
EUROPA-UNIVERSITÄT FLENSBURG

DOCTORAL THESIS

The Role of Spatial Context in Energy
System Models

Author:
Christian Etienne Fleischer

Supervisors:
Prof. Dr. Olav Hohmeyer

Prof. Dr. Bernd Möller

A thesis submitted in fulfillment of the requirements
for the degree of Dr. rer. pol.

at the

Interdisciplinary Institute for Environmental, Social and Human Sciences
Department of Energy and Environmental Management

March 28, 2023





v

Dedicated to my family





vii

Summary

The transition towards a sustainable energy system is an essential step towards mit-
igating GHG emissions and the effects of climate change. Energy system models are
used to gain insights into different transition potential pathways. Various compo-
nents of the energy systems with the inclusion of variable renewable energy tech-
nologies are temporally and spatially dependent on weather and climate conditions.
With the improvement in the availability of highly spatially resolved data on energy-
related attributes such as electricity demand and electricity generation potential, en-
ergy system models can be improved to better capture their variability. Given com-
putational limits, the spatial resolution of energy system models is often reduced.
The choice of spatial resolution reduction method or the data processing method
used to generate the energy system models is usually not discussed or adequately
documented. This dissertation presents a documented data processing approach
that integrates different spatial resolution reduction methods.

There are two documented effects of spatial resolution reduction of energy system
models with high wind and solar PV penetration. The two effects are the loss of
good solar and wind sites and the reduction in transmission capacity expansion.
This dissertation presents and investigates the use of a targeted novel resolution re-
duction method named the max-p regions method to reduce the spatial resolution
of energy system models. The max-p regions method reduces the spatial resolu-
tion using the max-p regions problem algorithm and three energy-related spatial
attributes. The spatial attributes are electricity consumption, solar and wind gen-
eration potential and energy storage capabilities. A comparative analysis was con-
ducted to evaluate the effectiveness of the max-p regions in minimising the impact
of two documented spatial resolution reduction effects. The results of the evalua-
tion show that the power system models of two out of the four European countries
investigated was less impacted by the effects of spatial resolution when the max-p
regions method was used to define the regions of the models in comparison to the
use of a non-targeted method of defining regions. The use of the max-p regions
method to define regions in sub-continental European power system models was
impacted less by the effects of spatial resolution reduction compared to the use of
national jurisdictions.
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Introduction

The EU is one of the economies that have contributed the most towards climate
change through their anthropogenic GHG emissions. It is estimated that based on
historic cumulative GHG emissions before 2012, the EU28 countries are responsi-
ble for 17.3%, the second-highest contributor after the US, of global temperature
increase in 2100 [1]. The governments, including those on the European continent,
have adopted and ratified the Paris Agreement, which states that all parties should
strive towards keeping the increase in global average temperature “well below” 2�C
while trying to maintain it at 1.5�C above pre-industrial levels. With an aim to take
the lead in climate action, the EU commission has a 2030 Climate Target Plan that
aims to reduce 55% GHG emissions by 2030, while the EU parliament has announced
a 60% reduction target by 2030. These proposals support the long-term EU strategy
of reaching climate neutrality by 2050. The EU plans to legally bind the climate tar-
gets and long-term strategy for all member states in a new European Climate Law.
According to Climate Analytics, only a minimum of 65% reduction in GHG emis-
sions would ensure that the EU27 countries are compatible with keeping the increase
in global average temperature to 1.5�C above pre-industrial levels [1]. In 2018, the
EU recorded a GHG emission reduction of 25.2% since 1990 (without LULUCF).

As summarised in the IPCC special report by Rogelj et al. [2], pathways consistent
with the Paris Agreement require rapid phase-out of CO2 emissions and deep emis-
sions reductions in the energy, industry, transport, buildings, agriculture, forestry
and other land-use sectors. Among the characteristics observed by Rogelj et al. [2]
in 1.5�C consistent pathways is the rapid decrease in the carbon intensity of the elec-
tricity generation and simultaneous increase in electrification of energy end-use. The
carbon intensity of electricity generation can be decreased by increasing renewable
energy technologies in the energy generation mix. The power, heat and transport
sectors are the most significant GHG emitting sectors in the EU and need to be de-
carbonised to achieve the EU carbon neutrality target. Road transport containing
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mainly LDV and HDV represented 26% of overall CO2 emissions within the EU-28
and Iceland in 2017 [3]. It is expected that there will be an increase in the use of elec-
tric mobility and alternative energy carriers to decarbonise the road transport sector.
Examples of alternative energy carriers are hydrogen and synthetic hydrocarbons
generated from power to gas technologies. The public electricity and heat genera-
tion represented 27% of overall CO2 emissions within the EU-28 and Iceland in 2017
[4]. There has been significant progress in the power and heat sector in the EU with
the adoption of deployment of renewables and the application of energy efficiency
measures. Renewable technologies such as wind and solar PV will continue to play
an essential role in achieving the decarbonisation of the power, heat and transport
sector. Their share in the electricity generation mix will have to continuously in-
crease to achieve the climate targets.

The transition away from the current energy system regime dominated by fossil fu-
els brings multiple opportunities and challenges that lead to different pathways.
One challenge of the continuous increase in wind power and solar PV in the EU
energy mix is the increased penetration levels of variable electricity generation in
the power system. These variations are temporally and spatially dependent on local
weather conditions and need to be managed to prevent adverse effects on the relia-
bility of the power systems. There are different methods of managing the variations,
which opens opportunities to management strategies such as the use of storages
technologies, sector coupling and grid expansion. Storage technologies options can
range from pumped storage to batteries installed in electric vehicles. Whereas sector
coupling opportunities such as using power to gas technologies to replace fossil fuels
as heating and transport fuels can also help manage supply and demand variability.

The transition towards a sustainable energy system can have different narratives
with different configurations of technology deployment over time. Energy system
models are used to analyse these different narratives and their respective potential
benefits and drawbacks.

1.1 Research Interest

This dissertation aims to improve the current understanding of how the spatial con-
text of energy system components impacts energy system models with the high pen-
etration of renewables. The spatial context considers the choice of spatial aggrega-
tion and the choice of geographical scale. This dissertation also aims at developing
new methods and tools that allow for better representation of spatial data in energy
system models.
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Together the publications presented and discussed in this dissertation address the
overall aim of this dissertation. The specific aims of the individual publications are:

• To investigate how the effects of spatial scale resolution reduction can be min-
imised by proposing the max-p regions method, which aggregates areas ac-
cording to the similarity in energy-related spatial attributes (Paper A).

• To define the methodological details of a spatial resolution method that min-
imises the impact of spatial scale reduction when defining regions for the en-
ergy system model (Paper B).

• To present a data-processing approach that integrates spatial data and spatial
resolution reduction methods in energy system modelling. Investigating the
impact of the choice of the method applied to define regions and the choice in
geographical scale considered on the results of an energy system model (Paper
C).

1.2 Research context

This dissertation research focuses on the European energy system and how the ef-
fects of spatial data can impact the description and results of energy system models
used to analyse the transitions towards a sustainable energy system. Building en-
ergy system models for continental or even national scale often can lead to models
having complexity levels that exceed the existing computational limits. Therefore
these large-scale model complexities are reduced spatially, temporarily or in some
cases even technologically. This dissertation focuses on the spatial complexity reduc-
tion of the energy system models. More specifically, the spatial resolution of energy
system components is reduced at levels that allow for computational tractability of
energy system models. This dissertation, therefore, analyses the benefits and limita-
tions of using different spatial resolution reduction methods.

Several case studies are used to compare the spatial resolution reduction methods
and their effects on energy system models. These case studies include single Euro-
pean countries and groups of European countries. The single European countries
include Germany, Spain, Italy and Great Britain. Although the case studies are lim-
ited to the European context, the body of literature used in this dissertation is not.
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The energy sectors that are considered in this dissertation are the power and heat sec-
tor. The choice of sectors is determined based on the available information needed
to represent them in energy system models adequately. The heat sector is also con-
sidered in this dissertation as the interconnection and interdependency of the power
sector, and the heat sector is continuously increasing. Considering the heat sector
and the power sector together in energy system models also allows for a better un-
derstanding of interactions and synergies between the two sectors.

The research in this dissertation was conducted using open science practices. There-
fore the energy system models used were build using the open energy modelling
process described by Pfenninger et al. [5]. The data and the code used to formu-
late the model have been made accessible and legally usable. The publications used
in this dissertation are also openly available under licences that permit unrestricted
use, distribution, and reproduction of the article. By using open science practices,
the work conducted aims at promoting transparency and reproducibility of model
research results. This work aims at limiting duplication of work by using existing
openly available datasets to build the models used in the research conducted.

1.3 Structure of the thesis

The first part of this dissertation presents an overview of the research conducted to
address the overall research aim. The structure of the first part of this dissertation
begins with the introduction section, followed by a background section that estab-
lishes state of the art in this field of research. The methodology section describes the
methods and scenarios used to build and analyse energy system models. The results
are presented and discussed, and then the final section concludes the findings of the
dissertation.

The second part of this dissertation is a collection of the following publications:

Paper A is a peer-reviewed journal paper in Energy Strategy Reviews. This publication
analyses the efficacy of a proposed max-p regions method in minimising two effects
of spatial resolution reduction. The two documented effects are the loss of good
solar and wind sites and the reduction in transmission bottlenecks.

Paper B is a peer-reviewed method paper in Method X. This publication gives a de-
tailed description of how energy system models can use a spatial resolution method,
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named the max-p regions method, to join areas into regions with similar energy-
related spatial attributes.

Paper C is a research article in the Open Research Europe publishing platform. This
publication focuses on providing a detailed description of a data-processing method
using datasets that includes GIS data. This data-processing method also integrates
different spatial resolution reduction methods to define regions when formulating
energy system models. A case study is presented in the publication to demonstrate
the impacts of spatial scale and spatial resolution reduction methods on energy sys-
tem optimisation results.
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Background

In this section the use of spatial data to inform energy system models is introduced.
First, the spatial sensitivities of energy system components in the power and heat
sector are discussed. Next, the state of the art approaches of using open source
software to integrate geospatial information in data processing approaches to build
energy system models is presented. Finally, the documented effects of spatial reso-
lution reduction are reviewed.

2.1 The spatial sensitivities in energy system models

Traditionally geospatial data was less relevant in the formulation of power system
models as traditional energy systems were structured around centralised dispatch-
able generators. Today power systems are transitioning towards a more decen-
tralised topology dominated by VREs such as wind and solar. The capacity fac-
tors of VREs are spatio-temporal specific. Thus, to adequately model power sectors
with high shares of VREs requires power system models to have a sufficient spatial
and temporal resolution [6]. The following sections look at the spatial and temporal
modelling of power system components.

2.1.1 Variable renewable energy

Site-specific parameters such as direct and diffuse irradiation, in the case of solar
PV, determine the performance and cost of VREs. Various tools make use of large
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datasets, which can include satellite-based climate data or reanalysis data to cal-
culate the spatiotemporally resolved data on the availability of VREs. The renew-
ables.ninja platform, for example, provides historical values for power outputs of
solar PV, onshore wind and offshore wind. The platform uses meteorological re-
analysis, satellite-measured data and measured data from PV sites to generate the
power output values. The highest spatial resolution of the power output values for
solar PV and onshore wind on the platform is NUTS 2 level for the countries on the
European continent. Other tools such as PVlib, PyGreta and Alite offer modellers
more flexibility to calculate power values of VREs for specific geographical areas or
even customised technical parameters. When using these tools, the spatial resolu-
tion of the power output of the VREs is only limited by the resolution of the satellite
weather data or the reanalysis of weather data applied. For example, Alite allows for
the creation of power output of solar PV systems using ECMWFs’ ERA5 reanalysis
dataset, which has a spatial resolution of ca. 30 km x 30 km [7].

A key differentiating characteristic of solar PV onshore wind and offshore wind
is that they require relatively larger areas per installed capacity than conventional
power plants. Spatial analysis is undertaken to determine the eligible areas for VREs
installations and the total capacity that can be installed given the specifications of the
technology. LE analyses are undertaken and used as input parameters in energy sys-
tem models to define the maximal capacity of solar PV and onshore wind that can
be installed in a specific region. Proximity to settlement, infrastructure, protected
areas, and agriculture are commonly used criteria used in an LE analysis. Ryberg,
Robinius, and Stolten [8] developed the GLAES tool and used European countries to
demonstrate how the impact of LE constraints are highly spatially sensitive. Ryberg
et al. [9] show that the LE for onshore wind is sensitive to socio-technical criteria
such as minimal wind speeds, the maximal terrain slope, the maximal distance from
power lines, and the minimal distance from settlements. Therefore it is crucial that
the method applied to determine LE in energy system models must be clearly de-
fined.

2.1.2 Demand profiles

Power demand profiles have spatial-temporal characteristics that are determined
based on parameters such as population density, building heating specifications,
temperature and human behaviour. The focus of energy demand modelling has
historically been on the national scale or the building level [10]. Spatial load fore-
casting approaches are used for network planning which determines the placement
of network components such as substations and feeders [11]. Limei Zhou et al. [12]
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introduce a method that uses GIS to conduct spatial load forecasting to provide the
growth of future load demand in space.

Access to demand data at high spatial resolution is often lacking, and therefore top-
down approaches are used to disaggregate national scale data using socioeconomic
data. Socioeconomic attributes often used to spatially disaggregate power profiles
are GDP and population. Other top-down approaches also include using regres-
sion models and satellite data on nighttime lights as applied by Pan and Li [13] to
generate spatial maps of power consumption for China. Mattsson et al. [14] have
integrated machine learning in combination with other parameters to generate syn-
thetic power profiles at spatial scales lower than the national level.

2.1.3 Energy storage

One method of balancing electricity demand and supply is the use of energy stor-
age options. An established large-scale, cost-effective option of rechargeable energy
storage is pumped-hydro storage. Pumped-hydro storage uses the height differ-
ence of reservoirs to store, consume and generate electricity. Data availability on the
existing pumped storage installation across Europe is still not entirely freely acces-
sible. Though incomplete, the JRC published a georeferenced open database con-
taining 4131 hydropower installation across Europe, including pumped-storage hy-
dropower plants [15]. Gimeno-Gutiérrez and Lacal-Arántegui [16] uses a GIS-based
method and reservoir datasets to assess the potential for pumped hydropower in 14
European countries and found that the existing capacity could increase by 3.5 times
to reach 54 TWh. The two other types of hydropower technologies are reservoir-
based hydropower and run-off river hydropower, which depend on the inflow of
water determined by rainfall and the melting of snow. The suitability of the topol-
ogy requirements and the inflow of water makes these hydropower technologies
spatially specific. CAES is another storage option where the geological properties
of an area play an important role as suitable existing storage caverns makes this
technology significantly cheaper [17].

2.1.4 Transmission

Transmission networks, which can transfer large units of electricity across large dis-
tances, is another method of balancing electricity demand with electricity supply.
The expansion of transmission network can be a cost-effective way of integrating
more renewables in the energy system. Schlachtberger et al. [18] show that using
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expanding transmission networks on a continental scale to balance the fluctuations
of solar and wind in space is more cost-effective than using storage. The use of
transmission networks maximises the of uses synoptic-scale weather differences to
balance the energy supply and demand. Schaber et al. [19] calculate how backup
capacity requirements and overproduction are reduced with transmission capacity
expansion in highly renewable power system. Schaber et al. [19] also show that
the expansion of the transmission network allows for the spreads of the burden of
balancing the VRE supply across connected regions using flexible generators and
storage options such as pumped-hydro storage. Spatial information on the electrical
grid has been unavailable to the public in the past, but access has improved in the
last decade . OSM is a VGI project that has mapped the electrical grid using crowd-
sourced data [20]. Various open-source tools use different approaches to simulate
grid models using OSM data that can then be used in energy system models.

2.1.5 Heat sector

As stated by Novosel et al. [21], heat has a key differentiation to electricity in that it
cannot be transported over relatively large distances and therefore needs to be con-
sumed within close confinement of where it is produced. District heating networks
offer a heat supply strategy that can transport heat from sources such as excess heat
from industry and power generation to meet the local heat demand. The assessment
of the technical and economic potential of district heating in an area requires a spa-
tial understanding of the heat demand densities. The use of heat atlases describing
the demand densities at 100 m resolution is used by Möller et al. [22] to calculate the
investment costs of heat distribution networks.

2.2 Integration of GIS in energy system models

As discussed by Martínez-Gordón et al. [23], there is no clear consensus on how to
link GIS and energy tools. In the analysis of 34 open-source energy system mod-
els, Martínez-Gordón et al. [23] identified four models with an internal GIS-related
function and five other models linked to a GIS tool. The majority of the energy sys-
tem models use the internal GIS function to determine resource potential such as
biomass and VRE potentials based on weather data. PyPSA (Hörsch et al. [24]) is
one of the energy system modelling frameworks with an internal GIS function used
to reduce the spatial resolution of the energy system model.
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Modelling frameworks such as PyPSA, calliope [25] and oemof [26] allow for the use
of GIS coordinates to identify the location of energy system components. The GIS
coordinates of the centroid of the regions often represent the location of the regions
in the energy system models. Except for the proposed data-processing method de-
tailed in Paper C, the author is aware of two data processing approaches, PYSA-Eur
[24] and euro-calliope [27], that have integrated spatial clustering functions to alter
the spatial granularity of energy system models.

2.3 Effects of spatial resolution reduction methods

There are two well-documented effects of spatial resolution reduction. The first ef-
fect of spatial resolution reduction is the decrease in transmission bottlenecks with
decreasing the spatial resolution of energy system models. Hörsch and Brown [28]
investigated the impacts of spatial scale on a highly renewable European power sys-
tem. The spatial scale was varied by varying the number of clusters of the power
system from 37 clusters to 362. An increase in transmission capacity expansion cost
was observed when the spatial resolution of the model was increased due to higher
line capacity and line constraints. These line constraints, which manifest as trans-
mission bottlenecks, prevent electricity generated from good wind sites to travel to
load centres. In Germany, Hörsch and Brown [28] observed a reduction of wind ca-
pacity from 40 GW to 12 GW and solar PV capacity increasing from 46 GW to 100
GW when the spatial resolution was increased from 37 clusters to 362 clusters as a
result of transmission bottlenecks. Shawhan et al. [29] analysed the effects of simpli-
fying the transmission model of eastern US and Canada on carbon dioxide emission
abatement when imposing a carbon dioxide emission allowance price within certain
areas of the grid. They found that a more simplified grid had fewer transmission
constraints, allowing for more electricity importation from areas where the emission
price was not in effect. Frew and Jacobson [30] investigated the effects of spatial scale
of wind and solar site development on the power system models with high shares of
renewables in the US. They observed that not considering intra-region transmission
lines favoured the adoption of large-scale solar PV but did not favour residential
solar PV.

The second effect is the increase in solar and wind capacity expansion cost with
decreasing spatial resolution reduction of energy system models. This effect is the
cause of the loss of good solar and wind sites with decreasing spatial resolution. The
loss of good sites is the result of aggregating low-yield sites together with high-yield
sites. Therefore there is a loss in the opportunity to maximise the use of high-yield
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sites, which increases the investment and cost of solar and wind installations. Frysz-
tacki et al. [31] show that increasing the spatial resolution of a European power sys-
tem model with a high share of renewables from 37 nodes to 1024 nodes reduces the
system cost up to 10%. Frew and Jacobson [30] found similar system cost reductions
of up to 42% in the system cost with an increased spatial resolution by modelling
individual wind and solar sites instead of uniform buildouts. The AllCA region,
which is a collection of FERC regions in California, quantified a 10% reduction in
system cost and a 20% reduction in overgeneration at 100% RPS target [30]. Krish-
nan and Cole [32] found that in addition to a decrease in system cost, the deployment
of solar PV decreased, and wind deployment increased with decreasing the spatial
resolution of the US power system. Hörsch and Brown [28] observed a reduction
in overall system cost with higher spatial resolution attributed partly towards better
exploitation of good wind and solar sites. An example of the loss of good wind site is
observed in Germany, where the best wind site in the power system model with 362
clusters has a weighted average capacity factor of about 40% in comparison to the
single node representation of Germany, which had the weighted capacity average of
only 26% [28].

The effects of spatial scale reduction on wind generation were even observed at the
geographical scale of Austria by Simoes et al. [33]. Simoes et al. [33] discuss that com-
plementary to the loss of good sites other mechanisms affect energy system models
in relation to renewable energy generation when there is a reduction in spatial scale.
These mechanisms are the region-specific costs, suitability of regional wind and so-
lar profile to fit with the demand profile, and distance between electricity generation
and demand locations impact the results of the energy system model at various spa-
tial scales.

The two main effects of spatial resolution reduction have knock-on impacts on the
results of energy system models as certain technologies complement each other. For
example, as documented above, Hörsch and Brown [28] observed a reduction in
offshore wind development when the spatial resolution is increased due to more
intra-country transmission bottlenecks and improvement of capacity factors of on-
shore wind close to load centres. These two effects had the knock-on effect of more
adoption of solar PV, which increased battery capacities and decreased hydrogen
storage as batteries can smooth out the diurnal effects of solar PV at a lower cost in
comparison to hydrogen storage.
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2.4 Impact of spatial extent

As investigated by Tröndle et al. [34], the geographical scale of a fully renewable
energy system impacts the deployment of supply, transmission and balancing tech-
nologies. Tröndle et al. used a European powers system model at 497 subnational
regions to show that if the supply and balancing of power are limited at the regional
or national level, then the overall system cost increases by 1.4 and 1.69 times the
most cost-effective system, respectively. The most cost-effective system allows for
balancing and supply of electricity at a continental scale. The main increase cost
drivers are given as the limited access of certain sub-national regions to balancing
options such as hydropower and the inability to share the best solar and wind re-
sources. Tröndle et al. [34] also presented that certain subnational regions generated
more than 50 times their power demand at continental scale supply and demand,
meaning that much of the supply of power is unequally spatially distributed and
that certain regions use more of their land area for wind and solar PV deployment
than others.

Frew and Jacobson [30] made a similar observation to Tröndle et al. [34] while inves-
tigating the effects of spatial extent on a power system model of the US. Frew and
Jacobson found that the interconnected US power system was more cost-effective
at reaching an 80% RPS target than when the individual FERC regions were left to
achieve the same target independently. The interconnected US power system model
prioritises areas in certain regions with good wind sites in the Great Plains, Rocky
Mountains, and Pacific Northwest. Frew and Jacobson [30] also observed a disparity
in the contribution of the regions in achieving the 80% RPS target when the regions
were interconnected. While certain regions exceeded the target to become fully re-
newable, others only reached as low as 56% RPS.

The importance of spatial scale in an interconnected European power system in re-
lation to minimising the variability of wind power output is investigated by Grams
et al. [35]. Their study observes that multi-day volatilities present themselves as
electricity surpluses and deficit from wind installations lasting days to weeks in cer-
tain European regions. These multi-day volatilities could be addressed by strategic
deployment of wind installations in the peripheral regions as these regions have con-
trasting wind regime behaviours to wind regimes in regions like the North Sea re-
gion. Addressing multi-day volatilities in wind power output helps maintain mean
generation and reduces the need for flexibility options such as storages and flexible
demand. Santos-Alamillos et al. [36] were able to model a substantial reduction in
wind power output fluctuations in the southern Iberian Peninsula by taking advan-
tage of the spatial variability of the wind energy resource in that region.
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Analysing an energy system at different geographical scale raises the question of
energy autarky. Tröndle, Pfenninger, and Lilliestam [37] investigate autarky at four
different geographical scales (continental, national, regional and municipal level)
in a European renewable-based power system. Tröndle, Pfenninger, and Lilliestam
[37] found that the electricity demand in certain regions and municipalities exceeds
the technical-socio potential of solar PV and wind. The analysis of energy systems
at various spatial extent provides insights into autarky and energy security policy
implications.

2.5 Spatial resolution reduction methods

The spatial resolution reduction methods of large scale energy system models can be
classified into three categories. The first category uses spatial attributes such as po-
litical boundaries or market boundaries [23]. The use of political boundaries such as
national jurisdictions to define regions in energy system models is commonly used
as often the input data for the model is available only at that spatial resolution. With
the increase in energy system input data at higher spatial resolution, new methods
of spatial resolution reduction methods have emerged, which are classified in the
second and third category. The second category, hereafter referred to as power sys-
tem attribute-based clustering methods, are methods that use clustering algorithms
and power system attributes to reduce the number of nodes in a highly spatially
defined power system model. The third category uses spatial attributes in combina-
tion with clustering algorithms to build homogeneous regions. The third category is
hereafter referred to as spatial attribute-based clustering methods. The second and
third category are elaborated on in the following sections.

2.5.1 Power system attribute-based clustering methods

Hörsch and Brown [28] present a method tailored towards the co-optimisation of
generation and transmission expansion investment which uses the k-means clus-
tering algorithm to reduce the number of nodes in their European power system
model. The k-means algorithm uses power system georeferenced data such as av-
erage power demand and conventional capacity values at substations. A benefit of
this method is that it aims at retaining the topology of the current electrical grid.
The same method is used by Müller et al. [38] to reduce the German power system
model from 11,305 buses to 300 buses. The same method was adopted by Frysztacki
et al. [31] to conduct their analysis of network resolution on power system models.
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It must be noted that before the publication of the three studies mentioned above,
other studies used clustering algorithms, including the k-means method, to reduce
the complexity of a power system model dating as far as 1994 [39].

2.5.2 Spatial attribute-based clustering methods

To build a simplified European grid model, Anderski et al. [40] define 106 geographi-
cal clusters, which included the use of a clustering method and a combination of spa-
tial attributes. The grid model was developed to be used in system simulations un-
dertaken in the e-Highway project. Anderski et al. [40] used multiple steps to define
geographical clusters. The first step used a combination of the k-means algorithm
and the Tabu-search algorithm from the ClusterPy library [41] to find homogenous
clusters in each European country. The clustering process, therefore, was conducted
in a manner to prevent clusters from containing areas of different countries. The ob-
jective function of the clustering algorithm uses weighted spatial attributes to define
the heterogeneity of NUTS 3 areas.

FIGURE 2.1: Clusters of NUTS 3 regions in Germany defined using
clustering method (left) and after consultation (right). Adapted from

Anderski et al..

The spatial attributes selected by Anderski et al. [40] are attributes that reflect the
energy demand and supply potential in a NUTS 3 area. These include projected
population, historical wind speed and solar irradiation average. The weights used
in the objective function ranged from one to three and were assigned to the spa-
tial attributes according to their significance to determine the clusters. For example,
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agriculture areas and natural grassland were assigned the lowest weight value while
hydro installed capacity is assigned the highest weight value as power exchanges
between geographical clusters and those without hydro capacity are expected to be
significant. The clustering method applied does not ensure that the clusters gen-
erated have contiguous shapes, therefore, the latitude and longitude values of the
NUTS 3 areas are also used as an attribute considered in the objective function. The
second step implemented to define the geographical clusters used by Anderski et
al. was a consolation process with the TSOs to adjust the clusters to account for
consideration not considered by the clustering process, such as grid constraints.

Siala and Mahfouz [42] present the second application of clustering algorithms in
combination with spatial attributes. The clustering method aims to aggregate high
spatial resolution data of load density distribution, solar and wind potential with
more than 108 data points to 28 contiguous regions. The raster data is first aggre-
gated for each spatial attribute using an enhanced version of the k-means algorithm
called k-means++. The clusters generated in the first step are then regionalised
to lower spatial resolutions using the max-p regions method, which ensures that
the clusters have contiguous shapes. The method uses the k-means ability to clus-
ter large datasets and the ability of the max-p regions problem algorithm to build
contiguous clusters. The max-p regions problem algorithm was introduced by She,
Duque, and Ye [43].

FIGURE 2.2: Clusters in Europe defined using clustering method and
based on load density (left), solar potential (centre) and wind poten-

tial (right). Adapted from Siala and Mahfouz.

Getman et al. [44] evaluate the use of k-means and the max-p regions clustering algo-
rithm to reduce the spatial resolution of solar PV capacity factor profiles in Colorado,
US. The two methods are evaluated on how similar the data within a cluster is to the
data representing the whole cluster. The two clustering methods are tested first on
the measure of variance within the clusters by calculating their sum of squares and
then using a cross-validation within each cluster. Getman et al. [44] conclude that
the max-p algorithm generates the best results in terms of generating clusters that
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have a reasonable approximation of the data within the clusters.
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Methodology: Models, scenarios, case
studies and spatial resolution reduc-
tion methods

This section details the methods used to create models and scenarios to analyse the
impacts of spatial context on energy system models in Paper A and Paper C. The
novel data processing approach used to develop sector coupled energy system mod-
els introduced in Paper C is amongst the methods described. The spatial resolution
reduction methods integrated into the data processing approach, including the max-
p regions method presented in Paper B, are also presented in this section.

3.1 Models and scenarios

Optimisation models were used to investigate the effects of spatial context on en-
ergy system models with high penetration of renewable energy generation. The
model structure, the data processing approach, the energy sectors considered, and
the modelling framework used to formulate the models differ between Paper A and
Paper C. A brief description and key assumptions of the models in the two papers
are given in the following sections.
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3.1.1 Power system optimisation models

The power system optimisation models used in Paper A are linear optimisation
models with high penetration of renewables. The PyPSA modelling framework,
is used to formulate power system optimisation models. PyPSA was selected as it
is a modelling software tailored for power system modelling. The objective func-
tion of the optimisation models minimises the investment and dispatch cost of the
power system, as described in Equation 3.1. The power system components consid-
ered in the objective function include generators, storages and transmission lines.
The optimised models need to ensure that, in all instances, the power demand is
met. The optimisation models are optimised for a period of one non-leap year at a
three-hourly time resolution, which is a total of 2920 instances. A three hourly time
resolution is used instead of hourly time resolution to improve the trackability of the
models.

min
Gn,s,Fl ,gn,s,t

[Â
n,s

cn,s · Gn,s + Â
n,s,t

cl · Fl + Â
n,s,t

on,s · gn,s,t] (3.1)

where:

n region;

s generation or storage technology;

l transmission line;

t time interval;

cn,s investment cost per installed capacity of generation and storage technologies;

Gn,s generation and storage technologies installed capacity;

cl transmission lines investment cost per line rated capacity;

Fl transmission lines rated capacity;

on,s generation and storage technologies variable costs per unit electricity dispatched;

gn,s,t dispatched electricity from generation and storage technologies.

An optimisation model was formulated for each geographic area and the spatial
resolution reduction methods listed in Table 1. The following sections discuss the
main assumptions used during the formulation of the power system optimisation
models and the case studies modelled.
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FIGURE 3.1: Illustrated description of the power system optimisation
models formulation components.

A set of key assumptions were used to define the overarching scenario applied to
the power system optimisation models, as indicated in Figure 3.1. A CO2 emissions
budget constraint is applied to the models to ensure the high penetration of renew-
ables in the optimisation results. The CO2 emissions budget limits the emissions of
power generated by the use of natural gas in the model. A collective responsibly
approach by European countries is assumed to calculate the respective natural gas
budget for the different case studies modelled. The CO2 emissions budget constraint
limits the collective CO2 equivalent emissions of the power sector of EU27 plus Great
Britain, Norway and Switzerland to 5% of their 1990 CO2 emissions. The operation
of gas-fired power plants in the model is constrained by the natural gas emission
budget and the availability of biogas. Like natural gas, biogas is a commodity col-
lectively shared between the EU 28 countries plus Norway and Switzerland. The
annual budget for biogas availability is an estimated amount of biogas utilised for
electricity production in 2015. A conservative approach is taken to assume that bio-
gas production for electricity consumption is not increased. Firstly, this assumption
considers that biogas production has to compete with other uses of land area, which
is limited. Secondly, the conservative approach accounts for the fact that other sec-
tors, such as the heat and transport sector, will compete with the power sector for
the limited amount of biogas to meet the EU climate targets.

Another constraint is the maximum allowable installed capacity of renewables in
the models. Solar PV and onshore wind compete for the limited eligible land area,
whereas onshore wind is limited by the eligible offshore area available. Both area
availability constraints are set for each region in the model.
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The optimisation models are not greenfield models as they are forced to install ex-
isting capacity of run-of-river hydropower, reservoir-base hydropower, pumped-
storage hydropower and gas-fired power plants found within the regions of a model.
The only rechargeable storage technologies in the model are pumped-storage hy-
dropower, lithium-ion battery and hydrogen. It is important to note that only bat-
tery and hydrogen can increase their storage and dispatch capacity. Not allowing
pumped-storage hydropower to expand is a limitation of the model and does not
reflect the potential growth in capacity for pumped-storage hydropower in Europe.
However, the purpose of this limitation is to prevent certain models from becoming
too complex and unsolvable.

To ensure homogeneity of the power profile with the capacity factor of the variable
renewable energy sources, the same reference year, 2010, is used for both input data
sources. Considering that the power system models are considered potential sim-
plified near future power systems, projected values for the year 2030 is used for
investment and dispatch cost of technologies. The investment cost is annualised to
account for their difference in lifespan.

3.1.2 Power and heat optimisation models

The power and heat optimisation models used in Paper C expand on the power opti-
misation model to include the residential and tertiary heat sector. The heat demand
considers two end-uses of heat in the two sectors, which are hot water and space
heating demand. A novel data processing approach was developed to build the
power and heat optimisation models used in Paper C . The following sections pro-
vide more detail to the novel data processing approach, the heat demand modelling,
and the case studies.

Data processing approach

The data processing approach was built based on three guiding principles. The first
principle is to limit duplication of work by maximising existing openly available
web-hosted pre-processed input data. The second principle is to incorporate multi-
ple spatial resolution reduction methods within the data processing approach. The
final principle is to encourage homogeneity between the availability of variable re-
newable energy generators with the power and heat demand.
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The data processing approach is structured in two steps. Step one is the construction
of a dataset called the Areas dataset. This dataset contains the data variables needed
to build a power and heat optimisation model at NUTS 2 spatial resolution. The
Areas dataset contains data for the 27 EU countries plus Great Britain, Norway and
Switzerland. The data variables are primarily obtained from existing web-hosted
pre-processed input data sources. The Areas dataset contains data variables that
have been standardised to ensure uniformity of the units and indices. The data
variables in the Areas dataset are also documented to safeguard the transparency
and reproducibility of the dataset.

The second step of the data processing approach is creating the Regions dataset,
which contains the aggregated spatial data of the individual regions. The regions are
defined by the spatial resolution reduction method applied and the selected coun-
tries of interest. The Regions dataset is, therefore, specific to the case study being
investigated.

A Regions dataset is used in conjunction with additional techno-economic parame-
ters and the calliope modelling framework to construct a power and heat optimisa-
tion model.

Heat sector modelling

The approach used to model the heat sector is depicted in Figure 3.2. The homogene-
ity of the input data used in the models is maximised by using the same temperature
data to calculate both the COP factor of the ASHP and the space heating demand.
As illustrated in Figure 3.2, the variation in ASHP COP and the space heating pro-
files are largely driven by air ambient temperature. As the days warm up during
the depicted week the COP values increase and the heat demand for space heating
decreases. The space heating demand in the colder months of the year makes up the
largest share of the heat demand profile. The space heating per unit profiles is gener-
ated from a generic profile that provides normalised heat demand values for a range
of ambient temperature values for different hours of the day. This generic profile
was synthesised based on the performance of a heat pump installed in München,
Germany [45]. The hot water demand profile is also generated by a generic pro-
file that normalises hourly hot water heat demand profiles for nine typical days.
Hotmaps have adjusted these generic profiles to account for the country dependent
behaviours [46]. The end-use and sector-specific per unit heat demand profiles are
multiplied by the total heat demand and their respective share factors obtained from
hotmaps.
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FIGURE 3.2: Visual description of the heat sector modelling method
used to develop the power and heat optimisation models. The NUTS
2 area representing Berlin is used as an example for the illustration.
The air-source heat pumps coefficient of performance profile and the
heat demand profile represent a period of seven days in Febraury

2011.

3.2 Case studies

The models in the two papers differ in a spatial context in terms of geographic cov-
erage and the spatial resolution reduction method applied. A summary of the case
studies is given in Table 3.1. As the focus of Paper A is to investigate the effective-
ness of the max-p regions in minimising spatial effects, several case studies with the
different spatial scope were used. There are two spatial scope categories, country
groups and individual countries.

Using a spatial scope that includes multiple countries, as is in-country groups, it is
possible to compare the models built using the max-p-regions method with those
built using the political regions method and the random-regions method. For indi-
vidual countries, multiple regions were only built using the max-p-regions method
and the random-regions method, as the political regions method will only generate
a single region.
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TABLE 3.1: The modelling frameworks, sectors and scenarios used to
analyse the impact of different spatial resolution reduction methods

on energy system models.

Paper
Modelling

Framework
Sectors

Scenarios and Case studies

Geographic coverage
Spatial scale reduction

methods applied

Paper A PyPSA Power sector

Four country groups:

Central West and

the British Isles,

South East,

and North East

Max-p-regions,

random-regions method

and political regions

method

Four individual countries:

Germany, Spain,

France and Italy

Max-p-regions and

random-regions method

Paper C Calliope
Power and

heat sector

One country group:

Germany, Norway,

Denmark, Poland, France,

Netherlands, Belgium,

Austria, Switzerland,

and the Czech Republic

Political regions method

One country: Germany

Max-p regions method

and political regions

method

Paper C focuses on demonstrating the variation in model results when different
spatial resolution reduction methods are applied, and different spatial scopes are
considered. In this demonstration, three spatial resolution reduction methods were
used. The max-p-regions method and the political regions method (at the adminis-
trative NUTS 1 level) was used to build regions within the spatial scope of Germany.
In contrast, the political regions method (at national jurisdiction NUTS 0 level) built
regions within a larger spatial scope, including Germany and nine countries with a
transmission connection with Germany.

3.3 Spatial resolution reduction methods

Spatial resolution reduction methods are used to build representative regions of the
energy system being modelled. In Paper A and Paper C, there were a total of three
spatial resolution reduction methods applied. These are the max-p-regions method,
the random-regions method, the political regions. Paper B detailed the methods
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and materials needed to formulate regions using the max-p-regions method and the
random-regions method.

The political regions method defines regions according to politically defined juris-
dictions such as national jurisdiction (NUTS 0 level) or at sub-national administra-
tive jurisdictions such as the NUTS 1 level for certain European countries. The con-
cept of the max-p-regions method is to develop a method that is targeted at min-
imising the effects of spatial resolution reduction. The max-p-regions method aims
to build regions that better characterise the areas they represent in terms of their
energy-related spatial attributes. The spatial attributes selected are population, wind
and solar resource potential, and pumped-hydro storage capacity. The population is
used as a proxy for electricity or heat consumption.

The max-p-regions method and the random-regions method use the max-p-regions
problem algorithm defined by She, Duque, and Ye [43]. A key benefit of the max-
p-regions problem algorithm is that it contains a contiguous region constraint. This
constraint ensures that all areas share at least one border with another area in the
same regions. The pysal contiguity weights function [47] is used to determine the
borders between areas. The max-p-regions method and the random-regions method
uses the heuristic solution to solve the max-p-regions problem algorithm while spec-
ifying their respective spatial attribute. The spatial attribute used by the max-p-
regions method is the energy-related attributes, while the random-regions method
uses a set of random integers representing the areas.

In addition to the contiguous regions constraint, the MILP of the max-p-regions
problem algorithm also requests a spatial attribute that defines the threshold value
that all regions must attain. The threshold value used by the max-p-regions method
and the random-regions method is the geometric area of the area. The use of geo-
metric areas as the threshold value can make the max-p-regions problem algorithm
unsolvable. The problem is unsolvable if the geometrical area of an island is lower
than the set threshold value, as the pysal contiguity weights function islands does
not assign borders with continental areas. This issue is avoided by manually assign-
ing borders to islands with their closest continental areas.

Once regions have been defined, the spatial attributes are aggregated. As the areas
in the regions differ in size, spatial attributes such as solar capacity factors, which
are mean values, are aggregated using weights proportional to the areas’ geometric
area.
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Results and discussions: Importance
of spatial context

This section provides a summary of the result of the papers presented in this disser-
tation. Key insights gained from these papers are also discussed.

4.1 Results of papers

In Paper A, the effectiveness of the max-p-regions method in minimising two effects
of spatial resolution reduction is investigated. The two effects of spatial resolution
reduction are the increase in solar and wind expansion capacity and the decrease in
transmission capacity expansion. Results show that model optimisation results from
country groups, particularly the South-East Europe country group, that had regions
built from using the max-p-regions method had on average higher transmission ca-
pacity expansion and lower solar and wind capacity expansion than optimisation
results from country groups that were built using political regions method. Op-
timisation results of models of Germany and Spain built using the max-p-regions
method showed that the max-p-regions method was an effective targeted approach
of minimising the effects of spatial resolution reduction.

Paper B compliments Paper A in that it provides a clear and detailed description
of the methodology of defining regions using the max-p-regions method and the
random-regions method. Both novel methodologies use the NUTS 2 level areas of
the European countries as the highest spatial resolution to apply the methods. The
paper shows that the max-p-regions method and random-regions method uses a
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MILP approach that is solved using the heuristic solution approach of the max-p-
regions problem. The max-p-regions method uses energy-related attributes to de-
fine regions as a targeted approach of minimising the effects of spatial resolution
reduction. Both spatial resolution reduction methods can generate as many regions
within a spatial scope as there are NUTS 2 areas within geographical coverage of
that spatial scope by varying area factor value used to calculate the minimum area
threshold value of a region.

Paper C aims to present a novel data processing approach that incorporates spa-
tial resolution reduction methods and maximises the use of existing web-hosted
databases to build sector-coupled energy system optimisation models. The result
of the paper shows how power and heat optimisation models of Germany with high
penetration of solar and wind vary significantly depending on the spatial context
of the model. The spatial context considered are the spatial scope and the spatial
resolution reduction method applied to build the regions of the model. Significant
variation in results was observed in the optimised generation capacity, transmission
capacity and storage capacity expansion results.

4.2 Discussion of results

Below key takeaways from Paper A to Paper C are discussed.

4.2.1 Data processing in energy system modelling

Data processing is an important step in energy system optimisation modelling that,
among other functions, organises the input data within a standardised structure that
can be used to formulate an energy system model.

The aggregation or disaggregation of input data used to define the regions of a
model is also a component of the data processing modelling step. As discussed
and demonstrated in Paper A and Paper C, the spatial resolution reduction applied
when building a model affects the optimisation results. Therefore the data process-
ing approach used by an energy system model must be clearly described to allow
for a proper understanding of the model results.
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An objective of the novel data processing approach presented in Paper C is to max-
imise the use of existing dataset that are making documented pre-processed input
data freely available. These datasets, such as the ENSPRESO database, offer various
scenarios of capacity expansion areas in the NUTS 2 areas in Europe.

The scenarios define the eligible areas for wind and solar PV, which are multiplied
by their respective power density to calculate the capacity expansion areas. Much of
the work that generates these scenarios is the analysis of large georeferenced images
or vectors used to create scenarios based on assumptions such as the distance of
new installations from certain existing infrastructures. The analysis of such sizeable
georeferenced information can be cumbersome and, in some cases, require sufficient
computational capacity. The use of these scenarios thus avoids duplication of work,
resulting in loss of valuable time that can be invested in other components of energy
system modelling.

In the European energy modelling context, certain datasets, such as the ENSPRESO
dataset, do not provide pre-processed data for Switzerland or Norway in their sce-
narios. This makes it more challenging to manage the homogeneity of the input data
used in the model if complementary information specific to these two countries are
needed to fill the gap.

FIGURE 4.1: The figures show the ratio of potential PV and onshore
wind capacity per capita in the NUTS 2 areas.
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FIGURE 4.2: The figures show the ratio of offshore wind capacity per
capita in the NUTS 2 areas.

The data processing approach presented can also be used to better comprehend the
spatial and temporal relationship between the energy demand and VRE generation
potential. Figure 4.1 shows the ratio of solar PV and onshore wind potential to the
population in the NUTS 2 areas whereas 4.2 shows the same ratio per capita ratio for
offshore wind. As described in Paper C the data on available area is primarily taken
from the ENSPRESO dataset. The scenario in the dataset describing the potential
calculation is described in Table 4.1. In Paper A, the power density of 12 MW/km2

for solar PV is significantly lower than the power density of 170 MW/km2 for solar
PV in Paper C seen in Table 4.1. The power density value used in Paper C is closer to
current literature values. The results from Enevoldsen and Jacobson [48] show that
the power density values used in both Paper A and Paper C are more on the con-
servative side for onshore and offshore wind. The mean power densities of existing
onshore and offshore wind farms in Europe indicated by Enevoldsen and Jacobson
[48] are 19.8 MW/km2 and 7.2 MW/km2, respectively.
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TABLE 4.1: Description of the assumptions used to determine the po-
tential of solar PV, onshore wind, and offshore wind.

Solar PV Onshore wind Offhore wind

Rooftop PV Utility

Restriction

Areas included:

Industrial and

residential

roofs and facades

Areas included:

Natural and

non-agricultural

areas

Areas excluded:

Water bodies,

industry, forest,

protected areas

..etc

Areas excluded:

Depth >60m,

shipping density >

5,000 vessels

per year

Setback distance:

400 m

from settlement

Setback distance:

12 NM from shore

and 2 NM from

shipping lanes,

gas and oil pipelines,

gas wells,

submarine cables

Power density

(MW/km2)
170 5 5.36

4.2.2 The impact of spatial scale reduction methods that consider energy-
related spatial attributes

The trackability of energy system optimisation models, especially for models with
large spatial scopes, is limited by the spatio-temporal resolution of the model. The
development of the max-p-regions method resulted from the gap in available spatial
resolution methods that help reduce the computational demand of solving an energy
system optimisation model while minimising the effects of spatial scale reduction.

The concept of the max-p-regions method proposed in Paper A and described in
detail in Paper B is a regionalisation method that aims to generate a better repre-
sentation of areas in energy system models. By taking an approach to regionalise
areas into regions that better represent their areas, it is possible to mitigate spatial
resolution reduction effects. For example, the inclusion of solar and wind resource
potential as one of the three energy-related spatial resolution attributes used in the
max-p-regions allows the regionalisation method to join areas with good solar and
wind sites in similar regions. Good solar or wind sites may be regions with high
resource wind or solar resource availability, high installation capacity potential or
a combination of both. By forming regions of high solar and wind resource po-
tential, the model optimisation maximises the use of these areas. These areas can
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then potentially become the energy-generating regions of the energy system. An-
other region may contain areas with higher population density, which could mean
that these areas have less space for solar and wind energy production, resulting in
higher transmission capacity needs to areas with higher energy production capac-
ity. These regions can be identified for Germany, with the North of Germany having
high wind resource potential while the south has a high demand for electricity and
heat. As shown in Paper A, the max-p-regions method was efficient in minimising
the spatial effects for the optimisation models simulated for Germany as it could
identify these two types.

Therefore, the approach of the max-p-regions method builds energy systems that
aim to build an energy system model that has a better understanding of the energy-
related attributes of the areas it is simulating. By allowing energy system models to
comprehend better the spatial aspects of the areas being modelled, these models will
be more helpful in identifying areas that are better suited for specific energy-related
activities.

4.3 Summarised contribution of the dissertation

This thesis contributes to improving energy modelling tools and the comprehension
of how the spatial context of energy system models can impact optimisation results.
Notably, this dissertation aims to establish methods that use spatial data to build
models that are better targeted to the spatial context of the model and the problems
being investigated. The application of regionalisation methods within the field of
energy system optimisation modelling expands our understanding in terms of the
possibilities in how energy systems can be spatially optimised to maximise the ben-
efits that certain energy landscapes have to offer. These benefits could be good solar
and wind resource potential or good electricity storage potential. The versatility of
the data processing approach in defining regions using different spatial resolution
methods allows for the construction of energy system models with a more targeted
spatial specification. Although much of the work presented is technical, the results
and advancement made in energy system modelling can have real-world effects. In
the past, most large scale energy system models have used political boundaries to
define regions. This approach can limit the energy-related policy discussions to these
political boundaries. Using alternative methods of defining regions could present
more pathways towards a sustainable energy system transition that is not limited to
the political boundaries and more targeted to the specifications of the investigated
areas. These alternative pathways can contribute and potentially improve energy-
related policy discussions.
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Conclusion

To improve the use of spatial data to define regions of energy system models, this
dissertation:

• Presented a novel application of the max-p regions problem algorithm to gen-
erate a targeted method of reducing the spatial resolution of energy system
models called the max-p regions method.

• Did a comparative analysis of how effective the max-p regions method was in
minimising the effects of spatial resolution reduction.

• Presented a novel data-processing approach to build power and heat optimi-
sation models for European countries with integrated spatial resolution reduc-
tion methods.

• Demonstrated the effects of spatial scale and choice of spatial resolution reduc-
tion methods on the results of power and heat optimisation models.

The comparative analysis conducted in Paper A shows that the max-p regions method
can be used as a targeted method of minimising the effects of spatial resolution re-
duction. The max-p regions method can also be effective at minimising the effects
of spatial resolution reduction when applied at national or at sub-continental geo-
graphical scale. The max-p regions are particularly effective when applied to case
studies with significant distribution variations in spatial energy-related attributes
such as energy generation potential from wind and solar.



36 Chapter 5. Conclusion

From the results of case studies investigated in Paper A and Paper C, it can be con-
cluded that the choice of spatial scale and spatial resolution reduction method can
impact the results of power and heat optimisation models.

By developing novel methods of defining regions in energy system modelling and
analysing the impacts of choice of spatial resolution reduction, it can be concluded
that more importance must be placed on the use of spatial data in energy system
modelling. The choice of regions can be tailored to the case study depending on
spatial attributes’ distribution to capture particular technology deployments’ sensi-
tivities better. The improved understanding of the role of spatial data and their im-
pacts on energy system models will help reduce the uncertainties in model results
used to inform decision-makers.
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Research outlook

The work in this dissertation focuses on the techno-economic aspect of use of spa-
tial data to inform energy system models. At some level there are also some socio-
ecological aspects that are considered such as when defining the space available for
deployment of solar and wind technologies. These socio-ecological aspects consid-
ered ensure that VREs are not deployed in areas that have been allocated towards
nature conservation or areas that have existing infrastructures such as roads and
airports.

More can be done to integrate energy-related socio-ecological aspects into energy
system models. For example, Christ et al. [49] constrained the deployment of on-
shore wind to a defined balanced burden level in an energy system model of Ger-
many to integrate socio-ecological factors of onshore wind. The methodology used
to determine the balanced burden level considered the population density in the
German districts and the available area for deployment of onshore wind. By in-
cluding factors such as the burden level of certain technologies in the max-p regions
method it may be possible to get a better representation of regions based on their
suitability for deployment of particular technologies. Another socio-ecological as-
pect which could be improved and better integrated in energy system models is the
determination of offshore area available for the deployment of offshore wind. For
example the cost-effectiveness of offshore wind could be improved by the multi-use
of offshore areas such as presented by Gusatu et al. [50]. An example of multi-use of
offshore areas is the combination of offshore wind farms areas and fisheries activities
which would require stakeholder engagement.

The proposed data processing method in Paper C offers an approach which is suited
for the integration of new spatial attributes in datasets and spatial resolution reduc-
tion methods. These additional spatial attributes could also consider socio-ecological
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or even political aspects which can be quantified and which may affect energy sys-
tem models.

Another area of potential future research in the area of use of spatial data is to im-
prove energy system models by defining regions based on the spatial variability
of power output of VREs. Research has shown that the strategical spatial deploy-
ment of wind power can offer cross-border balancing potential from from national
to continental spatial scales [35, 36, 51]. Therefore, by considering spatial variability
of VREs when defining regions of energy system models, the strategic spatial de-
ployment could offer a more cost effective option in comparison to other flexibility
options to manage the variability of VREs.
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reduction on power system models
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Abstract
The spatial resolution of energy system optimisation models (ESOMs) is often com-
promised for computational performance. Reducing the spatial resolution impacts
the least-cost solutions when optimising the generation capacity and transmission
capacity of the ESOMs with high penetration of variable renewable energy sources.
Previous studies show that the two main effects of spatial resolution reduction are
the increase in solar and wind expansion capacity and the decrease in transmission
capacity expansion. This paper introduces a targeted method of defining regions
during spatial scale reduction by using the max-p-regions clustering algorithm to
aggregate similar areas into regions. The attributes used to determine the similarity
between areas in the max-p-regions method are population; wind and solar resource
potential; and pumped-hydro storage capacity. Two alternative spatial resolution
reduction methods were used to compare how the effects of spatial resolution im-
pacted the optimisation results of the ESOMs. Evaluation results for three country
groups showed that using the max-p-regions method to define regions caused the
two effects of spatial resolution reduction to be generally lower than using national
jurisdictions. For the case studies Germany and Spain, the results showed that the
max-p-regions method identified sets of regions, which were less impacted by the
two effects of spatial resolution reduction.
Keywords: Spatial analysis, Transmission expansion, Energy system modelling, Re-
newables
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A.1 Introduction and state of the art

There is high confidence that electricity will need to take up a larger share of the
final energy demand by 2050 to avoid a 1.5�C warming of the earth. The electricity
will also have to be generated primarily by renewable energy technologies [1]. One
critical consideration for minimising the costs associated with the energy system
transition is the placement of variable renewable energy resources (VRE), including
solar and wind energy technologies. Because local weather conditions dictate their
performance, VRE can create bottlenecks when transmitting the electricity gener-
ated to regions where it is to be consumed or stored. Energy system optimisation
models (ESOMs) are used to ensure the efficient matching of supply and demand of
different VREs at a relevant spatio-temporal scale. Importantly, an increase in the
spatiotemporal resolution of ESOMs leads to an increase in the computational de-
mand for solving the investment optimisation of these models [2]. [3] identified that
balancing the spatial and temporal resolution with data availability and computa-
tional tractability as one of the main challenges facing large bottom-up optimisation
models.

Several methods are used by the modelling community to maintain computational
tractability of ESOMs. Temporally, models such as the JRC-EU-TIMES model [4] cre-
ated time slices that represent intra-annual variations in demand and supply of the
optimisation problem. This method is common for modelling tools that have multi-
year modelling horizons, including LEAP [5] and OSeMOSYS [6]. Other methods,
for instance, EnergyPlan, did not use time-slices but limited the time horizon of the
model to one year [7]. Some of these models achieved tractability by compromising
on the spatial resolution of the model. [2, 8, 9] discuss how the choice in spatial
resolution impact the results of large-scale energy system models with high pene-
trations of renewables. [8] and [9] focuses on the United States (US) power system,
while [2] concentrates on the European power system. In all three studies, decreas-
ing the spatial resolutions of the ESOMs produces higher, sub-optimal, total system
costs. The oversizing of wind and solar capacity contributed to an increase in total
cost. [2] found that the increase in spatial detail increases the transmission line cost,
as there is an increase in intra-country bottlenecks that separate load centres from
areas with good wind and solar sites. [8] compared the impacts of temporal and
spatial resolution reduction on the total optimised investment cost. The comparison
showed that a reduction in spatial resolution has a greater impact on the total min-
imised system cost than the impact of temporal resolution reduction. At a smaller
geographical scale, [10] analysed the impact of different levels of geographical dis-
aggregation of wind and solar on an energy system model of Austria. The study
argued that the spatial resolution representation of renewables has a greater effect
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on countries where differences in performance of renewables are more pronounced
[10].

With the increased availability of higher spatial resolution data, new methods are
emerging and changing how ESOMs regions are defined. [8] and [10] identified and
created regions that are location and technology-specific—differing in their avail-
ability data and cost parameters attributed. Another method [2], used georeferenced
electrical grid data and clustering algorithms to define regions. Specifically, they
used k-means clustering and power system attributes at electrical nodes to define
the spatial resolution of the model [2]. The benefit this method is that it maintains
the major transmission corridors, although it requires access to an extensive, in this
case, European-wide electrical system dataset. Similarly, two other approaches, [11]
and [12], used clustering algorithms to define regions but instead applied it to ge-
ographical attributes that can reflect wind and solar resource potential. [11] iden-
tified similar regions using several characteristics that are linked to electricity con-
sumption and generation potentials of regions. This approach aimed at identifying
regions most likely to exchange electricity and thus potentially distinguishing key
transmission capacity needs. The k-means clustering algorithm in [11] used energy-
related attributes to identify similar regions. These energy-related attributes include
wind speed, solar irradiation, population, hydro-power plants capacity and agri-
cultural areas and natural grasslands. Also, [11] amended the clusters created for
European countries after consultation with Transmission System Operators (TSOs)
that advised on other criteria’s that required the clusters to be adjusted. Although
[11] and [12] both created regions based on the similarities between areas within
the same regions, there are still several key distinctions between their clustering ap-
proaches. Firstly, [11] used several attributes to identify one set of regions, while [12]
used only one spatial attribute as input to the clustering algorithm. Secondly, [12]
used both the max-p-regions and the k-means algorithm in the clustering process.
The max-p-regions algorithm appears to be less commonly used in the energy mod-
elling field. However, it has one key advantage over to the k-means algorithm, in
that it guarantees spatial contiguity of the regions. All areas in a spatially contigu-
ous region share at least one border with another area in the same region. Results
from [12] showed that the use of national jurisdictions to define regions, leads to
higher generation capacity needs, compared using similarities between areas based
on either solar, wind or energy demand spatial attributes.

By expanding on the methods described in [11] and [12], this paper presents a tar-
geted approach to define regions to reduce the spatial resolution of energy systems.
The objective of the approach, referred to as the max-p-regions method, is to cre-
ate regions that are similar in their electricity consumption, generation and storage
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capabilities during spatial resolution reduction. The max-p-regions method is com-
pared with two other spatial resolution reduction methods based on how it is af-
fected by the recognised effects of spatial resolution reduction on ESOMs. The two
effects of spatial resolution reduction assessed are the increase in solar and wind
capacities [2, 8, 10] and the reduction in transmission capacity expansion [2, 8].

The introduction is followed by Section A.2, which describes the max-p-regions
method and the alternative methods used to define regions during spatial resolu-
tion reduction. The first spatial resolution reduction method used is a non-targeted
approach which generates random sets of regions. The second method defines re-
gions based on the national jurisdiction of areas. The ESOM structure and the input
data used to evaluate the effects of spatial resolution reduction is elaborated upon
in Section A.3. In Section A.4, the different spatial resolution reduction methods
are evaluated on how they impact the effects of spatial resolution reduction of ES-
OMs. The evaluation is carried out on four individual European countries and three
groups of European countries. The results of the evaluation are summarised and
discussed in Section A.5.

A.2 Spatial resolution reduction methods

A.2.1 Max-p-regions method

The max-p-regions algorithm, presented in [13], clusters areas into an unknown
number of regions by minimising an objective function of a mixed integer program-
ming (MIP) model. The objective function of the algorithm aims to minimise dis-
similarities between areas in the same region while also maximising the number of
regions generated. The user selects the attributes of the areas used to define their het-
erogeneity. The MIP model gives precedence of maximising the number of regions
over reducing total heterogeneity. The objective function is subject to multiple con-
straints, including the minimum threshold constraint, which ensures that all regions
surpass a threshold of a spatially extensive attribute. The max-p-regions problem
algorithm also uses an initial seed value to select which areas are selected to begin
the clustering process, thus varying this seed value can alter the regions created.

As described in more detail in Section A.3.2, the input data is first aggregated to
Nomenclature of territorial units for statistics level 2 (NUTS 2) areas. Depending
on the European country, a NUTS 2 area jurisdiction can include the whole coun-
try or only a sub-national economic territory. The max-p-regions function in the
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open-source pysal python package [14] is used to apply the max-p-regions problem
algorithm on these NUTS 2 areas. When using the max-p-regions function, three
energy-related attributes of the regions determine the dissimilarities between areas
and regions. These attributes are population; wind and solar resource potential; and
pumped-hydro storage capacity. The population is the proxy used for energy de-
mand. Existing pumped hydro storage capacity is used to measure a regions ability
to store large amounts of energy. Solar and wind energy potential is the indicator
of the amount of solar and wind energy a region can generate. Appendix A.A illus-
trates the spatial distribution of these three attributes across NUTS 2 areas of country
groups. Appendix A.B illustrates the same attributes of NUTS 2 areas of Germany,
Spain, France and Italy.

Two sets of matrices are used in the pysal max-p function to capture spatial conti-
guity between areas. The first matrix contains a list of neighbouring areas for all
areas, whereas the second matrix sets a weighting value to each area in the lists.
Two areas are neighbours if they share at least one vertex. The spatially extensive
attribute used in the max-p-regions function to define the minimum threshold value
that each region should surpass is the area of the NUTS 2 areas. The median area of
the NUTS 2 areas is multiplied with a factor to determine the minimum threshold
value. By adjusting this factor, it is possible to either increase or decrease the number
of regions that will be created by the max-p-regions function.

For countries with islands, after a certain minimum threshold area value, the objec-
tive function of the MIP model is not solvable. This is because there are NUTS 2 areas
that are islands and they do not share vertexes with any of the continental NUTS 2
areas. This issue was avoided by manually grouping islands with the nearest con-
tinental area. Appendix A.C illustrates the grouped islands and continental areas.
The parameters of the areas in the same group or region were aggregated to obtain a
single representative set of parameters. Parameters that are spatial average values,
such as per unit maximum power output of wind turbine generators (WTGs), pho-
tovoltaic systems (PV) and run-of-river, were assigned weights that are proportional
to the area they are representing during aggregation. All other parameters of the
NUTS areas were summed together during aggregation. Regions created using the
max-p-regions method is hereafter referred to as max-p-regions.

A.2.2 The random-regions method

The random-regions clustering method defines regions using a non-targeted ap-
proach while maintaining spatial contiguity of the region. It uses the same pysal
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max-p function used by the max-p-regions method. The attributes given to the func-
tion to define heterogeneity between regions are random values between 0 and 1. A
predefined initial seed parameter and a python package called numpy [15] gener-
ated the random values. The random-regions method can create potentially all pos-
sible clusters sets of regions, within the constraints of the max-p function. Similar
to the max-p-regions, the number of regions generated by the random-regions de-
pends on the minimum threshold value. Regions created using the random-regions
method is hereafter referred to as random regions.

A.2.3 The random-regions method

The political-regions method aggregates spatial data of NUTS 2 areas based on the
national jurisdiction it belongs to. Energy system models commonly use this spatial
aggregation method when the model encompasses more than one country. Regions
created using the political-regions method is hereafter referred to as political regions.
Fig. A.1 gives an illustration of how the different spatial resolution methods define
the regions.

FIGURE A.1: A visual example of how the a) max-p-regions, b)
random-regions and c) political-regions methods are used to create
different sets of regions from the areas of some countries located in

the South-East of Europe.
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A.3 Power system optimisation model and input data

A.3.1 Model structure

Power system optimisation models are the ESOMs used to evaluate the spatial res-
olution reduction methods. The possible direction of energy flows between compo-
nents in the same region are displayed in Fig. A.2. The energy carriers in the model
are electricity and gas. Although both energy carriers can travel between regions,
electricity transmission is limited to the capacity of the lines between regions. The
power system optimisation models are modelled using the PyPSA framework [16].
The objective function of the linear optimisation used to minimise the investment
and dispatch cost of the power system, for a period of one year and a time resolu-
tion of 3 h, is given by

min
Gn,s,Fl ,gn,s,t

[Â
n,s

cn,s · Gn,s + Â
l

cl · Fl + Â
n,s,t

on,s · gn,s,t] (A.1)

FIGURE A.2: Structure of the power system optimisation models used
to capture the effects of spatial resolution reduction. The arrows show

the direction of possible energy flow between components.
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The investment costs include the annualised costs cn,s for the installed capacity of
the generation and storage technologies Gn,s and the annualised investment costs
cl of increasing the transmission lines capacity Fl . The operational costs are the
variable costs on,s occurred, at each time interval t, for energy unit dispatched for
generation or storage gn,s,t. Constraints ensure the balance of power at each node
and instance; the dispatch of energy is not greater than the installed capacity; the
weather-dependent technologies dispatch per the limits of the weather conditions.
[16] gives a detailed description of the constraints applied to the objective function of
the power system optimisation models. The weather-dependent technologies in this
model are onshore and offshore wind turbines, PV systems and run-of-river plants.
The optimisation assumes: perfect competition; perfect foresight; and the energy
demand is inelastic. The installed capacity of certain technologies can be increased
at a cost. These include onshore and offshore wind, PV systems, gas turbines, bat-
tery packs and hydrogen storage. Space availability limits the increase in capacity
of PV systems and onshore and offshore wind. The methodology to calculate the
maximum allowable increase in installed capacity is described in Section A.3.2.

A.3.2 Input data

This section will elaborate on the input data used in the model. All input data have
been aggregated to represent the NUTS 2 areas. The NUTS 2016 geometry (1:10
Million scale) and standardised ID codes of NUTS 2 areas have been extracted from
the Eurostat database [17].

The European Network of Transmission System Operators (ENTSO-E) transparency
platform [18] provides hourly power profiles for European countries. These country-
specific profiles are used in combination with rasterized population data [19] to ob-
tain profiles for individual NUTS 2 areas. The population data is used to obtain
fraction values of population distribution, for each area, which are assumed to align
to load distribution. These fraction values are factored to the hourly profiles to ob-
tain profiles for each area. The basis year chosen for the load profile is 2010. The
aggregated installed capacity of hydropower (run-of-river and reservoir) and gas
power plants within each area were extracted from the Global Power Plant Database
(GPPD) [20]. The weather-dependent power output profiles of wind turbines and
PV systems are given to the model as normalised maximum power output profiles
extracted from renewables.ninja platform [21]. The maximum potential yield pro-
files of onshore wind and PV systems are provided at NUTS 2 level whereas for off-
shore wind they are only country-specific. The hydropower plant power dispatch is
also limited by daily inflow, which is given for each country in [22]. The inflow data



A.3. Power system optimisation model and input data 55

for the year 2010 was used to model the allowable hydro plant maximum dispatch
profiles.

During the power system optimisation, wind and PV systems can increase their in-
stalled capacity at a cost. To calculate the maximum allowable capacity increase,
the sum of the areas which are eligible for the installation of these VREs have been
estimated. This is undertaken using the Geospatial Land Availability for Energy
Systems framework (GLAES)[23]. GLAES eliminates non-eligible areas from the to-
tal area being considered to identify the remaining eligible areas. Non-eligible land
areas are areas that have defined utility purposes, such as settlement proximity, pro-
tected parks and power lines, that disqualifies them from the installation of VREs.
Distance parameters are used to determine the buffer zones that are also considered
as non-eligible areas. The utility purposes considered and set distance parameters
used for this study to identify eligible land areas for onshore wind or PV is defined
in the med scenario from [23]. During optimisation of the power system model in-
vestment, the identified eligible land areas can only be used once by either onshore
wind or PV systems. A density of 4 MW/km2 and 12 MW/km2 is assumed for on-
shore wind farms and PV farms respectively. The GLAES tool is also used to identify
the eligible sea area for offshore wind within exclusive economic zones (EEZ) of the
European countries. The criteria for non-eligible areas are: areas listed in the World
Database on Protected Areas (May 2019 version) [23]; areas with depths greater than
60 m; areas wherein 2017 ships were recorded to have spent in average more than 1
h in a square km per month; areas within 12 nautical miles of the coast; areas within
1 nautical mile of gas and oil pipelines [24]. Only 30% of the remaining eligible area
is considered available for wind farms, to account for other marine time uses within
the EEZ. An offshore wind farm density of 5.36 MW/km2 is used to calculate the to-
tal maximum allowable wind farm installed capacity. This capacity value is shared
proportionally amongst areas with a coastal area that is at least a 5th percentile of
the total coastal area of the country.

In the model, electricity can be generated by combusting biogas or natural gas in
gas-fired power plants identified in the GPPD. Both resources are limited in quantity
with a respective annual budget. The annual budget of natural gas is derived from
an allowable net C02 emission budget of the power sector model. The total natural
gas emission budget is 5% of the CO2 equivalent emissions of the power sector in
1990 of EU28 plus Norway and Switzerland. The sum in CO2 equivalent emissions
of the power sector in 1990 for these countries is taken to be 1360 megatonnes of CO2

(MtCO2) [25] and the natural gas emissions factor as 0.19 tCO2/MWhth. The total
budget of natural gas is then calculated to be 358 TWhth/a. The total annual budget
of biogas allocated for these European countries is limited by space availability and
is assumed to be a total of 63 TWhel [26]. Both the natural gas and biogas budget is



56 Appendix A. Minimising the effects of spatial scale reduction on power system models

TABLE A.1: The financial and technical parameters of energy storage
technologies used in the optimisation of power system models.

Technol-

ogy Type

Investment Cost

Operation

and Mainten-

ance Cost
Effici-

ency

Lifetime
Maxi-

mum

hoursCharg-

ing unit

Dischar-

ging unit

Storage

unit
Fixed Variable

e/kW e/kW e/kW e/kW e/kWh years hours

PHS – – – 11 0.05 0.76 – 6

Battery 0 80 855 1.6 0 0.95 20 6

Hydrogen 645 727 450 10.8 0.3 0.41 30 128

then proportionally distributed to each country based on their population.

The electrical grid is modelled as a high voltage alternative current (HVAC) network.
It is assumed that the HVAC network is operating at 380 kV. The electric buses have
the same geographical coordinates of the centroid of the regions, and the border-
ing regions are interconnected using two HVAC lines. The lines have a resistance
of 0.059 W/km and installed current-carrying capacity of 960 A. In addition to the
HVAC network, there are high voltage direct current links (HVDC) that link certain
NUTS 2 areas together. It is assumed that these DC links operate at an efficiency
of 96%. In Appendix A.E, both the existing and planned DC links have been sum-
marised from various references. It is also assumed that the DC links and the HVAC
lines installed carrying capacity can be extended at the cost of 600 e/MWkm.

The rechargeable energy storage technologies in the model are pumped hydro stor-
age (PHS), batteries and hydrogen. The location and storage capacity of PHS plants
that are either labelled as pure PHS or reservoir based hydropower plants from the
JRC hydropower plants database [27] was used in the model. In contrast to PHS, the
storage capacities of battery storage and hydrogen can be increased at a cost. The
financial and technical details of the storage technologies are provided in Table A.1
taken from [28] for the year 2020. The capital cost for increasing the installed capac-
ity of storages are annualised sum of investment cost plus the fixed operation and
maintenance cost. The financial and technical parameters for generation technolo-
gies assumed are projected values for 2020 taken from [29] and are given in Table
A.2 .
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TABLE A.2: The financial and technical parameters of the energy gen-
eration technologies used in the optimisation of power system model.
The connections between applying the spatial resolution reductions
methods and creating the optimisation models is illustrated in Ap-

pendix A.D.

Technology Type
Investment Cost

Operation and Maintenance Cost

Efficiency
Lifetime

Fixed Variable

e/kW e/kW/a e/MWh years

Hydro NA 0.074 15 0.90 80

Gas 495 6.5 49 0.46 25

Solar PV 830 8 0 1 20

Wind onshore 1120 14 1.5 1 27

Wind Offshore 2130 40.6 3 1 27

TABLE A.3: Groups of European countries used as case studies.

No. Name Countries
Number of

NUTS 2 areas

Mean area

per NUTS 2

areas (km2)

1
Central West

and British Isles

Great Britain, Ireland, Belgium,

Spain, France, Portugal,

Switzerland, Italy, Luxembourg

123 14,735

2 South East

Czech Republic, Slovakia,

Greece, Hungary, Bulgaria,

Romania, Croatia, Austria

53 38,215

3 North East

Denmark, Germany, Poland,

Estonia, Latvia, Lithuania,

Finland, Sweden, Norway,

Netherlands

94 8755

A.4 Evaluation

A.4.1 Country groups

In this section, the three spatial resolution reductions methods, described in Section
A.2, are applied to the NUTS 2 areas of three groups of European countries. These
country groups are described in A.3.
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The political-regions method defines the same number of regions as there are coun-
tries in the group. To standardise the spatial resolution reduction methods, the se-
lected minimum threshold values, created the same number of regions as the num-
ber of countries in the country groups. As mentioned in Section A.2, regions defined
by the max-p-regions method and random-regions method can vary depending on
the initial seed value used. Thus, the initial seed values were varied to create three
sets of max-p-regions and three sets of random regions to capture this potential vari-
ation. With the addition of one set of political regions, there were a total of seven sets
of regions created per country group. Each set of region formulated one power sys-
tem model, which was then optimised.

FIGURE A.3: The sums of the solar and wind capacity expansions
obtained from the optimisation results of the regions sets, given in

percentage of the lowest value in the same country group.

Fig. A.3 plots the sum of solar and wind generation capacity expansion from the
optimisation results of each power system model. The sum values are categorised
according to the spatial resolution reduction method used and the respective coun-
try group. The solar and wind capacity expansion values are given in percentage of
the lowest value obtained from the results of the optimisation of the power system
models in the same country group [1]. The lowest value is the optimisation model
that was relatively least impacted by the effect of spatial resolution reduction on so-
lar and wind expansion capacity. The transmission capacity expansion values are
given in percentage of the highest value obtained for the spatial resolution reduc-
tion methods within the same country group. The highest value is the optimisation
model that was relatively least impacted by the effect of spatial resolution reduction
on transmission line expansion capacity.
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Fig. A.3 shows that in the case of the South East and North East country groups, ap-
plying the max-p-regions method resulted in the solar and wind capacity expansion
values being lower than the values from the political region. Particularly the re-
sults from the South East region show the political regions value being 13% greater
than the lowest value obtained from using the max-p-regions method. In the case
of the results from the Central West and the British Isles country group, the max-p-
regions method did not identify a set of regions which generate a lower solar and
wind expansion value than that of the political-regions method. The greatest differ-
ence between the values obtained from this country group, including those obtained
from the random regions, does not exceed 7%. This difference is lower than that of
the other country groups, potentially indicating less flexibility in the formation of re-
gions that could generate lower solar and wind expansion values. The results from
the figure also show that the values from random regions can range from the low-
est and highest solar and wind expansion values. Relatively, the difference between
the values generated by max-p-regions is smaller compare to the difference between
values generated by the random regions.

The transmission line capacity expansion values from the optimisation results are
plotted in Fig. A.4. For all country groups, there is a max-p-region transmission line
capacity expansion value which is greater than the value from the political regions.
Particularly in the South East country group, the political region value is less than
half the value of the highest value obtained from the max-p-regions method. In
general, the results from the country groups indicate that the use of max-p-regions
can define regions of a power system optimisation model that is less affected by
the effects spatial resolution reduction in comparison to the use of political regions
method. Particularly in the case of the South East country group, the results indicate
that the max-p-regions are on average less affected by the effects of spatial resolution
reduction than the random regions. The exercise shows that the range of values
obtained from using the random-regions method is on most occasions greater than
the max-p-regions method and encompasses the values obtained from the political-
regions method.

A.4.2 Individual countries

In this section, the max-p-regions method and the random-regions method are eval-
uated on Germany, Spain, France and Italy. The evaluation procedure for each coun-
try begins by running both spatial resolution methods using the same minimum
threshold area value. In most cases, both generated the same number of regions. If
their sum of regions generated was less than ten but greater than two, a power sys-
tem optimisation was conducted. The upper limit of the number regions per power
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FIGURE A.4: The sums of the transmission line capacity expansions
obtained from the optimisation results of the regions sets, given in

percentage of the highest value in the same country group.

system was set to minimise the computational hours of the exercise. Whereas, the
lower limit is the expected minimum number of regions types classified with the
max-p-regions method.

The minimum threshold value was altered to create power system models with a
different number of regions, for both spatial resolution reduction methods. As dis-
cussed in Section 2, the initial seed value used can impact how the regions are de-
fined. Thus, the spatial resolution was conducted three times with different seed
values, for each spatial resolution reduction method, to give a reasonable statistical
representation of the variation in resulting regions. The sum of the solar and wind
capacity expansion and transmission capacity expansion values, from the optimisa-
tion results, have been plotted in Fig. A.5. The same approach used in Fig. A.3, Fig.
A.4 is used in Fig. A.5 to evaluate how the effects of spatial resolution reduction
impact the optimisation results of the individual sets of regions.

The result for Germany and Italy (Fig. A.5) shows that on average, the max-p-
regions generated lower solar and wind capacity expansion values and higher trans-
mission expansion values than the random regions. In the case of Germany, the
highest three number of regions, 7 to 9, show similar results for both spatial reso-
lution reduction effects. There is a more pronounced difference between the results
of the number of regions 6 and 7. Values for Italy display the same trends, where
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FIGURE A.5: The sums of the solar and wind capacity expansion and
transmission capacity expansion values are given in percentage of the
highest and lowest value respectively. These percentage values are
from the optimisation results of power systems of Germany, Spain,
France and Italy, after multiple spatial resolution reduction, using

max-p-regions and random-regions method.

the highest four number of regions have similar results. However, there is a clear
difference between the values of the number of regions 5 and 6. This observation
could indicate that during spatial resolution reduction, certain incremental changes
to the magnitude of spatial resolution selected could have greater impacts on the re-
sults than others. The average values from Italy and France do not indicate any clear
difference between the optimisation results of the max-p-regions and the random re-
gions. In general, there are two clear trends shown in Fig. A.5. First, the solar and
wind expansion capacity values increase with the decrease in the number of regions.
Secondly, the transmission capacity expansion values decrease with the decrease in
the number of regions. Both trends support the assumptions made about the effects
of spatial resolution reduction on ESOMs.

A.5 Discussions and conclusions

This paper presents a targeted approach to define regions during spatial resolution
reduction called the max-p-regions method. The max-p-regions method clustered
areas into regions based on their similarity in terms of their electricity consumption,
solar and wind generation potential and energy storage capabilities. The regions
generated by the max-p-regions method were compared with two other spatial res-
olution reduction methods. A comparative evaluation was conducted to compare
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the impacts of the spatial resolution reduction methods on energy system optimisa-
tion models.

Results from the comparative evaluation on country groups showed that the use of
the max-p-regions method to define regions resulted in the optimisation results of
the ESOMs to be less affected by the effects of spatial resolution reduction in com-
parison to using national jurisdiction to define regions. Particularly for the group
of countries located in the South Eastern region of Europe, the set of regions gen-
erated by the max-p-regions method had on average less solar and wind capacity
expansion and higher transmission capacity expansion than the other two spatial
resolution reduction methods. In the case of Germany and Spain, the max-p-regions
method was more effective in identifying sets of regions, which were less impacted
by the two recognised effects of spatial resolution reduction, in comparison to using
the non-targeted random approach. In contrast, the results did not indicate any ben-
efits to using the max-p-regions method in comparison to the non-targeted random
approach when applied to France and Italy.

Ideally, the optimisation results of the power system models before applying the
spatial resolution reduction methods would be used as the reference to investigate
the effectiveness of the max-p-regions at minimising the spatial resolution effects
in comparison to the other methods. Unfortunately, computational limitations did
not allow for this ideal method of evaluation. The alternative approach used in this
study was to use observations made by previous studies as indicators to measure
the effects of spatial resolution reduction. The observations made from varying the
spatial resolution of the ESOMs of the individual countries supported the alternative
approach undertaken. These observations showed that the solar and wind capacity
expansion increases and the transmission capacity expansion decreases as the spatial
resolution of ESOMs are reduced.

In conclusion, the effectiveness of using the max-p-regions method to minimise the
effects of spatial resolution reduction on ESOMs appears to be specific to the spa-
tial scope. Future studies could investigate what characteristics of the spatial scope
impact the effectiveness of the max-p-regions method. It would be interesting to
examine whether the max-p-regions method could be improved or adjusted to take
into account the specificity of the spatial scope being analysed. One possible im-
provement would be to use a different attribute to determine the minimum thresh-
old value of the max-p-regions method.
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A.A Distribution of the spatial attributes used in the max-
p-regions method across the Nomenclature of territorial
units for statistics level 2 (NUTS 2) for country groups,
North East, Central West and British Isles, and South
East
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A.B Distribution of the spatial attributes used in the max-
p-regions method across the Nomenclature of territorial
units for statistics level 2 (NUTS 2) for, Germany, Spain,
France and Italy. For Italy the island NUTS 2 areas of
Sardinia and Sicily is grouped with the Calabria area,
such that the values represented for each area represents
the values of the grouped area
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A.C Graphical illustration of countries that have island NUTS
2 areas that are grouped with a continental NUTS 2 area



A.D. Flow diagram showing the connections between the different processes used to build
the power system optimisation models
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A.D Flow diagram showing the connections between the dif-
ferent processes used to build the power system optimi-
sation models
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A.E DC Links between NUTS 2 areas

Id Name from To Installed Capacity Planned capacity
MW MW

1 Estlink FI1B EE00 350 350
2 Estlink 2 FI1B EE00 650 650
3 Kriegers Flak DE80 DK02 0 400
4 Baltic DE80 SE22 600 600
5 Kontek DE80 DK02 600 600
6 Konti-Skan (12) DK02 SE23 550 550
7 COBRA cable DK03 NL11 0 700
8 Skagerrak DL05 NO04 1700 1700
9 Nordlink DEF0 NO04 0 1400
10 Swedlink SE21 LT00 700 700
11 NorNed NO04 NL11 700 700
12 Nord Sea Link NO04 UKC2 0 1400
13 Nord Connect NO04 UKM5 0 1400
14 Viking Link DK03 UKF3 0 1400
15 BritNed UKJ4 NL32 1000 1000
16 Nemo Link BE25 UKJ4 1000 1000
17 GridLink UKJ4 FR30 1400 1400
18 ElecLink UKJ4 FR30 0 1000
19 Aquind UKJ4 FR30 0 2000
20 IFA 2 UKJ3 FR25 0 1000
21 IFA Link UKK4 FR25 0 1400
22 IFA 1 UKJ4 FR30 2000 2000
23 Celtic Link FR52 IE02 0 700
24 Green Link IE02 UKL1 0 500
25 East-West Link IE02 UKD6 500 500
26 Moyle UKN0 UKM3 500 500
27 Western Link UKM3 UKD6 2200 2200
28 Italy-Greece ITF4 EL54 500 500
29 SACOI ITG2 ITI1 300 300
30 SAPEI ITG2 ITI4 1000 1000
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Specifications table

Subject area: Energy
More specific subject area: Energy system modelling
Method name: Defining regions according to energy-related attributes

using the max-p-regions method for energy system
modelling.

Name and reference of original
method:

The regionalisation method is a combination of the
European cluster model method [1] and the spatial
aggregation clustering method detailed in [2].

Resource availability: Data
• Nomenclature of territorial units for statistics level
geometry [3]
• Gridded population of the world version 4 [4]
• JRC hydro-power plants database [5]
• Normalized maximum power output profiles [21]
• Offshore oil and gas pipelines [6]
• Protected areas [7]
Software
• Geospatial Land Availability for Energy Systems
framework (GLAES) [8]
• pysal [9]
• numpy [10]
• geopandas [11]
• rasterstats [12]

Method details

B.1 Background

Cost optimisation results of energy system models with high penetration of solar
and wind are impacted by choice of the spatial resolution of the model. Two docu-
mented effects are the increase in transmission expansion cost and the reduction in
solar and wind capacity with increasing spatial resolution [13], [14], [15]. The max-p
regions method presented in [16] can be effective in minimising these two effects by
using several energy-related spatial attributes to define regions during spatial reso-
lution reduction. The max-p regions method builds upon the approached applied by
[1] and [2] to define regions. Similar to the clustering method used in [1], the max-p
regions method uses multiple energy-related spatial attributes to define similarities
between areas but the max-p regions method uses the max-p regions problem algo-
rithm instead of k-means. The clustering algorithm used in [2] uses a combination
of both the max-p-regions problem algorithm and k-means but [2] only one spatial
attribute to define regions. Two clustering methods are used by [2] as solving the
max-p regions problem algorithm as a mixed-integer programming problem with
an increasing number of areas can become intractable. The presented max-p regions
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method uses a heuristic solution to solve the max-p-regions problem presented in
[17]. The random regions method described in this article is used in [16] to verify
the efficacity of the max-p regions method to define regions that are less impacted
by spatial resolution reduction effects.

B.2 Spatial dataset preparation

A georeferenced dataset of the Nomenclature of Territorial Units for Statistics Level
2 NUTS 2 areas for countries in the European Union, plus Norway, Switzerland and
the UK is used to apply the method. The spatial dataset is structured using the Geo-
DataFrame framework of the geopandas tool. The Identification (NUTSI D), coun-
try reference code (CNTRCODE), and the geometrical information (geometry) of the
NUTS 2 areas, extracted from the Eurostat database [3], are added to the dataset. The
coordinate reference system (CRS) of the geometry of the areas, is set as EPSG 3035.

Next, the population in the NUTS 2 areas is added to the dataset. The population
values are extracted from the gridded population of the world version 4 (GPWv4) of
2015 [4], using the NUTS 2 area geometry and the zonalstats function in the raster-
stats python package [12]. The CRS of the GPWv4 GeoTIFF file is WGS84, and there-
fore the NUTS 2 areas geometry is converted to the same CRS before applying the
zonalstats function. The geometries of the NUTS 2 areas dataset is then transformed
back to European Petroleum Survey Group (EPSG) 3035.

The sum of the electricity storage capacity of pumped storage hydropower plants
within the NUTS 2 areas are added to the spatial dataset. The information on pumped
storage hydropower plants is from the Joint Research Centre (JRC) hydropower
plants database [5]. The JRC hydropower plants database pumped storage hydropower
plants are labelled HPHS in the database type column. The longitude and latitude
location values of the hydropower plant database are in CRS EPSG 4326 and there-
fore are first converted to CRS EPSG 3035. The sum of the electricity storage capacity
of pumped storage hydropower plants within the NUTS 2 areas is the sum of the
storage capacity of the HPHS labelled hydropower plants located within the NUTS
2 areas. For HPHS labelled hydropower plants whose storage capacity is not given
or given as zero, the storage capacity is assumed to be six times the installed power
capacity of the plant. The last set of data attributed to NUTS 2 area dataset is the elec-
tricity generation potential from wind and solar technology available in the NUTS 2
areas. Two factors determine the electricity generation potential. The first factor is
the installation capacity potential assigned to that region which is dependent on the
eligible land or offshore area assigned to the NUTS 2 area.
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The Geospatial Land Availability for Energy Systems framework (GLAES) [8] is the
tool used to determine the eligible areas. The eligible land areas are calculated by
applying the med scenario from [8] on the NUTS 2 area geometry. The eligible off-
shore areas within the exclusive economic zones are determined by eliminating non-
eligible areas. These non-eligible areas are areas listed in the World Database on
Protected Areas [7], areas with more than 60 m water depths, areas wherein 2017
ships were recorded to have spent in average more than one hour in a square km
per month, areas within 12 nautical miles of the coast, areas within one nautical
mile of gas and oil pipelines [6]. 30% of the remaining eligible area is proportionally
distributed to NUTS 2 areas according to the size of their coastal borders to their ex-
clusive economic zone. The installation capacity potential of offshore wind, onshore
wind and solar are calculated using the capacity density values 5.36 MW/km2, 4
MW/km2 and 12 MW/km2 respectively. The second factor used to determine the
electricity generation potential, of wind and solar, is the average full load hours.
The full load hours of technology is the annual sum of the normalised maximum
power output profile assigned to the NUTS 2 area taken from the renewables.ninja
platform [18]. The full load hours of the onshore wind and solar are multiplied with
their respective potential installed capacities to calculate their electricity generation
potential within a NUTS 2 area. The offshore wind electricity generation potential
is calculated by multiplying the full load hours with the potential offshore capacity
assigned to a NUTS 2 areas. The technology with the highest electricity generation
potential is assigned to the NUTS 2 area dataset.

B.3 Grouping island NUTS 2 areas

Certain countries have NUTS 2 areas that are islands and thus do not share any
vertexes with other NUTS 2 areas. The max-p-regions method has a contiguity con-
straint that ensures all NUTS 2 areas within a region shares at least one vertex with
another NUTS 2 area in the same region. To enable that island NUTS 2 areas are
capable of joining with other NUTS 2 areas to build regions they are grouped with
the nearest continental NUTS 2 area. The geometries of these grouped NUTS 2 areas
are joined to construct a single geometry. Table B.1 has details of the islands and the
continental NUTS 2 areas.

TABLE B.1: The island NUTS 2 areas and their respective continental
NUTS 2 area to which they are attached.

Groups Island NUTS 2 areas Continental NUTS 2 area
1 UKN0 UKM3
2 ITG2, ITG1 ITG3
3 FI20 FI1B
4 DK01, DK02 DK03
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B.4 Defining regions using the max-p-regions method

The Python Spatial Analysis Library (PySAL) contains a spatial optimisation library
called spopt [9]. As described in the pseudocode 1 below, the MaxPHeuristic func-
tion of the spopt library, in conjunction with the libpysal python library, is used to
implement the max-p-regions method.

The MaxPHeuristic function uses a heuristic approach of solving the max-p-regions
problem which defines an objective function and constraints used to maximise the
heterogeneity between the regions and maximise the number of regions created. As
presented in [17], there are three options to conduct a local search when finding the
best feasible solution to define regions. The MaxPHeuristic function uses the sim-
ulate annealing approach. A contiguity constraint is defined in the MaxPHeuristic
function by assigning weight values to the NUTS 2 areas using the queen contiguity
weights function provided by libpysal [19]. The max-p regions method is detailed
in Fig. B.1.

The result of the MaxPHeuristic function returns an assigned partition value for
each NUTS 2 area. The NUTS 2 areas that were assigned the same partition value
are grouped into the same region. The size and number of regions created depend
on the threshold value. By changing the area factor used to determine the threshold
value, it is possible to vary the size and number of regions allows for the variation
of the spatial scale of the energy system model. The area factor must be less than the
fraction of the sum of the area values to the median of the area values of the NUTS
2 areas.

The energy-related max-p-regions method defines regions of NUTS 2 areas based
on their energy-related spatial attributes. The aim of the method is to differentiate
regions according to how they consume, produce and store electricity in a power
system with high wind and solar energy penetration. Therefore three spatial at-
tributes used to define heterogeneity of the NUTS 2 areas are population; wind and
solar resource potential; and pumped-hydro storage capacity. These three spatial at-
tributes are assigned as the features attribute in the MaxPHeuristic function to create
energy-related max-p regions.

An alternative method to define regions is to associate NUTS 2 areas at random to
regions while maintaining the contiguity of the regions, hereafter referred to as the
random-regions method. The random-regions method assigns a set of unique ran-
dom values from 0 to 1 to the NUTS 2 areas. The random-regions method follows the
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FIGURE B.1: Pseudocode detailing the parameters and functions used
to conduct the max-p regions method.

pseudocode 1 in Fig. B.1 but uses the random values instead of the energy-related
spatial attributes to determine the heterogeneity between regions when creating the
model with the MaxPHeuristic function. The random-regions method was used in
[16] to investigate the effectiveness of the max-p regions method to minimise the ef-
fects of spatial resolution reduction on power system models. The NUTS 2 area spa-
tial dataset can be filtered to focus on a particular set of NUTS 2 areas. The NUTS 2
areas of Germany were filtered to create energy-related regions and random regions
depicted in Fig. B.2.

The complete process to create the energy-related max-p regions and the random
regions is illustrated in Fig. B.3.
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FIGURE B.2: Example of creating three energy-related max-p regions
and three random regions from the NUTS 2 areas of Germany. The
energy-related attributes solar and wind potential, population and
pumped-hydro storage are used to determine the heterogeneity be-
tween regions and create energy-related max-p regions. Random val-
ues from 0 to 1 and are used to determine the heterogeneity between

regions to create random regions.

FIGURE B.3: Illustration of the process to create energy-related max-p
regions and random regions.

B.5 Conclusion

This article provides a detailed description of how to define regions using the max-
p regions method. The method can help minimise the effects of spatial resolution
reduction on an energy system model. The max-p regions method can be improved



80
Appendix B. Using the max-p regions problem algorithm to define regions for energy

system modelling

with more spatial data availability on the onshore and offshore area to more accu-
rately determine the potential of wind and solar within the areas.
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Introduction: Data processing is a crucial step in energy system modelling which
prepares input data from various sources into a format needed to formulate a model.
Multiple open-source web-hosted databases offer pre-processed input data within
the European context. However, the number of documented open-source data pro-
cessing workflows that allow for the construction of energy system models with
specified spatial resolution reduction methods is still limited.
Methods: The first step of the data-processing method builds a dataset using web-
hosted pre-processed data and open-source software. The second step aggregates
the dataset using a specified spatial aggregation method. The spatially aggregated
dataset is used as input data to construct sector-coupled energy system models.
Results: To demonstrate the application of the data processing process, three power
and heat optimisation models of Germany were constructed using the proposed data
processing approach. Significant variation in generation, transmission and storage
capacity of electricity were observed between the optimisation results of the energy
system models.
Conclusions: This paper presents a novel data processing approach to construct
sector-coupled energy system models with integrated spatial aggregations methods.
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C.1 Introduction

In the past, energy system models were primarily closed and proprietary. However,
recently more open-source energy system modelling tools have been made available.
Maruf et al. identified 59 freely available energy system modelling tools [1]. Energy
system models are considered “open” when the data and model code is accessible
and legally usable [2]. Pfenninger et al. discuss how open models improve the sci-
entific quality of the models by adhering to fundamental scientific principles such as
transparency and reproducibility [3]. Pfenninger et al. also state that when models
and data are open, productivity increases as it reduces the time spent by researchers
in duplication of work in developing models and datasets [3].

The steps in the open-source energy modelling process are described by Pfenninger
et al. in [2]. One crucial step in that process is data processing. Data processing is an
intermediate step between the raw input data and the model formulation. The input
data is made accessible to the formulated model after undergoing data processing.
The methods used to process the input data can have an impact on model results.
Two documented impacts are the effects of temporal resolution reduction methods
[4–9] and spatial resolution reductions methods[10–14]. Therefore, the data process-
ing steps must be well documented to ensure that their impact on the modelling
results can be properly gauged. There are a limited amount of available open-source
modelling tools and datasets that allow for the alteration of the spatial resolution of
energy system models. One of these tools is presented in [15] by Hörsch et al., which
builds a highly spatially disaggregated European power system model dataset. The
resolution of the dataset can then be reduced at various spatial scale by clustering
the electrical network using the k-means algorithm. Tröndle et al. investigate the
possibility of renewable energy autarky models at four different spatial scales: con-
tinental level, national level, regional level and municipal level [16].

Input data of high spatial and temporal resolution can be generated using tools
such as the global Renewable Energy atlas (REatlas) atlas [17], the Python Gener-
ator of renewable time series and maps (PyGreta) [18], and the GlobalEnergyGIS
[19]. The input data can also be obtained from an extensive list of web-hosted plat-
forms, repositories and databases. These platforms and datasets include the renew-
ables.ninja platform [20], the Open Power System Data (OPSD) platform [21], the
hotmaps repository [22] and the ENSPRESO database [23]. The Open Energy Plat-
form compliments these platforms by documenting and sharing datasets used by
existing energy system models such as the eTraGo [24], OSeMBE [25] and MEDEAS
[26]. These platforms facilitate the identification of documented and validated input
data in centralised locations.
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This paper presents a novel data processing approach that maximises the use of the
web-hosted pre-processed input data to build energy system models. The appliction
of the data processing approach is demonstrated by building three power and heat
models with different spatial contexts. The differences between the spatial contexts
are the spatial scope and spatial zones that define the regions in the models.

C.2 Methods

C.2.1 Data processing workflow approach

The proposed data processing approach can be split into two steps as illustrated in
Figure C.1. The first step builds the Areas dataset, which host the necessary data
variables from the pre-processed input data sources within a structured framework.
A set of requirements are defined for the Areas dataset to ensure standardisation
and proper documentation of the data variables. The first requirement prescribes
that the data variables need to be indexed using standardised reference keys. These
reference keys allow the data to be uniformly organised according to spatial, tem-
poral, and technological specifications. The Nomenclature of Territorial Units for
Statistics level 2 (NUTS 2) and NUTS level 0 are the two spatial reference keys used
by the Areas dataset to structure data with a spatial dimension. The second require-
ment ensures the use of standardised units of measurements. The standardisation
of units ensures uniformity, allowing the use of the dataset for modelling without
additional unit conversions. The final requirement for building an Areas dataset is
the documentation of the data variables in the dataset. The documentation entails
providing the source of the data variables and a description of the unit.

Building a Regions dataset is the second step of the data processing process. The
Regions dataset is constructed by first defining the areas of interest. The areas of
interest could include all areas in the Areas dataset, or it could consist of a subset
of areas. As the name of the dataset indicates, the Regions dataset allows for the
grouping of areas into regions. The Regions dataset is described in more detail in
Regions dataset.

Dataset framework. Two requirements were defined to guide the selection process
of the dataset framework used as the skeleton for the Areas and the Regions dataset.
The first requirement is that the dataset framework should be able to handle data
with more than one reference key. The need for multiple reference keys handling
capability allows data variables to be referenced according to spatial, temporal, or
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FIGURE C.1: An illustrated description of the proposed data process-
ing workflow of the energy system modelling process.The energy sys-
tem modelling process is based on the Openmod Philosophy laid out

by Pfenninger et al. in [2].

even technological indices. The second requirement is that the dataset framework
must integrate well with existing open-source energy modelling software and scien-
tific analysis software. As there is a multitude of these software [15, 27–30] written in
the Python programming language [31], the dataset framework should be a Python-
based software. The xarray dataset object in the xarray toolkit [32] was selected to
build the datasets based on these two requirements.

There are additional benefits of using xarray to construct the datasets, as listed be-
low:

• the dataset can be exported as a unidata network common (nc) file format that
can be compressed to lower file sizes which eases sharing of the datasets;

• the dataset framework allows for documentation of the data variables.

The datasets created can be stored and shared using a single file in online archives
such as Zenodo. Zenodo attaches Digital Object Identifiers (DOIs), which allows for
the citation of the data. Hörsch et al.[15] and Tröndle et al.[16] both share different
versions of their model on Zenodo using the nc file format.

Areas dataset. The Areas dataset spatial scope includes the EU 27 countries with
the exclusion of Cyprus and Malta and the addition of Norway, Great Britain, and
Switzerland. The data variables in the dataset can be sub-divided into two sets, the
base variables and the derived variables. The base variables are used to determine
the derived variables.
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The Areas and the Regions datasets have a total of seven reference keys. There are
two spatial reference keys, namely NUTS 0 and NUTS 2. Data variables using the
NUTS 0 reference key apply at the national level, whereas the NUTS 2 level data are,
for most countries, spatial administrative areas within the countries. There are four
technology-specific reference keys: techs, fuels, techs hydro, and techs hydro subset.
The techs and fuels reference keys reference the different technology types of the
power plants variable. The techs hydro reference key is used to reference the tech-
nologies used to generate power from hydropower. The techs hydro subset dimen-
sion refers to a subset of the techs hydro reference key of hydropower technologies
that have reservoirs to store water. The time reference key is used to index the time
dimension of data variables. The time indices are the hourly intervals of a single
representative year. The variables reference key, unit and sources are summarised in
Table C.1. Except for temperature and offshore wind capacity factor, the data vari-
ables in the Areas dataset are organised at the NUTS 2 spatial level. Therefore, the
Areas dataset can be considered as a collection of data variables of 270 NUTS 2 areas.

Base variables

There are a set of base variables needed to establish the foundation of the dataset.
The identification code (NUTS 2 id), the geometrical information (Geometry), and
the country identification code (Country code) of the NUTS 2 areas are base vari-
ables taken from the Eurostat database [33]. The NUTS 2 geometry scale is 1:10 mil-
lion. The ambient air temperature obtained from annual hourly historical weather
data from the renewables.ninja platform [20] is a base variable in the NUS T 2 area
dataset. The weather data is only available at the country level, so the temperature
data is given at NUTS 0 in the dataset. The population values in the NUTS 2 areas are
extracted from the Global Human Settlement (GHS) population grid [35]. The popu-
lation raster for the year 2015 was used. The population values within the geometry
of the NUTS 2 area are summed, and the sum is the population value assigned to
the NUTS 2 area. Other base variables describe the energy generation and storage
technologies.

The power plants data variable gives the aggregated installed capacity of conven-
tional power plants, solar photovoltaic (PV) installations, onshore and offshore wind
installations associated with the NUTS 2 areas. Information on conventional power
plants is from the conventional power plants dataset hosted on the OPSD platform
[38]. Information on solar and onshore wind installations for NUTS 2 areas in Ger-
many, Denmark, France, Poland, United Kingdom and Switzerland, were extracted
from the OPSD renewable power plants dataset [36]. A power plant from the two
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TABLE C.1: Summary of the data variables in the Areas dataset.

Data variable
Base/

Derived
variables

Reference key Unit Sources

NUTS 2 id Base NUTS 2 NA [33]
Geometry Base NUTS 2 NA [33]

Country code Base NUTS 2 NA [33]

Temperature Base
time,

NUTS 2
Degrees
Celsius

[34]

Population Base NUTS 2 people [35]

Power plants Base
techs, fuels,

NUTS 2
MW [36–38]

Hydropower
plants dispatch

Base
techs hydro,

NUTS 2
MW [39]

Hydropower
plants storage

Base
techs hydro subset,

NUTS 2
MW, MWh [39]

Rooftop solar
PV area

Base NUTS 2 km2 [40–43]

Ground-mounted
solar PV

Base NUTS 2 km2 [40–43]

Onshore wind area Base NUTS 2 km2 [22, 44, 45]
Offshore wind area Base NUTS 2 km2 [22, 44–46]

Solar capacity factor Base time, NUTS 2
Per unit
capacity

[20]

Wind capacity factor Base time, NUTS 2
Per unit
capacity

[20]

Offshore wind
capacity factor

Base time, NUTS 0
Per unit
capacity

[20]

Hydropower
capacity factor

Base time, NUTS 2
Per unit
capacity

[47]

Power Derived time, NUTS 0 MW [48]
Heat Derived time, NUTS 2 MW [22]

Air-source
apacity factor

Derived time, NUTS 2
Per unit
capacity

[20, 22]

datasets is associated with a NUTS 2 area when the power plants’ geometrical in-
formation places it within the geometrical boundaries of that NUTS 2 area. The
power plants are grouped by the fuel and technology type and aggregated by their
installed generating capacity in megawatts (MW). As the offshore wind installations
are not within the geometries of the NUTS 2 areas, they are determined separately.
The existing offshore wind installations were extracted from the European Marine
Observation and Data Network (EMODnet) offshore wind farm database [37]. This
database provides the location of each wind farm as a georeferenced point and ref-
erences it to a country. The offshore wind farms were assigned to the closest NUTS
2 area of the country it was referenced too.

The dataset has three categories of hydropower technologies: run-of-river hydropower,
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reservoir-based hydropower and pumped storage hydropower obtained from the
Joint Research Council (JRC) hydropower plants database [39]. The NUTS 2 areas
were assigned the cumulative installed capacity of the different hydropower capaci-
ties. The reservoir-based and pumped storage hydropower plants’ cumulative stor-
age capacity within the NUTS 2 areas was also calculated and added to the dataset.
In the instances where the storage capacity was not given, it was assumed that the
plant had a reservoir that can store the water needed to operate the plant at nominal
capacity for six hours.

The availability of onshore wind and solar were assigned to the dataset as hourly ca-
pacity factor values extracted for each NUTS 2 area from renewables.ninja platform
[20]. The capacity factors for offshore wind at the national level was taken from the
same data platform. The country-wide daily inflow from 46 defines the capacity
factor of the hydropower plants provides the historical daily inflow in 30 European
countries between 2003 to 2012. The hydropower plants’ capacity factors were cal-
culated by dividing the daily inflow values by the sum of installed hydropower
capacity within the country.

The data variables that define the area available for renewable energy technologies
are rooftop solar PV area, ground-mounted solar PV area, onshore wind area and
offshore wind area. For the NUTS 2 areas in the EU-27 countries and the United
Kingdom, the ENSPRESO database was used to assign the data variables of rooftop
and ground-mounted solar PV area [40] and the data variables for onshore and off-
shore wind area [44]. The areas classified in the EU-wide low restrictions with 400
m setback distance scenario were selected to define the onshore wind areas. The
onshore wind areas in NUTS2 areas of Switzerland were calculated from the wind
energy potential areas raster provided by the swiss energy ministry [45]. The on-
shore wind areas in NUTS 2 areas in Norway were calculated from the wind energy
potential areas raster of the hotmaps project [22].

The areas classified within the EU-wide low restrictions with water depth 0 —30 m
and water depth 30 —60 m scenario were selected from 43 to determine the offshore
wind area. Except for the NUTS 2 areas in Norway, the portion of the offshore wind
areas assigned to a NUTS 2 area is proportional to their share of their respective
country’s total coastline. The NUTS 2 areas of Norway are assigned offshore wind
areas according to their proximity to the offshore wind areas listed in the Norwegian
offshore wind strategic environmental assessment report[46].

The rooftop and ground-mounted solar PV areas in Switzerland and Norway were
calculated using the Open Street Map building footprint data [43] and literature val-
ues. For Switzerland, the rooftop solar PV area in a NUTS 2 area was proportional
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to their share of the total building footprint area in Switzerland multiplied by a total
available rooftop area of 267 km2 and a rooftop suitability factor of 0.564 provided by
Walch et al. in [41]. For Norway, the rooftop solar PV area was calculated by multi-
plying the total building footprint area within the NUTS 2 areas with an rooftop area
suitability factor of 0.49 calculated by Bódis et al. in [42]. The ground-mounted solar
PV area in Norway and Switzerland was calculated using the ratio of the ground-
mounted solar PV area to the rooftop solar PV of Sweden and Austria, respectively.
These ratios are 176:1 and 144:1, respectively.

Derived variables

Hourly electrical load profiles for European countries are only available at the coun-
try level from the European Network of Transmission System Operators (ENTSO-E)
transparency platform 47. The load profiles are given at NUTS 0 spatial resolution
in the Areas dataset. While building the Regions dataset, the spatial resolution of
the load profiles is first reduced to NUTS 2 level before they are aggregated to the
spatial resolution of the defined region. This process is discussed in more detail in
the Regions dataset subsection.

Using a bottom-up approach, the heat demand profiles Da,t are generated for each
NUST 2 area a and time step t using the following equation:

Da,t = Da · Â
s,e
[sa,s,e · da,s,e,t] (C.1)

The bottom-up approach classifies the heat demand in two end-use categories e and
two sectors s. The end-use categories are space heating and domestic hot water heat-
ing. The sectors are the tertiary and domestic sector. Both end-use categories of each
sector have a share factor sa,s,e and a normalised hourly profile da,s,e,t with time steps
t. The share factor gives the percentage contribution of an end-use category of a
sector to the total space and water heating demand. These share factors are country-
specific and are obtained from the hotmaps repository [22]. The hotmaps reposi-
tory does not provide share factor values for Norway and Switzerland [22]. There-
fore, the share factors for Sweden and Luxemburg were used respectively instead.
The normalised profiles are generated at the national level using generic profiles for
space heating and water heating obtained from the hotmaps repository [22]. The
generic profiles for space heating are country, season and temperature-dependent
whereas, the generic profiles of hot water heating only vary according to the day
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of the week and the season. The normalised space heating profiles are defined us-
ing the temperature data in the dataset. NUTS 2 areas within the same country are
assigned the same normalised space heating demand profile. The heat demand vol-
ume da for space heating and hot water heating is calculated from a rasterised map
generated by the hotmaps project [22]. The map depicts the estimated final energy
demand for space and water heating on each hectare for EU28, Norway, Iceland and
Switzerland for 2015.

The temperature variables from the dataset are used to calculate the hourly efficiency
factors of the heat pumps.

The following quadratic regression equation, presented by Ruhnau et al. [49], is used
to determine the coefficient of performance COPt,a of the air-source heat pumps:

COPt,a = 6.08 � 0.09 · DTt,a + 0.0005 · DT2
t,a (C.2)

Where DTt,a is the temperature difference between the heat sink temperature and
the ambient air temperature. The heat sink temperature is assumed to be a constant
value of 50�C. As suggested by Ruhnau et al. the calculated DCOPt,a is adjusted for
real-work effects using a correction factor of 0.85.

Regions dataset. Spatial resolution reduction is often used to reduce the computa-
tional demand of solving energy system optimisation problems. Depending on the
research question or study focus, the data can be aggregated into regions to reduce
the spatial resolution of the dataset. A common spatial resolution reduction method
used by energy system modellers is to aggregate the spatial data according to po-
litical or administrative boundaries. European countries are classified according to
multiple NUTS levels. The political regions method can thus group areas according
to the NUTS level specified. For example, the spatial resolution of the data for Ger-
many would reduce from 38 government regions of the NUTS 2 areas to the 16 states
of NUTS 1. The spatial resolution could also be further reduced to a national level
by aggregating the NUTS 2 area data to the NUTS 0 level. The number of NUTS
areas at different levels is dependent on the European country. There are spatial res-
olution reduction methods that group areas according to the heterogeneity of spatial
attributes of NUTS 2 areas. The max-p regions method for example, presented by
Fleischer [12], groups areas into regions that are similar in population; wind and
solar resource potential; and pumped-hydro storage capacity. The max-p regions
method uses the max-p-regions algorithm, introduced by Duque et al. in [50].
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Once the regions are defined, the variables of the NUTS 2 areas are aggregated to
have variables that represent the regions. The resulting spatially aggregated dataset,
hereafter referred to as the Regions dataset, is used to store and organise the vari-
ables generated after data aggregation. In the Regions dataset, the NUTS 2 reference
key is replaced by the Regions reference key. The Regions reference key is composed
of the NUTS 2 reference keys of the NUTS 2 area within the regions created. The ge-
ometry of the NUTS 2 areas attributed to the same region are joined to form the
geometry of the regions.

As mentioned in the derived variables section, the spatial resolution of the electri-
cal power profile in the Areas dataset is at the NUTS 0 level. Therefore the power
profiles need to be disaggregated to NUTS 2 area spatial resolution before they can
be aggregated to the specified regions spatial resolution. Population and Gross Do-
mestic Product (GDP) are commonly used as a proxy to determine the distribution
of electrical demand [15, 51, 52]. Robinius et al., presents a method to disaggregate
electricity demand at sub-national levels, but as this method is determined using
data for Germany, it is not applicable to all European countries. The chosen proxy
to disaggregate the hourly load profiles in the presented case studies is population.
In this proposed data processing approach, the NUTS 2 areas assume a share of the
load profiles of their respective country. The proportion of the share is calculated by
multiplying the country level power profile with the NUTS 2 area-specific weighing
factor. In the case studies presented in this paper, population is used to calculate the
weighting factors used to disaggregate the power profiles. The weighting factor of a
NUTS 2 area is the share of the population in that area in relation to the population
of the NUTS 2 area respective country. This approach could be improved as higher
spatial resolved data for power profiles for European countries become available.
The offshore wind capacity factors are also at NUTS 0 spatial resolution, similar to
power profiles. Therefore, offshore wind capacity factors are also disaggregated to
NUTS 2 spatial resolution before aggregating them to build the Regions dataset. The
capacity factors for offshore wind at NUTS 2 are assumed to be the same as the re-
spective country-level capacity factors.

When building the Regions dataset, the capacity factors of the variable renewable
technologies are multiplied by a weighting factor before they are summed. The
proxy variable used to determine the weighting factor is technology-specific. The
weighting factor is the share of the proxy variable relative to the proxy variable’s
sum within a region. The technologies and their respective proxy variables used to
calculate the weighting factors are given in Table C.2.

All other variables do not represent mean values and are summed without weight-
ing factors.
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TABLE C.2: Proxy variables used to aggregate the capacity factors in
the case studies.

Data variable Proxy variable
Solar capacity factor Sum of Rooftop solar PV area and

ground-mounted solar PV
Wind capacity factor Onshore wind area
Offshore wind capacity factor Offshore wind area
Hydropower capacity factor Hydropower plants dispatch
Air-source capacity factor Population

Model formulation. There are some additional items needed in conjunction with a
Regions dataset to formulate an energy system model. The first item is an energy
system framework. There is a selection of open-source energy modelling frame-
works that can be used. The selection of the framework depends on the focus of the
study and the preference of the modeller. As the Regions database is generated us-
ing the python programming language, it can be integrated well into a python-based
modelling framework.

Together with some additional items, the Regions dataset can then be used to formu-
late energy system models. One essential item is the techno-economic parameters.
The techno-economic parameters will depend on the scenarios being investigated
by the model. The scenarios also dictate certain assumptions used in the model.

C.3 Power and heat optimisation model development

The proposed data processing workflow, implemented in the EUropean Sustainable
Energy System (EU-SES) modelling tool [53], is used to build power and heat optimi-
sation models to demonstrate the versatility of the data processing approach and the
importance of spatial context in energy system modelling. The EU-SES tool uses the
calliope framework [54] to formulate the models. The scripts used to generate the
datasets, models and the optimisation results of each model can be found on Zenodo
[53]. The current version of the EU-SES tool can only automate the construction of
an energy system model using the calliope framework. However, as the datasets are
separated from models, the datasets can be used as input data in other modelling
frameworks such as PyPSA.

The first model is a multi-national model containing ten countries in the NUTS 2
area dataset named the GER NUTS0 model. These ten countries include Germany
and nine countries that have a transmission connection with Germany. The NUTS
2 areas spatial data are aggregated according to national jurisdiction in the GER
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FIGURE C.2: An illustrated description of the model created using
the regions dataset and the calliope modelling framework. The ta-
ble in the figure indicates the predefined technology groups used to

describe the different components in the model.

NUTS0 model. The second and third model reduces the spatial scope to include
only Germany with no energy import or export from neighbouring countries. The
difference between the second and third model is the spatial resolution reduction
method used. The second model, named the GER NUTS1 model, are defined ac-
cording to 16 administrative jurisdictions given by the NUTS 1 level. Whereas the
regions in the third model, named the GER MAX-P model, are defined using the
max-p regions method to generate nine regions. As illustrated in part a) of Figure
C.3, GER NUTS 1 model has more regions and therefore, the regions have, on av-
erage, a higher spatial resolution than the regions in the GER MAX-P model. The
regions with the highest spatial resolution in the GER NUTS 1 model represent the
city-states of Berlin, Hamburg and Bremen.

The reference year selected to create the Areas dataset is 2011. The structure of the
models is illustrated in Figure C.2. The examples are modelled using the calliope
modelling framework.
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FIGURE C.3: The regions in the GER NUTS0 model, GER NUTS1
model and the GER Max-P model, are illustrated in a). The least-cost
optimisation results of the three models for Germany are given in b),
c) and d). Plot b) illustrates the optimised installed capacity of the
technologies. The curtailment rate of solar PV, onshore and offshore
wind generation is given in percentage value in c). Plot d) illustrates
the optimised percentage of the available area utilised by solar, on-

shore and offshore wind installations.
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The models all share several overarching scenario assumptions. The following key
assumptions are made in this scenario:

• The cumulative CO2 equivalent emission of the optimised model is limited to
20 % of the 1990 CO2 equivalent emission of the countries in the model;

• The cumulative biogas available to the cogeneration plants is 420 PJ which was
estimated to be a projected value for 2020 presented by Scarlat et al. in [55];

• All power plant capacities classified as biomass, gas and cogeneration in the
Regions dataset are summed under the classification cogeneration;

• Power plants classified as nuclear, coal, oil, other, waste and geothermal in the
Regions dataset are not available in the model;

• The storage level of all storage capacities is assumed to be full during the first
and last instance of the optimisation;

• The hydropower power plants, existing installed wind and solar capacities
must be adopted in the optimised model;

• The solar and onshore wind capacity density is assumed to be 170 MW/km2

and 5 MW/km2, respectively, adopted from Ruiz et al. [23];

• Offshore wind installations have a capacity density of 5.36 MW/km2 adopted
from Hundleby and Freeman [56];

• Regions are considered “copper plates”, meaning that within the regions there
are no constraints in energy transfer.

The power exchange between regions is possible and is constrained by the net trans-
fer capacity and the efficiency of the power lines. There are two power transfer
mediums in the model. The first is the high voltage alternative current (HVAC)
transmission lines between regions that share a border. The HVAC has a set rated
capacity of 2 GW. The other power transfer mediums are direct current high volt-
age interconnectors installed between regions. The list of interconnectors and their
respective rated transfer capacity is taken from the installed and planned DC links
listed by Fleischer et al. in [12]. Losses are not considered in the interconnectors and
HVAC transmission lines.
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The power and heat optimisation model’s objective function is to minimise the in-
vestment cost and dispatch cost of the model for one year and at a three-hour reso-
lution. The optimisation models assume perfect foresight, and the power and heat
demand is inelastic. A discount rate of 7% is assumed to calculate the annualised
cost of the investments. The model uses techno-economic parameters projected for
the year 2030, documented as Extended data [53]. The techno-economic parameters
for the generation and storage technologies were adopted from values presented by
Moles et al. [57] and by Jülch [58], respectively.

The cumulative CO2 emission constraint ensures that the models have high solar
and wind penetration levels. This emission constraint aligns with the roadmap pre-
sented in 2011 by the European Commission that aims to reduce 80% of the EU CO2

emission by 2050. In 2019 the EU commission revised the CO2 emission target for
2050 to a net-zero emission target [59]. Therefore the 80% reduction target could
represent a snapshot along the net-zero pathway.

C.4 Results and discussions

The optimisation results of the three models are compared in Figure C.3. The results
in Figure C.3 show that the GER NUTS 0 model has the lowest installed capacity
of solar PV. This is despite the fact that Germany is represented at a lower resolu-
tion in the GER NUTS 0 model than the two other models and does not have the
opportunity to maximise the use of good solar sites within Germany. This rela-
tively low solar PV installed capacity of the GER NUTS0 model can be explained
by the fact that the GER NUTS0 model has a greater spatial scope that the two other
models. This additional benefit in spatial scope allows the GER NUTS0 model to
maximise the use of resources available in neighbouring countries to Germany, such
as hydropower-based energy storage capacities in Norway, Switzerland and Aus-
tria. These storage capacities can help minimise the curtailment rate of the solar
PV installations, as illustrated in part c) of Figure C.3. The lower-cost hydropower
storage capacities in neighbouring countries can also explain why Germany in GER
NUTS0 model invest less in expensive hydrogen storage in comparison to the two
other models. These apparent differences between the GER NUTS0 model and the
models with a different spatial scope document the importance of spatial context in
energy system modelling. Part d) of Figure C.3 illustrates that more than half of the
available onshore area in Germany is used for deploying onshore wind in all three
models.

Next, the optimisation results of the two models with the same spatial scope, the
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GER NUTS 1 model and the GER MAX-P model, are presented and discussed. The
optimised transmission capacity of the GER NUTS 1 model is significantly greater
than that of the GER MAX-P model, as can be seen in part b) of Figure C.3. The fact
that the GER NUTS 1 model has more regions, it can have more transmission lines,
and therefore it can also have a higher installed transmission capacity value than the
GER MAX-P model. As shown in part c) of Figure C.3, the optimised GER NUTS
1 model has a slightly higher percentage in curtailment for solar PV and onshore
wind, which could be a consequence of more transmission capacity bottlenecks be-
tween regions. The differences between the two models that have the same spa-
tial scope but constructed using two different spatial resolution reduction methods
demonstrate the importance of spatial context in energy system modelling.

In the following paragraph some reflections are made on the proposed data pro-
cessing approach. Firstly, this data processing demonstrates that it is possible to
automate the construction of sector-coupled energy system models for European
countries using exiting web-hosted datasets. Secondly, there are certain data gaps
that influence the data processing approach. The first data gap is the lack of power
profiles at sub-national spatial resolution. Due to this data gap the power of pro-
files of a NUTS 2 area is simply assumed to be a portion of the country-level power
profile. The portion of the profile is calculated using population data. This method
of disaggregating power profiles does not consider certain differentiations between
NUTS 2 areas other than population that influence the power profile such as energy
intensive industries in areas with low population. To mitigate this limitation this
issue certain models also use GDP when disaggregate power profiles. There are also
some data gaps in relation to hydropower plants. These data gaps are power plant
specific inflow data and storage capacity of power plants with storage reservoirs.
Similarly a limited amount of research has been conducted on the impact of spatial
aggregation methods on data products particularly on the impact on capacity factors
of variable renewable energy technologies and demand profiles.

C.5 Conclusion

A novel data processing workflow that maximises the use of the web-hosted val-
idated pre-processed input data to build energy system models is presented. The
proposed data processing workflow has a two-step process. The first step organ-
ises and standardises the pre-processed input data into a dataset called the Areas
dataset. In the second step, the spatial data in the Areas dataset is aggregated ac-
cording to regions and standardised into a Regions dataset. With the addition of
techno-economic parameters and a modelling framework, the Regions dataset can
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be used to build power and heat models. The data processing approach is not inte-
grated into any specific energy modelling framework, giving the modeller the flexi-
bility to create a power and heat model using the modelling framework best suited
for the research question. The proposed approach also provides a baseline that can
be extended upon to include other energy sectors such as industry and transport.
The proposed workflow is used to build three power and heat optimisation mod-
els. The three optimisation models’ result demonstrates the importance of how the
spatial scope and the method used for spatial resolution reduction can impact the
optimisation result.

Data availability

Underlying data

Open Science Framework: A data processing approach with built-in spatial resolu-
tion reduction methods to construct energy system models.
https://doi.org/10.17605/OSF.IO/JHMXN [53].

This project contains the following underlying data:

• Optimisation results (optimisation results of generated models saved as nc for-
mat files)

• Dataset (An areas dataset generated using the proposed data processing saved
as nc format file)

Extended data

Open Science Framework: A data processing approach with built-in spatial resolu-
tion reduction methods to construct energy system models.
https://doi.org/10.17605/OSF.IO/JHMXN [53].

This project contains the following extended data in Extended data figures and ta-
bles.docx:
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• Appendix 2 —Techno-economic parameters of storage technologies used the
example models.

• Appendix 2 —Techno-economic parameters of storage technologies used the
example models.

• Appendix 3 —Percentage difference in installed capacity of GER NUTS1 model
without rooftop solar PV in reference to GER NUTS1 model with rooftop solar
PV for all NUTS 1 administrative regions of Germany.

Data are available under the terms of the Creative Commons Zero “No rights re-
served” data waiver (CC0 1.0 Public domain dedication).

Software availability

• Source code available from:
https://github.com/ENSYSTRA/EU-SES/tree/v1.3

• Archived source code at time of publication:
hhttps://doi.org/10.5281/zenodo.5834185 [53].

• License: Apache License 2.0 license.
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