spez. Kosten	Euro ₂₀₀₅ /t	14,86	11,46	10,03	9,21	8,67	8,28	7,97	7,74	7,54	7,38
5000 Rotriabestunda											
	Mt/a	0.2	0.4	0.5	07	0.0	1 1	1 2	1 /	16	1.9
Stromkoston	Mio Euro/o	0,2	1 69	0,5	2.26	4.21	1, I E OE	F 90	6 72	7.57	0.44
Betrieb und Wartung	Mio. Euro/a	0,64	0.88	2,52	3,30	4,21	5,05	5,69	0,73	1,57	0,41
Kanitaldienet	Mio. Euro/a	1.57	2.06	2/3	2 72	2 07	3 20	3 40	3 50	3 76	3 02
Gesamtkosten	Mio. Euro/a	3.08	2,00	5 99	7 25	8 45	9.62	10 75	11 85	12 94	14 01
Spez Kosten	Europoos/t	17 85	13 43	11 58	10.51	9.81	9 29	8 90	8 59	8.34	8 13
	20102005	17,00	10,10	11,00	10,01	0,01	0,20	0,00	0,00	0,01	0,10
3500 Betriebsstunde	n p.a.	1									
CO ₂ -Massenrate	Mt/a	0,1	0,3	0,4	0,5	0,6	0,8	0,9	1,0	1,1	1,3
Stromkosten	Mio. Euro/a	0,59	1,18	1,77	2,36	2,94	3,53	4,12	4,71	5,30	5,89
Betrieb und Wartung	Mio. Euro/a	0,67	0,88	1,04	1,17	1,27	1,37	1,46	1,54	1,61	1,68
Kapitaldienst	Mio. Euro/a	1,57	2,06	2,43	2,72	2,97	3,20	3,40	3,59	3,76	3,92
Gesamtkosten	Mio. Euro/a	2,83	4,13	5,23	6,24	7,19	8,10	8,98	9,83	10,67	11,49
Spez. Kosten	Euro ₂₀₀₅ /t	23,41	17,09	14,45	12,93	11,92	11,19	10,63	10,18	9,82	9,52

A.2 Anhang - Technische Analyse

Tabelle A.10: Spezifischer Sauerstoffbedarf für die vollständige Oxidation und spezifische CO₂-Emissionen für Kohle und Holz, eigene Berechnung mit Daten für Holz aus Hartmann et al. [2000b, S. 148 f.], für Kohle aus Fritsche [2010a]

CO ₂ -Emissionen	μ co2, Br,dir	kg/MJ	0,106	0,116	0,098	0,096	0,108	0,118	0,099	0,097	0,108	0,119	0,100	0,098	0,111	0,122	0,104	0,101	0,116	0,131	0,113	0,110
Heizwert	'H	MJ/kg	28,37	21,80	18,84	18,41	25,29	19,38	16,71	16,32	23,75	18,17	15,65	15,28	19,12	14,53	12,46	12,15	12,96	9,68	8,20	7,98
CO ₂ -Emissionen	$m_{\rm CO2}/m_{\rm Br}$	kg/kg	3,02	2,54	1,85	1,76	2,72	2,28	1,66	1,59	2,57	2,16	1,57	1,50	2,11	1,78	1,29	1,23	1,51	1,27	0,92	0,88
Mindestluftbedarf	I _{min,m}	kmol/kg	0,37	0,31	0,21	0,20	0,33	0,28	0,19	0,18	0,31	0,26	0,18	0,17	0,26	0,22	0,15	0,14	0,18	0,15	0,11	0,10
Mindest- sauerstoffbedarf	O _{min,m}	kmol/kg	0,08	0,06	0,04	0,04	0,07	0,06	0,04	0,04	0,07	0,05	0,04	0,04	0,05	0,05	0,03	0,03	0,04	0,03	0,02	0,02
zusätzlich benötigter Sauerstoff	O min, HI		0,087	0,095	0,076	0,072	0,088	0,096	0,077	0,073	0,089	0,097	0,077	0,074	0,091	0,100	0,080	0,076	0,096	0,107	0,087	0,083
im Brennstoff enthaltener Sauerstoff		kg/MJ	0,004	0,010	0,023	0,025	0,004	0,010	0,023	0,025	0,004	0,011	0,023	0,025	0,004	0,011	0,024	0,026	0,004	0,012	0,026	0,028
Sauerstoffbedarf für vollständige Oxidation			0,091	0,105	0,098	0,097	0,092	0,107	0,100	0,098	0,092	0,107	0,101	0,099	0,094	0,111	0,104	0,102	0,099	0,119	0,113	0,111
zusätzlich benötigter Sauerstoff	0 _{min}		2,48	2,07	1,42	1,33	2,23	1,86	1,28	1,20	2,11	1,76	1,21	1,13	1,74	1,45	1,00	0,93	1,24	1,04	0,71	0,66
im Brennstoff enthaltener Sauerstoff	0		0,10	0,23	0,43	0,45	0,09	0,20	0,39	0,41	0,08	0,19	0,37	0,38	0,07	0,16	0,30	0,32	0,05	0,11	0,22	0,23
edarf ie e)	Summe	kg/kg	2,58	2,30	1,85	1,78	2,32	2,07	1,67	1,60	2,19	1,95	1,58	1,51	1,80	1,61	1,30	1,25	1,29	1,15	0,93	0,89
erstoffb ;, H, S in auf d offmass	s		0,01	0,02	00'0	00'0	0,01	0,02	00'0	0,00	0,01	0,02	0,00	0,00	0,01	0,01	00'0	00'0	0,01	0,01	0,00	0,00
destsau für C (bezoge 3rennst	Ч		0,37	0,43	0,51	0,50	0,33	0,39	0,46	0,45	0,31	0,37	0,43	0,42	0,26	0,30	0,36	0,35	0,18	0,22	0,26	0,25
Min	с		2,20	1,85	1,34	1,28	1,98	1,66	1,21	1,15	1,87	1,57	1,14	1,09	1,54	1,29	0,94	0,90	1,10	0,92	0,67	0,64
Wassergehalt		%	%0	%0	%0	%0	10%	10%	10%	10%	15%	15%	15%	15%	30%	30%	30%	30%	50%	50%	50%	50%
			Steinkohle	Braunkohle	Nadelholz	Laubholz																

Tabelle A.11: Massenspezifische Rauchgasbestandteile für Kohle und Holz, eigene Berechnung mit Daten für Holz aus Hartmann et al. [2000b, S. 148 f.], für Kohle aus Fritsche [2010a]

	tumme Oxy		0,124	0,111	0,092	0,088	0,117	0,106	0,088	0,085	0,113	0,103	0,086	0,083	0,103	0,095	0,081	0,078	060'0	0,083	0,074	0,072
	Summe S		0,533	0,453	0,327	0,307	0,485	0,413	0,299	0,282	0,461	0,394	0,286	0,269	0,390	0,334	0,245	0,232	0,294	0,254	0,191	0,181
	N ₂ aus Luft		0,409	0,342	0,235	0,219	0,368	0,308	0,211	0,197	0,348	0,291	0,200	0,186	0,286	0,239	0,164	0,153	0,205	0,171	0,117	0,110
	N_2		0,001	0,000	0,000	0,000	0,001	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Rauchgas n _R /m _{Br}	D ₂ aus Luft	kmol/kg	0,031	0,026	0,018	0,017	0,028	0,023	0,016	0,015	0,026	0,022	0,015	0,014	0,022	0,018	0,012	0,012	0,015	0,013	0,009	0,008
	SO ₂ (0,000	0,001	0,000	0,000	0,000	0,001	0,000	0,000	0,000	0,001	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
	H ₂ O aus <i>w</i>		0,000	0,000	0,000	0,000	0,006	0,006	0,006	0,006	0,008	0,008	0,008	0,008	0,017	0,017	0,017	0,017	0,028	0,028	0,028	0,028
	H ₂ O aus <i>h</i> F		0,023	0,027	0,032	0,031	0,021	0,024	0,029	0,028	0,020	0,023	0,027	0,026	0,016	0,019	0,022	0,022	0,012	0,013	0,016	0,016
	CO ₂		0,069	0,058	0,042	0,040	0,062	0,052	0,038	0,036	0,058	0,049	0,036	0,034	0,048	0,040	0,029	0,028	0,034	0,029	0,021	0,020
Wassergehalt		%	%0	%0	%0	%0	10%	10%	10%	10%	15%	15%	15%	15%	%0E	30%	30%	30%	20%	50%	50%	50%
			Steinkohle	Braunkohle	Nadelholz	Laubholz																

0,107 0,127 0,124 0,121 0,121 0,121 0,125 0,145 0,155 0,193 0,098 0,114 0,109 0,107 0,118 0,116 0,103 0,122 Summe Oxy 0,430 0,478 0,478 0,435 0,435 0,435 0,435 0,435 0,435 0,456 0,456 0,411 0,411 0,411 0,421 0,466 0,388 0,374 0,508 0,589 0,522 0,509 Summe 0,328 0,358 0,286 0,273 0,335 0,369 0,296 0,283 0,326 0,356 0,283 0,271 0,323 0,351 0,279 0,267 0,354 0,395 0,321 0,327 N₂ aus Luft 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 V_{R,HI} (Volumen in Bezug auf Heizwert) ž 0,024 0,027 0,021 0,020 0,025 0,027 0,022 0,021 0,028 0,022 0,021 0,027 0,021 0.020 0,025 0,027 0,030 0,024 0,023 0,025 Rauchgas m^{3/}MJ 02 $\begin{array}{c} 0,00\\ 0,00\\ 0,00\\ 0$ SO_2 0,008 0,010 0,012 0,012 0,012 0,012 0,0126 0,031 0,031 0,031 0,031 0,076 0,076 0,000 0,000 0,000 0,005 0,006 0,007 0,008 H₂O aus *h* H₂O aus *w* 0,018 0,028 0,039 0,039 0,018 0,028 0,038 0,038 0,018 0,028 0,038 0,038 0,019 0,029 0,040 0,040 0,020 0,031 0,044 0,044 0,054 0,059 0,050 0,049 0,055 0,060 0,051 0,049 0,055 0,060 0,051 0,050 0,056 0,062 0,053 0,052 0,067 0,057 0,056 0,059 CO_2 30% 30% 30% 50% 50% 50% 10% %0 %0 10% 15% 15% 15% %0 10% 15% 30% % Wassergehalt Steinkohle Braunkohle Braunkohle Laubholz Steinkohle Braunkohle Braunkohle Braunkohle Nadelholz Laubholz Nadelholz Laubholz Steinkohle Nadelholz Laubholz Steinkohle Steinkohle Nadelholz Nadelholz Laubholz

Tabelle A.12: Heizwertspezifische Rauchgasbestandteile für Kohle und Holz, eigene Berechnung mit Daten für Holz aus Hartmann et al. [2000b, S. 148 f.], für Kohle aus Fritsche [2010a]

Tabelle A.13: CO₂-Anteil in den Rauchgasen und spezifischer Energieaufwand für die CCS-Varianten Post-Combustion und Oxyfuel, eigene Berechnung mit Daten für Holz aus Hartmann et al. [2000b, S. 148 f.], für Kohle aus Fritsche [2010a]

spez. Energieaufwand (Oxyfuel) bezogen auf Heizwert	W CO2-A,O _{XY} ,HI	%	19,56%	21,13%	15,86%	14,83%	19,74%	21,39%	16,10%	15,05%	19,86%	21,55%	16,24%	15,19%	20,30%	22,19%	16,80%	15,73%	21,40%	23,79%	18,23%	17,10%
spez. Energieaufwand (Oxyfuel) bezogen auf abgeschiedene CO ₂ -Masse	W CO2-A, Oxy	GJ/t	2,24	2,22	2,10	2,06	2,24	2,22	2,10	2,06	2,24	2,22	2,10	2,06	2,24	2,22	2,10	2,06	2,24	2,22	2,10	2,06
spez. Energieaufwand (chem. Absorption) bezogen auf Heiz- /Brennwert	W CO2-A,HI	%	28,28%	30,99%	26,04%	25,35%	28,61%	31,46%	26,52%	25,83%	28,82%	31,74%	26,80%	26,12%	29,61%	32,87%	27,94%	27,26%	31,52%	35,64%	30,78%	30,12%
spez. Energieaufwand (chem. Absorption) bezogen auf abgeschiedene CO ₂ -Masse	W CO2-A	GJ/t	2,95	2,96	2,95	2,94	2,96	2,97	2,96	2,96	2,96	2,97	2,97	2,96	2,98	2,99	2,99	2,99	3,01	3,02	3,04	3,03
vol. CO ₂ -Anteil (Oxyfuel)	₩ co2/R	%	55,52%	51,78%	45,76%	45,50%	52,88%	49,06%	42,88%	42,52%	51,44%	47,59%	41,34%	40,94%	46,56%	42,66%	36,33%	35,81%	38,31%	34,55%	28,50%	27,89%
Wasser- gehalt im Rauchgas		g/kg	26,72	37,31	63,84	66,48	33,88	45,87	76,20	79,65	38,10	50,90	83,47	87,40	54,35	70,32	111,50	117,28	91,19	114,33	175,05	185,02
vol. CO ₂ -Anteil	₩co2/R	%	12,88%	12,73%	12,85%	13,03%	12,74%	12,56%	12,61%	12,77%	12,65%	12,46%	12,48%	12,63%	12,33%	12,09%	11,98%	12,09%	11,67%	11,34%	10,98%	11,03%
Wassergehalt		%	%0	%0	%0	%0	10%	10%	10%	10%	15%	15%	15%	15%	30%	30%	30%	30%	20%	50%	50%	50%
			Steinkohle	Braunkohle	Nadelholz	Laubholz																

Tabelle A.14: Mindestsauerstoffbedarf, Rauchgaszusammensetzung, CO₂-Konzentration in den Rauchgasen und spezifischer Energieaufwand zur MEA-Abscheidung bei der Verbrennung von Biogas und Biomethan, eigene Berechnung mit Daten aus Tabelle 2.1

Spez. Energ zur MEA-Ab bez. auf B	gieaufwand oscheidung Brennwert	%	23,8%	17,3%						
Spez. Energ zur MEA-Ab <i>w</i> _{co}	gieaufwand oscheidung ^{D2-A}	GJ/t	3,03	3,21						
Brenr H	nwert /s	MJ/m ³	23,4	36,0						
unteil		t/GJ	0,079	0,054						
CO ₂ - A		kg/m³	1,84	1,94						
CO ₂ -Konz	entration	%	11,2%	7,2%	%	17,2%	11,3%	%	11,2%	7,2%
	Summe		8,4	13,8		239,8	384,8		8,0	13,2
	N ₂ aus Luft		5,83	10,08		163,4	282,3		5,59	9,65
ßun;	O ₂ aus Luft		0,44	0,76		14,14	24,43		0,42	0,73
nensetz	H ₂ O aus H ₂		00'0	00'0	_	00'0	0,01		00'0	0,00
zusamn n _R /n _{Br}	$\overset{\text{N}}{\underset{\text{N}}{\overset{\text{aus}}{\overset{\text{aus}}{\overset{\text{N}}{\overset{N}}{\overset{N}}{\overset{N}}{\overset{N}}{\overset{N}}}}}}}}$		0,02	0,01	kg/kmc	0,67	0,30	m ³ /MJ	0,02	0,01
lchgasz	H ₂ O aus H ₂ O		0,03	0,00		0,54	0,00		0,03	0,00
Raı	CO_2 aus CO_2		0,38	0,03		16,90	1,41		0,37	0,03
	H₂O aus CH₄		1,10	1,91		19,88	34,35		1,06	1,83
	CO_2 aus CH ₄	mol	0,55	0,95		24,30	41,98		0,53	0,91
Mindestlu	uftbedarf	kmol/h	5,27	9,11						
- edarf	Summe	-	1,10	1,91						
Aindest rrstoffbe O _{min,m}	μ Η		0,00	0,00						
saue	CH₄		1,10	1,91						
			Biogas	Biomethan		Biogas	Biomethan		Biogas	Biomethan

Tabelle A.15: Elektrischer Wirkungsgradverlust von Steinkohle/Erdgas und Holz/Biogas bei den CCS-Varianten Post-Combustion, Oxyfuel und Pre-Combustion, eigene Berechnung mit Daten aus Radgen et al. [2006, S. 143 ff.], Tabelle A.10 und Tabelle A.13

		Ľ	ossil (St	einkohle	e, Erdgas	~	_	Holzpel	llets (w=1(B	0%) bzw.	Biogas			,	=́м) SHH R	=50%)		
		Wirkungsgrad ohne CC	Wirkungsgrad mit CC bei p _{CO2} =110 bar	Reduktion durch CO ₂ - Kompression	Reduktion durch CO ₂ - Abscheidung	Gesamtreduktion	Reduktion durch CO ₂ - Kompression	Veränderung durch geringere spezifische CO ₂ -Emissionen	Veränderung durch geringere CO ₂ -Konzentration im auchgas/ger. Sauerstoffbedarf	Reduktion durch CO ₂ - Abscheidung	Gesamtreduktion	Wirkungsgrad mit CC bei p_{CO2} =110 bar	Reduktion durch CO ₂ - Kompression	Veränderung durch geringere spezifische CO ₂ -Emissionen	Veränderung durch geringere CO ₂ -Konzentration im auchgas/ger. Sauerstoffbedarf	Reduktion durch CO ₂ - Abscheidung	Gesamtreduktion	Wirkungsgrad mit CC bei p _{CO2} =110 bar
	Kraftwerk			%					%						%			
Absorption	Steinkohle	41,17 54.20	28,98 47 64	4,18	8,01 0,57	12,19	3,82 2,66	-0,75	0,01	7,26	11,08	30,08	4,33	0,28	0,21	8,50	12,83	28,33
Ausoipiidi	Steinkohle	44.88	34.70	4, 10 4, 18	9,0/ 6.00	10.18	3.82	-0.56	-0,30	4.97	8.79	36.08	4.33	0.21	-0.46	5.75	10.08	34.79
ne Absorption	IGCC	45,61	36,50	4,18	4,93	9,11	3,82	-0,46	0,00	4,47	8,29	37,32	4,33	0,17	0,00	5,11	9,44	36,17
	GJ/t	0,43																
essionsaurwanio	MWh/t	0,12																
eidegrad	%	%06																
Emission	t/GJ	0,11																
(w=10%)	t/MWh	0.39																
Emissionen	t/GJ	0,10																
(w=10%)	t/MWh	0,35																
Emissionen	t/GJ	0,11																
(%)	t/MWh	0,40																
Emissionen	t/GJ	0,06																
	t/MWh	0,20																
Emissionen	t/GJ	0,05																
	t/MWh	0,19																
Emissionen	t/GJ	0,08																
	t/MWh	0,28																
gieaufwand (chem	л. Absorption) и	V CO2-A																
(w=10%)	GJ/t	2,96																
(w=10%)	GJ/t	2,96																
(%)	GJ/t	3,04																
Erdgas	GJ/t	3,21																
	GJ/t	3,03																
gieaufwand (Oxyfu	uel) w _{CO2-A}	_																
(<i>w</i> =10%)	GJ/t	2,24																
(w=10%)	GJ/t	2,08																
(%)	GJ/t	2,08																

Tabelle A.16: Berechnung zur Kombination Post-Combustion mit Kondensationsbetrieb sowie KWK-Betrieb im Sommer und Winter, Teil A, eigene Berechnung mit Daten aus Holmgren [2010], Tuschy [2010]

		Kond ohne CC	KWK Sommer ohne CC	KWK Winter ohne CC	Kond mit CC	KWK Sommer mit CC	KWK Winter mit CC
Dampfkreislauf							
$\eta_{ m el}$	%	46,7%	43,1%	38,8%	40,6%	38,8%	36,6%
$\eta_{ m th}$	%		56,9%	61,1%		29,1%	31,3%
Kühlturm	%	53,3%			27,3%		
MEA Prozess	%				32,1%	32,1%	32,1%
$\omega = \eta_{\rm el} + \eta_{\rm th}$	%	46,7%	100,0%	100,0%	40,6%	67,9%	67,9%
Gesamtwirkungsgra	ade						
Verlust Feuerung		2,0%	2,0%	2,0%	2,0%	2,0%	2,0%
Verlust Dampferzeu	iger	7,0%	7,0%	7,0%	7,0%	7,0%	7,0%
Verlust Generator		1,5%	1,5%	1,5%	1,5%	1,5%	1,5%
Elektr. Bruttowirkun	gsgrad	41,8%	38,6%	34,8%	33,8%	32,1%	30,2%
Therm. Bruttowirkur	ngsgrad		50,9%	54,7%		26,1%	28,0%
Kühlturm		47,7%			24,4%		
MEA (th - Dampfpro	ozess)				28,8%	28,8%	28,8%
MEA (el - Pumpen e	etc.)				2,6%	2,6%	2,6%
Brennstoffausnutzu	ngsgrad	41,8%	89,5%	89,5%	33,8%	58,2%	58,2%
Leistungsdaten							
FWL	kW	134.704	134.702	134.698	134.749	134.745	134.741
Verluste Feuerung,	CkW	14.144	14.144	14.143	14.149	14.148	14.148
Pel	kW	56.353	51.935	46.834	45.578	43.313	40.697
Q	kW		68.621	73.719		35.133	37.734
Kühlturm	kW	64.204			32.877		
MEA Prozess	kW				42.210	42.209	42.207
Frischdampf (1)							
<i>ṁ</i>	t/h	150,00	150,00	150,00	150,00	150,00	150,00
<i>ṁ</i>	kg/s	41,67	41,67	41,67	41,67	41,67	41,67
p	bar	150,00	150,00	150,00	150,00	150,00	150,00
t	°C	550,00	550,00	550,00	550,00	550,00	550,00
h	kJ/kg	3.450	3.450	3.450	3.450	3.450	3.450
S	kJ/(kg·K)	6,52	6,52	6,52	6,52	6,52	6,52
HD Turbine							
η	%	92,0%	92,0%	92,0%	92,0%	92,0%	92,0%
<i>ṁ</i>	kg/s	41,67	41,67	41,67	41,67	41,67	41,67
Р	kW	17.883	17.883	17.883	17.883	17.883	17.883
KZÜ (2)							
p	bar	30,00	30,00	30,00	30,00	30,00	30,00
t	°C	310,71	310,71	310,71	310,71	310,71	310,71
h	kJ/kg	3.021	3.021	3.021	3.021	3.021	3.021
S	kJ/(kg·K)	6,59	6,59	6,59	6,59	6,59	6,59
hs	kJ/kg	2.984	2.984	2.984	2.984	2.984	2.984
ZÜ							
dp/p	%	10,0%	10,0%	10,0%	10,0%	10,0%	10,0%
<i>m</i>	kg/s	33,52	33,51	33,51	33,59	33,58	33,58
Q	kW	18.472	18.470	18.467	18.510	18.508	18.503
HZÜ (3)							
p	bar	27,00	27,00	27,00	27,00	27,00	27,00
t	°C	550,00	550,00	550,00	550,00	550,00	550,00
h	kJ/kg	3.572	3.572	3.572	3.572	3.572	3.572
S	kJ/(kg·K)	7,43	7,43	7,43	7,43	7,43	7,43

Tabelle A.17: Berechnung zur Kombination Post-Combustion mit Kondensationsbetrieb
sowie KWK-Betrieb im Sommer und Winter, Teil B, eigene Berechnung
mit Daten aus Holmgren [2010], Tuschy [2010]

		Kond	KWK Sommer	KWK Winter	Kond	KWK Sommer	KWK Winter
Entnahme nach HD	Turbine (KZ	Ohne CC ZÜ) (2a)	ohne CC	ohne CC	mit CC	mit CC	mit CC
p	bar	30,00	30,00	30,00	30,00	30,00	30,00
t	°C	310,71	310,71	310,71	310,71	310,71	310,71
h	kJ/kg	3.021	3.021	3.021	3.021	3.021	3.021
S	kJ/(kg·K)	6,59	6,59	6,59	6,59	6,59	6,59
hs	kJ/kg	2.984	2.984	2.984	2.984	2.984	2.984
<i>ṁ</i>	kg/s	8,15	8,15	8,16	8,08	8,08	8,09
ts	°C	233,86	233,86	233,86	233,86	233,86	233,86
MD Turbine							
η	%	90,0%	90,0%	90,0%	90,0%	90,0%	90,0%
<i>ṁ</i>	kg/s	33,52	33,51	33,51	33,59	33,58	33,58
Р	kW	24.135	24.133	24.128	24.186	24.182	24.176
Entnahme nach MD	Turbine (4	+ 4a + 4b)					
р	bar	2,00	2,00	2,00	2,00	2,00	2,00
t	°C	190,85	190,85	190,85	190,85	190,85	190,85
h	kJ/kg	2.852	2.852	2.852	2.852	2.852	2.852
S	kJ/(kg·K)	7,47	7,47	7,47	7,47	7,47	7,47
hs	kJ/kg	2.834	2.834	2.834	2.834	2.834	2.834
<i>ṁ</i> 4a	kg/s	4,30	3,02	0,90	2,20	1,55	0,46
<i>ṁ</i> 4b	kg/s				16,42	16,42	16,42
ts	°C	120,21	120,21	120,21	120,21	120,21	120,21
ND Turbine							
η	%	90,0%	90,0%	90,0%	90,0%	90,0%	90,0%
m	kg/s	29,22	30,49	32,61	14,96	15,61	16,69
Р	kW	15.113	10.700	5.635	7.739	5.478	2.884
Abdampf (5)							
р	bar	0,05	0,20	0,72	0,05	0,20	0,72
t	°C	32,88	60,00	100,00	32,88	60,00	100,00
h	kJ/kg	2.335	2.501	2.680	2.335	2.501	2.680
S	kJ/(kg·K)	7,66	7,59	7,52	7,66	7,59	7,52
x	%	90,7%	95,4%	100,0%	90,7%	95,4%	100,0%
hs	kJ/kg	2.278	2.462	2.660	2.278	2.462	2.660
ή	kg/s	29,22	30,49	32,61	14,96	15,61	16,69
Kühlturm							
<i>ṁ</i>	kg/s	29,22			14,96		
Q	kW	64.204			32.877		
Heizkondensator							
<i>ṁ</i>	kg/s		30,49	32,61		15,61	16,69
Q	kW		68.621	73.719		35.133	37.734
Kondensat (6)		l					
p	bar	0,05	0,20	0,72	0,05	0,20	0,72
t	°C	32,90	60,00	90,67	32,90	60,00	90,67
h	kJ/kg	138	251	419	138	251	419
S	kJ/(kg⋅K)	0,48	0,83	1,31	0,48	0,83	1,31
Speisewasserpumpe	Э						
η	%	90,0%	90,0%	90,0%	90,0%	90,0%	90,0%
<i>m</i>	kg/s	29,22	30,49	32,61	14,96	15,61	16,69
Ρ	kW	544	572	644	279	293	330

Tabelle A.18: Berechnung zur Kombination Post-Combustion mit Kondensationsbetrieb sowie KWK-Betrieb im Sommer und Winter, Teil C, eigene Berechnung mit Daten aus Holmgren [2010], Tuschy [2010]

Spoisowassor vor N		Kond ohne CC	KWK Sommer ohne CC	KWK Winter ohne CC	Kond mit CC	KWK Sommer mit CC	KWK Winter mit CC
Speisewasser vor iv	bor	ung (7)	166.67	166.67	166.67	166 67	166 67
μ •	vC	22.75	61 15	100,07	22.75	61 15	100,07
	6	33,75	01,15	101,73	33,75	01,15	101,73
n	KJ/Kg	156	270	439	156	270	439
S	KJ/(Kg·K)	0,48	0,84	1,31	0,48	0,84	1,31
hs	kJ/kg	155	268	437	155	268	437
m	kg/s	29,22	30,49	32,61	14,96	15,61	16,69
MD Vorwärmung							
dT	К	3	3	3	3	3	3
ṁ	kg/s	29,22	30,49	32,61	14,96	15,61	16,69
Q	kŴ	10.148	7.129	2.115	5.197	3.650	1.083
Speisewasser nach	MD Vorwär	mung (8)					
p	bar	166,67	166,67	166,67	166,67	166,67	166,67
t	°C	117,21	117,21	117,21	117,21	117,21	117,21
h	kJ/kg	504	504	504	504	504	504
s	kJ/(kg⋅K)	1,48	1,48	1,48	1,48	1,48	1,48
Rückfluss MD Vorw	ärmer ohne	Druck (9 + 9a +	- 9b)				
р	bar	1,82	1,82	1,82	1,82	1,82	1,82
t	°C	117,21	117,21	117,21	117,21	117,21	117,21
h	kJ/kg	492	492	492	492	492	492
S	kJ/(kg⋅K)	1,50	1,50	1,50	1,50	1,50	1,50
x	%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%
Pumpe MD Vorwärr	ner	l					
η	%	90,0%	90,0%	90,0%	90,0%	90,0%	90,0%
'n	kg/s	4,30	3,02	0,90	18,63	17,97	16,88
Р	kŴ	83	58	17	360	348	327
Rückfluss MD Vorw	ärmer mit D	ruck (10)					
р	bar	166,67	166,67	166,67	166,67	166,67	166,67
t	°C	119,01	119,01	119,01	119,01	119,01	119,01
h	kJ/kg	511	511	511	511	511	511
S	kJ/(kg⋅K)	1,50	1,50	1,50	1,50	1,50	1,50
hs	kJ/kg	509	509	509	509	509	509
Speisewasser inkl. I	Rückfluss M	D Vorwärmer (1	1)				
p	bar	166,67	166,67	166,67	166,67	166,67	166,67
t	°C	117,41	117,35	117,25	118,66	118,57	118,43
h	kJ/ka	505	504	504	510	509	509
S	kJ/(kg⋅K)	1,49	1,48	1,48	1,50	1,50	1,50
<i>ṁ</i>	kg/s	33,5	33,5	33,5	33,6	33,6	33,6
HD Vorwärmung							
dT	K	3	3	3	3	3	3
ṁ	kg/s	33,52	33,51	33,51	33,59	33,58	33,58
Q	kŴ	16.517	16.525	16.536	16.375	16.385	16.401
Speisewasser nach	HD Vorwär	mung (12)					
p	bar	166,67	166,67	166,67	166,67	166,67	166,67
t	°C	230,86	230,86	230,86	230,86	230,86	230,86
h	kJ/ka	997	997	997	997	997	997
s	kJ/(kg⋅K)	2,59	2,59	2,59	2,59	2,59	2,59
Rückfluss HD Vorw	ärmer ohne	Druck (13)					
p	bar	28,41	28,41	28,41	28,41	28,41	28,41
t	°C	230,86	230,86	230,86	230,86	230,86	230,86
h	kJ/ka	994	994	994	994	994	994
S	kJ/(kg⋅K)	2,62	2,62	2,62	2,62	2,62	2,62
x	%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%

Tabelle A.19: Berechnung zur Kombination Post-Combustion mit Kondensationsbetrieb sowie KWK-Betrieb im Sommer und Winter, Teil D, eigene Berechnung mit Daten aus Holmgren [2010], Tuschy [2010]

		Kond	KWK Sommer	KWK Winter	Kond	KWK Sommer	KWK Winter
		ohne CC	ohne CC	ohne CC	mit CC	mit CC	mit CC
Pumpe HD Vorwarm	ner o/	00.0%	00.0%	00.0%	00.0%	00.0%	00.0%
' m	/o ka/s	8 15	8 15	8 16	8.08	8.08	8.09
P	kW	150	150	150	149	149	149
1	KVV	100	150	150	145	145	145
Rückfluss HD Vorwä	ärmer mit Dr	ruck (14)					
p	bar	166,67	166,67	166,67	166,67	166,67	166,67
t	°C	234,19	234,19	234,19	234,19	234,19	234,19
h	kJ/kg	1.013	1.013	1.013	1.013	1.013	1.013
S	kJ/(kg·K)	2,62	2,62	2,62	2,62	2,62	2,62
ns	кј/кд	1.011	1.011	1.011	1.011	1.011	1.011
Speisewasser inkl. F	Rückfluss H	D Vorwärmer (1	5)				
p	bar	166,67	166,67	166,67	166,67	166,67	166,67
t	°C	231,51	231,51	231,51	231,50	231,50	231,50
h	kJ/kg	1.000	1.000	1.000	1.000	1.000	1.000
S	kJ/(kg⋅K)	2,60	2,60	2,60	2,60	2,60	2,60
<i>ṁ</i>	kg/s	41,67	41,67	41,67	41,67	41,67	41,67
MD Vorwärmer (4a	zu 9a bzw. 4	4b zu 9b)					
	bar	2.00	2.00	2.00	2.00	2.00	2.00
t	°C	120,21	120,21	120,21	120,21	120,21	120,21
h'	kJ/kg	505	505	505	505	505	505
h"	kJ/kg	2.706	2.706	2.706	2.706	2.706	2.706
s'	kJ/(kq⋅K)	1,53	1,53	1,53	1,53	1,53	1,53
s"	kJ/(kg⋅K)	7,13	7,13	7,13	7,13	7,13	7,13
HD Vorwärmer (22 -	au 13)	1					
	har	30.00	30.00	30.00	30.00	30.00	30.00
p t	°C	233.86	233.86	233.86	233.86	233.86	233.86
h'	k.l/ka	1 008	1 008	1 008	1 008	1 008	1 008
h"	k.l/kg	2 803	2 803	2 803	2 803	2 803	2 803
s'	kJ/(kg·K)	2.000	2.000	2.65	2.600	2.000	2.000
s"	kJ/(kg·K)	6,19	6.19	6.19	6,19	6,19	6.19
-		-,	-,	-,	-,	-,	-,
Kessel	0/	10.0%	40.00/	40.00/	40.00/	10.0%	40.00/
ap/p	%	10,0%	10,0%	10,0%	10,0%	10,0%	10,0%
Q	KVV	102.089	102.089	102.089	102.090	102.090	102.090
Verdampfer							
p	bar	158,3	158,3	158,3	158,3	158,3	158,3
t	°C	346,5	346,5	346,5	346,5	346,5	346,5
h'	kJ/kg	1.643	1.643	1.643	1.643	1.643	1.643
h"	kJ/kg	2.586	2.586	2.586	2.586	2.586	2.586
s'	kJ/(kg⋅K)	3,74	3,74	3,74	3,74	3,74	3,74
s"	kJ/(kg·K)	5,26	5,26	5,26	5,26	5,26	5,26
MEA Prozess	ļ						
CO2-Abscheiduna	kq/s				13.10	13.10	13.10
MEA Energie	kŴ				38.769	38.768	38.766
<i>ṁ</i> 4b	kg/s				16,42	16,42	16,42
	~						

A.3 Anhang - Wirtschaftliche Analyse

Tabelle A.20: Verwendete Parameter für wirtschaftliche Analyse (allgemein), vgl. Kapitel 4.2

	Abk.	Einheit	Min.	2020 Mit.	Max.	Steigerung Mit.	2050 Mit.
Preisindex (ggü. 2005)		-		1,25		1,50%	1,95
Brennstoffpreis Steinkohle	K _{Br,SK}	Euro ₂₀₀₅ /GJ	2,00	4,00	6,00	1,39%	6,05
Brennstoffpreis Erdgas	$K_{\rm Br,EG}$	Euro ₂₀₀₅ /GJ	4,05	8,10	12,15	1,35%	12,10
Brennstoffpreis Holzpellets	$K_{\rm Br,HP}$	Euro ₂₀₀₅ /GJ	4,98	9,96	14,94	1,39%	15,06
Brennstoffpreis HHS w=50%	$K_{\rm Br,HHS}$	Euro ₂₀₀₅ /GJ	3,00	6,00	9,00	1,39%	9,08
Brennstoffpreis Biogas	$K_{\rm Br,BG}$	Euro ₂₀₀₅ /GJ	6,94	13,89	20,83	1,35%	20,75
Brennstoffpreis Biomethan	$K_{\rm Br,BM}$	Euro ₂₀₀₅ /GJ	9,03	18,06	27,08	1,35%	26,97
CO ₂ -Zertifikatepreis		Euro/t	15,00	30,00	45,01	1,72%	50,00
CO ₂ -Zertifikatepreis	K _{CO2-Z}	Euro ₂₀₀₅ /t	12,00	24,00	36,00	0,21%	25,59
Spez. CO ₂ -Emissionen Steinkohle	$\mu_{\rm CO2,Br,dir,SK}$	kg/MJ	0,095	0,108			0,108
Spez. CO ₂ -Emissionen Erdgas	$\mu_{\rm CO2,Br,dir,EG}$	kg/MJ		0,054	0,056		0,054
Spez. CO ₂ -Emissionen Holzpellets	$\mu_{\rm CO2,Br,dir,HP}$	kg/MJ		0,098			0,098
Spez. CO ₂ -Emissionen HHS w=50%	$\mu_{\rm CO2,Br,dir,HH}$	_ε kg/MJ		0,111			0,111
Spez. CO ₂ -Emissionen Biogas	$\mu_{\rm CO2,Br,dir,BG}$	kg/MJ		0,079			0,079
Spez. CO ₂ -Emissionen Biomethan	$\mu_{\rm CO2,Br,dir,BM}$	kg/MJ		0,054	0,056		0,054
Fernwärmeerlöse	e _{FW,th}	Euro ₂₀₀₅ /GJ	5,99	7,99	9,99	1,36%	12,00
Strompreis (für Berechnung Wärme-GK)	e _{Strom}	Euro ₂₀₀₅ /MWh		50,00		1,36%	75,00
Nutzungsdauer	n	а		20			20
Zinssatz	i	%		5,0%			5,0%
Annuitätsfaktor	a _f	%/a		8,0%			8,0%
Volllaststunden Strom Steinkohle	t _{VL,Sk}	h/a	3000	5000	8000		3500
Volllaststunden Strom Erdgas	$t_{\rm VL,EG}$	h/a	3000	3000	8000		2000
Volllaststunden Strom Holz	$t_{\rm VL,HP/HHS}$	h/a	3000	7000	8000		7000
Volllaststunden Strom Biomethan/-gas	$t_{\rm VL,BM/BG}$	h/a	3000	4000	8000		4000
Volllaststunden KWK	$t_{\rm VL,KWK}$	h/a	3000	7000	8000		7000
CO ₂ -Abscheidegrad Post-Comb.	A CO2, Post		50,0%	90,0%			92,0%
CO ₂ -Abscheidegrad Pre-Comb.	A _{CO2,Pre}			90,0%			92,0%
CO ₂ -Abscheidegrad Oxyfuel	A _{CO2,Oxy}			99,0%			99,0%
CO2-Abscheidegrad Post-Comb. GuD	A CO2, Post		50,0%	90,0%			92,0%
CO ₂ -Transportkosten	K _{CO2-Tr}	Euro ₂₀₀₅ /t	0,00	5,00	20,00		5,00
CO ₂ -Speicherkosten	$K_{\rm CO2-Sp}$	Euro ₂₀₀₅ /t	0,00	4,00	16,00		10,00

KWK	CCS	Brennstoff	Prozess	Größe	Min. Lit.	Min.	2020 Mit.	Max.	Max. Lit.	Steigerung Mit.	2050 Mit.
-	-	Steinkohle	Dampf	η_{el}	30,0%	35,0%	41,2%	47,3%	47,0%	0,15%	45,7%
-		Steinkohle	IGCC	η_{el}	43,0%	38,8%	45,6%	52,5%	51,5%	0,20%	51,6%
-	•	Steinkohle	Oxyfuel	η _{el}	37,0%	38,1%	44,9%	51,6%	52,4%	0,15%	49,4%
	-	Holzpellets	Dampf	n	40,0%	35.0%	41.2%	47.3%	47.0%	0,10%	45.7%
		Holzpellets	IGCC	n _{el}	43,0%	38,8%	45,6%	52,5%	51,5%	0,20%	51,6%
		Holzpellets	Oxyfuel	η_{el}	37,0%	38,1%	44,9%	51,6%	52,4%	0,15%	49,4%
-		Biomethan	GuD	η_{el}	48,0%	46,2%	54,4%	62,5%	59,5%	0,10%	57,4%
		HHS w=50%	Dampf	η_{el}		27,3%	32,2%	37,0%			36,7%
-	-	HHS w=50%	IGCC	η_{el}		31,1%	36,6%	42,1%			42,6%
-	•	HHS w=50%	Oxyfuel	η_{el}		30,5%	35,9%	41,3%			40,4%
-	- Post Comb	Biogas	GuD	η _{el}	24 69/	38,6%	45,4%	52,2%	26.0%	0.20%	48,4%
	Pre-Comb	Steinkohle	IGCC	n el	24,0 %	24,0%	25,0%	12 0%	JU,0 %	0,20%	12 5%
	Oxvfuel	Steinkohle	Oxyfuel	n el	28.7%	29.5%	34.7%	39.9%	40.8%	0.20%	40.7%
-	Post-Comb.	Erdgas	GuD	η _{el}	38,6%	36,2%	42,6%	49,0%	48,6%	0,20%	48,6%
-	Post-Comb.	Holzpellets	Dampf	η_{el}		25,6%	30,1%	34,6%		0,20%	36,1%
-	Pre-Comb.	Holzpellets	IGCC	η_{el}		31,7%	37,3%	42,9%		0,20%	43,3%
	Oxyfuel	Holzpellets	Oxyfuel	η_{el}		30,7%	36,1%	41,5%		0,20%	42,1%
	Post-Comb.	Biomethan	GuD	η_{el}		36,2%	42,6%	49,0%		0,20%	48,6%
-	Post-Comb.	HHS w=50%	Dampf	η_{el}		16,4%	19,3%	22,2%		0,20%	25,3%
-	Pre-Comb.	HHS w=50%	Owfuel	η _{el}		23,0%	27,0%	31,1%		0,20%	33,0%
	Post-Comb	Biogas	GuD	n .		26.0%	20,0%	35.2%		0,20%	36.6%
mit KWK	-	Steinkohle	Dampf	nel		28.2%	33.2%	38.1%		0.15%	37.7%
mit KWK		Steinkohle	Dampf	n _{th}		57,8%	52,8%	47,9%		-,	48,3%
mit KWK		Steinkohle	IGCC	η_{el}		36,2%	42,6%	49,0%		0,20%	48,6%
mit KWK	-	Steinkohle	IGCC	η_{th}		49,8%	43,4%	37,0%			37,4%
mit KWK	-	Steinkohle	Oxyfuel	$\eta_{\rm el}$		31,3%	36,9%	42,4%		0,15%	41,4%
mit KWK	-	Steinkohle	Oxyfuel	η_{th}		54,7%	49,1%	43,6%			44,6%
mit KWK	•	Erdgas	GuD	η_{el}		43,7%	51,4%	59,1%		0,10%	54,4%
mit KWK		Erdgas	GuD	η _{th}		42,3%	34,6%	26,9%		0.159/	31,6%
mit KWK		Holzpellets	Dampf	η _{el}		28,2%	33,2% 52.8%	38,1% //7.0%		0,15%	37,7%
mit KWK		Holzpellets	IGCC	n el		36.2%	42.6%	49.0%		0.20%	48.6%
mit KWK		Holzpellets	IGCC	η _{th}		49,8%	43,4%	37,0%		.,	37,4%
mit KWK		Holzpellets	Oxyfuel	η _{el}		31,3%	36,9%	42,4%		0,15%	41,4%
mit KWK	-	Holzpellets	Oxyfuel	η_{th}		54,7%	49,1%	43,6%			44,6%
mit KWK	-	Biomethan	GuD	$\eta_{\rm el}$		43,7%	51,4%	59,1%		0,10%	54,4%
mit KWK	-	Biomethan	GuD	η_{th}		42,3%	34,6%	26,9%			31,6%
mit KWK	•	HHS w=50%	Dampf	η_{el}		20,5%	24,2%	27,8%		0,15%	28,7%
mit KWK	•	HHS w=50%	Dampt	η _{th}		65,5%	61,8%	58,2%		0.20%	57,3% 20.6%
mit KWK		HHS w=50%	IGCC	n n		20,0%	52 4%	30,7 %		0,20%	39,0% 46.4%
mit KWK		HHS w=50%	Oxyfuel	n el		23.7%	27.9%	32.1%		0.15%	32.4%
mit KWK		HHS w=50%	Oxyfuel	η _{th}		62,3%	58,1%	53,9%		-,	53,6%
mit KWK	-	Biogas	GuD	η _{el}		36,0%	42,4%	48,7%		0,10%	45,4%
mit KWK		Biogas	GuD	η_{th}		50,0%	43,6%	37,3%			40,6%
mit KWK	Post-Comb.	Steinkohle	Dampf	η_{el}		20,0%	23,5%	27,0%		0,20%	29,5%
mit KWK	Post-Comb.	Steinkohle	Dampf	η_{th}		27,0%	27,0%	27,0%			21,0%
mit KWK	Pre-Comb.	Steinkohle	IGCC	η _{el}		28,5%	33,5%	38,5%		0,20%	39,5%
mit KWK	Pre-Comb.	Steinkonie	GCC	η _{th}		43,4%	43,4%	43,4%		0.00%	37,4%
mit KW/K	Oxyluel	Steinkohle	Oxyluel	r/el		22,1% 49.1%	20,1% 49.1%	30,7% 49.1%		0,20%	32,1% 43.1%
mit KWK	Post-Comb.	Erdoas	GuD	//m //m		35.8%	42.1%	48.4%		0.20%	48.1%
mit KWK	Post-Comb.	Erdgas	GuD	η _{th}		19,0%	19,0%	19,0%		.,	13,0%
mit KWK	Post-Comb.	Holzpellets	Dampf	η _{el}		20,4%	24,0%	27,6%		0,20%	30,0%
mit KWK	Post-Comb.	Holzpellets	Dampf	η _{th}		29,4%	29,4%	29,4%			23,4%
mit KWK	Pre-Comb.	Holzpellets	IGCC	η_{el}		29,2%	34,3%	39,5%		0,20%	40,3%
mit KWK	Pre-Comb.	Holzpellets	IGCC	η_{th}		43,4%	43,4%	43,4%			37,4%
mit KWK	Oxyfuel	Holzpellets	Oxyfuel	η _{el}		23,9%	28,1%	32,3%		0,20%	34,1%
mit KWK	Oxytuel Root Comb	Holzpellets	Oxytuel	η _{th}		49,1%	49,1%	49,1%		0.000	43,1%
mit KWK	Post-Comb	Biomethan	GuD	n.		33,8%	42,1%	40,4%		0,20%	40,1% 13.0%
mit KWK	Post-Comb	HHS w=50%	Dampf	//th n_el	1	12.0%	14 1%	16.3%		0 20%	20.1%
mit KWK	Post-Comb	HHS w=50%	Dampf	η _{th}		43.7%	43.7%	43.7%		0,2070	37,7%
mit KWK	Pre-Comb.	HHS w=50%	IGCC	η_{el}		20,4%	24,0%	27,7%		0,20%	30,0%
mit KWK	Pre-Comb.	HHS w=50%	IGCC	η _{th}		52,4%	52,4%	52,4%			46,4%
mit KWK	Oxyfuel	HHS w=50%	Oxyfuel	η_{el}		15,1%	17,8%	20,5%		0,20%	23,8%
mit KWK	Oxyfuel	HHS w=50%	Oxyfuel	η_{th}		58,1%	58,1%	58,1%			52,1%
mit KWK	Post-Comb.	Biogas	GuD	η_{el}		26,1%	30,7%	35,3%		0,20%	36,7%
mit KWK	Post-Comb.	Biogas	GuD	η _{th}	1	21,3%	21,3%	21,3%			15,3%

Tabelle A.21: Verwendete Parameter für wirtschaftliche Analyse (Wirkungsgrade), vgl. Kapitel 4.2.3 und Kapitel 2.1.3.1.4

							2020			Steigerung	2050
	CCS	Brennstoff	Prozess	Einheit	Min. Lit. I	Vlin.	Mit.	Max.	Max. Lit.	Mit.	Mit.
	-	Steinkohle, Holzpellets	Dampf	Euro ₂₀₀₅ /kW	1200	1126	1352	2414	2436	-0,27%	1246
	-	Steinkohle, Holzpellets	IGCC	Euro ₂₀₀₅ /kW	1327	1232	1580	2639	2761	-0,83%	1230
	-	Steinkohle, Holzpellets	Oxyfuel	Euro ₂₀₀₅ /kW	1439	1212	1308	2598	1933	-0,83%	1018
	-	Erdgas, Biomethan	GuD	Euro ₂₀₀₅ /kW	469	500	590	1071	1301	0,00%	590
	-	HHS w=50%	Dampf	Euro ₂₀₀₅ /kW		1577	1757	3379			1620
	-	HHS w=50%	IGCC	Euro ₂₀₀₅ /kW		1724	2054	3695			1599
ten	-	HHS w=50%	Oxyfuel	Euro ₂₀₀₅ /kW		1697	1700	3637			1323
) kos	-	Biogas	GuD	Euro ₂₀₀₅ /kW		699	767	1499			767
DDS Inv.e	Post-Comb.	Steinkohle, Holzpellets	Dampf	Euro ₂₀₀₅ /kW	2017	1944	2290	4166	4286	-0,45%	2002
(X iti	Pre-Comb.	Steinkohle, Holzpellets	IGCC	Euro ₂₀₀₅ /kW	1605	1677	2108	3594	3713	-0,81%	1652
JVe	Oxyfuel	Steinkohle, Holzpellets	Oxyfuel	Euro ₂₀₀₅ /kW	2393	2127	2175	4557	3676	-0,81%	1705
-	Post-Comb.	Erdgas, Biomethan	GuD	Euro ₂₀₀₅ /kW	940	907	1039	1944	2272	-0,91%	790
	Post-Comb.	HHS w=50%	Dampf	Euro ₂₀₀₅ /kW		2528	2977	5416			2603
	Pre-Comb.	HHS w=50%	IGCC	Euro ₂₀₀₅ /kW		2181	2740	4673			2148
	Oxyfuel	HHS w=50%	Oxyfuel	Euro ₂₀₀₅ /kW		2764	2828	5924			2216
	Post-Comb.	Biogas	GuD	Euro ₂₀₀₅ /kW		1180	1350	2528			1027
	Zusätzl. Inve	stitionskosten KWK: Gleich	e Investitions	costen wie ohne KV	VK, da die	Mehrau	sgaben fi	ur Heizko	ndensato	or	
_	und Warmwa	asserleitungen sich mit den	Einsparungen	autgrund der einfa	cheren Iu	rbinenge	eometrie	ausgleich	ien.	0.070/	
ster	-	Steinkohle, Holzpellets	Dampt	Euro ₂₀₀₅ /(KVV·a)	37		55		117	-0,27%	51
škos	-	Steinkohle, Holzpellets	IGCC	Euro ₂₀₀₅ /(KVV·a)	41		56		118	-0,83%	43
(la	-	Steinkohle, Holzpellets	Oxyfuel	Euro ₂₀₀₅ /(KVV·a)	39		55		117	-0,83%	43
artu 3+W	-	Erdgas, Biomethan	GuD	Euro ₂₀₀₅ /(KW·a)	16		21		41	0,00%	21
ŚΫ	Post-Comb.	Steinkohle, Holzpellets	Dampf	Euro ₂₀₀₅ /(kW·a)	86		113		339	-0,45%	98
ebs	Pre-Comb.	Steinkohle, Holzpellets	IGCC	Euro ₂₀₀₅ /(kW·a)	61		78		213	-0,81%	61
etri	Oxyfuel	Steinkohle, Holzpellets	Oxyfuel	Euro ₂₀₀₅ /(kW·a)	74		95		276	-0,81%	75
ß	Post-Comb.	Erdgas, Biomethan	GuD	Euro ₂₀₀₅ /(kW·a)	39		41		71	-0,91%	31
ten		HHS w=50%	Dampf	Euro ₂₀₀₅ /(kW·a)			14			-0,45%	12
kos		HHS w=50%	IGCC	Euro ₂₀₀₅ /(kW·a)			16			-0,81%	12
ehr		HHS w=50%	Oxyfuel	Euro ₂₀₀₅ /(kW·a)			13			-0,81%	10
Σ		Biogas	GuD	Euro ₂₀₀₅ /(kW·a)			5			-0,91%	5
ten	mit KWK		Dampf	Euro ₂₀₀₅ /(kW·a)			38			-0,45%	33
kos	mit KWK		IGCC	Euro ₂₀₀₅ /(kW·a)			44			-0,81%	35
ehr	mit KWK		Oxyfuel	Euro ₂₀₀₅ /(kW·a)			37			-0,81%	29
ź	mit KWK		GuD	Euro ₂₀₀₅ /(kW·a)			15			-0,91%	15

Tabelle A.22: Verwendete Parameter für wirtschaftliche Analyse (Investitions-/Betriebs-kosten), vgl. Kapitel 4.2.4

Värme- jestehungs-	costen	f WG,#h	Euro ₂₀₀₅ /MWh																							31,51	31.81	41,23	54,54	65,36	56,58 121 24	29.21	34,87	29,73	80,42	66,42	36,09 33.14	97,54	103,90	65,01	58,74	261,69	39,48	31,42 27 87	180,17
CO2 Vermeidungs-	kosten	K _{CO2-V} 1	Euro/t E											64.50	39.58	48,44	118,95	57,25	40,28	45,17	123,48	44,75	32,90	36,37	92,93											62,80	24,99	92,48	62,39	33, 23	36, 33	111,10	36,52	21,50	86,36
strom- lestehungs-	osten	GK,el		90,25	88,44	84,80 85.04	110.46	104.69	102,81	136,68	60'26	92,77	89,49	122,23	100.01	105,67	114,55	145,65	118,58	123,36	177,35	135,86	104,66	108,54	189,03	54,36	54.05	58,39	91,05	87,25	87,06	51.12	59,52	52,01	103,15	93,25	58.04 58.04	81,06	141,95	95,82	102,44	155,18	83,12	11,00	154,95
0 8	FW-Erlöse k	e _{FW,el} k																								-45,84	-28,23	-19,38	-45,84	-29,29	-38,33	-73.63	-44,84	-60,00	-29,60	-33,05	-57,94	-12,99	-35,21	-36,37	-50,34	-12,99	-88,94	-07,00	-19,94
CO ₂ - Transport-/ Speicher-	kosten	k co2-Tr/Sp.el	٨h											10.82	8.59	9,94	3,68	9,52	7,68	8,74	3,68	16,81	12,02	13,86	1,49											13,34	9,30	3,73	11,93	8,35	11,23	3,73	22,99	10,01	7,48
CO ₂ - Zertifikate-	Kosten	k co2-Z,el	Euro ₂₀₀₅ /MV	22,56	20,36	20,09 8 5 5	00.0							3 20	2.54	0,27	1,09	-25,39	-20,47	-23,29	-9,81	-44,81	-32,04	-36,95	-19,98	28,00	25.19	9,05								3,95	2,77	1,10	-31,81	-22,26	-29,93	-9,94	-61,29	-50,03	-19,93
Brennstoff-	kosten	k _{Br,el}		34,98	31,57	32,U9 53 67	20,00	78.61	79,90	119,52	67,15	59,00	60,21	40.60	39.45	41,50	68,38	119,18	96,07	99,37	152,43	111,72	79,87	83,74	103,45	43,42	39.05	56,75	108,12	84,14	97,25 126 40	89.39	64,26	77,50	117,96	61,27	42,99 53.94	69,30	149,29	104,47	127,70	154,47	152,81	124 41	163,08
Betriebs-	kosten	$k_{\rm B+W,el}$		11,02	11,16	7 11	7 87	79.7	7,92	5,33	9,80	10,23	9,79 6 60	0,03 22 52	15.60	19,06	13,62	16,08	11,14	13,61	10,21	18,02	13,40	15,48	/G, LT	13,28	13.15	5,22	13,28	14,29	13,15	15.21	16,55	15,02	6,00	21,49	11,40	8,01	21,49	17,46	18,84	8,01	23,42	20.71	8,79
Kapital-	kosten	k _{Kap,el}		21,69	25,36	20,99	15,71	18.11	14,99	11,83	20,14	23,55	19,49	36.76	33.83	34,91	27,78	26,25	24,16	24,93	20,84	34,13	31,41	32,41	21,09	15,50	14.99	6,76	15,50	18,11	14,99 6 76	20.14	23,55	19,49	8,79	26,25	24,16	11,91	26,25	24,16	24,93	11,91	34,13	30,41	15,48
/ermiedene 202-	Emissionen	I CO2,el,verm												807	742	851	311	1058	853	971	409	1867	1335	1540	832											1002	1035	331	1326	928	1247	414	2554	2061	831
ogeschie-	missionen	CO2,el.ab /	kg/MWh											1202	954	1104	409	1058	853	971	409	1867	1335	1540	832											1482	1040	414	1326	928	1247	414	2554	2061	831
₫ ₽ _2.	nissionen E	202,el,dir µ		940	848	202 366	000							134	106	5 =	45	-1058	-853	-971	-409	-1867	-1335	-1540	-832	1167	300 1050	377								165	116	46	-1326	-928	-1247	-414	-2554	2061-	-831
	duktion Er	μ	/h/(MW·a)																						0	20111	9327	4715	11153	7127	9327 4745	17914	10910	14599	7203	8042	9066 12882	3161	8567	8849	12248	3161	21639	10701	4852
rom-	oduktion pro	∕el Q	Wh/(MW·a) MV	5000	5000	0008	2000	2000	7000	4000	2000	7000	7000	4000	5000	5000	3000	2000	2000	2000	4000	2000	2000	7000	4000	0002	2000	7000	2000	7000	2000	2000/	7000	7000	2000	7000	2000	7000	2000	7000	2000	7000	7000	000/	2000
<u></u>	Prozess pr	N	M	Dampf	CCC	Iantyrue	Jamof	000	Dxyfuel	GuD	Dampf	GCC	Dxyfuel	Jamof	1000	Dxyfuel	GuD	Jampf	GCC	lautyc	GuD	Dampf	ecc ecc	Dxyfuel	, UD		Dxvfuel	DuD	Dampf	GCC	Dxyfuel	Damof	GCC	Dayfuel	Dub	Jampt	Dxvfuel	GuD	Dampf	GCC	Dayfuel	GuD	Dampf	out Minal	BuD
	srennstoff I			steinkohle I	steinkohle I	teinkonie rdaac	1017 w -10% 1	loiz w=10%	lolz w=10% 0	iomethan (lolz w=50%	10/2 w =50%	Holz w=50%	teinkohle I	teinkohle I	teinkohle	rdgas (1olz w=10%	Iolz w=10%	Holz w=10% (siomethan (lolz w=50% 1	lolz w=50% 1	Holz w =50%	siogas	teinkonle	teinkohle (rdgas	lolz w=10% 1	Holz w=10% 1	Holz w=10%	1017 w=50% 1	lolz w=50% 1	lolz w=50% (siogas	steinkohle	teinkohle (rdgas	lolz w=10% 1	lolz w=10% I	Holz w=10% (siomethan (Holz w=50%	. %09= M 2101	liogas (
	CCS			w)	0) (0	лЦ	1	. 1	. r	Ш	L L	Ŧ	<u>т</u> с	Poet-Comb S	re-Comb S	Dxyfuel S	Post-Comb. E	ost-Comb. h	Pre-Comb. H	Dxyfuel H.	Post-Comb. E	ost-Comb. F.	Pre-Comb. F	Dxyfuel F		00	0.0	ш	Ľ	Ŧ	<u>т</u> а	1 I	. r	r	ш (ost-Comb. S	Pre-Comp. S	Post-Comb. E	ost-Comb. H	Pre-Comb. H	A laufuel h	^{oost-Comb.} E	Post-Comb. F		Post-Comb. B
	KWK					• •											-		÷		- -	- -	- '		-	mit KWK	mit KWK	mit KWK -	mit KWK -	mit KWK -	mit KWK	mit KWK	mit KWK -	mit KWK -	mit KWK	mit KWK	mit KWK	mit KWK F	mit KWK F	mit KWK F	mit KWK C	mit KWK F	mit KWK		mit KWK F

Tabelle A.23: Berechnung der Stromgestehungskosten, Wärmegestehungskosten und CO₂-Vermeidungskosten in 2020, eigene Berechnung mit Daten aus Kapitel 4.2

A.4 Anhang - Analyse der Nachhaltigkeit

Tabelle A.24: Verwendete Parameter für die Analyse der Nachhaltigkeit (allgemein), vgl. Kapitel 5.2

	Abk.	Einheit	Min.	Mit.	Max.	Quelle/Kommentar
Brennstoff						
Brennstoffanteil erneuerbar	α _{EE}	%	10%	30%	100%	eigene Festlegung
Brennstoffanteil fossil	1-a == (a tree)	%	90%	70%	0%	eigene Festlegung
Heizwerte	1 G EE (G 108)		0070	1070	070	algono i obliogang
Stainkabla	н	M l/ka		25.20		Taballa & 10: Spazifischer Sauerstoffbedarf für
	I I,SK	MJ/Kg		20,20		Tabelle A. 10. Opezifischer Osuerstoffbedari für
Holz 10% (Holzpellets)	H _{I,HP}	MJ/Kg		16,52		Tabelle A.10: Spezifischer Sauerstonbedarf für
Holz 50% (Holzhackschnitzel)	H _{I,HHS}	MJ/kg		8,09		Tabelle A.10: Spezifischer Sauerstoffbedarf für
Brennwerte						
Biogas	H _{S,BG}	kWh/m ³		6,5		Tabelle 2.1: Zusammensetzung von Roh-Biogas
Biomethan/Erdgas	H _{S,BM}	kWh/m ³		10,0		Tabelle 2.1: Zusammensetzung von Roh-Biogas
Direkte spez. CO ₂ -Emissionen						
Steinkohle		ka/MJ		0 1075		Kanital 3.2.2.4 Spazifische COEmissionen
5-data	P CO2,Br,dir,SK	ka/MI		0,1073		Kapitel 9.2.2.4 Operations Objections and Deat Operation
Erogas	µ CO2,Br,dir,EG	kg/iviJ		0,0538		Kapitel 3.2.3.4 Biomethan und Post-Combustion
Holz 10% (Holzpellets)	$\mu_{CO2,Br,dir,HP}$	kg/ivij		0,0983		Kapitel 3.2.2.4 Spezifische CO ₂ -Emissionen
Holz 50% (Holzhackschnitzel)	μ _{CO2,Br,dir,HHS}	kg/MJ		0,1114		Kapitel 3.2.2.4 Spezifische CO ₂ -Emissionen
Biogas	μ _{CO2,Br,dir,BG}	kg/MJ		0,0786		Kapitel 3.2.3.4 Biomethan und Post-Combustion
Biomethan	μ _{CC2 Br dir BM}	kg/MJ		0,0538		Kapitel 3.2.3.4 Biomethan und Post-Combustion
Indirekte spez COEmissionen (durch Vorket	ten CO2-Äquivalen	te)				
Steinkehle		ka/MI		0.0072		Eritasha 2010h
Steinkonie	µ CO2,Br,ind,SK	kg/ivij		0,0072		Fritsche, 2010b
Erdgas	$\mu_{CO2,Br,ind,EG}$	kg/MJ		0,0086		Fritsche, 2010b
HHS (KUP)-0LUC	$\mu_{\rm CO2,Br,ind,HHS,OLUC}$	kg/MJ		0,0045		Fritsche, 2010b
HHS (KUP)-iLUC25% (Acker)		kg/MJ		0,0167		Fritsche, 2010b
HHS (KUP)-iLUC50% (Grünland)	µ _{CO2,Br,ind,HHS,iLUC50%}	kg/MJ		0,0552		Fritsche, 2010b
HHS (aus Waldrestholz)		kg/MJ		0,0073		Fritsche, 2010b
Holz-Pellets (aus Sägewerksreststoffen)	U CO2 Brind HP	ka/MJ		0.0069		Fritsche, 2010b
Biomüll	Uccon Relied Down Die	kg/M.I		0.0100		Fritsche und Wiegmann 2008 S 67
Biomai	P CO2,Br,ind,Prim,BM	kg/iviJ		0,0100		Filische und Wiegmann, 2000, O. 07
Gulle	$\mu_{CO2,Br,ind,Prim,BM}$	kg/MJ		0,0169		Fritsche und Wiegmann, 2008, S. 67
Mais-Silage-0LUC	$\mu_{\rm CO2,Br,ind,Prim,BM}$	kg/MJ		0,0121		Fritsche, 2010b
Mais-Silage-iLUC25% (Acker)	$\mu_{\rm CO2,Br,ind,Prim,BM}$	kg/MJ		0,0275		Fritsche, 2010b
Mais-Silage-iLUC50% (Grünland)	μ _{CC2 Br ind Prim BM}	kg/MJ		0.0554		Fritsche, 2010b
Wirkungsgrad Biogaserzeugung	n _{ec}	%		69%		Beil, 2008, S. 13: Kaltschmitt et al., 2009, S. 855
Ind anot CO. Emissionen für Bieren aust	183					,
Ind. spez. CO ₂ -Emissionen für Biogas aus.		1		0.0444		dara Darahara
Biomuli		kg/MJ		0,0144		eigene Berechnung
Guile Mais Silago (LLIC		kg/MJ		0,0244		eigene Berechnung
Mais-Silage-0L0C		kg/MJ		0,0175		eigene Berechnung
Mais-Silage-iLUC50% (Ackel)		kg/MJ		0,0390		eigene Berechnung
Zusatzamissionan Biomathanaufharaitung		kg/MJ		0,0000		nigene Berechnung
Zusaizernissionen Biomethanaubereitung	P CO2,Br,ind,BM,zus	kg/iviJ		0,0108		eigene Berechnung
Brennwertunterschied Biomethan/-gas	H _{S,BM} /H _{S,BG}	%		154%		eigene Berechnung
Ind. spez. CO2-Emissionen für Biomethan aus	s:					
Biomüll	µ _{CO2,Br,ind,BM}	kg/MJ		0,0164		eigene Berechnung
Gülle	U CO2 Brind BM	ka/MJ		0.0229		eigene Berechnung
Mais Silago OLLIC	11	ka/MI		0.0194		nigene Berechnung
Mais-Silage-0E0C	P CO2,Br,ind,BM	kg/iviJ		0,0104		eigene Derechnung
Mais-Silage-ILUC25% (Acker)	µ _{CO2,Br,ind,BM}	kg/ivij		0,0329		eigene Berechnung
Mais-Silage-iLUC50% (Grünland)	$\mu_{\rm CO2,Br,ind,BM}$	kg/MJ		0,0590		eigene Berechnung
CO ₂ -Abscheidung						
CO ₂ -Abscheidegrad Post-Comb.	A CO2 Post			90,0%		Kapitel 2.1.3.1.2 Verfahren der CO ₂ -Abtrennung
CO ₀ -Abscheidegrad Pre-Comb	A			90.0%		eigene Festlegung
CO_Abaabaidagrad Overfuel	A CU2,Pre			00,0%		Material 2005 C 125
CO ₂ -Abscheidegrad Oxylder	A CO2,Oxy			99,0%		Wetz et al., 2005, 5. 135
CO ₂ -Abscheidegrad Post-Comb. GuD	A CO2, Post			90,0%		Kapitel 2.1.3.1.2 Verfahren der CO ₂ -Abtrennung
Referenzwirkungsgrade (Strom)						
Steinkohle	$\eta_{\rm el,Ref,SK}$	%		44,2%		Europäische Kommission, 2006, S. 3
Erdgas	$\eta_{\rm el,Ref,EG}$	%		52,5%		Europäische Kommission, 2006, S. 3
Holzbrennstoffe	n el Ref HHS	%		33,0%		Europäische Kommission, 2006. S. 3
Piogos	n n	0/		42.0%		Europäische Kommission 2006 S 2
Poforonzwirkungsgrada (M/ärma)	*/ el,Ref,BG	70		42,070		Europaische Kommission, 2000, 0. 5
Relefenzwirkungsgrade (warne)		0/		00.00/		Even Vische Kennelseine 2000 0.4
Steinkonie	η th,Ref,SK	%		88,0%		Europaische Kommission, 2006, S. 4
Erdgas	$\eta_{\mathrm{th,Ref,EG}}$	%		86,0%		Europäische Kommission, 2006, S. 4
Holzbrennstoffe	$\eta_{ m th,Ref,HHS}$	%		90,0%		Europäische Kommission, 2006, S. 4
Biogas	η _{th Ref BG}	%		70,0%		Europäische Kommission, 2006, S. 4
CO ₂ -Transport						
Schiffetronenort 1000 km		t/t	2 50%	2 50%	100/	Motz at al. 2005 S 196 S 102
Disalisation and Marken 111	P CO2,Schiff		2,30%	3,30%	10%	Micia et al., 2000, 0. 100, 0. 192
Pipelinetransport, Nachverdichtung um 40 bar	E Pipeline	KVVN/t		1,43		McCoy, 2008, S. 36
Spez. CO ₂ -Emissionen Strommix D	$\mu_{\rm CO2,el,Mix}$	g/kWh		563		UBA, 2011a
Pipelinetransport, Nachverdichtung um 40 bar	$\mu_{\rm CO2, Pipeline}$	t/t		0,08%		eigene Berechnung
CO ₂ -Speicherung						-
CO ₀ -Leckagerate	Q	t/(t·a)	0.01%	0.01%	0 10%	Kanitel 2 3 4 3 2 CO2-Leckaderaten
Potrochungezeitreum	T LECK,CUZ	o (* a)	400	500 E00	1000	
	//Leck	a	100	000	1000	eigene restlegung
Ressourchen-/Flachenettizienz		~////h		<i>c</i> = -		
Spez. CO2-Emissionen Wärmemix D	$\mu_{\rm CO2,th,Mix}$	g/kwn	1	270		Erdmann und Dittmar, 2010, S. 51
KUP-Ertragsniveau (atro)		t/(ha·a)	10	12	14	Hofmann, 2009, S. 27
Heizwert KUP-Holz atro		kWh/kg		4,9		Hofmann, 2009, S. 34
Ertragsniveau KUP (HHS w=50%)	EKUP	t/(ha·a)	1	26,2		eigene Berechnung
Ertragsniveau Silomais-Biogas	E _{Mais}	m³/(ha∙a)	7800	8450	9100	FNR, 2010, S. 5

							Kommentar
KWK	CCS	Prozess	Prozess 2	Einheit	$\eta_{\rm el}$	$\eta_{ m th}$	
-	-	IGCC	fossil	%	45,6%		vgl. Kap. 4.2.3 Elektrische und thermische Wirkungsgrade
-	-	GuD	fossil	%	54,4%		vgl. Kap. 4.2.3 Elektrische und thermische Wirkungsgrade
-	-	IGCC	Mitverbr.	%	45,6%		vgl. Kap. 4.2.3 Elektrische und thermische Wirkungsgrade
-	-	GuD	Mitverbr.	%	54,4%		vgl. Kap. 4.2.3 Elektrische und thermische Wirkungsgrade
-	-	IGCC	Monoverbr.	%	36,6%		vgl. Kap. 4.2.3 Elektrische und thermische Wirkungsgrade
-	-	GuD	Monoverbr.	%	45,4%		vgl. Kap. 4.2.3 Elektrische und thermische Wirkungsgrade
-	Pre-Comb.	IGCC	fossil	%	36,5%		vgl. Kap. 4.2.3 Elektrische und thermische Wirkungsgrade
-	Post-Comb.	GuD	fossil	%	42,6%		vgl. Kap. 4.2.3 Elektrische und thermische Wirkungsgrade
-	Pre-Comb.	IGCC	Mitverbr.	%	37,3%		vgl. Kap. 4.2.3 Elektrische und thermische Wirkungsgrade
-	Post-Comb.	GuD	Mitverbr.	%	42,6%		vgl. Kap. 4.2.3 Elektrische und thermische Wirkungsgrade
-	Pre-Comb.	IGCC	Monoverbr.	%	27,0%		vgl. Kap. 4.2.3 Elektrische und thermische Wirkungsgrade
-	Post-Comb.	GuD	Monoverbr.	%	30,6%		vgl. Kap. 4.2.3 Elektrische und thermische Wirkungsgrade
mit KWK	-	IGCC	fossil	%	42,6%	43,4%	vgl. Kap. 4.2.3 Elektrische und thermische Wirkungsgrade
mit KWK	-	GuD	fossil	%	51,4%	34,6%	vgl. Kap. 4.2.3 Elektrische und thermische Wirkungsgrade
mit KWK	-	IGCC	Mitverbr.	%	42,6%	43,4%	vgl. Kap. 4.2.3 Elektrische und thermische Wirkungsgrade
mit KWK	-	GuD	Mitverbr.	%	51,4%	34,6%	vgl. Kap. 4.2.3 Elektrische und thermische Wirkungsgrade
mit KWK	-	IGCC	Monoverbr.	%	33,6%	52,4%	vgl. Kap. 4.2.3 Elektrische und thermische Wirkungsgrade
mit KWK	-	GuD	Monoverbr.	%	42,4%	43,6%	vgl. Kap. 4.2.3 Elektrische und thermische Wirkungsgrade
mit KWK	Pre-Comb.	IGCC	fossil	%	33,5%	43,4%	vgl. Kap. 4.2.3 Elektrische und thermische Wirkungsgrade
mit KWK	Post-Comb.	GuD	fossil	%	42,1%	19,0%	vgl. Kap. 4.2.3 Elektrische und thermische Wirkungsgrade
mit KWK	Pre-Comb.	IGCC	Mitverbr.	%	34,3%	43,4%	vgl. Kap. 4.2.3 Elektrische und thermische Wirkungsgrade
mit KWK	Post-Comb.	GuD	Mitverbr.	%	42,1%	19,0%	vgl. Kap. 4.2.3 Elektrische und thermische Wirkungsgrade
mit KWK	Pre-Comb.	IGCC	Monoverbr.	%	24,0%	52,4%	vgl. Kap. 4.2.3 Elektrische und thermische Wirkungsgrade
mit KWK	Post-Comb.	GuD	Monoverbr.	%	30,7%	21,3%	vgl. Kap. 4.2.3 Elektrische und thermische Wirkungsgrade

Tabelle A.25: Verwendete Parameter für Analyse der Nachhaltigkeit (Wirkungsgrade), vgl. Kapitel 4.2.3

Tabelle	A.26:	Berechnung	für	die	Analyse	der	Nachhaltigkeit,	Teil	А,	eigene	Berec	hnung
		mit Daten a	aus I	Кар	itel 5.2.1							

						direkt			indirekt		Aufteilu	ing el/th						
						CO2-	Emission	en Brenns	toff		Anteil el	Anteil th		Di	irekte CO ₂	-Emissioner	n	
					gesamt	aus FF a	aus fossil	gesamt	aus FF	aus fossil			gesamt	aus FF	aus fossil	gesamt	aus FF	aus fossil
							,	,,			~	~	J			3		
KWł	CCSBrennstoff	%-Bio Vorkette	Prozes	Prozess 2	P CO2,Br,dir	ka/MJ	CO2,Br,dir,fo	P CO2,ind,Br	P CO2,ind,Br,E.	CO2,ind,Br,f	W Br,el	W Br,th		p CO2,el,dir a/kWh			μ CO2,th,dir α/kWh	
-	- Steinkohle	0% Mittel aller Sorten	Dampf	(1102000 E	0,108	Ngrino	0,108	0,007	ilg illo	0,007	70	70	940	0	940		gian	
1 -	- Steinkohle	0% Mittel aller Sorten	IGCC		0,108		0,108	0,007		0,007			848	0	848			
12 -	 Steinkohle Erdgas 	0% Mittel aller Sorten	Oxyfue	I	0,108		0,108	0,007		0,007			862 356	0	862 356			
2 -	- HHS + SK	30% KUP-0LUC	IGCC	Mitverbr.	0,034	0,033	0,034	0,005	0,001	0,005			858	264	594			
3 -	- HHS + SK	30% KUP-iLUC25% A	IGCC	Mitverbr.	0,109	0,033	0,075	0,010	0,005	0,005			858	264	594			
4 -	- HHS + SK	30% KUP-iLUC50% G	IGCC	Mitverbr.	0,109	0,033	0,075	0,022	0,017	0,005			858	264	594			
6 -	 Pellets + Sk 	30% Sägewerksreste	IGCC	Mitverbr.	0,105	0,033	0,075	0,007	0,002	0,005			827	204	594			
7 -	- HHS	100% KUP-0LUC	IGCC	Monoverbr.	0,111	0,111		0,004	0,004				1096	1096	0			
8 -	- HHS	100% KUP-iLUC25% A	IGCC	Monoverbr.	0,111	0,111		0,017	0,017				1096	1096	0			
9 - 10 -	- HHS	100% Waldrestholz	IGCC	Monoverbr.	0,111	0,111		0,055	0,055				1096	1096	0			
11 -	- Pellets	100% Sägewerksreste	IGCC	Monoverbr.	0,098	0,098		0,007	0,007				966	966	0			
13 -	- BM + EG	30% Biomüll	GuD	Mitverbr.	0,054	0,016	0,038	0,011	0,005	0,006			356	107	249			
15 -	- BM + EG	30% Mais-0LUC	GuD	Mitverbr.	0,054	0,016	0,038	0,013	0,007	0,000			356	107	249			
16 -	- BM + EG	30% Mais-iLUC25% A	GuD	Mitverbr.	0,054	0,016	0,038	0,016	0,010	0,006			356	107	249			
17 -	- BM + EG	30% Mais-iLUC50% G	GuD	Mitverbr.	0,054	0,016	0,038	0,024	0,018	0,006			356	107	249			
18 -	- Biogas	100% Gülle	BHKW		0,079	0,079		0,014	0,014				623	623	0			
20 -	- Biogas	100% Mais-0LUC	BHKW		0,079	0,079		0,018	0,018				623	623	0			
21 -	- Biogas	100% Mais-iLUC25% A	BHKW		0,079	0,079		0,040	0,040				623	623	0			
- 22	Post Steinkohle	0% Mittel aller Sorten	Dampf		0,108	0,079	0,108	0,080	0,000	0,007	1		134	023	134			
1 -	Pre Steinkohle	0% Mittel aller Sorten	IGCC		0,108		0,108	0,007		0,007			106	0	106			
- 12 -	Oxy Steinkohle Post Erdage	0% Mittel aller Sorten 0% DE-mix frei KW	Oxyfue	I	0,108		0,108	0,007		0,007			11	0	11			
2 -	Pre HHS + SK	30% KUP-0LUC	IGCC	Mitverbr.	0,054	0,033	0,054	0,009	0,001	0,009			45	32	45			
3 -	Pre HHS + SK	30% KUP-iLUC25% A	IGCC	Mitverbr.	0,109	0,033	0,075	0,010	0,005	0,005	1		105	32	73			
4 -	Pre HHS + SK	30% KUP-iLUC50% G	IGCC	Mitverbr.	0,109	0,033	0,075	0,022	0,017	0,005			105	32	73			
6 -	Pre Pellets + Sk	30% Sägewerksreste	IGCC	Mitverbr.	0,105	0,033	0,075	0,007	0,002	0,005			103	28	73			
7 -	Pre HHS	100% KUP-0LUC	IGCC	Monoverbr.	0,111	0,111		0,004	0,004				148	148	0			
8 -	Pre HHS	100% KUP-iLUC25% A	IGCC	Monoverbr.	0,111	0,111		0,017	0,017				148	148	0			
9 - 10 -	Pre HHS	100% Waldrestholz	IGCC	Monoverbr.	0,111	0,111		0,055	0,055				146	140	0			
11 -	Pre Pellets	100% Sägewerksreste	IGCC	Monoverbr.	0,098	0,098		0,007	0,007				131	131	0			
13 -	Post BM + EG	30% Biomüll	GuD	Mitverbr.	0,054	0,016	0,038	0,011	0,005	0,006			45	14	32			
14 -	Post BM + EG	30% Mais-0LUC	GuD	Mitverbr.	0,054	0.016	0,038	0,013	0,007	0,006			45	14	32			
16 -	Post BM + EG	30% Mais-iLUC25% A	GuD	Mitverbr.	0,054	0,016	0,038	0,016	0,010	0,006			45	14	32			
17 -	Post BM + EG	30% Mais-iLUC50% G	GuD	Mitverbr.	0,054	0,016	0,038	0,024	0,018	0,006			45	14	32			
18 - 19 -	Post Biogas Post Biogas	100% Biomuli 100% Gülle	BHKW		0,079	0,079		0,014	0,014				92 92	92	0			
20 -	Post Biogas	100% Mais-0LUC	BHKW		0,079	0,079		0,018	0,018				92	92	0			
21 -	Post Biogas	100% Mais-iLUC25% A	BHKW		0,079	0,079		0,040	0,040				92	92	0			
 	- Steinkohle	0% Mats-ILUC50% G	Dampf		0,079	0,079	0.108	0,080	0,080	0.007	56%	44%	92 648	92	648	326	0	326
1 mit	 Steinkohle 	0% Mittel aller Sorten	IGCC		0,108		0,108	0,007		0,007	66%	34%	601	Ő	601	302	0	302
mit	- Steinkohle	0% Mittel aller Sorten	Oxyfue	I	0,108		0,108	0,007		0,007	60%	40%	629	0	629	316	0	316
12 mit	- Erdgas - HHS + SK	30% KUP-0LUC	IGCC	Mitverhr	0,054	0.033	0,054	0,009	0.001	0,009	71%	29%	267	206	267	163 245	75	163 170
3 mit	 HHS + SK 	30% KUP-iLUC25% A	IGCC	Mitverbr.	0,109	0,033	0,075	0,010	0,005	0,005	73%	27%	669	200	463	245	75	170
4 mit	- HHS + SK	30% KUP-iLUC50% G	IGCC	Mitverbr.	0,109	0,033	0,075	0,022	0,017	0,005	73%	27%	669	206	463	245	75	170
5 mit 6 mit	 HHS + SK Pellets + Sk 	30% Waldrestholz 30% Sägewerksreste	IGCC	Mitverbr. Mitverbr	0,109	0,033	0,075	0,007	0,002	0,005	73%	27%	669 644	206 181	463	245 236	75	170 170
7 mit	- HHS	100% KUP-0LUC	IGCC	Monoverbr.	0,103	0,023	0,075	0,004	0,002	0,000	64%	36%	760	760		278	278	0
8 mit	- HHS	100% KUP-iLUC25% A	IGCC	Monoverbr.	0,111	0,111		0,017	0,017		64%	36%	760	760	0	278	278	0
9 mit 10 mit	- HHS	100% KUP-iLUC50% G 100% Waldrestholz	IGCC	Monoverbr.	0,111	0,111		0,055	0,055		64% 64%	36%	760	760	0	278	278	0
11 mit	- Pellets	100% Sägewerksreste	IGCC	Monoverbr.	0,098	0,098		0,007	0,007		64%	36%	670	670	0	246	246	0
13 mit	- BM + EG	30% Biomüll	GuD	Mitverbr.	0,054	0,016	0,038	0,011	0,005	0,006	71%	29%	267	80	187	163	49	114
14 mit 15 mit	- BM + EG	30% Gülle 30% Mais-0LLIC	GuD	Mitverbr.	0,054	0,016	0,038	0,013	0,007	0,006	71%	29%	267	80 80	187	163 163	49	114
16 mit	- BM + EG	30% Mais-iLUC25% A	GuD	Mitverbr.	0,054	0,016	0,038	0,012	0,000	0,006	71%	29%	267	80	187	163	49	114
17 mit	- BM + EG	30% Mais-iLUC50% G	GuD	Mitverbr.	0,054	0,016	0,038	0,024	0,018	0,006	71%	29%	267	80	187	163	49	114
18 mit 19 mit	 Biogas Biogas 	100% Biomüll 100% Gülle	BHKW BHKW		0,079	0,079		0,014	0,014		62% 62%	38%	413 413	413 413	0	248 248	248 248	0
20 mit	- Biogas	100% Mais-0LUC	BHKW		0,079	0,079		0,018	0,018		62%	38%	413	413	0	248	248	0
21 mit	- Biogas	100% Mais-iLUC25% A	BHKW		0,079	0,079		0,040	0,040		62%	38%	413	413	0	248	248	0
22 mit mit	 Biogas Post Steinkohle 	100% Mais-iLUC50% G 0% Mittel aller Sorten	Damof		0,079	0,079	0.108	0,080	0,080	0.007	62% 63%	38%	413	413 0	104	248	248 0	0
1 mit	Pre Steinkohle	0% Mittel aller Sorten	IGCC		0,108		0,108	0,007		0,007	61%	39%	70	0	70	35	0	35
mit	Oxy Steinkohle	0% Mittel aller Sorten	Oxyfue	I	0,108		0,108	0,007		0,007	52%	48%	8	0	8	4	0	4
12 mit	Post Erdgas	0% DE-mix frei KW	GuD	Mitworbr	0,054	0.032	0,054	0,009	0.001	0,009	82% 61%	18%	38	0	38	19	0	19
∠ mit 3 mit	Pre HHS + SK	30% KUP-iLUC25% A	IGCC	Mitverbr.	0,109	0,033	0,075	0,006	0,001	0,005	61%	39%	70	∠1 21	48 48	35	11	24
4 mit	Pre HHS + SK	30% KUP-iLUC50% G	IGCC	Mitverbr.	0,109	0,033	0,075	0,022	0,017	0,005	61%	39%	70	21	48	35	11	24
5 mit 6 mit	Pre HHS + SK	30% Waldrestholz	IGCC	Mitverbr.	0,109	0,033	0,075	0,007	0,002	0,005	61% 61%	39% 30%	70	21	48 49	35	11	24
7 mit	Pre HHS	100% KUP-0LUC	IGCC	Monoverbr.	0,105	0,029	0,075	0,007	0,002	0,005	48%	52%	80	80	48	40	40	24
8 mit	Pre HHS	100% KUP-iLUC25% A	IGCC	Monoverbr.	0,111	0,111		0,017	0,017		48%	52%	80	80	0	40	40	0
9 mit	Pre HHS	100% KUP-iLUC50% G	IGCC	Monoverbr.	0,111	0,111		0,055	0,055		48%	52%	80	80	0	40	40	0
10 mit	Pre Pellets	100% vvaldrestnoiz 100% Sägewerksreste	IGCC	Monoverbr.	0,111	0,111		0,007	0,007		48%	52% 52%	80 70	80 70	0	40	40 35	0
13 mit	Post BM + EG	30% Biomüll	GuD	Mitverbr.	0,054	0,016	0,038	0,011	0,005	0,006	78%	22%	36	11	25	22	7	15
14 mit	Post BM + EG	30% Gülle	GuD	Mitverbr.	0,054	0,016	0,038	0,013	0,007	0,006	78%	22%	36	11	25	22	7	15
16 mit	Post BM + EG	30% Mais-ULUC 30% Mais-iLUC25% A	GuD	Mitverbr.	0.054	0,016	0.038	0.012	0,006	0,006	78%	22%	- 36 36	11	25 25	22	7	15
17 mit	Post BM + EG	30% Mais-iLUC50% G	GuD	Mitverbr.	0,054	0,016	0,038	0,024	0,018	0,006	78%	22%	36	11	25	22	7	15
18 mit	Post Biogas	100% Biomüll	BHKW		0,079	0,079		0,014	0,014		71%	29%	65	65	0	39	39	0
19 mit 20 mit	Post Biogas	100% Guile 100% Mais-0LUC	BHKW		0.079	0,079		0,024	0,024		/1% 71%	29% 29%	65 65	65 65	0	39	39 39	0
21 mit	Post Biogas	100% Mais-iLUC25% A	BHKW		0,079	0,079		0,040	0,040		71%	29%	65	65	0	39	39	0
22 mit	Post Biogas	100% Mais-iLUC50% G	BHKW		0,079	0,079		0,080	0,080		71%	29%	65	65	0	39	39	0

						In	dirokto CO	Emission	~~			Abaosobio	CO2-Abs	cheidung	missioner	
							uirekte CO			oue feesil		Abgeschie				ava faasil
					gesam		aus rossii	gesami		aus iossii	gesam		aus iossii	gesam		aus iossii
KWF	CCS Brennstoff	%-Bio Vorkette	Prozess	Prozess 2		g/kWh			g/kWh			g/kWh			g/kWh	
1 -	 Steinkohle Steinkohle 	0% Mittel aller Sorten 0% Mittel aller Sorten	Dampf IGCC		63 57	0	63 57									
- 12 -	 Steinkohle Erdoas 	0% Mittel aller Sorten 0% DE-mix frei KW	Oxyfuel GuD		58 57	0	58 57									
2 -	- HHS + SK	30% KUP-0LUC	IGCC	Mitverbr.	50	11	40									
4 -	- HHS + SK	30% KUP-iLUC25% A 30% KUP-iLUC50% G	IGCC	Mitverbr.	170	131	40									
5 - 6 -	 HHS + SK Pellets + SK 	30% Waldrestholz 30% Sägewerksreste	IGCC IGCC	Mitverbr. Mitverbr.	57 56	17 16	40 40									
7 -	- HHS - HHS	100% KUP-0LUC 100% KUP-iLUC25% A	IGCC IGCC	Monoverbr.	44 165	44 165	0									
9 -	- HHS	100% KUP-iLUC50% G	IGCC	Monoverbr.	543	543	0									
10 -	- Pellets	100% Waldrestrioiz 100% Sägewerksreste	IGCC	Monoverbr.	68	68	0									
13 - 14 -	 BM + EG BM + EG 	30% Biomüll 30% Gülle	GuD GuD	Mitverbr. Mitverbr.	72 85	32 45	40 40									
15 - 16 -	 BM + EG BM + EG 	30% Mais-0LUC 30% Mais-iLUC25% A	GuD GuD	Mitverbr. Mitverbr.	76 105	37 65	40 40									
17 -	- BM + EG	30% Mais-iLUC50% G	GuD	Mitverbr.	157	117	40									
19 -	- Biogas	100% Gülle	BHKW		194	194	0									
20 - 21 -	 Biogas Biogas 	100% Mais-0LUC 100% Mais-iLUC25% A	BHKW BHKW		139 315	139 315	0									
22 -	 Biogas Post Steinkohle 	100% Mais-iLUC50% G 0% Mittel aller Sorten	BHKW Dampf		634 89	634 0	0				1202	0	1202			
1 -	Pre Steinkohle	0% Mittel aller Sorten	IGCC		71	0	71				954 1104	0	954			
12 -	Post Erdgas	0% DE-mix frei KW	GuD		73	0	74				409	0	409			
2 - 3 -	Pre HHS + SK Pre HHS + SK	30% KUP-0LUC 30% KUP-iLUC25% A	IGCC IGCC	Mitverbr. Mitverbr.	61 97	13 48	48 48				943 943	290 290	653 653			
4 - 5 -	Pre HHS + SK Pre HHS + SK	30% KUP-iLUC50% G 30% Waldrestholz	IGCC IGCC	Mitverbr. Mitverbr.	208 69	160 21	48 48				943 943	290 290	653 653			
6 -	Pre Pellets + SK	30% Sägewerksreste	IGCC	Mitverbr.	68	20	48				909	256	653			
8 -	Pre HHS Pre HHS	100% KUP-0LUC 100% KUP-iLUC25% A	IGCC	Monoverbr.	223	223	0				1335	1335	0			
9 - 10 -	Pre HHS Pre HHS	100% KUP-iLUC50% G 100% Waldrestholz	IGCC IGCC	Monoverbr. Monoverbr.	735 97	735 97	0				1335 1335	1335 1335	0			
11 -	Pre Pellets Post BM + FG	100% Sägewerksreste 30% Biomüll	IGCC GuD	Monoverbr. Mitverbr.	92 92	92 41	0 51				1177 409	1177	286			
14 -	Post BM + EG	30% Gülle	GuD	Mitverbr.	109	58	51				409	123	286			
16 -	Post BM + EG	30% Mais-iLUC25% A	GuD	Mitverbr.	134	83	51				409	123	286			
17 -	Post BM + EG Post Biogas	30% Mais-iLUC50% G 100% Biomüll	GuD BHKW	Mitverbr.	200 169	149 169	51 0				409 832	123 832	286			
19 - 20 -	Post Biogas Post Biogas	100% Gülle 100% Mais-0LUC	BHKW BHKW		287 206	287 206	0				832 832	832 832	0			
21 -	Post Biogas	100% Mais-iLUC25% A	BHKW		468	468	Ő				832	832	0			
mit	- Steinkohle	0% Mittel aller Sorten	Dampf		43	0	43	22	0) 22	032	032	0			
1 mit mit	 Steinkohle Steinkohle 	0% Mittel aller Sorten 0% Mittel aller Sorten	IGCC Oxyfuel		40 42	0	40 42	20 21	0) 20) 21						
12 mit	 Erdgas HHS + SK 	0% DE-mix frei KW 30% KUP-0LUC	GuD	Mitverbr	43	0	43	26	0	26						
3 mit	- HHS + SK	30% KUP-iLUC25% A	IGCC	Mitverbr.	62	31	31	23	11	11						
5 mit	- HHS + SK	30% Waldrestholz	IGCC	Mitverbr.	44	13	31	49	5	5 11						
6 mit 7 mit	 Pellets + SK HHS 	30% Sägewerksreste 100% KUP-0LUC	IGCC	Mitverbr. Monoverbr.	44 31	13	31	16 11	5	i 11 0						
8 mit 9 mit	- HHS - HHS	100% KUP-iLUC25% A 100% KUP-iLUC50% G	IGCC	Monoverbr. Monoverbr.	114 376	114 376	0	42 138	42 138	2 0						
10 mit	- HHS Bolloto	100% Waldrestholz	IGCC	Monoverbr.	50	50	0	18	18	0						
13 mit	- BM + EG	30% Biomüll	GuD	Mitverbr.	54	24	30	33	15	i 18						
14 mit 15 mit	 BM + EG BM + EG 	30% Gülle 30% Mais-0LUC	GuD GuD	Mitverbr. Mitverbr.	64 57	34 27	30 30	39 35	21 17	18 18						
16 mit 17 mit	 BM + EG BM + EG 	30% Mais-iLUC25% A 30% Mais-iLUC50% G	GuD GuD	Mitverbr. Mitverbr.	79 118	49 88	30 30	48 72	30 54) 18 18						
18 mit	- Biogas	100% Biomüll 100% Gülle	BHKW		76 128	76 128	0	45 77	45	0						
20 mit	- Biogas	100% Mais-OLUC	BHKW		92	92	0	55	55	i 0						
21 mit 22 mit	 Biogas Biogas 	100% Mais-iLUC25% A 100% Mais-iLUC50% G	BHKW		209 420	209 420	0	125 252	125 252	0						
mit 1 mit	Post Steinkohle Pre Steinkohle	0% Mittel aller Sorten 0% Mittel aller Sorten	Dampf IGCC		70 47	0	70 47	35 23	0) 35) 23	940 630	0	940 630	472 316	0	472 316
mit 12 mit	Oxy Steinkohle Post Erdose	0% Mittel aller Sorten	Oxyfuel		50	0	50	25	0	25	746	0	746	375	0	375
2 mit	Pre HHS + SK	30% KUP-0LUC	IGCC	Mitverbr.	41	9	32	21	4	. 30	628	193	434	315	97	218
3 mit 4 mit	rre HHS+SK Pre HHS+SK	30% KUP-iLUC25% A 30% KUP-iLUC50% G	IGCC	Mitverbr. Mitverbr.	64 138	32 106	32 32	32 70	16 53	5 16 5 16	628 628	193 193	434 434	315 315	97 97	218 218
5 mit 6 mit	Pre HHS + SK Pre Pellets + SK	30% Waldrestholz 30% Sägewerksreste	IGCC IGCC	Mitverbr. Mitverbr.	46 45	14 13	32 32	23 23	7	16 16	628 605	193 170	434 434	315 304	97 85	218 218
7 mit	Pre HHS Pre HHS	100% KUP-0LUC	IGCC	Monoverbr.	32	32	0	16	16	5 0 1 0	717	717	0	360	360	0
9 mit	Pre HHS	100% KUP-iLUC50% G	IGCC	Monoverbr.	395	395	0	198	198	. 0	717	717	0	360	360	0
10 mit 11 mit	Pre HHS Pre Pellets	100% Waldrestholz 100% Sägewerksreste	IGCC IGCC	Monoverbr. Monoverbr.	52 49	52 49	0	26 25	26	6 0 6 0	717 632	717 632	0	360 318	360	0
13 mit 14 mit	Post BM + EG Post BM + EG	30% Biomüll 30% Gülle	GuD GuD	Mitverbr. Mitverbr.	73 86	33 46	40 40	45 53	20 28	25	325 325	97 97	227 227	198 198	59 59	139 139
15 mit	Post BM + EG	30% Mais-OLUC	GuD	Mitverbr.	77	37	40	47	23	25	325	97	227	198	59	139
17 mit	Post BM + EG	30% Mais-ILUC50% G	GuD	Mitverbr.	159	119	40 40	97	40	25	325	97	227	198	59	139
18 mit 19 mit	Post Biogas Post Biogas	100% Biomüll 100% Gülle	BHKW BHKW		119 203	119 203	0	72 122	72 122	2 0	587 587	587 587	0	352 352	352 352	0
20 mit 21 mit	Post Biogas Post Biogas	100% Mais-0LUC 100% Mais-il UC25% A	BHKW BHKW		145 330	145 330	0	87 198	87 198	0	587 587	587 587	0	352 352	352	0
22 mit	Post Biogas	100% Mais-iLUC50% G	BHKW		663	663	0	398	398	s 0	587	587	0	352	352	0

Tabelle A.27: Berechnung für die Analyse der Nachhaltigkeit, Teil B, eigene Berechnung mit Daten aus Kapitel 5.2.1

						s	CO ₂ -Tra	ansport ort. 1000	km		ĺ	l e	CO ₂ -Spe	icherung h 500 Jah	ren	ĺ
					aesamt	aus EE	aus fossil	desamt	aus EE	aus fossil	gesamt	aus EE	aus fossil	gesamt	aus EE	aus fossil
					5	µ _{CO2,el,Schif}	f	9	$\mu_{\rm CO2,th,Schiff}$	f	J	µ _{CO2,el,Leck}		5	$\mu_{\rm CO2,th,Leci}$	
KWI	 CCSBrennstoff Steinkohle 	%-Bio Vorkette 0% Mittel aller Sorten	Prozes	Prozess 2	-	g/kWh			g/kWh			g/kWh			g/kWh	
1 -	 Steinkohle Steinkohle 	0% Mittel aller Sorten 0% Mittel aller Sorten	IGCC Owfuel													
12 -	- Erdgas	0% DE-mix frei KW	GuD	N.S. to she												
3 -	- HHS + SK - HHS + SK	30% KUP-iLUC25% A	IGCC	Mitverbr.												
4 - 5 -	- HHS + SK - HHS + SK	30% KUP-iLUC50% G 30% Waldrestholz	IGCC	Mitverbr. Mitverbr.												
6 - 7 -	 Pellets + Sł HHS 	30% Sägewerksreste 100% KUP-0LUC	IGCC IGCC	Mitverbr. Monoverbr.												
8 - 9 -	- HHS - HHS	100% KUP-iLUC25% A 100% KUP-iLUC50% G	IGCC IGCC	Monoverbr. Monoverbr.												
10 - 11 -	 HHS Pellets 	100% Waldrestholz 100% Sägewerksreste	IGCC	Monoverbr. Monoverbr.												
13 -	- BM + EG	30% Biomüll 30% Gülle	GuD	Mitverbr. Mitverbr												
15 -	- BM + EG	30% Mais-0LUC	GuD	Mitverbr.												
17 -	- BM + EG	30% Mais-iLUC50% G	GuD	Mitverbr.												
18 - 19 -	 Biogas Biogas 	100% Biomuli 100% Gülle	BHKW													
20 - 21 -	 Biogas Biogas 	100% Mais-0LUC 100% Mais-iLUC25% A	BHKW BHKW													
22 -	 Biogas Post Steinkohle 	100% Mais-iLUC50% G 0% Mittel aller Sorten	BHKW Dampf		42	0	42				59	0	59			
1 -	Pre Steinkohle Oxy Steinkohle	0% Mittel aller Sorten 0% Mittel aller Sorten	IGCC Oxyfuel		33 39	0	33 39				47 54	0	47 54			
12 -	Post Erdgas	0% DE-mix frei KW	GuD	Net webs	14	0	14				20	0	20			
3 -	Pre HHS + SK	30% KUP-0LUC 30% KUP-iLUC25% A	IGCC	Mitverbr.	33	10	23				40	14	32			
4 - 5 -	Pre HHS + SK Pre HHS + SK	30% KUP-iLUC50% G 30% Waldrestholz	IGCC	Mitverbr. Mitverbr.	33	10 10	23 23				46	14 14	32			
6 - 7 -	Pre Pellets + Sk Pre HHS	30% Sägewerksreste 100% KUP-0LUC	IGCC IGCC	Mitverbr. Monoverbr.	32 47	9	23				44 65	12 65	32			
8 - 9 -	Pre HHS Pre HHS	100% KUP-iLUC25% A 100% KUP-iLUC50% G	IGCC IGCC	Monoverbr. Monoverbr.	47 47	47 47	0				65 65	65 65	0			
10 - 11 -	Pre HHS Pre Pellets	100% Waldrestholz 100% Sägewerksreste	IGCC IGCC	Monoverbr. Monoverbr.	47 41	47 41	0				65 57	65 57	0			
13 -	Post BM + EG	30% Biomüll 30% Gülle	GuD	Mitverbr.	14	4	10				20	6	14		-	
15 -	Post BM + EG	30% Mais-OLUC	GuD	Mitverbr.	14	4	10				20	6	14			
17 -	Post BM + EG	30% Mais-iLUC50% G	GuD	Mitverbr.	14	4	10				20	6	14			
18 - 19 -	Post Biogas Post Biogas	100% Biomuli 100% Gülle	BHKW		29	29	0				41 41	41 41	0			
20 - 21 -	Post Biogas Post Biogas	100% Mais-0LUC 100% Mais-iLUC25% A	BHKW BHKW		29 29	29 29	0				41 41	41 41	0 0			
22 - mit	 Post Biogas Steinkohle 	100% Mais-iLUC50% G 0% Mittel aller Sorten	BHKW Dampf		29	29	0				41	41	0			
1 mit	 Steinkohle Steinkohle 	0% Mittel aller Sorten 0% Mittel aller Sorten	IGCC Owfuel													
12 mit	- Erdgas	0% DE-mix frei KW	GuD	Mitrorbr												
3 mit	- HHS + SK	30% KUP-iLUC25% A	IGCC	Mitverbr.												
4 mit 5 mit	- HHS + SK - HHS + SK	30% KUP-ILUC50% G 30% Waldrestholz	IGCC	Mitverbr.												
6 mit 7 mit	 Pellets + Sł HHS 	30% Sägewerksreste 100% KUP-0LUC	IGCC	Mitverbr. Monoverbr.												
8 mit 9 mit	- HHS - HHS	100% KUP-iLUC25% A 100% KUP-iLUC50% G	IGCC IGCC	Monoverbr. Monoverbr.												
10 mit 11 mit	 HHS Pellets 	100% Waldrestholz 100% Sägewerksreste	IGCC IGCC	Monoverbr.												
13 mit 14 mit	 BM + EG BM + EG 	30% Biomüll 30% Gülle	GuD	Mitverbr.												
15 mit	- BM + EG	30% Mais-OLUC	GuD	Mitverbr.												
17 mit	- BM + EG - BM + EG	30% Mais-iLUC25% A 30% Mais-iLUC50% G	GuD	Mitverbr.												
18 mit 19 mit	 Biogas Biogas 	100% Biomüll 100% Gülle	BHKW													
20 mit 21 mit	 Biogas Biogas 	100% Mais-0LUC 100% Mais-iLUC25% A	BHKW BHKW													
22 mit mit	 Biogas Post Steinkohle 	100% Mais-iLUC50% G 0% Mittel aller Sorten	BHKW Dampf		33	0	33	17	0	17	46	0	46	23	C	23
1 mit	Pre Steinkohle	0% Mittel aller Sorten 0% Mittel aller Sorten	IGCC Oxyfuel		22	0	22	11	0	11	31	0	31	15	0	15
12 mit	Post Erdgas	0% DE-mix frei KW	GuD	Mitworbr	12	0	12	6	0	6	16	0	16	8		8
∠ mit	Pre HHS + SK	30% KUP-iLUC25% A	IGCC	Mitverbr.	22	7	15	11	3	8	31	9	21	15	5	11
4 mit 5 mit	Pre HHS + SK	30% KUP-ILUC50% G 30% Waldrestholz	IGCC	witverbr. Mitverbr.	22	7	15 15	11 11	3	8	31	9 9	21	15 15	5 5	11 11
6 mit 7 mit	Pre HHS	30% Sagewerksreste 100% KUP-0LUC	IGCC	Monoverbr.	21 25	6 25	15	11 13	3 13	8	29 35	8 35	21	15	4	11
8 mit 9 mit	Pre HHS Pre HHS	100% KUP-iLUC25% A 100% KUP-iLUC50% G	IGCC IGCC	Monoverbr. Monoverbr.	25 25	25 25	0	13 13	13 13	0	35 35	35 35	0	18 18	18 18	0
10 mit 11 mit	Pre HHS Pre Pellets	100% Waldrestholz 100% Sägewerksreste	IGCC IGCC	Monoverbr. Monoverbr.	25 22	25 22	0	13 11	i 13 11	0	35 31	35 31	0	18 15	18 15	0
13 mit 14 mit	Post BM + EG Post BM + EG	30% Biomüll 30% Gülle	GuD GuD	Mitverbr. Mitverbr.	11 11	3	8 8	7 7	2	5 5	16 16	5 5	11 11	10 10	3	7
15 mit 16 mit	Post BM + EG	30% Mais-0LUC 30% Mais-il LIC25% A	GuD	Mitverbr. Mitverbr	11	3	8 8	7 7	2	5	16	5	11	10	3	7
17 mit	Post BM + EG	30% Mais-iLUC50% G	GuD	Mitverbr.	11	3	8	7	2	5	16	5	11	10	3	7
19 mit	Post Biogas	100% Gülle	BHKW		21	21	0	12	12	0	29	29	0	17	17	0
∠u mit 21 mit	Post Biogas	100% Mais-0LUC 100% Mais-iLUC25% A	BHKW		21	21 21	0	12 12	12	0	29 29	29 29	0	17 17	17 17	0
22 mit	Post Biogas	100% Mais-iLUC50% G	BHKW		21	21	0	12	12	0	29	29	0	17	17	0

Tabelle A.28: Berechnung für die Analyse der Nachhaltigkeit, Teil C, eigene Berechnung mit Daten aus Kapitel 5.2.1

						C	:O ₂ -Emissio	onen gesar	nt			verm	iedene C	O2-Emissio	onen	
					gesamt	aus EE	aus fossil	gesamt	aus EE	aus fossil	gesamt	aus EE	aus fossil	gesamt	aus EE	aus fossil
KAM	K CCC Bronnetoff	% Die Verkette	Droppo	Decrease 2		µ _{CO2,el,ges}			µ _{CO2,th.ges}			μ _{CO2,el,verm}			μ _{CO2,th,verm}	
-	- Steinkohle	0% Mittel aller Sorten	Dampf	Prozess 2	1003	<u>д/кvvn</u> 0	1003		g/kvvn			g/kvvn			g/ĸvvn	
1 -	 Steinkohle Steinkohle 	0% Mittel aller Sorten 0% Mittel aller Sorten	IGCC Oxyfue	l	905 920	0	905 920									
12 -	 Erdgas HHS + SK 	0% DE-mix frei KW 30% KUP-0LUC	GuD IGCC	Mitverbr.	413 644	11	413 634									
3 - 4 -	 HHS + SK HHS + SK 	30% KUP-iLUC25% A 30% KUP-iLUC50% G	IGCC IGCC	Mitverbr. Mitverbr.	673 764	40 131	634 634									
5 - 6 -	 HHS + SK Pellets + S 	30% Waldrestholz K 30% Sägewerksreste	IGCC IGCC	Mitverbr. Mitverbr.	651 650	17 16	634 634									
7 - 8 -	- HHS - HHS	100% KUP-0LUC 100% KUP-iLUC25% A	IGCC IGCC	Monoverbr. Monoverbr.	44 165	44 165	0 0									
9 - 10 -	- HHS - HHS	100% KUP-iLUC50% G 100% Waldrestholz	IGCC IGCC	Monoverbr. Monoverbr.	543 71	543 71	0									
11 - 13 -	 Pellets BM + EG 	100% Sägewerksreste 30% Biomüll	IGCC GuD	Monoverbr. Mitverbr.	68 322	68 32	289									
14 - 15 -	 BM + EG BM + EG 	30% Gülle 30% Mais-0LUC	GuD GuD	Mitverbr. Mitverbr.	335 326	45 37	289 289									
16 - 17 -	- BM + EG - BM + EG	30% Mais-iLUC25% A 30% Mais-iLUC50% G	GuD GuD	Mitverbr.	354 406	65 117	289 289									
18 - 19 -	 Biogas Biogas 	100% Biomüll 100% Gülle	BHKW		114 194	114 194	0								-	
20 -	- Biogas	100% Mais-0LUC 100% Mais-il UC25% A	BHKW		139	139	0									
22 -	- Biogas	100% Mais-120025% A 100% Mais-iLUC50% G	BHKW		634	634	0				670	0	670			
1 -	Pre Steinkohle	0% Mittel aller Sorten	IGCC		257	0	323 257				648	0	648			
12 -	Post Erdgas	0% DE-mix frei KW	GuD	Marcal	178	0	178				261	0	261			
2 - 3 -	Pre HHS + SK Pre HHS + SK	30% KUP-0LUC 30% KUP-iLUC25% A	IGCC IGCC	Mitverbr. Mitverbr.	-77 -42	-253 -217	176 176				721 715	264 257	458 458			
4 - 5 -	Pre HHS + SK Pre HHS + SK	30% KUP-iLUC50% G 30% Waldrestholz	IGCC IGCC	Mitverbr. Mitverbr.	70 -69	-106 -245	176 176				695 720	237 262	458 458			
6 - 7 -	Pre Pellets + S Pre HHS	30% Sägewerksreste 100% KUP-0LUC	IGCC IGCC	Mitverbr. Monoverbr.	-39 -1164	-214 -1164	176 0				689 1208	231 1208	458			
8 - 9 -	Pre HHS Pre HHS	100% KUP-iLUC25% A 100% KUP-iLUC50% G	IGCC IGCC	Monoverbr. Monoverbr.	-1000 -489	-1000 -489	0				1165 1031	1165 1031	0			
10 - 11 -	Pre HHS Pre Pellets	100% Waldrestholz 100% Sägewerksreste	IGCC	Monoverbr.	-1126	-1126	0				1198 1055	1198 1055	0			
13 -	Post BM + EG	30% Biomüll 30% Gülle	GuD	Mitverbr. Mitverbr	36	-71	107				286	103	183			
15 -	Post BM + EG	30% Mais-0LUC	GuD	Mitverbr.	41	-66	107				285	102	183			
17 -	Post BM + EG	30% Mais-iE0020% A 30% Mais-iE0020% G	GuD	Mitverbr.	144	37	107				263	80	183			
18 -	Post Biogas Post Biogas	100% Biomuli 100% Gülle	BHKW		-593	-593	0				669	708 669	0			
20 - 21 -	Post Biogas Post Biogas	100% Mais-0LUC 100% Mais-iLUC25% A	BHKW		-556 -295	-556	0				695 610	695 610	0			
22 - mit	 Post Biogas Steinkohle 	100% Mais-iLUC50% G 0% Mittel aller Sorten	Dampf		178 691	178	0 691	347	C	347	456	456	0			
1 mit mit	 Steinkohle Steinkohle 	0% Mittel aller Sorten 0% Mittel aller Sorten	IGCC Oxyfue	I	641 671	0	641 671	322 337	C) 322) 337						
12 mit 2 mit	 Erdgas HHS + SK 	0% DE-mix frei KW 30% KUP-0LUC	GuD IGCC	Mitverbr.	310 502	0	310 494	189 184	3) 189 3 181						
3 mit 4 mit	 HHS + SK HHS + SK 	30% KUP-iLUC25% A 30% KUP-iLUC50% G	IGCC IGCC	Mitverbr. Mitverbr.	525 596	31 102	494 494	192 218	11 37	181 7 181						
5 mit 6 mit	 HHS + SK Pellets + S 	30% Waldrestholz 30% Sägewerksreste	IGCC IGCC	Mitverbr. Mitverbr.	507 507	13 13	494 494	186 186	5	5 181 5 181						
7 mit 8 mit	- HHS - HHS	100% KUP-0LUC 100% KUP-il UC25% A	IGCC IGCC	Monoverbr.	31 114	31 114	0	11 42	11 42						-	
9 mit	- HHS	100% KUP-iLUC50% G	IGCC	Monoverbr.	376	376	0	138	138	3 0						
11 mit	- Pellets	100% Sägewerksreste	IGCC	Monoverbr.	47	47	0	17	17	7 0						
14 mit	- BM + EG	30% Gülle	GuD	Mitverbr.	251	34	217	153	21	132						
16 mit	- BM + EG	30% Mais-iLUC25% A	GuD	Mitverbr.	266	49	217	145	30) 132						
18 mit	- Biogas	100% Biomüll	BHKW	WILVERUI.	76	76	0	45		5 0						
19 mit 20 mit	- вюдая - Biogas	100% Guile 100% Mais-0LUC	BHKW		128 92	128	0	77 55	55	5 0						
21 mit 22 mit	 Biogas Biogas 	100% Mais-iLUC25% A 100% Mais-iLUC50% G	BHKW		209 420	209 420	0 0	125 252	125 252	0 0						
mit 1 mit	Post Steinkohle Pre Steinkohle	0% Mittel aller Sorten 0% Mittel aller Sorten	Dampf IGCC		253 169	0	253 169	127 85	0) 127) 85	439 472	0	439 472	220 237	0	220 237
mit 12 mit	Oxy Steinkohle Post Erdgas	0% Mittel aller Sorten 0% DE-mix frei KW	Oxyfue GuD		120 126	0	120 126	60 63	C) 60) <u>6</u> 3	550 184	0	550 184	276 126	0	276 126
2 mit 3 mit	Pre HHS + SK Pre HHS + SK	30% KUP-0LUC 30% KUP-iLUC25% A	IGCC IGCC	Mitverbr. Mitverbr.	-51 -28	-168 -145	117 117	-26 -14	-84 -73	4 59 3 59	553 552	177 176	377 377	210 206	88 84	122 122
4 mit 5 mit	Pre HHS + SK Pre HHS + SK	30% KUP-iLUC50% G 30% Waldrestholz	IGCC IGCC	Mitverbr. Mitverbr.	46 -46	-71 -163	117 117	23 -23	-35 -82	5 59 2 59	549 553	172 176	377 377	195 209	73 87	122 122
6 mit 7 mit	Pre Pellets + S Pre HHS	K 30% Sägewerksreste 100% KUP-0LUC	IGCC IGCC	Mitverbr. Monoverbr.	-26 -625	-143	117	-13 -314	-72	2 59 4 0	532 655	155 655	377	199 325	76	122 0
8 mit 9 mit	Pre HHS Pre HHS	100% KUP-iLUC25% A 100% KUP-iLUC50% G	IGCC	Monoverbr. Monoverbr	-537	-537	0	-270	-270) Ö	651 639	651 639	0	312	312	0
10 mit	Pre HHS Pre Pellets	100% Waldrestholz 100% Sägewerksreste	IGCC	Monoverbr.	-605	-605	0	-304	-304	1 0	655	655	0	322	322	0
13 mit	Post BM + EG	30% Biomüll 30% Gülle	GuD	Mitverbr.	28	-56	85 85	-200	-34	4 52	213	81	132	130	49	81 81
15 mit	Post BM + EG	30% Mais-0LUC	GuD	Mitverbr.	32	-43	85	20 20	-20	2 52	210	80 70	132	120	47	81
10 mit 17 mit	Post BM + EG	30% Mais-iLUC25% A 30% Mais-iLUC50% G	GuD	Mitverbr.	61 114	-23	85 85	38 70	-14	52 52 52	204	58	132	125	44	81
18 mit 19 mit	Post Biogas Post Biogas	100% Biomuli 100% Gülle	BHKW		-418	-418	0	-251	-251	0	494	494 463	0	296	296 278	0
20 mit 21 mit	Post Biogas Post Biogas	100% Mais-0LUC 100% Mais-iLUC25% A	BHKW		-392 -208	-392 -208	0	-235 -125	-235 -125	5 0	484 417	484 417	0	290 250	290 250	0
22 mit	Post Biogas	100% Mais-iLUC50% G	BHKW		126	126	0	75	75	o 0	294	294	0	177	177	0

Tabelle A.29: Berechnung für die Analyse der Nachhaltigkeit, Teil D, eigene Berechnung mit Daten aus Kapitel 5.2.1

Tabelle A.30: Berechnung für die Analyse der Nachhaltigkeit, Teil E, eigene Berechnung mit Daten aus Kapitel 5.2.1

								-				I
									Ressource	eneffizienz		Flächen-
								"direkt"	Strom-	Wärme-	Gecomt	effizienz
								unon	Gutschrift	Gutschrift	Ocsant	
	КW	K CCS	Brennstoff	%-Bio	Vorkette	Prozes	Prozess 2		t/t bzw.	kg/m³		t/(ha·a)
		-	Steinkohle	0%	Mittel aller Sorten	Dampf						
		-	Steinkohle	0%	Mittel aller Sorten Mittel aller Sorten	Oxyfuel						
12	2 -	-	Erdgas	0%	DE-mix frei KW	GuD	Mr					
1	2 -	-	HHS + SK HHS + SK	30% 30%	KUP-ILUC25% A	IGCC	Mitverbr.					
4	4 -	-	HHS + SK	30%	KUP-iLUC50% G	IGCC	Mitverbr.					
é	5 -	-	Pellets + SK	30%	Sägewerksreste	IGCC	Mitverbr.					
1	7 -	-	HHS	100%	KUP-0LUC	IGCC	Monoverbr.					
9	, - , -	-	HHS	100%	KUP-iLUC50% G	IGCC	Monoverbr.					
10) -	-	HHS	100%	Waldrestholz	IGCC	Monoverbr.					
1:	3 -	-	BM + EG	30%	Biomüll	GuD	Mitverbr.					
14	4 - 5 -	-	BM + EG BM + EG	30% 30%	Gülle Mais-0LUC	GuD GuD	Mitverbr. Mitverbr.					
16	5 -	-	BM + EG	30%	Mais-iLUC25% A	GuD	Mitverbr.					
11	/ - 3 -	-	BM + EG Biogas	30%	Mais-ILUC50% G Biomüll	BHKW	Mitverbr.					
19	9 -	-	Biogas	100%	Gülle	BHKW						
2) - 1 -	-	Biogas	100%	Mais-iLUC25% A	BHKW						
22	2 -	-	Biogas	100%	Mais-iLUC50% G	BHKW						
-	1	Post	Steinkohle	0% 0%	Mittel aller Sorten	Dampf IGCC						
4.	, -	Oxy	Steinkohle	0%	Mittel aller Sorten	Oxyfuel						
- 14	2 -	Pre	HHS + SK	30%	KUP-0LUC	IGCC	Mitverbr.	-0,7	-0,5		-1,2	-30,9
3	3 -	Pre	HHS + SK	30%	KUP-iLUC25% A	IGCC	Mitverbr.	-0,6	-0,5		-1,1	-28,3
5	5 -	Pre	HHS + SK	30%	Waldrestholz	IGCC	Mitverbr.	-0,2	-0,5		-1,2	-20,1
- 6	6 - 7 -	Pre	Pellets + SK	30%	Sägewerksreste	IGCC	Mitverbr.	-1,2	-1,0		-2,2	-27.5
8	3 -	Pre	HHS	100%	KUP-iLUC25% A	IGCC	Monoverbr.	-0,6	-0,3		-1,0	-24,9
10) -) -	Pre	HHS	100%	KUP-iLUC50% G Waldrestholz	IGCC	Monoverbr.	-0,3	-0,3 -0.3		-0,6	-16,7
1	1 -	Pre	Pellets	100%	Sägewerksreste	IGCC	Monoverbr.	-1,2	-0,7		-1,9	
13	3 - 1 -	Post	BM + EG BM + EG	30% 30%	Biomüll Gülle	GuD GuD	Mitverbr. Mitverbr.	-1,0) -2,4 3 -2.4		-3,4	
15	5 -	Post	BM + EG	30%	Mais-OLUC	GuD	Mitverbr.	-0,9	-2,4		-3,3	-28,2
16	5- 7-	Post	BM + EG BM + EG	30%	Mais-ILUC25% A Mais-ILUC50% G	GuD	Mitverbr. Mitverbr.	-0,4	-2,4		-2,8	-23,8 -15,8
18	3 -	Post	Biogas	100%	Biomüll	BHKW		-1,2	-1,1		-2,3	
20	, - , -	Post	Biogas Biogas	100%	Mais-0LUC	BHKW		-0,9	-1,1		-2,1	-18,8
2	1 -	Post	Biogas	100%	Mais-iLUC25% A	BHKW		-0,6	5 -1,1		-1,7	-14,4
	 mit	PUSI	Steinkohle	0%	Mittel aller Sorten	Dampf		0,4	-1,1		-0,8	-6,5
1	1 mit	-	Steinkohle	0%	Mittel aller Sorten	IGCC						
12	2 mit	-	Erdgas	0%	DE-mix frei KW	GuD						
1	2 mit 3 mit	-	HHS + SK HHS + SK	30% 30%	KUP-0LUC KUP-iLUC25% A	IGCC	Mitverbr. Mitverbr.					
4	1 mit	-	HHS + SK	30%	KUP-iLUC50% G	IGCC	Mitverbr.					
6	5 mit 6 mit	-	HHS + SK Pellets + SK	30% 30%	Waldrestholz Sägewerksreste	IGCC	Mitverbr. Mitverbr.					
-	7 mit	-	HHS	100%	KUP-OLUC	IGCC	Monoverbr.					
ç	3 mit 9 mit	-	HHS	100%	KUP-ILUC25% A KUP-ILUC50% G	IGCC	Monoverbr.					
10) mit	-	HHS	100%	Waldrestholz	IGCC	Monoverbr.					
13	3 mit	-	BM + EG	30%	Biomüll	GuD	Mitverbr.					
14	4 mit	-	BM + EG	30%	Gülle	GuD	Mitverbr.					
16	5 mit	-	BM + EG	30%	Mais-iLUC25% A	GuD	Mitverbr.					
17	7 mit 3 mit	-	BM + EG Biogas	30%	Mais-iLUC50% G Biomüll	GuD BHKW/	Mitverbr.					
19	9 mit	-	Biogas	100%	Gülle	BHKW						
20 2') mit 1 mit	2	Biogas Biogas	100% 100%	Mais-0LUC Mais-iLUC25% A	BHKW						
22	2 mit	-	Biogas	100%	Mais-iLUC50% G	BHKW						L
	mit 1 mit	Post Pre	Steinkohle	0% 0%	Mittel aller Sorten	⊔ampf IGCC						
	mit	Oxy	Steinkohle	0%	Mittel aller Sorten	Oxyfuel						
- 12	2 mit 2 mit	Post	HHS + SK	30%	KUP-0LUC	IGCC	Mitverbr.	-0,7	-0,4	-0,3	-1,4	-36,8
3	3 mit	Pre	HHS + SK	30%	KUP-iLUC25% A	IGCC	Mitverbr.	-0,6	-0,4	-0,3	-1,3	-34,2
ŧ	5 mit	Pre	HHS + SK	30%	Waldrestholz	IGCC	Mitverbr.	-0,3	-0,4	-0,3	-1,0	-20,0
	6 mit	Pre	Pellets + SK	30%	Sägewerksreste	IGCC	Mitverbr.	-1,2	-0,9	-0,5	-2,6	24.0
į	3 mit	Pre	HHS	100%	KUP-iLUC25% A	IGCC	Monoverbr.	-0,7	-0,3	-0,3	-1,3	-34,8
4	9 mit	Pre	HHS	100%	KUP-iLUC50% G	IGCC	Monoverbr.	-0,3	-0,3	-0,3	-0,9	-24,0
1	1 mit	Pre	Pellets	100%	Sägewerksreste	IGCC	Monoverbr.	-0,7	-0,3	-0,5	-1,3	
13 14	3 mit 1 mit	Post Post	BM + EG BM + EG	30% 30%	Biomüll Gülle	GuD GuD	Mitverbr. Mitverbr.	-1,0 -0.8) -2,4 3 -2.4	-0,5 -0,5	-3,9 -3.7	
15	5 mit	Post	BM + EG	30%	Mais-0LUC	GuD	Mitverbr.	-0,9	-2,4	-0,5	-3,8	-32,3
16	o mit 7 mit	Post Post	BM + EG	30% 30%	Mais-ILUC25% A Mais-ILUC50% G	GuD GuD	Mitverbr.	-0,4 0,5	-2,4 ; -2,4	-0,5 -0,5	-3,3 -2,4	-27,9 -19,9
18	3 mit	Post	Biogas	100%	Biomüll	BHKW		-1,2	-1,1	-0,4	-2,7	
20) mit	Post	Biogas	100%	Mais-0LUC	BHKW		-0,9	, -1,1 -1,1	-0,4 -0,4	-2,4 -2,6	-22,0
2	1 mit ? mit	Post	Biogas Biogas	100% 100%	Mais-iLUC25% A Mais-iLUC50% G	BHKW BHKW		-0,6	i -1,1	-0,4 -0.4	-2,1 -1 1	-17,6

Tabelle A.31: Berechnung der flächenspezifischen CO₂-Speicherkapazität für CO₂-Einlagerung bzw. CO₂-Vermeidungskapazität für geothermische Wärmenutzung und Wärmespeicherung, eigene Berechnung mit Daten aus Bundesregierung [2009, S. 4 f.], Schilling et al. [2009, S. 2031], Knopf et al. [2010, S. 76 ff.], Viebahn et al. [2010, S. 122], Kaltschmitt et al. [2006, S. 486 f.], Erdmann und Dittmar [2010, S. 51], GTN [2009, S. 1], Schmidt und Müller-Steinhagen [2005, S. 11], Menzel [2009, S. 16], Milles [2009, S. 2], UBA [2011a]

	Abk.	Einheit	١	Nert		Quelle
Angaben CO ₂ -Speicher in Aquifer			Min.	Mit.	Max.	
						Bundesregierung, 2009, S. 4 f.;
	_					Schilling et al., 2009, S. 2031;
Mächtigkeit	D	km	0,01	0,1	1	Knopf, 2010 et al., S. 76 ff.
Effizienzfaktor	E	%	0,05%	0,10%	1%	Viebahn et al., 2010, S. 122
Dichte CO ₂	ρ _{CO2}	kg/m³	550	600	700	Viebahn et al., 2010, S. 122
net-to-gross-Verhältnis	$\boldsymbol{\phi}_{n/g}$	%	5%	100%	100%	Viebahn et al., 2010, S. 122
Porosität	φ	%	10%	20%	20,50%	Viebahn et al., 2010, S. 122
Spez. Speicherkapazität	m _{CO2,A,CCS}	t/km²	12	12.000	1.435.000	eigene Berechnung
Angaben Aquiferwärmenutzung						
Fläche Norddeutsches Becken	A	km²		136.000		Kaltschmitt et al., 2006, S. 486 f.
Technisches Wärmeerzeugungspotenzial	Q	PJ		328.000		Kaltschmitt et al., 2006, S. 486 f.
Spez. Wärmeerzeugungspotenzial	q	TWh/km ²		0,67		eigene Berechnung
Spez. CO ₂ -Emissionen reine warmeerzeugung	$\mu_{\rm CO2,th,Mix}$	g/kvvn		270		Erdmann und Dittmar, 2010, S. 51
Spez. CO ₂ -Einsparungspotenzial	m _{CO2,A,Geoth}	t/km²		180.882		eigene Berechnung
Angaben Aquiferwärmespeicher Neubranden	burg					
Abstand zwischen zwei Bohrungen		km		1,3		GTN, 2009, S. 1
Min. verwendete Fläche	A	km²		5,3		eigene Berechnung Schmidt und Müller-Steinhagen,
Eingelagerte Wärmemenge p.a.	Q _{ein}	MW h/a		8.000		2005, S. 11
Wirkungsgrad	$\eta_{ m WS}$	%		75%		Menzel, 2009, S. 16
Ausgelagerte Wärmemenge p.a.	Q _{aus}	MW h/a		6.000		eigene Berechnung
Spez. CO ₂ -Einsparungspotenzial p.a.		t/(km²⋅a)		305		eigene Berechnung
Nutzungsdauer	t	а	20	50	100	eigene Festlegung
Spez. CO ₂ -Einsparungspozential	m _{CO2,A,AWS}	t/km²	6.103	15.256	30.513	eigene Berechnung
Angaben Geothermieheizkraftwerk Unterhach	ing					
Abstand zwischen zwei Bohrungen		km		3,5		Milles, 2009, S. 2
Min. verwendete Fläche	A	km²		38,5		eigene Berechnung
Produzierte Strommenge p.a.	W _{el}	MWh/a		21.500		Milles, 2009, S. 2
Spez. CO ₂ -Emissionen Strommix	$\mu_{\rm CO2,ek,Mix}$	g/kWh		563		UBA, 2011a
Produzierte Wärmemenge p.a.	Q	MW h/a		47.000		Milles, 2009, S. 2
Spez. CO ₂ -Einsparungspotenzial p.a.		t/(km²⋅a)		644		eigene Berechnung
Nutzungsdauer	t	а	20	50	100	eigene Festlegung
Spez. CO ₂ -Einsparungspozential	m _{CO2,A,Geoth,KWK}	t/km²	12.885	32.214	64.427	eigene Berechnung

Sensitivitätsanalyse

		Spez. CO2-Speiche	erkapazität
Mächtigkeit		in t/km²	
	0,01	1.200	
	0,10	12.000	
	1,00	120.000	
Effizionzfoktor		1	
Emzienzraktor	0.050/	000	
	J,05%	6.000	
	0,10%	12.000	
	1,00%	120.000	
net-to-gross-Verhältnis		I	
	5%	600	
	100%	12.000	
	100%	12.000	
Dichte CO2			
	550	11.000	
	600	12.000	
	700	14.000	
Porosität		L	
	10,0%	6.000	
:	20,0%	12.000	
:	20.5%	12.300	

A.5 Anhang - Nutzungspfade für Bio-KWK-CCS

Tabelle A.32: Berechnung für Beispiel Flensburg, eigene Berechnung mit Daten aus Kapitel 5.3, Kapitel 4.2.3, Göttlicher [1999, S.160]

Variante		A	В	ပ	D	Ш	Ŀ	U	
KWK					mit KWK	-	1		
CCS Brennstoff	<u> </u>	Pr Holzpellets	e-Combustion	S	Post-Corr Biome	than	Pre-Comb HHS	ustion	
		Sägewerks-	KUP- iLUC25%	W aldrest-	Mais-Silage- iLUC25%		KUP- iLUC25%	Waldrest-	
Brennstoffquelle		reststoffe	(Acker)	holz	(Acker)	Biomüll	(Acker)	holz	
biogener Anteil		30%	30%	30%	100%	100%	100%	100%	
Prozess				Aitverbrenning	201		Monoverbre		alain
nai 1.00000 E	%	34.3%	34.3%	34.3%	42.1%	42.1%	24.0%	24.0%	val. Kap. 4.2.3 Elektrische und thermische Wirkungsgrade
10 th	~ ~	43.4%	43.4%	43.4%	19.0%	19.0%	52.4%	52.4%	val. Kap. 4.2.3 Flektrische und thermische Wirkungsgrade
EVVI	NMA/	230	030	0.30	5.06	526	101	101	van rado
P _{el}	MM	520	79 79	62	221	221	46	46	eigene Berechnung
$P_{\rm th}$	MM	100	100	100	100	100	100	100	eigene Berechnung
Volllaststunden	ے	7107	7107	7107	7107	7107	7107	7107	eigene Festlegung
Brennstoffwärme	GWh	1638	1638	1638	3740	3740	1357	1357	eigene Berechnung
W _{el}	GWh	562	562	562	1574	1574	326	326	eigene Berechnung
Q (W _{th})	GWh	711	711	711	711	711	711	711	eigene Berechnung
H CO2,el,ges	g/kWh	-26	-28	-46	-11-	-188	-537	-605	vgl. Kap. 5.3 CO ₂ -Bilanz von Bio-KWK-CCS
H CO2,th.ges	g/kWh	-13	-14	-23	-47	-115	-270	-304	vgl. Kap. 5.3 CO2-Bilanz von Bio-KWK-CCS
Neg. CO ₂ -Emissionen	kt/a	-24	-26	-42	-155	-377	-367	-413	eigene Berechnung
H CO2,el,ab	g/kWh	605	628	628	325	325	717	717	vgl. Kap. 5.3 CO ₂ -Bilanz von Bio-KWK-CCS
H CO2,th,ab	g/kWh	304	315	315	198	198	360	360	vgl. Kap. 5.3 CO ₂ -Bilanz von Bio-KWK-CCS
Abgesch. CO ₂ -Emissionen	kt/a	556	577	577	652	652	490	490	eigene Berechnung
Heizwert	MJ/kg	16,52	8,09	8,09			8,09	8,09	vgl. Kap. 5.3 CO ₂ -Bilanz von Bio-KWK-CCS
Brennwert	kWh/m ³				10,0	10,0			vgl. Kap. 5.3 CO ₂ -Bilanz von Bio-KWK-CCS
Brennstoffmenge HHS/Pellets	kt/a	107	219	219			604	604	eigene Berechnung
Brennstoffmenge Biomethan	Mio. m³/a				374	374			eigene Berechnung
Ertragsniveau HHS	t/(ha·a)		26,2				26,2		vgl. Kap. 5.3 CO ₂ -Bilanz von Bio-KWK-CCS
Ertragsniveau Biomethan Belegte Fläche	m³/(ha∙a) ha		8358		8450 44263		23073		eigene Berechnung eigene Berechnung
1									
Dimensionierung Pipeline	1	770	770	120	220	220	220	770	2.5441144-00-00 5.460
	- 11/04	30	30	110	30	30	110	110	Goundrier, 1933, 3. 100 Gasticher, 1000, 8. 160
	د/۱۱ ۲/۲	0,4 F	0, 1 0 0	0, 4 0 0	0,40	0, 4, 0 7 4	0,4,4	C,2 G R D	Goundrier, 1999, S. 100 Airona Baracharina
		101	4.10	4	1.10	21.12	6,00	6'00	
CO ₂ -Transportvolumen	m³/h	89,2	92,5	92,5	104,6	104,6	78,6	78,6	eigene Berechnung
Pipelinedurchmesser	m	112,3	114,4	114,4	121,7	121,7	105,4	105,4	eigene Berechnung
Dimensionierung Zwischenspei	icher								
CO2-Menge	t	10000	50000						
Volumen	m³	11403	57013						
Durchmesser	m³	28	48						

Tabelle A.33: Berechnung für das Anwendungspotenzial für Bio-KWK-CCS in Deutschland, Teil A, eigene Berechnung mit Daten aus Statistisches Bundesamt [2011], AGFW [2010b, S. 1 ff.], Google [2011], BMVBS [2010, S. 1], BMVBS [2008, S. 1], World Shipping Register [o.J., S. 1]

	(SHH) =	1 ³ /a	5.599 2.518	2010	1.186	847	596	354		368	1.006	000	939	414			292	101 0	383	302	117				1.060	470	670	141		197		137		456	077		75	301	48	150	80		86		299 10
menge	(BM)	w. Mio n		1.306					598			375			112	122		203				125	127	0		236			192	c	110		122		128	120			¢	50				10	
ennstoff	(Pell.) D	kt/a bz	992 446	P F	210	150	106	63		65	178	001	100	23			52	603	89	53	21				188	83	119	25	1	35		24		81	4 0		13	53	8	ac	8 0		, 17		53 2
-Pot.) B	(HHS)A		4.309 7 387	100°.1	4.164	2.810	2.300	2.400		2.263	2.163	101.0	101.2	2.024			1.343	2 067	1.219	1.157	1.141				1.067	1.029	066	972		957		869		838	470		752	727	692	000	080	671	665		649 626
m. (FW	(BM) F	kt/a	-	2.363					1.003			913			654	611	1	C 0C				462	452	451		425			407	000	372		358		341	329			000	288				279	
g. CO ₂ -E	Pell.) D		936 483	<u></u>	272	184	159	157		148	141		141	132			88	105	8	76	75			í	21	/9	65	64	;	83		57		22	5		49	48	45		1	14	: 64		4 4
2009) Ne	HHS		3.402	0000	721	515 675	362	215		224	611	l	2/0	403 251			177	2007	233	183	71				644	987	407	86		120		83		277	000		45	183	29	90	000	0 0	59		182 6
m. (FW :	BM) F (t/a		773					354			222			99	72		120				74	75	0		139			114	c	65		72		76	2.2			ı	D				9	
J. CO ₂ -E	ell.) D (×	222 100	2	47	34	40	4		15	40	ľ	31	16			12	105	15	12	2 2			!	42	8	27	9	,	ø		5		²⁰	D		e	12	7	Ċ	ہ م) 4		0 10
rief- Neç	ang A (F	E	2,2 15,1	2	>3	2,7	- ² ~	2,8		10,7	2,2	0	л v V	0, V 0, V			×2	6	2	2,7	~				2,8	N N	9,7	~	1,6	2,5		9,2		11,6	2		2,7	2,8	e	ç	ς γ γ	7,7	~		2,2
Hafen J	0		، م	00	2		- ~	-	0	С	-	0,		- 0	0	0	0) (10		0	0	0	0	. .	- 0	С	7	0	. .		ŝ	0	ოი	N C	0	-	-	~ (э (N -	- ന	2	0	- 0
f. CO2- F	ager	km	46	61	259	339	235	188	204	41	135	148	134	214	197	222	279	126	298	137	344	113	301	248	197	184 173	183	231	160	157	202	183	247	165	221	204	165	413	211	191	323 08	00	249	232	61 240
ige Ent	_	0	3,41 a aa	3,33 1,58	6,96	8,68	9,10 6.78	7,46	7,02	8,81	3,73	2,37	9,74 108	6.76	7,21	7,15	7,10	8,53	8,40	7,63	8,24	06'0	6,08	6,44	7,09	0,53 2,93	0,14	6,56	1,97	1,64 7.05	6.87	0,69	1,02	2,13	9.50	7,46	7,82	6,99	6,89	1,22	8,44 8,05	8,22	6,99	7,08	3,06 6,70
ite Lär		•	, 2,52 2,52	8,14 ,	0,94	0,11	0,70	1,51	1,46	3,08	1,05	1,34	2,3/ 0.4E	6. F	1,48	1,26	0,73	2,02	8.01	1.97	0,05	8,37	0,78	1,19	1,51	07 N 083 0	4,32	1,33	1,48	2,13 2,13	0,00 1.47	3,87	, 0,97	60 60 60 60 60 60 60 60 60 60 60 60 60 6	1.32	1.36	1,68	9,24	1,43	1,54	9,48 0,07	3 14	1,03	1,17	, 20 , 20
V- Bre	ent.	٩N	.800 126 5	.517 4	.037 5	.798 5	- 100. 671 7	514 5	.439 5	.085 5	.771 5	769 5	C 00/.	.337 5	.851 5	527 5	.206 5	G 021	816 4	.622 5	573 5	.427 4	.348 5	.340	.340	149 5	.101 5	.043 5	.016 5	5 200	757 5	.721 5	.654 5	.624 5	531 5	.441 5	.353 5	.275 4	.166 5	C 133	128 4	660	.081 5	.070 5	.031 5 .960 5
5	te Pote	5 Q	% 45 2%	2% 52 2% 17	% 13	8 %	- 2 %	7 %6	5% 7	7 %	3% 6	9 %1	0% 9% 8%	9 8 8	1% 4	2% 4	3% 4	% %	3%	3% 3	3% 3	3% 3	3% 3	3% 3	9% 3	n n %	3% 3	9% 3	% 3	2%	× ~ ~	9% 2	9% 2	2 v %	× 0%	- 7 - 8	3% 2	5% 2	1% 2	× ×	7 %	× ~ %)% 2	2% 2	~~ 2 %
ΡĀ	. Dich		8 8 0 0	3 K 9 60	7 17	 2 ~	- 4	4	2 35	0	32	40	9 7		5	7 12	5		0.0	16		8	7	0	9 22 0	4 4 7 8	5 40	6	3	5		5	3		2 5	1 À I	Ņ	3 26		20 -			, . 	ņ	0 0
ΕW	Erzeng	GWh	10.65	5.72	2.25	1.61	1.13	67	2.62	20	1.91	1.64	1.78	07.1	49	53	22	88 6	11:0	22	52	54	55		2.01	1.03	1.27	26	84	37	48	26	53	8	9 LC	22	14	22	00		5		18	4	1 56
bun	Dichte	EW/km ²	3.899	4.355	2.486	2.737	2 710	2.068	2.732	1.682	1.593	1.758	090.7	2.103	2.573	2.077	2.301	1.253	1.699	924	1.353	1.803	1.608	1.514	2.458	1.101	2.019	1.707	1.725	1.152	2.762	981	762	1.118	1.831	1.176	803	1.052	1.833	3.205	1 370	1.575	2.038	1.786	837 1.521
Bevölker		inwohner	3.460.725 1 786 448	1.353.186	1.007.119	679.664	588 735	580.444	574.635	547.340	523.058	522.883	080.226	489.559	374.737	349.721	324.899	323.270	294.761	279.803	275.976	264.708	258.664	257.993	257.981	248.867 243.248	239.526	235.076	232.963	231.525	212.945	210.232	204.994	202.735	195,530	188.529	181.783	175.741	167.344	164.762	104.351	162 173	160.772	159.927	156.906 151.388
		ш				ž																		adbach	ien	bie			()									c		5					
Stadt			rlin mburd	inchen	<u>r</u>	ankfurt a.	isseldorf	rtmund	sen	emen	esden	ipzig	innover	iisbura	chum	uppertal	uu uu	eleteld	risruhe	inster	iesbaden	gsburg	chen	inchengla	elsenkirch	aunschwei iemnitz	Ter les	əfeld	ille (Saalt	agdeburg	erbauser	beck	furt	stock	ssel	den	m	arbrückei	ilheim	erne Antico hote	awigsnar	denhirra	verkusen	lingen	tsdam uss
Lfd.	Ľ.		ч Ве Ч Ве	3 MC	4 Kö	5 Fr		8 DC	9 Es	10 Br	11 Dr	12 Le	3H 2L 13 H2	15 Du	16 Bo	17 W	18 Bc	19 81	21 Ka	22 MÜ	23 W	24 Au	25 Aa	26 Mč	27 G	29 CF	30 Kit	31 Kr	32 H£	33 M	35 Ot	36 Lü	37 Er.	38 RC	40 Ka	41 Ha	42 Ha	43 Sa	44 Mi	45 H6		48 Ol	49 Le	50 Sc	51 Pc 52 Ne

Tabelle A.34: Berechnung für das Anwendungspotenzial für Bio-KWK-CCS in Deutschland, Teil B, eigene Berechnung mit Daten aus Statistisches Bundesamt [2011], AGFW [2010b, S. 1 ff.], WVV [2011, S. 2], SWG [2011, S. 2], SVB [2011, S. 1], WEVG [o.J., S. 1], SWW [2011, S. 2], ZEV [2011, S. 1], SWD [2011, S. 1 ff.], RWE [o.J., S. 1], SWL [2011, S. 2], SWK [2011, S. 11], E.ON [2008, S. 56], Google [2011], BMVBS [2010, S. 1], BMVBS [2008, S. 1], World Shipping Register [o.J., S. 1]

	(SHH)	1 ^{3/a}	331		c	167		23		422		269			33	108			0		7.7 L	c	מ		C	20									BR	8	604	86			1	25	173		53	07 440
imenge	(BM) F	zw. Mio m		0	27		47		157		2	1	80		0		15	0		0	c	r	111	<u>+</u> <	>		119	74	97	2	0	66	ee :	- - -	D	20	262		29	22	0		;	4 C	2	5.182
rennstoff	(Pell.) D	kt/a bz	59		c	D Q	ì	4		75		48			9	19			0	00	99	c	N		c	0 07									т Т	2	107	15				o ;	31		σ	4.856
/-Pot.) B	(SHHS)		609		C C L	553	0	508		502		498			474	469			440	10,	43/	101	4 0		175	423									380	8	367	366				362	359		340	75,835
-Em. (FV	(BM) F	kt/a		255	252		218		214		211		209	204	5		196	193	1	185		184	101	10 10 10	0		178	173	173	172	168	166	166	101	701	159	98		154	153	153			148	Ì	16.032
Neg. CO2	A (Pell.) [40		1	36	0	33		33		33			31	31		:	29	0	67	Ċ	70		ac	28									25	2	24	24				24	23		22	4.959
N 2009)	F (HHS)		201		c	0 80)	14		256		164			20	65			0		104	L	n		C	3.0									53	10	367	52			i	3	105		32	16.655
² -Em. (F	D (BM)	kt/a		0	16		28		93		13	ļ	47		þ		6	0		0	c	N	60		0		71	44	57	4	0	59	23	44	D	12	155		17	13	0		c	αc	>	3.065
Neg. CO	A (Pell.)		13		c	о ш	0	-		17		1			-	4			0	ľ	`	c	0		C	0 0	I								¢	0	24	e				2	2		2	1.089
Fief-	Jang	ε	2,7		L C	2,5	i	2,7		2,8		2,7			2,5	13		'	×33	L (2,5	0	4,0		с с	2.7	Î								7 0	, ,	8,5	2,7				2,5	2,2		2.8	î
- Hafen	0,		٢	0	0 •		0	-	0	-	0	- 1	0 0			ი	0	0	2	0,	- 0	⊃ •					0	0	0	0	0	0	0 0	0 0		- c	ი	-	0	0	0	~	- (50	، د	
ntf. CO ₂ -	Lager	кя	303	163	330	252	95	256	179	191	214	339	283	200	175	51	312	229	313	250	181	117	280	253	161	181	62	200	371	199	138	181	192	661	200	225	199	332	250	249	182	176	125	240	128	ļ
änge E		•	8,68	8,75	8,65	01,21 9,93	11,43	9,22	10,00	10,79	9,93	8,76	8,71	6 92	10,99	8,58	8,21	7,19	7,60	7,14	10,11	0,02	11 50	80,11	0,05	9,33 10.33	14,33	12,08	7,69	7,34	8,39	11,42	7,52	06,21	0,43 0,21	6.85	9,44	8,92	9,05	9,19	7,10	7,53	12,25	9,17 6 01	t 00 8	2262
Sreite L		۰	49,40	51,72	49,87	49,02	48,76	49,14	48,40	52,42	51,53	50,11	48,89 E1 E1	51.52	49,48	53,54	48,49	51,18	50,36	50,99	49,60	01,40 17,71	49,70 F0.03	50 87	50,01 50,15	52.15	51,76	50,88	49,45	51,44	51,91	53,63	51,47	20,02	00'0C	5130	54,78	50,14	48,52	48,90	51,65	51,62	51,84	47,66 51 34	52.00	1212
FW- E	Potent.	GWh	1.907	1.894	1.869	1.732	1.619	1.591	1.590	1.572	1.567	1.559	1.551	1 512	1.484	1.468	1.456	1.431	1.378	1.369	1.367	1.300	1 261	1 220	1 221	1.326	1.322	1.285	1.284	1.272	1.248	1.233	1.229	412.1	1 180	1 179	1.149	1.147	1.144	1.136	1.133	1.133	1.125	1.096	1.063	355.997
FW-	Dichte I		32%	%0	%9	۰% 17%	12%	3%	42%	50%	%9	32%	22%	%0	4%	14%	4%	%0	%0	%0	23%	%1	360/	0/.00	%/D	%2	39%	25%	33%	2%	%0	35%	13%	%GL	14%	% <u>~</u>	98%	14%	11%	8%	%0	8%	29%	9%9 7%0	%6	20%
FW-	Erzeug. I	GWh	629	0	119	308	206	43	687	803	96	512	349		9 83 83	205	64	0	0	0 100	321	2 [102			96	523	324	426	32	0	434	169	181	164	68	1.149	164	126	98	0	8	330	29	, 00 0	73.718
Бц	Dichte	W/km	1.354	815	1.183	1.679	938	1.230	1.035	595	1.036	2.683	1.222	1.161	1.809	1.208	1.292	1.482	1.013	1.272	1.3/3	800°. I	033	010	302 1 1 1 1	457	621	653	710	1.357	861	729	757	914	1 070	1 027	1.564	1.159	817	2.024	666	1.479	355	1.565	812	;
Bevölkeru		Einwohner E	147.312	146.283	144.402	133.799	125.088	122.879	122.801	121.451	121.060	120.435	119.781	116.203	114.628	113.366	112.484	110.563	106.417	105.723	105.629	000-001	105.201	103.129	103.424	102.394	102.091	99.262	99.184	98.233	96.404	95.220	94.966	00,000	92.020	91 088	88.759	88.637	88.358	87.735	87.557	87.530	86.906	84.693 84.033	82.114	27.313.758
Lfd. Stadt	Nr.		53 Heidelberg	54 Paderborn	55 Darmstadt	57 Würzhurg	58 Ingolstadt	59 Heilbronn	60 Ulm	61 Wolfsburg	62 Göttingen	63 Offenbach	64 Ptorzheim 65 Docklinghauron	66 Rottron	67 Fürth	68 Bremerhaven	69 Reutlingen	70 Remscheid	71 Koblenz	72 Berg. Gladbach	73 Erlangen	74 MOELS	76 Jona	77 Singer	78 Hildeshaim	79 Salzoitter	80 Cottbus	81 Gera	82 Kaiserslautern	83 Witten	84 Gütersloh	85 Schwerin	86 Iserlohn	8/ ZWICKAU	oo Duren 80 Eeelingen	90 Ratingen	91 Flensburg	92 Hanau	93 Tübingen	94 Ludwigsburg	95 Marl	96 Lünen	97 Dessau-Roßlau	98 Konstanz	100 Minden	Summe