

Ines Bruchmann Environmental Scientist Department of Biology and Education

Scientific thesis for the attainment of the PhD-Degree (Dr. phil.) of the University of Flensburg

Plant endemism in Europe: spatial distribution and habitat affinities of endemic vascular plants

First advisor:

Prof. Dr. Carsten Hobohm (University of Flensburg) Second advisor:

Prof. Dr. Erwin Bergmeier (University of Göttingen)

December 2010

Cite as:

Bruchmann, I. (2011): Plant endemism in Europe: spatial distribution and habitat affinities of endemic vascular plants. Dissertation - University of Flensburg, URL: www.zhb-flensburg.de/dissert/bruchmann.

Keywords:

CBD 2010, EvaplantE, Geographically Weighted Regression (GWR); habitat continuity, habitat diversity, isolation degree, regional species pool, vulnerability.

The logo of the International Year of Biodiversity was used with the friendly permission of the Secretariat of the Convention on Biological Diversity

The layer package world countries 2008 (by esri) is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States License: For details please look up URL: www.creativecommons.org/licenses/by-nc-sa/3.0/us/.

The cover-picture 'Europe orthographic projection' by Ssolbergj was slightly modified (colorized) and is free available under the GNU's license.

'While climate change takes up much of the media attention, in one fundamental way biodiversity loss is an even more serious threat. This is because the degradation of ecosystems often reaches a point of no return - and because extinction is forever.'

> Stavros Dimas, 2006 (European Commissioner of the Environment)

Table of contents

Zusammenfassung	5
Abstract	6
Introduction	7
Endemism – theoretical and historical background Etymology and evolution of the term Categories for defining endemism Spatial categories of endemism Inferred evolutionary age Taxonomic level of the endemic entity Endemism rarity and vulnerability	11 11 12 18 20
Measuring endemism	24
Material and Methods Study area Floristic database EvaplantE Compilation of geographical data (GIS) Compilation of spatial dataset and map visualisation Compilation of explanatory variables Statistics Floristic and taxonomic data Geographical and spatial data Ecological data Methods of reducing explanatory variables Bivariate correlation (Spearman rank) Tests on Multicollinearity Predictive regression models Transformation of explanatory variables Incidence of spatial autocorrelation Standard linear regression (LR) vs. geographically weighted regression (GWR)	28 29 30 30 32 36 36 36 36 36 37 37 37 37 37 37 37 37
Results Geographical data, maps, and visual presentation (GIS) Endemic diversity in Europe Floristic and taxonomic view Geographical and spatial view Ecological view Sets of explanatory variables Predictive regression models Linear regression (LR) Geographically Weighted Regression (GWR)	43 43 47 47 49 56 68 68 68 69 70
Discussion	75
Biases in taxonomic interpretation: need for consistency in endemism data Floristic inventory and impact species traits Geographical gradients in endemism across Europe Handling spatial autocorrelation power of predictive regression models Delineating and valuing endemism – need for paradigm change	75 76 78 88 90

Sector A

Conclusion	97
References	99
Acknowledgement	107
Appendix Tab. A1: Overview of names and divisions of the studied European regions sorted in alphabetical order	109 110
Tab. A2: Abstract from EvaplantE database using the example of the Canary Islands division	111
Tab. A3: Literature consulted; listed according to the predefined European regions	145
Tab. A4: Geographical data obtained from GIS analyses	147
Tab. A5: List of names and respective calculations of generated data used in the statistics (alphabetical order)	149
Tab. A6: Symmetric and standardized weights matrix of neighbouring regions	155
Tab. A8: Results of bivariate correlation within index group 'habitat continuity'	167
Tab. A9: Results of bivariate correlation within index group 'regional species pool'	167
Tab. A10: Results of bivariate correlation within index group 'habitat diversity'	168
Tab. A11: Results of bivariate correlation within index group 'isolation degree'	168
Tab. A12: Results of bivariate correlation within index groups of 'habitat diversity' and 'isolation degree'	169
Tab. A13: Results of bivariate correlation between index groups of 'species pool' and 'habitat continuity'	169
Tab. A14: Values of standard descriptive statistics and of collinearity statistics	170
Tab. A15: Stata Output of calculated Eigen values of weights (matrix list E)	171
Tab. A16: Values of spatial autocorrelation (Moran's I and Geary's C; Stata Output)	172
Tab. A17: Overview on calculated linear regression models (dependent variable: local endemics)	173
Tab. A18: Overview on calculated linear regression models (dependent variable: European endemics)	174
Tab. A19: Overview on calculated GWR models (dependent variable: local endemics)	175
Tab. A20: Overview on calculated GWR models (dependent variable: European endemics)	176
Tab. A21: Linear regression (dependent variable: local endemics; Stata output)	177
Tab. A22: Linear regression (dependent variable: European endemics; Stata output)	185
Tab. A23: Geographically weighted regression (dependent variable: local endemics;Stata output)	193
Tab. A24: Geographically weighted regression (dependent variable: European endemics; Stata output)	206
Profiles of all 42 study regions	219

Zusammenfassung

Die vorliegende Arbeit gibt einen grundlegenden Überblick über die Verbreitungsmuster von endemischen Gefäßpflanzen auf dem europäischen Kontinent. Die Thesis berücksichtigt dabei die floristischen und taxonomischen sowie die geographischen und ökologischen Verteilungsmuster bzw. -dimensionen des Gefäßpflanzenendemismus. Es gilt die Hypothese, dass die vorgefundenen geographischen Verbreitungsmuster endemischer Pflanzen weitgehend durch einfache Erklärungsvariablen beschrieben werden können: die regionale Artenvielfalt ('species pools'), die Vielfalt der Lebensräume ('habitat diversity'), der Isolationsgrad einer Region ('isolation degree') und die ökologische Kontinuität ('habitat continuity').

Die zugrundeliegenden Daten zum Gefäßpflanzenendemismus wurden aus der Datenbank EvaplantE entnommen. Zur Visualisierung wurden diese mittels Geographischer Informationssysteme (GIS) in ein digitales Kartenformat übertragen und mit verschiedenen anderen geographischen Themenkarten verschnitten und optimiert. Die genannten Erklärungsvariablen wurden mit Hilfe von GIS Verfahren in eine Vielzahl verschiedener Indices interpretiert. Diese Indices flossen zur Erklärung der räumlichen Verbreitungsmuster von a) kleinräumig verbreiteten, nationalen Endemiten ('local endemics') und b) von über die Nationengrenzen hinaus verbreiteten Europa-Endemiten ('European endemics') in Regressionen ein. Es wurden sowohl klassische lineare als auch räumliche Regressionsmodelle angewandt.

Die Studie bestätigt die allgemein bekannten Trends im Bezug auf Europas endemische Gefäßpflanzen, z.B. den klimatisch begründeten Nord-Süd-Gradient der Artenvielfalt oder die besondere Bedeutung von Gebirgsregionen sowie isolierten Inseln. Die geographischen Verteilungsmuster von kleinräumig verbreiteten Lokal-Endemiten konnten mit den ausgewählten Erklärungsvariablen – 'Isolationsgrad', 'Artenvielfalt` und 'Habitat-Diversität' – ausreichend erklärt werden. Die besten Regressionsmodelle für weiträumiger verbreitete Europa-Endemiten wurden mit Hilfe der Erklärungsvariablen 'Artenvielfalt` und 'Habitat-Diversität' erreicht.

Es wurde zudem gezeigt, dass einfache lineare Regressionsmodelle gegenüber dem Phänomen der räumlichen Autokorrelation eine gewisse Störanfälligkeit aufweisen. Hingegen liefern räumliche Regressionsverfahren wie z.B. die Geographically Weighted Regression (GWR) auch unter der Maßgabe von räumlichen Korrelationseffekten valide Erklärungsmodelle.

Die Untersuchung von Habitatbindung und ökologischer Präferenz der endemischen Pflanzen belegt die besondere Bedeutung der offenen Kulturlandschaften in Europa auch – und vor allem – im Hinblick auf die *in situ* Schutzbemühungen im Zuge der Biodiversitätskonvention.

Im Rahmen der Untersuchung wurde jedoch deutlich, dass es einige blinde Flecken und Wissenslücken gibt: Diese zeigen sich z.B. in der teilweise inkonsistenten taxonomischen Interpretation von endemischen Pflanzen oder in fehlenden Daten zu Ökologie, Habitatbindung oder Populationsentwicklung vieler endemischer Taxa. Im Hinblick auf den voranschreitenden Biodiversitätsverlust bleibt zudem die Frage offen, wie endemische Pflanzen gemäß ihrem 'Seltenheits' - oder 'Gefährdungsstatus' kategorisiert werden können. Um den Verlust europäischer Arten zu vermindern, wird empfohlen, ein angemessenes Kategorisierungssystem zu erstellen, um – auf diesem Wissen aufbauend – ein systematisches und engmaschiges Netz von Schutzmaßnahmen zum Schutz der Arten und ihrer Lebensräume zu entwickeln.

Abstract

The present thesis provides a general overview of endemism of vascular plants on the European continent. The study focuses on the evaluation of endemism patterns from a floristic and taxonomic, geographical and ecological perspective. It is hypothesised that most of the variability in the data on Europe's botanical endemism can be well explained with the help of simple indices describing the explanatory variables 'species pool', regional 'habitat diversity', 'isolation degree' and 'habitat continuity'.

The investigation is mainly based on data of about 6,200 endemic vascular plants listed in the database EvaplantE (Endemic vascular plants in Europe). The endemism data was combined with geographical datasets and visualised in digital maps using GIS applications. Several indices describing the explanatory variables were derived from digital maps by blending different thematic (map-)layers with the map of the study area. Due to the incidence of spatial autocorrelation spatial accounting statistics i.e. geographical weighted regression (GWR) was applied and the results were contrasted to those obtained from non-spatial standard linear regression statistics (LR).

The study shows a general gradient of plant endemism from north to south and also proves the importance of Europe's mountainous and isolated island regions regarding endemic diversity. The influence of explanatory variables on the current spatial patterns of endemics was quantified: Patterns of local endemism were explained by 'isolation degree', 'species pool', and 'habitat diversity', while patterns of European endemics were explained using the explanatory variables 'species pool', and 'habitat diversity'. The fragility of standard LR when dealing with spatially autocorrelated data was shown, while spatial accounting GWR was able to incorporate these spatial dependencies. Using GWR results in valid models proved the hypothesis that patterns of plant endemism can be well explained using the explanatory variables 'species pool', regional 'habitat diversity', 'isolation degree' and 'habitat continuity'.

The evaluation of habitat-dependencies of endemic plants showed that many endemics are bound to rocky habitats, grasslands and shrubland. Many stenoecious endemics are bound to coastal and saline habitats, to rock and scree habitats, but also to ruderal habitats. The study of ecological patterns proves the importance of Europe's open cultural landscapes, for example with respect to *in situ* species conservation.

While reviewing and interpreting the data on Europe's plant endemism some blind spots and data gaps also became evident, e.g. the inconsistency in taxonomic interpretation of endemic plants, the lack of data on ecology or on the population trends of endemics. The question of how to categorise the rarity status of endemic plants was revealed as one major question in the field of biodiversity conservation.

In order to face up to the biodiversity challenge and thus to span a systematic and tight conservation net which will help to prevent species loss, it is strongly recommended that a suitable and consistent system be established in the very near future to identify the rarity and vulnerability of those species that are confined to the European continent.

'The current decline in biodiversity is largely the result of human activity and represents a serious threat to human development (...)

Despite mounting efforts over the past 20 years, the loss of the world's biological diversity, (...) has continued. Biological resources constitute a capital asset with great potential for yielding sustainable benefits. Urgent and decisive action is needed to conserve and maintain genes, species and ecosystems (...). Capacities for the assessment, study and systematic observation and evaluation of biodiversity need to be reinforced at national and international levels.'

(Agenda 21,15.2 & 15.3)

Introduction

With the agreement to the Convention on Biological Diversity (CBD) during the World Summit on Sustainable Development (WSSD) in Rio de Janeiro in 1992, the importance of the biodiversity challenge was universally acknowledged (United Nations, 1992). In the course of the following World Summit in Johannesburg in 2002, the parties declared that their goal was '*to achieve by 2010 a significant reduction in the current rate of biodiversity loss at the global, regional, and national level [...]*' (United Nations 2002). The importance of this target was further underlined by its incorporation in the Millennium Development Goals (MDG 7(2): United Nations General Assembly 2000) and by the proclamation of the International Year of Biodiversity in 2010 (Secretariat of the Convention on Biological Diversity: www.cbd.int/2010).

However, this ambitious decision at global level calls for the implementation at all subjacent levels. Conservation action has to be realised at all spatial scales and by all levels of governmental authority, from the continental (e.g. multinational unions, European Union) to the regional (e.g. nations) and right down to the local scale (federal states, districts or communities).

The European Union has set the objective that the 'biodiversity decline should be halted with the aim of reaching this objective by 2010' (6th Environmental Action Program; European Council 2001). This Action Program in turn requires the member states of the EU to corroborate this goal in their National Strategies on Biodiversity (see: www.cbd.int/reports). If the aims of the political strategies are to be achieved, the framework has to be filled with real action at local or regional scales. However, the debate on the implementation of species conservation raises some major questions: Where should conservation of biodiversity start, what regions should be prioritised and on which species should efforts be focussed?

It is not an exaggeration to say that the plant kingdom – as the primary producer and a major ecosystem component – forms the basis on which the rest of the world's biological diversity depends (e.g. Agardy et al. 2005). This is why conservation of plant diversity should be of vital interest in the course of the biodiversity challenge.

Endemic plants may be an effective indicator for identifying and assessing regions with high biodiversity value (Orme et al. 2005): The European Plant Conservation Strategy (EPCS; Planta Europa 2002) that adapts the targets of the Global Strategy for Plant Conservation (GSPC; UNEP 2002) to the European level emphasises that conservation action must target those plants and habitats that are most in need. Objective 1.02 furthermore clearly states that all national endemic plants should be included in the European Red List. The fact that about 50% of Europe's vascular plant endemics are considered to be in danger of extinction (Planta Europa 2002) confirms the urgent need to focus conservation action on endemic species and the habitats in which they live (Planta Europa 2007; Secretariat of the Convention on Biological Diversity 2010).

Europe has a particular responsibility to protect those species that are restricted to its boundaries. However, despite the fact that Europe's flora is probably the best studied in the world, our knowledge about the actual distribution patterns of European endemic plants is quite scarce. Indeed, it is quite easy to find a large number of literature sources with checklists of plants endemic to special localities such as national parks, mountain ranges, or islands, and some data on patterns of endemism are also available from a number of macroscale assessment reports of biotic-rich hotspot areas (e.g. Davis et al. 1994; Olson and Dinerstein 2002; Mittermeier et al. 2005). However, these assessments occasionally provide only rough figures or estimations for endemism rates (Ungricht 2004). The data given by the national reports on biodiversity as required by the CBD present more precise figures on numbers or proportions of endemics for many national territories, thus providing data on endemics as related to political divisions. In order to effectively pursue in situ conservation (CBD article 8, United Nations 1992) data on endemism related to natural and ecological (e.g. biomes or habitats) divisions is needed. As patterns of endemism do not generally conform to political territories, it is evident that the available data is not what is needed to take conservation action. To date there is no overall assessment of Europe's endemic inventory either on a spatial level or showing the ecological distribution of endemic populations (Bruchmann and Hobohm 2010b).

One aim of this investigation is, therefore, to assess the general distribution patterns of Europe's endemic taxa (see also Hobohm 2008). The thesis looks into the floristic and taxonomic patterns of Europe's endemism on the one hand and on the other hand, provides an intensively analysis of the spatial and ecological distribution (i.e. classifying endemics according to major habitat categories) patterns of endemic plants.

Based on the reviewed data on endemism given in the Database EvaplantE (currently comprising about 6,200 endemic taxa; Hobohm 2008; Hobohm and Bruchmann 2009; Bruchmann and Hobohm 2010a) the major goal of this thesis, however, is to find explanatory variables to build a model for the prediction of the distribution of endemics in Europe (evolutionary patterns/ patterns of species dispersal).

It is hypothesised that most of the variability of the data on Europe's botanical endemism can be well explained with the help of a few indices describing the explanatory variables 'species pool', regional 'habitat diversity', 'isolation degree' and 'habitat continuity' (see also theories of Cain 1944; Kruckeberg and Rabinowitz 1985). For this purpose, the applicability of Geographical Information Systems (GIS) as well as of spatial and non-spatial regression statistics was tested and evaluated.

The comprehensive results of this thesis should help to better understand Europe's plant endemism in general and, hopefully, help to span a systematic and tight net of conservation to contain the loss of Europe's biodiversity.

Endemism – theoretical and historical background

Etymology and evolution of the term

The term 'endemic' comes from the Greek '*endemos*' which means as much as 'native to a place'. Today, two different scientific disciplines use and define this term, partly in contradictory ways. In the medical context, 'endemic' denotes a disease that is typically found among the inhabitants of a particular region and is prevalent only in this area (i.e. malaria diseases in tropical regions; (Haubrich 2003). In the ecological or biogeographical sense, however, the term 'endemic' refers to any taxonomic entity (species, genus, family), the occurrence of which is restricted entirely to a defined area.

The idea of endemism in biogeography dates back to De Candolle in 1820. De Candolle borrowed the term directly from the medical language in order to describe a botanical phenomenon of interest.

'Parmi les phénomènes généraux que présente l'habitation des plantes, il en est un qui me paroit plus inexplicable encore que tous les autres: c'est qu'il est certains genres, certaines familles, dont toutes les espèces croissent dans un seul pays (je les appellerai, par analogie avec le language médical, genres endémiques), et d'autres dont les espèces sont réparties sur le monde entier (je les appellerai, par un motif analogue, genres sporadiques).'¹

De Candolle clearly acts on the assumption that endemic taxa ('genres endémiques') occur numerously within their restricted geographical ranges, while cosmopolitan species have a widespread distribution but with only low frequencies ('genres sporadiques').

However, the term 'endemic' should not be confused with, or even reduced to the term 'indigenous'. Even if the etymology points to this meaning, the concept of endemism delineates much more than simply being native or indigenous.

Categories for defining endemism

The concept of endemism, as it is presently conceived, is at first a very relative one. The simple but quite rudimental definition being restricted entirely to a defined area leaves much scope for interpretation and raises several questions concerning the scales of space and time in which endemism is surveyed.

¹ Translation:

^{&#}x27;Of all the general phenomena regarding the living places of the plants, this seems to me even more inexplicable than the rest: the fact that all species of certain genera or families grow in a single country (by analogy with the language of medicine I will call these endemic species), and that there are other species which have species distributed throughout the whole world (by the same analogy I will call these sporadic species).'

The potential biases that might result from a relative usage of spatial scales become clear when the question is considered from two extremes: For every organism on earth it is, hypothetically, easily possible to find a spatial scale that undercuts its natural range of occurrence. So a simple refinement of scale could lead to the status 'non-endemic' even if the population of the organism under consideration is limited to a habitat size of a few square kilometres, as is the case for the rare riparian plant *Oenanthe conioides* near Hamburg (Germany; Jäger and Werner 2002).

At the other extreme, an enlargement of scale leads to the conclusion that every organism is endemic, at least to the planet earth (e.g. *Canis lupus* or *Homo sapiens sapiens*). It thus becomes obvious that the basic concept of endemism could become quite farcical, and hence powerless, if the definition is followed stringently towards the extremes.

The concept needs refinements and specifications to acquire real meaning, and thus to gain biological or political significance, i.e. in order to obtain valid figures or measurements and comparable values, and indications of how and where conservation action should be taken. Over time the number of definitions, concepts, theories and hypotheses on endemism has increased continuously, and today there are a large number of terms associated with the idea of endemism (Kruckeberg and Rabinowitz 1985; Heywood 1996; Pyak et al. 2008).

In the following, some common classification systems and major subcategories of endemism e.g. endemism categorised according to spatial distribution or inferred evolutionary age, are briefly reviewed and related to the goals of the present thesis. Further, some of the problematic aspects of defining and measuring endemism are mentioned, for example the problems which result from different taxonomical rankings or the difficulties involved in categorising the rarity or vulnerability statuses of endemic plants.

Spatial categories of endemism

As noted above, the status 'endemic' strongly depends on the chosen spatial units. In fact, there are no hard-and-fast rules that determine the selection of spatial scales in biogeography or in conservation practice. A comprehensive review of data on endemic vascular plants showed that the choice of the 'appropriate scale' is often determined by the major focus of the respective studies, by the available floristic databases, and also by the study area itself. Thus, the large number of data sets (some 100 in total) which were reviewed referred to many different scales, making comparisons, statistical evaluations or calculations almost impossible (Heywood 1996; Bruchmann & Hobohm, not published).

Beside the basic quantitative dimension of area there is also a qualitative dimension to space. Thus, one should always ask what it is that divides the given space up into various regions. Is it a (hard)

natural or (soft) ecological boundary that defines a region or is it an artificial one e.g. political or administrative districts?

Pyak et al. (2008: p. 59) argued that those endemics, that are confined to artificial units '...certainly dependent upon the vagaries of geopolitical boundaries...'.

To contrast this connotation of endemic status the authors called those endemics 'conditional endemics'. However, both 'types' of endemism have their legitimation: As endemic species function as a very powerful argument in politics, the information about conditional endemic species might be very useful for decision making and for implementing conservation and management actions. Species that are defined by natural divisions, however, deliver important ecological and biogeographical information on biodiversity in general.

Heywood (1996) concluded that endemics are commonly classified according to four spatial categories: I. Site or restricted area, II. biotope, III. biogeographical region and IV. political area. In order to better understand the spatial topic these four categories are described and substantiated by concrete examples. Further, I suggest a fifth category that includes standardised synthetic areas such as geodetic units (e.g. a gridcell of 1 by 1 degree) or investigation areas of standardised shapes and sizes.

I. Site or restricted area

This is quite a variable category, as a site may be nearly everything which is restricted by any visible natural boundary. Hence, a site may be an archipelago or a single island, a mountain range or a summit, a coastal cliff or a riverine strip, an estuary, a bog or fen or any other obvious formation. Sites may be of unequal sizes, could be nested or overlap with other sites and comprise several habitat types. For example, the Canary Islands collectively host 540 endemic taxa, of which 12 are restricted to the island of Lanzarote; 3 of the 12 Lanzarote endemics are confined to the Famara mountain range.

II. Biotope

In contrast to a site, a biotope is an area that is characterised by particular ecological features, as it is the case for many habitat types. The ecological boundaries that define the division are not necessarily visible but represent some kind of ecological restriction to the organisms' distribution range. Biotopes and habitats may also be of different range sizes, but depending on the organisms under consideration, habitats are most often not nested or overlapping, but have smooth transition zones. For example, the range of *Oenanthe conioides*, a member of the family Apiaceae is restricted to the open riparian areas of the River Elbe near Hamburg. Its total range is limited to about 10 -100 km² even though the available (open vegetated) riparian area is much larger (Federal Agency for Nature Conservation 2010, URL: www.floraweb.de; Rothmaler 2005). However, the plant species

seems to be bound to those riparian areas that are tidally influenced but not brackish or salty. Hence, the regime of temporary flooding combined with the salt influence seems to be ecologically decisive and therefore forms the ecological boundary that limits *O. conioides* to its small living space.

III. Biogeographical region

A biogeographical region (also known as ecozone or realm) is a biogeographical division which is characterised by a similar geological and evolutionary history e.g. the Palaearctic realm. The organisms living within a realm developed over long time periods in relative isolation, due to geologic features that functioned as migration barriers (hard boundaries e.g. oceans, deserts, mountain ranges). Generally, a biogeographical region is a much larger division than the sites or biotopes and habitats defined above. Subdivisions of biogeographical regions may be ecoregions (often synonymous with biomes²). As an example, four species of the family Lauraceae (figure 1; *Laurus novocanariensis, Apollonias barbujana, Ocotea foetens* and *Persea indica*) are confined to the biome Macaronesian laurel forests (*'laurisilva'*) that occurs exclusively on the archipelagos of the Azores, Madeira and the Canary Islands, which are all part of the Palaearctic realm (Hansen and Sunding 1993; Hohenester and Welß 1993).

IV. Political area

Political areas comprise political (countries, districts or political unions) as well as administrative divisions (e.g. administrative districts, nature reserves). Political and administrative boundaries are artificial but in some cases may follow natural separating lines such as rivers, coastlines, mountain ranges etc. The boundaries of political areas may be apparent, such as obvious border demarcations or fences, or invisible, e.g. open borders, administrative districts, cultural or lingual borders. However they are delineated, such borders designate territories that act in some way autonomously. In most cases, it is not desirable that political divisions are nested or overlapping, although there are a few such cases: For example, in the case of political unions such as the European Union, where the territories of member countries are nested within the territory of the EU, or trans-national nature reserves where the administrative area of a reserve coincides with that of several nations.

² Although the terms 'ecoregion' and 'biome' are often used synonymously in todays language the terms have slightly different meanings. Biomes are characterised by particular ecological patterns and the respective climax vegetation which develops as a result, whereas ecoregions are defined by genetic, taxonomic, or evolutionary similarities.

a)

Fig.1: Species of the laurel forest - biome occuring in the Azores, the Canary- and the Madeira Archipelago: a) Laurus novocanariensis; b) Apollonias barbujana; c) Persea indica; d) Ocotea foetens (Photographer: Wels).

15

Box 1: Androsace alpina – a cross-border endemic

Androsace alpina (Primulaceae) is a showcase for many other taxa in that it reveals very clearly the ambiguities and problems of defining endemic taxa according to political divisions. A. alpina inhabits high altitude rock and scree habitats in France, Switzerland, Austria and Italy. In none of these countries this plant is listed as an endemic species because its natural range is not confined to any of the national territories.

Fig. 2: Androsace alpina (Photographer: Feurich)

However, if the situation is considered from a different point of view and the focus placed on the Alps as a site or ecoregion it becomes obvious that *A. alpina is* endemic to the Alps. It is most likely a species that is endemic to the habitat type 'rocks and scree'. If we enlarge the focus again to the dimension of the continent, Europe, *A. alpina* becomes endemic again. However, if the political division European Union (EU) is the centre of consideration, then *A. alpina* becomes non-endemic again because Switzerland is not a member of the EU.

Fig. 3: Occurrence of the alpine endemic plant Androsace alpina according to the database EvaplantE.

Sector Con

V. Standardised divisions

Some authors demand the use of standardised divisions of congruent areal size in order to obtain comparable quantified data that gives greater validity to statistics or more explanatory power to model systems or future scenarios (Crisp et al. 2001; Jurasinski and Beierkuhnlein 2006; Dengler 2009). These standardised spatial divisions could be geodetic units (e.g. a gridcell of 1 by 1 degree) or investigation areas of standardised shapes (squares, circles, or hexagons) and sizes (e.g. squares of 100x100km², hypothetic or real). Similar to the political divisions, standardised units also have artificial boundaries but these are of a 'purified' nature. Standardised divisions are generally rectangular or circular units that are projected on the earth's surface, so no natural line (e.g. a river or stream) could ever mark the boundaries. The reference point of the projection is either randomly chosen (random sampling e.g. grid system approaches) or systematically selected (systematic sampling e.g. comparing species-poor and species-rich units of different regions; Jurasinski and Beierkuhnlein 2006).

Several caveats and biases arise when defining endemics according to standardised divisions: On the one hand, the standardised-division-endemics are conditional endemics again because of the more or less arbitrarily chosen artificial borders of the artificial units. On the other hand, the predefined unit size implicates a minimum or maximum area for being endemic or not endemic. This issue should be discussed very carefully. Further, the position of the population centre of a species is of importance. If the population centre of a species is positioned in the centre of the predefined observation unit then the taxon has a high likelihood of being endemic even if the species has a big absolute area of distribution. However, this likelihood decreases if the population centre is displaced towards the borders of the unit (see also Box 5; Hobohm and Bruchmann 2009).

$\sqrt{}$

Inferred evolutionary age

Endemism may also be categorised according to the evolutionary age of the entity. The basic assumption is that taxa that are isolated at a high taxonomical level e.g. the monotypic gymnosperm plant *Welwitschia mirabilis* (Welwitschiaceae; figure 4b) or the living fossil *Ginkgo biloba* (family: Ginkgoaceae, which is even classified in its own division Ginkgophyta; Figure 4a), are very old in evolutionary terms (Khoshoo and Ahuja 1963; Royer et al. 2003). Evolutionarily young species are most often present at low taxonomical levels. Members of the genus *Dactylorhiza* (Orchidaceae) are a good example of this. In Europe the genus *Dactylorhiza* is split into a huge amount of species, subspecies, and varieties but there are still many taxonomical uncertainties. Many natural hybrids or even the existence of several intergeneric hybrids (e.g. *Dactylorhiza*×*Gymnadenia* = ×*Dactylogymnadenia;* Jäger and Werner 2002) lead to the assumption that the genetic boundaries of the *Dactylorhiza* taxa are quite weakly developed. This is why one may cautiously hypothesise that the evolution of the genus *Dactylorhiza* is still in progress and that, consequently, the taxa which exist today are quite young. On the other hand, the ancient species *Welwitschia* or *Ginkgo* are relicts of their families and do not show any evolutionary activity today.

The classification of endemics according to their evolutionary age goes back to Engler (Engler 1879-1882) who introduced the terms 'neoendemic' and 'palaeoendemic' to botany. Palaeoendemics are 'phylogenetically high ranking taxa (...) that may be regarded as evolutionary relicts' (Heywood 1996: p.174) such as the above-mentioned Welwitschia mirabilis (figure 4b). Neoendemics are defined as 'clusters of closely related species and subspecies that have evolved relatively recently' as a result of speciation and adaption to different environmental conditions (e.g. Dactylorhiza species; European Biodiversity Clearing House Mechanism, URL: www.biodiversity-chm.eea.europa.eu).

Fig. 4: Evolutionarily ancient species: a) *Ginkgo biloba (Photographer: Wels)*

b) Welwitschia mirabilis (Photographer: Wels)

Improvements in genetic analytical methods lead to a refinement of the terms based on taxonomical rankings and ploidy levels. Favarger and Contandriopoulos (1961) argued that the formation of new species is often provoked by the multiplication of the species chromosome set (genome, polyploidy). On the strength of this, the authors recognised three categories of neoendemics: (1) 'apoendemics', which are defined as taxa with a higher ploidy level than their closest relatives; (2) 'patroendemics', which have a low ploidy level and that presumably have spawned younger taxa with higher ploidy levels; (3) 'schizoendemics', if the ploidy levels of the endemic taxon and its close relatives are equal (vicariant species). Following this scheme, palaeoendemics are polyploid taxa that are ancient and isolated because all their diploid ancestors have become extinct in the course of time.

Without any doubt, the classification of endemics according to their inferred evolutionary age is of interest in phylogenetics and raises many questions with respect to evolutionary studies. This classification scheme might also be of special interest in species conservation as it points to several ways in which conservation management can be made more effective. However, as Heywood (1996) points out there are several problems associated with Favarger and Contandriopoulos' rigidly compartmentalised system of classifying endemics so that this system should be applied with caution (Heywood 1996). For instance, there are many palaeoendemics such as *Globularia incanescens* (Globulariaceae; figure 5) that are diploid and thus have low ploidy levels (Garbari and Bedini 2006).

Fig. 5: *Globularia incanescens (*Photographer: unknown; free available under GNU-licence) The genome of this plant is diploid although the alpine plant is listed as a palaeoendemic.

Taxonomic level of the endemic entity

It is particularly important to query the taxonomic level of endemic taxa when quantifying endemism. On the one hand, this is necessary in order to 'weight' the value of the endemic entity, which means that endemic entities of a high taxonomic level (e.g. endemic families or genera) should be weighted differently than an endemic subspecies or even a 'varietas' of a species (e.g. *Argyranthemum adauctum* ssp. *canariense;* synonym: *Argyranthemum adauctum* var. *canariense;* endemic to the Canary Islands, see figures 6). For example, the plant family *Didiereaceae* endemic to Madagascar comprises eleven endemic species divided into four endemic genera (Applequist and Wallace 2000).

Fig. 6a: Argyranthemum adauctum ssp. dugourii, Tenerife (Photographer: Welß)

Fig. 6b: Argyranthemum broussonetii ssp. gomerensis Gomera (Photographer: Bruchmann)

On the other hand, endemism figures are strongly influenced by the taxonomic interpretation of the respective botanists. Some publications reported a surprisingly high fluctuation in numbers of regional endemics depending on the taxonomic experience of the researchers. An example from the Crimean peninsula clarifies this: The number of endemic species on the Crimean peninsula was estimated at 279 species in 1996. After a comprehensive floristic revision in 2006, however, this number decreased rapidly to 127 endemic species and subspecies. About 100 former endemic species had to be 'dethroned' for taxonomic reasons, either because of aspects of synonymisation or

because of a lowering of the taxonomic rank, as many so-called endemic species were recognised to be formas or varietates (Yena 2006, 2007).

'For example, in Thymus we have only one Crimean endemic now, whereas 9 other taxa previously recognized as endemics are simply glabrous or downy-leaved forms of other widespread species.' (Yena 2006: p. 21).

This example shows that the number of endemics per region varies according to the stringency of the applied species concept. If a monotypic taxonomical standard is applied which presumes a narrow species limit, the number of endemics is much higher than is the case when a polytypic standard (implies broader species limits) is applied. Yena contrasted these different taxonomic standards by using the terms 'splitters' for monotypic and 'lumpers' for polytypic taxonomic interpretation (Yena 2006).

Through this line of arguments it becomes evident that all comparisons of endemic data have to consider the problems that result from the different taxonomic treatment of the floras under consideration. In the case of the Crimean peninsula the monotypic species interpretation made the sub-Mediterranean climate region much richer in endemics than the Mediterranean islands Sardinia or Sicily are (absolute numbers). The moderate endemic species number of a polytypic species interpretation brings the Crimean down to a middle score. However, even this moderate figure of about 125 endemic taxa surpasses the evaluated absolute numbers of Crimean endemics in the present study by far.

Beside these general categorisation systems regarding endemism in spatial, temporal or taxonomical dimensions, the level of stringency in using the term 'endemic' is vitally important. Hawksworth and Kalin-Arroyo (1995) pointed out that many studies on endemism are insufficiently explicit about the evaluation methods employed and that definitions of the term 'endemism' are often ambiguous. An as yet unpublished review of data on vascular plant endemism collected around the world shows that due to the inconsistent application of the term endemic it is largely impossible to use the datasets to compare the endemicity of the different regions. While comparing publications it became evident that the terms 'endemic', 'subendemic' and 'species' and 'subspecies' were not always used with precision. For example, the term 'species' was often used in the meaning of species plus subspecies (Bruchmann & Hobohm, unpublished).

As discussed above, there are many ways of defining and interpreting the concept of endemism. In general, all concepts of endemism have their own special value but should be balanced differently when using the data. When applying any data on endemism, however, it is always of great importance for the validity of an analysis of the endemic inventory of a region (e.g. for assessing the biodiversity or conservation value) to know precisely how the term endemism was defined when the data was collected.

$\overline{ }$

Endemism, rarity and vulnerability

Endemism is often used as a powerful political argument as species with a restricted distribution range are said to be more in danger of extinction than widespread species. Therefore, endemics should be given conservation priority (Fontaine et al. 2007; European Communities 2008).

However, to be endemic does not necessarily mean to be rare or in danger of extinction (comprehensive summary on aspects of rarity in Kruckeberg and Rabinowitz 1985). Some endemic taxa show very wide geographical distribution ranges, while others – and not exclusively the palaeoendemics – have extremely narrow ranges of occurrence (see examples in box 2).

The level of rarity may be determined by three dimensions: Range of occurrence (geographical range), habitat specificity (ecological range), and population size (demography; figure 7) Thus, if a plant is restricted to a small range (e.g. local endemics), is a stenoecious habitat specialist, and occurs in small population sizes then it suffers an extremely high risk of becoming extinct (vulnerability). A single catastrophic event may erase the plant from its existence on earth.

Fontaine et al. (2007) stressed that local endemic species '*are by far the most at risk of extinction*' (Fontaine et al. 2007: p. 11) but also underlined the aspect of demographic rarity, which means that small isolated populations that are distributed over a large geographic range are also endangered because of local extinction events. Extreme habitat specialist species may be endangered as well because they are not able to buffer habitat changes or to adapt within adequate time periods.

The appraisal and categorisation of an endemic taxon as rare or endangered should thus be conducted carefully for every single taxon. The appraisal should include all available data and take into consideration all existing data gaps on actual range sizes, abundance, habitat specificity and species traits (e.g. pollination mode, seed dispersal and others).

Box 2: Endemic - rare - endangered?

Good examples are amongst others the pan-Europe endemic plant *Cymbalaria muralis* (Scrophulariaceae; figure 8), which commonly grows in rocky habitats, and the extremely local endemic plant *Atractylis preauxiana* (Asteraceae; figure 9), which is exclusively found in stony habitats at the southeastern coastal fringes of the islands of Tenerife and Gran Canaria (Caujapé-Castells *et al.*, 2008).

C. muralis originates from northern Italy and was already cultivated in the 16th century and anthropogenically displaced as a garden plant³. As this plant has good dispersal abilities and finds suitable habitats in anthropogenic wall crevices it has now become naturalised and is even listed as neophyte throughout northwest Europe (e.g. Federal Agency for Nature Conservation 2010; www.floraweb.de). As this endemic species has a wide geographical distribution range, finds numerous suitable habitats where it occurs quite abundantly, it is evident that this species is not rare or in danger of extinction.

*A. preauxian*a, however, is severely endangered. It is rare because it has a very narrow distribution range and its local population sizes are quite small. *A. preauxiana* further has strict ecological requirements and seems unable to shift from its original habitats. Because of strong human pressure on the remaining habitat fragments almost all subpopulations of *A. preauxiana* are declining in size and some have already gone extinct (Caujapé-Castells et al. 2008).

Fig. 8: Cymbalaria muralis (Photographer: Bruchmann)

Fig. 9: Atractylis preauxiana (Photographer: Welß)

³ For the paradoxy of endemic plants that are listed as neophyte please see also box 3.

Measuring endemism

The interpretation of endemism data strongly depends on the mode in which the assessed data is quantified and reported. McDonald and Cowling (1995) noted:

'In quantifying patterns of endemism, the units of measurement (spatial scale and taxonomic entity) and the mode of reporting of the data (percentages or counts) influence the interpretation of results. Many studies on levels of endemism are insufficiently explicit about the evaluation methods employed. It is important to be unambiguous about defining and categorizing endemism, especially since it is often used as a criterion for identifying and prioritizing protected taxa and areas.'

A comprehensive review on worldwide published data on regional plant endemism (Bruchmann & Hobohm, unpublished) shows that endemism is measured and quantified in quite different evaluation modes, which makes the data partly incommensurable e.g. in comparative studies. To provide an overview and an indication of the possibly occurring biases which arise when using different benchmarks and standards to evaluate endemism some of the most frequently published standard measures are briefly summarised in the following:

Regional endemism is often quantified by both the absolute number of endemic taxa (E) and the ratio of endemic taxa to the absolute number of taxa (E/S). However, great care must be taken in interpreting these numbers. Large proportions of endemics may result either from high endemic species numbers or simply from low total species numbers. The Canary Islands and continental Spain, for example, have almost the same number of local endemic taxa (540 vs. 555 taxa, respectively) but as the Canary Islands have lower absolute species numbers the rate of endemism is much higher (27%) than the endemism rate of continental Spain (11%). Also there are large differences in the area sizes: The Canary Archipelago is about 65-fold smaller than the Spanish mainland area. So the numbers are not at all comparable and do not allow any conclusion concerning the richness of endemic taxa or endemic species density.

In order to evaluate species richness over space some authors (e.g. Hobohm 2003; Georghiou and Delipetrou 2010; Panitsa et al. 2010) quantify endemic species densities (endemicity) by applying calculations on Endemic-Area-Relationship (EAR; according to the concept of Species-Area-Relationships (SAR)). Generally the displayed pattern is a positive correlation between area size and species numbers. However, the Species-Area-Relationship is not linear but fits best to the power equation with logarithmic transformation. Usually, the SAR or EAR relationship is graphically displayed in a log-log-linear plot, which means that by log-transformation of the axes the resulting graph is linear-shaped. Inherently the underlying mathematical relationship (power equation), however, is not coherent to convert species numbers according to their (endemic) species richness.

In fact, there is to date no adequate measure for comparing endemism rates or species densities of regions with different area sizes: The direct ranking of regions in the course of endemic density (E/A) is only feasible if either the number of endemics or the area size is constant (see: table 4).

On a large scale Bykov's index of endemicity (I_E) may be an appropriate quantitative measure for comparing endemism rates of different regions. It determines whether the ratio of endemism within a defined area is higher or lower than the standard value that was given by Bykov (Bykov 1979). The expected endemism value is usually read from the log-log plot of area against percentage endemism derived from Bykov's data (Bykov 1979; Major 1988; see also Hobohm 1999).

Bykov's index of endemicity was often criticised because of the arbitrary setting of the 1% ratio to an area of 625 km² but it was also conceded that the slope is little influenced when downscaling the 1% value to an area of 300 km² (Hawksworth and Kalin-Arroyo 1995: p. 176).

The alpha-index sensu Hobohm (Hobohm 2003) enables comparisons of (endemic) species densities as it uses the residuals of the SARs or EARs. This measure is often applied in the field of applied conservation biology e.g. for the ranking and identification of species-rich or distinctive (biodiversity hotspot) areas. There has also been critical discussion of the alpha index: On the one hand, because of some mathematical problems resulting from the statistical autocorrelation and, on the other hand, because of biased results actually inherent to the usage of SARs and EARs and the ratio of endemism and total species richness (e.g. Lu et al. 2007)³. However, several recently published studies applied the alpha index as an appropriate measure (Werner and Buszko 2005; Lu et al. 2007; Nikolic et al. 2008; Paulini et al. 2008) for accounting and ranking biodiversity features.

Another index for quantifying endemicity is the range-size-rarity (or, more precisely, the inverse range size rarity). Its calculation is based on counts of grid-cell units in which a taxon is present or, conversely in which the taxon is absent. The range size rarity is defined as the inverse number of cells occupied by the taxon under consideration (Heywood 1996). Further, the sum of range size rarities of taxa occurring within a grid cell is often calculated in order to quantify the endemism richness of the grid unit.

As the range-size-rarity measure is based on absence data in grid-cell units of congruent areas, this measure does not suffer the biases caused by spatial autocorrelation or the errors resulting from an underlying species-area-relationship across scales – as is the case for Bykov's index and the alphaindex. This measure has, therefore, frequently been applied in the recent literature (e.g. Knapp 2002; Reyes-Betancort et al. 2008 also, Biodiversity and WorldMap project of the Natural history museum URL: www.nhm.ac.uk).

When applying the range-size-rarity measure it should kept in mind that this measure strongly depends on the spatial scale of the respective study. As there is no global uniform standard area size

³ Authors mainly critised that it is difficult to decide if either species diversity or endemism (distinctiveness) plays the more important role in assessing hotspot areas.

for measuring range size-rarity all previously mentioned biases and errors which occur when comparing endemism data across scale must be accounted for when comparing range-size-rarity measure of different studies using different scales.

Fig. 10: *Centaurea alpina* (Photographer: DiTomaso, University of California)

Interestingly, there are some endemic plants that seem to have good adaptive abilities and may become neophytes in regions outside Europe. It can be assumed that these plants have attractive flowers and thus were grown as garden plants before spreading

One example may be the Alpine Knapweed (also Tyrol or Short-fringed Knapweed) *Centaurea transalpina* (syn. *Centaurea nigrescens* ssp. *transalpina; Centaurea nigrescens;* figure 10) that is native to the Alps in Europe and inhabits alpine meadows there. This plant is known as a neophyte and is even listed as an invasive species in North America and colonises roadsides, fields, and waste areas (Center for Invasive species and National Park Service, URL:

www.invasiveplantatlas.org).

Paradoxically, this plant is also listed as an European endemic species in the Flora Europaea (Tutin *et al.*, 1996). The truth is certainly to be found somewhere in the middle. However, it should be noted that there has been much

controversy regarding the correct taxonomy applied to the North American Alpine Knapweed. A taxonomic revision is needed to finally validate the plants identity (Encyclopedia of life, 2010; eFloras, URL: www.efloras.org).

Material and Methods

Study area

The study area (figure 11) comprises the entire European mainland and several islands or archipelagos and is congruent with the biogeographic definition of Europe in Fontaine et al. (2007). The mainland area is bordered by the major oceans, the Atlantic and the Mediterranean Sea, and is, to the east, confined by the Ural Mountains and the River Ural. The eastern part of the Republic of Kazakhstan (separated from the western part of the country by the River Ural) and the Caucasus region (following the Rivers Volga and Don) are excluded.

The Atlantic islands⁴, Svalbard, Iceland, the Faeroes, Ireland, (Great) Britain, Azores, Madeira (incl. Selvagem) and the Canary Archipelago, and some of the bigger Mediterranean islands, namely the Balearic Islands, Corsica, Sardinia, Sicily, Crete, and Cyprus are included and are treated as autonomous geographic regions. In all, the study area is divided into 42 regions (28 mainland and 14 island regions). Thirty-nine of these are identical to the 39 regions described in Flora Europaea (Tutin et al. 1996a-e), but three new regions - the Canary Islands, Madeira Archipelago and Cyprus - have been added (for more detailed descriptions of the regions see table A1, appendix).

Fig. 11: Study area (Scale 1:53,000,000)

⁴ The North-Atlantic islands Franz-Josef-Land and Novaya Zemlya are confined to the Northern Russia region.

In most cases, the boundaries of the 42 divisions are artificial (political divisions) and it quickly becomes obvious that there is no correspondence with the natural biogeographical divisions of the European continent. Only the 14 island regions have natural boundaries (shoreline).

The regions vary substantially in their area: the smallest region is the Madeira Archipelago (Ma) with less than 800 km² which is heavily contrasted by the more than 2000fold larger Russian Central region (Rs (C)) that comprises more than 1,625,800 km².

Floristic database EvaplantE

For the purpose of assessing Europe's endemic flora, a spreadsheet database named EvaplantE (Endemic vascular plants in Europe) was evaluated. The database which currently comprises about 6190 endemic vascular plant taxa, was designed and is regularly updated by a working group at the University of Flensburg (see Hobohm 2008). In the course of the research activities apparent in the present thesis a comprehensive work on the endemic flora of Madeira and the Canary Islands was added in 2009⁵.

The lowest accepted taxonomic level is the rank of subspecies; thus, microspecies such as apomicts, or varietates are excluded as are all plant taxa for which the endemic or the taxonomic status is uncertain. Beside information on literature sources and taxonomic synonyms for each of the listed taxa the database contains coded data on taxonomical features, spatial distribution (presence-absence in the 42 regions), altitudinal ranges of occurrence, ecological affinities, habitat attribution and other data. An abstract of the database showing the rich Canary Island region is given in the appendix (see table A2).

A large number of literature sources were evaluated to generate the datasets: basic supra-regional floras (e.g. the Flora Europaea, the Nordic Flora, the Flora of Russia, the Flora Alpina, the Flora Iberica, or the Flora of Macaronesia) as well as regional or local floras, e.g. the Flora dels Paisos Catalans; Flora Hrvatske, Flora de Mallorca, Flora of Cyprus, Flora of Madeira, New Flora of the British Isles and many others. Further, all monographies on endemism within distinct regions e.g. the Atlas of Bulgarian Endemic Plants (Petrova 2006), the Atlas of rare endemic vascular plants of the Arctic (Talbot et al. 1999), the endemic plants of Cyprus (Tsintides and Kourtellarides 1998), and several geobotanical field guides were consulted. Some species data were acquired or validated from online databases (e.g. digital herbaria) or was taken from research papers. All the literature consulted is listed in table A3 (appendix). As far as possible, endemic taxa were assigned to predefined habitat categories.

⁵ The work on EvaplantE was initiated by C. Hobohm, and was enriched with data of J.Dengler (University of Hamburg) and S. Boch (University of Bern). The addendum with more than 600 endemic plant taxa of the Madeira and the Canary Island flora was mainly done by I. Bruchmann and supported by C. Hobohm (University of Flensburg).

In view of the many difficulties and biases which result from the use of different habitat terminology in the various European languages or from different international regulations and classification standards, an attempt was made to make comparisons valid by defining eight habitat categories which correspond well with those of the Habitat Directive of the European Commission (European Commission DG Environment 2007).

EvaplantE distinguishes between rocky habitats and screes, (non-woody) grassland ecosystems, scrubs and heaths, forests (including tree plantations), coastal and saline habitats, arable lands and other man-made habitats, inland water bodies (standing and running waters), and mires (including bogs, fens, swamps). For more detailed information on database structure see Hobohm (2008) and Hobohm and Bruchmann (2009).

Compilation of geographical data (GIS)

Compilation of spatial dataset and map visualisation

The study area was drawn in a digital map with the help of desktop Geographic Information System (GIS) applications. The base maps are 1) the map of the Flora Europaea which was digitised and geo-referenced and 2) the World Countries (generalised boundaries⁶).

The map was projected using the spatial reference system WGS 84. Geometrical data such as 'area' (in km²), 'perimeter' (km), the length of 'shoreline' (km), the lengths of shared borders with every neighbouring region ('borderline'; km) and the 'centroids' were calculated for each of the 42 regions. An overview of all queried geometrical data is given in table A5 (appendix).

To enable later queries the attribute data-table (.dbf) that obligatorily accompanies the spatial dataset (polygon shape file: .shp) was further supplemented by labelling attributes: geographical features (area, perimeter etc.), attributes of vegetation and geology, and also attributes of the diversity of endemic taxa per region and per habitat type (the latter were taken from EvaplantE - database).

All work on spatial data was carried out using the free software application Quantum GIS (Version 1.2.0 Daphnis⁷) and the open source software Geographic Resources Analysis Support System (GRASS version 6.4⁸).

⁶ The shapefile cntry2008.shp is free accessible within ESRIs worldmap-data 3.0-package. The World Countries map represents generalised boundaries for the countries of the world as they existed in January 2008. Generalised political boundaries improve drawing performance and effectiveness at a global level.

⁷ Quantum GIS products available from www.qgis.org

⁸ GRASS available from www.kyngchaos.com/software/grass

Fig. 12a: Original map of the regions in Flora Europaea

Fig. 12b: Generalized World Countries map by ESRI.

Fig.12c: Resulted digital map of the study area.

$\overline{ }$

Compilation of explanatory variables

The contemporary distribution patterns of (endemic) species should result to varying degrees from influencing factors, such as 1) 'habitat continuity', thus evolutionary stability 2) 'habitat diversity' 3) 'isolation degree' and 4) regional 'species pool'.

Several indices describing these different explanatory variables were derived from digital maps by blending different thematic (map-)layers with the map of the study area (see figures 12a-c). Each explanatory variable for the calculation of the regression models was interpreted in at least two indices.

Table A5 (appendix) provides an overview in alphabetical order of the indices and how they were calculated, as well as detailing all dependent and independent (explanatory) variables.

Habitat continuity

The extent of the last glaciation events in Europe, and thus of severe ecological disturbance events, is considered to be an appropriate indicator of ecological continuity, or better of ecological discontinuity.

The data on the extent of Quaternary glaciations in Europe was compiled from digital maps that were presented by a workgroup of the International Union for Quaternary Research (INQUA, 2004). The mapping of the glacial limits (figure 13a-b; also 15a-c) is based on the Digital Chart of the World (DCW)⁹ at a scale of 1:1,000,000 (Ehlers and Gibbard 2003; Ehlers and Gibbard 2004). The spatial data for the succeeding glacial events was merged into one single shapefile that displays a 'total glacial maximum' (TGM) for the Quaternary era. The layer which shows the different glaciation events were referenced to the coordinate reference system WGS 84 and blended with the layer of the study regions (figures15a-c).

Six different indices for ecological continuity were generated from these data: the glaciated area (km²) per region and the corresponding figures for the non-glaciated areas per region (i.e. the areas of refuge (km²)) for a) the maximum glaciation of the Saalian period ('SGM ice', 'SGM refugia') b) the last glacial maximum ('LGM ice', 'LGM refugia') and c) the total glacial maximum ('TGM ice', 'TGM refugia')¹⁰ from the merged layer.

⁹ DCW is a product of Environmental Systems Research Institute, Inc. (ESRI) but was originally developed for the US Defence Mapping Agency.

¹⁰ TGM layer comprises all glacial events of the Quaternary and comprises the extension of the Pleistocene glacials, the Don-, the Elsterian, the Saalian, the Weicheselian and glacial maximum.

Fig. 13a: INQUAS' original map on Quarternary glaciation in Europe.

Fig. 13b: Resulted digital map of the study area overlaid with the layers of the last glacial maximum (LGM), the Saalian glacial maximum (SGM), and the total glacial maximum (TGM).

Habitat diversity

Habitat diversity is often described in terms of altitudinal gradients, geological diversity of soils or vegetation cover (e.g. Kallimanis et al. 2010; Panitsa et al. 2010).

Vegetation data was derived from the digital maps of the natural vegetation of Europe compiled by the Federal Agency for Nature Conservation (Bohn and Neuhäusl 2004)¹¹. The digital map was referenced to the coordinate reference system WGS 84 and blended with the layer of the study regions. The 'vegetation index' was based on the number of vegetation types per study region. Missing vegetation data from the regions Azores, Madeira and the Canary Islands were evaluated from other literature sources (Jardim and Francisco 2000; Rivas-Martínez et al. 2002; Borges et al. 2008).

The 'soil index' was based on counts of soil groups per study region and was derived from the latest version of the Harmonized World Soil Database (HWSD¹²; Nachtergaele et al. 2009). This map is already available in the coordinate reference system WGS 84. However, a new shapefile merging the study map with soil data was created to enable the counting of soil types per region (figure 16).

Elevational data on minimum and maximum elevation was derived from the Digital Elevation Model (DEM) GTOPO 30¹³.

The following indices for describing habitat diversity were calculated: absolute numbers of soil and vegetation types and two measures of altitude: The 'relief index', which is calculated as the difference between maximum and minimum elevation within a region, and the 'relief-area index', which is defined as the squared altitudinal range divided by area and gives an idea of how altitude is allocated across the area (Formula: 'relief-area index' = (altitude_{min} - altitude_{max})²/area).

Isolation degree

Four different indices were calculated to describe the explanatory parameter isolation and geographical separation:

- The 'coastline index', which is the proportion of coastline per perimeter of each region. Formula: 'coastline index' = coastline_{region x}/perimeter _{region x}
- 2) The 'isolation index', is also based on the proportion of coastline per perimeter but includes distance measures of the island regions. All measures are calculated by dividing the distance

¹¹ Scale 1:2,500,000; Albers-projection

¹² The HWSD is given as uniform raster data with a resolution of 30 arc seconds; projection: WGS84.

¹³ The global digital elevation model GTOPO30 is based on a horizontal grid spacing of 30 arc seconds and was derived by the United States Geological Survey (USGS) from several rasters and vector sources of topographic information.

values by 1,500¹⁴, which is the maximum distance of a region within this study and thus the maximal isolated area.

Formula: 'isolation index' = (distance_{region x}/1500) + (coastline_{region x}/perimeter_{region x})

- 3) The 'distance index' is calculated with the natural logarithm of the minimum distance of a division to the nearest continent. As the distance is zero in the case of the 28 continental divisions, the calculation uses the formula: 'distance index' = $\ln(\text{distance}_{\text{region x}} + 1)$.
- 4) The 'shape index' was calculated as follows: 'shape index'= $\operatorname{area_{region x}} / (1/2) \operatorname{perimeter_{region x}} * \pi 2) * \pi$. This index is based on the assumption that the geometrical shape of a region might influence the chances of species immigration. The longer the borders towards the neighbouring regions are the higher the chances of species immigration. However, the perimeter of a region is strongly influenced by the shape of the region or rather by its compactness. Regions that are geometrically approximately circular are more compact than regions of other forms. This is why a non-compact region (with wide perimeter-area-proportion) that has a relatively long border compared to its area should have a greater probability of colonisation than a more compact region of the same area.

Regional species pool

It is most likely that endemic species are recruited from the regional species pool; thus, endemics evolve from existing maternal species e.g. because of adaption, radiation, gene drift or for other stochastic reasons.

Features of regional species diversity were mainly evaluated using literature data or were communicated by local experts. In very few cases, e.g. in the case of the Russia Central region, the absolute species number was estimated on the basis of national species numbers and species numbers of neighbouring regions. Two species pool indices were calculated. The 'species pool' index is the total species number per region and the index 'non-endemics' is the number of non-endemics per region, i.e. total species number minus total number of local endemics.

¹⁴ Azores Archipelago

Statistics

Table A5 (appendix) gives an overview (in alphabetical order) of the names and respective calculations of all the data generated and used in the statistics; this encompasses geometrical and spatial information, data describing floristic, geographical, and ecological patterns and the respective indices, and the dependent and independent (explanatory) variables used in the predictive regression.

Floristic and taxonomic data

The numerical analyses of endemic species numbers per region and per taxonomic level were counted from the database using spreadsheet application Open Office Calc 2. Every calculation was carried out separately for the European endemics (all 42 study regions; $E_{local+41}$) and for the endemics restricted to the single regions ('local endemics'; E_{local}). The resulting data were listed (e.g. numbers of plant families and genera), incorporated in GIS-maps as attribute information and visualised in diagrams and maps (e.g. numbers of endemics per region), or used to prepare comprehensive region profiles of the 42 study regions (e.g. the 10 most species-rich plant families).

Geographical and spatial data

To enable a tentative comparison of endemic species densities by region, clusters of regions with a deviance of area of maximum 10% were selected (Formula: $(area_{large} - area_{small}) / area_{large})*100 < 10\%$). To contrast the richness of the different regions the absolute numbers of endemics (local and European endemics) were counted and listed. Further, Bykov's Index of endemicity (I_E) which indicates whether the proportion of endemism of regions is high or low was calculated on the basis of absolute numbers of local endemic taxa.

Ecological data

The numbers of endemics that were assigned to one or more habitat types were counted from the EvaplantE-database using a spreadsheet application (Open Office Calc 2). The numbers of endemic plants per habitat type were counted separately for a) all local, b) local-stenoecious endemics and c) all European and d) stenoecious-European endemics. Further, the numbers of local and European endemics (stenoecious and euryoecious) per habitat type were carried out for every study region and added to the region profiles (see appendix: p. 220 ff.).

$\sqrt{}$

Methods of reducing explanatory variables

Bivariate correlation (Spearman rank)

To detect highly correlated and thus redundant explanatory variables within the index groups a (two-tailed) Spearman rank correlation was applied using the program PASW Statistics 18.

Highly correlated indices (threshold >0.50) were fed alternately into regression calculations or had to be excluded. The explanatory variable regional 'species pool' was always described by the index 'non-endemics'¹⁵. The index 'total species', however, was excluded from all regression models. This was done to eliminate ambiguity due to the fact that endemic species also count as species in the counts of total species numbers.

Tests on Multicollinearity

To detect and to quantify model errors caused by multicollinearity within the multiple regression model the variance inflation factor (VIF) and the tolerance value were calculated for each of the explanatory variables. The smaller the tolerance value and thus the higher the VIF, the higher the standard error of R^2 (O'Brien 2007). The threshold for exclusion was set at a level of 0.1 (compare Hair et al. 2010; Panitsa et al. 2010). Calculations were performed using the program PASW Statistics 18.

Predictive regression models

Transformation of explanatory variables

All data were tested for Gaussian distribution as required for linear regression. As almost all variables show a positively skewed distribution, variables were square-root transformed to ensure approximately normally distributed data.

To compare the relative strength of the various explanatory variables standardised regression coefficients (beta-coefficients) are needed. Therefore, all variables were transformed to standard z-scores¹⁶ before being fed into calculation of regression.

All tests and transformation-procedures of explanatory variables were conducted in PASW Statistics 18.

¹⁵ In the case of the explanatory index 'non-endemics' a correlation value of higher than the set threshold of 0.5 was accepted. This had to be done because there were no other indices describing the explanatory variable 'regional species pool' available.

¹⁶ Formula: $z(x) = (x - \bar{x}) / SD(x)$

$\sqrt{}$

Incidence of spatial autocorrelation

Regression models are generally used to quantify the relationship between the dependent variables of interest and one or more independent, explanatory variables. However, linear regression is also often applied to approximate a predictive model to a given dataset.

The data of the present study is combined with mapped data, i.e. with spatial features, and it is possible that the dataset includes some kind of inherent spatial patterns that might somehow influence the explanatory or predictive power of the regression model.

The phenomenon of spatial autocorrelation, i.e. that the spatial distribution of the variable of interest shows some kind of systematic pattern, occurs frequently in ecological datasets. In fact, autocorrelation of variables is more or less inherent to ecology because all ecosystems are defined by abiotic and biotic factors and their interrelations over space and time, which of course includes all spatial structures or spatial settings of the single components (Legendre 1993; Dormann 2007). However, if it is known that the variable of interest is autocorrelated over space, the assumption of independence, which is a major precondition of most standard statistical procedures, is violated. Thus, results of the method are not reliable (Kühn 2007). To achieve reliable results, methods are needed that account for the spatial components within data set regression, e.g. the method of geographically weighted regression (GWR; Fotheringham et al. 2002; Selb 2006), rather than the traditional aspatial models.

Measures of spatial autocorrelation

There are several mathematical procedures for calculating the intensity of the autocorrelation effect (Pisati 2001; Dormann 2007; Kühn 2007). In the present study, the most widely used coefficients of spatial autocorrelation are applied: 1) Moran's I (Moran 1948; Moran 1950) and 2) Geary's C (Geary 1954). Moran's *I* as a measure for global spatial autocorrelation¹⁷ deals with the covariance of the data. Geary's *C* (synonymously: Geary's contiguity ratio) is inversely related to Moran's *I*, but uses paired comparisons of the data.

Moran's *I* is defined as

$$I = \frac{N}{\sum_{i} \sum_{j} w_{ij} (x_i - \bar{x}) (x_j - \bar{x})}$$
$$\frac{\sum_{i} \sum_{j} w_{ij}}{\sum_{i} \sum_{j} w_{ij} (x_i - \bar{x})^2}$$

¹⁷ In the statistical context the term 'global' means the inclusion of all available data while, in cotrast, the term 'local' refers to pairs of points (Fotheringham et al. 2002).

where x as the variable of interest; N the number of observations and w_{ij} a weight matrix of the spatial weights.

Geary's *C* is defined as follows, where *W* is the sum of all w_{ij}

$$C = \frac{(N-1)\sum_{i}\sum_{j}w_{ij}(x_{i}-x_{j})^{2}}{2W\sum_{i}(x_{i}-\bar{x})^{2}}$$

Both procedures require a so-called weight matrix that makes it possible to relate spatial weights to the measured values. This weights matrix is usually generated by the latitude and longitude data of the study locations (Pisati 2001). As a simple distance-measure of the centroids of the large study regions seems an inappropriate means of displaying the ecological mutual influences among the regions (e.g. species migration or species invasion; figures: 14a-c), a further symmetric weight matrix was calculated. It combines distance measures with the length of the borders of neighbouring regions (regarded as possible dispersal corridors):

For every pair of neighbouring regions the 'neighbour-values' that described the mutual influence of the respective regions were calculated. It is assumed that neighbourhood across an ocean has less influence than terrestrial neighbourhood (e.g. with respect to species invasion). This is why islands and archipelagos are most isolated, while regions without any access to the sea are least isolated. For mainland regions, the 'neighbour-value' was calculated by dividing the length of the adjoining border by the distance of the centroids of the respective neighbouring region. For single island regions and archipelagos, the 'neighbour-values' were calculated by dividing the artificial borderline value of 10 km (Fußnote) by the distance of the centroid to the respective neighbouring region (to avoid division by zero)¹⁸.

¹⁸ Coastlines are considered as borders to the sea which, in theory, should minimise species migration to zero. In certain cases, however, it is most likely that there is quite fluent species migration across short distances of water: Sicily, for example, is situated very close to (mainland region) Italy. The shortest distance between the coastlines of different regions is about 10 km, a distance easily overcome by seeds of many plant species.

Another example is the region Denmark, which is almost an island, having only one terrestrial border – with Germany (56 km). However, it is situated very close to Norway and Sweden, so it is most likely that the Denmark region is also influenced by the species pools of these two countries.

In order to include and to weight these types of neighbourhood across an ocean an artificial border value of 10 km was given as the border length of every island.

Fig. 14a :Map of study area showing the centroids

Fig. 14b: Distances between centroids of regions

Fig. 14c: Nearest distances between coasts of neighbouring regions relevant for species migration

The threshold for deciding if spatial autocorrelation is present within the variables of interest is defined in the case of Moran's *I* by the *z*-scores of the calculated *I*-value. If the *z*-score values are smaller than -1.96 or higher than 1.96, spatial autocorrelation is indicated¹⁹. Values of Geary's *C* range between 0 and 2, whereas values smaller than 1 indicate positive and values larger than 1 indicate negative spatial autocorrelation²⁰.

¹⁹ Values of Moran's *I* range between -1 and +1. Whereas negative values of Morans *I* indicate negative autocorrelation, positive values of Morans *I* indicate positive spatial autocorrelation. I = 0 means a random spatial pattern.

²⁰ Geary's *C* values of 1 means no spatial autocorrelation.

If spatial autocorrelation was identified within the dependent variable then spatial regression models need to be applied rather than the traditional aspatial regression methods. The standard term of a multiple linear regression model $y_i = f(x_1+x_2+x_3+...+x_n) + \mu_i$ is expanded by the values of weight matrix $W * y_i = f(x_1+x_2+x_3+...+x_n) + \mu_i$.

Standard linear regression (LR) vs. geographically weighted regression (GWR)

As the calculated values of Moran's *I* and Geary's *C* indicate spatial autocorrelation spatial regression models (GWR) need to be applied instead of standard linear regression (LR). There are two different methods of accounting for spatial dependence - the lag model and the error model available to calculate the GWR. The spatial dependence in the lag-model is incorporated by the inclusion of an additional variable defined by a function of the dependent variable observed at neighbouring locations whereas the spatial dependence in the error model is incorporated by specifying a spatial process for the random disturbance term. Following Selb (2006) the GWR lag method was used in the present study.

Standard linear regression (LR) was applied as well in order to contrast and discuss both statistical procedures critically.

The calculation of measures of autocorrelation for the variable of interest, i.e. the number of endemics per region (national and European), and also the calculations of spatial and linear regression were conducted with the program STATA 9.2 (for further information on the algorithm see Pisati 2001).

Results

Geographical data, maps, and visual presentation (GIS)

The generation of a digital spatial dataset for the study area was the groundwork that made it possible to conduct efficient measurements and calculations of the necessary geometrical and geographical data (centroid data, distance measures, etc.) with the help of GIS applications. The datasets of all 42 study regions are summarised in table A4 (appendix) and are a supplementary element of the 42 region profiles (see appendix pp. 220). This geometrical and geographical data was, for example, used to calculate the Bykov's index values, to compare endemism in similar sized regions, and to generate the explanatory indices for 'isolation degree'.

The digitalization of endemism data in GIS also made it possible to combine the spatial dataset of the study area with other datasets. This blending of spatial data enabled the calculation of several of the explanatory indices needed to calculate the regression, e.g. the indices of 'habitat continuity' or 'habitat diversity'.

The visualisation of some aspects of endemism in maps, as in figures 17, 18 and figures 21, 22 gives some first impressions of the spatial dimensions of the data which EvaplantE provides. It further reveals some spatial aspects that enable us to postulate first trends in data structure (e.g. north-south gradient of endemism) and points towards more detailed formulations for future research questions.

The blending of different thematic maps provides first visual impressions of the influence that several abiotic factors might have regarding the current distribution patterns of endemic plants, e.g. the assumed influence of the maximum extent of the Quaternary ice sheets or the major soil groups (figures 15 a-c, 16).

Fig. 15a: Maximum extent of the Saalian glaciation (SGM) in Europe.

Fig. 15b: Maximum extent of the Weichselian glaciation. (LGM) in Europe.

Fig. 15c: Extent of the total glacial maximum (TGM) in Europe (Scale: 1:53,000,000)

Fig. 16: Map of the major soil groups in Europe. Original map published by Nachtergaele et al. 2009 was georeferenced to the study region.

Fig. 17: Absolute numbers of local endemics per study region (Scale: 1:53,000,000)

Fig. 18: Absolute numbers of European endemics per study region (Scale: 1:53,000,000)

Endemic diversity in Europe

Floristic and taxonomic view

The database EvaplantE currently comprises 6,190 endemic taxa with 164 species groups, 5,191 species and 835 subspecies (table 1). Europe's endemic vascular plants belong to 110 plant families (table 2) and 719 genera (table A7, appendix). The richest plant family is the family of Asteraceae, which comprises 1,135 taxa and thus holds the lion's share of the listed endemics. The top ten among the endemic-rich plant families are Caryophyllaceae (436 taxa), Brassicaceae (405), Scrophulariaceae (371), Fabaceae (367), Poaceae (366), Lamiaceae (307), Apiaceae (226), Rosaceae (207) and Campanulaceae (197). The list of the ten most endemic-rich genera shows a similar pattern: The richest genera are members of the Asteraceae, namely *Centaurea* and *Hieracium* with 250 and 174 endemic taxa respectively. These are followed by *Festuca* (Poaceae, 144); *Campanula* (Campanulaceae, 132), *Silene* (Caryophyllaceae, 113); *Galium* (Rubiaceae, 99); *Saxifraga* (Saxifragaceae, 95), *Alchemilla* (Asteracea, 94); *Dianthus* (Caryophyllaceae, 88); *Limonium* (Plumbaginaceae, 85).

Europe does not host any endemic plant families but there are approximately 112 genera (Davis et al. 1994) that are strictly restricted to the study area. For a complementary overview of the plant genera with endemics see appendix table A7.

Taxonomic rank	No. of European endemics	No. of local endemics	Endemics of 2 regions	Endemics of 3 regions
species group	164	13	40	22
species	5,191	2,576	1,053	442
subspecies	835	385	171	90
total	6,190	2,974	1,264	554

Tab. 1: Overview of taxonomic ranking of European and local endemics, and endemics for two and three regions.

	>
	<u> </u>
•	Ξ.
	8
	ਛ
٢	Ë,
	÷ .
	5
	Š.
	р
	3
	×.
	g.
	0
•	=
	д.
	Η.
	O,
	σ
	Ð
,	
	÷.
	0
	• .
	2
	×.
	<u> </u>
	Д
	H
	D
	-
-	
	Ω.
	1
	2
	-
	d)
	ъ
	0
	Ē.
	50
	\overline{a}
	8
	Ō.
	5
	0
	C
	3
	acc
	acc
-	d acc
-	ed acc
-	ted acc
-	rted acc
-	orted acc
-	sorted acc
-	l sorted acc
-	a sorted acc
	xa sorted acc
-	axa sorted acc
•	taxa sorted acc
	c taxa sorted acc
	ic taxa sorted acc
	nic taxa sorted acc
	mic taxa sorted acc
-	emic taxa sorted acc
-	lemic taxa sorted acc
	idemic taxa sorted acc
	indemic taxa sorted acc
-	endemic taxa sorted acc
-	l endemic taxa sorted acc
-	in endemic taxa sorted acc
-	an endemic taxa sorted acc
-	ean endemic taxa sorted acc
-	pean endemic taxa sorted acc
-	opean endemic taxa sorted acc
-	ropean endemic taxa sorted acc
-	uropean endemic taxa sorted acc
-	Juropean endemic taxa sorted acc
- - -	European endemic taxa sorted acc
- - -	e European endemic taxa sorted acc
- - -	le European endemic taxa sorted acc
- - -	he European endemic taxa sorted acc
-	the European endemic taxa sorted acc
	If the European endemic taxa sorted acc
	of the European endemic taxa sorted acc
	s of the European endemic taxa sorted acc
	is of the European endemic taxa sorted acc
	es of the European endemic taxa sorted acc
	lies of the European endemic taxa sorted acc
	ilies of the European endemic taxa sorted acc
	nilies of the European endemic taxa sorted acc
	unities of the European endemic taxa sorted acc
	amilies of the European endemic taxa sorted acc
	tamilies of the European endemic taxa sorted acc
	t tamilies of the European endemic taxa sorted acc
	nt tamilies of the European endemic taxa sorted acc
	ant families of the European endemic taxa sorted acc
	lant families of the European endemic taxa sorted acc
	Plant tamilies of the European endemic taxa sorted acc
	Plant families of the European endemic taxa sorted acc
	: Plant families of the European endemic taxa sorted acc
	2. Plant families of the European endemic taxa sorted acc
	. Z: Plant families of the European endemic taxa sorted acc
	b. 2. Plant families of the European endemic taxa sorted acc
	ab. 2: Plant families of the European endemic taxa sorted acc
	ab. 2: Plant families of the European endemic taxa sorted acc

Family	No. of endemic taxa	Family	No. of endemic taxa	Family	No. of endemic taxa	Family	No. of endemic taxa	Family	No. of endemic taxa
	1,135	Iridaceae	53	Asclepiadaceae	14	Gesneriaceae	5	Palmaceae	5
llaceae	436	Orchidaceae	53	Globulariaceae	14	Aceraceae	4	Ulmaceae	7
eae	405	Cyperaceae	47	Dryopteridaceae	13	Lauraceae	4	Woodsiaceae	7
	367	Gentianaceae	44	Linaceae	13	Apocynaceae	3	Alismataceae	1
	366	Geraniaceae	36	Rhamnaceae	13	Aquifoliaceae	3	Araliaceae	1
uriaceae	356	Cistaceae	34	Resedaceae	12	Grossulariaceae	Э	Areaceae	1
e	310	Amaryllidaceae	30	Malvaceae	11	Marsileaceae	3	Buxaceae	1
	229	Polygalaceae	28	Orobanchaceae	11	Paeoniaceae	3	Clethraceae	1
	207	Hypericaceae	27	Plantaginaceae	11	Pyrolaceae	3	Cucurbiaceae	1
laceae	197	Papaveraceae	24	Urticaceae	11	Acanthaceae	2	Dicksoniaceae	1
	174	Polygonaceae	24	Araceae	10	Adiantaceae	2	Hippocastanaceae	1
0	162	Salicaceae	24	Aristolochiaceae	10	Amaranthaceae	2	Lomariopsidaceae	1
eae	155	Chenopodiaceae	23	Oleaceae	10	Berberidaceae	2	Loranthaceae	1
aceae	154	Juncaceae	23	Onagraceae	10	Celastraceae	2	Ophioglossaceae	1
naceae	141	Thymelaeaceae	23	Caprifoliaceae	8	Cneoraceae	2	Pittosporaceae	1
eae	124	Valerianaceae	22	Isoetaceae	8	Hymenophyllaceae	2	Polypodiaceae	1
ceae	97	Ericaceae	21	Solanaceae	6	Lycopodiaceae	2	Rafflesiaceae	1
cae	06	Aspleniaceae	19	Betulaceae	5	Lythraceae	7	Sapotaceae	1
ae	67	Santalaceae	16	Callitrichaceae	5	Myricaceae	2	Theaceae	1
aceae	60	Convolvulaceae	15	Cupressaceae	5	Myrsinaceae	7	Tiliaceae	1
	56	Pinaceae	15	Fagaceae	5	Najadaceae	2		

Geographical and spatial view

Fig. 19: *Draba muralis* (Photographer: Hackney)

Of the 6,190 endemic taxa in Europe about 2,974 are restricted to a single region (table 3); thus 48% of Europe's endemic plants are local endemics. Figure 20 presents a rough range distribution showing the numbers of endemics as related to the number of inhabited regions. No endemic plant inhabits more than 32 regions. The endemic taxon with the widest range is the Wall-Whitlowgras *Draba muralis* (Brassicaceae).

The distribution of endemic plants across the study area is very uneven. As shown in figures 21 and 22 the tendency is that the northern regions host fewer endemics than the southern regions. Large endemic diversity for both local and European endemics is found in the Mediterranean regions of Europe (including Macaronesia):

In terms of European endemics per region, Spain (mainland 1,581), the states of former Yugoslavia (1,479), Italy (1,473), mainland France (1,384), Greece (1,096), Austria (858), Switzerland (741), Albania (725), Bulgaria (707), and Romania (700) are the ten most endemic-rich regions of Europe (see figure 21).

In terms of the number of local endemics per region, the southern island regions seem to play an important role (figure 22). The richest regions are: mainland Spain (555), the Canary Archipelago (540), Greece (419), Italy (170), former Yugoslavia (158), Crete (152), the Madeira Archipelago (134), Cyprus (108), mainland France (93), and the mainland regions of Portugal (73; see figure 22).

An overview of the number of European and local endemics per region is given in table 4.

Fig. 20: Range distribution of endemic plants in Europe

No. of regions	total taxa	species group	species	sub- species	No. of regions	total taxa	species group	species	sub- species
all	6,190	164	5,191	835					
1	2,974	13	2,576	385	17	16	1	11	4
2	1,264	40	1,053	171	18	15	3	10	2
3	554	22	442	90	19	11	0	10	1
4	389	25	315	49	20	8	0	7	1
5	251	23	195	33	21	8	0	7	1
6	156	7	130	19	22	9	0	7	2
7	96	5	74	17	23	5	0	4	1
8	95	5	76	14	24	3	0	2	1
9	64	3	53	8	25	3	0	2	1
10	60	3	46	11	26	3	0	3	0
11	52	1	44	7	27	3	0	3	0
12	33	3	25	5	28	1	0	1	0
13	28	2	24	2	29	1	0	1	0
14	36	2	29	5	30	1	0	1	0
15	27	3	21	3	31	0	0	0	0
16	23	3	18	2	32	1	0	1	0

Tab. 3: Range distribution of endemic plants in Europe

Fig. 21: Spatial distribution of European endemics: The ten most endemic-rich (red) and the ten most endemic-poor regions (grey).

Fig. 22: Spatial distribution of local endemics: The ten most endemic-rich (red) and the ten most endemic-poor regions (grey).

Endemism ratios and Bykov's index are summarised in table 4.

The Macaronesian and Mediterranean islands and archipelagos have the highest Bykov's index values. The highest values are held by the Canary and Madeira Archipelago with 10.68 and 10.36 respectively, followed by the Azores Archipelago (3.29), the Mediterranean Islands of Crete (3.08) and Cyprus (2.00), the Balearic Islands (1.69) and mainland Greece (1.18). The regions with the lowest values, i.e. values much lower than would be expected from their respective areas, are all in northern Europe: Finland (-114.65), Russia Baltic division (-84.18), Russia Northern division (-72.24), Ireland (-62.17), Poland (-60.20), mainland Norway (-58.10), and the Netherlands (-55.10).

These results are congruent with the endemism ratios that were found for the Canary (27.0%) and Madeira (11.13%) archipelagos as the regions with the highest endemism ratios, followed by mainland Spain (10.10%), Greece (8.38%), Crete (8.10%), Azores (5.46%) and Cyprus (5.40%). The lowest ratios are again found in certain regions in the north of the continent: Netherlands (0%), Ireland (0%), Finland (0%), the Baltic region (0.05%), Belgium with Luxembourg (0.06), Denmark (0.07%), Norway (0.12%) and Poland (0.13%).

Tab. 4: Number of endemics per region: European endemics, local endemics, endemics for two and three regions, and Bykov's index and endemism ratios based on the number of local endemics per region.

Region	No. of European endemics	No. of local endemics	endemics of two regions	endemics of three regions	endemism ratio (%)	Bykov's Index
Al	725	22	143	137	0.7	-5.49
Au	858	25	31	66	0.8	-7.06
Az	87	46	9	9	5.5	3.29
Be	198	1	1	5	0.1	-39.61
Bl	140	55	14	18	3.6	1.69
Br	291	25	22	17	1.8	-4.88
Bu	707	56	99	118	1.6	-4.33
Ca	606	540	47	9	27.0	10.68
Со	271	37	47	27	1.5	-1.76
Cr	248	152	62	9	8.1	3.08
Су	112	108	2	0	5.4	2.00
Cz	556	6	17	23	0.2	-34.28
Da	145	1	0	0	0.1	-35.04
Fa	47	1	2	2	0.4	-1.81
Fe	114	0	3	4	0.0	-114.65
Ga	1,384	93	320	153	2.1	-5.96
Ge	645	8	12	19	0.2	-39.72
Gr	1,096	419	188	145	8.4	1.18
Hb	141	0	14	9	0.0	-62.17
He	741	8	31	57	0.3	-13.13
Но	148	0	0	0	0.0	-55.1
Hs	1,581	555	449	105	11.1	-1.08
Hu	321	5	9	13	0.2	-25.96
Is	56	4	. 3	0	1.1	-5.06
It	1,473	170	221	181	3.3	-2.84
Ju	1,479	158	211	240	3.9	-2.43
Lu	489	73	218	59	2.4	-2.57
Ma	207	134	56	7	11.1	10.36
No	181	2	10	6	0.1	-58.1
Ро	412	3	15	14	0.1	-60.2
Rm	700	45	54	58	1.3	-6.77
Rs (B)	118	1	1	3	0.1	-84.18
Rs (C)	190	13	20	19	0.4	-40.25
Rs (E)	113	14	23	19	0.4	-41.04
Rs (K)	131	64	18	8	3.2	-1.23
Rs (N)	78	4	. 4	2	0.2	-72.24
Rs (W)	456	34	43	44	0.7	-18.56
Sa	200	28	50	24	1.3	-2.83
Sb	7	2	0	0	1.0	-3.72
Si	233	59	53	20	2.4	-1.67
Su	194	5	11	7	0.3	-33.24
Tu	85	4	. 8	12	0.2	-19.45

Abbreviations:

Al - Albania; Au - Austria; Az - Azores Archipelago; Be - Belgium with Luxembourg; BI - Balearic Islands; Br - Great Britain; Bu - Bulgaria; Ca - Canary Islands; Co - Corsica; Cr - Crete; Cy - Cypres; Cz - Czech Republic with Slovakia; Da - Denmark; Fa - Faero; Fe - Finland; Ga - France (mainland); Ge - Germany; Gr - Greece; Hb - Ireland; He -Switzerland; Ho - The Netherlands; Hs - Spain (mainland); Hu - Hungary; Is - Iceland; It - Italy (mainland); Ju - former Yugoslavia; Lu - Portugal (mainland); Ma - Madeira Archipelago; No - Norway; Po - Poland; Rm - Romania; Rs (B) -Russia Baltic division; Rs (C) - Russia central division; Rs (E) - Russia Southeastern division; Rs (K) - Russia Crimean division; Rs (N) - Russia Northern division; Rs (W) - Russia Western division; Sa - Sardinia; Sb - Svalbard; Si - Sicily; Su - Sweden; Tu - European Turkey

The clustering of regions with similar areas results in 16 clusters (see summarised data in table 5).

The data reveals that in order to determine which region is the most endemic rich it is often necessary to distinguish between the richest region in terms of a) local and b) European endemics:

Clusters 1-3, 6,11 show that different regions hold the crown. Clusters 5 and 6 show that the alpine regions Switzerland and Austria have medium local endemism but achieve the highest endemism rates in the case of European endemics. Generally, the southern and Mediterranean regions have higher endemism rates than the central or northern European regions (see clusters: 6-11, and clusters 14 and 15). Clusters 7, 12, 13, 16 show that this pattern is also valid for central European compared with most northern European regions – the central European regions Hungary, Poland, Germany and the central division of Russia are much richer in local and European endemics than Iceland, Norway, Finland and the Northern division of Russia.

No.	Region (km ²)	area (km)	species l number d	ocal endemics	European endemics	endemism ratio (%)	Bykov's index
	Crete	8,508	1,877	152	248	8.1	3.08
1	Corsica	8,780	2,500	37	271	1.5	-1.76
	Cyprus	9,138	2,000	108	112	5.4	2.00
	Turkey (European part)	23,877	2,500	4	85	0.2	-19.45
2	Sardinia	24,099	2,100	28	200	1.3	-2.83
2	Sicily	25,726	2,500	59	233	2.4	-1.67
	Crimean region	25,831	2,000	64	131	3.2	-1.23
2	Crimean region	25,831	2,000	64	131	3.2	-1.23
3	Albania	28,657	3,031	22	725	0.7	-5.49
	Belgium + Luxembourg	33,235	1,800	1	198	0.1	-39.61
4	The Netherlands	35,549	1,221	0	148	0.0	-55.10
-	Switzerland	41,493	2,471	8	741	0.3	-13.13
3	Denmark	42,714	1,450	1	145	0.1	-35.04
	Ireland	83,924	1,000	0	141	0.0	-62.17
(Austria	84,128	2,950	25	858	0.8	-7.06
0	Portugal (mainland)	88,573	3,000	73	489	2.4	-2.57
	Hungary	93,002	2,411	5	321	0.2	-25.96
-	Hungary	93,002	2,411	5	321	0.2	-25.96
7	Iceland	10,2962	. 377	4	56	1.1	-5.06

Tab.5: Endemism of clusters of regions with comparable area sizes (max. deviation 10%) the total number of local and European endemics and Bykov's index based on the data for local endemism per region. Highest values of local and European endemics per cluster are written in boldface.

No.	Region (km²)	area (km)	species number	local endemics	European endemics	endemism ratio (%)	Bykov´s index
0	Iceland	10,2962	377	4	56	1.1	-5.06
8	Bulgaria	11,1024	3,580	56	707	1.6	-4.33
0	Bulgaria	11,1024	3,580	56	707	1.6	-4.33
9	Greece	121,564	5,000	419	1,096	8.4	1.18
10	Greece	121,564	5,000	419	1,096	8.4	1.18
10	Czech Republic + Slovakia	127,692	3,300	6	556	0.2	-34.28
	Great Britain	230,709	1,400	25	291	1.8	-4.88
11	Romania	237,396	3,400	45	700	1.3	-6.77
11	Italy (mainland)	250,631	5,200	170	1,473	3.3	-2.84
	Former Yugoslavia	255,252	4,100	158	1,479	3.9	-2.43
	Poland	311,695	2,374	3	412	0.1	-60.20
12	Norway	320,915	1,700	2	181	0.1	-58.10
	Finland	335,313	1,100	0	114	0.0	-114.65
12	Finland	335,313	1,100	0	114	0.0	-114.65
13	Germany	357,251	3,350	8	645	0.2	-39.72
14	Sweden	446,070	1,720	5	194	0.3	-33.24
14	Spain (mainland)	494,053	5,000	555	1,581	11.1	-1.08
15	Spain (mainland)	494,053	5,000	555	1,581	11.1	-1.08
15	France (mainland)	539,527	4,500	93	1,384	2.1	-5.96
16	Russia North	1,463,824	2,000	4	78	0.2	-72.24
10	Russia Central	1,6257,65	3,000	13	190	0.4	-40.25

Ecological view

Only about three quarters of the listed plants are assigned to one or more of the predefined habitats, as much current data on distribution, ecology, altitude range, etc. are still insufficient in the literature.

The evaluation of distribution patterns of European endemics according to habitat types shows that the large majority of endemics inhabit rocky habitats (2,792), followed by grassland (1,336), shrub and heath habitats (1,150), and forests (733). Lower rates were found for coastal/saline habitats (449), man-made habitats (446), inland waterbodies (275), and finally mires, bogs and fens which are inhabited by only about 100 endemics.

A similar pattern is evident for local endemics, although the position of the two habitat categories grassland and shrub- and heathland is reversed: Rocky habitats (1,582), shrub and heath habitats (571), grasslands (336), forests (304), coastal and saline habitats (249), man-made habitats (204) inland waterbodies (92), mires, bogs and fens (21). Figures 23a-d visualise these data.

Tables 6 and 7 give an overview on the total number of local and European endemics per regions and habitat type.

Fig. 23: Distribution of endemics per habitat category: a) local endemics (total numbers); b) European endemics total numbers; c) local endemics (percentage values); d) European endemics percentage values

Tab. 6: Local endemics per region and habitat type

Region	freshwater habitats	bogs, fens mires,	coastal and saline	l ruderal cropland	grassland	rock and scree	shrub-/ heathland	forest	
Al		0	0	0	0	3	11	0	0
Au		4	0	0	0	20	14	6	6
Az		4	2	12	3	7	23	15	18
Be		0	0	0	1	0	1	0	0
BI		0	1	13	2	3	35	8	5
Br		1	1	9	3	6	5	3	0
Bu		1	2	2	5	25	29	5	4
Ca		1	0	44	22	0	385	237	96
Со		5	1	2	1	10	21	5	1
Cr		8	2	11	5	5	114	45	19
Су	1	12	0	6	28	7	59	43	26
Cz		0	0	0	0	1	2	0	0
Da		0	0	1	0	0	0	0	0
Fa		0	0	0	0	0	0	0	0
Fe		0	0	0	0	0	0	0	0
Ga		4	1	7	5	13	40	8	5
Ge		4	1	1	0	2	1	0	1
Gr		7	1	11	44	48	239	36	16
Hb		0	0	0	0	0	0	0	0
He		0	0	0	0	1	2	1	0
Но		0	0	0	0	0	0	0	0
Hs	1	12	3	45	47	67	253	94	22
Hu		0	0	0	0	2	2	0	2
Is		1	1	0	0	1	0	0	1
It		3	2	6	4	32	83	12	9
Ju		0	0	9	7	23	69	3	5
Lu		3	0	13	9	9	15	19	6
Ma	1	12	1	33	10	4	83	21	41
No		0	0	0	0	1	0	0	0
Ро		0	0	0	0	0	1	0	0
Rm		0	0	1	1	9	15	0	3
Rs (B)		1	0	0	0	1	1	0	0
Rs (C)		1	0	0	0	1	0	2	2
Rs (E)		1	0	0	0	4	2	0	0
Rs (K)		0	0	5	4	15	28	5	11
Rs (N)		0	0	0	0	1	2	0	0
Rs (W)		6	0	7	0	5	7	1	2
Sa		0	1	5	1	1	15	2	0
Sb		0	1	1	0	0	0	0	0
Si		1	0	12	3	6	20	0	3
Su		0	0	0	0	3	4	0	0
Tu		0	0	0	0	0	2	0	0

Abbreviations:

Al - Albania; Au - Austria; Az - Azores Archipelago; Be - Belgium with Luxembourg; BI - Balearic Islands; Br - Great Britain; Bu - Bulgaria; Ca - Canary Islands; Co - Corsica; Cr - Crete; Cy - Cypres; Cz - Czech Republic with Slovakia; Da - Denmark; Fa - Faero; Fe - Finland; Ga - France (mainland); Ge - Germany; Gr - Greece; Hb - Ireland; He -Switzerland; Ho - The Netherlands; Hs - Spain (mainland); Hu - Hungary; Is - Iceland; It - Italy (mainland); Ju - former Yugoslavia; Lu - Portugal (mainland); Ma - Madeira Archipelago; No - Norway; Po - Poland; Rm - Romania; Rs (B) -Russia Baltic division; Rs (C) - Russia central division; Rs (E) - Russia Southeastern division; Rs (K) - Russia Crimean division; Rs (N) - Russia Northern division; Rs (W) - Russia Western division; Sa - Sardinia; Sb - Svalbard; Si - Sicily; Su - Sweden; Tu - European Turkey

$\sqrt{}$

Tab. 7: European endemics per region and habitat type

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Region	freshwater	bogs, fens	coastal and	ruderal	grassland	rock and	shrub-/ t	forest
Al156851212 302 1281Au82251140438 359 2102Az65229164129Be22182631893657BI313218155626Br292662361075569Bu27912432692721291Ca40532934152651Co24729236511057Cr9221351517073Cy12072986143Cz512016452941671511Da19143323642042	-	habitats	mires,	saline	cropland	-	scree 1	heathland	
Au 12	A1	14	5	5 8	51	212	302	128	100
Az65229164129Be22182631893657BI313218155626Br292662361075569Bu27912432692721291Ca40532934152651Co24729236511057Cr9221351517073Cy12072986143Cz512016452941671511Da19143323642042	Au	82	2 2:	5 11	40	438	359	210	201
Be22182631893657BI313218155626Br292662361075569Bu27912432692721291Ca40532934152651Co24729236511057Cr9221351517073Cy12072986143Cz512016452941671511Da19143323642042	Az	(5	5 22	9	16	41	29	39
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Be	22	2 13	8 26	31	89	36	57	65
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	BI	3	3	1 32	18	15	56	26	12
Bu 27 91243 269 272 129 1Ca40 53 29 3 415 265 1Co 24 7 29 23 65 110 57 Cr92 21 35 15 170 73 Cy1207 29 8 61 43 Cz 51 20 16 45 294 167 151 1 Da 19 14 33 23 64 20 42	Br	29) 20	6 62	36	107	55	69	75
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Bu	27	7	9 12	43	269	272	129	122
Co24729236511057Cr9221351517073Cy12072986143Cz512016452941671511Da19143323642042	Ca	2	1 (53	29	3	415	265	134
Cr9221351517073Cy12072986143Cz512016452941671511Da19143323642042	Со	24	1 [′]	7 29	23	65	110	57	46
Cy 12 0 7 29 8 61 43 Cz 51 20 16 45 294 167 151 1 Da 19 14 33 23 64 20 42	Cr	ç)	2 21	35	15	170	73	27
Cz 51 20 16 45 294 167 151 1 Da 19 14 33 23 64 20 42	Су	12	2) 7	29	8	61	43	26
Da 19 14 33 23 64 20 42	Cz	51	20) 16	45	294	167	151	171
	Da	19) 14	4 33	23	64	20	42	53
Fa 7 6 9 4 18 7 9	Fa		7	59	4	18	7	9	6
Fe 10 13 22 17 60 18 30	Fe	10) 1.	3 22	. 17	60	18	30	37
Ga 107 37 81 95 508 542 269 2	Ga	107	7 3'	7 81	95	508	542	269	220
Ge 78 35 38 49 322 224 153 1	Ge	78	3 3:	5 38	49	322	224	153	171
Gr 24 5 34 116 208 529 151 1	Gr	24	1 :	5 34	. 116	208	529	151	106
Hb 21 21 34 13 45 23 34	Hb	21	2	1 34	. 13	45	23	34	28
He 72 23 8 45 360 295 166 1	Не	72	2 2.	3 8	45	360	295	166	159
Ho 16 14 30 27 62 20 41	Но	16	5 14	4 30	27	62	20	41	49
Hs 103 35 132 155 388 630 352 1	Hs	103	3 3:	5 132	155	388	630	352	182
Hu 14 10 11 38 145 70 88 1	Hu	14	1 10) 11	38	145	70	88	117
Is 8 4 9 6 22 12 11	ls	5	3	4 9	6	22	12	11	9
It 82 30 42 94 543 636 253 2	lt	82	2 30) 42	94	543	636	253	233
Ju 58 24 35 87 519 573 246 2	Ju	58	3 24	4 35	87	519	573	246	232
Lu 48 17 67 75 96 120 148	Lu	48	S I	/ 6/	/5	96	120	148	74
Ma 16 2 45 18 9 118 52	Ма	16		2 45	18	9	118	52	85
No 23 20 27 24 77 38 49	No	2:	3 20) 27	24		38	49	51
Po 42 18 18 39 222 134 111 1	Po	42		5 18	39	222	134	111	133
Rm 40 $1/$ $1/$ $4/$ 311 235 146 1 P_{π} (P) 12 11 20 21 50 18 22	Rm	4(/ 1/	4/	311	235	146	1/0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Rs (B)	14	2 1	1 20	21	59	18	32	43
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	KS(C)	14	+ 6		19 32	83	39	59	69
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	KS(E)				18	39	24	21	22
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	KS(K)	2	2	J 8 7 11	13	20	49	20	23
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	RS(N)) 1'	/ 11	12	212	1/	19	122
RS(W) 40 12 16 50 215 122 111 1 So 14 2 22 25 20 76 27	KS (W)	40) I. 1	2 10	30	213	76	27	133
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Sa Sh	12	t .) 33 1 1	23	30	/0	37	23
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	SU Si	11	,	1 1 24	24	2	71	0	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SI Su	24		∠ 34 2 21	20	33 04	/1	24	33
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Tu	20	1	5 51 1 5	14	20	25	17	21

Abbreviations:

Al - Albania; Au - Austria; Az - Azores Archipelago; Be - Belgium with Luxembourg; BI - Balearic Islands; Br - Great Britain; Bu - Bulgaria; Ca - Canary Islands; Co - Corsica; Cr - Crete; Cy - Cypres; Cz - Czech Republic with Slovakia; Da - Denmark; Fa - Faero; Fe - Finland; Ga - France (mainland); Ge - Germany; Gr - Greece; Hb - Ireland; He -Switzerland; Ho - The Netherlands; Hs - Spain (mainland); Hu - Hungary; Is - Iceland; It - Italy (mainland); Ju - former Yugoslavia; Lu - Portugal (mainland); Ma - Madeira Archipelago; No - Norway; Po - Poland; Rm - Romania; Rs (B) -Russia Baltic division; Rs (C) - Russia central division; Rs (E) - Russia Southeastern division; Rs (K) - Russia Crimean division; Rs (N) - Russia Northern division; Rs (W) - Russia Western division; Sa - Sardinia; Sb - Svalbard; Si - Sicily; Su - Sweden; Tu - European Turkey

When habitat specificity is the focus of consideration, rock and scree habitats and the coastal and saline habitats have the highest proportions of habitat-specific (stenoecious) endemics, while habitats of shrub- and heathlands and bogs, mires, fens have the lowest proportions (table 8, figures 24 and 25).

In the case of local endemics (figure 24), rock and scree habitats host the highest proportions of habitat-specific endemics (60.9%; 964 taxa). Coastal and saline habitats host 146 stenoecious taxa (57.0%), followed by freshwater habitats (29 taxa, 31.5%), forest (95 taxa, 31.3%), man-made and ruderal habitats (63 taxa, 30.9%), grasslands (88 taxa, 26.2%), bogs, mires, fens (4 taxa, 19.0%) and shrub- and heathlands (101 taxa, 17.7%).

In the case of European endemics (figure 25), the coastal and saline habitats contain the highest proportions of stenoecious endemics (269 taxa, 58.6%), followed by rock and scree habitats that host 1,542 habitat-specific taxa (55.2%), man-made and ruderal habitats (132 taxa, 29.6%), forests (203 taxa, 27.7%), grasslands (351 taxa, 26.3%), freshwater habitats (72 taxa, 26.2%), shrub- and heathlands (180 taxa, 15.7%) and bogs, mires, fens (18 taxa, 18.0%).

The highest absolute numbers of habitat-specific endemics are generally found in the Mediterranean regions. As regards local endemics, the island regions play a particularly important role (Canary Islands, Madeira Archipelago, Greece, Crete, Cypres), as does mainland Spain (Hs), which is very rich in endemics confined to coastal and saline or to ruderal and urban habitats (see table 8).

In terms of European endemics, the continental regions France, Spain, Italy, the states of former Yugoslavia and Greece hold the leading positions (see tables 9 and 10 and distribution maps, figures 26 a-h). However, depending on the habitat type under focus, some temperate or even northern regions gain in importance: for coastal and saline habitats, for example, the Atlantic islands of Great Britain (62) and Ireland (34) reach high scores (figure 26a).

Many of the habitat-specific European endemics in the generally endemic-poor habitats bogs, mires and fens are reported for Germany (35), Austria (25) and Switzerland (23) as well as for Britain (26) and Ireland (21) and even for Norway (20; figure 26g).

All habitat-specific endemics of rocky habitats occur in Europe's mountainous regions (figure 26b): The Alps with Italy (636, including the Apennines), France (542), Austria (359), Switzerland (295), Spain (630) with the Pyrenean mountains, and the Balkan region with Yugoslavia (573), Albania (302); they also occur in Greece (529) and the volcanic-origin Canary Archipelago (415). High numbers of habitat-specific grassland endemics are found in Austria (438), Switzerland (360), Germany (322), Romania (311), Czech Republic and Slovakia (294), Bulgaria (269).

rock and scree habitats shrub- and heathland grassland forest coastal and saline habitats ruderal habitats, cropland freshwater habitats bogs, mires, fens

Fig. 24: Percentage values of stenoecious local endemic taxa per habitat type

Fig. 25: Percentage values of stenoecious European endemic taxa per habitat type

	local endemics	habitat specific	%	European endemics	habitat specific	%
rock and scree habitats	1,582	964	60.9	2,792	1,542	55.2
shrub- and heathland	571	101	17.7	1,150	180	15.7
grassland	336	88	26.2	1,336	351	26.3
forest	304	95	31.3	733	203	27.7
coastal/ saline habitats	256	146	57.0	459	269	58.6
ruderal habitats, cropland	204	63	30.9	446	132	29.6
freshwater habitats	92	29	31.5	275	72	26.2
bogs, mires, fens	21	4	19.0	100	18	18.0

Tab. 8: Absolute numbers of local and European endemics per habitat type and numbers of stenoecious taxa and percentage value of habitat specificity.

Sector A

Tab. 9: Regions hosting the largest numbers of local endemic and habitat-specific taxa. Number of taxa is given in parentheses.

	1	2	3	4	5
freshwater habitats	Cy	Hs	Ma	Cr	Gr
	(12)	(12)	(12)	(8)	(7)
bogs, mires, fens	Hs	Cr	Az	It	Bu
	(3)	(2)	(2)	(2)	(2)
coastal and saline habitats	Hs	Ca	Ma	BI	Lu
	(45)	(44)	(33)	(13)	(13)
ruderal habitats, cropland	Hs	Gr	Cy	Ca	Ma
	(47)	(44)	(28)	(22)	(10)
grasslands	Hs	Gr	It	Bu	Ju
	(67)	(48)	(32)	(25)	(23)
rock and scree habitats	Ca	Hs	Gr	Cr	It
	(385)	(253)	(239)	(114)	(83)
shrub- and heathland	Ca	Hs	Cr	Cy	Gr
	(237)	(94)	(45)	(43)	(36)
forest	Ca	Ma	Cy	Hs	Cr
	(96)	(41)	(26)	(22)	(19)

Tab. 10: Top ten regions in terms of European endemic and habitat-specific taxa. Number of taxa is given in parentheses

	1	2	3	4	5	6	7	8	9	10
freshwater habitats	Ga	Hs	Au	It	Ge	He	Ju	Cz	Lu	Po
	(107)	(103)	(82)	(82)	(78)	(72)	(58)	(51)	(48)	(42)
bogs, mires, fens	Ga (37)	Hs (35)	Ge (35)	It (30)	Br (26)	Au (25)	Ju (24)	He (23)	Hb (21)	No (20)
coastal and saline habitats	Hs (132)	Ga (81)	Lu (67)	Br (62)	Ca (53)	Ma (45)	It (42)	Ge (38)	Ju (35)	Hb (34)
ruderal habitats, cropland	Hs	Gr	Ga	It	Ju	Lu (Al	Ge	Rm	He
	(155)	(116)	(95)	(94)	(87)	75)	(51)	(49)	(47)	(45)
grasslands	It	Ju	Ga	Au	Hs	He	Ge	Rm	Cz	Bu
	(543)	(519)	(508)	(438)	(388)	(360)	(322)	(311)	(294)	(269)
rock and scree habitats	It	Hs	Ju	Ga	Gr	Ca	Au	Al	He	Bu
	(636)	(630)	(573)	(542)	(529)	(415)	(359)	(302)	(295)	(272)
shrub- and heathland	Hs	Ga	Ca	It	Ju	Au	He	Ge	Gr	Cz
	(352)	(269)	(265)	(253)	(246)	(210)	(166)	(153)	(151)	(151)
forest	It	Ju	Ga	Au	Hs	Ge	Cz	Rm	He	Ca
	(233)	(232)	(220)	(201)	(182)	(171)	(171)	(170)	(159)	(134)

Abbreviations:

Al - Albania; Au - Austria; Az - Azores Archipelago; Be - Belgium with Luxembourg; BI - Balearic Islands; Br - Great Britain; Bu - Bulgaria; Ca - Canary Islands; Co - Corsica; Cr - Crete; Cy - Cypres; Cz - Czech Republic with Slovakia; Da - Denmark; Fa - Faero; Fe - Finland; Ga - France (mainland); Ge - Germany; Gr - Greece; Hb - Ireland; He -Switzerland; Ho - The Netherlands; Hs - Spain (mainland); Hu - Hungary; Is - Iceland; It - Italy (mainland); Ju - former Yugoslavia; Lu - Portugal (mainland); Ma - Madeira Archipelago; No - Norway; Po - Poland; Rm - Romania; Rs (B) -Russia Baltic division; Rs (C) - Russia central division; Rs (E) - Russia Southeastern division; Rs (K) - Russia Crimean division; Rs (N) - Russia Northern division; Rs (W) - Russia Western division; Sa - Sardinia; Sb - Svalbard; Si - Sicily; Su - Sweden; Tu - European Turkey

Fig. 26a: Top ten regions in terms of numbers of stenoecious European endemics ecologically bound to coastal and saline habitats. 58.6% of European endemics inhabiting coastal and saline habitats are stenoecious.

Fig. 26b: Top ten regions in terms of numbers of stenoecious European endemics ecologically bound to the rock and scree habitats. 55.2% of European endemics inhabiting rock and scree habitats are stenoecious.

Fig. 26c: Top ten regions in terms of numbers of stenoecious European endemics ecologically bound to ruderal and man-made habitats. 29.6% of European endemics inhabiting ruderal and man-made habitats are stenoecious.

Fig. 26d: Top ten regions in terms of numbers of stenoecious European endemics ecologically bound to forest habitats. 27.7% of European endemics inhabiting forest habitats are stenoecious.

Fig. 26e: Top ten regions in terms of numbers of stenoecious European endemics ecologically bound to grassland habitats.26.3% of European endemics inhabiting grassland habitats are stenoecious.

Fig. 26f: Top ten regions in terms of numbers of stenoecious European endemics ecologically bound to freshwater habitats. 26.2% of European endemics inhabiting freshwater habitats are stenoecious.

Fig. 26g: Top ten regions in terms of numbers of stenoecious European endemics ecologically bound to bogs, mires or fens. 18.0% of European endemics inhabiting bogs, mires or fens are stenoecious.

Fig. 26h: Top ten regions in terms of numbers of stenoecious European endemics ecologically bound to shrub- and heathlands. 15.7% of European endemics inhabiting shrub- and heathland habitats are stenoecious.

$\overline{ }$

Sets of explanatory variables

Each explanatory variable for the calculation of the regression models was interpreted in at least two indices. The basic data for calculating the indices was compiled from different geographical datasets and spatially transformed to the scales and projection of the present spatial dataset. Table A5 (appendix) gives an overview of the names and respective calculations of all the indices generated and also of all dependent and independent (explanatory) variables in alphabetical order.

Many of the calculated indices that describe the same explanatory factor in different ways are highly correlated (see appendix, tables A8-A13). Some indices describing the explanatory variables 'isolation degree' and 'habitat diversity' show high correlation values. The same is true for the index 'non-endemics' with the indices describing the explanatory variables 'habitat continuity' indices 'LGM refugia', 'SGM refugia', 'TGM refugia'. The calculation of the tolerance value and the variance of inflation factor (VIF) showed no multicollinearity among the independent variables that were fed into the calculations (see appendix table A14).

Predictive regression models

The symmetric and standardised weights matrix used and the calculated Eigen-values are shown in the appendix (tables A6 and A15). The results of the calculation of the measures of spatial autocorrelation are given in Tab. 11 (see also STATA's comprehensive calculations output table A16, appendix). Both measures of autocorrelation – Moran's I and Geary's C indicate spatial autocorrelation for both dependant variables – European and local endemics. Moran's I resulted in high *z*-scores of 3.335 (local endemics) and 3.871 (European endemics) and Geary's contiguity ratio resulted in values smaller than 1, which means positive autocorrelation.

Tab.	11: Results of the	e calculation of	of the measures	of spatial	autocorrelation,	Moran's I	and Geary's C
				1	,		J

		Moran			Geary		
	Ι	z-score	p (two-tailed)	С	z-score	p (two-tailed)	
European endemics	0.475	3.871	0.000	0.593	-2.886	0.004	
local endemics	0.393	3.335	0.001	0.640	-2.269	0.004	

Several regression models using different sets of indices were calculated to achieve best model fit. Some indices were omitted as they do not achieve any significant power within the model (e.g. 'vegetation index', 'distance index', 'shape index'). Other indices seem to be redundant or exchangeable and result in comparable model strength (e.g. 'SGM ice' and 'TGM ice'; 'relief index' and 'relief area index').

An overview of all calculated regression models for local endemics as well as European endemics as the dependent variable with different sets of indices for explanatory variables 'species pool', 'isolation degree', 'habitat diversity', 'habitat continuity', and the respective scored model strength are given in tables A17- A20 (appendix). All corresponding calculation outputs of STATA are listed in the appendix (tables A21- A24).

Linear regression (LR)

Patterns of local endemics

The results of the linear stepwise regressions (tables 12a and 12b) show that in the case of the local endemics the explanatory parameters 'isolation degree' and 'species pool' (using different sets of indices) seem to have the greatest influence on the given distribution pattern of local endemics. The parameters 'habitat diversity' and 'habitat continuity' also influence endemic diversity, the latter negatively. It should be noted that the negative sign is resulting from the fact that the best fitting indices for 'habitat continuity' are 'TGM ice' or 'LGM ice' thus indices indicating ecological discontinuity.

Interestingly, the order of parameters does not change if different indices are fed into the calculation. Adjusted R^2 as an indication value for the strength of relationship of the dependent variable and the predictor variables is quite low (about 0.54) and fluctuates between the values 0.543 and 0.514 depending on the indices fed into the calculation (see table A17: LR models 1-9 appendix).

If the 'vegetation index' or any index describing the explanatory variable 'isolation degree' other than 'coastline index' and `isolation index' are fed into the calculation, the model strength decreases rapidly to R²-scores of 0.48 or lower (see table A17: LR models 10-24).

The rank of beta-coefficients indicating the strength of influence of explanatory variables shows in most cases the following order: (+) isolation degree > (+) species pool > (+) habitat diversity > (-) habitat continuity (LR models 2,4,6,7,8, appendix).

It is to note that this order varies if the 'shape index' is fed into calculation the habitat continuity parameter loses significance and the ranks of beta-coefficients are shifted to: (+) species pool > habitat diversity > (-) isolation degree (LR models 1,3,9, appendix).

Patterns of European endemics

For the European endemics the LR models show higher model strengths of between 0.778 and 0.739 (see table A18: LR models 1-12; appendix).

The regressions take in many cases three parameters into account: the 'species pool', 'habitat diversity' and 'habitat continuity'; the latter parameter influences the total endemic diversity negatively (as best fitting index 'TGM ice' indicates ecological discontinuity, see explanation above). If the indices 'SGM ice' or the 'LGM ice' are introduced into the calculation instead of the 'TGM ice' index then the influence of the 'habitat-continuity' parameter loses significance. However, the negative influence on European endemics still persists. The explanatory parameter 'isolation degree' is not significant in any of the regression models, but it should be noted that this parameter influences the total endemic diversity negatively. If the 'relief area', the 'vegetation index' or the 'distance index' are fed into the calculation the model strength decreases to an adjusted R²-score of 0.64 or lower (see table A18: LR models 12-24; appendix).

The rank of beta-coefficients indicating the strength of influence of explanatory variables shows the following order: (+) species pool > (+) habitat diversity > (-) habitat continuity (LR models 3-6, 8-12, appendix). This order is stable for almost all calculated combinations of indices describing these variables. However, if the 'distance index' is fed into regression than the ranks of the 'habitat diversity' and 'species pool' switch: Thus (+) species pool > (+) habitat diversity > (-) habitat continuity (LR models 1,2,7; appendix).

Geographically Weighted Regression (GWR)

In most cases the GWR resulted in higher values in the squared correlation statistic (equal to the pseudo R^2 value for model strength)²¹ than the standard multiple regression procedure.

Patterns of local endemics

The results of the GWR (table 13a, also table A19) show that for the local endemics the explanatory parameters 'species pool', 'isolation degree' and 'habitat diversity' explain about 61 percent of the variation in the best GWR model. The parameter 'habitat continuity', which was the fourth significant explanatory parameter in many of the standard LR models, is not significant in any of the GWR models. Interestingly, incorporating the 'SGM ice' index into the calculation results in slightly better pseudo R² than using the 'TGM ice' index.

²¹ The squared correlation value is called R² in the following which is for the purpose of easier comparing in order to facilitate a comparison of the results of different regression model types.

The resulting pseudo-R²-value using different sets of indices ranges between 0.585 and 0.618 (see table A19: GWR model 1-9; appendix). If the 'relief index' is replaced by any other index describing the 'habitat diversity' then the 'habitat diversity' parameter loses significance and the model strength decreases (see table A19: GWR models 10-24; appendix).

Comparing the relative strength of the significant explanatory variables (beta-coefficients) the following order is shown: (+) isolation degree > (+) species pool > (+) habitat diversity (see GWR models 1-3, 6-8, appendix). However, if the shape index was introduced into regression the ranks of the explanatory variables are changed and the influence of 'isolation degree' on the patterns of local endemics changes from positive to negative: (+) species pool > (+) habitat diversity > (–) isolation degree (see GWR models 4,5,9; appendix).

Patterns of European endemics

The GWR results in slightly higher model strengths than the LR models (best model $R^2 = 0.807$). Similar to the LR, the GWR models also take the two parameters, 'species pool' and 'habitat diversity' into account, with a stronger positive influence of the 'species pool' parameter:

(+) species pool > (+) habitat diversity (GWR models 3-10, 12). The third explanatory parameter 'habitat continuity' is not significant in any of the GWR models (see table A20: GWR models 1-24).

The order of beta-coefficients is changed if the 'distance index' is fed into calculation, i.e. the 'habitat diversity' variable ranks higher than the 'species pool' :(+) habitat diversity > (+) species pool (see table A20: GWR models 1,2,11)

Tab. 12: Best model results of the LR with the total number of a) local endemics and b) European endemics as dependent variables and the ecological parameters 'species pool', 'habitat continuity', 'habitat diversity' and 'isolation degree' as predictor variables.

a)

LR (local): adjusted $R^2 = 0.543$	beta-coefficient	t	р
Regional species pool** (non-endemics)	0.684	5.613	0.000
Habitat continuity (SGM glaciation)	-0.239	-1.92	0.063
Habitat diversity** (relief area index)	0.580	4.55	0.000
Isolation degree** (shape index)	-0.352	-2.86	0.007
constant		0.00	1.000

b)

LR (European): adjusted $R^2 = 0.778$	beta-coefficient		t	р
Regional species pool** (non-endemics)	0.398	3.26	0.002	
Habitat continuity* (TGM glaciation)	-0.202	-2.52	0.016	
Habitat diversity** (relief index)	0.484	5.17	0.000	
Isolation degree (distance index)	-0.212	-1.96	0.058	
constant		0.00	1.000	

Abbreviations:

LR - Linear regression; SGM - Saalian glacial maximum; TGM - total glacial maximum

Tab. 13: Best model results of the GWR with the total number of a) local endemics and b) European endemics as dependent variable and the ecological parameters 'species pool', 'habitat continuity', 'habitat diversity' and 'isolation degree' as predictor variables.

a)

GWR (local): pseudo $R^2 = 0.618$	beta-coefficient	Ζ	р
Regional species pool** (non-endemics)	0.4114	3.23	0.001
Habitat continuity (SGM ice)	-0.1947	-1.76	0.078
Habitat diversity** (relief index)	0.3384	2.95	0.003
Isolation degree** (coastline index)	0.4398	3.98	0.000
constant		-3.16	0.002

b)

GWR (Europe): pseudo R ² = 0.807	beta-coefficient		Ζ	р
Regional species pool** (non-endemics)	0.384	3.40	0.000	
Habitat continuity (TGM glaciation)	-0.137	-1.48	0.140	
Habitat diversity** (relief index)	0.461	5.21	0.000	
Isolation degree (distance index)	-0.159	-1.45	0.146	
constant		-0.56	0.243	

Abbreviations:

GWR - Geographically Weighted regression; SGM - Saalian glacial maximum; TGM - total glacial maximum

Discussion

Biases in taxonomic interpretation: need for consistency in endemism data

Data on endemism within a distinct region is strongly dependent on the taxonomical interpretation of the present plant inventory. The Flora Europaea was used as the decisive Flora for the database EvaplantE to ensure a reasonably consistent database for the endemic plant inventory in Europe (with its 42 regions). However, all volumes of the Flora Europaea have the disadvantage that they are quite old and have not been updated to include the latest findings on Europe's plant inventory (e.g. the comprehensive data for the southeast Mediterranean regions summarised in the Med checklist: Greuter et al. 1984, 1986, 1989, 2009 updated interactive web presentation, URL: ww2.bgbm.org/mcl/home.asp). Further, Flora Europaea does not provide comprehensive coverage of all of Europe's plant families²², nor does it cover all the regions examined in the present thesis. The supplement to EvaplantE, which uses updated data taken from regional or local floras, was compiled with great caution in order to retain the consistency of taxonomic interpretation. As taxonomic knowledge and the standard of taxonomic interpretation changed over the years and also varied with regional affinities, the decision as to whether a taxon should be added to EvaplantE or not was never without ambiguities. The example of the Crimean region (see p. 20) clearly shows that a different taxonomic interpretation may lead to heavy biases in the database and hence in the statistics.

The latest volumes of the Atlas Florae Europaeae (Kurtto et al. 2004; Kurtto et al. 2007) that may count as an update or revision of the Flora Europaea give the idea that the trend in taxonomic interpretation of species is towards a more monotypic taxonomical standard (taxonomic splitting) in future. For example, if the complete data from the Atlas Florae Europaeae had been included in EvaplantE, the number of endemic taxa of the plant genus *Alchemilla*²³ would have risen from currently 94 endemic taxa to 136, amounting to an increase of about 30 percent.

Fig. 27: *Alchemilla alpina*: a member of the agamosperm reproducing genus *Alchemilla*. (Hartinger 1882, source of public domain)

²² e.g. the genus *Rubus* is still missing in the floras

²³ Alchemilla reproduces agamosperm (=asexual reproduction through seeds) which is a form of apomixis. The taxonomic interpretation of Alchemilla taxa is still disputable (e.g. Fröhner, 2008).

If the taxonomic trend towards splitting continues, revisions of floras will surely also enlarge the number of endemics either because the taxonomic ranks of taxa are upgraded (e.g. varietates are upgraded to subspecies) or because individual taxonomically high-level taxa are divided into several lower-scale taxa (e.g. species groups are split into several species). As yet, it is more or less impossible to conceive the dimension of the changes that the new genetic methodologies will bring about in European Flora taxonomy.

It is becoming clear that the number of endemic species will fluctuate with every floristic or taxonomic revision and thus any future results will necessarily deviate more or less strongly from those of today. The comprehensive review of data on regional endemism worldwide (Bruchmann and Hobohm, unpublished) shows that the same is true for an inaccurate or insufficiently stringent application of the term endemic.

In conclusion, it can be said that as long as there are no definite guidelines in defining endemism and as long as the rank of taxa fluctuates with taxonomists' preferences ('splitters' or 'lumpers') all results should be interpreted and applied with the necessary caution. As matters stand, the present dataset EvaplantE is the most solid and consistent groundwork for assessing plant endemism in Europe. Thus, it gives valid indications of the present floristic, geographical and ecological patterns of endemic plant occurrence in Europe.

Floristic inventory and impact species traits

The floristic analysis of Europe's endemic taxa highlighted certain families, in particular the family of Asteraceae. The findings correspond largely with findings of studies on endemism at regional scales in Europe (e.g. Greece: Georghiou and Delipetrou 2010).

It is most likely that the dispersal trait has some influence on the incidence of taxa with restricted range sizes within the plant families. If there are very specialised mutual dependencies between plants and insects in dispersal of diaspores, as for example in the case of the very narrow endemic plant *Centaurea corymbosa* (Asteraceae; figure 28), then the range expansion of species occurs very slowly and the gene-flow between the plant populations is reduced. This dispersal mode may lead to isolation and narrow range size of the species. In fact, *C. corymbosa* is very isolated and the only existing six populations worldwide are confined to a tiny area of about 3km² in the Massif de la Clape in southern France (Colas et al. 1997; Imbert 2006).

On the other hand, efficient long-distance dispersal mechanisms, such as anemochory or endozoochory, should counteract the endemism, as these mechanisms ensure the occupation of large areas and thus facilitate the gene-flow between populations. However, long-distance dispersal could also be an important means of covering long distances over unsuitable habitat and arriving at new, unsettled regions such as isolated islands where the species may be able to spread and to adapt.

Plant species that disperse with the help of slow or small biotic agents such as ants would never reach an isolated island. This is why plant families with high colonisation abilities (long-distance dispersal) are very frequent in isolated island floras (e.g. see analyses of the richest plant family profiles for the 14 island regions, appendix).

Several studies discuss the role of species dispersal abilities in endemism. However, this relationship is not finally clarified yet: Helme and Trinder-Smith (2006) assessed endemic and threatened plants in the Cape Peninsula region and found significantly higher numbers of endemic taxa with ant-dispersal (myrmecochory), and far fewer endemics with wind dispersal. Giménez et al. (2004) who examined dispersal modes of endemic plants along an altitudinal gradient in the southern Iberian Peninsula found a more sophisticated relationship: Endemics of high altitudes tend to disperse via anemochory due to pappi, while dispersal of endemics from the lower regions is more frequently biotic-assisted (e.g. myrmecochory, zoochory).

Holmgren and Poorter (2007) found that the majority of endemic taxa were not dispersed by wind. However, the authors found that this pattern, visible on the macro-scale level of the large study region²⁴, shows regional variations depending on the local habitat situation. In fact, in the open landscape regions of the study area wind-dispersed endemics are in the majority.

Lavergne et al. (2004) raised concerns over the hypothesis that endemics are generally poor dispersers as there are strong dependencies on the different phylogenetic contexts of the examined floras. Hobohm (2008) summed up that the trait combination of specialised insect pollination and wind dispersal is frequently found in endemic plants.

Most of the endemic-rich plant families or genera discussed in the present study are insect pollinated (e.g. *Centaurea, Campanula, Silene, Galium, Saxifraga, Limonium*) and spread by wind dispersal (almost all members of Asteraceae, Poaceae and some members of the Scrophulariaceae and Fabacae). Some genera are, however, dispersed by animals or gravity (e.g. *Centaurea* spec., *Galium* spec., *Campanula* spec.)²⁵. Species groups that reproduce asexually (apomictic species), as some *Hieracium* species do, hold an exceptional position. However, the 10 families with the highest numbers of endemic species are those families that are most species rich in general (Davis et al. 1994). At regional scales (see profiles of regions; appendix pp. 220 ff) these 10 endemic-rich families are also in evidence, and the family of Asteraceae is nearly always in top position. So far, there is only poor trait data in EvaplantE, which is the reason why it is not possible to discuss the role of dispersal traits in any detail. This issue remains an interesting field of study for the future.

²⁴ The examined study region comprises the whole Upper Guinean region from Senegal to Togo, West Africa.

²⁵ Information on taxa traits was evaluated from LEDA Traitbase (Kleyer et al. 2008, URL: www.leda-traitbase.org).

Photographer: Claude (free under GNU-License)

Fig. 28: *Centaurea corymbosa* spreads exclusively with the help of biotic agents: The range of the ants dispersing the seeds also confines *Centaurea corymbosa*'s range.

Geographical gradients in endemism across Europe

Europe has no endemic plant family but more than 100 endemic genera. The analyses of Kew Garden's Herbarium (Kew Garden's Herbarium, URL: www.kew.org/news/families-and-generamap.htm) which focus on the distribution patterns of (endemic) plant families and genera show that Europe receives low and middle scores in the global ranking of floristic richness (genus level). However, an uneven distribution of (endemic) genera per region is visible throughout Europe (Box 4). This general trend is based on plants recorded at the genus level, but is largely confirmed when the focus is placed on the lower taxonomic ranks. The diversity maps (figures 21, 22) produced in the present study confirm this pattern and show a refined scale, accounting for 42 independent regions. Figures 17 and 18 show a tendency for fewer endemics (both European and local) to inhabit the northern than the southern regions and illustrate that the highest diversity of endemics is found in the southern and Mediterranean regions (absolute numbers; see also table 4).

Fig. 29: Recoloured map of the study region based on the digital biodiversity map produced by KEW Gardens: The regions are categorised according to their total richness in genera and in endemic plant genera¹⁸.

KEW Garden's map shows that the large regions in the north (North and Middle Europe) do not host any endemic or only one endemic genus (Eastern Europe) and the southern continental regions host more than one thousand plant genera; of these, 24 genera are endemic to southeastern and 30 to southwestern Europe. The isolated archipelago of the smallest region, Macaronesia, has indeed the lowest numbers of genera overall, but with 36 endemic genera it is the most endemic-rich region of Europe (see table 14).

region	area (100km ²)	number of families	number of genera	endemic genera
North Europe	16,202	111	596	0
Middle Europe	10,808	118	728	0
Eastern Europe	45,946	120	819	1
Macaronesia	140	112	511	36
Southwestern Europe	11,581	139	1,047	30
Southeastern Europe	10,575	142	1,109	24

Tab. 14: Online search report of the interactive map of vascular plant families and genera for the European regions

²⁶ The division of areas is slightly different to the present study, as Macaronesia includes the Cape Verde Islands and the East Mediterranean Cyprus is related to the Western Asia region.

The division of regions:

Northern Europe: Denmark, Finland, Faero Islands, Great Britain, Iceland, Ireland, Norway, Svalbard and Sweden Middle Europe: Austria, Belgium, Czech Republic, Germany, Hungary, Netherlands, Poland and Switzerland Eastern Europe: Belarus, Baltic States, Crimean region, Central European Russia, East European Russia, North European Russia, South European Russia, Northwest European Russia and Ukraine Southwestern Europe: Balearic Islands, Corsica, France, Portugal (mainland), Sardinia, Spain (mainland) Macaronesia: Azores, Canary Islands, Cape Verde, Madeira and Selvages.

However, direct comparisons of diversity features are difficult, as there is considerable variation in the area sizes of the study regions²⁷. Nevertheless, some examples of clustered regions with comparable area size confirm the assumed north-south gradient in endemic diversity (see table 5): The Czech Republic and Slovakia are species-poor as well as poor in local endemics (6) and European endemics (556) compared to the slightly smaller Greece with 419 local and 1,096 European endemics (cluster 10). Italy (170/1,473) and Yugoslavia (158/1,479) are much richer in endemics than the island of Great Britain (25/ 291; see cluster 11). The endemic diversity of Sweden is heavily contrasted by mainland Spain which hosts more than 100 times as many local endemics as Sweden (545 vs. 5, respectively) and about 8 times more European endemics (1,562 vs. 194, respectively). The diversity gradient from northern to southern Europe is also visible when smaller distances are compared: e.g. Denmark compared to Switzerland (1/145 vs. 8/741 respectively; cluster 5), Finland (0/114) compared to Germany (8/645; cluster13), Norway (2/181, cluster 12) compared to Poland (3/412; cluster 12), Bulgaria (56/707) compared to Greece (419/1.096) and France (93/1,384) compared to the extremely endemic-rich mainland Spain (545/1,562; cluster 15).

A comparison of regions with different area sizes makes the problems and biases of endemism ratios clear: The study regions Crete (endemism: 8.1%) and Greece (endemism: 8.4%) and the study regions Crimean peninsula (endemism: 3.2%) and Italy (endemism: 3.3%) have comparable endemism ratios. However, we gain little information from these numbers, as Greece and Italy both have more than 2.5-times higher numbers of local endemics than Crete and the Crimean. The endemism ratios of the compared regions are therefore only the same because the absolute numbers of species are different. While the small island Crete and the Crimean Archipelago are inhabited by about 2,000 species, Greece and Italy have a total floristic inventory of some 5,000 vascular plants each (see also table 5).

As long as there is no accurate method to compare endemism values across space it is reasonable to apply Bykov's Index or alpha-values. Table 5 shows that the northern regions all have drastically low values of endemicity, while the southern, endemic-rich but large areas such as mainland Spain (-1.08), mainland Italy (-2.84) and Yugoslavia (-2.43) have negative residual scores close to the expected values. Only some extremely endemic-rich islands and archipelagos such as the Canaries (10.68), Cyprus (2.00) and Greece (1.18) reach positive scores above the expected level of endemicity.

²⁷ The uneven distribution of land masses along the latitudinal gradient creates the situation that the species-poor regions of the north of Europe have larger area sizes than the species-rich regions of the south. This special situation would result in a negative correlation in a species-area-curve.

This gradient in endemism may be explained by climatic and energetic factors. The latitudinal gradient of endemism found in the present study corresponds well to the findings at global scales: The global view shows that the alpha-diversity (and thus possibly also endemic diversity) of vascular plants generally increases towards the equatorial regions (Rosenzweig 1995; Rohde 1998; Kier et al. 2005; Barthlott et al. 2007). Certainly, the precondition of a sufficient supply of plant-available water must be fulfilled (theory of water-energy-dynamics, O'Brien 1998; Whittaker et al. 2001; O'Brien 2006). It is obvious that the present distribution pattern of endemics in Europe is influenced by current climatic conditions. Doubtless, this pattern will adapt and shift in the near future, depending on the local and regional effects of global warming (e.g. Pompe et al. 2008).

Impact of the 'habitat continuity' parameter

However, it is likely that the current pattern of endemism in Europe was shaped to a much greater extent by the destructive influence of the glacial cycles in the past than by current climatic features as e.g. Cain (1944: p. 216) noted:

'... the lands of the northern hemisphere which were covered by the Pleistocene ice sheets seem to be conspicuously low in endemics'.

Several authors have emphasised that the last glacial events strongly influenced the floristic inventory and shaped the present patterns of diversity at regional and continental scales (e.g. Cowling and Lombard 2002; Pärtel 2002; Jansson 2003). Rohde (1996) argued with Rapoport's rule²⁸ and hypothesised that species of the north with small ranges have become extinct because of glaciations (Rapoport 1982; Stevens 1992; Rohde 1996). However, most of the current published studies take only the extent of the last glacial maximum into account, i.e. the maximum extent of the ice sheets during the Weichselian period (LGM e.g. Essl et al. 2010). As apparent from map figure 15a (SGM) and map figure 15b (LGM) the extent of the ice sheet cover varied substantially depending on the glaciation period under consideration.

The present study shows that the influence of earlier glaciation periods must also be considered when explaining current biodiversity patterns, especially regarding the patterns of local endemics. This evaluation considers either the Saalian glacial maximum (SGM) or the total glacial maximum (TGM) layer with combined data of all glacial events of the Quaternary era. Figure 15c shows the study area and the extent of the total glacial maximum (TGM layer) and the richness of regions categorised in a 10- step colour scale (visible are the first 6 different coloured intervals showing regions with high endemism). This demonstrates impressively that the ten most endemic-rich

²⁸ Rapoport's rule is the common name for Rapoport's hypothesis which recognised the decrease of in alpha-diversity towards the poles accompanied by a rise in the mean range size of species (Stevens, 1992).

regions were largely uninfluenced by ice sheets or had large ice-free refugial areas, as is the case in France (90% ice-free refugium) or Italy (80% refugium).

An applicable showcase supporting a 'refugia-theory' in Europe is the comparison of the neighbouring alpine regions, Austria and Switzerland. The regions are situated in the same climatic region, are both mountainous, thus have high habitat diversity, and were affected by several glacial events. Austria today hosts 25 local and 858 European endemics, while the smaller but more habitat-rich Switzerland has only 8 local and 741 European endemic plants (see also profiles of regions, appendix). Switzerland's relative endemic paucity may be explained by a strong glacial impact. Calculating the ice-free refugial areas for the last glacial maximum (LGM) and the Saalian maximum (SGM) it becomes evident that more than 50% of the region Austria was ice-free during both glacial events, while of the region covered by today's Switzerland, 99% was covered by ice during the SGM and 80% during the LGM. This means that the potential endemic species in the region Switzerland have either become extinct or have been edged out by radical climatic pressure and had to immigrate again from southern regions during the warmer interglacial periods.

It is most likely that the periodic destruction of habitats steadily interrupts evolutionary processes (e.g. gene flow or speciation) and thus leads to a reduction in the taxa's intra-specific variability and even to a generally reduced local species pool (Cain 1944; Kruckeberg and Rabinowitz 1985; Rohde 1992). On the other hand, in a few cases, catastrophic events may also promote founder effects, but only if the extremely reduced populations are able to spread again after the end of the catastrophe. However, as the likelihood of becoming extinct is much higher for small populations, it is most likely that the latter process happens infrequently.

All regression models (with local and European endemics as dependent variables) resulted in higher model strengths when using the TGM or SGM data than when using LGM data. In any case, the TGM or SGM ice-sheets show negative beta values, and thus negative influences on the number of endemic taxa. The influence of the explanatory parameter 'habitat continuity' is significant in many GWR models with local endemics as dependent variable but has no significant influence on the patterns of European endemics. This phenomenon might be explained by Rohde's idea that species with small range sizes had lower chances of survival and were wiped out in the north but survived in large numbers in the non-glaciated south.

The contrast in absolute numbers of European endemics between northern and southern Europe is much smoother. This might be due to simple stochastic reasons, as it is very likely that European endemics are concentrated in the centre of the large land masses of Europe (see also Box 5). However, as Europe's large landmasses are situated at high latitudes, these regions were strongly influenced by glacial cycles, which reduced the numbers of European endemics to moderate values.

Impact of parameter 'isolation degree'

Despite the apparent gradient in endemics from north to south, in the case of the local endemics it is conspicuous that the Atlantic islands Great Britain (25 local endemics), Iceland (4) and even the Faero Islands (1) and Svalbard (4) are inhabited by some local endemic taxa, which make these regions comparably rich or richer in local endemic plants than e.g. the Baltic region (1), the Scandinavian regions (Denmark (0), Sweden (5), Norway (2), Finland (0)), the Benelux region (Netherlands (0), Belgium and Luxembourg (1)). The continental region Hungary and the North Atlantic Iceland have comparable area sizes but there is a difference of only one in the number of local endemics as the 14-times larger Northern division of Russia (Rs (N) (4)). Extreme richness in local endemics is also evident in the South Atlantic Archipelagos – the Canaries (540), Madeira (134) and the Azores (46) and the Mediterranean Islands – Crete (152), Sicily (59), Corsica (37), Sardinia (28).

The degree of geographical isolation as a promoting factor for local endemism was described and examined exhaustively by several scientists, starting with MacArthur's and Wilson's theory on Island Biogeography (MacArthur and Wilson 1967) and followed by several studies at global (Hobohm 2000; Kreft et al. 2007), regional or local scales (e.g. studies in the European area Cardona and Contandriopoulos 1979; Hannus and von Numers 2008; Nikolic et al. 2008; Reyes-Betancort et al. 2008; Panitsa et al. 2010).

It should be noted that the extraordinary status of islands in endemic species richness only applies when considering the number of small-range local endemics. If the focus is enlarged from small-range local endemics to broad-range European endemics, the islands lose their status of endemic richness to the large mainland regions of the south. This shifting might be due to a simple area-effect. This drastic degree to which the endemic diversity value of islands is decreased when a different definition of endemism is applied may be smoothed by using cross-scale values of endemicity. However, this obviously strong effect of rescaling also requires that researchers and conservationists keep the massive influence of their chosen scale of endemism in mind. When using data from endemism studies, the influence of scale (macroscale vs. regional scale vs. local scale) on the one hand, and the understanding of the term endemic, on the other must always be carefully evaluated.

Further, the rescaling effect also clarifies the problem of endemism at the edge of a study region (Hobohm and Bruchmann 2009). This 'edge-effect' is a stochastic phenomenon (see Box 5) that results from the position of the species' population centre in a given geographic space: Endemic plant populations that occur at the edge of study areas – even if the geographic range of occurrence is small – have a smaller chance of acquiring endemic status than those endemic species that occur in the centre of a study region. The logical consequence of this is that small regions at the edge of a

study area tend to host higher proportions of endemics with very narrow geographical ranges of occurrence than large-range endemics. The low endemic species number for e.g. the European part of Turkey (4 local/ 85 European endemics) that would not be expected on the basis of its geographical position in the otherwise generally endemic-rich Mediterranean region can also be traced back to this edge phenomenon. If this region was, theoretically, moved to a central position within the study area it would presumably host more European endemics than in its actual edge position (Hobohm 2008). However, it is not as yet possible to quantify this 'edge effect' in endemism, but the trends or contingent biases in data should be kept in mind.

The parameter 'isolation degree' was much more loaded in the LR and GWR models explaining the patterns of richness in local endemics (1st rank in most LR and GWR models). In contrast, the parameter 'isolation degree' was not significant in any regression for explaining European endemics, no matter which index describing the isolation factor was chosen. This result is not particularly surprising, as the characteristic of having a small range and thus being isolated is more or less inherent to the definition of a local endemic plant.

The predicting parameter 'isolation degree' is well described with the proportions of shore and perimeter per region and is also adequately described with the 'isolation index' that includes distance measures. The suitability of simple distance measures ('distance index') and the 'shape index', however, is debatable: The use of the 'distance index' describing the explanatory variable 'isolation degree' decreases model strength in LR and GWR models explaining patterns of local endemism but resulted in good model fit regarding patterns of European endemics. Using the 'shape index' results in moderate to good R^2 values but with the opposite algebraic sign.

Besides, it should be noted that the present isolation indices include only geographical separation either in the form of distance or of water barriers. Barriers, such as alpine mountain ranges that doubtlessly also have isolating or separating effects on floras are not considered as an isolating factor, yet. Future studies should test how a probable influence of these barriers can be incorporated into calculations.

Impact of the 'regional species pools' parameter

It is important to note that the parameter 'isolation degree' on its own is never the decisive factor for high endemism. Isolation is not a single acting promoter but, due to the reduced gene flow, isolation is an important precondition for speciation (Kruckeberg and Rabinowitz 1985). Another major precondition of high endemism is the existence of a species pool in the neighbourhoods of the isolated region. This adjacent species pool ensures a certain probability for the invasion of species into the isolated region; these then represent the initiating biotic inventory for the newly developing flora. Thus, the environmental parameters regional 'species pool' and 'isolation degree' work closely together promoting speciation (Stebbins and Major 1965; Hobohm and Bruchmann 2009).

Box 5: Living on the edge

Figures 30a and 30b illustrate the position of the population centre of endemic plants within the study area and their geographical range size. Two different grid layers with hypothetical range sizes, Fig. a small range sizes or Fig. b large range sizes, were positioned over a map of parts of the study area. It becomes clear that plants with large range sizes positioned towards the edges of the study area have a smaller probability of being classified as endemic than those plants positioned in Central Europe. In contrast, plants with small range sizes have high chances of acquiring the status 'endemic' even if their population centre is positioned at the edge of the study area. This stochastic effect is relevant in discussions of differences in the distribution patterns of local and European endemics. Central European endemics may have larger range sizes than those endemics found towards the edges of the study area.

Fig. 30a: Small hypothetical range sizes of endemic plants.

The described dependence between the parameters 'isolation degree' and 'regional species pool' parameter is shown in the bivariate correlation analyses (see tables A8-A13, appendix) and is also clearly displayed in the regression results. In the case of local endemics, the regional 'species pool' always accompanies the 'isolation degree' variable and has a similarly strong impact in regression models (2nd rank in most LR and GWR).

In the case of the European endemics as dependent variable, the calculations of LR and of GWR account for very high beta-values of the 'species pool' parameter. In most cases, the 'species pool' variable is most important (1st rank) and has a strong positive influence on the current pattern of European endemics.

The higher importance of the 'regional species pool' parameter in explaining variations in the patterns of either local or European endemics becomes clear: The process of speciation on a continuous mainland area generally begins with a large species pool in the neighbourhood, which means that numerous genetic resources are available from which new species may evolve. Furthermore, migration and gene flow should occur frequently on continuous terrestrial areas. However, in isolated areas, e.g. an oceanic island far away from the continents, speciation has to be established from a small or moderate genetic inventory.

The high importance of the regional species pools in explaining the patterns of European endemics is also of interest regarding the negative effect of the 'habitat continuity' parameter. After the comprehensive habitat destruction by the ice-sheets, the re-invasion of species came from the southern, non-glaciated regions. Today the northern regions still have lower total species numbers (see region profiles, p. 220 ff appendix) and thus smaller regional species pools from which new species – potential endemics – may have evolved.

Impact of the 'habitat diversity' parameter

Beside the explanatory parameters 'habitat continuity' and 'species pool' the 'habitat diversity' parameter was weighted very high in regression models. In the case of the local endemics, 'habitat diversity' was placed third, and in the case of the European endemics 2nd among significant explanatory parameters and impacts. As stated by Cain in the following quotation, habitat diversity is important for a high degree of endemism (Cain 1944): p. 212):

'A high degree of endemism is usually correlated with age and isolation of an area, and with the diversification of its habitats, as these factors influence both evolution (the formation of new endemics) and survival (the production of relic endemics).'

(*Cain 1944*)

Species diversity and endemic diversity are generally highly correlated with the area size of the examined region. Several authors argue that the factor 'area' per se has only little value in explaining richness patterns because, at least at large scales, it is not the quantity but the quality of an area that affects species richness (Cain 1944; Kruckeberg and Rabinowitz 1985; Ricklefs and Irby 1999; Morand 2000). In many cases, the measured positive correlation between area and species richness is due to a sampling effect over large scales, as the effects of climate variability, landscape heterogeneity (relief, vegetation) or the number of soil types increase with increasing area size (Whittaker et al. 2001).

In the present study, it is conspicuous that the poorly structured lowland regions such as the Netherlands (148), Belgium and Luxembourg (198), Denmark (145) or the Baltic region (118) have low numbers of endemics, while the high-mountain regions e.g. Spain (1,581), France (1,477)), Italy (1,473), Austria (858), Switzerland (741), Greece (1,096), Yugoslavia (1,479) and the Canary Islands are mostly extraordinarily rich in endemics (figure 17).

In fact, the 'relief index', which simply accounts for the elevation gradient within the regions, results in the best model fit in most calculated regression. Other indices describing the habitat diversity such as the 'vegetation index' did not produce significant results. The use of the 'relief area index' decreased the model strength rapidly when explaining local patterns of endemism. The index failure of the 'vegetation index' may be due to the fact that this index was measured at very large scales (1:2,500,000) and condensed to a simple count of broad-scale vegetation types. The impact of small-scale variability in vegetation e.g. very local or microhabitats, different microclimatic conditions at southern- or northern-facing slopes, is not reflected well in these broad-scale index.

The 'relief index' seems to be a very appropriate measure for habitat diversity, and several authors found good model strength using this measure (Ricklefs and Irby 1999; Morand 2000; Strauss 2009). Moreover, this index is very easy to assess as valid altitude data is also available online for almost all regions (e.g. www.maps-google.com and others).

Handling spatial autocorrelation power of predictive regression models

The visualisation of combined data via maps certainly gives an impressive overview of endemism at a continental scale and also gives some idea of the interrelationships between the current patterns of endemism and the explanatory parameters. Some of the previously discussed aspects were partly revealed by the combination of ecological features with spatial data (calculation of explanatory indices) and by bivariate correlation statistics (see tables A8 - A13, appendix). However, every evaluation that is based exclusively on the visual impressions from map studies must remain on a qualitative level and does not allow any quantitative statements to be made. With the help of bivariate correlations, however, it is possible to some degree to quantify the impact of every single explanatory parameter. It is neither possible to quantify the combined impact of parameters in total nor to assess the differences in the strengths of impacts of the single explanatory parameter on the given patterns of endemism. This correct quantifying of relationships, which could upgrade the scientific discussion, was enabled primarily by multivariate regression.

Contrasting the quiet different results of the non-spatial LR with those of the GWR highlights the strong influence of spatial autocorrelation in regression statistics. It can be concluded that the standard LR is sensitive towards non-uniformly distributed data and is not applicable if spatial autocorrelation was detected (Kühn 2007). As spatial autocorrelation is frequently found in ecological data the standard LR falls behind the spatial accounting GWR.

However, as the pseudo- R^2 of the GWR and the adjusted- R^2 -value of the LR are not directly congruent it is neither possible to compare the model strengths directly nor to quantify the errors in LR statistics caused by the spatial dependencies.

As spatial autocorrelation was indicated in the present data, the GWR had to be applied instead of the LR. The GWR method is robust against errors resulting from spatial patterns underlying the data fed into the calculation. Because of the addition of the weights matrix this regression type is able to account for the spatial autocorrelation. However, this advantage might also be the greatest shortcoming of GWR:

The major criticism of the spatial regression method GWR is that the specification of spatial weights in the weights matrix is defined *a priori*. This means that in defining the weights matrix a presumption of the spatial interrelationships is already made (Selb 2006). As this presumption is not tested with the data's reality before running the calculations, the results may be biased. Accordingly, the resulting models of GWR only give the answer that the coherence between the dependent and the explanatory variables is exclusively true under consideration of the *a priori* defined spatial dependencies. The GWR is likely to result in different loadings of explanatory variables if the specification of spatial weights matrix were defined differently. When discussing the results of GWR, this should be kept in mind.

The second criticism is that in the concept of the GWR the spatial weights, or the given conception of neighbourhood effects, are assumed to be the same for each of the explanatory variables that are fed into the calculation. Looking at the maps in figure 14 and figure 15, however, it is evident that e.g. the spatial pattern that underlies the indices for habitat continuity is structured differently than e.g. the spatial patterns underlying the isolation indices.

In the present study, the specification of spatial weights in the weights matrix was established with respect to all named preconditions: The standard weights matrix calculated by distance measures of centroids was dismissed and replaced by another weights matrix which accounted for the ecologically relevant differences of neighbourship across terrestrial (e.g. mainland regions) and across marine areas (e.g. islands and peninsulas). This classification of spatial dependencies proved to be successful. However, to ultimately prove the reliability of GWR models it is recommended to calculate the same GWR with different classifications of neighbourhoods and to test the otherwise identical GWR models against each other (Selb 2006). A test using fictive dummy-data is also useful.

The GWR is not the only statistical method of accounting for the effects of autocorrelation. Today several different techniques of spatial modeling are known that account for the spatial impact in ecological datasets (Dormann 2007; Carl et al. 2008). As stated by Dormann (2007) almost all methods result in reliable spatial models. However, it was also found that the different methods of accounting for spatial effects differ significantly in results and conclusions if the calculations are based on binary spatial data (e.g. presence/ absence data). This effect was ascribed to the generally low content of information in binary maps compared to spatial datasets with continuous values. Thus, all spatial calculations on the EvaplantE data are subject to another uncertainty, as EvaplantE is based on this critical type of binary presence-absence data, which means that EvaplantE has, to date, low geographical information content. An upgrade of EvaplantE's data with respect to spatial information content, e.g. including coarse categories of range sizes, can be advised.

Ecologists will always face the challenge resulting from uncertainties and have – under the condition of uncertainty – to decide which method to use. The problem that every model calculation has a certain degree of uncertainty will never be solved and is inherent to the fact that a model can never be the same as 'reality'. Of course this does not mean that ecologists or conservationists should be comfortable with bad models. After evaluating EvaplantE's data it seems advisable not to rely on the application of one particular statistical method but first to consolidate expertise in the reality of the field and to improve the data quality (see beginning of discussion page).

A first step might be a general change in the paradigm of delineating and mapping endemism according to artificial political boundaries.

Delineating and valuing endemism - need for paradigm change

Relating endemic taxa to habitat categories, and thus to ecological features, in order to find habitat dependencies of endemic plants is a relatively new approach which was recently advanced by Ricketts et al. (1999) for North America, by Burgess et al. (2004) for Africa and Madagascar; also by Mucina and Rutherford 2006 at the smaller scale of South Africa, Lesotho and Swaziland), by Wikramanayake et al. (2002) for the terrestrial ecoregions of the Indo-Pacific²⁹ and by Hobohm and Bruchmann (2009; Hobohm 2008) for the European continent³⁰.

It can be noticed that the non-European works begin with the delineation of ecozones, ecoregions or distinct landscape formations and list bare figures of species and endemics for describing the biotic inventory within the delineated landscapes. In most cases it is also the aim of the assessments to find extraordinarily biotic rich priority areas for the establishment of maximum efficiency concepts of biodiversity conservation (*in situ*). The latter focus of searching for the most biotic rich areas is unfortunately based on strongly condensed data i.e. the endemism data consist purely of numbers of endemics without naming or assessing taxonomic ranks or geographical ranges of taxa.³¹

In contrast, the European assessment is a species-centred approach and is stringently focused on the endemic inventory of vascular plants and their related habitats and is, as far as possible, taxonomically valid. From the taxonomical and ecological point of view this approach leads to a much finer scale of cognition in plant endemism as it includes considerations on the local and regional scales (depending on the geographical range of the endemics) and relates this to a continental-scale overview. However, evaluation of EvaplantE is vulnerable to any gap in ecological knowledge and suffers all the problems and biases which result from different habitat terminology in the various European languages or by different international standards of classifications Hobohm and Bruchmann 2009; see also impressions of picture plates showing examples of habitats). Nevertheless, this approach may be able to detect missing data (floristic, geographic and ecologic) and reveals unsolved questions in conservation sciences, e.g. the problems resulting from delineating endemism according to political divisions.

In fact, the evaluation of EvaplantE endemism in Europe is mostly defined according to artificial boundaries (borders of the national states) and only few data on endemism are related to natural (e.g. mountain ranges or islands) or to ecological (e.g.biomes or habitats) features. To date there are still large data gaps in the ecological knowledge of endemic plants' habitat affinities. About 24 % of

²⁹ However, a criticism of the works of Wikramanayake et al. and Burgess et al. is that they are based upon bad quality data, as most endemism data was roughly measured in only four endemic-richness categories (coarse interval scale!).

³⁰ In some respects, the approach of the world's distinctive ecoregions (Olson *et al.*, 2000; Olson & Dinerstein, 2002) may also be part of this list, although endemism was not the leading idea of this approach.

³¹ Furthermore it can be mentioned that sometimes endemism data for different species groups were focused on and were at times even mixed up (e.g. bird endemism vs. plant endemism vs. endemism in amphibia or the endemism in other species groups).

endemic taxa are not yet assigned to habitats. Generally, the data availability at population level is even worse. Some endangered species with already critical population sizes receive attention, e.g. plants listed in the national red lists or in Annex 1 of the European Habitats Directive (good or bad conservation status; see e.g. www.floraweb.de, Rat der Europäischen Gemeinschaften 1992; Commission of the European Communities 2009). It is to be feared that the population sizes of other more abundant endemic plants are decreasing unobserved due to habitat changes and ongoing trends in intensification of land-use but without attracting conservationists' attention.

In the course of *in situ* conservation the habitat affinities of endemic plants should be of much greater interest than the confinement of plants to political borders.

The evaluation of numbers of endemic plants inhabiting the different habitat categories generally confirms the findings of (Hobohm 2008; Hobohm and Bruchmann; figure 23 a-d). However, the present study sets a strong focus on the evaluation of Europe's stenoecious endemic plants, as this knowledge might be of special interest in the course of *in situ* conservation and may give important indications as to how best to classify the rarity and the vulnerability of Europe's endemic plants.

The evaluation of habitat affinities shows that some 40% of endemics (that were assigned to habitats) do not have a narrow ecological amplitude and can be found in more than one habitat type. The fact that an endemic taxon need not necessarily be exclusively bound to one set of ecological conditions was already indicated by van der Maarel and van der Maarel-Versluys (1996). for vascular plant endemics along the European coasts. In fact, 58.5% of the assigned endemics are habitat specific and strictly bound to one of the eight habitat categories. About 29.6% of endemic plants occur in two habitat types and only a small proportion of endemics have wider ecological restrictions and occur in 3 (10.4%) and 4 (1,5%) habitats. Of special interest is the fact that coastal and saline habitats and also rock and scree habitats are host to large proportions of habitat-specific endemic plants (57% and 60.9% respectively for the local endemics, and 58.6% and 55.2% respectively for European endemics). Other habitat types such as shrub- and heathlands as well as bogs, mires and fens contain significantly smaller proportions of stenoecious endemic plants. Interestingly, the ruderal and human-influenced habitats as well as grassland habitats have equally high or even higher proportions of stenoecious endemics than Europe's forest habitats (tables 9 and 10). The latter results underline the value of Europe's open cultural landscapes as important habitats and also warn against today's trend of land abandonment and intensification of land use Pignatti 1978, 1983; European Communities 2008; Commission of the European Communities 2009; Bruchmann and Hobohm 2010; Bruchmann and Hobohm, unpublished; EDGG 2010). From the overview given in figures 26a-h it is evident that not only the endemic-rich Mediterranean and island regions are responsible for the protection of the habitats in which stenoecious endemics live but also the temperate or even northern regions, such as Britain for coastal endemics, or Germany or Norway for the habitats of bogs mires and fens.

It is most likely that the different richness levels of habitats in stenoecious endemic plants are not due to a simple effect of area, as, for instance, both rock and scree habitats and coastal and saline or grassland habitats cover less of Europe's area than, for example, forest or agricultural habitats. However, as we do not have concrete data on the area extent of the habitats in Europe it is not possible to finally conclude questions concerning the conservation status of habitats and endemics (see also Hobohm 2008).

It is stated in the CBD (article 7 in conjunction with Annex 1) and also concretised in the European Plant Conservation Strategy (EPCS; Planta Europa 2002) that those plants and habitats that are most endangered should receive priority conservation. This statement becomes more concrete in the EPCS objective 1.02 that calls for the inclusion of all national endemic plants in the European Red List. The blind spot of this national boundary orientated conservation strategy is well illustrated by the case of Androsace alpina (see Box 1). This example shows that the endemism status of endemics which occur across political borders is often misconceived even though they may have smaller geographical distribution ranges than some local endemics or may be bound to one habitat type. In fact, many of Europe's endemic plants fall through the conservation net simply because their range extends across the border of individual countries and their respective administrative responsibilities. In the present study, more than half the endemic plant taxa (52%) are identified as cross-border endemics. Of these, 20% are endemic for two study regions and a further 15% of endemic taxa are confined to three (9%) and four (6%) study regions (see table 4) Because the database still comprises only binary data on the presence or absence of endemics in geographical regions and habitats it is not possible to determine how many of the cross-border endemics may be vulnerable to extinction.

The classification of the factual rarity or vulnerability status of the endemic plants with respect to their geographical range, habitat specificity and abundance must be tackled. Conservation policy must face up to this challenge very soon if the loss of biodiversity in Europe is to be seriously taken in hand.

Coastal and saline habitats

Rock and scree habitats

Fig. 31a: Cliff coast, Atlantic Ocean, Tenerife, Canary Islands (Photographer: Bruchmann)

Fig. 31b: Coastal dune, North Sea, Rømø island, Denmark (Photographer: Bruchmann)

Fig. 32a: Alpine habitat on limestone, Hochkönig region, Austria (Photographer: Bruchmann)

Fig. 32b: Scree habitat, Tenerife, Canary Islands (Photographer: Bruchmann)

Fig. 33a: Alpine meadow, Tiarno de Sotto, Italy (Photographer: Bruchmann)

Grassland habitats

Fig. 33b: Mowed semi-natural grassland, Hiddensee island, Germany (Photographer: Bruchmann)

Standing and running waters

Fig. 34a: Habitats along running waters, River Oder, Fig. 34b: Standing water: Bolmen Lake, southern Poland (Photographer: Bruchmann)

Sweden (Photographer: Bruchmann)

Fig. 35a: Spruce swamp, near Fröslev Mosse, Denmark (Photographer: Bruchmann)

Fig. 35b: Raised bog, Nationalpark Storre Mosse, Sweden (Photographer: Bruchmann)

Fig. 36a: Woodland of European beech Fagus sylvatica), Denmark (Photographer: Thyssen; free under GNU-licence)

Woodland habitats

Fig. 36b: Laurisilva, Garajonay La Gomera, Canary Islands (Photographer: unknown)

Ruderal and man-made habitats

Shrub- and heathland

Fig. 37a: Man-made habitat with Aeonium urbicum,Fig. 37b: Harvested cropland, Stranderod, DenmarkGomera, Canary Islands (Photographer: Bruchmann)(Photographer: Pioch)

Fig. 38a: Heathland, Wilsede, Germany (Photographer: Bruchmann)

Fig. 38b: Maquis shrubland with Cistus, Corsica (Photographer: unknown; free under GNU-licence)

Conclusion

Creating a spatial dataset applicable to the EvaplantE database and the visual presentation of Europe's endemism in maps enables a first visual impression of the regions of Europe which are the most, or rather the least, diverse in terms of endemic plant taxa. Further, the spatial referencing of other biotic or abiotic datasets (e.g. Quaternary glaciations) and the blending of maps gives new course of actions handling with ecologically relevant data. Spatial relationships, such as the north-south gradient in local and European endemism, the outstanding richness of some Mediterranean regions, the distinctiveness of isolated islands and mountainous areas were revealed. These trends indicated by the visual exploration method described above were confirmed by assessing EvaplantE data with the help of descriptive and bivariate statistics as well as with the help of regression methods based on several sets of explanatory variables derived from the maps created.

As regards the hypothesis presented at the beginning of this study, the influence of predictor variables explaining the current spatial patterns of endemics was clearly shown. Much of the variability of the data in Europe's botanical endemism can be explained by the defined explanatory variables. In the case of local endemics, the explanatory variables 'isolation degree', 'species pool', and 'habitat diversity' predict the endemic pattern best (GWR model, pseudo-R² value = 0.618). In the case of European endemics, the pattern of endemics is predictable with the help of the variables regional 'species pool' and 'habitat diversity' (best GWR model, pseudo-R² value = 0.807).

Contrasting the results of non-spatial LR with those from the spatial accounting GWR shows the fragility of standard regressions when dealing with spatially autocorrelated data. Spatial accounting regression methods such as the GWR are well able to incorporate spatial dependencies within the dataset. In most cases, the GWR results in high model strengths and leaves the standard LR behind³². However, depending on the incorporated weights matrix, which is an *a priory* assumption of how the spatial dependencies in the data are assumed to be structured, the results of GWR calculations differ to a greater or lesser extent. As the available dataset, EvaplantE, is binary structured (presence-absence-data), the given spatial content of endemism data is quite low, a factor which may even compound the uncertainty of the GWR statistics.

Floristic aspects of endemism showed that the generally most species-rich plant families are also richest in endemics. The influence of specific species traits (insect pollination, wind-spreading) is evident but could not qualified in valid trends or quantified in numbers.

The evaluation of ecological patterns, and thus the habitat-dependencies of endemic plants, showed the importance of Europe's open cultural landscapes, for example with respect to *in situ* species conservation. Many endemics are bound to natural habitats e.g. coastal habitat, rock and scree habitats, forests but many endemic plants are also bound to cultural landscapes such as grasslands (natural and semi-natural) and even to man-made and ruderal habitats (see figures 24, 25, 26 a-h).

³² Please note unsolved problem of comparison of GWR pseudo-R² versus LR adjusted-R².

Some major problems and blind spots became obvious while reviewing and interpreting the data on Europe's endemism:

Firstly, data inconsistency is a major challenge when investigating the endemism inventory of the European continent: The present thesis clearly shows the problems which arise from a variously stringent use of the term endemism or the problems resulting from taxonomical 'splitting' or 'lumping'. Also, the assignment of endemic plants to habitat categories is not without ambiguities, either because of the divergent meaning of some habitat denominations in different European languages or because of different ecological attributes of habitats of different climatic zones (e.g. Mediterranean vs. temperate grasslands).

Secondly, the term endemic is a very scale-dependent one, and the precise location in the given area under consideration also plays a role (Box 5).

Thirdly, recognizing the value of endemism i.e. using endemism as an indicator for biotic-richness or uniqueness is a critical aspect which strongly depends on the strategy- or target level and the given scientific background. Relating endemism to artificial boundaries, as has been done in the Flora Europaea, may be applicable in terms of politics and administrative or executive responsibility, but it does not make sense if the focus is on ecological questions of endemism or if seeking to initiate effective species conservation (*in situ*). As yet, there is no other comparable comprehensive data on endemism in Europe available other than the presently evaluated, mostly artificial boundary related, data of EvaplantE. Thus, the introductory questions which regions, habitats, or species should be prioritised in the course of biodiversity conservation can not be answered adequately.

In recognizing the value and significance of endemism one should avoid comparing apples with oranges. Not every endemic is rare and not every rare plant is necessarily also endangered (Ozinga et al. 2005). Using the state of endemic inventories as an indicator for biodiversity conservation is based on a meaningful categorisation of all European endemic plants according to their rarity status. In order to achieve this, it will be necessary to categorise endemic plants according to their geographical and ecological range (i.e. range size, habitat specificity) and, whenever possible, according to trends in population sizes

In order to face up to the biodiversity challenge and thus to span a systematic and tight conservation net which will help prevent species loss, it is strongly recommended that a suitable and consistent system be established in the very near future to identify the rarity and vulnerability of those species that are confined to the European continent.

References

Aeschimann, D., Lauber, K., Moser, D.M. & Theurillat, J.-P. 2004a. Flora alpina Vol. 1. Haupt-Verlag, Bern.

- Aeschimann, D., Lauber, K., Moser, D.M. & Theurillat, J.-P. 2004b. Flora alpina Vol. 2. Haupt-Verlag, Bern.
- Aeschimann, D., Lauber, K., Moser, D.M. & Theurillat, J.-P. 2004c. Flora alpina Vol. 3. Haupt-Verlag, Bern.
- Agardy, T., Ash, N.J., Cooper, H.D., Díaz, S., Faith, D.P., Mace, G., McNeely, J.A., Mooney, H.A., Oteng-Yeboah, A.A., Pereira, H.M., Polasky, S., Prip, C., Reid, W.V., Samper, C.N., Schei, P.J., Scholes, R., Schutyser, F. & Jaarsveld, A.V. 2005. Millennium Ecosystem Assessment,- Ecosystems and Human Well-being: Biodiversity Synthesis. World Resources Institute, Washington DC.
- Anchisi, E. 1991. Seltene Blumen des Wallis. Illustrierter Katalog der nur im Wallis vorkommenden Pflanzenarten der Schweiz. Rotten Verlags AG, Visp.
- Applequist, W.L. & Wallace, R.S. 2000. Phylogeny of the Madagascan endemic family Didiereaceae. Plant Systematics and Evolution 221: 157-166.
- Barthlott, W., Hostert, A., Kier, G., Koper, W., Kreft, H., Mutke, J., Rafiqpoor, M.D. & Sommer, J.H. 2007. Geographic patterns of vascular plant diversity at continental to global scales. Erdkunde 61: 305-315.
- Bergmeier, E. & Abrahamczyk, S. 2007. Ecology and distribution of the Aegean wetland endemics Carex cretica and Lathyrus neurolobus. Beiheft zur Nova-Hedwigia 31: 207-219.
- Bohn, U. & Neuhäusl, R. 2004. Map of the natural vegetation of Europe (Scale 1 : 2,500,000). Federal Agency for Nature Conservation, Bonn.
- Bonafè Barceló, F. 1977. Flora de Mallorca. Editorial Moll, Mallorca.
- Borges, P.A.V., Abreu, C., Angular, A.M.F., Carvalho, P., Jardim, R., Melo, I., Oliveira, P., Sergio, C., Serrano, A.R.M.
 & Viera, P. 2008. A list of the terrestrial fungi, flora and fauna of Madeira and Selvagens archipelagos. Direccao regional do Ambiente da Madeira and universidade dos Acores, Funchal and Angro do Heroismo, Funchal.
- Bouchard, J. 1978 Flore practique de la Corse. Société des Sciences Historiques et Naturelles de la Corse, Bastia.
- Bramwell, Z.I. & Bramwell, D. 2001. Flores silvestres de las Islas Canarias. Rueda, Madrid.
- Bruchmann, I. & Hobohm, C. 2010a. Halting the loss of biodiversity: Endemic vascular plants in grasslands of Europe. Grassland Science in Europe 15: 776-778.
- Bruchmann, I. & Hobohm, C. 2010b. Über Grenzen hinweg: Schutz endemischer Gefäßpflanzen in Europa? Treffpunkt Biologische Vielfalt, 10, 119-125.
- Burgess, N., D'Amico Hales, J., Underwood, E., Dinerstein, E., Olson, D., Itoua, I., Schipper, J., Ricketts, T. & Newmann, K. 2004. Terrestrial Ecoregions of Africa and Madagascar. Island Press, Washington, DC.
- Bykov, B.A. 1979. On a quantitative estimate of endemism. Botaniceskie materialy Gerbarija Instituta botaniki Akademii nauk Kazahskoj SSR 11: 3-8.
- Cain, S.A. 1944. Foundations of plant geography. Harper and Brothers, New York, London.
- Cardona, M.A. & Contandriopoulos, J. 1979. Endemism and evolution in the islands of the Western Mediterranean. In: Bramwell, D. (ed). Plants and islands. Academic Press, London, pp. 133-170.
- Carl, G., Dormann, C.F. & Kühn, I. 2008. A wavelet-based method to remove spatial autocorrelation in the analysis of species distributional data. Web Ecology 8: 22–29.
- Castroviejo, S. 2001. Flora Iberica Vol. 14: Myoporaceae Campanulaceae. C.S.I.C., Madrid.
- Castroviejo, S. 2003. Flora Iberica Vol. 10: Araliaceae Umbelliferae. C.S.I.C., Madrid.
- Castroviejo, S. 2005. Flora Iberica Vol. 21: Smilacaceae Orchidaceae. C.S.I.C., Madrid.
- Castroviejo, S., Aedo, C., Benedi, C., Lainz, M., Munoz Garmendia, P., Nieto Feliner, G. & Paiva, J. 1997a. Flora Iberica Vol. 8: Haloragaceae - Euphorbiaceae. C.S.I.C., Madrid.
- Castroviejo, S., Aedo, C., Cirujano, S., Lainz, M., Montserra, P., Morales, R., Munoz Garmendia, F., Navarro, C., Paiva, J. & Soriano, C. 1993a. Flora Iberica Vol. 3: Plumbaginaceae (partim) Capparaceae. C.S.I.C., Madrid.
- Castroviejo, S., Aedo, C., Gomez Campo, C., Lainz, M., Montserra, P., Morales, R., Munoz Garmendia, F., Nieto Feliner, G., Rico, E., Talavera, S. & Villar, L. 1993b. Flora Iberica Vol. 4: Cruciferae Monotropaceae. C.S.I.C., Madrid.
- Castroviejo, S., Aedo, C., Lainz, M., Morales, R., Munoz Garmendia, F., Nieto Feliner, G. & Paiva, J. 1997b. Flora Iberica Vol. 5: Ebenaceae - Saxifragaceae. C.S.I.C., Madrid.
- Castroviejo, S. & al., e. 1998. Flora Iberica Vol. 6: Rosaceae. C.S.I.C., Madrid.

- Castroviejo, S., Benedi, C., Rico, E., Güemes, J. & Herrero, A. 2009. Flora Iberica Vol. 13: Plantaginaceae-Scrophulariaceae. C.S.I.C., Madrid.
- Castroviejo, S., Lainz, M., Lopez Gonzalez, G., Montserra, P., Munoz Garmendia, F., Paiva, J. & Villar, L. 1986. Flora Iberica Vol. 1: Lycopodiaceae - Papaveraceae. C.S.I.C., Madrid.
- Castroviejo, S., Lainz, M., Lopez Gonzalez, G., Montserra, P., Munoz Garmendia, F., Paiva, J. & Villar, L. 1990. Flora Iberica Vol. 2: Plantanaceae - Plumbaginaceae (partim). C.S.I.C., Madrid.
- Castroviejo, S., Luceno, M., Galän, A., Jimenez Mejfas, P., Cabezas, F. & Medina, L. 2007. Flora Iberica Vol. 18: Cyperaceae-Pontederiaceae. C.S.I.C., Madrid.
- Castroviejo, S. & Talavera, S. 2006. Flora Iberica Vol. 7(2): Leguminosae. C.S.I.C., Madrid.
- Caujapé-Castells, J., Naranjo-Suarez, J., Santana, I., Baccarani-Rosas, M., Cabrera-Garcia, N., Marrero, M., Carqué, E. & Mesa, R. 2008. Population genetic suggestions to offset the extinction ratchet in the endangered Canarian endemic Atractylis preauxiana (Asteraceae). Plant Systematic and Evolution (2008) 273: 191–199.
- Colas, B., Olivieri, I. & Riba, M. 1997. Centaurea corymbosa, a cliff-dwelling species tottering on the brink of extinction: A demographic and genetic study. Proceedings of the National Academy of Sciences of the United States of America 94: 3471-3476.
- Commission of the European Communities 2009. Report from the Commission of the Council and the European Parliament: Composite report on the conservation status of habitat types and species as required under Article 17 of the Habitats Directive. Commission of the European Communities, not specified.
- Cordes, H., Feder, J., Hellberg, F., Metzing, D. & Wittig, B. 2006. Atlas der Farn- und Blütenpflanzen des Weser-Elbe-Gebietes. Hauschildt, Bremen.
- Cowling, R.M. & Lombard, A.T. 2002. Heterogeneity, speciation/extinction history and climate: explaining regional plant diversity patterns in the Cape Floristic Region. Diversity and Distributions 8: 163-179.
- Crisp, M.D., Laffan, S., Linder, H.P. & Monro, A. 2001. Endemism in the Australian flora. Journal of Biogeography 28: 183-198.
- Danton, P., Baffray, M. & Reduron, J.-P. 2005. Inventaire des plantes protégées en France.
- Davis, S.D., Heywood, V.H. & Hamilton, A.C. 1994. Centres of plant diversity Vol. 1: Europe, Africa, South West Asia and the Middle East. IUCN Publications, Cambridge.
- de Bolos, O. & Vigo, J. 1984. Flora dels Paisos Catalans. Volume 1: Licopodiàcies Capparàcies Editorial Barcino,
- de Bolos, O. & Vigo, J. 1990. Flora dels Paisos Catalans. Volume 2: Crucíferes Amarantàcies. Editorial Barcino,
- de Bolos, O. & Vigo, J. 1996. Flora dels Paisos Catalans. Volume 3: Pirolacies Compostes. Editorial Barcino,
- de Bolos, O. & Vigo, J. 2001. Flora dels Paisos Catalans. Volume 4: Monocotiledonies Editorial Barcino,
- Dengler, J. 2009. A flexible multi-scale approach for standardised recording of plant species richness patterns Ecological Indicators 9: 1169–1178.
- Domac, R. 2002. Flora Hrvatske. Skolska knjiga, Zagreb.
- Dormann, C.F., McPherson, J. M., Araújo, M. B., Bivand, R., Bolliger, J., Carl, G., Davies, R. G., Hirzel, A., Jetz, W., Kissling, W. D., Kühn, I., Ohlemüller, R., Peres-Neto, P. R., Reineking, B., Schröder, B., Schurr, F. M., Wilson, R. 2007. Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30: 609-628.
- EDGG 2010. Smolenice grassland declaration. Bulletin of the European Dry Grassland Group (EDGG) 7: 7.
- Ehlers, J. & Gibbard, P.L. 2003. Extent and chronology of glaciations. Quaternary Science Reviews 22: 1561-1568.
- Ehlers, J. & Gibbard, P.L. 2004. Quarternary glaciations: extent and chronology: Part 1 Europe. Elsevier, Amsterdam.
- Encyclopedia of life, 2010: *Centaurea transalpina* Schleich. ex DC.". Encyclopedia of Life, URL: www.eol.org/pages/ 467680". Accessed 03 Nov 2010).
- Engler, A. 1879-1882. Versuch einer Entwicklungsgeschichte der extratropischen Florengebiete der nördlichen Hemisphäre. Wilhelm Engelmann, Leipzig.
- Essl, F., Dullinger, S., Plutzar, C., Willner, W. & Rabitsch, W. 2010. Imprints of glacial history and current environment on correlations between endemic plant and invertebrate species richness. Journal of Biogeography, pre-pressonline-version.
- European Commission DG Environment 2007. Interpretation manual of European Union habitats EUR 27.
- European Communities 2008. LIFE and endangered plants: Conserving Europe's threatened flora. Office for Official Publications of the European Communities, Luxembourg.

European Council 2001. European Council: Presidency Conclusions. Council of the European Union Press Office, Goteborg.

- Federal Agency for nature conservation, Bonn, Germany: URL: www.floraweb.de. Accessed 06 Jul 2010.
- Favarger, C. & Contandriopoulos, J. 1961. Essai sur l'endémisme Bulletin de la Société Botanique Suisse 71: 384-408.
- Fedorov, A. 1999a. Flora of Russia, Volume 2: The European Part and Bordering Regions A A Balkema, Leiden.
- Fedorov, A. 1999b. Flora of Russia, Volume 3: The European Part and Bordering Regions A A Balkema, Leiden.
- Fedorov, A. 2001a. Flora of Russia, Volume 4: The European Part and Bordering Regions A A Balkema, Leiden.
- Fedorov, A. 2001b. Flora of Russia, Volume 5: The European Part and Bordering Regions A A Balkema, Leiden.
- Fedorov, A. 2002. Flora of Russia, Volume 6: The European Part and Bordering Regions A A Balkema, Leiden.
- Fedorov, A. not specified. Flora of Russia, Volume 1: The European Part and Bordering Regions A A Balkema, Leiden.
- Fischer, M.A. & Fally, J. 2000. Pflanzenführer Burgenland. Eigenverlag, Deutschkreutz.
- Fontaine, B.e., Bouchet, P., Van Achterberg, K., Alonso-Zarazaga, M.A., Araujo, R., Asche, M., Aspock, U., Audisio, P., Aukema, B., Bailly, N., Balsamo, M., Bank, R.A., Barnard, P., Belfiore, C., Bogdanowicz, W., Bongers, T., Boxshall, G., Burckhardt, D., Camicas, J.L., Chylarecki, P., Crucitti, P., Davarveng, L., Dubois, A., Enghoff, H., Faubel, A., Fochetti, R., Gargominy, O., Gibson, D., Gibson, R., Gomez Lopez, M.S., Goujet, D., Harvey, M.S., Heller, K.-G., Van Helsdingen, P., Hoch, H., De Jong, H., De Jong, Y., Karsholt, O., Los, W., Lundqvist, L., Magowski, W., Manconi, R., Martens, J., Massard, J.A., Massard-Geimer, G., Mcinnes, S.J., Mendes, L.F., Mey, E., Michelsen, V., Minelli, A., Nielsen, C., Nieto Nafria, J.M., Van Nieukerken, E.J., Noyes, J., Papa, T., Ohl, H., De Prins, W., Ramos, M., Ricci, C., Roselaar, C., Rota, E., Schmidt-Rhaesa, A., Segers, H., Zur Strassen, R., Szeptycki, A., Thibaud, J.-M., Thomas, A., Timm, T., Van Tol, J., Vervoort, W. & Willmann, R. 2007. The European union's 2010 target: Putting rare species in focus. Biological Conservation 139: 167-185.
- Fotheringham, A.S., Brunsdon, C. & Charlton, M. 2002. Geographically Weighted Regression: The analysis of spatially varying relationships. Wiley, Sussex.
- Franquinho, L.O. & Da Costa, A. 1999. Madeira: Plantas e Flores. Francisco Ribeiro, Funchal.
- Gamisans, J. & Marzocchi, J.-F. 1996. La flore endémique de la Corse. Edisud, Aix-en-Provence.
- Garbari, F. & Bedini, G. 2006. The flora of the Apuan Alps (Tuscany, Italy): survey of biosystematic investigations Willdenowia 36: 149-155.
- Geary, R.C. 1954. The contiguity ratio and statistical mapping The Incorporated Statistician 5: 115-127+129-146.
- Georghiou, K. & Delipetrou, P. 2010. Patterns and traits of the endemic plants of Greece. Botanical Journal of the Linnean Society 162: 130–422.
- Giménez, E., Melendo, M., F., V., Gómez-Mercado, F. & Cano, E. 2004. Endemic flora biodiversity in the south of the Iberian Peninsula: altitudinal distribution, life forms and dispersal modes. Biodiversity and Conservation 13: 2641–2660.
- Greuter, W., Burdet, H.M. & Long, G. 1984. Med-Checklist, Volume 1: Pteridophyta, Gymnospermae, Dicotyledones (Acanthaceae-Cneoraceae). Conservatoire Botanique de Genève, Genève.
- Greuter, W., Burdet, H.M. & Long, G. 1986. Med-Checklist, Volume 3: Dicotyledones (Convolvulaceae-Labiatae). Conservatoire Botanique de Genève, Genève.
- Greuter, W., Burdet, H.M. & Long, G. 1989. Med-Checklist, Volume 4: Dicotyledones (Lauraceae-Rhamnaceae). Conservatoire Botanique de Genève, Genève.
- Greuter, W., Burdet, H.M. & Long, G. 2009. Med-Checklist A critical inventory of vascular plants of the circummediterranean countries. Genève.
- Haeupler, H. 1983. Die Mikroarealophyten der Balearen. Ein Beitrag zum Endemismus-Begriff und zur Inselbiogeographie. Tuexenia 3: 271-288.
- Haeupler, H. & Muer, T. 2000. Bildatlas der Farn- und Blütenpflanzen. Ulmer, Stuttgart.
- Hair, J.F., Babin, B. & Anderson, R. 2010. Multivariate data analysis. Prentice Hall, not specified.
- Hannus, J.-J. & von Numers, M. 2008. Vascular plant species richness in relation to habitat diversity and island area in the Finnish Archipelago. Journal of Biogeography 35: 1077-1086.
- Hansen, A. & Sunding, P. 1993. Flora of Macaronesia. Checklist of vascular Plants. Sommerfeltia 17: 1-295.
- Haubrich, W.S. 2003. Medical Meanings a glossary of word origins. American College of Physicians, US.
- Hawksworth, D.L. & Kalin-Arroyo, M.T. 1995. Magnitude and distribution of biodiversity. In: Heywood, V.H. (ed). Global Biodiversity Assessment. UNEP - United Nations Environment Programm, Cambridge, pp. 107-191.
- Hegi, G., Merxmüller, H. & Reisigl, H. 1977. Alpenflora. Berlin, Hamburg.

Helme, N.A. & Trinder-Smith, T.H. 2006. The endemic flora of the Cape Peninsula, South Africa. South African Journal of Botany 72: 205-210.

Hendrych, R. 1981. Bemerkungen zum Endemismus in der Flora der Tschechoslowakei. Preslia 53: 97-120.

- Hess, H.E., Landolt, E., Müller-Hirzel, R. & Baltisberger, M. 1984. Bestimmungsschlüssel zur Flora der Schweiz und angrenzender Gebiete. Birkhäuser Verlag, Basel, pp. 657.
- Heywood, V.H. 1996. Global Biodiversity Assessment. UNEP United Nations Environment Programm, Cambridge.
- Hobohm, C. 1999. Euphorbia margalidiana und Bykov's Index of Endemicity ein Beitrag zur Biogeographie ausgewählter Inseln und Archipele. Abhandlungen Naturwissenschaftlicher Verein zu Bremen 44: 367-375.
- Hobohm, C. 2000. Plant species diversity and endemism on islands and archipelagos, with special reference to the Macaronesian Islands. Flora 195: 9-24.
- Hobohm, C. 2003. Characterization and ranking of biodiversity hotspots: centres of species richness and endemism. Biodiversity and Conservation 12: 279-287.
- Hobohm, C. 2004. Ökologische Aspekte der Vielfalt endemischer Pflanzenarten in Europa unter besonderer Berücksichtigung großflächiger Beweidungsmaßnahmen als Instrumentarium für den Arten- und Biotopschutz. Schriftenreihe für Landschaftspflege und Naturschutz 78: 281-292.
- Hobohm, C. 2008. Endemische Gefäßpflanzen in Europa. Tuexenia 28: 10-22.
- Hobohm, C. & Bruchmann, I. 2009. Endemische Gefäßpflanzen und ihre Habitate in Europa: Plädoyer für den Schutz der Grasland-Ökosysteme. Berichte der Reinhold-Tüxen-Gesellschaft 21: 142-161.
- Hohenester, A. & Welß, W. 1993. Exkursionsflora für die Kanarischen Inseln mit Ausblicken auf ganz Makaronesien. Ulmer, Stuttgart.
- Holmgren, M. & Poorter, L. 2007. Does a ruderal strategy dominate the endemic flora of the West African forests? Journal of Biogeography 34: 1100-1111.
- Imbert, E. 2006. Dispersal by ants in Centaurea corymbosa (Asteraceae): What is the elaiosome for Plant Species Biology 21: 109-117.
- Jäger, E. & Werner, K. 2002. Rothmaler Exkursionsflora von Deutschland: Gefäßpflanzen -Kritischer Band. Heidelberg, Berlin.
- Jahn, R. & Schönfelder, P. 1995. Exkursionsflora für Kreta. Ulmer, Stuttgart.
- Jansen, J. 2002. Geobotanical guide of the Serra da Estrela. Instituto da Conservação da Natureza, Ministério das Cidades, Ordenamento do Território e Ambiente, Lisboa.
- Jansson, R. 2003. Global patterns in endemism explained by past climatic change. Proceedings of the Royal Society of London 270: 583-590.
- Jardim, R. & Francisco, D. 2000. Flora Endémica da Madeira. Muchia Publicacoes, Setubal.
- Jurasinski, G. & Beierkuhnlein, C. 2006. Spatial patterns of biodiversity-assessing vegetation using hexagonal grids. Biology and Environment: Proceedings of the Royal Irish Academy 106: 401-411.
- Kajan, E. 2003. Pflanzen Griechenlands : Festland und Peloponnes. IHW-Verlag, Eching.
- Kallimanis, A., Bergmeier, E., Panitsa, M., Georghiou, K., Delipetrou, P. & Dimopoulos, P. Biogeographical determinants for total and endemic species richness in a continental archipelago. Biodiversity and Conservation 19: 1225-1235.
- Khoshoo, N. & Ahuja, M.R. 1963. The chromosomes and relationships of Welwitschia mirabilis. Chromosoma 14: 522-533.
- Kier, G., Mutke, J., Dinerstein, E., Ricketts, T.H., Küper, W., Kreft, H. & Barthlott, W. 2005. Global patterns of plant diversity and floristic knowledge. Journal of Biogeography 32: 1107-1116.
- Kleyer, M., Bekker, R.M., Knevel, I.C., Bakker, J.P, Thompson, K., Sonnenschein, M., Poschlod, P., van Groenendael, J.M., Klimes, L., Klimesova, J., Klotz, S., Rusch, G.M., Hermy, M., Adriaens, D., Boedeltje, E,G., Bossuyt, T.B., Dannemann, A., Endels, P., Götzenberger, L.; Hodgson, J.G., Jackel, A-K., Kühn, I., Kunzmann, D., Ozinga, W.A., Römermann, C., Stadler, M., Schlegelmilch, J., Steendam, H.J., Tackenberg O., Willmann, B., Cornelissen, J.H.C., Erikkson, O., Garnier, E., Peco, B. (2008): The LEDA Traitbase: A database of life-history traits of Northwest European flora. Journal of Ecology 96: 1266-1274.
- Knapp, S. 2002. Assessing patterns of plant endemism in neotropical uplands. The Botanical Review 68: 22-37.

- Kovar- Eder, J., Vitek, E. & Ströbitzer-Hermann, M. 2000. Kutikularanalytische Untersuchungen an Acer heldreichii Orph. ex Boiss. ssp. heldreichii und ssp. trautvetteri (MEDW.) Murray sowie Acer pseudoplatanus L. Annalen des Naturhistorischen Museums in Wien 102: 409- 416.
- Kreft, H., Jetz, W., Mutke, J., Kier, G. & Barthlott, W. 2007. Global diversity of island floras from a macroecological perspective. Ecology Letters 11: 116-27.
- Kruckeberg, A.R. & Rabinowitz, D. 1985. Biological aspects of endemism in higher plants. Annual Review of Ecology and Systematics 16: 447-479
- Kühn, I. 2007. Incorporating spatial autocorrelation may invert observed patterns. Diversity and Distributions 13: 66-69.
- Kurtto, A., Fröhner, S.E. & Lampinen, R. 2007. Atlas Florae Europaeae. Rosaceae (Alchemilla and Aphanes). The Committee for Mapping the Flora of Europe & Societas Biologica Fennica Vanamo, Helsinki.
- Kurtto, A., Lampinen, R. & Junikka, L. 2004. Atlas Florae Europaeae. Rosaceae (Spiraea to Fragaria, excl. Rubus) distribution of vascular plants in europe. The Committee for Mapping the Flora of Europe & Societas Biologica Fennica Vanamo, Helsinki.
- Langer, W. & Sauerbier, H. 1997. Endemische Pflanzen Der Alpen und angrenzender Gebiete. IHW-Verlag, Biberach a.d. Riss.
- Lavergne, S., Thompson, J.D., Garnier, E. & Debussche, M. 2004. The biology and ecology of narrow endemic and widespread plants: a comparative study of trait variation in 20 congeneric pairs. Oikos 107: 505-518.
- Legendre, P. 1993. Spatial autocorrelation: trouble or new paradigm? Ecology 74: 1659-1673.
- Lid, J. 1985. Norsk, svensk, finsk Flora. Oslo.
- Lu, H.-P., Wagner, H.H. & Chena, X. 2007. A contribution diversity approach to evaluate species diversity. Basic and Applied Ecology 8: 1-12.
- MacArthur, R.H. & Wilson, E.O. 1967. The theory of island biogeography. Princetown University Press, Princetown, New York.
- Major, J. 1988. Endemism: a botanical perspective. In: Myers, A.A. & Giller, P.S. (eds). Analytical biogeography. Chapman & Hall, London, pp. 117-146.
- McDonald, D.J. & Cowling, R.M. 1995. Towards a profile of an endemic mountain fynbos flora: Implications for conservation. Biological Conservation 72: 1-12.
- Médail, F. & Verlaque, R. 1997. Ecological characteristics and rarity of endemic vascular plants from southeastern France and Corsica: implications for biodiversity conservation. Biological Conservation 80: 269-281.
- Meikle, R.D. 1977. Flora of Cyprus Vol 1. Bentham-Moxon Trust, Kew.
- Meikle, R.D. 1985. Flora of Cyprus. Bentham-Moxon Trust, Kew.
- Mittermeier, R.A., Gil, P.R., Hoffman, M., Pilgrim, J., Brooks, T., Mittermeier, C.G., Lamoreux, J. & da Fonseconda, G.A.B. 2005. Hotspots revisited: Earth's biologically richest and most endangered terrestrial ecoregions. Cemex, Mexico City.
- Moran, P.A.P. 1948. Some theorems on time series: II The significance of the serial correlation coefficient. Biometrika, 35: 255-260.
- Moran, P.A.P. 1950. Notes on continuous stochastic phenomena. Biometrika 37: 17-23.
- Morand, S. 2000. Geographic distance and the role of island area and habitat diversity in the species–area relationships of four Lesser Antillean faunal groups: a complementary note to Ricklefs & Lovette. Journal of Animal Ecology 69: 1117-1119.
- Moreno Saiz, J.C. & Sainz Ollero, H. 1992. Atlas corologico de las Monocotyledoneas endemicas de la Peninsula Iberica y Baleares. Icona, Madrid.
- Mossberg, B., Stenberg, L. & Ericsson, S. 1997. Den nya Nordiska Floran. W&W, Stockholm.
- Mucina, L. & Rutherford, M.C. 2006. The Vegetation of South Africa, Lesotho and Swaziland. South African National Biodiversity Institute, Pretoria.
- Natural history museum. Biodiversity and WorldMap project. URL: http://www.nhm.ac.uk/research-curation/research/projects/worldmap. Accessed: 11.Oct.2010.
- Nachtergaele, F., van Velthuizen, H. & Verelst, L. 2009. Harmonized world soil database (Version 1.1).
- Nikolic, T., Antonic, O., Alegro, A.L., Dobrovic, I., Bogdanovic, S., Libera, Z. & Reetnika, I. 2008. Plant species diversity of Adriatic islands: An introductory survey plant biosystems 142: 435 445.

- O'Brien, E. 1998. Water-energy dynamics, climate, and prediction of woody plant species richness: an interim general model. Journal of Biogeography 25: 379-398.
- O'Brien, E.M. 2006. Biological relativity to water-energy dynamics. Journal of Biogeography 33: 1868-1888.
- O'Brien, R.M. 2007. A caution regarding rules of thumb for variance inflation factors. Quality and quantity 41: 673-690.
- Oberdorfer, E. 2001. Pflanzensoziologische Exkursionsflora für Deutschland und angrenzende Gebiete. Ulmer, Stuttgart.
- Olson, D.M. & Dinerstein, E. 2002. The global 200: Priority ecoregions for global conservation. Annals of the Missouri Botanical Garden 89: 199-224.
- Olson, D.M., Dinerstein, E., Abell, R., Allnutt, T., Carpenter, C., McClenachan, L., D'Amico, J., Hurley, P., Kassem, K., Strand, H., Taye, M. & Thieme, M. 2000. The global 200: A representation approach to conserving the Earth's distinctive ecoregions. Conservation Science Program, World Wildlife Fund-US, Washington.
- Orme, C.D.L., Davies, R.G., Burgess, M., Eigenbrod, F., Pickup, N., Olson, V.A., Webster, A.J., Ding, T.-S., Rasmussen, P.C., Ridgely, R.S., Stattersfield, A.J., Bennett, P.M., Blackburn, T.M., Gaston, K.J. & Owens, I.P.F. 2005. Global hotspots of species richness are not congruent with endemism or threat. Nature 436: 1016-1019.
- Ozinga, W., Schaminée, J., Heer, M., De, Hennekens, S.M., Van Opstal, A. Sierdsma, H. ; Smits, N., Stumpel, A., Van Swaay, C. 2005. Target species species of European concern : A database driven selection of plant and animal species for the implementation of the pan European ecological network. Alterra, Wageningen.
- Panitsa, M., Trigas, P., Iatrou, G. & Sfenthourakis, S. 2010. Factors affecting plant species richness and endemism on land-bridge islands - An example from the East Aegean archipelago. Acta Oecologica 36: 431-437.
- Pärtel, M. 2002. Local plant diversity patterns and evolutionary history at the regional scale. Ecology 83: 2361-2366.
- Paulini, I., Deil, U., Camarda, I. & Schumacher, W. 2008. Small-scale species richness of Mediterranean vegetation on the highland of Bitti-Buddusò (NE Sardinia, Italy). In: Chytry, M. (eds). 17th International Workshop European Vegetation Survey: Using phytosociological data to address ecological questions. 1. Masaryk University, Brno, pp. 90.
- Petrova, A. 2006. Atlas of Bulgarian Endemic Plants. Gea Libris Publishing House, Sofia.
- Pignatti, S. 1978. Evolutionary trends in Mediterranean flora and vegetation. Vegetatio 37: 175-185.
- Pignatti, S. 1983. Human impact in the vegetation of the Mediterranean Basin. In: Holzner, W., Werger, M.J.A. & Ikusima, I. (eds). Man's impact on vegetation. Dr. W. Junk Publishers, The Hague Boston London, pp. 151-161.
- Pisati, M. 2001. Tools for spatial data analysis. Stata Technical Bulletin 60: 21-37.
- Planta Europa 2002. European plant conservation strategy: Saving the plants of Europe. London.
- Planta Europa 2007. Review of the European Plant Conservation Strategy: Progress and Challenges 2007. Planta Europa and Plantlife International, Wiltshire.
- Pompe, S., Hanspach, J., Badeck, F., Klotz, S., Thuiller, W. & Kühn, I. 2008. Climate and land use change impacts on plant distributions in Germany. Biology Letters 4: 564-567.
- Press, J.R. & Short, M.J. 1994. Flora of Madeira. Natural History Museum, London.
- Pyak, A.I., Shaw, S.C., Ebel, A.L., Zverev, A.A., Hodgson, J.G., Wheeler, B.D., Gaston, K.J., Morenke, M.O., Revushkin, A.S., Kotukhov, Y.A. & Oyunchimeg, D. 2008. Endemic plants of the Altai Mountain Country. Wild Guides, Hampshire.
- Rabitsch, W. & Essl, F. 2009. Kostbarkeiten in Österreichs Pflanzen- und Tierwelt. Ökologie, Naturschutz und Biogeographie österreichischer Endemiten. Umweltbundesamt Wien.
- Ramsay, P.M. & Fotherbya, R.M. 2007. Implications of the spatial pattern of Vigur's Eyebright (Euphrasia vigursii) for heathland management. Basic and Applied Ecology 8: 242-251.
- Rapoport, E.H. 1982. Areography: geographical strategies of species. Bergamon Press, New York.
- Rat der Europäischen Gemeinschaften 1992. Richtlinie zur Erhaltung der natürlichen Lebensräume sowie der wildlebenden Tiere und Pflanzen (1992L0043). Amt für amtliche Veröffentlichungen der Europäischen Gemeinschaften, Bruxelles.
- Reyes-Betancort, J.A., Santos Guerra, A., Guma, I.R., Humphries, C.J. & Carine, M.A. 2008. Diversity, rarity and the evolution and conservation of the Canary Islands endemic flora. Anales del Jardín Botánico de Madrid 65: 25-45.

- Ricketts, T.H., Dinerstein, E., Olson, D.M., Louks, C.J., Eichbaum, W., DellaSala, D., Kavanagh, K., Hedao, P., Hurley, P.T., Carney, K.M., Abell, R. & Walters, S. 1999. Terrestrial ecoregions of North America: A conservation assessment. Island Press, Washington D.C.
- Ricklefs, R.E. & Irby, J.L. 1999. The roles of island area per se and habitat diversity in the species-area relationships of four Lesser Antillean faunal groups. Journal of Animal Ecology 68: 1142-1160.
- Rivas-Martínez, S., Díaz, T.E., Fernández-González, F., Izco, J., Loidi, J., Lousã, M. & Penas, Á. 2002. Vascular plant communities of Spain and Portugal. Addenda to the Syntaxonomical checklist of 2001. Itinera Geobotanica 15: 5-922.
- Rohde, K. 1992. Latitudinal gradients in species diversity: the search for the primary cause. Oikos 65: 514-527.
- Rohde, K. 1996. Rapoport's rule is a local phenomenon and cannot explain latitudinal gradients in species diversity. Biodiversity Letters 3: 10-13.
- Rohde, K. 1998. Latitudinal Gradients in Species Diversity. Area Matters, but How Much? Oikos 82: 184-190.
- Rosenzweig, M.L. 1995. Species diversity in space and time. Cambridge University Press, Cambridge.
- Rothmaler, W. 2005. Rothmaler Exkursionsflora von Deutschland 4 Kritischer Band. Spektrum Akademischer Verlag, Heidelberg.
- Royer, D.L., Hickey, L.J. & Wing, S.L. 2003. Ecological conservatism in the `living fossil` Ginkgo. Paleobiology 29: 84-104.
- Sauerbier, H. & Langer, W. 2000. Alpenpflanzen Endemiten von Nizza bis Wien. IHW-Verlag, Eching.
- Schäfer, H. 2005. Flora of the Azores. Markgraf Publishers, Weikersheim.
- Schmidt, H. 1992. Pflanzen auf Teneriffa: ein naturkundlicher Führer. Basilisken-Presse,
- Schönfelder, I. & Schönfelder, P. 2002. Mittelmeer- und Kanarenflora. Kosmos,
- Secretariat of the Convention on Biological Diversity 2010. Global Biodiversity Outlook 3. Montréal.
- Secretariat of the Convention on Biological Diversity 2010. 2010 Interational Year of Biodiversity. URL: www.cbd.int/. Accessed: 14.Jan. 2008.
- Secretariat of the Convention on Biological Diversity. National Reports. URL: www.cbd.int/reports/ Accessed: 7. Oct. 2008.
- Selb, P. 2006. R\u00e4umliche Regressionsmodelle. In: Behnke, J., Gschwend, T., Schindler, D. & Schnapp, K.-U. (eds). Politikwissenschaftliche Methoden. Neuere qualitative und quantitative Analyseverfahren. Nomos, Baden-Baden, pp. 297-308.
- Stace, C. 1991. New Flora of the British Isles. Cambridge University Press,
- Stebbins, G.L. & Major, J. 1965. Endemism and Speciation in the California Flora. Ecological Monographs 35: 2-35.
- Stevens, G.C. 1992. The elevation gradient in altitudinal range: an extension of Rapoport's latitudinal rule to altitude. American Naturalist 140: 893-911.
- Strasser, W. 2002. Pflanzen des Peloponnes. Gantner, Ruggell, Liechtenstein.
- Strasser, W. 2006. Die Pflanzen der östlichen Ägäis, inklusive Kreta und Zypern. Gantner, Ruggell, Liechtenstein.
- Strauss, A.a.P., T. (compilers) 2009. All along the watchtowers: Field guide for the South Eastern European Green Belt. IUCN Programme Office for South-Eastern Europe, Belgrade, Serbia.
- Talbot, S.S., Yurtsev, B.A., Murray, D.F., Argus, G.W., Bay, C. & Elvebakk, A. 1999. Atlas of Rare Endemic Vascular Plants of the Arctic. U.S. Fish and Wildlife Service, Washington.
- Tan, K. & Iatrou, G. 2001. Endemic Plants of Greece The Peloponnese. Bent Johnsen, Copenhagen.
- Tsintides, T.C. & Kourtellarides, L. 1998. The endemic plants of Cyprus. Nicolaou & Sons, Nicosia.
- Tutin, T.G., Burges, N.A., Chater, A.O., Edmondson, J.R., Heywood, V.H., Moore, D.M., Valentine, D.H., Walters, S.M.
 & Webb, D.A. 1996a. Flora Europaea Vol. 1: Psilotaceae Platanaceae. Cambridge University Press, Cambridge.
- Tutin, T.G., Heywood, V.H., Burges, N.A., Moore, D.M., Valentine, D.H., Walters, S.M. & Webb, D.A. 1996b. Flora Europaea Vol. 2: Rosaceae - Umbelliferae. Cambridge University Press, Cambridge.
- Tutin, T.G., Heywood, V.H., Burges, N.A., Valentine, D.H., Walters, S.M. & Webb, D.A. 1996c. Flora Europaea Vol. 3: Diapensiaceae Myoporaceae. Cambridge University Press, Cambridge.
- Tutin, T.G., Heywood, V.H., Burges, N.A., Valentine, D.H., Walters, S.M. & Webb, D.A. 1996d. Flora Europaea Vol. 4: Plantaginaceae Compositae (and Rubiaceae). Cambridge University Press, Cambridge.
- Tutin, T.G., Heywood, V.H., Burges, N.A., Valentine, D.H., Walters, S.M. & Webb, D.A. 1996e. Flora Europaea Vol. 5: Alismataceae - Orchidaceae. Cambridge University Press, Cambridge.

Tzvelev, N. 2002. Flora of Russia, Volume 7: The European Part and Bordering Regions A A Balkema, Leiden. Tzvelev, N. 2003. Flora of Russia, Volume 8: The European Part and Bordering Regions A A Balkema, Leiden. Tzvelev, N. 2006. Flora of Russia, Volume 9: The European Part and Bordering Regions Taylor & Francis, Leiden.

Tzvelev, N. 2007a. Flora of Russia, Volume 10A: The European Part and Bordering Regions A A Balkema, Leiden.

Tzvelev, N. 2007b. Flora of Russia, Volume 10B: The European Part and Bordering Regions A A Balkema, Leiden.

- UNEP 2002. Global strategy for plant conservation Secretariat of the Convention on Biological Diversity (CBD), Montreal.
- Ungricht, S. 2004. How many plant species are there? And how many are threatened with extinction? Endemic species in global biodiversity and conservation assessments. Taxon 53: 481-484.

United Nations 1992. Convention on Biological Diversity (CBD): Übereinkommen über die biologische Vielfalt Übersetzung BMU 1992, Rio de Janeiro.

United Nations 2002. Plan of Implementation of the World Summit on Sustainable Development. United Nations Department of Public Information, Johannesburg.

United Nations General Assembly 2000. United Nations Millennium Declaration. United Nations, Johannesburg.

United Nations: the Millennium Development Goals. URL: www.un.org/millenniumgoals/. Accessed: 7.4.2009.

- Universitat de les Illes Baleares 200x. Herbario Virtual del Mediterraneo Occidental, URL:www.herbarivirtual.uib.es/ eng-med/caracteristica/llistat_124.html.
- University of Georgia, Center for Invasive species and National Park Service, URL: www.invasiveplantatlas.org. Accessed 19 Oct 2010.
- van der Maarel, E. & van der Maarel-Versluys, M. 1996. Distribution and conservation status of littoral vascular plant species along the European coasts. Journal of Coastal Conservation 2: 73-92.
- van der Mejden, R., Weeda, E.J., Adema, F.A.C.B. & de Jonchere, G.J. 1983. Flora van Nederland. Groningen.
- Vieira, R.M.S. 1992. Flora da Madeira : o interesse das plantas endémicas macaronésicas. Servio Nacional de Parques, Reservas e Conservaão da Natureza, Lisbon.
- Walczak, C., Zieverink, M. & Schmidt, P.A. 2008. Populationsbiologische Untersuchungen an Dianthus seguieri Vill. im Osterzgebirge. Tuexenia 28: 133 - 150.
- Welk, E. 2002. Arealkundliche Analyse und Bewertung der Schutzrelevanz seltener und gefährdeter Gefäßpflanzen Deutschlands. Schriftenreihe Vegetationskunde 37: 337.
- Werner, U. & Buszko, J. 2005. Detecting biodiversity hotspots using species-area and endemics-area relationships: the case of butterflies. Biodiversity and Conservation 14: 1977–1988.
- Whittaker, R.J., Willis, K.J. & Field, R. 2001. Scale and species richness: towards a general, hierarchical theory of species diversity. Journal of Biogeography 28: 453-470.
- Wikramanayake, E., Dinerstein, E., Loucks, C.J., Olson, D.M., Morrison, J., Lamoreux, J., McKnight, M. & Hedao, P. 2002. Terrestrial Ecoregions of the Indo-Pacific. A conservation assessment. Island Press, Washington, DC.

Wisskirchen, R. & Haeupler, H. 1998. Standardliste der Farn- und Blütenpflanzen Deutschlands. Ulmer, Stuttgart.

Yena, A.V. 2006. One hundred and fifty years of wavering: a concise review of the plant endemism studies in the Crimea (Ukraine). Phytologia balcanica 12: 19–24.

Yena, A.V. 2007. Floristic endemism in the Crimea. Fritschiana 55: 1-8.

Yildiz, K. & Gücel, S. 2006. Chromosome Numbers of 16 Endemic Plant Taxa from Northern Cyprus. Turkish Journal of Botany 30: 181-192.

Acknowledgement

My sincere thanks go to all my colleagues and friends who supported my work, providing data, and materials, who offered the necessary infrastructure or even field trips and who spent much time and invested many cups of coffee while discussing some of the difficult topics of the thesis.

I feel even more grateful to my family and my friends who helped me to take some recreational days off, and faced all my desperate furiousness, my permanent weariness, or my visionary craziness, courageously. With a warm smile and some gentle words you rescued my self-confidence several times. Thank you very much for your patience! Now, it's done!

Here are the names (in alphabetical order) of all those to whom I am grateful:

Bergmeier, E. (Göttingen); Bernhardt, A. (Flensburg); Boch, S. (Bern); Böther, E. (Erlangen);
Bruchmann, H. (Erlangen); Bruchmann, J. (Clausthal-Zellerfeld); Bruchmann, W. (Erlangen);
Bruns, A. (Flensburg/ Wilhemshaven); Dauck, H.P. (Braunschweig); Dengler, J. (Hamburg);
Dobutowitsch, L. (Flensburg/ Hamburg); Dombrowski, A. (Flensburg); Ehlers, J. (Hamburg);
Froome-Döring, L. (Lüneburg); Gerbils, M. (Flensburg); Harder, S. (Så som i himmelen); Hobohm,
C. (Flensburg); Jakab, N. (Bremen); Jacobs, A. (Göttingen); Jahnke, H. (Flensburg); Karsten, M.
(Lübeck); Krug, A. (München); Linus, D. (Lübeck); Lerche, M. (Flensburg); Mierwald, C.
(Flensburg); Müller-Benedict, V. (Flensburg/ Göttingen); Neumann, M. (Heide); Nezadal, W.
(Erlangen); Pioch, A. (Flensburg), Prytz, A. (Middelfart); Salomon, O. (Harashim), Soltau, C.
(Flensburg); Spike, C. (Flensburg); Sünram, S. (Flensburg); Voß-Isenbeck, E. (Flensburg); Walter,
A. (Flensburg) and Welß, W. (Erlangen).

6 P C

Appendix

Geographical division	Notes		
Al Albania		Hs Spain (Hispania)	including Gibraltar, Andorra excluding Islas Baleares (Balearic Islands)
Au Austria	including Liechtenstein	Hu Hungary	
Az Açores (Azores)		Is Iceland (Islandia)	
Be Belgium		It Italy	including San Marino & Vatican and the Archipelago Toscano; excluding: Sardinia, Sicily
BI Islas Baleares (Balearic Island	S	Ju Yugoslavia (Jugoslavia)	
Br Great Britain	including Orkney, Shetlands, Isle of Man excluding Channel Islands, Northern Ireland	Lu Portugal (Lusitania)	
Bu Bulgaria		Ma Madeira Archipelago	including Selvages
Canary Islands Conary Islands		No Norway Polond	
La Cuist (Cuisita) Cr Kriti (Crete)	including Karpathos, Kasos and Gavdhos	r otatu Rm Romania	
Cz Czech Republic and Slovakia		Rs (B) Russia Baltic division	Territories of the former U.S.S.R.: Estonia, Latvia, Lithuania, Kaliningradskaja Oblasť
Cy Cvprus		Rs (C) Russia Central division	Territories of former U.S.S.R.: Ladoga-Ilmen, Upper Volga, Volga-Kama, Upper Dnepr, Volga-Don, Ural
Da Denmark		Rs (E) Russia Southeastern division	Territories of the former U.S.S.R.: : Lower Don, Lower Volga Region, Transvolga
F a Faroe Islands		Rs (K) Russia Krym (Crimea)	
Fe Finland (Fennia)	including Ahvenanmaa (Åland Islands)	Rs (N) Russia Northern division	Territories of the former U.S.S.R.: Arctic Europe, Karelo-Lapland, Dvina-Pecora
Ga France (Gallia)	including Channel Islands (Îles Normandes) and Monaco; excluding La Corse (Corsica)	Rs (W) Russia Southwestern division	Territories of the former U.S.S.R.: Moldavia, Middle Dnepr, Black Sea, Upper Dnestr
Ge Germany		Sa Sardegna (Sardinia)	
Gr Greece	excluding those islands included under Cr (Crete) and those which are outside Europe as defined for Flora	Sb Svalbard	comprising Spitsbergen, Björnöya (Bear Island) and Jan Mayen
Hb Ireland (Hibernia)	Republic of Ireland plus Northern Ireland	Si Sicily	comprising: Pantelleria, Isole Pelagie, Isole Lipari and Ustica; also the Malta archipelago
He Switzerland (Helvetia)		Su Sweden (Suecia)	including Öland, Gotland
Ho Netherlands (Hollandia)		Tu Turkey	European part, including Gökçeada (Imroz)

Tab. A1: Overview of names and divisions of the studied European regions sorted in alphabetical order

Tab. A2: Abstract from EvaplantE database using the example of the Canary Islands division

Reference	2; 119	2; 119; 121	2; 119	2; 119,120	2; 119	2; 119, 120	2; 119	2; 119	2; 119	2; 119	2; 119	2; 119	2; 119	2; 119	2; 119
Altitude max. (m)	006	1500	2200	700	1300	1000			1000	800	1100	006	1000	1200	
(m) .nim sbutitlA	300	800	1500	500	200	100			200	350	600	200	200	200	
Есоюду, ріапt соподу, ріапt		Ademocarpo foliolosi- Cytisetum proliferi (PIN 1-2a), Myrito fiyas-Ericion arboreae (LAU 11-1), Ademocarpus foliolosus- Gesellschaft. in höheren, besonders Kammlagen as 800-1500t (LAU 11-2c), Cistus-Cytisus prolifera-Gesellschaft: Übergang zum Canatra-Ktelerwald (LAU 11-2d); Gebüsche und Ktefernwald	Chamaecytisus prolifer-Pinus canariensis- Gesellschaft: Hochlagen von Teneriffe (PIN 1-10, Spartocytistetum supranubit (SPA 1- 1a), A.v.var. Spartioides: Teline benehoavensis-Adenocarpetum spartioides (PIN 1-2c), Telino-Ardenocarpetum spartioidis (SPA 1-1b)	Lanzarote: en riscos (steile Felsen)	Aeonium canariense-Gesellschaft: bis 1300m hauptsächlich in N-Teneriffe (ASP I 3g)	en laderas secas y rocosas	Aeonietum palmensis: Tiefland bis 1100m, Schwerpunkt auf La Palma (ASP I-1c), Aeonium ciliatum-Gesellschaft (ASP I-3h)	Soncho-Aconion- Gesellschaft. Myrica- Erica Stufe (ASP I-1), Aconion cuneatum (ASP 1-3i); riscos de bosques y terraplenes, cumbres				Aeonietum palmensis: Tiefland bis 1100m, Schwerpunkt auf La Palma (ASP I-1c)			Greenovietum diplocyclae (ASP 1-2e), Aeonium holochrysum Gesellschaft, Aeonium holochrysum-Gesellschaft (ASP 1 3a)
Number of habitats	1	0	7		-		-	-		-		1	-		-
Forest		-	-												
Shrubland, heath, matorral, garigue, sclerophyllous scrub	1	_	-												
ςουκς παριιαις, κουκζ παριιαις,															
Grassland formations, grassy pastures, meadows				-	-	1	1	1	1		1	-	1	1	-
Cropland, ruderal and urban habitats															
Coastal, brackish, saline habitats															
Bogs, mires, fens															
Freshwater habitats															
snoigər 10 rədmu ^N	1	-	-		-	-	1	-		1		-	-		1
Canary Islands (Ca)	1	-	-		-		-	-		-		1	-		1
Plant family	Fabaceae	Fabaceae	Fabaceae	Crassulaceae	Crassulaceae	Crassulaceae	Crassulaceae	Crassulaceae	Crassulaceae	Crassulaceae	Crassulaceae	Crassulaceae	Crassulaceae	Crassulaceae	Crassulaceae
səiəəqeduR															
səiəəqZ	1	-	-		-		1	-				-	-		1
Species group															
oimobno fo oms ^N noxet	Adenocarpus ombriosus	Adenocarpus foliolosus	Adenocarpus viscosus	Aeonium balsamiferum	Aeonium canariense	Aeonium castello-paivae	Aeonium ciliatum	Aeonium cuneatum	Aeonium davidbramwellii	Aeonium decorum	Aeonium gomerense	Aeonium goochiae	Aeonium haworthii	Aeonium hierrense	Aeonium holochrysum

Reference	2; 119	2; 119	2; 119	119	2; 119	2; 119	2; 119	119	2; 119	2; 119	2; 119	2; 119	2; 119	2; 119	2; 119,120	2; 119
Altitude max. (m)	600	500	1200				1500		1200	800	1000	2000		2000	1100	700
(m) .nim 9butitlA	200	100	300				200		800	150	600	500		800	200	100
Ecology, plant community	häufig in Lavafeldern um Masdache		Aeonio percamei-Euphorbietum canariensis (50-500m Gran Canaria) (KLE 1-2a)		Trockene Orte, Aeonietum palmensis: Tiefland bis 1100m, Schwerpunkt auf La Palma (ASP I-1c)	Aeonietum palmensis: Tiefland bis 1100m, Schwerpunkt auf La Palma (ASP I-1c) "Lorbeerstufe", A.p. ssp.longithyrsum: Aeonietum longithyrsi: tiefere Lagen von Hierro (ASP I-1h)	Aeonio-Euphorbion canariensis (KLE 1-2)			riscos secos (trockene Steilfelsen)	Phylliviscosae-Aeonietum sedifolii: Sonnenexponiet Felsen im Tenogebirge von Teneriffe, (ASP 1-1b)	Greenovio aureae-Aeonietum caespitosae: in größeren Höhen, über 800m, bei höherer Luftfeuchte auf Gran Canaria (ASP 1-2h), z.T. An Felsen	A eonium smithil-Gesellschaft: 200-2400m, Schwerpunkt im Kiefern-Kontakt auf Teneriffe, hauptsächlich im S & W (ASP I- If)	Cheilanthes marantae-Gesellschaft (ASP I- 1d), Aeonium spathulatum- Gesellschaft: Felsen hauptsächlich im Kiefern-Kontakt, 800-2100m (ASP I-1e), Greenovia aurea- Gesellschaft: höhere Lagen Teneriffas, 1250 1800m (ASP I-2f)	en rocas, terraplenes, paredes y riscos de bosques	Soncho-Aconion (ASP 1-1), Aconium tabuliforme-Gesellschaft : Luftfeucht, besonders an der N-Küste bis 500m (ASP 1- 31)
Number of habitats	-	-	2	-	-		7			1	-	-	ς	-	1	-
Forest													-			
Shrubland, heath, matorral, garigue, sclerophyllous scrub			1				1						_			
SCLEES, CAVES KOCKY NADILAIS,																
Grassland formations, grassy pastures, meadows	1	-	1	-	-	-		-	1	1	1	1	Ч	-	-	1
Cropland, ruderal and urban habitats																
Coastal, brackish, saline habitats																
Bogs, mires, fens																
Freshwater habitats																
snoiger of regions	1		-	-	-	1	-	_	-	1	_	-	-	-	-	-
Canary Islands (Ca)	-	_	1	-	1	-	1		1	1	-	-	-	-	1	-
գլլառք քոռլգ	Crassulaceae	Crassulaceae	Crassulaceae	Crassulaceae	Crassulaceae	Crassulaceae	Crassulaceae	Crassulaceae	Crassulaceae	Crassulaceae	Crassulaceae	Crassulaceae	Crassulaceae	Crassulaceae	Crassulaceae	Crassulaceae
səiəəqeduR			Ŭ		Ŭ	Ŭ	Ŭ		Ŭ	Ŭ	Ŭ	0	Ŭ	Ŭ	Ŭ	0
səiəəqZ	-	_	1	-	-	-	1	-	1	1	-	-	-	1	1	_
Species group																
oimobno 10 ome ^N taxon	Aeonium lancerottense	Aeonium lindleyi	Aeonium manriqueorum	Aeonium mascaënse	Aeonium nobile	Aeonium palmense	Aeonium percarneum	Aeonium pseudourbicum	Aeonium rubrolineatum	Aeonium saundersii	Aeonium sedifolium	Aeonium simsii	Aeonium smithii	Aeonium spathulatum	Aeonium subplanum	Aeonium tabulaeforme

sonorelege	2; 119	2; 119,120	2; 119,120	2; 119	2; 119	2; 119,120	2; 119	2; 119	2; 119	2; 119,120	2; 119	2; 119	2; 119, 120	2; 119,120	2; 119	2; 119	2; 119	2; 119	2; 119	4; 119
(m) .xsm 9butitlA	1500		800			500		1600		1200		800	1000				600			
(m) .nim əbutitlA	400		200			0		0		400		300	30				50			
Есоюду, ріапt соподу, ріапt	Soncho-Aeonion (ASP I-1)	Aconium urbicum-Gesellschaft: Hauptsächlich auf Dächem (ASP1-3d); rocas, paredes e incluso tejados en las zonas bajas y forestales	terreno rocoso descubierto y riscos secos	en paredes (Wände) y riscos (Steilhänge) de la zona xerofítica alta	Lorbeerstufe, Phylliviscosae-Aconietum sedifolii: sonnenexponierte Felsen im Tenogebirge von Teneriffe, (ASP I-1lb),		en riscos (steile Felsen)	pinar o laurisiva (aber natürlich im Fels)		Soncho-Aeonion (ASP I-1); en rocas, riscos, terraplenes, paredes	feuchte Felsen, feuchte Stellen im Bereich des Lorbeerwaldes	en rocas secas y sombreadas	Greenovietum diplocyclae (ASP I-2b); en rocas secas y paredes	en barrancos sombreados	Soncho-Aeonion (ASP I-1)	Soncho-Aeonion (ASP I-1)	Prenantho (paendulae)-Taeckholmietum = Felsgesellschaften im Bereich der Kleinio- Euphorbietea von Gran Canaria (ASP 1-1a)	Prenantho (paendulae)-Taeckholmietum = Felsgesellschaften im Bereich der Kleinio- Euphorbietea von Gran Canaria (ASP 1-1a)	sandige und steinige Orte mit Gebüsch	Madeira: Weed of dry ground on roadsides, field margins and in waste places in lowland areas
Number of habitats	-	-	1	-	-	7	-	e	-	-	ŝ	-	-	-	-		7	7	7	-
Forest								-			-									
Shrubland, heath, matorral, garigue, sclerophyllous scrub						-		-			1						1	1	1	
אסריפא, כעעפא עטכאל וואטוואנא,																				
Grassland formations, grassy pastures, meadows	1	-	1	-	-	-	-			-	1		1				-	-	1	
Cropland, ruderal and urban habitats																				1
Coastal, brackish, saline habitats																				
Bogs, mires, fens																				
Freshwater habitats																				
snoiger of regions	1	-	1	_	-	-	1	-	1	-	1	_	1	-	1	_	-	-	1	7
Canary Islands (Ca)	-	-	1	-	-		-	-	-	-	-	_	-	-	-		-	-	-	-
ylimst Insl¶	Crassulaceae	Crassulaceae	Crassulaceae	Crassulaceae	Crassulaceae	Crassulaceae	Crassulaceae	Crassulaceae	Crassulaceae	Crassulaceae	Crassulaceae	Crassulaceae	Crassulaceae	Crassulaceae	Crassulaceae	Crassulaceae	Asteraceae	Asteraceae	Liliaceae	Apiaceae
səiəəqeduR																			1	
səiəəqZ	-	-	1	-	-		-	-	-	-	-	_	-	-	-		-	-		1
Species group																				
Vame of endemic taxon	Aeonium undulatum	Aeonium urbicum	Aeonium valverdense	Aeonium vestitum	Aeonium virgineum	Aeonium viscatum	Aichryson bethencourtianum	Aichryson bollei	Aichryson brevipetalum	Aichryson laxum	Aichryson pachycaulon	Aichryson palmense	Aichryson parlatorei	Aichryson porphyrogennetos	Aichryson punctatum	Aichryson tortuosum	Allagopappus dichotomus	Allagopappus viscosissimus	Allium subhirsutum ssp. obtusipetalum	Ammi procerum

Reference	2; 119	2; 119	2; 119	2; 119,120	2; 119	2; 119	2; 119	2; 4; 119	2; 119	2; 119	2; 119,120	2; 119	2.119.120	2. 117,120 7. 119	2; 119,120	2; 119,120
Altitude max. (m)				250		900		1000			1200	1200			500	1800
(m) .nim sbutitlA				125		600		50			600	500			50	200
Есоюду, ріапt соподу, ріапt	Crithmo-Limonietea: Felsen unter Brandung haupts. N-Exposition (CR1), Kleinio neriifolii-Euphothetea canariensis (KLE)	Oleo-Rhamneta lia crenulatae: 50-500m, fast nur noch an schwer zugänglichen Orten (OLR 1)	Küstensande	im Bramwell der Vergleich mit A. psammophilum (auf Küstensanden)		A.p.var.tolpiciflia: Lorbeerwald,	Lorbeerwald, Gesnouinia arborea- Gesellschaft (aufgelichtete Waldstellen, relativ nährstoffreich (LAU II-1e)	Canaries: Reine Laurus canariensis-Ges. (LAU1-1d), Oleo-Rhammeula crenulatae: 50-500 m, schwer zugängliche Orte → and toosy hilbsides near the coast, up to 1000m, are, also Porto Santo, Deserta Grande extinct	Lorbeerwald	Cytision canariensis: sekundäre Strauchgesellschaft anstelle von Kiefern (PIN 1-2)	claros de laurisilva, cumbres, sowie eigene Anschauung	Wälder 500-1200m	acantiladas humadas (fanchta Stailbüstan)		en las formaciones arbustivas xericas	trockene, felsige Orte; en riscos secos
Number of habitats	-	6	1	5	5	e	-	-	1	-	2	-	ç	1 C	ı —	5
Forest							-	-	1			1				
Shrubland, heath, matorral, garigue, sclerophyllous scrub		_			_	_				_	_					_
SCLEES, CAVES KOCKY HADHAIS,																
Grassland formations, grassy pastures, meadows		_		-	-1	-					1		-	•		-1
Cropland, ruderal and urban habitats																
Coastal, brackish, saline habitats	_		_	-									-	-		
Bogs, mires, fens																
Freshwater habitats																
snoigər fo regions	-	_	1	-	2	-	-	7	-	-	1	1	-			-
Canary Islands (Ca)	-	-		-		-	-	-	-	-	1	1	-			-
Plant family	Apiaceae	Fabaceae	Liliaceae	Liliaceae	Asteraceae	Asteraceae	Asteraceae	Lauraceae	Ericaceae	Asteraceae	Asteraceae	Asteraceae	Actoraco	Asteraceae	Asteraceae	Asteraceae
səiəəqeduZ	_		-													
səiəəqZ		-		-			-	-		-	1	1	-			-
Species group																
Vame of endemic taxon	Ammodaucus leucotrichus ssp. nanocarpus	Anagrys latifolia	Androcymbium gramineum ssp. psammophilum	Androcymbium hierrense	Andryala glandulosa	Andryala pinnatifida	Andryala webbii	Apollonias barbujana	Arbutus canariensis	Argyranthemum adauctum	Argyranthemum broussonetii	Argyranthemum callichrysum	Argyranthemum coronomifolium	Arowranthemum escarrei	Argyranthemum filifolium	Argyranthemum foeniculaceum

Reference	2; 119	2; 119	2; 119	2; 119	2; 119	2; 119	2; 119,120	2; 119	2; 119	2; 119	2; 119,120	2; 119	119	2; 119	2; 119	2; 119	12,13,117,119	2; 119
(m) .xsm əbutitlA	009	800	2400	650		400	650	200		2600	800				1500	700	200	2400
(m) .nim əbutitlA	50	10	1650	100		200	500	100		1100	500				100	400	0	1200
Есоюду, ріап і Солоду, ріапі	(sensu latol)Helianthemo-Euphorbion balsamiterae: Kustemahe Treflagen (KLE 1 1) & subspezies auch in Frankenio- Astydamieum-Gesellsahaft (CRI 1-1b), A.s Sp frutesens: auch nderal & Kustenfelsen & Barrancos; A. 1:sp. Pumilum Felsen in Kustemähe 500-600m	Trockene, steinige Orte, Kleinio- euphorbietalia canariensis (KLE1)	Tolpidetum calderae: Hochlagen von La Plama 1650-2400m (ASP1-2d), Echio brevirame-Euphorbietum canariensis: Tieflagen La Palmas (KLE 1-2g)				acantilados (Steilktisten); nach eigener Anschauung aber meist sehr weit oben und nicht küstennah		laderas (Abhånge) aridas del Sur de la isla (Hierro)	Spartocytisietum supranubii (SPA I-1a)	La Palma: Lorbeerstufe; laurisilva	Jandia (Fuerteventura)	Spartocytisetea supranubii: Gebirgshalbwústen und alpinoide Steinschuttfluren oberhalb 2000m (SPA)	Kleinio neriifolii-Euphorbietea canariensis (KLE). Oleo-Rhannetalia crenulatae: 50- 500 m, schwer zugängliche Orte (OLR I)	Küstenzone mit Plocama, Euphorbia, etc. aber gelegentlich bis 1 500m, Euphorbietum balsamiferae: ktistennahe Tieflagen (KLE I- Ic)	im schattigen Lorbeerwald	vive nas encostas rochosas e solos pedregosos da Selvagem Pequena	bosques de pinos
valuer of habitats	ŝ	ю		7	7	7	0	7	7	7	-	7	7	-	0		7	7
Forest											-							-
Shrubland, heath, matorral, garigue, sclerophyllous scrub	_	1		-	1	1	1	-	-	-		1	-	1	-			
коску париягs, screes, саves																		
Grassland formations, grassy pastures, meadows	I	1	-	-	1	1	-		-	-		1	1		-		1	
Cropland, ruderal and urban habitats																		
Coastal, brackish, saline habitats	1	1															1	
Bogs, mires, fens																		
Freshwater habitats																		
snoig91 fo 19dmuN	-	1		-	-		-	_	-	-	1	1	1	1	-		2	_
Canary Islands (Ca)	-			-	-		-	-	-	-	1	1	-	-			-	-
չնաւք քուլգ	Asteraceae	Asteraceae	Asteraceae	Asteraceae	Asteraceae	Asteraceae	Asteraceae	Asteraceae	Asteraceae	Asteraceae	Asteraceae	Asteraceae	Poaceae	Asteraceae	Liliaceae	Liliaceae	Liliaceae	Liliaceae
səiəəqeduZ																		
səiəəqZ	1	1	-		-		-	-	-		-		-	-			-	_
Species group			1															
amé of endemic taxon	trgyranthemum frutescens	4rgyranthemum gracile	trgyranthemum haoarytheun	4rgyranthemum hierrense	4rgyranthemum lemsii	4rgyranthemum lidii	drgyranthemum maderense	Argyranthemum sundingii	4rgyranthemum sventenii	4rgyranthemum teneriffae	4rgyranthemum webbii	4rgyranthemum winteri	4rrhenatherum calderae	4rtemisia thuscula	Asparagus arborescens	4sparagus fallax	Asparagus nesiotes	4sparagus plocamoides

Reference	2; 119	2; 4; 31,119	, 2; 16; 4; 11	110	110	119	2, 119,120	2; 119,120	2; 119,120	2; 119,120	2; 119,120	2; 119,120	2; 119,120	2; 119,120	2; 119,120	2; 119	2; 119,120	2; 119,120
(m) .xsm əbutitlA		500	-		l	000	600	800	700	500	600	600	600	10	100	1700	1200	1700
(m) .nim sbutitlA		0			l	000	300	200	200	400	10	200	400	0	0	800	900	1500
Ecology, plant community	Aeonio percamei-Euphorbietum canariensis (50-500m Gran Canaria) (KLE 1-2a)	Canaries: Kusten- bis Wolkenstufe eher Luv Seiten, Aconio pereamei-Euphorbietum canariensis (50-500m Gran Canaria) (KLE 1 2a), Oltoe-Mammetalia ercultates: 50-500 m, schwer zugängliche Orte (OLR 1);, Madein: very rare plant of cliffs and rodsides near the sea	Canaries: Asplenietea trichomanis (ASP), Azores:temperate rainforest, Madeira: mostly northern, 400-1400m shady & damp places on rocks, walls of levadas, streams and roadside ditches								Prenantho (pa endulae)-Taeckholmietum = Felsgesellschaften im Bereich der Kleinio- Euphorbietea von Gran Canaria (ASP 1-1a)	bordes de las carreteras (Landstraßen) y riscos			trockene, steinige Orte der Kustenregionen, z.B. mit Astydamia & Limonium, Chenoleo- Suaedetum vermiculatae: Sand über Fels, (SAL 1-1b), costas rocosas	Phylliviscosae-Aeonietum sedifolii: Sonnenexponiert Felsen im Tenogebirge von Teneriffe, (ASP 1-1b)	Einschätzung nach Ortsangaben	
statidad fo nabitats	7	ξ	7	-			7	7	0	7	7	ŝ	7	-	_	2	2	2
Forest			_															
Shrubland, heath, matorral, garigue, sclerophyllous scrub	_	-					1	1	-	1	_	-	_			1	-	1
Severy hadrans,					l													
Grassland formations, grassy pastures, meadows	1	-	-	-			-	1	1	1	-	1	-			-	-	1
Cropland, ruderal and urban habitats		_			l							1						
Coastal, brackish, saline habitats					l									1	-			
Bogs, mires, fens					l													
Freshwater habitats					l													
snoigər 10 regions	_	7	ŝ	-			_	-	-	1		-	-	1	_	-	_	-
Canary Islands (Ca)	_	-	-	-			_	-		1	-	-		1	-	-	_	
Plant family	Liliaceae	Liliaceae	Aspleniaceae	A sulprised on	Aspicillacee	Aspieniaceae	Asteraceae	Asteraceae	Asteraceae	Asteraceae	Asteraceae	Asteraceae	Asteraceae	Asteraceae	Asteraceae	Asteraceae	Orchidaceae	Rosaceae
səiəəqeduZ					l													
səiəəqZ	_	_	_	-			_	1	-	1	-	1	_	1	_	_	_	1
Species group					l													
oimobno of endemic noxe1	Asparagus scoparius	Asparagus umbellatus	Asplenium anceps	Asplenium filare ssp.	dentaritetisis	Asplenium terorense	Atalanthus arboreus	Atalanthus canariensis	Atalanthus capillaris	Atalanthus microcarpus	Atalanthus pinnatus	Atalanthus regis-jubae	Atalanthus webbii	Atractylis arbuscula	Atractylis preauxiana	Babcockia platylepis	Barlia metlesicsiana	Bencomia brachystachya

Reference	2; 4; 119 2; 119,120 2; 119,120	2; 119	2; 119,120 2: 119,120	2; 119,120	2; 119	2,12	2; 119	2; 119, 120 2; 119, 120	2; 119,120	2; 119,120	2; 119	2; 119	119	2; 119	119
(m) .xsm əbutitlA	2200 1000		500	400		2000	600	500	1000	2100	2000	800			1000
(m) .nim əbutitlA	1800 500		100	200		800	500	300	500	150	400	650			100
Есоlоgy, plant соплиніту	Canaries: Soncho-Aeonion (ASP I-1), Arbutus canaritensis-Gesellschaft: Felsige Hänge (LAU II-1b), Madeira: growing on rocks in the area from Pico do Cedro southward to the coast at camara des Lobos rocas sombreadas, en grietas riscos de los bosques	Rubio fruticosae- Rubetum almifolii: Treflagen bis 500m (LAU II-3b), Oleo- Rhamnetalia crenulatae: 50-500m, fast nur noch an schwer zugänglichen orten (OLR I)	obere Küstenstufe; acantilados, riscos y laderas de la zona baja	laderas aridas	Oxalidi-Urticetum membranaceae: schattig, feucht, tiefgründig (CHE I-1c)	Halbstrauch; lugares de la zona subalpina, con borde tubercular y caras rugosas	riscos desabrigados orientados al Norte	en riscos de la zona baja, riscos de bosques cardonales y tabaibales	Rhamno glandulosae-Ericetum arborae: artenreich, anspruchsvoll und Übergang zuPruno-hixae-Lauretalia azoricae (LAU II- 1a), laderas y barrancos, en los riscos, zonas humedas, dominio natural de laurisilva	Pinares (und natürlich auch in anderen Habitaten; eigene Anschauung)	Cytiso proliferi-Pinetea canariensis (PIN)			Küstenzone, Kleinio neriifolii-Euphorbietea canariensis (KLE)	Andryalo pinnatifidae-Ericetalia arboreae (LAU II), Lorbeerwald Fayal-Brezal
Number of habitats	m 5 5			1 1	1	5	5 5	m (1	ŝ	ŝ	e	5	0	5	7
Forest	_							_	1	_	_				_
Shrubland, heath, matorral, garigue, sclerophyllous scrub															
sorees, caves		-				-			-	-	-	-		1	1
Rocky habitats,									-	-	-			1	
Grassland formations, grassy pastures, meadows															
Cropland, ruderal and urban habitats					1										
Coastal, brackish, saline habitats															
Bogs, mires, fens															
Freshwater habitats															
snoigər 10 rədmu ^N	1 1 2	-			1	_		1	_	-	_	1	-	-	1
(Canary Islands (Ca)		-			-	_			-	1	-	1	_	1	1
		ceae	q	2	ae	aceae							cae	aceae	cae
չլimst tasl4	ceae ceae ceae	rantha	eae	eae	rbiace	ophyll	ceae	ceae aceae	aceae	aceae	aceae	aceae	panula	phulari	panula
	Rosa Rosa Rosa	Ama	Poac	Poac	Cucu	Cary	Apia	Apia	Lami	Lam	Lam	Lam	Cam	Scrol	Cam
səiəəqeduZ				-											
səiəəqZ		-		-	-				-	-	-			-	-
Species group															
oimeda of endemic noxe1	Sencomia caudata Sencomia exstipulata Sencomia sphaerocarpa	30sea yervamora	Brachypodium arbuscula Brassica hourogani	orussicu oom geum Bromus madritensis ssp. annkelii	3ryonia verrucosa	3ufonia teneriffae	Bupleurum handiense	supleurum salicijolum 3ystropogon odoratissimus	3)sstropogon canariensis	3ystropogon origanifolius	3ystropogon plumosus	3ystropogon wildpretii	Campanula occidentalis	Campylanthus salsoloides	Canarina canariensis

Reference	2; 119,120	2; 119,120	2; 119,120	2; 119	2; 119	2; 119	2; 119	2; 4; 119,120	2; 119,120	2; 119,120	2; 119	2; 16; 4; 119	119	2; 119	2; 119	2; 119	2
Altitude max. (m)			800				1300	1600	2000			1500		2400			800
(m) .nim sbutitlA			50				200	200	1000			300		1500			100
Ecology, plant community	cuesta de Sabinosa, malpais costero (Hierro); Sabinosa klingt nach Sabinar, malpais nach Ödland?	montanas, region costera	untere- und Lorbeer-Stufe	Gesnouinia arborea -Ges.: aufgelichtete Waldstellen, relativ nährstoffreich (LAU II- Ic), Rubo ulmifolii-Cedronelletum canariensis: Waldränder (LAU II-1d)	Spartocytisetea supranubii: Gebirgshalbwüsten und alpinoide Steinschuttfluren oberhalb 2000m (SPA)	Lorbeerwald, wahrscheinlich nur Teneriffe Anagagebirge	frische Felsspatten oft mit Aeonium tabulaeforme (ASP I), Cytiso proliferi- Pinetalia canariensis (PIN I)	Canaries: frische Felsspalten oft mit Aeonium tabulaeforme (ASP I), Madeira: clifts and rocky slopes	roque, riscos, pinar	en la zona subalpina, Canadas	Aeonio percamei-Euphorbietum canariensis: 50-500m (KLE 1-2a), Euphorbia-Stufe	Canaries: Lorbeerwald 300-1500m, Madeira: very common in shady places, generally above 500m, Azores: established on a few roadsides, in Myrica-Pittosporum woodland and on waste ground		Festuco - Greenovion (ASP 1-2)	eigene Anschauung	Euphorbietum balsamiferae: küstennahe Tieflagen (KLE 1-10), Ceropegio fuscae- Euphorbietum balsamiferae (KLE 1-1f)	Cheilanthes marantae-Gesellschaft (ASP I- 1d)
Number of habitats	1	0	7	7	7	-	ŝ	-	С	6	7	ŝ	0	-	7	7	
Forest				-		-	-					-					
matorral, garigue, sclerophyllous scrub																	
Shrubland, heath,	-			-	-		-			-	-	-			-		
Rocky habitats,	_	_	-		-		-	-	-	_				_	1	-	
Grassland formations, grassy pastures, meadows																	
Cropland, ruderal and urban habitats												_					
Coastal, brackish, saline habitats																1	
Bogs, mires, fens																	
Freshwater habitats																	
snoiger of regions	_	_	_	-	-	-		7	-	_		ŝ	-	_	1	_	
Canary Islands (Ca)	_		-	-	1	-	-	-		_		-		_	1	-	
				a	n	ø					sae			aceae	ceae	ceae	ceae
Plant family	raceae	raceae	raceae	eracea	eracea	eracea	raceae	raceae	raceae	raceae	iginace	iaceae	raceae	ophyll	epiada	epiada	epiada
	Aste	Aste	Aste	Cyp	Cyp	Cyp	Aste	Aste	Aste	Aste	Bora	Lam	Aste	Cary	Ascl	Ascl	Ascl
səiəəqeduR																	
Species	-	-		-	1	-	-	-			-	-				-	
quorg ssicsqR																	
oimobno 10 oms ^N axon	Carduus baeocephalus	Carduus bourgeaui	Carduus clavulatus	Carex canariensis	Carex paniculata ssp. calderae	Carex perraudieriana	Carlina canariensis	Carlina salicifolia	Carlina texedae	Carlina xeranthemoides	Ceballosia fruticosa	Cedronella canariensis	Centaurea conocephala	Cerastium sventenii	Ceropegia dichotoma	Ceropegia fusca	Ceropegia hians

Reference	2; 119	,2,4,17(I),11	,2,4,17(I),11 ⁻	2; 119,120	2; 119,120	2; 119,120	2; 119,120	2; 119,120	2; 119,120	2; 119,120	2; 119,120	2; 119,120	2; 119,120	2; 119,120		2; 119,120	2; 119,120	2; 119	2; 119	2; 119	2; 119
(m) .xsm 9butitlA	2400	1200	-	800	450	500	800	200	400	1000	600	600	500	300		2400	400			900	2000
(m) .nim əbutitlA	200	0		400	10	100	600	100	200	900	500	250	300	50		1800	50			500	2000
Εςοίοgy, plant community	Junipero cedri-Pinetum canariensis: Reliktgesellschaft der Hochlagen, Teneriffe 200-2400m, La Palma: 1500-2400m (PIN I- lc), Chamaecytisus prolifer-Pinus canariensis-Gesellschaft: Hochlagen von Teneriffe (PIN I-11), Adenocarpo foliolosi- Cytisuus prolifer (GEN I-2a), Cistus- Cytisus prolifer Gesellschaft. Übergang zum Canaren-Kröferwald (LAU II-2a), Erica-Cistus-Gesellschaft (LAU II-2a),	Canaries: keine Angaben, Madeira: rare on walls (Funchal area); grietas de roquedos, principalmente en los de silicatos basicos	trockene Felsen	sobre riscos basalticos	C.c. Var subexpinnatus wächst mit Limonium fruticans, Bereich Teno; sobre riscos basalticos (valle de Masca)	mit Limonium brassicifolium; zona baja		costa Noroeste	sobre basaltos viejos, en la zona costera al Sur de Fuencaliente	Bco., en riscos en el borde de los bosques	riscos	montanas, barrancos			Tolpidetum calderae: Hochlagen von La Plama 1650-2400m (ASP 1-2d), Junipero cedri-Phinetum canariensis: Relidgesellschaft der Hochlagen, Teneriffe 200-2400m, La Palma: 1500-2400m (PIN I-	1c)	costa		Im Pinar an feuchten Stellen		
statidad fo rodmuN	0	-	-	0	10	0	7	0	7	e	0	2	7	7		0	7	e		7	2
Forest	-									-											
таtorral, garigue, seleronhvllous scrub																					
Sorres, caves	-		-		-	1	-	-	-	-	-	-	-	1		-	-	-		-	1
Pastures, meadows Rocky habitats,		-			-	-	-	-	-	-	-		-	-		-	-	-		-	-
Grassland formations, grassy																					
Cropland, ruderal and urban habitats																		1			
Coastal, brackish, saline habitats																					
Bogs, mires, fens																					
Freshwater habitats																					
snoiger of regions	-	×	-		-	1	-	-	-	1	-	-	1	1		1	1		-	-	1
Canary Islands (Ca)	-	-	-	1	-	1	-		-	-	-		-	-				-	-	-	1
Plant family	Fabaceae	Adiantaceae	Adiantaceae	Asteraceae	Asteraceae	Asteraceae	Asteraceae	Asteraceae	Asteraceae	Asteraceae	Asteraceae	Asteraceae	Asteraceae	Asteraceae		Asteraceae	Asteraceae	Chenopodiaceae	Fabaceae	Cistaceae	Cistaceae
səiəəqeduZ																					
səiəəqZ	-	-	-	-	-	1	-	-	-	1	-			-		-	-		-		-
Species group																					
Vame of endemic taxon	Chamaecytisus proliferus	Cheilanthes guanchica	Cheilanthes pulchella	Cheirolophus arbutifolius	Cheirolophus canariensis	Cheirolophus duranii	Cheirolophus falcisectus	Cheirolophus ghomerytus	Cheirolophus junonianus	Cheirolophus metlesicsii	Cheirolophus santos-abreui	Cheirolophus satarataënsis	Cheirolophus sventenii	Cheirolophus tagananensis		Cheirolophus teydis	Cheirolophus webbianus	Chenopodium coronopus	Cicer canariense	Cistus chinamadensis	Cistus osbaeckiaefolius

Reference	2; 119	2; 119	2; 119	2; 119	2; 119	2; 119	2; 119	2; 119	2; 119	2; 119	2; 119	2; 119,120	2; 4; 119,120	2; 119,120	2; 119,120	2; 119,120	2; 119,120	2; 119,120	2; 119,120	2; 119,120	2; 119,120	2; 119	2; 119
Altitude max. (m)							600					500	700	800	1200	1600	1300	600	800	1000	500		600
(m) .nim 9butitlA							600					500	500	150	200	300	300	20	600	400	300		600
Εςοίοgy, plant community	Loto-hillebrandti-Pinetum canariensis: Hochlagen von La Palma (PIN I-1e), Cistus-Cytisus prolifer-Gesellschaff: Übergang zum Canaren-Kieferwald (LAU II-2d), Erica-Cistus-Gesellschaft (LAU II- 2e)	Ixantho viscosi-Laurion azoricae (LAU I), Andryalo pinnatifidae-ericetalia arboreae (LAU II), Lorbeerwald	Chenoleo-Suaedetum vermiculatae: Sand über Fels, (SAL I-1b), Küsten	Aeonio percamei-Euphorthietum canariensis: 50-500m (KLB 1-2a), Oleo- rhamnetalia crenulatae: 50-500 m, schwer zugängliche Orte (OLR 1), Euphorbienstufe	Euphorbienstufe				Helianthemo-Euphorbion balsamiferae: Küstennahe Tieflagen (KLE I-1)		Küstenfelsen	en risco basaltico y fonoliticos en la ladera de Guimar	hondonadas de la laurisilva	Pflanze auf Felsen aufsitzend	rocas y paredes por debajo del pueblo (de Masca)	an Felsen	en zonas forestales y bajas	en riscos basalticos	riscos montanosos altos	en riscos y terraplenes de la laurisilva y a veces en la zona baja, riscos de bosques	riscos montanosos	las rocas costeras	Lauro azoricae-Perseetum indicae (LAU I- 1a), schattige Lorbeerwälder
Number of habitats	ŝ	7	-	0	7	2	7	7	7	5	Э	5	e	7	6	7	7	7	-	ŝ	7	1	
Forest	-	-											-							-			-
Shrubland, heath, matorral, garigue, sclerophyllous scrub	_	_		_	_	_	_	1	_	_	_	_	_	_	_	_	_	_		_	_		
કહારહક, દશપહક																							
Grassland formations, grassy pastures, meadows	1			-		1	-		1			1	-	1	1	-1	-	-1		1	-		
Cropland, ruderal and urban habitats																							
Coastal, brackish, saline habitats			-								-												
Bogs, mires, fens																							
Freshwater habitats																							
anoiger of regions	1	-	-	-	-	1		1	-	-	-	-	-	1	_	1	_	1	_	1	_	1	-
Canary Islands (Ca)	-	-	-	-		-	-	1	-	-	-	-	-	-	_	-		-	-	-	_	1	
Plant family	Cistaceae	Convolvulaceae	Convolvulaceae	Convolvulaceae	Convolvulaceae	Convolvulaceae	Convolvulaceae	Convolvulaceae	Convolvulaceae	Convolvulaceae	Convolvulaceae	Brassicaceae	Brassicaceae	Brassicaceae	Brassicaceae	Brassicaceae	Brassicaceae	Brassicaceae	Brassicaceae	Brassicaceae	Brassicaceae	Asteraceae	Apiaceae
səiəəqeduZ																							
səiəəqZ	1	-	-	-	-	1	-	1	-	1	-	-	-	1	-	-	_	-	_	1	_	1	
Species group																							
2im9bn9 f0 9ms ^N noxe1	Cistus symphytifolius	Convolvolus canariense	Convolvolus caput-medusae	Convolvolus floridus	Convolvolus fruticulosus	Convolvolus glandulosus	Convolvolus lopezsocasi	Convolvolus perraudieri	Convolvolus scoparius	Convolvolus subauriculatus	Convolvolus volubilis	Crambe arborea	Crambe gigantea	Crambe gomerae	Crambe laevigata	Crambe microcarpa	Crambe pritzelii	Crambe scaberrima	Crambe scoparia	Crambe strigosa	Crambe sventenii	Crepis canariensis	Cryptotaenia elegans

Reference	1, 2,4,16,17(1	119	119,12	2; 119	2; 119,120	2; 119,120	2; 119,120	2; 119,120	2; 119,120	2; 119,120	2; 119,120	2; 119	1 2; 119,120
(m) .xsm 9butütA	600				600	2400	2000	3000	2000	1500	1600	500	600 1000
(m) .nim əbutitlA	0				400	1500	1000	2000	1800	200	400	0	150
Εςοίοςy, plant community	Canaries: Farmeiche Laurus-Ges. mit Woodwardia (L.AU. 1-1b), Azores: scattered in natural pastures, ravires, old Cryptomeria plantations, juniper and laurel forests above 300m, Madeira:rare in damp places in steep wooded valleys of NW- Madeira, except on Montado dos Peceguerios where there is a population of about 200 plants		riscos	Prenantho (paendulae)-Taeckholmietum = Felsgesellschaften im Bereich der Kleinio- Euphorbietea von Gran Canaria (ASP 1-1a)	Prenantho (paendulae)-Taeckholmietum = Felsgesellschaften im Bereich der Kleinio- Euphorbietea von Gran Canaria (ASP 1-1a)		Descurainio gilvae-Plantaginetum webbii = Vulkanische Rohböden auf La Palma (PIN 1 2d); lugares descubiertos y soleados en la zona alta de los pinares	Canadas, roques, en laderas de cenizas secas	zona alta de los pinares; auch eigene Anschauung	en maleza (Unkrautflur) xerofítica y en ricos, en laderas secas rocosas y riscos, y en pinares	Prenantho (paendulae)-Taeckholmietum = Felsgesellschaften im Bereich der Kleinio- Euphorbietea von Gran Canaria (ASP I-Ia); en laderas secas y desabrigadas	Foto in Bramwell und Ortsbeschreibungen	Canaries: Lorbeerwald, Azores: shady ravines and forests, especially between 150- 600m, Madeira: confined to dark, damp habitats in ravines, besides streams, usually in haurasilva
Number of habitats	0	7	1	7	7	7	7	-	7	4	7	-	7 -
Forest	-								-	-			_
Shrubland, heath, matorral, garigue, sclerophyllous scrub		_		_	_		_		_	_	_		_
SCLEES, CAVES													
Grassland formations, grassy pastures, meadows	_	1	1	1	-	1	-	-		1	1	1	-
Cropland, ruderal and urban habitats										-			
Coastal, brackish, saline habitats													
Bogs, mires, fens													
Freshwater habitats													
snoiger of regions	Ś	1	-	-	-	_	-	-	-	-	-	-	4 -
Canary Islands (Ca)	-	-	-	-	-	-	-	-	-	-	-	e 1	
ylimst taslY	Dicksoniaceae	Fabaceae	Poaceae	Rosaceae	Brassicaceae	Brassicaceae	Brassicaceae	Brassicaceae	Brassicaceae	Brassicaceae	Brassicaceae	Caryophyllacea	Woodsiaceae Fabaceae
səiəəqeduR													
səiəəqZ	-		-	-	-		-	-	-	-	-		
Species group													
oimobno lo ome ^N taxon	Culcita macrocarpa	Cytisus virgatus	Dactylis smithii ssp smithii	Dendriopoterium pulidoi	Descurainia artemisioides	Descurainia bourgaeana	Descurainia gilva	Descurainia gonzalesii	Descurainia lemsii	Descurainia millefolia	Descurainia preauxiana	Dicheranthus plocamoides	Diplazium caudatum Dorycnium broussonetii

Reference	2; 119,120	2; 119,120	2; 119,120	*17(I)	2; 119	2; 4; 119	119	2; 119,120	2; 119,120	2: 119,120	2; 119,120	2; 119,120	2; 119,120	2; 119,120	2; 119,120	2; 119,120	2; 119,120	2; 119,120	2; 119	2; 119,120
Altitude max. (m)	500	1000	800	1000		1100	1000	1000	2200	400	500	200	1500	100	1900	800	800	800	400	600
(m) .nim əbutitlA	200	300	100	0		0	800	200	2000	100	0	100	800	0	1900	50	200	400	300	100
Есоюду, ріапt соттипіty	Oleo-Rhamnetalia crenulatae: 50-500m, fast nur noch an schwer zugänglichen orten (OLR J)	riscos	en y por debajo de la zona forestal: nach eigener Anschuung gem halbschattig, frische Standorte	roquedos acidos muy humedos	Farnreiche Laurus-Ges. mit Woodwardia (LAU 1-1b)	Canaries: Thero-Brachypodietea (TBR), Andryalo pinnatifidae-Ericetalia arboreae (LAU II); Madeira: along levadas, on rocks and walls, more frequent in the higher parts of the central eastern region of the island	riscos en bosques de laurisilva	Kleinio-Euphorbietalia canariensis (KLE I)	Echium wildpretii-Gesellschaft (SPA I-1c)		Frankenio-Astydamion latifoliae (CRI-I-1)	Echio brevirame-Euphorbietum balsamifeate. Tieflagen bis 200m, flachgründig (KLE 1-le), Echio brevirame- Euphorbietum canariensis: Tieflagen La Palmas (KLE 1-2g), Echio brevirame- Retametum rhodorrhizoidis: Blocklava (KLE 1-2h)	cumbres, riscos	E.s.ssp.decaisnei: Aeonio percarnei- Euphorbietum canariensis (50-500m Gran Canaria) (KLE 1-2a)	Tolpidetum calderae: Hochlagen von La Plama 1650-2400m (ASP 1-2d)	schattige Felshänge	riscos y laderas seca	en los bosques y mas abajo		Kleinio-Euphorbietalia canariensis (KLE 1)
Number of habitats		_		_		m	3	7	-	0	1	19	2	5	-	-	5	e	5	7
Forest																				
Shrubland, heath, matorral, garigue, sclerophyllous scrub	-		-		1	_	1 1	-		_			1	_			1	1	1	1
SCTEES, CAVES																				
Grassland formations, grassy pastures, meadows Rocky habitats		-		-		_	1	-	-			-	1	-	1	1	1		-1	1
Cropland, ruderal and urban habitats																				
Coastal, brackish, saline habitats											1	_								
Bogs, mires, fens																				
Freshwater habitats						_														
snoigər of regions		_		Э		7	-	-	-	_	1	_	1	-	-	-	1	_	-	1
Canary Islands (Ca)		_		_		_	-	-	-	_	1	_	1	-	-	-	1	_	-	1
ylimst Insl¶	Fabaceae	Fabaceae	Araceae	Dryopteridaceae	Dryopteridaceae	Juncaceae	Boraginaceae	Boraginaceae	Boraginaceae	Boraginaceae	Boraginaceae	Boraginaceae	Boraginaceae	Boraginaceae	Boraginaceae	Boraginaceae	Boraginaceae	Boraginaceae	Boraginaceae	Boraginaceae
səiəəqeduZ																				
səiəəqZ	_	_	_	_		_	-	-	-		1	_	1	_	-	_	1	_	-	_
Species group																				
oimobno fo ome ^N axon	Dorycnium eriophthalmum	Dorycnium spectabile	Dracunulus canariensis	Dryopteris guanchica	Dryopteris oligodonta	Ebingeria elegans	Echium acanthocarpum	Echium aculeatum	Echium auberianum	Echium bethencourtianum	Echium bonnetii	Echium brevirame	Echium callithyrsum	Echium decaisnei	Echium gentianoides	Echium giganteum	Echium handiense	Echium hierrense	Echium lancerottense	Echium leucophaeum

Reference	2; 119,120	2; 119,120	2; 119,120	2; 119,120	2; 119,120	2; 119, 120	2; 119,120	2; 119,120	2; 119,120	2: 119.120	2; 119,120	2; 119,120	2; 4; 119	2; 119	2; 119, 120	2; 4; 119	2; 119,120	2; 119,120	2; 119,120	2; 119,120	2; 119,120	2; 119,120
(m) .xsm sbutitlA	1900	1000	650	700	500	600	1300	1800	2300	1200			0.100	7400	100	1200	1000	700	800	1100	200	800
(m) .nim əbutitlA	400	500	20	s 200	350	300	f 500	500	1600	300			1 600	0000	0	հ 100	100	300	200	100	0	600
Есоюду, ріапт соподу, ріапт	zona baja y matorral montano, en laderas secas	Barrancos der Lorbeerstufe	rocas de la costa Norte	Aeonio percarnei-Euphorbietum canariensi. (50-500m Gran Canaria) (KLE 1-2a); en la zona baja y regiones forestales, riscos, barrancos	regiones montanosas (auch eigene Anschauung)	laderas secas entre rocas, en habitats parecidos (ähnliche Habitate), Gomera: desde el nivel del mar hasta los 350 m	Telinetum spachianae: felsige Standorte auf Teneriffe (PIN 1-1h)	en las zonas forestales y por debajo, barrancos, monte de laurisilva y pinares	Echium wildpretii-Gesellschaft (SPA 1-1c), E. w.ssp. Trichosphion in Tolpidetum calderae: Hochlagen La Palmas 1650- 2400m) (ASP 1-2d)	Myrico favae-Ericion arboreae (LAU II-1)	Hochlagen		Crevices of rock faces in ravines, laurisilva and other shady places	Spartocytisietum supranubii (SPA I-1a)	Astydamio-Euphorbietum aphyllae (KLE I- 1a)	Euphorbietum atropurpureae (hauptsächlich um 1000m) (KLE 1-2d)	Euphorbietum berthelotii (KLE I-2n)	Euphorbia bourgeauana-Gesellschaft (KLE 1-2k)	barrancos de la zona baja	Küstenregion, Aeonio-Euphorbion canariensis (KLE 1-2)		Feucht-schattig (eigene Anschauung); bordes de los bosques
Number of habitats	5	7	2	5	7	7	ŝ	ю		-	1	7	<i>ლ</i> (7	5	7	2	7	2	7	1	5
Forest		_					1	-														-
matorral, garigue, sclerophyllous scrub																						
Shruhland, heath.	-		-	-	1	1	-	-				-		-		1	-	-	-	-		-
разситез, шеадоws Воску habitats,	-			-	-	1	-	-			1			-	-	1	-	-		-	-	
Grassland formations, grassy																						
Cropland, ruderal and urban habitats																						
Coastal, brackish, saline habitats															1							
Bogs, mires, fens																						
Freshwater habitats																						
enoiger of regions	-		1		-	1	-	-			1	-		_	-	-	-	-	1	-	1	-
Canary Islands (Ca)	-		1		-	1	-	-			1	-		_	-	-	-	-	-	-	-	-
Limet Inely	3 oraginaceae	Boraginaceae	3 oraginaceae	30raginaceae	3 oraginaceae	30raginaceae	3 oraginaceae	3 oraginaceae	3 oraginaceae	Ericaceae	Asteraceae	3rassicaceae	Brassicaceae	Srassicaceae	Suphorbiaceae	Euphorbiaceae	Euphorbiaceae	Euphorbiaceae	Buphorbiaceae	Euphorbiaceae	Euphorbiaceae	Euphorbiaceae
səiəəqeduR	H		Ш	щ	н	н	H	н	щ	-	1				Η	щ	-		Ш		-	
səiəəqZ	_	_	1	_	1	1	1	-			1	-		_	-	1	-	1	1	-	1	_
Species group																						
Jame of endemic taxon	Echium onosmifolium	Echium pininana	Echium simplex	Echium strictum	Echium sventenii	Echium triste	Echium virescens	Echium webbii	Echium wildpretii	Erica scoparia ssp. platvcodon	Erigeron calderae	Erucastrum canariense	Erysimum bicolor	Erysimum scoparium	Euphorbia aphylla	Euphorbia atropurpurea	Euphorbia berthelotii	Euphorbia bourgeauana	Euphorbia bravoana	Euphorbia canariense	Euphorbia handiensis	Euphorbia lambii

Reference	2; 4; 119	2; 119	2; 119	2; 119	2; 119	2; 119	6 = ~	2, 119	2	2; 119	2; 4; 119	2; 119	2; 119	2; 119	2; 119,120
(m) .xsm əbutitlA	1100					2500						2400			1300
(m) .nim əbutitlA	400					700						2000			1100
Есоlоgy, ріапt соплиніту	Canaries: Lauro azoricae-Perseetum indicae (LAU1-1a), Madeira: rare but characteristic species of laurisilva growing in moist shady places in sheltered ravines, scattered throughout the island, mainly 400-1100m	Kleinio-Euphorbietalia canariensis (KLE I)	eigene Anschauung		eigene Anschauung	Greenovietum diplocyclae (ASP I-2b)	Laumaetum arborescentis (= Sandige Halbwüsten in Küstemalte) & Tricholaeno- Rumicetum Innariae (=Aschenkegel, grundfrisch) (KLE 1-1b & 2.2), Dyvarpo tetraphylli-Nicotia neturm-galucae(barranco Flubbetten) & Glaucium flavum-Forskohlea angustifolia-Ges. & Forskohlea angustifolia- Setaria verticilitaa-Ges (FHE 1-b & k & s),Eragrostis barrelieri-Polycarpaea divaricata-Ges. (PLA 1-2a), nach eigener Anschauurg vor allem in anthropogenen Habitaten uberall ruderal	Habitaten, uberati ruderat	en comunidades costeras	felsige Orte, Spalten & Ritzen, auch Lavaschutt, ausgedehnte Teppiche bildend	Canaries: keine Angaben, Madeira: rocky places, old walls, mountain pastures and Cupressus woodland	Telino-Ardenocarpetum spartioidis (SPA I- 1b), Teline benehoavensis-Adenocarpetum spartioides (PIN 1-2c)	im Lorbeerwald & Fayal-Gebirge	Pruno hixae-Lauretalia azoricae (LAU I), Gesnouinia arborea -Ges: aufgelichtete Waldstellen, relativ nährstoffreich (LAU II- 1c)	riscos en la zona forestal de pinares
Number of habitats	-	7	e	7	Э	-	-	-	-	-	4	1	2		ε
Forest	-										1			-	-
Shrubland, heath, matorral, garigue, sclerophyllous scrub		-	1	1	1						1	-	1		
Rocky habitats, screes, caves		_		_	_					_	_				_
Grassland formations, grassy pastures, meadows											-				
Cropland, ruderal and urban habitats			1		1		_	_							
Coastal, brackish, saline habitats									1						
Bogs, mires, fens															
Freshwater habitats															
snoigər 10 rədmu ^N	7	1		1		-	-	-	-	-	7	1	7	-	-
Canary Islands (Ca)	-	1		-		-	-	-	-	-	1	1		-	-
Plant family	Euphorbiaceae	Euphorbiaceae	Apiaceae	Apiaceae	Apiaceae	Poaceae	Litricaceae	Utilicaceae	Frankeniaceae	Papaveraceae	Rubiaceae	Fabaceae	Geraniaceae	Urticaceae	Globulariaceae
səiəəqeduZ									1						
Species	-	1		-		-	-	-		-	1	-		-	-
Species group															
oiməbnə 10 əms ^N 10xs1	Euphorbia mellifera	Euphorbia obtusifolia	Ferula lancerottensis	Ferula latipinna	Ferula linkii	Festuca agustinii	Forsskahlea aneustifolia	Forsskantea angusujotta	r rankenia ericijolia ssp. latifolia	Fumaria coccinea	Galium geminiflorum	Genista benehoavensis	Geranium canariense	Gesnouinia arborea	Globularia ascanii

Reference	120, 2	2; 119,120	119	119	119	119	2; 119,120	2; 119,120	2; 119,120	2; 119,120	2; 119	2; 119	2; 119	2; 119	2; 119	2; 4; 119	119	2; 119,120	119 2; 119,120
(m) .xsm sbutitlA	1000	1700					1000	700	700	500	2000	2000	1700	1200		1300		1400	2300
(m) .nim sbutitlA	100	1500					200	50	100	100	009	400	500	500		600		1300	2200
Εςοίο <u>ε</u> γ, plant community	Rhamno glandulosae-Ericetum arborae: artemeich, anspruchsvoll & Übergang zu Pruno-hixae-Lauretalia azoricae- Gesellschaft (LAU II-1a)	riscos en las montanas				eigene Anschauung	zonas bajas y forestales, en los riscos	Hierro: Wälder und Felsen der unteren Stufe	Felsen der unteren Lorbeerstufe	en riscos	Greenovietum diplocyclae (ASP I-2e)	Phylliviscosae-Aconietum sedifolii: Sonnenexponiett Felsen im Tenogebrige von Teneriffe, (ASP 1-1b), Greenovietum aureae: Felsen in der Kiefernstufe von Teneriffe und La Palma (ASP 1-2a), Greenovia aurea-Gesellschaft. höhere Lagen1250-1800m (ASP 1-2)	Greenovietum diplocyclae (ASP I-2b)	Greenovia dodrentalis- Gesellschaft: Tiefere Lagen der alten Gebirg = Anaga & Teno auf Teneriffe (ASP 1-2g)	Soncho-Aeonion (ASP I-1)	Canries: Laurus-Prunus lusitanica- Gesellschaft: in höheren Lagen, Übergang zu Andryalo pinnatifråda-Ericaecetalta arboreae (LAU 1-1e), Madeira: becoming rare, several sites in laurisilva of the central mountains 600-1300m		montana, en pinares	Canadas, en matorrales de leguminosas
Number of habitats	5	7	0	0	0	-	2	ŝ	3	7	-	-	1	-	1	7	0	-	0
Forest	_							-	1							_		-	
Shrubland, heath, matorral, garigue, sclerophyllous scrub	_	_					_	_	1	_						_			_
serees, caves																			
Grassland formations, grassy pastures, meadows Rocky habitats		1						1	1		1	-	1	-	1				-
Cropland, ruderal and urban habitats																			
Coastal, brackish, saline habitats																			
Bogs, mires, fens																			
Freshwater habitats																			
snoigər 10 rədmu ^N	5	1	-1	_	1	_	1	-	1	_	_	_	-	_	1	5	-	-	
Canary Islands (Ca)	-	1	-	-	1	-	1	-	1	_		-	-	-	1	_	1	1	
Plant family	Globulariaceae	Globulariaceae	Asteraceae	Asteraceae	Asteraceae	Asteraceae	Asteraceae	Asteraceae	Asteraceae	Asteraceae	Crassulaceae	Crassulaceae	Crassulaceae	Crassulaceae	Drchidaceae	Myrsinaceae	Cistaceae	Cistaceae	Distaceae Distaceae
səiəəqeduR		J						1	1						Ĵ	2	Ŭ	Ŭ	
səiəəqZ	_	1	1	-	-	_	1	_	1	_	-	-	-	_	1	_	1	_	
Species group																			
Name of endemic taxon	Globularia salicina	Globularia sarcophylla	Gnaphalium canariense	Gnaphalium elegans	Gnaphalium fruticosum	Gnaphalium teydeum	Gonospermum canariense	Gonospermum elegans	Gonospermum fruticosum	Gonospermum gomerae	Greenovia aizoon	Greenovia aurea	Greenovia diplocycla	Greenovia dodrentalis	Habenaria tridactylites	Heberdenia excelsa	Helianthemum bramwelliorum	Helianthemum bystropogophyllum	Helianthemum gonzalezferreri Helianthemum juliae

Reference	2; 119,120	2: 119,120	2; 119,120	2: 119.120	2; 119,120	2-119120	119	2; 4; 119	2; 4; 119	17(III)	, 4, 8, 119, 1	2; 119	2; 119,120	2; 119	2; 4; 119	2; 4; 119
(m) .xsm sbutitlA	900	1400	600	600				1200	1500	1000	1,2	800	200		880	1200
(m) .nim sbutitlA	700	400	300	300				006	n 500	600		200	100		300	700
Есоlоду, рlапt соподу, рlапt	ladera de Guimar (Abhang bei Guimar)	pinar	riscos, en zonas secas, en valles secos	Felsenstrauch; riscos montanosos secos	region de Famara	coasta Sur (Tenerife), en sitios arenosos y		Canaries: Rhamno glandulosae-Ericetum arboreae, Madeira: cliffs, ravines, open rocky slopes and in laurisila, from 900- 1200m	Andryalo pinnatifidae-Ericetalia arboreae (LAU II), Oleo-Rhammetalia crenulatae (OLR I), Madeira: rocky areas, especially ir ravines in E-Madeira	estaciones humedas y umbrosas en el cauce de los torrentes	Canaries: Gesnouinia arborea- Ges: aufgelichtete Waldstellen, relativ nåthrstoffreich (LAUI J 3c), Azores: keine Angaben, Madeira: common on cliffs, dry stony hillsides, edges of laurisilva, up to 800m	en riscos basíticos	en la costa Noroeste (Tenerife)		Canaries: Ixantho viscosi-Laurion azoricae: Lorbeerwalder hauptsiachtich auf den N- Seiten der Inesln 400-1200m (LAU 1-1), Fayal-Brezaf & coheerwald, Madeira: in laurisilva, heath forests on dry, exposed soli, mainly central and N-Madeira, 300- 880m	Canaries: Lorbeerwald, Madeira: in laurisilva, sometimes exposed to crests but more often on the deeper soils of shaded groves mainly in Z & N Madeira, 700- 1200, Azores (ssp. azorica): scattered in ravines, laurel, Juniper and Pittosporumforest between 250-750msilva
Number of habitats	0	-		-	7	¢	10	7	7	0	ŝ	1	7	0	-	-
Forest								-	-		-				-	-
Shrubland, heath, matorral, garigue, sclerophyllous scrub					1			_	-		_					
Rocky haditats, screes, caves																
Grassland formations, grassy pastures, meadows			-		1		-				-	1	1			
Cropland, ruderal and urban habitats																
Coastal, brackish, saline habitats						-	-						1			
Bogs, mires, fens																
Freshwater habitats																
snoiger of regions	_	-			-	-		0	0	ŝ	Ś	1	1	1	7	ŝ
Canary Islands (Ca)	-	-		-		-	e 1	-	-	1	-	-	-1		-	-
ylimst Insl¶	Cistaceae	Cistaceae	Cistaceae	Asteraceae	Asteraceae	Carvonhvllacea	Caryophyllacea	Hypericaceae	Hypericaceae	Hypericaceae	Hypericaceae	Hypericaceae	Asteraceae	Asteraceae	Aquifoliaceae	Aquifoliaceae
səiəəqeduR										-				-		
səiəəqZ	_	-		-	-	-			-		-	1	-		-	-
Species group																
amé of endemic taxon	Helianthemum teneriffae	Helianthemum tholiforme	Helianthemum thymiphyllum	Helichrysum gossypinum	Helichrysum monogynum	Herniaria canariensis	Herniaria hartungii	Hypericum canariense	Hypericum glandulosum	Hypericum hircinum ssp. cambessedesii	Hypericum inodorum	Hypericum reflexum	Hypochoeris oligocephala	Ifloga spicata ssp. obovata	llex canariensis	llex perado

Reference	2; 119	2; 119	2; 119	2; 119	2; 4; 119	2,30,119	117	2; 119	2; 119,120	2; 119	2; 119	2; 119,120	2; 119,120	2; 119,120
Altitude max. (m)		800	1000		1000	2400			1000	600	1000	800	006	
(m) .nim əbutitlA		600	800		400	200			600		50	600	700	
Εςοίοςy, plant community	Rhamno glandulosae-Ericetum arborae: artenreich, anspruchsvoll & übergang zu Pruno-hixae-Lauretalia azoricae- Gesellschaft (LAU II-1a), Lorberwald	Pinetum ericetosum- Übergang zu Pruno hixae-lauretea azoricae (LAU)	Cytiso proliferi-Pinetea canariensis (PIN)	Canaries: Ixantho viscosi-Laurion azoricae: Lorbeerwalder hauptsischlich auf den N- Seiten der InesIn 400-1200m (LAU 1-1), Rhamno glandulosae-Ericetum arborae: Pruno-hixae-Lauretalia azoricae- Gesellschaft (LAU II-1a)	Canaries: Junipero-Rhammetum crenulatae (OLR I-1a), Madeira: Cliffs and rocks both on the coast and in inland ravines	Junipero cedri-Pinetum canariensis: Reliktgesellschaft der Hochlagen, Teneriffe: 2002-2400m, La Palma: 1500-2400m (PN L- 1c), Juniper cedrus-Ges. (SPA L-1c), vive, sobretudo, nos niveis superiores da laurisiva e altitudes mais elevadas (ate perto de 1800 m) da ilha da Madeira	eigene Anschauung	Küstenzone bis 500 m (eigene Anschauung)	riscos basíticos	Helianthemo-Euphorbion balsamiferae: Küstennahe Tieflagen (KLE I-1), auch eigene Anschauung	Euphorbien-Stufe 50-600(-1000m), Aconio- Euphorbion canariensis (KLE 1-2)	riscos, en maleza (Unkrautflur) Teline/Euphorbia	barranco de Masca, laderas secas y rocosas (trockene und felsige Hänge)	
Number of habitats		-	1	-	2	7	-	2		ŝ	7	ŝ	5	0
Forest	-	-	1	-	-	_								
Shrubland, heath, matorral, garigue, sclerophyllous scrub					_	_	1	-		_	_	_	_	
800665, CAV65 800665, CAV65														
Grassland formations, grassy pastures, meadows								1	1	1	1	1	1	
Cropland, ruderal and urban habitats												1		
Coastal, brackish, saline habitats										-				
Bogs, mires, fens														
Freshwater habitats														
snoigər 10 rədmu ^N		-	1	-	7	7	7	1		-	-	1	-	
Canary Islands (Ca)	e 1	e 1	e 1	-	-	-	-	-	e 1	e 1	-1	-	-	-
Plant family	Scrophulariacea	Scrophulariacea	Scrophulariacea	Gentianaceae	Oleaceae	Cupressaceae	Cupressaceae	Acanthaceae	Scrophulariacea	Scrophulariacea	Asteraceae	Santalaceae	Santalaceae	Santalaceae
səiəəqeduR							_							
səiəəqZ	-	-	-	-	1	-		1		1	-	-	1	
Species group														
Vame of endemic taxon	Isoplexis canariensis	Isoplexis chalcantha	Isoplexis isabelliana	lxanthus viscosus	Jasminum odoratissimum	Juniperus cedrus	Juniperus turbinata ssp. canariensis	Justicia hyssopifolia	Kickxia pendula	Kickxia scoparia	Kleinia neriifolia	Kunkeliella canariensis	Kunkeliella psilotoclada	Kunkeliella subsucculenta

Reference	2; 119	2; 119,120	2; 119,120	2; 119,120	2; 119,120	119	2; 119,120	2; 119,120	2; 119,120	2; 119,120	2; 119,120	2; 119,120	2: 119.120	2.119120	-, 11, 11, 120	2; 119,120	2; 4; 119,120	2; 119, 120	2; 119, 120	2; 119, 120	2; 119, 120	2; 119, 120	2; 119, 120	2; 119, 120	к к	2; 119, 120	0.110110	2, 119, 120	2; 119, 120		2; 119, 120
Altitude max. (m)		600	1600	600	500		300		700		400			100	001	50	200	100	006	600	600	1000	600	300		2000	1 400	1400			
(m) .nim əbutitlA		100	500	0	20		0		500		50			50	S	0	0	0	800	400	500	600	400	200		0	<	Λ			
Εςοίοgy, plant community	Telino-Ardenocarpetum spartioidis (SPA I- 1b), Deseurainio gilvae-Plantaginetum webbi = Vulkanische Rohböden auf La Palma (PIN I-2d)	barrancos	barrancos	(eigene Anschauung)	Aeonio-Euphorbion canariensis (KLE 1-2), Oleo-Rhamnetalia crenulatae: 50-500 m, schwer zugängliche Orte (OLR I)				en los riscos orientados al Noroeste		en acantilados		Limonium imbricatum-Gesellschaft(CR11- 1c) mit Crithmum maritimum	por la costa Norte de Anaga		en zonas costeras arenosas	among stones and sand on Selvagem- Islands	Felsküsten (eigene Anschauung)	laderas de baarranco (Hänge im Barranco)	laderas rocosas	en los riscos y rocas	en rscos escarpados	en los acantilados (Barranco de Masca)			Felsen, steinige Hänge & Ruderalstellen	Felsen, steinige Hänge, Ruderalstellen, 0-	1400m	xerophyt. Vegetation in Küstennähe	Bereich des Kiefern- und Lorbeerwaldes,	gelegentlich auf Lava
Number of habitats	7	7	2	7	7	0	0	-	-	0	-	-		2	4	1	7	-	-	-	-	-	_	0		7	ç	7	-	,	3
Forest																															_
Տիrսbland, heath, matorral, garigue, sclerophyllous scrub	_	_	1	1	_																										
serees, eaves																															
Grassland formations, grassy pastures, meadows Rocky habitats	-	1	1	1	-			-	1		1	1		-	-		1		-	1	-	1	1			1	-	-			
Cropland, ruderal and urban habitats																										1	-	I			
Coastal, brackish, saline habitats														-	-	1	1	-											-		
Bogs, mires, fens																															
Freshwater habitats																															
enoiger fo redinu ^N	_	_	-	5	-	_	-	_	-	-	-	_	_	_	-	1	-	-	-	-	-	1	_	-		1	-	_	-		_
Canary Islands (Ca)	_	_	1	1	-	_	1	_	1	-	1	_	_	_		1	-	1	-	1	-	1	_	1		1	-	_	-		
								ceae	ceae	ceae	ceae	ceae	ceae	ceae	ccuc	ceae	ceae	ceae	ceae	ceae	ceae	ceae	ceae	ceae		ø		12	a		a
ylimst tnaly	Asteraceae	Lamiaceae	Lamiaceae	Lamiaceae	Malvaceae	malvaceae	Malvaceae	Plumbagina	Plumbagina	Plumbagina	Plumbagina	Plumbagina	Plumbagina	Plumbagina	nugnanni	Plumbagina	Plumbagina	Plumbagina	Plumbagina	Plumbagina	Plumbagina	Plumbagina	Plumbagina	Plumbagina		Brassicacea		DIASSICACEA	Brassicacea		Brassicacea
səiəəqeduZ														Ľ		_										_	_	_	_		
səiəəqZ	_	_	_	_	_	_	_		_	_	_	_	_	_	_		_	_	_	_	_	_	_	_							
Species group														Ĺ																	
oimobno fo ome ^N noxe1	Lactuca palmensis	Lavandula buchii	Lavandula minutolii	Lavandula pinnata	Lavatera acerifolia	Lavatera brachyfolia	Lavatera phoenica	Limonium arborescens	Limonium bourgeaii	Limonium brassicifolium	Limonium dendroides	Limonium fruticans	Limonium imbricatum	Limonium macrophyllum	Limonium ovalifolium ssp.	canariense	Limonium papillatum	Limonium pectinatum	Limonium perezii	Limonium preauxii	Limonium puberulum	Limonium redivivum	Limonium spectabile	Limonium sventenii	Lobularia canariensis ssp.	canariensis	Lobularia canariensis ssp.	Intermedia	Lobutarta canartensis ssp. mircosperma	Lobularia canariensis ssp.	palmensis

Reference	119 2; 119,120 2; 119	2; 119 2; 119 2; 119,120	2; 119 119	2; 4; 119	2; 119	2; 119,120	2; 119,120	2; 4; 119	2; 119	2; 119	2; 119,120	2; 4; 119	2; 119, 120	2; 119,120	2; 119,120	900,9033 2; 119
(m) .xsm sbutitlA	1200 600	300		100		800	100				500	1 700	150	1000	200	1000 600
(m) .nim əbutitlA) 700 50	0	0	0		600	0		ė		400	1700	0	300	20	600 300
Есоюду, ріап і соподу, ріапі	region costera. Cuesta (Abhang) de silva (?) riscos de bosques	Cisto symphytifolii-Pinion canariensis (PIN 1-1) rocas de la costa Norte (La Palma)	en laderas secas de tierra baja, en las costas	Canaries: Ammophiletea: beweglicher Sant (AMM), Madeira: maritime cliffs, rocks, stony and sandy ground, coastal hills and dry roadside banks up to 100m	Loto-hillebrandtii-Pinetum canariensis: Hochlagen von La Palma (PIN 1-1e)	en maleza (Unkrautflur) de leguminosas (Fabaceen-Unkrautfluren)	AC Loto-Polycarpacetum niveae, playa/costa	Canaries: keine Angaben, Madeira: Rare on maritime cliffs on S-coast of Madeira	Helianthemo-Euphorbion balsamiferae: Küstennahe Tieflagen (KLE I-1), Frankeniö Astydamietum-Gesellschaft (CRL1-1b), Plantago aschersonii-Gesellschaft (PLA I- 2b)	en la costa Norte (Tenerife)			Küstenregion, en regiones costeras	Cytiso proliferi-Pinetalia canariensis (PIN I); pinares y maleza de monte en la zona montanosa	rocas costeras	Lorbeerwald 600-1000m, in dichten Polstern, Pruno hixae-lauretea azoricae (LAU) eigene Anschauung
Number of habitats	0 1 0	0 1	0 5	-	-	-	7	2	0	-	7	0	- I	0	7	
Forest	-				-									-		-
Shrubland, heath, matorral, garigue, sclerophyllous scrub											1		l			_
Rocky habitats, screes, caves													L			
Grassland formations, grassy pastures, meadows		_	-					1	-		1		l		-	
Cropland, ruderal and urban habitats						-	1						l	_		
Coastal, brackish, saline habitats		-		-			1	1	-	1			-			
Bogs, mires, fens													L			
Freshwater habitats													L			
snoigər 10 rədmu ^N	1 1			0	-	-	-	5	-			- 17		-		
(Ganary Islands (Ca)				-	-	-	-	-	-					-		
ylimst tanily	ceae tceae tceae	iceae iceae iceae	iceae iceae	ıceae	iceae	iceae	iceae	tceae	tceae	iceae	iceae	iceae	iceae	iceae	raceae	aceae aceae
saradsang	Poac Fabi Fabi	Fabo Fabo Fabo	Fab: Fab:	Fabe	Fabi	Fab	Fab	Fab	Faba	Fab	Fab	Fab	Fab	Faba	Aste	Junc Rosi
sərəadə Subaradu S													L			
Species group				-	1	-	1	-	-	-	-			1	-	
oimobno to ome ^N noxe3	Lolium lowei Lotus berthelotti Lotus callis-viridis	Lotus campylocladus Lotus dumetorum Lotus emeriticus	Lotus emeroides Lotus genistoides	Lotus glaucus	Lotus hillebrandtii	Lotus holosericeus	Lotus kunkelii	Lotus lancerottensis	Lotus leptophyllus	Lotus maculatus	Lotus mascaënsis	Lotus ornithopodioides	Lotus sessilifolius	Lotus spartioides	Lugoa revoluta	Luzula canariensis Marcetella moquiniana

Reference	2; 119,120	2; 119,120	2; 119	2; 119	2; 119	2; 119	2; 119	2; 119	119	2; 119	2; 119	2; 119	2; 119	2; 119	2; 119	2; 119	2; 119	2; 119	2; 119	2; 119	2; 119	119	2; 4; 119	1,2,4,16 2 - 110	2, 117
(m) .xsm sbutitlA	1500	2000	600			600																	1650	1500	
(m) .nim sbutitlA	200	400	200			200																		300	
Ecology, plant community	en rocas y riscos en la zona baja y regiones forestales	riscos (Famara/Lanzarote), laderas aridas en el borde del pinar	riscos secos, laderas secas de la zona baja	Pflanze polsterförmig od. Aus Spalten heraushängend, Felsen bis 700 m	Sande der Küstenregion	Soncho-Aeonion (ASP I-1 Festuco- Greenovion (ASP 1-2)		Nordhang				Soncho-Aeonion (ASP I-1)	Südhang				Soncho-Aeonion (ASP I-1)						Canaries: keine Angaben, Madeira: fäirly common on walls, banks, paths, cultivated ground and rocky places in both lower and montane regions of Madeira up to 1650m	Canaries: Myrico fiyae-Ericion arboreae (LAU II-1),Pinetum ericetosum- Übergang zu Pruno hixae-Laurtea zzoricae (LAU), hauptsächlich 1200-1500m (Pin 1-1g), Azores: lowland forests, common below 600m, Madeira: locally abundant in laurisilva, lower altitudes in Norther part of island, occasionally in South up to 1000m eione-Anchanuno (Fayal-Farzya)	elgene Anscnauung (rayai-tsrezai)
Number of habitats	m	ε	0	-	1	-	-	-	-	-	-	-	-	-	1	-	-	-	-	-	-		0	- 17	_
Forest	-	-																						_	
Shrubland, heath, matorral, garigue, sclerophyllous scrub																									
SOLEES, CAVES																								_	
Grassland formations, grassy pastures, meadows Rocky habitats.	-	-				-	1		1		1	1	1	-	1	1	1	1	1	1	1	1	-		
Cropland, ruderal and urban habitats																							-		
Coastal, brackish, saline habitats					1																				
Bogs, mires, fens																									
Freshwater habitats																									
snoiger of regions	-	6	7	-	1	-	-	-	1	-	-	-	1	_	1	-	1		1		1	1	7	4 -	_
Canary Islands (Ca)	1	-	-	-	-	-			-	-					-				-		-		-		_
ylimst tasl¶	Celastraceae	Poaceae	Poaceae	Caryophyllaceae	Caryophyllaceae	Crassulaceae	Crassulaceae	Crassulaceae	Crassulaceae	Crassulaceae	Crassulaceae	Crassulaceae	Crassulaceae	Crassulaceae	Crassulaceae	Crassulaceae	Crassulaceae	Crassulaceae	Crassulaceae	Crassulaceae	Crassulaceae	Crassulaceae	Boraginaceae	Myricaceae Myricaceae	Myricaceae
səiəəqedu																						-	-		
səiəəqZ	-	-	1	_	1	-	-	-	1	-	-	-	1	_	1	-	1	-	1	-	1	-			_
Species group																									
oimeda of endemic noxet	Maytenus canariensis	Melica canariensis	Melica teneriffae	Minuartia platyphylla	Minuartia webbii	Monanthes adenoscepes	Monanthes amydros	Monanthes anagensis	Monanthes brachycaulos	Monanthes dasyphylla	Monanthes icterica	Monanthes laxiflora	Monanthes minima	Monanthes muralis	Monanthes niphophila	Monanthes pallens	Monanthes polyphylla	Monanthes praegeri	Monanthes purpurascens	Monanthes silensis	Monanthes subcrassicaulis	Monanthes wildpretii	Myosotis discolor ssp. canariensis	Myrica faya Myrica rivas-martinezii	Myrica rivas-marunezu

Reference	2; 119	2; 119	2; 119	2; 119	2; 119	2; 119	2,4,19	2; 119	2; 119	2; 119 2; 119,120	*17(VII/II)	*17(VII/II)	2; 119,120	2; 119,120	2; 119,120	2; 119	2; 119
(m) .xsm sbutitlA						2700	1500			600	10	600		1200	500	1200	
(m) .nim əbutitlA						1800	0			200	0	0		100	100	006	
Есоюду, ріапt соподу, ріапt	mit Chara fragilis bei Charco des Maspalomas	Odontospermo-Ononidetum ulicinae: mittlere Höhen, 400-900m stark beweidet! (KLE 1-2b)			Euphorbietum balsarniferae: ktistennahe Tieflagen (KLE 1-1c), Aeonio-Euphorbion canariensis (KLE 1-2), Euphorbiastufe	Spartocytisietum supranubii (SPA I-1a), Telino-Ardenocarpetum spartioidis (SPA I- 1b)	Canaries: Ixantho viscosi-Laurion azoricae (LAUI), Madeira: preferring moist slightly exposed sites (0–)600-1500m, formerly widespread, today rare	Aconio percamei-Euphorbietum canariensis (50-500m Gran Canaria) (KLE 1-2a). Oleo- rhamnetalia crenulatae: 50-500 m, schwer zugängliche Orte (OLR 1)	Odontospermo-Ononidetum ulicinae: mittlere Höhen, 400-900m stark beweidet! (KLE 1-2b)	Odontospermo-Ononidetum ulicinae: mittlere Höhen, 400-900m stark beweidet! (KLE 1-2b) riscos mas altos (Jandia)	pastizales de arenales costeros	pastizales, en dunas y arenales costeros y del interior	abunda localmente en las regiones de Famara y Jandia (Lanzarote, Fuerteventura)	riscos	laderas secas de la montanas de Jandia	Nebelwald, z.B. Orotavatal, Cisto symphytifolii-Pinion canariensis (PIN I-1)	schmarotzt auf Asteracen, bes. auf Artemisia, seltener auf Solanaceen wie Lycium, Lycopersicum, Nicotiana
Number of habitats	-	7	7	2	7	_	-	7	7	1 5	-	-			1	-	ŝ
Forest							-									1	
Shrubland, heath, matorral, garigue, sclerophyllous scrub		-	-	1	1			_	-	_							-
Rocky habitats, screes, caves																	
Grassland formations, grassy pastures, meadows		-	-	1	1	1		-	-				-	-	-		1
Cropland, ruderal and urban habitats																	_
Coastal, brackish, saline habitats											1	-					
Bogs, mires, fens																	
Freshwater habitats	-																
Number of regions	-	-		-	-	-	7	-	-		9	s	-		-	-	1
Canary Islands (Ca)	-	—			-	-			-			-	-		-	-	-
ylimst Insl¶	Najadaceae	Asteraceae	Asteraceae	Asteraceae	Cneoraceae	Lamiaceae	Lauraceae	Oleaceae	Fabaceae	Fabaceae Fabaceae	Fabaceae	Fabaceae	Fabaceae	Asteraceae	Asteraceae	Orchidaceae	Orobanchaceae
səiəəqeduR		-						-	-	_						-	
səiəəqZ	-			-	-	-				-		-	-		-		-
Species group																	
Vame of endemic taxon	Najas mircrocarpa	Nauplius graveolens ssp. stenophyllus	Nauplius intermedius	Nauplius sericeus	Neochamaelea pulverulenta	Nepeta teydea	Ocotea foetens	Olea europea ssp. Cerasiformis	Ononis angustissima ssp. angustissima	Ononis angustissima ssp. Longifolia Ononis christii	Ononis dentata	Ononis diffusa	Ononis hebecarpa	Onopordum carduelium	Onopordum nogalesii	Orchis patens ssp.canariensis	Orobanche berthelotii

Reference	2; 119	2; 119	2; 119	2; 119	2; 119	2; 119	119	2; 119	2; 119	2; 119	2; 119	2; 119	2; 119	2; 119	2; 119,120	2; 119	2; 119	2; 119,120	2; 119
(m) .xɛm əbutitlA								350				006	1500	006				700	1100
(m) .nim əbutitlA								200				500	700	50				500	50
Есоюду, ріап і соплиніт	auf Asteraceaen besonders Artemisia, settener Solanaceaen oder Polygonum paronychioides	Felsspalten der Küstenregion	riscos		Kleinio-Euphorbietalia canariensis (KLE I)	Aeonio percarnei-Euphotbietum canariensis (50-500m Gran Canaria) (KLE 1-2a)			Soncho-Aeonion (ASP I-1), Kleinio nerifolii-Euphorbietea canariensis (KLE), Micromerio-Genistion = Canar. Zwergstrauchheiden, Degradationstadien des Fayo-Ericion, wohl primär an Felsköpfen (LAU II-2)			Schattenliebend im Lorbeerwald der Nordhänge, 500-900m, Laurus-Prunus Iustianies-Gesellschaft: in höhreren Lagen, Übergang zu Andryalo Pinmatifidae- Ericacetalia arboreae (LAU I-1e)	besonders in frischeren Ausbildungen des Fayal-Brezal der Nordhänge	Geroll der N-Küste, besonders im NW, lichtlichende Art trockener Standorte, besonders Lavaströme, geme mit Cistus- Arten	riscos	Pinetum ericetosum- Übergang zu Pruno hixae-Lauretea azoricae (LAU)		bosques	lichte Stellen im Lorbeerwald, & obere Küstenzone (schwerpunkt 600-800m)
Number of habitats	ε	1	_	0	7	7	0	0	7	0	0	0	7	7	-	-	0	0	-
Forest												-				-			- 1
Shrubland, heath, matorral, garigue, sclerophyllous scrub	_				_	_			_			_	_	_					
SCTEES, CAVES																			
Grassland formations, grassy pastures, meadows	1	1	-		1	-			-					-					
Cropland, ruderal and urban habitats	_																		
Coastal, brackish, saline habitats																			
Bogs, mires, fens																			
Freshwater habitats																			
enoiger of regions	-	1	_	1	-	1	_	1	-	_	_	-	1	-	-	-	-	1	1
Canary Islands (Ca)	-	1	_	1	-	1	-	-	_	-	_	-	-		-	-	-	1	-
Plant family	Drobanchaceae	Amaryllidaceae	Urticaceae	Brassicaceae	Brassicaceae	Brassicaceae	Brassicaceae	Brassicaceae	Caryophyllaceae	Carvophyllaceae	Primulaceae	Asteraceae	Asteraceae	Asteraceae	Asteraceae	Asteraceae	Asteraceae	Asteraceae	Asteraceae
səiəəqeduZ	Ŭ	7	[Ι		-		_	0	-	[`		~	7	7	7	7	
səiəəqZ	-	1	_	1	-	-	-	-	_		_	_	-	-	-	-	_	1	-
Species group																			
oimobno fo ome ^N noxet	Orobanche gratiosa	Pancratium canariense	Parietaria filamentosa	Parolinia filifolia	Parolinia intermedia	Parolinia ornata	Parolinia platypetala	Parolinia schizogynoides	Paronychia canariensis	Paronychia capitata ssp. canariensis	Pelletiera wildpretii	Pericallis appendiculata	Pericallis cruenta	Pericallis echinata	Pericallis hadrosoma	Pericallis hansenii	Pericallis lanata	Pericallis multiflora	Pericallis murrayi

Reference	2; 119	2; 119	2; 119	2; 119	2,4,16	2; 119	2; 119	2; 4; 119	2; 119	2; 4; 119	2; 119,120	2; 119,120	2; 119	2; 119,120	2; 119	2; 119
(m) .xsm sbutitlA	1600	006	800	1600	1000	800		1800			1200	2300	400	1200		1000
(m) .nim əbutitlA	100	500	300	100	200	100		0			200	1850	120	600		0
Есоlogy, plant сотиніty	im tiefschattigen Lorbeerwald, auch im Pinar, Galio-Toriletum: schattig ab 250m (ART1-Ic), Ixantho viscosi-Laution azoricae (LAU I), Andryalo pimatifidae- ericetalia arboreae (LAU II), Jumipero- Rhamnetum crenulatae (OLR I-Ia)	Lorbeerwald, lichte Orte	Galium aparine-Senecio tussilaginis Gesellschaft: halbschattig, tiefere Lagen (ART I-1a)	Schluchten der N-Seite	Canaries: Lauro azoricae-Persetum indicae (LAU1-1a), Azores (introduced?): scattered in ravines, Myrica-Pittosporum forests between 200-500m, Madeira:	Euphorbio regis-jubae-Retametum rhodorrhizoidis: Blocklava! (KLE 1-2i)	an Felsen & Pionierpflanze auf rezenten Lavaströmen, Oleo-rhammetalia crenulatae: 50-500 m, schwer zugängliche Orte (OLR I)	Canaries: Pruno hixae-Lauretea azoricae (LAU), Lorbeerwald-Saum, Madeira: cliffs, rocky banks, and levada walls from sealevel to 1800m	Phylliviscosae-A conietum sedifolii: Sonnenexponiert Felsen im Tenogebirge von Teneriffe, (ASP I-1b), meist Felspflanze	Canaries: Lauro azoricae-Persectum indicae (LAU1-1a), Madeira: rare species in laurisilva, thickets, cliffs and rocks, often in ravines, also as isolated trees	(Nach Ortsangaben und Foto in 120)	zona subalpina de las Canadas (auch eigene Anschauung)	Greenovietum diplocyclae (ASP I-2b)	riscos en la parte alta de zona xerofítica y en bosques	Cisto symphytifolii-Pinion canariensis (PIN I-1)	Soncho-Aeonion (ASP I-1)
Number of habitats	7	1	-	-	-	7	-		-	-	-	-		ŝ	-	7
Forest	1	1			-		-			-				-	-	
Shrubland, heath, matorral, garigue, sclerophyllous scrub						1								1		
εςγές, caves κοcky haditats,																
Grassland formations, grassy pastures, meadows			-	1		1			-		-	-	1	1		1
Cropland, ruderal and urban habitats	Т															
Coastal, brackish, saline habitats																
Bogs, mires, fens																
Freshwater habitats																
snoigər 10 rədmu ^N	-	1	-		ŝ	1	-	7	-	7	1	-	-	-	_	_
Canary Islands (Ca)	-	-	-	-	-	-	-		-	-	-	-	-	-		
Plant family	Asteraceae	Asteraceae	Asteraceae	Asteraceae	Lauraceae	Asteraceae	Palmaceae	Rubiaceae	Rubiaceae	Oleaceae	Apiaceae	Apiaceae	Apiaceae	Apiaceae	Pinaceae	Plantaginaceae
səiəəqeduZ																
səiəəqZ	1	1	-	-	-	-	-		-	-	-	-	1	-	-	_
Species group																
oimobno fo oms ^N noxet	ericallis papyracea	^o ericallis steetzii	Pericallis tussilaginis	^o ericallis webbii	Persea indica	⁰ hagnalon umbelliforme	Ohoenix canariensis	Phyllis nobla	Phyllis viscosa	vicconia excelsa	^o impinella anagodendron	^{>} impinella cumbrae	^o impinella dendrotragium	^{>} impinella junoniae	⁹ inus canariensis	olantago arborescens

Seference	2; 119	2; 119	2; 119	2; 119	2; 119	2; 119	2; 119,120	2; 119,120	2; 119	2; 119,120	2; 119	119	2; 119,120	2; 119,120	1,2,4,16	2; 119	2; 4; 119	2; 119,120	2; 119	2; 119
Altitude max. (m)		600	2800	1000			1200	500			1000		1000	2200		1500		1600	2500	
(m) .nim əbutitlA		300	1600	600			200	50			600		500	880		200		300	2000	
Есоюду, ріап і сотацу	Küstenzone	riscos costeros	Descurainio gilvae-Plantaginetum webbii = Vulkanische Rohböden auf La Palma (PIN I 2d)	Lorbeerwald	Euphorbietum balsamiferae: küstennahe Tieflagen (KLE I-1c), Polycarpo tetraphylli- Nicotianetum-galucae (barranco Flußbetten) (CHE I-1b), Euphorbien- Formation	zonas mas altas (cumbres; Gran Canaria)	zona baja y pinares	en riscos basalticos	Eragrostis barrelieri-Polycarpaea divaricata- Geselschaft (PLA 1-2a)	eigene Anschauung	bordes de caminos y pistas, lugares humedos en la zona forestal		zona baja y risocs de bosques	Polsterpflanze; zona subalpina (Canadas)	Canaries: Prenantho (pendulae)- Taeckholmietum, Fels-Ges, im Bereich der Kleinio-Euphorbietea; Madeira: rocks, cliffs, walls & tree, epiphytic	Premantho (paendulae)-Taeckholmietum = Felsgesellschaften im Bereich der Kleinio- Euphorbietea von Gran Canaria (ASP 1-1a)	a laurisilva tree formerly scattered in Central-Madeira and the Ribeira de Janela region, but now known only from Ribeira Seca valley north of Ribeiro Frio		Spartocytisietum supranubii (SPA I-1a)	Tolpidetum caldene: Hochlagen von La Plama 1650-2400m (ASP 1-2d), Descurainio gilvae-Plantaginetum webbii = Vulkanische Rohböden auf La Palma (PIN1 2d)
Number of habitats	-		-	-	4	0	0	-	-	5	-	0	7	-	ŝ	5	-	0	5	_
Forest				_									-		-		1			
Shrubland, heath, matorral, garigue, sclerophyllous scrub					_					1					_	-		1	1	
פכרפפי, כמעפג עטכאל חמטתמנג,																				
Grassland formations, grassy pastures, meadows		-	-		-			-		1			1	-	-	-		1	1	Т
Cropland, ruderal and urban habitats					_				1		1									
Coastal, brackish, saline habitats	-				_															
Bogs, mires, fens																				
Freshwater habitats																				
snoigər 10 rədmu ^N	-	_	1	_	_	_	1	_	-	1	-	1	-	_	ŝ	_	5	-	1	_
Canary Islands (Ca)	-	-	-	-		-		-	-	1	-	1	-	-	-	-	-	1	1	_
Plant family	Plantaginaceae	Plantaginaceae	Plantaginaceae	Myrsinaceae	Rubiaceae	Poaceae	Caryophyllaceae	Caryophyllaceae	Caryophyllaceae	Caryophyllaceae	Caryophyllaceae	Caryophyllaceae	Caryophyllaceae	Caryophyllaceae	Polypodiaceae	Asteraceae	Rosaceae	Dispacaceae	Dispacaceae	Dispacaceae
səiəəqeduR		[_		Ū		Ũ		Ũ	Ū	Ŭ			-	[_
səiəəqZ	_	-	1	_		-		-	-	1	-	-	-	-	-	-		1	1	_
Species group																				
oimobro fo omsN noxst	Plantago asphodeloides	Plantago famarae	Plantago webbii	Pleiomeris canariensis	Plocama pendula	Poa pitardiana	Polycarpaea aristata	Polycarpaea carnosa	Polycarpaea divaricata	Polycarpaea filifolia	Polycarpaea latifolia	Polycarpaea robusta	Polycarpaea smithii	Polycarpaea tenuis	Polypodium macaronesicum	Prenanthes pendula	Prunus lusitanica ssp. hixa	Pterocephalus dumetorum	Pterocephalus lasiospermus	Pterocephalus porphyranthus

Reference	2; 119,120	119,12	1,2,16,4	*1,17(I),23	2; 119,120	2; 119,120	2; 119	2; 119,120	2; 119	119	2: 4: 119	2; 119
Altitude max. (m)	1000		1000	1600		400		100			1200	
(m) .nim sbutitlA	0		200	0		50		10			800	
Ecology, plant community	rocas costeras entre el nivel del mar por los roques (höher)	riscos, rocas costeras	Canaries: Pruno hixae-lauretea azoricae (LAU), Azores: scattered in ravines & natural pastures, on steep slopes and in hedges especially between 500-800m, Madeira: Central-and N-Madeira	acequias (Gräben), charcas (Tümpel) y arroyos, a menudo en medios alterados, prefiere las aguas oligotrofas	Crithmo-Limonietea; zonas costeras (wohl auch höhergelegene Felspartien)	riscos	Crithmo-Limonietea: Felsen unter Brandung haupts. N-Exposition (CRI), Kleinio nerifolii-Euphorbietea canziensis (KLE), Aeonietum palmensis: Tierfaad bis 1100m, Schwerpunkt auf La Palma (ASP I- 1c)	cerca de costas	Euphorbietum balsamiferae: küstennahe Tieflagen (KLE 1-1c)(auch eigene Anschauung)	Kleinio neriifolii-Euphorbietea canariensis (KLE), Junipero-Rhamnetum crenulatae (OLR 1-1a)	Canaries: Pruno-hixae-Lauretalia azoricae (LAU J), Rhamno glandulosae-Ericetum arborae: artenreich, anspruchsvoll & übergang zu Pruno-hixae-Lauretalia azoricae-Geselschaft (LAU IL-1a), Madeira: very rare tree of laurisilva in high mountain vallevs of Madeira. 300-1200m	
Number of habitats	ε	7	4	-	-		0	0	ŝ	7	0	0
Forest			-								_	
Shrubland, heath, matorral, garigue, sclerophyllous scrub	_	1	_							-	_	
κοεκу μαριτατs, εστεεs, εανεs												
Grassland formations, grassy pastures, meadows	-	-	-			1	-	-	1	1		
Cropland, ruderal and urban habitats									_			
Coastal, brackish, saline habitats	_				1		_	1	_			
Bogs, mires, fens												
Freshwater habitats				-								
noigor of regions	-	-	ŝ	7	-		-	-	1	1	7	-
Canary Islands (Ca)	-		-	-	-		-		1	1	-	-
ylimst Insl¶	Dispacaceae	Asteraceae	Ranunculaceae	Ranunculaceae	Asteraceae	Asteraceae	Asteraceae	Resedaceae	Resedaceae	Rhamnaceae	Rhamnaceae	Rhamnaceae
səiəəqeduR												
səiəəqZ	-	-	-	-	-		-	-	1	-	_	_
Species group												
oimeda of endemic taxon	Pterocephalus virens	Pulicaria canariensis	Ranunculus cortusifolius	Ramunculus ololeucos	Reichardia crystallina	Reichardia famarae	Reichardia ligulata	Reseda lancerotae	Reseda scoparia	Rhamnus crenulata	Rhammus elandulosa	Rhamnus integrifolia

Reference	2; 4; 119	2; 4; 119	2; 119,122	1,2,4,16,119	2; 119	2; 4; 119	2; 119,120	2; 119	2; 119,120 2: 110	2; 119	2; 4; 119 119
(m) .xsm sbutitlA	50	950	1300	500 1				009	000		
(m) .nim əbutitlA	20	50	1100	100				200	001		
Есоюду, ріапt соплиніty	R.f.sp.futticosa:Aeonio peramei- Euphorbietum canariensis (50-500m Gran Canaria), R.f.ssp.melanocarpa: Trockengeniete, R.f.ssp.periclymenum Lauro azoricae-Persetum indicae (LAU I- 1a): Madeira: cliffs and rocky places near the sea	Canaries: Myrico fiyae-Ericion arboreae (LAU II-1), Rubion canariensis (kanar. Brombeerhecken, meist ackundär um Wirtschaftsland inmehalb der Wolkenstufe (LAU II-3), Ixantho viscosi-Laurion azoricae: Lorberevalder Innspissibilib auf den N-Seiten der Ineslin 4100-1200m (LAU I- 1), Madeira: woodland, scrub, ravines, humid gulies, rock faces, steep banks and levadas mainly in N-Madeira, 50-950m		Madeira: Disturbed soils, among rocks and by tracks and levadas, up to ca. 1600m in Madeira, on Porto Santo mostly high peaks, also known from Desertas	Tricholaeno-Rumicetum lunariae = Aschenkegel, grundfrisch (KLE 1-2c)	Canaries: Myrico fäyae-Ericion arboreae (LAU II-1), Straßenränder, Kiefernwald & in "Barrancos", Madeira: common on banks, cliffs, old walls & rock faces, 500- 1000m	rocas y riscos	Prenantho (paendulae)-Taeckholmietum = Felsgesellschaften im Bereich der Kleinio- Euphorbietea von Gran Canaria (ASP I-1a)	zonas secas rocosas		Canaries: Auwälder, Salix canariensis- Gebüsch-Gesellschaft (MJU 1-1b), Pruno- Hixae-Laueretea azoricae (LAU), Madeira: common along streams and damp ravines
Number of habitats	ε	_	0	7	5	4	1	- 17		ρ	
Forest	-	_				_					_
Shrubland, heath, matorral, garigue, sclerophyllous scrub	_				_	_		_			
אסכגל המטומוג, אסכגל המטומוג,											
Grassland formations, grassy pastures, meadows	-			-	-	-	1		-		
Cropland, ruderal and urban habitats				-		_					
Coastal, brackish, saline habitats											_
Bogs, mires, fens											
Freshwater habitats											
snoiger of regions	7	0	-	ŝ	-	7	1			-	- 7
Canary Islands (Ca)	-	-		-	-	-				-	e 1
ջլ նուն քոռլք	Rubiaceae	Rosaceae	Rosaceae	Polygonaceae	Polygonaceae	Polygonaceae	Rutaceae	Rutaceae	Kutaceae	Aplaceae	Salicaceae Chenopodiacea
səiəəqedu											
Species	-	—			1	-	-			-	x 1 1
Species group											Sali
oimobno lo ome ^N taxon	Rubia fruticosa	Rubus bollei	Rubus palmensis	Rumex bucephalophorus ssp. canariensis	Rumex lunaria	Rumex maderensis	Ruta microcarpa	Ruta oreojasme	Nuta punnata Duthoonsis houhanioa	Kuineopsis neroanica	Salix canariensis Salsola marujae

Reference	2; 119,120	2; 119	2; 119,120	2; 119	2; 119	119	2; 119	2; 119	2; 119	119	2; 119	2; 119	2; 119	2; 119	2; 119	2; 119	2; 119
(m) .xsm sbutitlA	400	1700	400		400	1900	1400	1800		2400	1900	2400		800	1400		500
(m) .nim sbutitlA	200	300	200		300	500	200	50		1700	700	200		200	700		20
Ecology, plant community	riscos	Cytision canariensis: sekundäre Strauchgesellschaft anstelle von Kiefern (PIN 1-2)	laderas secas (Jandia)	Rubion canariensis (kanar Brombeerhecken, meist sekundår im Wirtschaftsland innerhalb der Wolkenstufe (LAU II-3), Lorbeerwald	frische Felsspalten oft mit Aeonium tabulaeforme(ASP I)	Micromerio lanatae-Cytisetum congesti (PIN 1-2b)	Prenantho (paendulae)-Taeckholmietum = Felsgesellschaften im Bereich der Kleinio- Euphorbietea von Gran Canaria (ASP I-1a)		Helianthemo-Euphorbion balsamiferae: Küstennahe Tieflagen (KLE I-1)	Spartocytisetea supranubii: Gebirgshalbwüsten und alpinoide Steinschuttfluren oberhalb 2000m (SPA)	Cytiso proliferi-Pinetea canariensis (PIN)	S.I.ssp.Iasiophylla: in Felsspalten, Festuco – Greenovion (ASP 1-2); S.I.ssp.palmensis: Tolpidetum calderae: Hochlagen von La Plama 1650-2400m (ASP 1-2d)	S.I.ssp.lepida: Pruno hixae-Lauretea azoricae (LAU); S.I.ssp.bolleana: Kleinio neriifolii-Euphorbietea canariensis (KLE)	Prenantho (paendulae)-Taeckholmietum = Felsgesellschaften im Bereich der Kleinio- Euphorbietea von Gran Canaria (ASP 1-1a)	Cisto symphytifolii-Pinion canariensis (PIN I-1)	in Phontolith-Spalten	Kleinio-Euphorbietalia canariensis (KLE I)
Number of habitats	-	-	1	ŝ	-	5	2	0	5	-	1	-	ŝ	7	_	_	5
Forest				-							1		-		_		
Shrubland, הפתנה, להמנה, המנסריצו, צמריצעפ, sclerophyllous scrub																	
solees, caves		-		-		1	-						1	1			1
Grassiand formations, grassy pastures, meadows Rocky habitats,	1				1	1	-		1	1		-	-	-			1
Cropland, ruderal and urban habitats																	
Coastal, brackish, saline habitats				-					1								
Bogs, mires, fens																	
Freshwater habitats																	
snoiger of regions	1	_	1	-	-	-	_	_	-1	1	1	-	-	-	_	1	1
Canary Islands (Ca)	-	-	1	-	-		-		1	-	-	-	-	Т	_	-	1
Plant family	Lamiaceae	Lamiaceae	Lamiaceae	Caprifoliaceae	Lamiaceae	Lamiaceae	Lamiaceae	Lamiaceae	Lamiaceae	Lamiaceae	Lamiaceae	Lamiaceae	Lamiaceae	Lamiaceae	Lamiaceae	Lamiaceae	Lamiaceae
səiəəqeduR																	
səiəəqZ	-	-	1	-	-	-	-		-	1	-		-	-	_	1	-
Species group																	
Jame of endemic faxon	Salvia broussonetii	Salvia canariensis	Salvia herbanica	Sambucus palmensis	Satureja anagae	Satureja benthamii	Satureja helianthemifolia	Satureja herpyllomorpha	Satureja kuegleri	Satureja lachnophylla	Satureja lanata	Satureja lasiophylla	Satureja lepida	Satureja leucantha	Satureja pineolens	Satureja rivas-martinezii	Satureja teneriffae

Reference	2; 119	4,31,117,115	2; 119	2; 119	2; 119	2; 119	2; 119	2; 119,120	2; 119	*2,4,119	2; 4; 119	2; 119	2; 119,120
(m) .xsm sbutitlA		1800 2				1600	1000	2400		300	1000		
(m) .nim əbutitlA		100				0	500	450		0	300		
Ecology, plant community		offene, z.T. ruderale Vegetationseinheiten, Garriguen (eigene Anschauung): ssp. thymoidse (Madeira): cresce em escapas rochosas e taludes pedregosos, ate cerca de 1000 m de attrude na ilha da Madeira, e, tambem, nas Desettas en o Porto Santo (var- thymoides), locais, sobretudo rochosos, das grandes attrudes da ilha maior (entre os Picos Ruivo e Arreciro, a 1600-1800 m)	Chenolenetalia tomentosae (SAL I)	K listenregion, Astydamio-Euphorhietum aphyllae (KLE 1-1a), Echio brevirame- Euphorhietum balsamířeras: Tierflagen bis 200m, flachgrundig (KLE 1-1e), Schizogyne sericea-Gesellschaft (KLE 1- 1g), Frankenio-Astydamietum (CK1 1-1b)			Lorbeerwald	Canadas, e veces puede encontrarse en regiones bajas a donde las semillas parecen haber sido arrastradas desde las montanas altas, regioines forestales de pinares	S.s.ssp.smithii: Ixantho viscosi-Laurion azoricae (LAU I), S.s.ssp.langeana: Gesnouinia arborea-Gesellschaft (aufgelichtete Waldstellen, relativ nährstoffreich (LAU II-1e)	exposed rocks and sea cliffs; Soncho- Aeonion (ASP I-1)	Canaries: Lorbeerwald, Canaries: Ixantho viscosi-Laurion azoricae (LAU J), Madeira: mainly in rocky, wooded ravines of the interior, occasionally in damp places on the N-coast		en grietas y andenes de los riscos de Famara, en los riscos
stetided fo rodmuN	0	m	7	7	0		-	7	0	7	2	0	-
Forest									-		-		
Shrubland, heath, matorral, garigue,		_							_				
SCLEES, CAVES													
Grassland formations, grassy pastures, meadows		-				1		-		-	-		1
Cropland, ruderal and urban habitats		_											
Coastal, brackish, saline habitats			1	_						1			
Bogs, mires, fens													
Freshwater habitats													
Number of regions	_	0		7	-		-	-	-	5	7	1	1
Canary Islands (Ca)	-	-		-	-		ae 1	ae 1	ae 1	-	-	-	-
Plant family	Lamiaceae	Lamiaceae	Asteraceae	Asteraceae	Liliaceae	Liliaceae	Scrophulariace	Scrophulariace	Scrophulariace	Crassulaceae	Liliaceae	Liliaceae	Asteraceae
səisəqeduR													
səiəəqZ	-	-		-	-		-	-		1	-	-	-
quo1g səiəəqZ			ima			ales	ntha	ıta	i				
Vяте of endemic taxon	Satureja tenuis	Satureja varia	Schizogyne glaberr.	Schizogyne sericea	Scilla dasyantha	Scilla haemorrhoid	Scrophularia callia.	Scrophularia glabro	Scrophularia smithi	Sedum nudum	Semele androgyna	Semele gayae	Senecio bollei

Reference	2; 119,120	2; 119	2; 119	2; 119	2; 119	2; 119	2; 119,120	011.5	2: 119.120	119	2; 119	2; 119,120	2; 119,120	2; 119,120	2; 119,120	2; 119,120	2; 119,120	2; 119,120	2; 119,120	2; 119,120	2; 119	2; 119	2; 119	2; 119,120	2; 119,120	119	2; 119,120
(m) .xsm sbutitlA			2400		1600		1500	0001	1300		1000	800	1900	006	700	2500	850		500	1000		500	150	700	1200		800
(m) .nim sbutitlA			400		50		200	000	200		500	450	1000	150	600	1800	400		200	500		300	50	200	1100		300
Εςοίο <u>ε</u> y, plant community	acantilados	Galio-Toriletum: schattig ab 250m (ART I- 1c)	oft hängender Felsenstrauch		costa hasta las montanas		asociada a bosques termofilos o pinar	Rhamno glandulosae-Ericetum arborae: artenreich, anspruchsvoll und Übergang zuPruno-hixae-Lauretalia azoricae (LAU II	en laderas y riscos de los acantilados	•	Pruno hixae-Lauretea azoricae (LAU)	en rocas secas	zona motana central en los dominios del pinar y matorral de leguminosas	en la franja del bosque termofilo y cardonal alto	en los dominios de la laurisiva	en fisuras y gleras	en riscos en el limite inferior del bosque	riscos humedos	zona forestal baja	zona montana de Laurisilva en riscos y claros del bosque	Micromerion-Genistion: kanarische Zwerstrauchheiden, Degradationsstadien des Fayo-Ericion, primär an Felsköpfen (LAU II-2)	rocas humedas algo sombrias	heiße Felsen	en riscos basalticos de la zona baja y submontana	zona montana superior o de pinar, en los escarpes montanosos y laderas de ambas vertientes		riscos
vanber of habitats	-	-	2	0		0		ç	۰ ۱	0		-	ŝ	7	1	_	-	_		3	7	-		1	ŝ	0	1
Forest								-	-		-		-	-	1					1							
Shrubland, heath, matorral, garigue, sclerophyllous scrub			_					_	_				_	-						-	_				_		
SCTEES, CAVES KOCKY NADILAIS,																											
Grassland formations, grassy pastures, meadows	-		-1		1				1				1			-	-1			1	-	-	1	1	1		1
Cropland, ruderal and urban habitats																											
Coastal, brackish, saline habitats		1																									
Bogs, mires, fens																											
Freshwater habitats																											
snoiger of regions	-	-		-				-		-			-	-	1					1		-		1	-		1
Canary Islands (Ca)	-	1	1		1	-	1	-		-			-	-		-		-	1	-	-		1	1	-	-	-
քլուք քոուլք	Asteraceae	Asteraceae	Asteraceae	Asteraceae	Apiaceae	Lamiaceae	Lamiaceae	econimo	Lamiaceae	Lamiaceae	Lamiaceae	Lamiaceae	Lamiaceae	Lamiaceae	Lamiaceae	Lamiaceae	Lamiaceae	Lamiaceae	Lamiaceae	Lamiaceae	Lamiaceae	Lamiaceae	Lamiaceae	Lamiaceae	Lamiaceae	Lamiaceae	Lamiaceae
səisəqeduR																											
səiəəqZ	-	-		-				-		-			-	-	1	-	-	-		1	-			1	-		-
Species group																											
oiməbnə 10 əms ^N axon	Senecio hermosae	Senecio hillebrandii	Senecio palmensis	Senecio teneriffae	Seseli webbii	Sideritis argospacela	Sideritis barbellata	Sidaritis holloana	Sideritis brevicaulis	Sideritis cabrerae	Sideritis canariensis	Sideritis cystosiphon	Sideritis dasygnaphala	Sideritis dendro-chahorra	Sideritis discolor	Sideritis eriocephala	Sideritis gomeraea	Sideritis infernalis	Sideritis kuegleriana	Sideritis lotsyi	Sideritis macrostachya	Sideritis marmorea	Sideritis nervosa	Sideritis nutans	Sideritis oroteneriffae	Sideritis penzigii	Sideritis pumila

Reference	2; 119;120	2; 119,120	2; 119	2; 119,120	2; 119	2; 119	2; 119	2; 119	2; 119	2; 4; 119	2; 119,120	119	2; 119	(110,17(III)	2; 119	2; 119,120	2; 119	2; 119	2; 119	2; 119,120	2; 119,120	2; 119
(m) .xsm sbutitlA		1100	500	1000			700	2500		1100	700			* 200	1600			006	800	600		1200
(m) .nim əbutitlA		100	400	500			200	600		500	500			50	100			300	100	300		400
Εςοίοgy, plant community	Kanaren-Kiefernwald der Südseite (Tenerife) mit Gebüschen und Felsen durchsetzt	en cardonal-tabaibal y bosque termofilo		riscos en los barrancos profundos	Pflanze niedrig, fast polsterförmig ; riscos de la costa Norte (Gomera)	Kleiner Felsenstrauch	kleiner Felsenhalbstrauch	Soncho-Aeonion (ASP I-1), Viola cheiranthifolia-Ges. (SPA I-1d), Violetum cheiranthifoliae (VIO 1-1a)	Felsenstrauch	Canarics: Anaga & Teno an Luvetten 500- 900 (- 1100m) Madeira: occuring in laurisilva and on rocky slopes along the N- coast	"tomatero sivestre", laderas montanosas	bosques de Laurisilva	Euphorbienstufe	rochers suintants, vieux murs humides pres des fontaines - Adiantetea; entradas de cuevas, taludes, roquedos extraplomadas	Phylliviscosae-Aconietum sedifolii: Sonnenexponiett Felsen im Tenogebirge von Teneriffe, (ASP 1-1b)	riscos	Prenantho (paendulae)-Taeckholmietum = Felsgesellschaften im Bereich der Kleinio- Euphorbietea von Gran Canaria (ASP I-1a)	Aeonio percarnei-Euphorbietum canariensis (50-500m Gran Canaria) (KLE I-2a)	Lorbeerwald, Andryalo pinnatifidae- Ericetalia arboreae (LAU II)	eigene Anschauung	en riscos	
Number of habitats	ς	3	0	1	-	-	-	-	-	ŝ	7	1	2	-	-	1	5	7	7	-		0
Forest																						
Shrubland, heath, matorral, garigue, sclerophyllous scrub										_	L	-					_	_	-			
SCLEES, CAVES																						
Grassland formations, grassy pastures, meadows Rocky habitats	-	1		1	-	-1	-	-	-	_	-		1	-	1	-	-	-		1	1	
Cropland, ruderal and urban habitats																						
Coastal, brackish, saline habitats																						
Bogs, mires, fens																						
Freshwater habitats																						
enoiger of regions	_	1	_	1	1	1	-	_	-	7	_	1	1	4	-	1	-		_	-	_	1
Canary Islands (Ca)	_	-	1	-	-	-	-	-	_	-	_	-	-	-	-	-	-	-	_	1	_	-
Plant family	amiaceae	amiaceae	amiaceae	Caryophyllaceae	Caryophyllaceae	Caryophyllaceae	Caryophyllaceae	Caryophyllaceae	Caryophyllaceae	Jiliaceae	Solanaceae	Solanaceae	Solanaceae	Jrticaceae	Asteraceae	Asteraceae	Asteraceae	Asteraceae	Asteraceae	Asteraceae	Asteraceae	Asteraceae
səiəəqeduZ		Ι		Ŭ	0	Ŭ		Ŭ		-			•1	2		1				1		1
səiəəqZ	_	1	_	1	1	1	_	_	-	-	_	1	1	-	_	1	-	_	_	-	_	1
quorg səiəəqZ																						
oimobno 10 ome ^N 10 sanon	Sideritis soluta	Sideritis spicata	Sideritis sventii	Silene berthelotiana	Silene bourgeaui	Silene canariensis	Silene lagunensis	Silene nocteolens	Silene sabinosae	Smilax canariensis	Solanum lidii	Solanum nava	Solanum vespertilio	Soleirolia soleirolii	Sonchus acaulis	Sonchus bornmuelleri	Sonchus brachylobus	Sonchus canariensis	Sonchus congestus	Sonchus fauces-orci	Sonchus gandogeri	Sonchus gomerensis

Reference	2; 119,120	2; 119	119	2; 119	2; 119	2; 119,120	2; 119	2; 119,120	119	2; 119	2; 119	119, 120	2; 119	2; 4; 119	2; 119	2; 119	2; 119,120	2; 119	2; 119	2; 119,120	2; 119,120	2; 119	2; 119,120	2: 119	2: 119.120	2: 119 120	2; 119
(m) .xsm sbutitlA	600	1000		1000		400		1000		006	2400	2100	800				1800	1500		600	150					300	2
(m) .nim əbutitlA	200	200		200		100		100		100	1700	1900	600				1300	500		400	50		~			2.00	ì
Есоlоду, рlапt соподу, рlапt	sobre riscos	Cheilanthes marantae-Gesellschaft (ASP I- 1d), Soncho hierrensis-Greenovietum diplocyclae: Hierro, nördl. Hochlagen (ASP 1-11)		Junipero-Rhamnetum crenulatae (OLR I- 1a)		en riscos	en las laderas de orientacion Sur	en las cimas de riscos sombreados		(Oleo-Rhamnetalia crenulatae: 50-500m, fast nur noch an schwer zugänglichen orten (OLR I))	Spartocytisetum supranubii (SPA I-1a)	zona subalpina (de Las Canadas)	feuchte Felswände	Canaries: Kustenzone 0-500m (-1100)m, auch Lorbeerwald, Madeira: sea cliffs in eastern Madeira	Felspflanze untere Stufe bis 600m	riscos, en lugares frescos	ocupa las cotas (Höhen) mas altas, riscos	Myrico fayae-Ericion arboreae (LAU II-1), Teline-canariensis-Gesellschaft mittlere Höhen 500-1500m (LAU II-2a)		en los brezales	riscos de la costa	Micromerio lanatae-Cytisetum congesti (PIN 1-2b)	riscos, en zonas de dominio de Acebuchales y Lentiscos (bosques termofilos)	en los riscos	laderas, barrancos, riscos	en riscos	zona de Laurisiva, pinares
Number of habitats	-	2	0	-	0				0	-	-	-		7	-	-	-	-	-		6	-	6	-	7	<i>с</i>	1 71
Shrubland, heath, matorral, garigue, sclerophyllous scrub		1		1						1				-				1	1	1		1	1	1		_	1
SCTEES, CAVES																											
Grassland formations, grassy pastures, meadows	1	-				1	-	1			1	1			-	1					-				-	-	
Cropland, ruderal and urban habitats																											
Coastal, brackish, saline habitats														-							-						
Bogs, mires, fens																											
Freshwater habitats																											
Number of regions	_	-	-	-	-	2	-		1	-	-		-	7	-	-	-	1	-	1		-	-	1	_	-	
Canary Islands (Ca)	-	-		-		-	-	1	1	-				-	-		-	1	-	-1		-	-	1	-		·
Plant family	Asteraceae	Asteraceae	Asteraceae	Asteraceae	Asteraceae	Asteraceae	Asteraceae	Asteraceae	Asteraceae	Fabaceae	Fabaceae	Asteraceae	Asteraceae	Dioscoreaceae	Asteraceae	Asteraceae	Asteraceae	Fabaceae	Fabaceae	Fabaceae	Fabaceae	Fabaceae	Fabaceae	Fabaceae	Fabaceae	Fahaceae	Fabaceae
səiəəqeduR																					_						
səiəəqZ	_	-		-	-		-		1	-				-	-		-	1				-	-	1	-	-	·
Species group																											
oimobno 10 oms ^N noxe1	Sonchus gummifer	Sonchus hierrensis	Sonchus lidii	Sonchus palmensis	Sonchus pitardii	Sonchus radicatus	Sonchus tectifolius	Sonchus tuberifer	Sonchus wildpretii	Spartocytisus filipes	Spartocytisus supranubius	Stemmacantha cynaroides	Sventenia bupleuroides	Tamus edulis	Tanacetum ferulaceum	Tanacetum oshanahanii	Tanacetum ptarmiciflorum	Teline canariensis	Teline hillebrandtii	Teline linifolia ssp. gomerae	Teline linifolia ssp. teneriffae	Teline microphylla	Teline nervosa	Teline osvroides	Teline rosmarinifolia	Teline salsoloides	Teline splendens

Reference	,4,30, 117,1	2; 119,120	2; 119	2; 119,120	2; 119,120	2; 119	2; 119	2; 119	2; 119	2; 119	2; 119	2; 119	1,2,4,16	1,2,4,119
(m) .xsm sbutitlA	1600 2	400		1600	100	2000	200				1000	1800	200	
(m) .nim əbutitlA	0	300		400	60	1000	50				200	1000	0	
Есоюду, ріапt соподу, ріапt	vive em escarpas rochosas do litoral (ate acima de 400 m de altitude) da Madeira e das Desertas; Madeira: very rare, on rocky sea cliffs; laderas del Sur, laderas secas rocosas	rocas y riscos	salientes de riscos basalticos (Vorsprünge von Basalt-Felsen)	riscos de bosques y de la zona baja (auch eigene Anschauung)	Felspflanzen, hauptsächlich in der Küstenregion: en comunidades cerca de la costa, rocas costeras	Tolpidetum calderae: Hochlagen von La Plama 1650-2400m (ASP 1-2d)	Felspflanze	Felsen im Lorbeerwald	trockene Orte, Aconictum palmensis. Tifeliand bis 1100m, Schwerpunkt auf La Palma (ASP 1-1c), Euphorbio regis-jubae- Retametum rhodorthizoidis: Blocklaval (KLE 1-2i)	felsige Orte in Wäldern, Greenovietum aureae: Felsen in der Kiefernstufe von Teneriffe und La Palma (ASP 1-2a), Greenovietum diplocyclae (ASP 1-2e), Cytiso proliferi-Pinetea canariensis (PIN)	trockene Felsstandorte	Felspflanze des Hochgebirges, Greenovia aurea-Gesellschaft: höhere Lagen1250- 1800m (ASP 1-2f)	by waterfalls, at mouths of caves, and in similar damp, dark situations; Madeira: in Iush laurisi/va, in gulies by streams, florishing on the forest floor or as an epiphyte; roquedos acidos, muy humedos y umbrosos	Canaries: Urtico morifoliae-Rubetum ulmifolii (LAU II-3a), Madeira: rare plant of ravines, cliffs and rocky places, mainly in the eastern mountains of Madeira but also along the N-coast
Number of habitats	7		1	Э	7	-	-	2	7	7	-	1	ŝ	ς
Forest				-				-					-	1
Shrubland, heath, sclerophyllous scrub sclerophyllous scrub				1					-	_				-
κοςκλ μυριετε, εςτεςs, caves														
Grassland formations, grassy pastures, meadows	-	1	1	1	-	-	1	1	-	-	1	1	-	1
Cropland, ruderal and urban habitats														
Coastal, brackish, saline habitats	-				-									
Bogs, mires, fens														
Freshwater habitats													-	
snoig91 fo 19dmu ^N	7		-	-		_	1	-	-	-	-	1	6	7
Canary Islands (Ca)	-		1	-		-	1		-	-		1	с. 1	1
6	ae	ae	0	•	•	ae	ae	ae	ae	ae	ae	ae	phyllac	ae
vlimet tael a	amiace	amiace	piaceae	piaceae	piaceae	sterace	sterace	sterace	sterace	sterace	sterace	sterace	ymeno	rticace
səiəəqeduR	Ľ	Ľ	A	V	V	A	A	A	A	A	A	A	H	
səiəəqZ	_		1	-	-	_	1	-	_		1	1	-	1
Species group														
oimobno fo oms ^N noxet	Teucrium heterophyllum	Thymus origanoides	Tinguarra cervariaefolia	Tinguarra montana	Todaroa aurea	Tolpis calderae	Tolpis crassiuscula	Tolpis glabrescens	Tolpis laciniata	Tolpis lagopoda	Tolpis proustii	Tolpis webbii	Trichomanes speciosum	Urtica morifolia
Reference	2; 119,120	2; 119	2; 119,120	2; 119,120	2; 119,120	2; 119	2; 119,120	2; 119,120	2; 119	2; 119	2; 119	2; 4; 119 119		
---	--------------------	---	----------------------------------	---	------------------	----------------------------	----------------------	------------------------	--	---------------------------------------	-------------------	--		
(m) .xsm əbutitlA	500			1000	1500		300		3100	2400				
(m) .nim əbutitlA	50			400	500		50		2000	1900				
Есоlоду, рlаnt Улипитеу	zona baja	Lorbeerwald, Pruno hixae-Lauretea azoricae (LAU)	cerca de la costa (Gran Canaria)	sitios sombreados, rocosos y laderas descubiertas, zona costera, riscos en la zona forestal		Lorbeerwald & Fayal-Brezal	en riscos basalticos	en zonas de Laurisilva	Viola cheiranthifolia-Ges. (SPA I-1d), Violetum cheiranthifoliae (VIO I-1a)	Viola cheiranthifolia-Ges. (SPA I-1d)		Canaries: Reine Laurus canariensis Gesellschaft (LAU J-1d) Mayteno canariensis- Juniperion phoenicae (OLR I- 1), Madeira: rare & probably decreasing species, confined to banks and steep rock faces in the deep ravines of the N-Coast of Madeira from Sao Vincente westwards		
statidad for your with a second	0	-	0	7	0	Ч	0	0	-		0	- 0		
Shrubland, heath, matorral, garigue, selerophyllous scrub Forest		-		-		1 1		-				-		
Rocky habitats, screes, caves														
Grassland formations, grassy pastures, meadows				1				-	1	1				
Cropland, ruderal and urban habitats														
Coastal, brackish, saline habitats														
Bogs, mires, fens														
Freshwater habitats														
snoigər 10 rədmu ^N	1	-	1	1	1			_	-		1	- 7		
Canary Islands (Ca)	-			1				-	-		1			
Plant family	Urticaceae	Caprifoliaceae	Fabaceae	Fabaceae	Fabaceae	Fabaceae	Asteraceae	Violaceae	Violaceae	Violaceae	Violaceae	Theaceae Asteraceae		
səiəəqeduR		-												
səiəəqZ	-		-	-	-			-	-		1			
Species group														
Vame of endemic taxon	Urtica stachyoides	Viburnum tinus ssp. rigidum	Vicia chaetocalyx	Vicia cirrhosa	Vicia filicaulis	Vicia scandens	Vieraea laevigata	Viola anagae	Viola cheiranthifolia	Viola palmensis	Viola plantaginea	Visnea mocanera Volutaria bollei		

Regio	n References	Region	References
AI	Tutin et al. 1996a-e; Kurtto et al. 2004	Cy	Meikle 1977; Meikle 1985; Tsintides and Kourtellarides 1998; Strasser 2006; Yildiz and Gücel 2006
Чu	Hegi et al. 1977; Langer and Sauerbier 1997; Tutin et al. 1996a-e; Fischer and Fally 2000; Kovar- Eder et al. 2000; Sauerbier and Langer 2000; Aeschimann et al. 2004a-c; Rabitsch and Essl 2009	Cz	Hendrych 1981; Tutin et al. 1996a-e
Az	Tutin et al. 1996a-e; Hansen and Sunding 1993; Schäfer 2005	Da	Tutin et al. 1996a-e; Mossberg et al. 1997
Be	Tutin et al. 1996a-e; Kurtto et al. 2004	Eu	Tutin et al. 1996a-e; Kurtto et al. 2004; Buttler 1986; Conert, H. J. 2000; Hendrych 1982
BI	Universitat de les Illes Baleares 200x; Bonafê Barceló 1977; Haeupler 1983; Castroviejo et al. 1986; Castroviejo et al. 1990; Tutin et al. 1996a-e; Moreno Saiz and Sainz Ollero 1992; Castroviejo et al. 1993a, b; Castroviejo et al. 1997a, b Castroviejo et al. 1998; Castroviejo 2001, 2003, 2005; Castroviejo and Talavera 2006; Castroviejo et al. 2007; Castroviejo et al. 2009	Fa	Tutin et al. 1996a-e; Mossberg et al. 1997
Br	Stace 1991; Tutin et al. 1996a-e; Ramsay and Fotherbya 2007	Fe	Tutin et al. 1996a-e; Lid 1985; Mossberg et al. 1997; Talbot et al. 1999
Bu	Tutin et al. 1996a-e; Petrova 2006; Kurtto et al. 2004	Ga	Tutin et al. 1996a-e; Langer and Sauerbier 1997; Médail and Verlaque 1997; Sauerbier and Langer 2000; Aeschimann et al. 2004a, b, c; Danton et al. 2005
Са	Schmidt 1992; Hansen and Sunding 1993; Hohenester and Welß 1993; Bramwell and Bramwell 2001; Schönfelder and Schönfelder 2002	Ge	Hegi et al. 1977; Tutin et al. 1996a-e; Wisskirchen and Haeupler 1998; Haeupler and Muer 2000; Oberdorfer 2001; Jäger and Werner 2002; Welk 2002; Aeschimann et al. 2004a, b, c; Kurtto et al. 2004; Hobohm 2004; Cordes et al. 2006; Walczak et al. 2008
Co	Bouchard 1978 ; Gamisans and Marzocchi 1996; Tutin et al. 1996a-e; Médail and Verlaque 1997	Gr	Tutin et al. 1996a-e; Tan and Iatrou 2001; Strasser 2002; Kajan 2003; Strasser 2006
Cr	Jahn and Schönfelder 1995; Tutin et al. 1996a-e; Strasser 2006; Bergmeier and Abrahamczyk 2007	ЧH	Stace 1991; Tutin et al. 1996a-e

Tutin et al. 1996a-e; Kurtto et al. 2004;	(B) Tutin et al. 1996a-e; Fedorov 1999a, b, 2001a, b, 2002; Tzvelev 2002, 2003, 2006, 2006, 2007a, b	(C) Tutin et al. 1996a-e; Fedorov 1999a, b, 2001a, b, 2002; Tzvelev 2002, 2003, 2006, 2007a, b	(E) Tutin et al. 1996a-e; Fedorov 1999a, b, 2001a, b, 2002; Tzvelev 2002, 2003, 2006, 2007a, b	 (K) Tutin et al. 1996a-e; Fedorov 1999a, b, 2001a, b, 2002; Tzvelev 2002, 2003, 2006, 2007a, b 	(N) Tutin et al. 1996a-e; Talbot et al. 1999; Fedorov 1999a, b, 2001a, b, 2002; Tzvelev 2002, 2003, 2006, 2007a, b	Tutin et al. 1996a-e; Fedorov 1999a, b, 2001a, b, 2002; Tzvelev 2002, 2003, 2006, 2007a, b	Tutin et al. 1996a-e	Tutin et al. 1996a-e; Mossberg et al. 1997; Talbot et al. 1999	Tutin et al. 1996a-e; Tutin et al. 1996a-e; Kurtto et al. 2004	Tutin et al. 1996a-e; Lid 1985; Mossberg et al. 1997
Rm	Rs (B	Rs (C	Rs (E	Rs (K	Rs (N	() M	Sa	Sb	Si	Su
Hegi et al. 1977; Hess et al. 1984; Anchisi 1991; Tutin et al. 1996a-e; Langer and Sauerbier 1997; Sauerbier and Langer 2000; Aeschimann et al. 2004a, b, c	van der Mejden et al. 1983; Tutin et al. 1996a-e	Universitat de les Illes Baleares 200x; de Bolos and Vigo 1984; Castroviejo et al. 1986; Castroviejo et al. 1990; de Bolos and Vigo 1990; Moreno Saiz and Sainz Ollero 1992; Castroviejo et al. 1993a, b; de Bolos and Vigo 1996; Tutin et al. 1996a-e; Castroviejo et al. 1997a,b; Castroviejo and al. 1998; Castroviejo 2001; de Bolos and Vigo 2001; Castroviejo 2003, 2005; Castroviejo and Talavera 2006; Castroviejo et al. 2007; Castroviejo et al. 2009	Tutin et al. 1996a-e; Kurtto et al. 2004;	Tutin et al. 1996a-e; Talbot et al. 1999	Tutin et al. 1996a-e; Langer and Sauerbier 1997; Sauerbier and Langer 2000; Aeschimann et al. 2004a, b, c; Kurtto et al. 2004;	Tutin et al. 1996a-e; Domac 2002; Aeschimann et al. 2004a, b, c; Nicolic and Topic 2005	Castroviejo et al. 1986; Castroviejo et al. 1990; Moreno Saiz and Sainz Ollero 1992; Castroviejo et al. 1993a, b; Castroviejo et al. 1997a,b; Castroviejo and al. 1998; Castroviejo 2001; Jansen 2002; Castroviejo 2003, 2005; Castroviejo and Talavera 2006; Castroviejo et al. 2007; Castroviejo et al. 2009	Vieira 1992; Hansen and Sunding 1993; Press and Short 1994; Franquinho and Da Costa 1999; Borges et al. 2007 (Madeira/Selvagens)	Tutin et al. 1996a-e; Lid 1985; Mossberg et al. 1997; Talbot et al. 1999	Tutin et al. 1996a-e; Kurtto et al. 2004;
He	Ho	Hs	Ηu	Is	It	Ju	Lu	Ma	No	Po

Tab. A3: Literature consulted; listed according to the predefined European regions

-	Area (km ²)	Altitude max (m)	Altitude min (m)	Relief (m)	Border- line (km)	Coastline (km)	Perimeter (km)	Centroid (Lat)	Centroid (Long)	No. Veg Type	No. Soil groups	SGM ice (km ²)	SGM refugia	LGM ice (km ²)	LGM refugia	TGM ice (km ²)	TGM refugia
	28,657	2,764	0	2,764	613	342	955	41,1423	20,0684	٢	10	0	28,657	0	28,657	830	27,827
	84,128	3,798	115	3,683	1,890	0	1,890	47,592	14,1307	8	10	41,445	42,683	34,421	49,707	41,663	42,465
	2,569	2,351	0	2,351	0	610	610	38,3324	-27,3033	4	1	0	2,569	10	2,559	10	2,559
	33,235	694	0	694	981	93	1,074	50,5762	4,7727	5	9	0	33,235	0	33,235	0	33,235
	5,100	1,445	0	1,445	0	550	550	39,5597	2,8999	3	3	0	5,100	0	5,100	0	5,100
(1	230,709	1,344	0	1,344	0	8,605	8,605	54,1276	-2,6623	7	9	151,414	79,295	130,547	100,162	189,207	41,502
	111,024	2,925	0	2,925	1,561	285	1,846	42,7615	25,2315	8	8	0	111,024	355	110,669	355	110,669
	7,556	3,718	0	3,718	0	066	066	28,3366	-15,674	9	5	0	7,556	1	7,555	1	7,555
	8,780	2,707	0	2,707	0	532	532	42,1577	9,1044	5	4	0	8,780	928	7,852	928	7,852
	8,508	2,456	0	2,456	0	813	813	35,2438	24,9355	5	5	0	8,508	0	8,508	0	8,508
	9,138	1,951	0	1,951	0	587	587	35,0459	33,2218	5	5	0	9,138	0	9,138	0	9,138
	127,692	2,655	94	2,561	2,358	0	2,358	49,3512	16,9096	7	11	0	127,692	0	127,692	3,386	124,306
	42,714	173	L-	180	56	3,614	3,670	55,9634	10,0463	5	L	42,714	0	31,992	10,722	42,714	0
	1,484	882	0	882	0	427	427	62,0311	-6,8841	1	1	1,484	0	1,484	0	1,484	0
6.)	35,313	1,328	0	1,328	2,339	2,470	4,809	64,5004	26,2664	10	5	335,313	0	335,313	0	335,313	0
4)	539,527	4,807	-2	4,809	2,137	3,318	5,455	46,632	2,4514	10	10	38,803	500,724	29,479	510,048	49,251	490,276
(1)	357,251	2,963	4	2,967	2,761	1,944	4,705	51,1066	10,3936	6	11	177,854	179,397	64,796	292,455	190,603	166,648
	121,564	2,919	0	2,919	941	5,997	6,938	39,3222	22,8286	10	9	0	121,564	124	121,440	124	121,440
	83,924	1,041	0	1,041	0	2,816	2,816	53,426	-7,896	L	6	83,310	614	65,525	18,399	83,924	0
	41,493	4,634	195	4,439	1,394	0	1,394	46,8025	8,2344	∞	10	41,204	289	33,328	8,165	41,204	289
	35,549	322	L-	329	762	1,449	2,211	52,2493	5,6034	5	7	20,822	14,727	0	35,549	20,822	14,727

Tab A4: Resulted geographical data from GIS analyses

Region	Area (km ²)	Altitude max (m)	Altitude min (m)	Relief (m)	Border- line (km)	Coastline (km)	Perimeter (km)	Centroid (Lat)	Centroid (Long)	No. Veg 1 Type	No. Soil groups	SGM ice (km ²)	SGM refugia	LGM ice (km ²)	LGM refugia	TGM ice (km ²)	TGM refugia
Hs	494,053	3,478	0	3,478	1,529	2,726	4,255	40,3942	-3,5513	10	12	0	494,053	10,638	483,415	10,638	483,415
Ηu	93,002	1,014	78	936	1,559	0	1,559	47,1665	19,4134	8	13	0	93,002	0	93,002	0	93,002
Is	102,962	2,119	0	2,119	0	3,637	3,637	64,9976	-18,6055	9	L	102,962	0	102,962	0	102,962	0
It	250,631	4,748	0	4,748	1,421	3,261	4,682	43,5267	12,1556	10	11	50,543	200,088	36,505	214,126	52,455	198,176
Ju	255,252	2,864	0	2,864	2,271	2,019	4,290	44,1607	18,7281	10	12	2,319	252,933	2,426	252,826	3,021	252,231
Lu	88,573	1,991	0	1,991	985	941	1,926	39,6919	-7,9622	9	6	0	88,573	86	88,487	86	88,487
Ma	774	1,862	0	1,862	0	124	124	32,7479	-16,9849	5	1	0	774	0	774	0	774
No	320,915	2,469	0	2,469	2,420	15,852	18,272	64,4482	14,0848	6	L	320,915	0	320,915	0	320,915	0
Po	311,695	2,499	-2	2,501	2,270	638	2,908	52,1246	19,4009	7	10	252,496	59,199	118,587	193,108	295,467	16,228
Rm	237,396	2,544	0	2,544	2,231	362	2,593	45,8436	24,9693	10	12	0	237,396	2,443	234,953	2,443	234,953
Rs(B)	189,125	318	0	318	1,325	2,308	3,633	56,6718	24,5036	8	10	189,125	0	187,562	1,563	189,125	0
Rs(C)	,625,765	1,750	0	1,750	8,705	1,330	10,035	56,0875	40,4615	12	11	745,572	880,193	282,382 1	1,343,383	1,232,664	393,101
Rs(E)	953,366	1,640	0	1,640	2,575	5,079	7,654	50,598	48,8228	13	11	0	953,366	0	953,366	53,890	899,476
Rs(K)	25,831	1,545	0	1,545	17	1,287	1,304	45,2811	34,3282	8	L	0	25,831	0	25,831	0	25,831
Rs(N)	,463,824	1,894	0	1,894	4,605	16,836	21,441	65,7585	47,1967	11	10]	1,426,768	37,056	578,688	885,136	1,462,433	1,391
$R_{S}(W)$	605,414	2,061	0	2,061	3,675	1,527	5,202	49,0678	31,1139	10	11	143,530	461,884	0	605,414	147,251	458,163
Sa	24,099	1,834	0	1,834	0	838	838	40,0884	9,0339	5	L	0	24,099	0	24,099	0	24,099
Sb	62,912	2,277	0	2,277	0	5,414	5,414	78,8286	18,3635	3	-	62,912	0	62,912	0	62,912	0
Si	25,726	3,323	0	3,323	0	920	920	37,5682	14,1533	5	7	0	25,726	0	25,726	0	25,726
Su	446,070	2,111	-2	2,113	2,052	4,867	6,919	62,7899	16,7398	10	9	446,070	0	446,070	0	446,070	0
Tu	23,877	1,000	0	1,000	331	748	1,079	41,2611	27,2998	5	4	0	23,877	0	23,877	0	23,877

Variable	explanation / calculation
Alpha-index	Measure of biodiversity or regional endemism. It enables comparisons of (endemic) species densities as it uses the residuals of the species-area-relationship (SAR) or endemic-area-relationship (EAR). This measure is often applied in the field of applied conservation biology e.g. for the ranking and identification of species-rich or distinctive (biodiversity hotspot) areas. Not applied in this thesis.
Altitude (max.)	The maximum altitude of a study region was quantified in metres (m). This measure was calculated from the base map of the EvaplantE study area (GIS).
Altitude (min.)	The minimum altitude of a study region was quantified in metres (m). This measure was calculated from the base map of the EvaplantE study area (GIS).
Area (A)	The area of the each region was quantified in square kilometres (km ²). This measure was calculated from the base map of the EvaplantE study area (GIS).
Beta coefficient	Standardised regression coefficient z is needed to compare the relative strength of the various explanatory variables fed into regression calculation. Formula: $beta(x) = (x - \vec{x}) / SD(x)$
Borderline ('borderline')	The borderline value represents the cumulated length of borders to neighbouring terrestrial study regions and was quantified in kilometres (km). This measure was calculated from the base map of the EvaplantE study area. Formula: borderline = perimeter - coastline
Bykov´s Index (IE)	Measure of regional endemism. It determines whether the ratio of endemism within a defined area is higher or lower than the standard value that was given by Bykov. I _E is calculated by the factual endemism (E _f) divided by the expected endemism (E _n). If $E_f - E_n > 0$ then $E_f / E_n < 0$ then $-E_n / E_f$. The expected endemism E_n value is either read from the log-log plot of area against percentage endemism derived from Bykov's data or calculated with the formula: $\log(E_n) = 0.373 * \log(\operatorname{area}) - 1.043$. A value of $I_E = 1$ indicates that the focused area has the normal expected degree of endemicity. If $I_E < 1$, there is lower than normal endemicity, whereas areas with $I_E > 1$ have higher than normal endemicity.
Centroid (lat./ long.)	The geometric centre of each study region was calculated from the base map of the EvaplantE study area with the help of GIS applications. The centroid points are exactly defined by latitude (lat.) and longitude (long.) data (spatial reference system: WGS 84).

Variable	explanation / calculation
Coastline ('coastline')	The coastline value represents the cumulated length of borders to adjacent marine regions and was quantified in kilometres (km). Formula: coastline = perimeter – borderline
Coastline index ('coastline index')	Explanatory index describing the isolation degree of a region. It is the proportion of coastline per perimeter of a region. Formula: 'coastline index' = $coastline_{region x}$ / $perimeter_{region x}$
Distance index ('distance index')	Explanatory index describing the isolation degree of a region. It is calculated with the natural logarithm of the minimum distance of a division to the nearest continent. Formula: 'distance index' = $\ln(distance_{region x} + 1)$
Endemic area relationship (EAR)	Graph for the visualisation of endemic species diversity over space. Generally the displayed pattern is a positive correlation between area size and species numbers.
Endemics local	Absolute number of endemic taxa confined to exactly one of the 42 study regions. Counts of Elocal were evaluated from EvaplantE.
Endemics 2-region	Absolute number of endemic taxa confined to one or two of the 42 study regions. Counts of Endemics 2-region were evaluated from EvaplantE.
Endemics 3-region	Absolute number of endemic taxa confined to one, two or three of the 42 study regions. Counts of Endemics 3-region were evaluated from EvaplantE.
European endemics	Absolute number of endemic taxa confined to one, two, three or more of the 42 study regions. Counts of European endemics were evaluated from EvaplantE.
Endemism (E)	Measure of regional endemism. It is the absolute number of endemic taxa within a given area.
Endemism ratio	Measure of regional endemism. It is the percentage value of endemic taxa divided by the absolute number of taxa within a given area. Formula: endemism ratio = E/s

Variable	explanation / calculation
Gearys C	Gearys C is a value for measuring spatial autocorrelation using paired comparisons of the data. It is inversely related to Moran's I
	$C = \frac{(N - I) \sum_{i} \sum_{j} w_{ij} (x_i - x_j)^2}{2}$
	$2W\sum_i (x_i - \vec{x})^2$
	where x as the variable of interest; N the number of observations and w_{ij} a weight matrix of the spatial weights and W is the sum of all w_{ij} .
Isolation index ('isolation index')	Explanatory index describing the isolation degree of a region. It is based on the proportion of 'coastline' per 'perimeter' but includes distance measures. All measures are calculated by dividing the distance values by 1,500, which is the maximum distance (km) of the most isolated region (Azores Archipelago) within this study.
LGM ice	Explanatory index describing the ecological (dis-)continuity of a region. Glaciation events can be interpreted as severe ecological disturbance events interrupting evolutionary processes – thus discontinuity. The extension of the ice shields of the respective glacial event in each study region was quantified in square kilometres (km ²). LGM ice was calculated from an overlay of the map showing the extent of Quaternary glaciations in Europe (focussing on the glacial maximum of the last (Weichselian) glaciation; Ehlers and Gibbard 2003, Ehlers and Gibbard 2004) and the base map of EvaplantE using GIS applications.
LGM refugia	Explanatory index describing the ecological (dis-)continuity of a region. Non-glaciated areas can be interpreted as areas of refuge in which species can survive and evolutionary processes were not interrupted – thus continuity. The refugial area of the respective glacial event in each study region was quantified in square kilometres (km ²) by subtracting the glaciated area (A _{glaciated}) from the total area (A) of a region focussing on the respective glacial event. Formula: LGM refugia = A _{region x} – A _{LGM-glaciated region x}
Mean	Mean is the arithmetic mean of all cases <i>i</i> of a respective variable <i>x</i> . Formula: Mean = $\sum x_i / N$
Moran's I	Moran's <i>I</i> is a value for measuring spatial autocorrelation dealing with the covariance of the data. It is inversely related to Geary's <i>C</i> . Moran's <i>I</i> is defined as follows with <i>x</i> as the variable of interest; <i>N</i> the number of observations and w_{ij} a weight matrix of the spatial weights
	N $\sum_{i} \sum_{j} w_{ij} (xi - \overline{x}) (x_j - \overline{x})$
	$\sum_{i} \sum_{i} w_{ij} \qquad \sum_{i} (x_i - \vec{x})^2$

Variable	explanation / calculation
Z	Number of samples. In the present thesis, number of study regions: $N = 42$
'neighbour-values'	For mainland regions the neighbour-value was calculated by dividing the length of the adjoining border by the distance of the centroids of the respective neighbouring region. For single island regions and archipelagos the neighbour-value was calculated by dividing an artificial borderline value of 10 km by the distance of the centroid to the respective neighbouring region (to avoid division by zero).
Non endemics ('non endmics')	Explanatory index describing the regional species pool of a region. It is quantified by the total numbers of species inhabiting one study region (literature sources) minus the number of local endemics Formula: 'non endemics' = $S_{region x} - E_{local region x}$
Perimeter	The perimeter of a study region was quantified in kilometres (km). This measure was calculated from the base map of the EvaplantE study area. Formula: perimeter = coastline + borderline
adjusted R ²	value for the strength of relationship of the dependent variable and the predictor variables in linear regression (LR) models
pseudo R ²	value for model strength in models of geographically weighted regression (GWR)
Relief index ('relief index')	Explanatory index describing the habitat diversity of a region. It is calculated as the difference between maximum and minimum elevation within a region. Formula: 'relief index'= altitude min. region x – altitude max. region x
Range-size-rarity	The range-size-rarity (or, more precisely, the inverse range size rarity) is a measure for quantifying features of biodiversity and endemism. Its calculation is based on counts of grid-cell units in which a taxon is present or, conversely in which the taxon is absent. The range size rarity is defined as the inverse number of cells occupied by the taxon under consideration (Heywood, 1996). To quantify the endemism richness of the grid unit the sum of range size rarities of taxa occurring within a grid cell is calculated. Not applied in this thesis.
Relief-area index ('relief-area index')	Explanatory index describing the habitat diversity of a region. It is defined as the squared altitudinal range divided by area and gives an idea of how altitude is allocated across the region. Formula: 'relief-area index' = (altitude $_{min. region x}$ - altitude $_{max. region x}$) ² / area
Total species (S)	Absolute species number of a given region.

Variable	explanation / calculation
Species area relationship (SAR)	Graph for the visualization of species diversity over space. Generally the displayed pattern is a positive correlation between area size and species numbers. SAR fits best to the power equation with logarithmic transformation: $\log S = c + z^* \log A$ (S = species number; A = area; c, z = constants). Usually, SAR is graphically displayed in a log-log-linear plot, which means that by log-transformation of the axes the resulting graph is linear-shaped.
Standard deviation (SD)	SD is a value for measuring variability in statistics. The SD gives an idea of the variation of the evaluated data points and how much the data points disperse around the average or mean value.
SGM ice	Explanatory index describing the ecological (dis-)continuity of a region. Glaciation events can be interpreted as severe ecological disturbance events interrupting evolutionary processes – thus discontinuity. The extension of the ice shields of the respective glacial event in each study region was quantified in square kilometres (km ²). SGM ice was calculated from an overlay of the map showing the extent of Quaternary glaciations in Europe (focussing on the glacial maximum of the Saalian glaciation; Ehlers and Gibbard 2003, Ehlers and Gibbard 2004) and the base map of EvaplantE using GIS applications.
SGM refugia	Explanatory index describing the ecological (dis-)continuity of a region. Non-glaciated areas can be interpreted as areas of refuge in which species can survive and evolutionary processes were not interrupted – thus continuity. The refugial area of the respective glacial event in each study region was quantified in square kilometres (km ²) by subtracting the glaciated area (A _{glaciated}) from the total area (A) of a region focussing on the respective glacial event. Formula: SGM refugia = A _{region x} – A _{SGM-glaciated region x}
Shape index ('shape index')	Explanatory index describing the isolation degree of a region. It is based on the assumption that the geometrical shape of a region might influence the chances of species immigration. The longer the borders towards the neighbouring regions are, the higher the chances of species immigration. However, the perimeter of a region is strongly influenced by the shape of the region or rather by its compactness. Regions that are geometrically approximately circular are more compact than regions of other forms. Formula: 'shape index' = arearegionx / ($^{1/2}$ perimeter region x [*] π^2)* π
Soil index ('soil index')	Explanatory index describing the habitat diversity of a region. It was based on counts of soil groups within a study region and was derived from an overlay of the latest version of the Harmonized World Soil Database (Nachtergaele et al. 2009) and the base map of EvaplantE (GIS).
Stenoecious endemics	Endemics that are absolutely bound to one habitat category, thus have narrow ecological amplitude. Counts were evaluated from EvaplantE.

Variable	explanation / calculation
TGM ice	Explanatory index describing the ecological (dis-)continuity of a region. Glaciation events can be interpreted as severe ecological disturbance events interrupting evolutionary processes – thus discontinuity. The extension of the ice shields of the respective glacial event in each study region was quantified in square kilometres (km^2). TGM ice was calculated from an overlay of a merged map layer showing the extent of all Quaternary glaciations in Europe (Ehlers and Gibbard 2003, Ehlers and Gibbard 2004) and the base map of EvaplantE using GIS applications.
TGM refugia	Explanatory index describing the ecological (dis-)continuity of a region. Non-glaciated areas can be interpreted as areas of refuge in which species can survive and evolutionary processes were not interrupted – thus continuity. The refugial area of the respective glacial event in each study region was quantified in square kilometres (km ²) by subtracting the glaciated area (A _{glaciated}) from the total area (A) of a region focussing on the respective glacial event. Formula: TGM refugia = $A_{region x} - A_{TGM-glaciated region x}$
Tolerance value (tolerance)	Value for detecting and quantifying model errors caused by multicollinearity within the multiple regression model. The tolerance value was calculated for each of the explanatory variables. It is complementary with the VIF: The smaller the tolerance value, the higher the VIF.
Total species number ('total species'; N)	Explanatory index describing the regional species pool of a region. The total number of species inhabiting one study region was evaluated by literature sources or by personal communication with local experts.
Vegetation index ('vegetation index')	Explanatory index describing the habitat diversity of a region. It was based on the number of vegetation types within a study region and was derived from an overlay of the digital maps of the natural vegetation of Europe (Bohn and Neuhäusl 2004) and the base map of EvaplantE (GIS).
Variance of inflation factor (VIF)	Value for detecting and quantifying model errors caused by multicollinearity within the multiple regression model. VIF was calculated for each of the explanatory variables. It is complementary with the tolerance value: The smaller the tolerance value, the higher the VIF.

Tab. A6: Symmetric and standardized weights matrix defining the mutual influences of neighbouring regions ('neighbour-values')

1			_	_	~	_	-	_	_	_	_	_	_	_	_	_	_		_	_	_	_
	Но	0	U	U	169.543	U	1.70	U	U	U	U	U	U	U	U	U	U	120.225	U	U	U	U
	Ie	0	37.719	0	0	0	0	0	0	0	0	0	0	0	0	0	94.077	49.507	0	0	0	0
	F	0	0	0	0	0	2.825	0	0	0	0	0	0	0	1.049	0	938	0	0	0	0	0
	Чh	7.42	0	0	0	0	0	3.551	0	0	2.049	941	0	0	0	0	0	0	0	0	0	0
	Gr	0 63	07	0	32	0	0	0 88	0	0	0	0	70	94	0	0	63	0	0	0	07	25
	Ge		123.2	_	47.1		_	_	_		_	_	103.7	10.2	_	_	45.7		_		49.5	120.2
	Ga	0	0	0	96.829	1.267	1.100	0	0	1.372	0	0	0	0	0	0	0	45.763	0	938	94.077	0
	•	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	ı Fe	0	0	0	0	0	1.092	0	0	0	0	0	0	0	0	0	0	0	0	1.049	0	0
	a Fa	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	10.294	0	0	0	0
	z D	0	34.752	0	0	0	0	0	0	0	0	0	0	0	0	0	0	03.770	0	0	0	0
	y C	0	0 1	0	0	0	0	0	0	0	1.316	0	0	0	0	0	0	0 1	941	0	0	0
	r C	0	0	0	0	0	0	0	0	0	0	1.316	0	0	0	0	0	0	2.049	0	0	0
	o C	0	0	0	0	1.669	0	0	0	0	0	0	0	0	0	0	1.372	0	0	0	0	0
	C	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Са	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	8.551	0	0	0
	Bu	0	0	0	1.560	0	0	0	0	0	0	0	0	0	1.092	0	1.100	0	0 88	2.825	0	1.704
	Br	0	0	0	0	0	0	0	0	699	0	0	0	0	0	0	267	0	0	0	0	0
	Bi	0	0	0	0	0	560	0	0	0 1.	0	0	0	0	0	0	829 1.3	132	0	0	0	543
	Be	0	0	0	0	0	0 1.	0	0	0	0	0	0	0	0	0	0 96.	0 47.	0	0	0	0 169.
	Az																					
	Au	0	0	0	0	0	0	0	0	0	0	0	134.752	0	0	0	0	123.207	0	0	37.719	0
	AI .	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	67.742	0	0	0
		AI	Au	Az	Be	BI	Br	Bu	Ca	Co	Cr	Cy	Cz	Da	Fa	Fe	Ga	Ge	Gr	ЧЬ	He	Но

	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Tu	0	0	0	0	0	0	0	30	337	0	0	0	0	0	0	0	0	0	0	0	0	
Su	0	0	0	90	0	0	0	0 696.5	0	0	0	0	0	0	0	0	8	0	0	0	0	
Si	_	-	_	1.46	_	-	_	-	-	_	_	_	_	_		_	1.90	_	_	_		
Sb	0	0	0	0	0	0	0	619	0	0	0	0	0	0	583	0	0	0	0	0	0	
Sa	0	0	0	2.169	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1.908	0	0	
ts(W) S	0	10.268	0	0	0	0	0	0	43.862	146.587	0	174.826	36.924	3.498	0	0	0	0	0	0	0	
s(N) F	0	0	0	0	0	0	0	10.543	0	0	0	95.940	0	0	0	0	0	583	0	0	0	
(K) R	0	0	0	0	0	0	0	0	0	0	0	0 2	0	0	0	3.498	0	0	0	0	0	
(E) Rs	0	0	0	0	0	0	0	0	0	0	0	5.097	0	0	0	6.924	0	0	0	0	0	
C) Rs(0	0	0	0	0	0	0	0	2.585	0	6.497	0 25	5.097	0	5.940	1.826 3	0	0	0	0	0	
t) Rs(0	0	0	0	0	0	0	0	545 22	0	0 106	497	0 255	0	0 295	0 174	0	0	0	0	0	
Rs(E	0	551	0	0	121	0	0	0	0 45	0	0	0 106	0	0	0	587	0	0	0	0	0	
Rm	0	0 75.5	0	0	0 84.1	0	0	0	0	0	45	35	0	0	0	52 146.5	0	0	0	37	0	
Po	0	0	0	0	0	0	0	0	0	0	0 45.54	0 22.5	0	0	3	0 43.8	0	6	0	0 8.	0	
No															10.54			61		696.93		
Ma	0	0	0	0	0	895	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Lu	257.180	0	0	0	0	0	895	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
n	0	122.647	0	33.583	0	0	0	0	0	84.121	0	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	33.583	0	0	0	0	0	0	0	0	0	0	0	2.169	0	1.466	0	0	
It	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Is	0	0	0	0	2.647	0	0	0	0	5.551	0	0	0	0	0	0.268	0	0	0	0	0	
Hu	0	0	0	0	0 127	.180	0	0	0	0 73	0	0	0	0	0	0 10	0	0	0	0	0	
Hs						257					~	_	_	~	~	(
	Hs	Hu	Is	It	ŋŋ	Lu	Ma	No	\mathbf{Po}	Rm	Rs(B)	Rs(C	Rs(E)	Rs(K	Rs(N	Rs(W	Sa	Sb	Si	Su	Τu	

Abbreviations:

Al - Albania; Au - Austria; Az - Azores Archipelago; Be - Belgium with Luxembourg; Bl - Balearic Islands; Br - Great Britain; Bu - Bulgaria; Ca - Canary Islands; Co - Corsica; Cr - Crete; Cy - Cypres; Cz - Czech Republic with Slovakia; Da - Denmark; Fa - Faero; Fe - Finland; Ga - France (mainland); Ge - Germany; Gr - Greece; Hb - Ireland; He - Switzerland; Ho - The Netherlands; Hs - Spain (mainland); Hu - Hungary; Is - Iceland; It - Italy (mainland); Ju - former Yugoslavia; Lu - Portugal (mainland); Ma - Madeira Archipelago; No -Norway; Po - Poland; Rm - Romania; Rs (B) - Russia Baltic division; Rs (C) - Russia central division; Rs (E) - Russia Southeastern division; Rs (K) - Russia Crimean division; Rs (N) - Russia Northern division; Rs (W) - Russia Western division; Sa - Sardinia; Sb - Svalbard; Si - Sicily; Su - Sweden; Tu - European Turkey

	nic taxa per genus	•	
	number of enden		
,	ording to the tota)	
	ic taxa (sorted acc	,	
	European endemi	-	
	ant genera of the)	
	Tab. A7: Pl		

Genus	No. of endemic taxa	Genus	No. of endemic taxa	Genus	No. of endemic taxa	Genus	No. of endemic taxa
Centaurea	250	Senecio	52	Minuartia	35	Seseli	25
Hieracium	174	Erysimum	51	Carduus	34	Anthyllis	24
Festuca	144	Armeria	49	Genista	33	Phyteuma	24
Campanula	132	Sideritis	49	Primula	33	Veronica	24
silene	113	Anthemis	48	Achillea	32	Arabis	23
<i>Galium</i>	66	Linaria	47	Pedicularis	32	Argyranthemum	23
Saxifraga	95	Thymus	47	Potentilla	32	Biscutella	23
<i>41chemilla</i>	94	Carex	46	Lotus	30	Salix	23
Dianthus	88	Cerastium	45	Sedum	30	Sesteria	23
Jimonium .	85	Alyssum	44	Stachys	30	Stipa	23
Verbascum	64	Cirsium	43	Echium	28	Draba	22
Ranunculus	63	Teucrium	43	Polygala	28	Onosma	22
411ium	61	Knautia	41	Scabiosa	28	Peucedanum	22
Suphorbia	57	Euphrasia	40	Chamaecytisus	27	Brassica	21
4stragalus	56	Arenaria	37	Hypericum	26	Helianthemum	21
Viola	56	Crocus	36	Myosotis	26	Moehringia	21
4sperula	55	Trifolium	36	Leontodon	25	Narcissus	21
Trepis	53	Aeonium	35	Satureja	25	Sonchus	21

Genus	No. of endemic taxa	Genus	No. of endemic taxa	Genus	No. of endemic taxa	Genus	No. of endemic taxa
Avenula	20	Artemisia	17	Rumex	15	Oxytropis	13
Dactylorhiza	20	Cardamine	17	Tragopogon	15	Pericallis	13
Melampyrum	20	Geranium	17	Alkama	14	Pimpinella	13
Micromeria	20	Scorzonera	17	Cheirolophus	14	Sorbus	13
Poa	20	Taraxacum	17	Globularia	14	Thesium	13
Rhinanthus	20	Thlaspi	17	Jurinea	14	Thymelaea	13
Aquilegia	19	Trisetum	17	Lathyrus	14	Carlina	12
Cytisus	19	Androsace	16	Onobrychis	14	Crambe	12
Erodium	19	Antirrhinum	16	Ornithogalum	14	Crataegus	12
Fritillaria	19	Bromus	16	Valeriana	14	Heracleum	12
Gentiana	19	Gentianella	16	Vicia	14	Laserpitium	12
Ononis	19	Salvia	16	Aichryson	13	Petrorhagia	12
Scrophularia	19	Delphinium	15	Convolvolus	13	Reseda	12
Sempervivum	19	Elymus	15	Helichrysum	13	Scilla	12
Asplenium	18	Iberis	15	Herniaria	13	Chaenorhinum	11
Bupleurum	18	Jasione	15	Linum	13	Fumaria	11
Luzula	18	Nepeta	15	Odontites	13	Gypsophila	11
Monanthes	18	Ophrys	15	Onopordum	13	Orobanche	11

Genus	No. of endemic taxa	Genus	No. of endemic taxa	Genus	No. of endemic taxa	Genus	No. of endemic taxa
Plantago	11	Aconitum	6	Polycarpaea	8	Picris	7
Pulmonaria	11	Aristolochia	6	Scutellaria	8	Pinguicula	7
Rhamnus	11	Asparagus	6	Serratula	8	Pinus	7
Teline	11	Coincya	6	Symphytum	8	Polygonum	7
Tolpis	11	Cymbalaria	6	Agrostis	7	Saponaria	7
Vincetoxicum	11	Helictotrichon	6	Andryala	7	Sisymbrium	7
Anchusa	10	Helleborus	6	Atalanthus	7	Ulex	7
Daphne	10	Hesperis	6	Bystropogon	7	Agropyron	9
Digitalis	10	Pterocephalus	6	Centranthus	7	Aubrieta	9
Dryopteris	10	Rosa	6	Cephalaria	7	Aurinia	6
Edraianthus	10	Thalictrum	6	Cistus	7	Bolanthus	9
Erica	10	Aster	8	Corydalis	7	Chaerophyllum	9
Eryngium	10	Centaurium	8	Descurainia	7	Colchicum	9
Inula	10	Cochlearia	8	Erigeron	7	Cynoglossum	9
Iris	10	Isoetes	8	Gagea	7	Ferulago	6
Lavandula	10	Lepidium	8	Holcus	7	Geum	6
Paronychia	10	Leucanthemum	8	Nigella	7	Goniolimon	6
Soldanella	10	Oenanthe	8	Origanum	L	Hedysarum	6

Genus	No. of endemic taxa	Genus	No. of endemic taxa	Genus	No. of endemic taxa	Genus	No. of endemic taxa
Lactuca	6	Bunium	5	Rubus	5	Calendula	4
Lavatera	6	Callitriche	5	Salicornia	5	Carduncellus	4
Lilium	6	Deschampsia	5	Salsola	5	Carum	4
Lobularia	9	Epilobium	5	Sanguisorba	5	Conopodium	4
Medicago	6	Juniperus	5	Scleranthus	5	Consolida	4
Orchis	6	Lamium	5	Sinapidendron	5	Coronilla	4
Phlomis	6	Leucanthemopsis	5	Tulipa	5	Daucus	4
Pyrus	6	Leucojum	5	Abies	4	Dorycnium	4
Saussurea	9	Ligusticum	5	Acer	4	Erucastrum	4
Tanacetum	6	Lonicera	5	Alnus	4	Evax	4
Trinia	9	Oenothera	5	Anarrhinum	4	Ferula	4
Urtica	9	Parolinia	5	Anemone	4	Galeopsis	4
Adenocarpus	5	Petrocoptis	5	Astrantia	4	Gnaphalium	4
Aethionema	5	Phagnalon	5	Bellevalia	4	Gonospermum	4
Angelica	5	Ptilostemon	5	Bencomia	4	Greenovia	4
Athamanta	5	Puccinellia	5	Biarum	4	Haplophyllum	4
Atractylis	5	Pulsatilla	5	Bufonia	4	Heptaptera	4
Barbarea	5	Romulea	5	Buglossoides	4	Hippocrepis	4

Genus	No. of endemic taxa	Genus	No. of endemic taxa	Genus	No. of endemic taxa	Genus	No. of endemic taxa
Hypochoeris	4	Spergula	4	Echinospartum	3	Narthecium	3
lsoplexis	4	Succisella	4	Epipactis	3	Nauplius	3
Juncus	4	Adenostyles	3	Halimium	3	Omalotheca	3
Koeleria	4	Adonis	3	Hierochloe	3	Paeonia	3
Leuzaea	4	Ammi	3	Homogyne	3	Petasites	3
Lychnis	4	Androcymbium	3	Ilex	3	Pyrola	3
Malcolmia	4	Antennaria	3	Isatis	3	Ramonda	3
Melica	4	Arum	3	Jonopsidium	3	Reichardia	3
Omphalodes	4	Asyneuma	3	Kunkeliella	3	Ribes	3
Oreochloa	4	Bellis	3	Lithodora	3	Rorippa	3
Papaver	4	Bornmuellera	3	Lupinus	3	Sagina	3
Pastinaca	4	Calamagrostis	3	Lysimachia	3	Santolina	3
Prunus	4	Callianthemum	3	Malus	3	Sisymbrella	3
Quercus	4	Ceropegia	3	Malva	3	Spiraea	3
Rhododendron	4	Cyclamen	3	Matthiola	3	Staehelina	3
Ruta	4	Cynara	3	Moltkia	3	Symphyandra	3
Solanum	4	Diplotaxis	3	Muscaria	3	Trachelium	3
Solenanthus	4	Doronicum	ю	Murbeckiella	С		

No. of endemic taxa	-	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Genus	Castilleja	Ceballosia	Cedronella	Cedrus	Centrantius	Cephalorhynchus	Ceratocapnos	Ceterach	Chamaemeles	Chamomilla	Chamorchis	Chionodoxa	Chrysochamela	Clethra	Clypeola	Cneorum	Colutea	Corema
No. of endemic taxa	-	1	1	1		1	1	1	1	1	1	1	1	1	1	1	1	1
Genus	Bellium	Berardia	Betula	Bonannia	Boleum	Borago	Braya	Bryonia	Bulbocodium	Buxus	Calamintha	Calophaca	Calycocorsus	Camphorosma	Campylanthus	Canarina	Cardaminsis	Cardaria
No. of endemic taxa	-	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Genus	Arbutus	Arceuthobium	Azorina	Acanthus	Achnatherum	Adenophora	Aremonia	Arisarum	Armoracia	Arnica	Arrhenatherum	Asarina	Asarum	Asphodelus	Babcockia	Baldellia	Barlia	Bassia
No. of endemic taxa	2	7	7	7	7	7	7	1	1	1	1	1	1	1	1	1	1	1
Genus	uberaria	accinium	ahlodea	élla	înca	Valdsteinia	<i>fulfenia</i>	esculus	etheorhiza	lcea	lopecurus	lyssoides	mmodaucus	mphoricarpos	nagrys	nthericum	pollonias	rachniodes

Genus	No. of endemic taxa	Genus	No. of endemic taxa	Genus	No. of endemic taxa	Genus	No. of endemic taxa
S		Diphasiastrum	1	Fraxinus	1	Himantoglossum	1
spermum	-	Diplazium	1	Fumana	1	Hispidella	1
nnophyton		Dittrichia	1	Galanthus	1	Hladnikia	1
cianella	1	Drypis	1	Gesnouinia	1	Holosteum	1
ciata		Ebenus	-	Goodyera		Hornungia	1
ototaenia		Ebingeria	1	Grafia	1	Hugueninia	1
cita		Elaphoglossum	1	Gratiola	1	Huperzia	1
nopsis	1	Ephedra	1	Guillonea	1	Hyacinthella	1
ıbaria		Eragrostis	1	Guiraoa	-	Hyacinthoides	1
erus	-	Eupatorium	1	Habenaria	1	Hymenolobus	1
snu	-	Euzomodendron	1	Haberlea	1	Hymenophyllum	1
tylis	1	Eremurus	1	Hacquetia	1	Hymenostemma	1
thonia		Erinus	1	Halacsya	1	Hyoseris	1
enia	1	Erythronium	1	Heberdenia	1	Ifloga	1
driopoterium		Fagus	1	Hedera	-	Isopyrum	1
iawia	-	Forsskahlea	1	Heliotropium	1	Ixanthus	1
ieranthus		Forsythia	1	Hemerocallis	-	Jankaea	1
scorea	-	Frankenia	1	Hepatica	1	Jasonia	1

	No of andomia	Conne	No of and amin	Conne	No of andomia	Conno.	No of and amin
.00	or enuernic taxa	Cenus	taxa taxa	Cellus	taxa taxa	Genus	taxa
	1	Lycocarpus	1	Nonea	1	Platanthera	1
	1	Mandragora	1	Normania	1	Pleiomeris	1
	1	Marsilea	1	Ocotea	1	Pleurospermum	1
	1	Matricaria	1	Ophioglossum	1	Plocama	1
	1	Melanoselinum	1	Palaeocyanus	1	Polycnemum	-
	1	Melilotus	1	Parafestuca	1	Polypodium	1
	1	Melittis	1	Parvotrisetum	1	Populus	1
	1	Meum	1	Pelletiera	1	Portenschlagiella	1
	1	Micropyrum	1	Persea	1	Prenanthes	1
	1	Misopates	1	Petagnia	1	Pritzelago	1
	1	Molopospermum	1	Petrocallis	1	Prolongoa	1
	1	Monizia	1	Petromarula	1	Prunella	1
	1	Morisia	1	Petroselinum	1	Pseudofumaria	1
	1	Mucizonia	1	Petteria	1	Pseudorchis	1
	1	Nanantheaa	1	Phalaris	1	Pseudorlaya	1
	1	Naufraga	1	Physoplexis	1	Pseudostellaria	1
	1	Nectaroscordum	1	Pittosporum	1	Remex	1
	1	Neochamaelea	1	Plagius	1	Rheum	1

No. of endemic	1 1	1	1	1	1	1	1	1	1	1	1	1
Genus	Viburnum	Vieraea	Visnea	Vitaliana	Volutaria	Vulpia	Wagenitzia	Wahlenbergia	Woodsia	Xatardia	Zelkova	Ziziphora
No. of endemic	1 1	1	1	1	1	1	1	1	1	1	1	1
Genus	Telekia	Thorella	Thymbra	Tilia	Todaroa	Tofieldia	Tozzia	Trachomitum	Trichomanes	Trochiscanthes	Ulmus	Valentia
No. of endemic	1 1	1	1	1	1	1	1	1	1	1	1	1
Genus	Sideroxylon	Smilax	Sobolewskia	Soleirolia	Stauracanthus	Stemmacantha	Strangeia	Succisa	Sventenia	Syrenia	Tamus	Teesdaliopsis
No. of endemic	14.44	1	1	1	1	1	1	1	-1	1	1	1
Genus	<i>Rhizobotrya</i>	Rhodothamnus	Rothmaleria	Ruscus	Rutheopsis	Sanicula	sarcocapnos	Scariola	schivereckia	Sclerochorton	Securinega	selinum

Tab. A8: Results of bivariate correlation within index group 'habitat continuity'

Spearman-R (2-tailed)	ho	European endemics	Local endemics	Area	SGM ice	SGM refugia	LGM ice	LGM refugia	TGM ice	TGM- refugia
European	Rho	1.000	0.561**	0.253	-0.181	0.602**	-0.049	0.519**	-0.065	0.637**
endemics	р	•	0.000	0.105	0.252	0.000	0.759	0.000	0.682	0.000
local	Rho		1.000	-0.124	-0.530**	0.460**	-0.354*	0.288	-0.465**	0.516**
endemics	р			0.435	0.000	0.002	0.022	0.065	0.002	0.000
area of	Rho			1.000	0.606**	0.519**	0.571**	0.604**	0.774**	0.430**
region	р				0.000	0.000	0.000	0.000	0.000	0.005
SGM	Rho				1.000	-0.185	0.844**	-0.008	0.910**	-0.292
ice	р					0.241	0.000	0.96	0.000	0.061
SGM	Rho					1.000	-0.191	0.949**	0.009	0.976**
refugia	р						0.225	0.000	0.953	0.000
LGM	Rho						1.000	-0.064	0.844**	-0.301
ice	р							0.687	0.000	0.053
LGM	Rho							1.000	0.166	0.878**
refugia	р								0.295	0.000
TGM	Rho								1.000	-0.102
ice	р									0.521
TGM	Rho									1.000
refugia	р									

** Significance level of 0.01

* Significance level of 0.05 (two-tailed)

Tab. A9: Results of bivariate correlation within index group 'regional species pool'

Spearman-Rh (2-tailed)	10	European endemics	local endemics	species pool	non- endemics
European endemics	Rho p	1.000	0.561** 0.000	0.742** 0.000	0.713** 0.000
local endemics	Rho p		1.000	0.533** 0.000	0.475** 0.001
species pool	Rho p			1.000	0.994** 0.000
non- endemics	Rho p				1.000

** Significance level of 0.01

Spearman-Rh (2-tailed)	10	European endemics	local endemics	relief index	relief area index	vegetation index	soil index
European	Rho	1.000	0.561**	0.629**	0.126	0.408**	0.557**
endemics	р		0.000	0.000	0.428	0.007	0.000
local	Rho		1.000	0.552**	0.530**	0.126	0.049
endemics	р			0.000	0.000	0.427	0.759
relief	Rho			1.000	0.466**	0.239	0.225
index	р				0.002	0.127	0.152
relief area	Rho				1.000	-0.550**	-0.506**
index	р					0.000	0.001
vegetation	Rho					1.000	0.703**
index	р						0.000
soil	Rho						1.000
index	р						
index	р						

Tab. A10: Results of bivariate correlation within index group 'habitat diversity'

** Significance level of 0.01

* Significance level of 0.05 (two-tailed)

Tab. A11: Results of bivariate correlation within index group 'isolation degree'

Spearman-Rh (2-tailed)	10	European endemics	local endemics	distance index	isolation index	coastline index	shape index
European	Rho	1.000	0.561**	-0.405**	-0.450**	-0.500**	0.364*
endemics	р		0.000	0.008	0.003	0.001	0.018
local	Rho		1.000	0.106	0.203	0.150	0.232
endemics	р			0.506	0.197	0.342	0.139
distance	Rho			1.000	0.821**	0.811**	-0.180
index	р				0.000	0.000	0.255
isolation	Rho				1.000	0.956**	-0.392*
index	р					0.000	0.010
coastline	Rho					1.000	-0.412**
index	р						0.007
shape	Rho						1.000
index	р						

** Significance level of 0.01

* Significance level of 0.05 (two-tailed)

Spearman-Rh (2-tailed)	10	relief index	relief area index	soil index	vegetation index	coastline index	isolation index	distance index	shape index
relief	Rho	1.000	0.467**	0.239	0.295	-0.171	-0.098	-0.063	0.15
index	р	•	0.002	0.127	0.058	0.279	0.538	0.694	0.344
relief area	Rho		1.000	-0.501**	-0.534**	0.393*	0.434**	0.577**	0.217
index	р			0.001	0.000	0.01	0.004	0.000	0.168
soil	Rho			1.000	0.703**	-0.731**	-0.654**	-0.642**	0.292
index	р				0.000	0.000	0.000	0.000	0.061
vegetation	Rho				1.000	-0.536**	-0.522**	-0.686**	-0.025
index	р					0.000	0.000	0.000	0.874
coastline	Rho					1.000	0.956**	0.811**	-0.412**
index	р						0.000	0.000	0.007
isolation	Rho						1.000	.839**	392*
index	р							0.000	0.01
distance	Rho							1.000	-0.139
index	р								0.38
shape index	Rho								1.000
	р								

Tab. A12: Results of bivariate correlation within index groups of 'habitat diversity' and 'isolation degree'

** Significance level of 0.01

* Significance level of 0.05 (two-tailed)

Spearman-Rh (2-tailed)	10	non- endemics	LGM refugia	SGM refugia	TGM refugia	LGM ice	SGM ice	TGM ice
non-	Rho	1.000	0.592**	0.625**	0.639**	0.123	0.035	0.169
endemics	р	•	0.000	0.000	0.000	0.436	0.824	0.285
LGM	Rho		1.000	0.949**	0.878^{**}	-0.064	-0.008	0.166
refugia	р			0.000	0.000	0.687	0.96	0.295
SGM	Rho			1.000	0.976**	-0.191	-0.185	0.009
refugia	р				0.000	0.225	0.241	0.953
TGM	Rho				1.000	-0.301	-0.292	-0.102
refugia	р					0.053	0.061	0.521
LGM	Rho					1.000	0.844**	0.844**
ice	р						0.000	0.000
SGM	Rho						1.000	0.910**
ice	р							0.000
TGM ice	Rho p							1.000

** Significance level of 0.01

\checkmark

		Descri	ptive statistics	Colline	earity	
	Ν	mean	standard deviation	variance	tolerance	VIF
local endemics	42	6.0908	5.88904	34.681	0.398	2.51
European endemics	42	18.4158	9.52672	90.758	0.167	6.0
total species	42	2450.88	1315.859	1.731E+06	0.131	7.641
non- endemics	42	2380.05	1267.341	1.606E+06	0.109	9.188
SGM ice	42	193.448	275.23153	75752.394	0.018	56.293
SGM refugia	42	240.3686	257.23501	66169.852	0.01	98.854
LGM ice	42	155.9633	212.92659	45337.733	0.063	15.909
LGM refugia	42	284	294.22	86565.307	0.098	10.231
TGM ice	42	216.1012	288.93253	83482.008	0.02	49.45
TGM refugia	42	222.1486	239.93526	57568.929	0.015	67.426
relief index	42	2208.57	1124.65	1.265E+06	0.298	3.354
relief-area index	42	11.8165	13.81576	190.875	0.335	2.988
vegetation index	42	7.29	2.653	7.038	0.171	5.855
soil index	42	7.74	3.35	11.222	0.318	3.148
coastline index	42	64.4174	36.19666	1310.198	0.068	14.787
isolation index	42	0.7674	0.38249	0.146	0.072	13.877
distance index	42	0.528539	0.7587202	0.576	0.182	5.503
shape index	42	0.453042	0.1664214	0.028	0.434	2.304

Tab. A14: Values of standard descriptive statistics and of collinearity statistics

Abbreviation:

VIF- variance of inflation factor; N - number of samples

Tab. A15: Stata Output of calculated Eigen values of weights (matrix list E)

Matrix list Name: E E[42.1]

e1	1
e2	0.96871819
e3	0.92615511
e4	0.8730019
e5	0.84909228
e6	0.83822717
e7	0.7387334
e8	0.66970177
e9	0.63829717
e10	0.52374687
e11.	0.38918823
e12	0.36122987
e13	0.26466438
e14	0.20578071
e15	0.1880/15
e16	0.11989836
e1/	0.0021205
e10	0.02274400
e19 o20	-2 776 -17
e20	-0 00012908
e22	-0.02850227
e23	-0.04875329
e24	-0.17149492
e25	-0.21017158
e26	-0.26238044
e27	-0.26411579
e28	-0.28739466
e29	-0.28812076
e30	-0.32797312
e31	-0.38675312
e32	-0.38761413
e33	-0.47568046
e34	-0.52015655
e35	-0.54202839
e36	-0.60600512
e37	-0.6750778
e38	-0.67713956
e39	-0.8310514
e40	-0.86539682
e41	-0.86915333
e42	-0.922818

Tab. A16: Values of spatial autocorrelation (Moran's I and Geary's C; Stata Output)

Measures of global spatial autocorrelation

Weights matrix	Name: Weighted
Type: Imported (non-binary)	Row-standardized: Yes
Moran's I	

Variables	I	E(I)	sd(I)	Z	p-value*
z_european-endemics	0.393	-0.024	0.125	3.335	0.001

*2-tail test

Measures of global spatial autocorrelation

Weight	s matrix		Name:	Weighted	
Type:	Imported	(non-binary)	Row-st	andardized:	Yes

Geary's c

Variables	с	E(c)	sd(c)	Z	p-value*
z_local-endemics	0.640	1.000	0.159	-2.269	0.023

*2-tail test

Measures of global spatial autocorrelation

Weights matrix		Name: Weighted
Type: Imported	(non-binary)	Row-standardized: Yes

Moran's I

Variables	I	E(I)	sd(I)	Z	p-value*
z_european-endemics	0.475	-0.024	0.129	3.871	0.000

*2-tail test

Measures of global spatial autocorrelation

Weight	s matrix		Name:	Weighted	
Type:	Imported	(non-binary)	Row-st	tandardized:	Yes

Geary's c

Variables	с	E(c)	sd(c)	Z	p-value*
z_european-endemics	0.593	1.000	0.142	-2.866	0.004

*2-tail test

Tab. A17: Overview on all calculated LR regression models with local endemics as dependant variable and different sets of indices for explanatory variables 'species pool'; 'isolation degree', 'habitat diversity, 'habitat continuity'. The overview is assorted according to model strength (adjusted R²).

	adjusted R ²	0.543	0.542	0.541	0.535	0.534	0.525	0.518	0.518	0.514	0.480	0.479	0.471	0.444	0.443	0.433	0.425	0.417	0.416	0.403	0.398	0.379	0.292	0.290	0.240
x	TGM ice			x	x*			x*			x				x	x*				×**			x*		
ıbitat continuit,	LGM ice					×*			x*	х			х				x				**x	x			x
ha	SGM ice	x	*x				**					х		x				x	**X					×*	
lty	vegetation index															×		х				x	x	×	×
habitat diversi	relief-area index	**X		×**						×**	x*	x*	×**												
	relief index		**X		**X	x**	×**	х*	×**					х	x		x		**X	х*	**X				
	shape index	**x		×**						x*									x	x	x		x	x	x
degree	distance index										x	х	х	x*	*x	x**	*x	×**				X**			
isolation	isolation index						×*X	**X	×*X																
	coastline index		**X		**X	x**																			
species pool	non- endemics	**X	**X	×**	**X	х*	×**	×*X	х*	×*X	×**	×**	×**	х*	х*	х*	х*	х*	х	Х	х	х*	х	х	х
endemism	local endemics	x	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	Х
Regression type	N0.	LR 1	LR 2	LR 3	LR 4	LR 5	LR 6	LR 7	LR 8	LR 9	LR 10	LR 11	LR 12	LR 13	LR 14	LR 15	LR 16	LR 17	LR 18	LR 19	LR 20	LR 21	LR 22	LR 23	LR 24

ets of indices for explanatory variables 'species pool'; 'isolation degree',	
v on all calculated LR regression models with European endemics as dependant variable and different sets of indic	abitat continuity'. The overview is assorted according to model strength (adjusted R ²).
Tab. A 18: Overvié	'habitat diversity',

	adjusted R ²	0.778	0.772	0.771	0.768	0.764	0.762	0.757	0.756	0.751	0.750	0.749	0.739	0.640	0.639	0.632	0.631	0.627	0.627	0.624	0.621	0.607	0.609	0.598	0.597
ţy	TGM ice	x*		х*	х*				х					х	х					Х	х				
bitat continui	LGM ice							х		х		x*	х					х	x					х	Х
ha	SGM ice		х*			х	Х				Х					x	Х					Х	Х		
ty	vegetation index																			x	х	x	x	x	Х
bitat diversi	relief-area index													Х	Х	х	Х	Х	х						
hal	relief index	**X	×**	×**	×**	×**	×**	×**	×**	×**	×**	×**	×**												
	shape index								х		х		х	х		x			X	Х			х		х
ı degree	distance index	x	Х					x							Х		Х	Х			Х	Х		Х	
isolation	isolation index				х		Х					Х													
	coastline index			Х		х				Х															
species pool	non- endemics	×**	**X	×**	×**	×**	X**	Х*	X**	X**	X**	X**	X**	X**	×*X	×*X	X**	X**	X**	X**	×*X	X**	X**	X**	X**
endemism	European endemics	x	Х	Х	Х	Х	Х	х	Х	Х	Х	Х	Х	х	Х	X	Х	Х	Х	x	Х	Х	Х	Х	Х
Regression type		LR 1	LR 2	LR 3	LR 4	LR 5	LR 6	LR 7	LR 8	LR 9	LR 10	LR 11	LR 12	LR 13	LR 14	LR 15	LR 16	LR 17	LR 18	LR 19	LR 20	LR 21	LR 22	LR 23	LR 24

Tab. A19: Overview on all calculated GWR regression models with local endemics as dependant variable and different sets of indices for explanatory variables 'species pool'; 'isolation degree', 'habitat diversity,' 'habitat continuity'. The overview is assorted according to model strength (pseudo-R²).

	pseudo R ²	0.618	0.614	0.612	0.604	0.602	0.596	0.593	0.591	0.585	0.545	0.540	0.537	0.537	0.536	0.536	0.531	0.531	0.531	0.530	0.524	0.509	0.478	0.477	0.448
Ŕ	TGM ice		х			х		x				х	х			x*	x							x*	
bitat continuit	LGM ice			x					Х	Х					х				X*		Х	Х			Х
ha	SGM ice	x			х		х				×*			x				х		х			×*		
ty	vegetation index											х*								Х		Х	х	Х	х
oitat diversi	relief-area- index				×**	**X				×**			*x	x*	x*										
hal	relief index	**X	**X	**X			**X	×*X	**X		**X					**X	Х	Х	X**		Х				
	shape index				×*X	**X				X**	×*					х*			х*				х*	x	х*
degree	distance index											X**	х	x*	х		х*	x*		×**	x*	x**			
isolation	isolation index						**X	×*X	**X																
	coastline index	×**	×**	×**																					
species	non- endemics	**X	×**	**X	**X	×**	**X	×**	**X	×**	х*	x*	**X	**X	**X	x*	**X	X**	Х	x*	х*	x*	х	Х	х
endemism	local endemics	x	х	х	х	х	х	Х	Х	х	х	Х	х	x	х	х	х	Х	Х	Х	Х	х	х	х	х
Regression type	No.	GWR 1	GWR 2	GWR 3	GWR 4	GWR 5	GWR 6	GWR 7	GWR 8	GWR 9	GWR 10	GWR 11	GWR 12	GWR 13	GWR 14	GWR 15	GWR 16	GWR 17	GWR 18	GWR 19	GWR 20	GWR 21	GWR 22	GWR 23	GWR 24

Tab. A20: Overview on all calculated GWR regression models with European endemics as dependant variable and different sets of indices for explanatory variables 'species pool'; 'isolation degree', 'habitat diversity', 'habitat continuity'. The overview is assorted according to model strength (pseudo-R²).

	pseudo R ²	0.807	0.805	0.805	0.804	0.804	0.803	0.802	0.802	0.801	0.800	0.800	0.799	0.729	0.718	0.716	0.716	0.699	0.699	0.699	0.699	0.697	0.694	0.692	0.687
uity	TGM ice	x		х	Х		х									x			Х		х	X			
bitat continu	LGM ice								х		х	х	Х	Х	х					х					х
ha	SGM ice		x			x		X		х							X	X					х	х	
lty	vegetation index																		х	х	Х		Х	Х	Х
bitat diversi	relief-area index													х*	х	х	Х	x				х			
ha	relief index	**X	×*X	×**	**X	×*X	**X	X**	×*X	×**	×*X	×*X	**X												
	shape index			х		х			х					Х		x	х				х			х	х
degree	distance index	x	х									x			х			x	x	х		x	х		
isolation	isolation index						Х			х			Х												
	coastline index				X			X			х														
species pool	non- endemics	×*X	×*X	×*X	×*X	×*X	**X	X**	×*X	×**	×*X	×*X	X**	×*X	×*X	×**X	×*X	×*X	×*X	×*X	×*X	×**X	×*X	x**	x**
endemism	European endemics	x	Х	х	х	х	х	X	Х	х	Х	х	х	Х	Х	х	Х	Х	х	Х	Х	х	Х	Х	Х
Regression type	No.	GWR 1	GWR 2	GWR 3	GWR 4	GWR 5	GWR 6	GWR 7	GWR 8	GWR 9	GWR 10	GWR 11	GWR 12	GWR 13	GWR 14	GWR 15	GWR 16	GWR 17	GWR 18	GWR 19	GWR 20	GWR 21	GWR 22	GWR 23	GWR 24

Tab. A21: Linear regression (dependent variable: local endemics; Stata output)

Model 1:

Source	SS	df MS		Numb	er of obs =	= 42
Model 2 Residual 1	4.0862154 6.9137907	4 6.0215538 37 .45712947	35	F(Prob R-sq	4, 37) = > F = uared =	= 13.17 = 0.0000 = 0.5875 - 0.5429
Total 4	1.0000061	41 1.0000001	.5	Root	MSE =	= .67611
z_local-endemics	Coef.	Std. Err.	t	P> t	[95% Conf.	. Interval]
<pre>z_non-endemics z_sgm-ice z_reliefarea-ind z_shape-index constant</pre>	.68445 2391333 .5797253 3517851 2.68e-07	.1219275 .1246265 .1273567 .1229436 .1043266	5.61 -1.92 4.55 -2.86 0.00	0.000 0.063 0.000 0.007 1.000	.4374015 4916500 .3216762 6008925 2113855	.9314986 .013384 .8377745 .1026777 .211386

Model 2:

Source	SS	df	MS		Numb	er of obs =	42
Model Residual	24.0697633 16.9302428	4 37	6.017440 .4575741	 82 29	F(Prob R-sq	4, 3/) = > F = uared = P-squared =	0.0000 0.5871 0.5424
Total	41.0000063	1 41	1.000000	15	Root	MSE =	.67644
z_local-e	ndemics	Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]
z_non-end z_SGM-ice z_relief- z_coastli constant	emics .4 2 index .3 ne-index .4 -2.	144642 843311 712144 501156 76e-08	.1413335 .1076633 .1253399 .1221412 .1043773	2.93 -2.64 2.96 3.69 -0.00	0.006 0.012 0.005 0.001 1.000	.1280952 5024778 .1172516 .202634 2114885	.7008332 0661845 .6251771 .6975971 .2114885

Model 3:

Source	SS	df	MS			Number	of c	bs =	42
Model 24 Residual 16 Total 41.	.0069448 .9930612 .0000061	4 37 41	6.00173621 .459271925 1.00000015			F(4, Prob > 1 R-squar Adj R-s Root MS	3 F ed quar E	(7) = = ed = =	13.07 0.0000 0.5855 0.5407 .6777
z_local-endemics	Coef.	Std.	Err.		P> t	[9	5% C	onf.	Interval]
<pre>z_non-endemics z_tgm-ice z_reliefarea-index constant</pre>	.6993469 2307276 .5809137 3447686 2.71e-07	.1 .1 .1	213736 .12347 278558 224425 045708	5.76 -1.87 4.54 -2.82 0.00	0.0 0.0 0.0 0.0 1.0	00 70 - 00 08 - 00 -	.453 .480 .321 .592 .211	4206 9017 8534 8607 8802	.9452732 .0194464 .8399741 0966765 .2118808

\checkmark

Model 4:

Source	SS	df	MS		Numbe	er of obs = $(37) =$	42
Model Residual	23.7830678 17.2169383	4 37	5.945766 .4653226	95 56	Prob R-squ	> F = lared =	0.0000
Total	41.0000061	41	1.000000	15	Root	MSE =	.68215
z_local-en	ndemics	Coef.	Std. Err.	tt	P> t	[95% Con:	f. Interval]
<pre>z_non-ende z_TGM-ice z_relief-i z_coastlin constant</pre>	emics .44 2 ndex .30 ne-index .45 -1.5	401305 707524 607615 505138 53e-08	.1415917 .1083682 .126589 .1232938 .1052574	3.11 -2.50 2.85 3.65 -0.00	0.004 0.017 0.007 0.001 1.000	.1532384 4903272 .1042678 .2006968 2132717	.7270226 0511775 .6172552 .7003307 .2132716

Model 5:

Source	SS	(df MS		Numbe	er of obs =	42
Model Residual	23.7575099 17.2424962	4 37	5.939377 .466013	48 41	F(Prob R-squ	4, 37) = > F = uared =	12.75 0.0000 0.5795
Total	41.0000061	41	1.00000015		Root	MSE =	.68265
z_local-e	endemics Co	ef.	Std. Err.	 t	P> t	[95% Conf.	Interval]
<pre>z_non-end z_LGM-ice z_relief- z_coastli constant</pre>	demics .376 e273 -index .40 Lne-index .45 -6 44	9888 6513 0947 8884	.14563 .1100952 .1267201 .1228948 1053355	2.59 -2.49 3.16 3.73 -0.00	0.014 0.018 0.003 0.001 1.000	.0819143 4967253 .1441877 .2098755 - 21343	.6720633 0505772 .6577063 .7078924 2134298

Model 6:

Source SS		df	MS		Numb	er of obs =	42	
Model Residual	10del 23.4074777 4 Residual 17.5925284 3		5.851869 .4754737	43 39	F(Prob R-sq Adi	4, 37) = > F = uared = B-squared =	0.0000 0.5709 0.5245	
Total	41.0000	061 41	1.000000	15	Root	MSE =	.68955	
z_local-e	ndemics	Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]	
z_non-end z_SGM-ice z_relief- z_isolati constant	emics index on-index	.3835288 -2818713 .3543919 .4153915 2.96e-08	.1417378 .1100305 .1284169 .1215624 .1063993	2.71 -2.56 2.76 3.42 0.00	0.010 0.015 0.009 0.002 1.000	.0963406 5048142 .0941945 .1690826 2155854	.6707169 0589283 .6145892 .6617004 .2155854	

Model 7:

Source	SS	df	MS		Numb	er of obs =	42
Model Residual	23.164928 17.835078	4 37	5.791232	 01 36 	F(Prob R-sq Adj :	4, 37) = > F = uared = R-squared =	12.01 0.0000 0.5650 0.5180
Total	41.0000061	L 41	1.000000	15	Root	MSE =	.69428
z_local-e	ndemics	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
z_non-end z_TGM-ice z_relief- z_isolati constant	emics .4 2 index .3 on-index .4 4.	096277 699854 436681 170893 21e-08	.141714 .1104962 .129457 .1224274 .1071302	2.89 -2.44 2.65 3.41 0.00	0.006 0.019 0.012 0.002 1.000	.1224879 4938718 .0813633 .1690279 2170664	.6967674 0460989 .6059729 .6651507 .2170665

Model 8:

Source	SS	df	MS		Numb	er of obs =	42
Model Residual	23.1614406 17.8385654	4 37	5.7903601	L5)	F(Prob R-sq Adj 1	4, 37) = > F = uared = R-squared =	12.01 0.0000 0.5649 0.5179
Total	41.0000061	41 1	.00000015		Root	MSE =	.69435
z_local-e	ndemics	Coef.	Std. Err.	t	P> t	[95% Con	f. Interval]
z_non-end z_LGM-ice z_relief- z_isolati constant	lemics .34 2 index .38 on-index .42 -5.6	466451 736781 332454 262893 55e-09	.1457329 .1120863 .1296329 .1218456 .1071407	2.38 -2.44 2.96 3.50 -0.00	0.023 0.020 0.005 0.001 1.000	.0513622 5007866 .1205842 .1794067 2170877	.6419279 0465696 .6459065 .6731719 .2170877

Model 9:

Source	SS	df	MS			Numb	er of	obs	=	42
Model 2 Residual 1	3.0263958 7.9736102	4 5 37 .	5.75659896 .485773249			F(Prob R-sq	4, > F uared	37)	=	0.0000
Total 4	1.0000061	41 1	.00000015			Adj Root	K-squa MSE	ared	=	0.5142 .69697
z_local-endemics	Coef.	Std.	Err.		P> t		[95%	Coni	 £.	Interval]
<pre>z_non-endemics z_lgm-ice z_reliefarea-ind z_shape-index constant</pre>	.6810557 1511124 ex .6104402 3280001 2.65e-07	.12 .13 .13 .12 .10	285358 334107 330655 273259)75455	5.30 -1.13 4.59 -2.58 0.00	0.0 0.2 0.0 0.0 1.0	265 200 200 214 200	. 42 42 . 34 58 22	2061 21428 40823 35986	75 31 38 68 76	.9414939 .1192034 .8800566 0700134 .2179081

Model 10:

Source	SS	df	MS			Number F(4	r of	obs 37)	=	42 10.47
Model 2 Residual 1	1.768463 9.231543	4 5 37 .	.44211576 519771434			Prob 3 R-squ	, > F ared	red	=	0.0000 0.5309
Total 41	.0000061	41 1	.00000015			Root 1	MSE	ireu	=	.72095
z_local-endemics	Coef.	Std.	Err.	t	P>∣t		[95%	Cont	£.	Interval]
<pre>z_non-endemics z_tgm-ice z_reliefarea-inde z_distance-index constant</pre>	.7182015 1034836 .3849198 .2899039 2.14e-07	.1 .15 .17 .11	48242 28761 19345 64631 12453	4.84 -0.80 2.53 1.64 0.00	0.0 0.2 0.0 1.0	000 427 016 109 000	.41 36 .07 06 22	7834 54378 7071 57644 5404	47 82 13 44 41	1.018568 .157411 .6927683 .6474522 .2254045

Model 11:

Source	SS	df	MS			Numbe	r of	obs	=	42
Model 21. Residual 19.	7202749 2797311	4 37	5.43006873	3		Prob R-squ	> F lared	arod	=	0.0000
Total 41.	0000061	41	1.00000015	5		Root	MSE	area	=	.72185
z_local-endemics	Coef.	Std.	Err.	t	P>∣t		[95%	Con	f.	Interval]
<pre>z_non-endemics z_sgm-ice z_reliefarea-index z_distance-index constant</pre>	.7122428 0967116 .389024 .2885026 2.14e-07	.1 .1 .1	516419 301906 516021 .17749 113846	4.70 -0.74 2.57 1.63 0.00	0.0 0.4 0.0 1.0	000 462 014 113 000	.4(3(.(0 ⁻ 22	0498 60502 0818 7112 2568	72 28 49 64 63	1.019499 .1670797 .696199 .6481315 .2256868

Model 12:

Source	SS	df MS		Numb	er of obs = $(37) =$	42
Model 19 Residual 21	.4341473 .5658587	4 4.858536 37 .5828610	84	Prob R-sq Adi	P > F = P = P = P = P = P = P = P = P = P = P =	0.0001 0.4740 0.4171
Total 41	.0000061	41 1.000000	15	Root	MSE =	.76345
z_local-endemics	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
<pre>z_non-endemics z_sgm-ice z_vegetation-inde z_distance-index constant</pre>	.5205229 3514079 x .3281938 .5692323 7.76e-08	.2126894 .1711445 .2341547 .1710184 .1178034	2.45 -2.05 1.40 3.33 0.00	0.019 0.047 0.169 0.002 1.000	.0895733 6981796 1462487 .2227162 2386923	.9514724 0046362 .8026364 .9157484 .2386925

Model 13:

Source	SS	df MS	3	Numb	er of obs =	42
Model Residual	20.4197117 20.5802944	4 5.10492 37 .556224	2793 1172	r (Prob R-sq	F = uared $F = $	0.0000 0.4980
Total	41.0000061	41 1.00000	015	Root	MSE =	.7458
z_local-endemic	cs Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
<pre>z_non-endemics z_sgm-ice z_relief-index z_distance-inde constant</pre>	.4778601 2294676 .2916483 .374717 2.28e-08	.1984707 .1292777 .1490161 .1745246 .1150801	2.41 -1.77 1.96 2.15 0.00	0.021 0.084 0.058 0.038 1.000	.0757201 491409 010287 .0210966 2331744	.88 .0324738 .5935835 .7283375 .2331745

Model 14:

Source	SS	df	MS	_		Numb	er of	obs 37)	=	42
Model Residual	20.394432 20.605574	4 37	5.09860803	L 5		Prob R-sq	> F uared	sr)	=	0.0000 0.4974
Total	41.0000061	41	1.0000001	ō		Root	MSE	areu	=	.74626
z_local-endemic	cs Coef.	Std	. Err.	t	P> t		[95%	Conf	:.	Interval]
<pre>z_non-endemics z_tgm-ice z_relief-index z_distance-inde constant</pre>	.5084046 2236831 .2784708 .3872481 3.60e-08	•	1934132 1270156 1483587 1719631 1151508	2.63 -1.76 1.88 2.25 0.00	0.0 0.0 0.0 1.0)12)86)68)30)00	.12 48 02 .03	16512 31041 22132 38817 33317	23 L1 25 79 76	.9002969 .0336749 .5790741 .7356783 .2333177

Model	15: Source		SS	df	MS			Number of obs	=	42
Re	Model esidual Total	20.02 20.97 41.00	274617 225444 000061	4 37 41	5.00686542 .566825524 1.00000015		-	F(4, S7) Prob > F R-squared Adj R-squared Root MSE	= = [=	0.0000 0.4885 0.4332 .75288
z_loca	al-endemic	cs	Coef.	Std.	. Err.		P> t	[95% Con		Interval]
z_non- z_tgm- z_vege z_dist consta	-endemics -ice etation-ir tance-inde ant	ndex ex	.496813 .4085489 .4095719 .5832244 4.95e-08	.2 .1 .2 .1	2078361 1761057 2441518 1677572 1161716	2.39 -2.32 1.68 3.48 0.00	0.0 0.0 0.1 0.0 1.0	22 .07569 267653 0208512 01 .24331 002353	71 73 67 61 86	.917929 0517248 .9042704 .9231328 .2353861

Model 16:

Source	SS (df	MS		Num	ber of obs	=	42
Model Residual	19.7352028 21.2648033	4 37	4.93380	13	r (Pr R-	ob > F squared	- = =	0.0001 0.4813 0.4253
Total	41.0000061	41	1.000000	15	Rc	ot MSE	=	.75811
z_local-endemic	cs Coef.	Std	. Err.	t	P> t	[95% Con	nf.	Interval]
<pre>z_non-endemics z_lgm-ice z_relief-index z_distance-inde constant</pre>	.4575857 189182 .3117722 ex .3825629 3.82e-09	•	2161075 1387829 1553084 1843486 1169783	2.12 -1.36 2.01 2.08 0.00	0.041 0.181 0.052 0.045 1.000	.01971 47038 00291 .00903 23702	04 29 24 72 205	.895461 .0920189 .6264569 .7560887 .2370205

Model 17:

Source	SS	df	MS			Number	of	obs	=	42
Model Residual	21.4329167 19.5670894	4 37	5.35822916 .528840254			Prob > R-squa:	F red	arod	=	0.0000
Total	41.0000061	41	1.00000015			Root M	SE	ireu	=	.72721
z_local-endemic	s Coef.	Std.	Err.	t	P>∣t	[95%	Cont	£.	Interval]
<pre>z_non-endemics z_lgm-ice z_reliefarea-ind z_distance-inde: constant</pre>	.7499203 .0025169 dex .4239214 x .3151935 2.37e-07	.1 .1 .1 .1	591602 361124 538766 179524 122116	4.71 0.02 2.75 1.76 0.00	0. 0. 0. 1.	000 985 009 087 000	27 .12 04 2	42743 73273 L213 48550 22730	31 31 78 67 62	1.07241 .2783069 .735705 .6789438 .2273625

Model 18:

Source	SS	df MS		Numk F (per of obs = 4 . 37) =	42 8 2 9
Model Residual	19.3750408 21.6249652	4 4.84376 37 .584458	021 519	Prok R-sc	p > F = [uared =	0.0001
Total	41.0000061	41 1.00000	015	Root	K-squared = MSE =	.7645
z_local-endemic	s Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
<pre>z_non-endemics z_sgm-ice z_relief-index z_shape-index constant</pre>	.2345025 429906 .4030278 219878 -5.51e-08	.1465948 .1308566 .1412123 .1363676 .1179647	1.60 -3.29 2.85 -1.61 -0.00	0.118 0.002 0.007 0.115 1.000	0625268 6950467 .1169046 496185 2390193	.5315318 1647653 .6891511 .056429 .2390192

Model 19:

Source	SS	df	MS			Number	r of	obs	=	42
Model Residual Total	18.9088138 22.0911922 41.0000061	4 37 41	4.7272034 .5970592 1.0000001	- 5 5 - 5		F(4, Prob > R-squa Adj R- Root M	, ared -squa ASE	37) ared	= = = =	7.92 0.0001 0.4612 0.4029 .7727
z_local-endemic	cs Coef.	Std.	. Err.	t	P> t		[95%	Con	f.	Interval]
<pre>z_non-endemics z_tgm-ice z_relief-index z_shape-index constant</pre>	.2681962 4094226 .3877856 2048182 -4.14e-08	. 1 . 1 . 1 . 1 . 1	L490852 L308877 L431274 L367915 L192296	1.80 -3.13 2.71 -1.50 -0.00	0.0 0.0 0.0 1.0)80)03)10 L43)00	03 6 .0 48 24	33879 74620 99778 81984 41582	91 62 82 41 21	.5702716 1442191 .6777893 .0723477 .2415821

Model 20:

Source Model Residual	SS 18.7374276 22.2625784	df MS 4 4.68435 37 .601691	 691 309	Numk F(Prok R-sc	ber of obs = 4, 37) = b > F quared	42 7.79 0.0001 0.4570
Total	41.0000061	41 1.00000	 015 	Root	K-squared = MSE =	.77569
z_local-endemic	cs Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
<pre>z_non-endemics z_lgm-ice z_relief-index z_shape-index constant</pre>	.1695108 4172834 .449613 2183902 -1.15e-07	.1492321 .1359258 .1431667 .139376 .1196912	1.14 -3.07 3.14 -1.57 -0.00	0.263 0.004 0.003 0.126 1.000	1328621 6926951 .1595297 5007928 2425175	.4718838 1418716 .7396964 .0640124 .2425173

Model 21:

Source	SS	df M	S	Numb	per of obs = $(4 + 37) =$	42
Model 18. Residual 22.	0314692 9685369	4 4.507 37 .62077	8673 1266	r (Prok R-sc	4, 57) =	0.0002
Total 41.	0000061	41 1.0000	0015	Root	MSE =	.78789
z_local-endemics	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
<pre>z_non-endemics z_lgm-ice z_vegetation-index z_distance-index constant</pre>	.5587976 2560953 t.2591908 .58158 9.61e-08	.2478938 .1964782 .2609778 .1768782 .1215741	2.25 -1.30 0.99 3.29 0.00	0.030 0.200 0.327 0.002 1.000	.056517 6541978 2696004 .2231907 2463325	1.061078 .1420073 .7879821 .9399693 .2463327

Model 22:

Source	SS	df MS		Num F (ber of obs =	42
Model 1 Residual 2	4.7859766 26.2140295	4 3.69649 37 .708487	415 283	Proi R-s	b > F = quared =	0.0020
Total 4	11.0000061	41 1.00000	015	Roo	t MSE =	.84172
z_local-endemics	coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
<pre>z_non-endemics z_tgm-ice z_vegetation-ind z_shape-index constant</pre>	.3696355 5300123 dex .1591652 224365 1.01e-07	.2286377 .2017367 .2627412 .1488551 .1298797	1.62 -2.63 0.61 -1.51 0.00	0.114 0.012 0.548 0.140 1.000	0936286 9387697 373199 5259741 2631612	.8328996 1212549 .6915295 .077244 .2631614

Model 23:

Source	SS	df MS		Numb	per of obs = $(37) =$	42
Model 14 Residual 26	4.7418653 5.2581408	4 3.685466 37 .709679	532 48	Prob R-sc	p > F = [uared =	0.0020
Total 41	1.0000061	41 1.000000	15	Root	MSE =	.84242
z_local-endemics	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
<pre>z_non-endemics z_sgm-ice z_vegetation-inde z_shape-index constant</pre>	.3751379 5071223 .1057689 2368933 1.18e-07	.228009 .1940637 .2494252 .1502088 .129989	1.65 -2.61 0.42 -1.58 0.00	0.108 0.013 0.674 0.123 1.000	0868522 9003327 3996144 5412452 2633825	.8371281 1139118 .6111523 .0674586 .2633828

Model 24:

Source	SS	df	MS	Numb	er of obs =	42
Model Residual	12.8599105 28.1400956	4 3.214 37 .7605	97761 43124	r (Prob R-sq	F = uared =	0.0064 0.3137
Total	41.0000061	41 1.000	00015	Root	MSE =	.87209
z_local-endemic	s Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
z_non-endemics z_lgm-ice z_vegetation-index constant	.3530527 443655 dex .0770105 2229641 9.59e-08	.262999 .224725 .281910 .156705 .134566	4 1.34 5 -1.97 8 0.27 2 -1.42 6 0.00	0.188 0.056 0.786 0.163 1.000	1798346 898992 494195 540479 2726577	.88594 .011682 .6482161 .0945509 .2726579

Model 1:

Source	SS	df	MS		Numb	er of ok	os =	42
Model Residual	32.7955073 8.20449137	4 37	3.1988768 .2217430	 84 01	F(Prob R-sc	4, 3 > F [uared	() = = =	0.0000 0.7999
Total	40.9999987	41	.99999999	 69	Root	MSE MSE	=	.4709
z_european-ende	mics Coef.	Std	. Err.	t	P> t	[959	b Conf	. Interval]
<pre>z_non-endemics z_tgm-ice z_relief-index z_distance-inde constant</pre>	.3978291 2016802 .4836142 x2124466 1.60e-07	.1: .0; .0; .1; .0	220449 301476 936152 085097 726608	3.26 -2.52 5.17 -1.96 0.00	0.002 0.016 0.000 0.058 1.000	.1505 3640 .2939 4323 1472	5427 0747 9317 3081 2247	.6451155 0392858 .6732967 .007415 .147225

Model 2:

Source	SS	df	MS		Number	of obs	=	42
Model Residual	32.5452873 8.45471147	4 8. 37 .2	13632181		F(4, Prob > R-squa Adj R-	37) F ared squared	= C = C = C	35.61 0.0000 0.7938 0.7715
Total	40.9999987	41 .9			Root M	1SE 	= . 	47802
z_european-ende	mics Coef.	Std.	Err.	t !	₽> t 	[95% (Conf.	Interval]
<pre>z_non-endemics z_SGM_ice z_relief-index z_distance-inde constant</pre>	.3812799 186199 .4924818 x2119716 1.55e-07	.12 .082 .095 .112 .073	2097 28604 55117 28614 37605	3.00 -2.25 5.16 -1.89 0.00	D.005 D.031 D.000 D.066 1.000	.123528 354090 .298956 438624 149452	36 01 56 43 28	.6390311 0183079 .6860069 .0146811 .1494531

Model 3:

Source	SS	df	MS		Number	of obs =	42
Model Residual	32.537444 8.46255476	4 37	8.1343609 .22871769	9 9 96	F(4, Prob > R-squa	3/) = F = red =	35.57 0.0000 0.7936 0.7713
Total	40.9999987	41	.99999996	59	Root M	SE =	.47824
z_europea	n-endemics	Coef.	Std. Err.	t	P> t	[95% Con	f. Interval]
z_non-ende z_TGM-ice z_relief-: z_coastlin constant	emics .49 10 index .42 ne-index13 2.0	923737 504096 287201 390583 08e-07	.0992683 .0759757 .0887501 .0864398 .0737947	4.96 -2.11 4.83 -1.61 0.00	0.000 0.042 0.000 0.116 1.000	.291237 314351 .2488953 314202 1495221	.6935104 0064682 .6085449 .0360855 .1495225

Model 4:

Source	SS	df	MS		Number	c of obs = 27	42
Model Residual	32.4294882 8.57051051	4 37	8.10737205 .231635419		F(4, Prob > R-squa	F =	0.0000 0.7910
Total	40.9999987	41	.9999999969		Root N	ISE =	.48129
z_european		Coef.	Std. Err.	t	P> t	[95% Con	f. Interval]
z_non-ende z_TGM-ice z_relief-i z_isolatio constant	emics .50 15 .ndex .43 on-index12 1.9	048067 596985 331565 226733 93e-07	.0982378 .0765972 .0897411 .0848681 .0742639	5.14 -2.08 4.83 -1.45 0.00	0.000 0.044 0.000 0.157 1.000	.305758 3148992 .2513237 2946323 1504728	.7038553 0044978 .6149892 .0492858 .1504732

Model 5:

Source	SS	df	MS	Number of obs =	42
				F(4, 37) =	34.22
Model	32.2753313	4	8.06883281	Prob > F =	0.0000
Residual	8.72466746	37	.235801823	R-squared =	0.7872
				Adj R-squared =	0.7642
Total	40.9999987	41	.999999969	Root MSE =	.48559

z_european-endemic	cs Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
<pre>z_non-endemics z_SGM-ice z_relief-index z_coastline-index constant</pre>	.4823627 1385199 .435856 1339792 2.06e-07	.1014584 .0772878 .0899771 .0876809 .0749288	4.75 -1.79 4.84 -1.53 0.00	0.000 0.081 0.000 0.135 1.000	.2767884 2951198 .253545 3116375 15182	.687937 .0180799 .618167 .0436792 .1518204

Model 6:

Source	SS	df	MS		Numbe	er of obs =	42
Model Residual	32.1751183 8.82488045	4 37	8.043779 .2385102	57 82	r (Prob R-squ	Prob > F = 0.000 R-squared = 0.784	
Total	40.9999987	41	.99999999	69	Root	MSE =	.48838
z_europear	n-endemics Coe:	E.	Std. Err.	t	P> t	[95% Conf.	Interval]
z_non-ende z_SGM-ice z_relief-i z_isolatic constant	emics .494298 138422 Index .440090 on-index11830 1.91e-0	38 29 06 08 07	.1003867 .0779298 .0909521 .0860973 .0753579	4.92 -1.78 4.84 -1.37 0.00	0.000 0.084 0.000 0.178 1.000	.2908961 2963236 .2558042 2927578 1526895	.6977016 .0194777 .6243769 .0561417 .1526898

Model 7:

Source	SS	df MS		Numbe	er of obs =	42
Model 3 Residual 8 Total 4	32.0140828 3.98591588 40.9999987	4 8.0035207 37 .24286259 41 .999999996		f(Prob R-squ Adj I Root	<pre>> F = lared = R-squared = MSE =</pre>	0.0000 0.7808 0.7571 .49281
z_european-ender	nics Coef.	Std. Err.	t	P> t	[95% Con:	f. Interval]
<pre>z_non-endemics z_LGM_ice z_relief-index z_distance-index constant</pre>	.3716307 1444556 .5062489 x1997334 1.44e-07	.1404819 .0902166 .1009591 .1198368 .0760424	2.65 -1.60 5.01 -1.67 0.00	0.012 0.118 0.000 0.104 1.000	.0869874 3272518 .3016864 4425459 1540763	.656274 .0383406 .7108114 .0430791 .1540766

Model 8:

Source	SS	df	MS		Number of obs	=	42
					F(4, 37)	=	32.81
Model	31.983205	4	7.99580124		Prob > F	=	0.0000
Residual	9.01679376	37	.243697129		R-squared	=	0.7801
					Adj R-squared	=	0.7563
Total	40.9999987	41	.9999999969		Root MSE	=	.49366
z european-end	emics Coef.	St	d. Err.	t	P> t [95%	Conf	. Interval]

z non-endemics	.5768883	.095247	6.06	0.000	.3838996	.7698769
z_tgm-ice	1530012	.083621	-1.83	0.075	3224334	.016431
z relief-index	.4138958	.0914406	4.53	0.000	.2286194	.5991721
z_shape-index	0343662	.0873928	-0.39	0.696	2114408	.1427085
constant	2.43e-07	.0761729	0.00	1.000	1543407	.1543412

Model 9:

Source	SS	df M	4S	Number	c of obs = 27	42
Model 3 Residual 9	1.8024461 .19755265	4 7.9506 37 .24858	51152 32504	F(4, Prob > R-squa	F =	0.0000 0.7757 0.7514
Total 4	0.9999987	41 .99999	99969	Root M	ISE =	.49858
z_european-endemic	cs Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]
<pre>z_non-endemics z_LGM-ice z_relief-index z_coastline-index constant</pre>	.4791079 086031 .4467512 1224991 2.04e-07	.1063621 .080409 .0925511 .0897572 0769326	4.50 -1.07 4.83 -1.36 0.00	0.000 0.292 0.000 0.181 1.000	.2635977 248955 .2592248 3043645 1558801	.6946181 .0768931 .6342775 .0593663 .1558805

Model 10:

Source	SS	df MS		Numb	er of obs =	42
Model Residual	31.7486349 9.25136378	4 7.93715 37 .250036	874 859	Prob R-sq	(2, 5) = (2, 5) (2, 5) = ().0000).7744
Total	40.9999987	41 .999999	969	Root	MSE =	.50004
z_european-ende	emics Coef.	Std. Err.	t	P> t	[95% Conf.	. Interval]
<pre>z_non-endemics z_SGM-ice z_relief-index z_shape-index constant</pre>	.5627358 1305002 .4215108 0275605 2.39e-07	.0958835 .0855896 .0923629 .0891942 .0771574	5.87 -1.52 4.56 -0.31 0.00	0.000 0.136 0.000 0.759 1.000	.3684574 3039211 .2343657 208285 1563354	.7570142 .0429208 .6086558 .153164 .1563359

Model 11:

Source	SS	df 1	AS	Number of	obs =	42
Model 31 Residual 9	1.6992075 .30079124	4 7.9248 37 .2513	30187 72736	F(4, Prob > F R-squared	37) = = =	0.0000 0.7732 0.7486
Total 40	0.9999987	41 .99999	99969	Root MSE	=	.50137
z_european-endemic	cs Coef.	Std. Err.	t P	 > t [9	5% Conf	. Interval]
z_non-endemics z_LGM-ice z_relief-index z_isolation-index 	.491736 0848995 .4501057 1052564 1.91e-07	.1052295 .0809343 .0936041 .0879812 .0773632	4.67 0 -1.05 0 4.81 0 -1.20 0 0.00 1	.000 .2 .301 .000 .2 .2392 .0001	785208 248888 604457 835232 567525	.7049513 .079089 .6397657 .0730104 .1567529

Model 12:

Source Model Residual	SS 31.3400354 9.65996336	df 4 7.8 37 .26	MS 3500884 1080091	N F F R	$\begin{array}{llllllllllllllllllllllllllllllllllll$	42 30.01 0.0000 0.7644
Total	40.9999987	41 .99		A R	dj R-squared =	0.7389 .51096
z_european-ende	emics Coef.	Std. E	lrr. t	P> t	[95% Conf.	Interval]
<pre>z_non-endemics z_LGM_ice z_relief-index z_shape-index constant</pre>	.5485223 0728174 .4331705 0044259 2.30e-07	.0983 .0895 .0943 .0918 .0788	302 5.58 368 -0.81 3066 4.59 3096 -0.05 3428 0.00	0.00 0.42 0.00 0.96 1.00	0 .3493436 12542362 0 .2420872 21904498 01597505	.747701 .1086015 .6242538 .181598 .159751

Model 13:

Source	SS	df MS		Numb F(er of obs = 4. 37) =	42 19 22
Model Residual	27.6801489 13.3198498	4 6.920037 37 .359995	23 94	Prob R-sq	> F = uared = B-squared =	0.0000 0.6751 0.6400
Total	40.9999987	41 .9999999	969	Root	MSE =	. 6
z_european-ende	mics Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
<pre>z_non-endemics z_tgm-ice z_reliefarea-in z_shape-index constant</pre>	.8620633 1317115 dex .1566984 0908852 4.94e-07	.1074578 .1093139 .1131968 .1084042 .0925815	8.02 -1.20 1.38 -0.84 0.00	0.000 0.236 0.175 0.407 1.000	.644333 3532025 0726601 3105329 1875874	1.079794 .0897795 .3860568 .1287626 .1875884

Model 14:

Source	SS	df	MS	_	1	Number o	of ok	os =	42 19 10
Model 27 Residual 13.	.623034 3769647	4 6 37 .	.90575852	L 5 -	1	Prob > H R-square Adi R-sc	ed Ruare	= = =	0.0000 0.6737 0.6385
Total 40.	9999987	41 .	9999999969	9]	Root MSI	2	=	.60128
z_european-endemic	s Coef.	Std.	Err.	t	P>	 t	[95%	Conf.	Interval]
<pre>z_non-endemics z_tgm-ice z_reliefarea-index constant</pre>	.7765582 121529 .181929 1083413 4.56e-07	.12 .10 .12 .14 .09	36354 73881 6715 71722 27798	6.28 -1.13 1.44 -0.74 0.00	0.0 0.2 0.1 0.4 1.0	00 65 – 59 – 66 – 00 –	.5260 .3391 .0748 .4065 .1879)49 179 32 5405 9892	1.027067 .09606 .438678 .1898578 .1879901

Model 15:

Source	SS	df MS		Numbe	r of obs = 27	42
Model 27 Residual 13	.3941935 .6058052	4 6.848548 37 .3677244	38 65 	r(4 Prob R-squ Adj R	> F = ared = -squared =	0.0000 0.6682 0.6323
Total 40	.9999987	41 .99999999	69	Root	MSE =	.6064
z_european-endemi	.cs Coef.	Std. Err.	t t	P> t	[95% Conf.	Interval]
<pre>z_non-endemics z_SGM-ice z_reliefarea-inde z_shape-index constant</pre>	.8600513 0896741 .1739731 0818393 4.98e-07	.1093562 .1117769 .1142256 .1102675 .09357	7.86 -0.80 1.52 -0.74 0.00	0.000 0.428 0.136 0.463 1.000	.6384746 3161556 0574699 3052625 1895903	1.081628 .1368075 .4054162 .1415839 .1895913

Model 16:

Source	SS	df	MS	Numbe	er of obs = 37 -	42
Model 27. Residual 13.	.3610383 .6389604	4 6.840 37 .3680)25958 520551	Prob R-squ	F =	0.0000
Total 40.	.99999987	41 .9999	999969	Root	MSE =	.60714
z_european-endemic	cs Coef.	Std. Er	tt	P> t	[95% Conf	. Interval]
<pre>z_non-endemics z_SGM-ice z_reliefarea-index z_distance-index constant</pre>	.7818878 0808646 .1982413 1012012 4.63e-07	.127543 .109503 .127510 .149284 .093683	88 6.13 4 -0.74 03 1.55 13 -0.68 89 0.00	0.000 0.465 0.129 0.502 1.000	.5234595 3027356 0601191 4036799 1898212	1.040316 .1410064 .4566017 .2012775 .1898221

Model 17:

Source	SS	df M	1S	Numbe	er of obs = $\frac{27}{7}$	42
Model 27. Residual 13.	2030423 7969564	4 6.8007 37 .37289	/6057 00714	Prob R-squ	F =	0.0000
Total 40.	99999987	41 .99999	99969	Root	MSE =	.61065
z_european-endemic	cs Coef.	Std. Err.	t	P> t	[95% Conf.	. Interval]
<pre>z_non-endemics z_LGM_ice z_reliefarea-index z_distance-index constant</pre>	.8313627 .0388268 .240844 0684431 4.95e-07	.1336482 .1142948 .1292115 .1507478 .094225	2 6.22 3 0.34 5 1.86 3 -0.45 0.00	0.000 0.736 0.070 0.652 1.000	.5605657 1927564 0209633 3738873 1909175	1.10216 .27041 .5026513 .237001 .1909185

Model 18:

Source	SS	df MS		Numbe F(er of obs =	42
Model Residual 1	27.191804 3.8081947	4 6.7979 37 .3731944	51 52	Prob R-squ	<pre>4, 37) = > F = uared = P-squared =</pre>	0.0000
Total 4	0.9999987	41 .99999999	69	Root	MSE =	.6109
z_european-endem	nics Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]
<pre>z_non-endemics z_LGM_ice z_reliefarea-ind z_shape-index constant</pre>	.8810514 .0354428 .2226428 0468 5.16e-07	.1126613 .1169342 .1166316 .1116008 .0942634	7.82 0.30 1.91 -0.42 0.00	0.000 0.764 0.064 0.677 1.000	.6527779 2014884 0136754 2729248 1909952	1.109325 .2723739 .4589609 .1793247 .1909962

Model 19

Source	SS	df MS	_	Numbe	er of obs = 37 -	42 18 02
Model 27 Residual 13	.0926541 .9073447	4 6.7731635 37 .3758741	2 8	Prob R-squ	F =	0.0000 0.6608
Total 40	.9999987	41 .99999996	9	Root	MSE =	.61309
z_european-endemi	cs Coef.	Std. Err.	t	P> t	[95% Coni	f. Interval]
<pre>z_non-endemics z_tgm-ice z_vegetation-inde z_shape-index constant</pre>	.7336729 243508 .0998686 0569817 4.25e-07	.1665341 .14694 .1913742 .1084224 .0946012	4.41 -1.66 0.52 -0.53 0.00	0.000 0.106 0.605 0.602 1.000	.3962428 5412368 2878924 2766663 1916798	1.071103 .0542208 .4876296 .1627029 .1916806

Model 20:

Source	SS	df	MS	_	Numbe	er of obs	=	42
Model 26. Residual 14.	9931052 0068935	4 37.	6.7482763 378564689	- 3 9	Prob R-sq Adi 1	<pre>> F uared R-squared</pre>	= = [0.0000 0.6584 0.6214
Total 40.	9999987	41 .	9999999969)	Root	MSE	=	.61528
z_european-endemic	s Coef.	Std.	Err.	t	P> t	[95% C	onf.	Interval]
<pre>z_non-endemics z_tgm-ice z_vegetation-index z_distance-index constant</pre>	.7193484 2242853 .1101271 .0145602 4.10e-07	.16 .14 .19 .13 .09	98503 39192 95287 70965 49392	4.24 -1.56 0.55 0.11 0.00	0.000 0.128 0.584 0.916 1.000	.3751 51589 29415 26322 19236	99 33 63 38 46	1.063498 .0673228 .5144106 .2923441 .1923654

Model 21:

Source	SS	df	MS		1	Number of obs = $\frac{27}{7}$	42
Model 26 Residual 14 Total 40	.4745954 .5254033 .9999987	4 37 41	6.61864 .392578 .9999999	886 467 969	1 1 1 2 1 1	Prob > F = R-squared = Adj R-squared = Root MSE =	0.0000 0.6457 0.6074 .62656
z_european-endemi	cs Coef.	St	d. Err.	t	P> t	[95% Conf.	Interval]
<pre>z_non-endemics z_SGM_ice z_vegetation-inde z_distance-index constant</pre>	.7716218 141936 x .0207021 .01359 4.49e-07	.1 .1 .1 .1 .0	745527 404571 921692 403536 966804	4.42 -1.01 0.11 0.10 0.00	0.000 0.319 0.915 0.923 1.000) .4179445 4265291 53686696 32707934)1958927	1.125299 .1426571 .4100738 .2979733 .1958936

Model 22:

Source	SS	df	MS		Number	of obs	=	42
Model 26 Residual 14.	5.542936 4570627	4 37.	6.635734		Prob > R-squa	F red	= 0 = 0	.0000
Total 40.	9999987	41 .	9999999969		Root M	SE	= .	62509
z_european-endemic	cs Coef.	Std.	Err.	t P	?> t	[95% (Conf.	Interval]
<pre>z_non-endemics z_SGM-ice z_vegetation-index z_shape-index constant</pre>	.7812785 1600222 .0124351 0478514 4.61e-07	.16 .14 .18 .11 .09	91843 39967 50752 1456 64527	4.62 0 -1.11 0 0.07 0 -0.43 0 0.00 1	.000 .274 .947 .670 .000	.438478 45178 362562 273682 195433	86 71 29 26 13	1.124078 .1317428 .3874331 .1779799 .1954323

Model 23:

Source	SS	df	MS			Number of obs	=	42
Model 26. Residual 14.	1132041 3867947	4 6 37 .	.5283010 40234580	- 1 2 -		F(4, 3/) Prob > F R-squared Adj R-squared	= 0 = 0 = 0	16.23 0.0000 0.6369 0.5977
Total 40.9	9999987	41 .	999999996	9		Root MSE	= .	63431
z_european-endemic:	s Coef.	Std.	Err.	 t	P>	t [95%	Conf.	Interval]
z_non-endemics z_LGM_ice z_vegetation-index z_distance-index constant	.9258804 .0495604 1502302 .0388381 5.46e-07	.19 .15 .21 .14 .09	9572 81788 01055 23994 78757	4.64 0.31 -0.72 0.27 0.00	0.0	000 .52150 75627094 17957594 78724969 00019831	91 02 45 06 46	1.330252 .3700611 .275484 .3273667 .1983156

Model 24:

Source	SS	df M	S	Numbe	er of obs = $\frac{1}{27}$	42
Model 26. Residual 14.	.0848261 .9151726	4 6.5212 37 .40311	0653 2773	Prob R-squ Adj H	F = (lared = (R-squared = (0.0000 0.6362 0.5969
Total 40.	.99999987	41 .99999	9969	Root	MSE = .	.63491
z_european-endemic	cs Coef.	Std. Err.	t 	P> t	[95% Conf.	. Interval]
<pre>z_non-endemics z_LGM_ice z_vegetation-index c_shape-index constant</pre>	.9105802 .0402771 1625836 0070777 5.45e-07	.1914723 .1636077 .2052405 .1140867 .097969	4.76 0.25 -0.79 -0.06 0.00	0.000 0.807 0.433 0.951 1.000	.5226204 2912235 5784404 2382393 1985035	1.29854 .3717777 .2532731 .2240838 .1985046

Tab. A23: Geographically weighted regression (dependent variable: local endemics;Stata output)

Model 1:						
initial: lo	og likelihoo	d = -40.677	274			
rescale: 10	og likelihoo	d = -40.677	274			
rescale eq: 10	og likelihoo	d = -40.677	274			
Iteration 0: 10	og likelihoo	d = -40.677	274			
Iteration 1: 10	og likelihoo	d = -39.464	809			
Iteration 2: 10	og likelihoo	d = -39.159	808			
Iteration 3: 10	og likelihoo	d = -39.158	859			
Iteration 4: lo	og likelihoo	d = -39.158	858			
Weights matrix:We	eighted Ty	pe: Importe	ed (non-bin	ary)	Row-standardi	ized: Yes
Spatial lag mode	1			Number	c of obs =	42
				Variar	nce ratio =	0.607
				Square	ed corr. =	0.618
Log likelihood =	-39.158858			Sigma	=	0.61
	Coef.	Std. Err.	Z	P> z	[95% Conf.	. Interval]
z local-endemics						
z_non-endemics	.4113866	.1275379	3.23	0.001	.1614169	.6613564
z_SGM-ice	1946876	.1106291	-1.76	0.078	4115166	.0221414
z_relief-index	.3384471	.114737	2.95	0.003	.1135667	.5633275
z_coastline-inde:	x .4397962	.1103761	3.98	0.000	.2234631	.6561293
constant	0173877	.0947374	-0.18	0.854	2030695	.1682942
rho	.211153	.124679	1.69	0.090	0332133	.4555193
Wald test of rho:	=0:		chi2(1) =	2.868	(0.090)	
Likelihood ratio	test of rho	=0:	chi2(1) =	2.713	(0.100)	
Lagrange multipl	ier test of	rho=0:	chi2(1) =	2.835	(0.092)	
Acceptable range	TOL LUO: -1	.004 < rno	< I.000			

Model 2: initial: 10 rescale: 10 Iteration 0: 10 Iteration 1: 10 Iteration 2: 10 Iteration 3: 10 Iteration 4: 10	og likelihood og likelihood og likelihood likelihood likelihood og likelihood jikelihood og likelihood		991 991 991 991 908 889 922 921			
Weights matrix:We	eighted Typ	be: Imported	l (non-bir	nary)	Row-standard:	ized: Yes
Spatial lag mode:	1			Number Variar Square	c of obs = nce ratio = ed corr. =	42 0.602 0.614
Log likelihood =	-39.415921			Sigma	=	0.61
	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
z_local-endemics z_non-endemics z_TGM-ice z_relief-index z_coastline-index constant 	.4288851 1776361 .3304057 *.4404418 0180911 .2196958 	.1275515 .110988 .1151972 .1110761 .0952592 .1251183 	3.36 -1.60 2.87 3.97 -0.19 1.76 chi2(1) = chi2(1) = chi2	0.001 0.109 0.004 0.000 0.849 0.079 3.083 2.904 3.010	.1788888 3951685 .1046234 .2227367 2047958 0255315 (0.079) (0.088) (0.083)	.6788814 .0398964 .556188 .6581469 .1686136
Weights matrix We	og likelinood	a = -39.504	uon−hir	ary)	Row-standard	ized. Yes
Spatial lag mode: Log likelihood =	-39.50416			Number Variar Square Sigma	c of obs = nce ratio = ed corr. = =	42 0.600 0.612 0.62
	Coef.	Std. Err.	 Z	P> z	[95% Conf.	Interval]
z_local-endemics z_non-endemics z_LGM-ice z_relief-index z_coastline-index constant 	.3886696 1761553 .3567764 x.4466425 0179629 .2181385	.1313925 .1142551 .1170314 .1109602 .0954832 .12684	2.96 -1.54 3.05 4.03 -0.19 1.72	0.003 0.123 0.002 0.000 0.851 0.085	.1311451 4000913 .1273991 .2291645 2051066 0304634	.646194 .0477807 .5861538 .6641205 .1691807 .4667404
Wald test of rho Likelihood ratio Lagrange multipl: Acceptable range	=0: test of rho= ier test of r for rho: -1.	=0: c cho=0: c .084 < rho <	chi2(1) = chi2(1) = chi2(1) = chi2(1) = chi2(1) =	2.958 2.790 2.937	(0.085) (0.095) (0.087)	. 1007-04

Model 4: initial: log rescale: log rescale eq: log Iteration 0: log Iteration 1: log Iteration 2: log Iteration 3: log Iteration 4: log	likelihood = likelihood = likelihood = likelihood = likelihood = likelihood = likelihood =	= -40.656858 = -40.656858 = -40.656858 = -40.656858 = -39.899676 = -39.829327 = -39.829219 = -39.829219				
Weights matrix:Wei	ghted Type:	Imported (non-bina	ry) I	Row-standardiz	ed: Yes
Spatial lag model	30 820210			Number Variand Squared	of obs = ce ratio = d corr. =	42 0.597 0.604
z_local-endemics	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
<pre>z_local-endemics z_non-endemics z_sgm-ice z_reliefarea-index constant</pre>	.6569574 2038642 .516446 3777475 0137403	.1145675 .1185051 1289654 .1152247 .0966678	5.73 -1.72 4.00 -3.28 -0.14	0.000 0.085 0.000 0.001 0.887	.4324093 4361299 .2636785 6035838 2032058	.8815056 .0284015 .7692135 1519112 .1757252
rho	.1668633	.1422692	1.17	0.241	1119792	.4457058
Wald test of rho=0 Likelihood ratio t Lagrange multiplie Acceptable range fo	: est of rho=0: r test of rho or rho: -1.08	chi chi chi chi 34 < rho < 1	2(1) = 2(1) = 2(1) = .000	1.376 1.332 1.350	(0.241) (0.249) (0.245)	
Model 5: initial: log rescale: log rescale eq: log Iteration 0: log Iteration 1: log Iteration 2: log Iteration 3: log Iteration 4: log	likelihood = likelihood = likelihood = likelihood = likelihood = likelihood = likelihood =	= -40.755049 = -40.755049 = -40.755049 = -40.755049 = -40.010962 = -39.942802 = -39.942691 = -39.942691				
Weights matrix:Weights	ghted Type:	Imported (non-bina	ry) I	Row-standardiz	ed: Yes
Spatial lag model Log likelihood = -	39.942691			Number Variano Squareo Sigma	of obs = ce ratio = d corr. = =	42 0.595 0.602 0.62
z_local-endemics	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
<pre>z_local-endemics z_non-endemics z_tgm-ice z_reliefarea-inde z_shape-index constant</pre>	.6700442 1943425 .5188588 3709353 0136551	.114507 .1178675 .1292553 .1149044 .0969388	5.85 -1.65 4.01 -3.23 -0.14	0.000 0.099 0.000 0.001 0.888	.4456146 4253585 .2655231 5961439 2036517	.8944738 .0366735 .7721946 1457268 .1763415
rho	.1658293	.1430717	1.16	0.246	1145861	.4462447
Wald test of rho=0 Likelihood ratio to Lagrange multiplie Acceptable range fo	est of rho=0: r test of rho or rho: -1.08	chi chi b=0: chi 34 < rho < 1	2(1) = 2(1) = 2(1) = .000	1.343 1.301 1.294	(0.246) (0.254) (0.255)	

Model 6: initial: log rescale: log rescale eq: log Iteration 0: log Iteration 1: log Iteration 2: log Iteration 3: log Iteration 4: log	likelihood likelihood likelihood likelihood likelihood likelihood likelihood	$\begin{array}{rcl} \mathbf{d} &=& -41.483\\ \mathbf{d} &=& -41.483\\ \mathbf{d} &=& -41.483\\ \mathbf{d} &=& -41.483\\ \mathbf{d} &=& -40.445\\ \mathbf{d} &=& -40.277\\ \mathbf{d} &=& -40.276\\ \mathbf{d} &=& -40.276 \end{array}$	102 102 102 012 088 951 951			
Weights matrix:Weig	nted Typ	e: Imported	d (non-bin	ary)	Row-standard:	ized: Yes
Spatial lag model				Number Varian Square	of obs = ace ratio = ad corr. =	42 0.587 0.596
Log likelihood = -4	.0.276951			Sigma	=	0.63
	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
z_local-endemics z_non-endemics . z_SGM-ice z_reliefarea-index. z_isolation-index . constant	3772373 2028244 3265429 3987021 0155878	.1290985 .1135575 .1184117 .111237 .0974314	2.92 -1.79 2.76 3.58 -0.16	0.003 0.074 0.006 0.000 0.873	.124209 4253931 .0944603 .1806817 2065497	.6302657 .0197443 .5586254 .6167226 .1753742
rho .	1892961	.1281233	1.48	0.140	0618209	.4404131
Wald test of rho=0: Likelihood ratio te Lagrange multiplier Acceptable range fo Model 7: initial: log rescale: log rescale eq: log Iteration 0: log Iteration 1: log Iteration 2: log Iteration 3: log Iteration 4: log	est of rho= r test of r or rho: -1. likelihood likelihood likelihood likelihood likelihood likelihood	$ \begin{array}{l} =0:\\ rho=0:\\ 0.084 < rho\\ d=-41.770\\ d=-41.770\\ d=-41.770\\ d=-41.770\\ d=-40.690\\ d=-40.495\\ d=-40.494\\ d=-40.494 \end{array} $	chi2(1) = chi2(1) = chi2(1) = < 1.000 653 653 653 653 653 653 864 864 864	2.183 2.089 2.243	(0.140) (0.148) (0.134)	
Weights matrix:Weig	shted Typ	be: Imported	d (non-bin	lary)	Row-standard:	ized: Yes
Spatial lag model Log likelihood = -4	0.494864			Number Varian Square Sigma	of obs = ace ratio = ad corr. = =	42 0.582 0.593 0.63
	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
z_local-endemics z_non-endemics . z_TGM-ice z_relief-index . constant rho .	3957848 1881282 3180931 3999084 0161749 	.1290534 .1137727 .1187854 .1117817 .0978926 .1285268	3.07 -1.65 2.68 3.58 -0.17 1.53	0.002 0.098 0.007 0.000 0.869 0.126	.1428447 4111185 .0852779 .1808203 2080409 0554811	.6487248 .0348622 .5509082 .6189964 .175691
Wald test of rho=0: Likelihood ratio te Lagrange multiplier Acceptable range fo	est of rho= test of r or rho: -1.	=0: rho=0: .084 < rho	chi2(1) = chi2(1) = chi2(1) = < 1.000	2.336 2.228 2.377	(0.126) (0.136) (0.123)	

Model 8: initial: rescale: rescale eq: Iteration 0: Iteration 1: Iteration 2: Iteration 3: Iteration 4:	log likelihood log likelihood log likelihood log likelihood log likelihood log likelihood log likelihood	d = -41.7747 $d = -41.7747$ $d = -41.7747$ $d = -41.7747$ $d = -40.7381$ $d = -40.5625$ $d = -40.5623$ $d = -40.5623$	59 59 59 59 02 22 667 667				
Weights matrix:	Weighted Typ	be: Imported	l (non-bin	ary)	Row-stand	lardi	zed: Yes
Spatial lag mod	del = -40.562367			Number Variar Square Sigma	c of obs nce ratio ed corr.	= = =	42 0.581 0.591 0.63
	Coof	Std Err					
		Stu. Eff.	Z	P> 2	[95% 00		
<pre>z_local-endemics z_non-endemics z_LGM-ice z_relief-index z_isolation-ind constant</pre>	cs .3529305 1884639 .345968 dex .4071879 0159187	.1326799 .1170716 .120611 .1116214 .0980839	2.66 -1.61 2.87 3.65 -0.16	0.008 0.107 0.004 0.000 0.871	.092882 417920 .109574 .18841 208159	7 1 9 4 6	.6129783 .0409922 .5823612 .6259618 .1763221
rho	.1933152	.1303754	1.48	0.138	062215	8	.4488462
Wald test of rh Likelihood rati Lagrange multip Acceptable rang Model 9: initial: rescale: rescale eq: Iteration 0: Iteration 1: Iteration 2:	<pre>ho=0: to test of rho= olier test of r ge for rho: -1. log likelihood log likelihood log likelihood log likelihood log likelihood</pre>	cho=0: c cho=0: c .084 < rho < d = -41.9331 d = -41.9331 d = -41.9331 d = -41.9331 d = -40.9901 d = -40.874	chi2(1) = chi2(1) = chi2(1	2.199 2.101 2.265	(0.138) (0.147) (0.132)		
Iteration 3:	log likelihood	d = -40.8748	72				
Iteration 4:	log likelihood	a = -40.8/48	572	,			
Weights matrix:	weighted Typ	be: Imported	l (non-bin	ary)	Row-stand	lardı	zed: Yes
Spatial lag moo	lel = -40.874872			Number Variar Square Sigma	r of obs nce ratio ed corr.	= = = =	42 0.575 0.585 0.64
z local-endemic	cs Coef.	Std. Err.	 Z	P> z	 [95%	Conf	. Interval]
z_local-endemics z_non-endemics z_lgm-ice z_relief-index z_shape-index constant	cs .6525182 1116033 .5360347 3588979 0161633	.1192086 .1251956 .1331126 .1184374 .0989116	5.47 -0.89 4.03 -3.03 -0.16	0.000 0.373 0.000 0.002 0.870	.4188 3569 .2751 5910 2100	737 821 388 311 264	.8861627 .1337755 .7969306 1267648 .1776999
rł	no .1962875	.1434028	1.37	0.171	0847	768	.4773517
Wald test of rh Likelihood rati Lagrange multip Acceptable rang	no=0: to test of rho= plier test of r ge for rho: -1.	=0: c cho=0: c .084 < rho <	chi2(1) = chi2(1) = chi2(1) = chi2(1) = c 1.000	1.874 1.793 1.800	(0.171) (0.181) (0.180)		

initial: rescale:			45 01 60					
rescale	Log	likelihood	= -45.8169	96				
researc.	Log	likelihood	= -45.8169	16				
rescale eq:	Log	likelihood	= -45.8169	16				
Iteration U:	Tođ	likelinood	= -45.8169	16				
Iteration 1:	log	likelihood	= -44.34604	1				
Iteration 2:	log	likelihood	43.20242	1				
Iteration 4.	log	likelihood	43.27031	2				
iteration 4.	IOY	IIKeIIII00u	43.27031					
Weights matrix:	Weig	hted Type	e: Imported	(non-bina	ry)	Row-stand	lardiz	ed: Yes
Spatial lag mod	lel				Number Varian Square	of obs ace ratio e d corr.	= = =	42 0.513 0.545
Log likelihood	= -4	3.276313			Sigma		=	0.67
z_local-endemic	s	Coef.	Std. Err.	Z	P> z	[95%	Conf.	Interval]
z local-endemic	s							
z non-endemics		.2597128	.1283907	2.02	0.043	.0080	717	.5113539
z sam-ice		3227646	.1232754	-2.62	0.009	56	438	0811491
z relief-index		.3489044	.1254415	2.78	0.005	.1030	437	.5947652
z_shape-index		2944406	.1233118	-2.39	0.017	5361	273	0527539
constant		0258617	.1035496	-0.25	0.803	2288	152	.1770918
			1261472					
rr.	10 	.3140609	.1361473	2.31	0.021	.0472	1/1	.5809046
Wald test of rh	no=0:		ch	ni2(1) =	5.321	(0.021)		
Likelihood rati	o te	st of rho=0): ch	ni2(1) =	4.758	(0.029)		
Lagrange multip	plier	test of rh	no=0: ch	112(1) =	4.656	(0.031)		
Acceptable rang	ge io	r rho: -1.0)84 < rho <	1.000				
Model 11:								
initial:	log	likelihood	= -45.1736	54				
rescale:	log	likelihood	= -45.1736	54				
	5	likeliheed						
rescale eq:	loq	TIKETINOOG	= -45.1736	54				
rescale eq: Iteration 0:	log log	likelihood	= -45.1736 = -45.1736	54 54				
rescale eq: Iteration 0: Iteration 1:	log log log	likelihood likelihood	= -45.1736 = -45.1736 = -43.76759	54 54 94				
rescale eq: Iteration 0: Iteration 1: Iteration 2:	log log log log	likelihood likelihood likelihood	= -45.1736 = -45.1736 = -43.76759 = -43.26681	54 54 94 - 2				
rescale eq: Iteration 0: Iteration 1: Iteration 2: Iteration 3:	log log log log log	likelihood likelihood likelihood likelihood	= -45.1736 = -45.1736 = -43.76759 = -43.26681 = -43.26280	54 54 2 6				
rescale eq: Iteration 0: Iteration 1: Iteration 2: Iteration 3: Iteration 4:	log log log log log log	likelihood likelihood likelihood likelihood likelihood	= -45.1736 $= -45.1736$ $= -43.76759$ $= -43.26681$ $= -43.26280$ $= -43.26280$	54 54 94 .2 06 94				
rescale eq: Iteration 0: Iteration 1: Iteration 2: Iteration 3: Iteration 4: Weights matrix:	log log log log log log	likelihood likelihood likelihood likelihood likelihood hted Type	= -45.1736 = -45.1736 = -43.76759 = -43.26681 = -43.26280 = -43.26280 e: Imported	54 54 94 .2 96 94 (non-bina	ry)	Row-stand	lardiz	ed: Yes
rescale eq: Iteration 0: Iteration 1: Iteration 2: Iteration 3: Iteration 4: Weights matrix:	log log log log log log	likelihood likelihood likelihood likelihood likelihood hted Type	= -45.1736 = -45.1736 = -43.76759 = -43.26681 = -43.26280 = -43.26280 e: Imported	54 54 94 .2 96 94 (non-bina	ry)	Row-stand	lardiz	ed: Yes
rescale eq: Iteration 0: Iteration 1: Iteration 2: Iteration 3: Iteration 4: Weights matrix: Spatial lag mod	log log log log log weig	likelihood likelihood likelihood likelihood likelihood hted Type	= -45.1736 = -45.1736 = -43.76759 = -43.26681 = -43.26280 = -43.26280 e: Imported	54 54 94 .2 96 94 (non-bina	ry) Number	Row-stand	lardiz	ed: Yes 42 0 519
rescale eq: Iteration 0: Iteration 1: Iteration 2: Iteration 3: Iteration 4: Weights matrix: Spatial lag mod	log log log log log weig	likelihood likelihood likelihood likelihood likelihood hted Type	= -45.1736 = -45.1736 = -43.76759 = -43.26681 = -43.26280 = -43.26280 e: Imported	54 54 94 .2 96 94 (non-bina	ry) Number Varian	Row-stand of obs ce ratio	lardiz: = =	ed: Yes 42 0.519 0.540
rescale eq: Iteration 0: Iteration 1: Iteration 2: Iteration 3: Iteration 4: Weights matrix: Spatial lag mod	<pre>log log log log log Weig del = -4</pre>	likelihood likelihood likelihood likelihood likelihood hted Type 3.262804	= -45.1736 = -45.1736 = -43.76759 = -43.26681 = -43.26280 = -43.26280 e: Imported	54 54 94 20 6 94 (non-bina	ry) Number Varian Square Sigma	Row-stand of obs ce ratio d corr.	lardiz = = =	ed: Yes 42 0.519 0.540 0.67
rescale eq: Iteration 0: Iteration 1: Iteration 2: Iteration 3: Iteration 4: Weights matrix: Spatial lag mod Log likelihood	<pre>log log log log log weig del = -4 cs</pre>	likelihood likelihood likelihood likelihood hted Type 3.262804 	= -45.1736 = -45.1736 = -43.76759 = -43.26681 = -43.26280 = -43.26280 e: Imported	54 54 94 .2 96 94 (non-bina 	ry) Number Varian Square Sigma P> z	Row-stand of obs ce ratio d corr. [95%	lardiz = = = Conf.	ed: Yes 42 0.519 0.540 0.67 Interval]
rescale eq: Iteration 0: Iteration 1: Iteration 2: Iteration 3: Iteration 4: Weights matrix: Spatial lag mod Log likelihood z_local-endemic z_local-endemic	log log log log log weig del = -4	likelihood likelihood likelihood likelihood hted Type 3.262804 	= -45.1736 = -45.1736 = -43.76759 = -43.26681 = -43.26280 = -43.26280 e: Imported	54 54 94 .2 96 94 (non-bina z	ry) Number Varian Square Sigma P> z	Row-stand of obs ce ratio d corr. [95%	lardiz = = = Conf.	ed: Yes 42 0.519 0.540 0.67 Interval]
rescale eq: Iteration 0: Iteration 1: Iteration 2: Iteration 3: Iteration 4: Weights matrix: Spatial lag mod Log likelihood 	<pre>log log log log log weig del = -4 cs cs</pre>	likelihood likelihood likelihood likelihood hted Type 3.262804 	<pre>= -45.1736 = -45.1736 = -43.76759 = -43.26681 = -43.26280 = -43.26280 e: Imported .tmported .tmported</pre>	54 54 94 .2 96 94 (non-bina 	ry) Number Varian Square Sigma P> z 0.022	Row-stand of obs ce ratio d corr. [95% .0630	lardiz = = Conf. 365	ed: Yes 42 0.519 0.540 0.67 Interval]
rescale eq: Iteration 0: Iteration 1: Iteration 2: Iteration 3: Iteration 4: Weights matrix: Spatial lag mod Log likelihood 	<pre>log log log log log weig del = -4 cs cs</pre>	likelihood likelihood likelihood likelihood hted Type 3.262804 	<pre>= -45.1736 = -45.1736 = -43.76759 = -43.26681 = -43.26280 = -43.26280 e: Imported .tmported .tmported .tmported .tmported .tmported</pre>	54 54 94 .2 96 94 (non-bina 	ry) Number Varian Square Sigma P> z 0.022 0.050	Row-stand of obs de ratio d corr. [95% 	lardiz = = Conf. 365 378	ed: Yes 42 0.519 0.540 0.67 Interval] .80041 0004817
rescale eq: Iteration 0: Iteration 1: Iteration 2: Iteration 3: Iteration 4: Weights matrix: Spatial lag mod Log likelihood z_local-endemic z_local-endemics z_tgm-ice z_vegetation-ir	<pre>log log log log weig del = -4 </pre>	likelihood likelihood likelihood likelihood likelihood hted Type 3.262804 	<pre>= -45.1736 = -45.1736 = -43.76759 = -43.26681 = -43.26280 = -43.26280 e: Imported .1mported .188109 .1632571 .2179736</pre>	54 54 94 .2 96 94 (non-bina 2.30 -1.96 2.01	ry) Number Varian Square Sigma P> z 0.022 0.050 0.044	Row-stand of obs ce ratio d corr. [95% 	ardiz = = Conf. 365 378 775	ed: Yes 42 0.519 0.540 0.67 Interval]
rescale eq: Iteration 0: Iteration 1: Iteration 2: Iteration 3: Iteration 4: Weights matrix: Spatial lag mod Log likelihood 	<pre>log log log log log weig del = -4 </pre>	likelihood likelihood likelihood likelihood likelihood hted Type 3.262804 	<pre>= -45.1736 = -45.1736 = -43.76759 = -43.26681 = -43.26280 e: Imported .1mported .188109 .1632571 .2179736 .1501968</pre>	54 54 94 .2 96 94 (non-bina z 	ry) Number Varian Square Sigma P> z 0.022 0.050 0.044 0.000	Row-stand of obs ce ratio d corr. [95% 	lardiz = = Conf. 365 378 775 094	ed: Yes 42 0.519 0.540 0.67 Interval] .80041 0004817 .8661182 .8477701
rescale eq: Iteration 0: Iteration 1: Iteration 2: Iteration 3: Iteration 4: Weights matrix: Spatial lag mod Log likelihood 	<pre>log log log log weig del = -4 </pre>	likelihood likelihood likelihood likelihood likelihood hted Type 3.262804 	<pre>= -45.1736 = -45.1736 = -43.76759 = -43.26681 = -43.26280 = -43.26280 e: Imported Std. Err. .188109 .1632571 .2179736 .1501968 .1040435</pre>	54 54 54 94 .2 96 94 (non-bina 2.30 -1.96 2.01 3.68 -0.20	ry) Number Varian Square Sigma P> z 0.022 0.050 0.044 0.000 0.838	Row-stand of obs ice ratio id corr. [95% 	ardiz = = Conf. 365 378 775 094 893	ed: Yes 42 0.519 0.540 0.67 Interval] .80041 0004817 .8661182 .8477701 .1826536
rescale eq: Iteration 0: Iteration 1: Iteration 2: Iteration 3: Iteration 4: Weights matrix: Spatial lag mod Log likelihood 	<pre>log log log log weig del = -4 </pre>	likelihood likelihood likelihood likelihood likelihood hted Type 3.262804 	<pre>= -45.1736 = -45.1736 = -43.76759 = -43.26681 = -43.26280 = -43.26280 e: Imported Std. Err. .188109 .1632571 .2179736 .1501968 .1040435 .1328149</pre>	54 54 54 206 04 (non-bina 2.30 -1.96 2.01 3.68 -0.20 1.94	ry) Number Varian Square Sigma P> z 0.022 0.050 0.044 0.000 0.838 0.052	Row-stand of obs cce ratio d corr. [95% .0630 6404 .0116 .2590 2251 0020	ardiz = = Conf. 365 378 775 094 893 381	ed: Yes 42 0.519 0.540 0.67 Interval] .80041 0004817 .8661182 .8477701 .1826536 .5185868
rescale eq: Iteration 0: Iteration 1: Iteration 2: Iteration 3: Iteration 4: Weights matrix: Spatial lag mod Log likelihood 	<pre>log log log log weig del = -4 cs cs ndex ex cs ndex ex cs ndex</pre>	likelihood likelihood likelihood likelihood likelihood hted Type 3.262804 	<pre>= -45.1736 = -45.1736 = -43.76759 = -43.26681 = -43.26280 = -43.26280 e: Imported</pre>	54 54 54 94 .2 96 94 (non-bina 2.30 -1.96 2.01 3.68 -0.20 1.94	ry) Number Varian Square Sigma P> z 0.022 0.050 0.044 0.000 0.838 0.052 3.7°2	Row-stand of obs ice ratio id corr. [95% .0630 6404 .0116 .2590 2251 0020	ardiz = = Conf. 365 378 775 094 893 381 	ed: Yes 42 0.519 0.540 0.67 Interval] .80041 0004817 .8661182 .8477701 .1826536 .5185868
rescale eq: Iteration 0: Iteration 1: Iteration 2: Iteration 3: Iteration 4: Weights matrix: Spatial lag mod Log likelihood 	<pre>log log log log weig del = -4 </pre>	likelihood likelihood likelihood likelihood likelihood hted Type 3.262804 	<pre>= -45.1736 = -45.1736 = -43.76759 = -43.26681 = -43.26280 = -43.26280 e: Imported</pre>	54 54 54 54 64 94 .2 96 94 (non-bina 2.30 -1.96 2.01 3.68 -0.20 1.94 -1.94 -1.94 -1.94	ry) Number Varian Square Sigma P> z 0.022 0.050 0.044 0.000 0.838 0.052 3.782 3.498	Row-stand of obs ice ratio id corr. [95% .0630 6404 .0116 .2590 2251 .0020 (0.052) (0.052) (0.061)	ardiz = = Conf. 365 378 775 094 893 381 	ed: Yes 42 0.519 0.540 0.67 Interval] 0004817 .8661182 .8477701 .1826536
rescale eq: Iteration 0: Iteration 1: Iteration 2: Iteration 3: Iteration 4: Weights matrix: Spatial lag mod Log likelihood 	<pre>log log log log iog weig del = -4 </pre>	likelihood likelihood likelihood likelihood likelihood hted Type 3.262804 	<pre>= -45.1736 = -45.1736 = -43.76759 = -43.26681 = -43.26280 = -43.26280 e: Imported</pre>	54 54 54 54 54 54 54 54 54 54	ry) Number Varian Square Sigma P> z 0.022 0.050 0.044 0.000 0.838 0.052 3.782 3.498 3.692	Row-stand of obs cc ratio d corr. [95% .0630 6404 .0116 .2590 2251 .0020 (0.052) (0.055)	lardiz = = Conf. 365 378 775 094 893 381	ed: Yes 42 0.519 0.540 0.67 Interval] .80041 0004817 .8661182 .8477701 .1826536 .5185868

Model 12: initial: log 1 rescale: log 1 rescale eq: log 1 Iteration 0: log 1 Iteration 1: log 1 Iteration 2: log 1 Iteration 3: log 1 Iteration 4: log 1	ikelihood = ikelihood = ikelihood = ikelihood = ikelihood = ikelihood = ikelihood =	 -43.35373 -43.35373 -43.35373 -43.35373 -42.983246 -42.965017 -42.965017 -42.964981 -42.964981 					
Weights matrix:Weigh	nted Type:	Imported (non-bina:	су)	Row-stand	ardize	ed: Yes
Spatial lag model	964981			Number Varian Square	of obs ce ratio d corr.	= = =	42 0.534 0.537
z_local-endemics	Coef.	Std. Err.	Z	P> z	[95%	Conf.	Interval]
<pre>z_local-endemics z_non-endemics z_tgm-ice - z_relief-index z_distance-index constant -</pre>	.7005523 .0754621 .3383485 .3021556 .0083559	.1405961 .1269255 .157386 .165458 .1044134	4.98 -0.59 2.15 1.83 -0.08	0.000 0.552 0.032 0.068 0.936	.4249 3242 .0298 0221 2130	889 315 776 361 025	.9761156 .1733073 .6468195 .6264473 .1962906
rho	.1014758	.1496635	0.68	0.498	1918	592	.3948108
Wald test of rho=0: Likelihood ratio tes Lagrange multiplier Acceptable range for	st of rho=0: test of rho rho: -1.08	chi chi chi 0=0: chi 04 < rho < 1	2(1) = 2(1) = 2(1) = .000	0.460 0.454 0.434	(0.498) (0.500) (0.510)		
Model 13: initial: log l rescale: log l rescale eq: log l Iteration 0: log l Iteration 1: log l Iteration 2: log l Iteration 3: log l Iteration 4: log l	ikelihood = ikelihood = ikelihood = ikelihood = ikelihood = ikelihood = ikelihood =	= -43.406283 = -43.406283 = -43.406283 = -43.406283 = -43.002024 = -43.001024 = -43.000983 = -43.000983					
Weights matrix:Weigh	nted Type:	Imported (non-binar	ſγ)	Row-stand	ardize	ed: Yes
Spatial lag model Log likelihood = -43	3.000983			Number Varian Square Sigma	of obs ce ratio d corr.	= = = =	42 0.534 0.537 0.67
z_local-endemics	Coef.	Std. Err.	Z	P> z	[95%	Conf.	Interval]
z_local-endemics z_non-endemics z_sgm-ice - z_reliefarea-index z_distance-index constant -	 . 6963039 - 0678876 . 3402986 . 3020355 - 0086452	.1430724 .1280301 .1573341 .1664594 .1044876	4.87 -0.53 2.16 1.81 -0.08	0.000 0.596 0.031 0.070 0.934	.4158 3188 .0319 0242 2134	872 221 294 189 372	.9767206 .1830468 .6486678 .62829 .1961468
rho	.1049883	.1494284	0.70	0.482	1878	859	.3978626
Wald test of rho=0: Likelihood ratio tes Lagrange multiplier Acceptable range for	st of rho=0: test of rhc rho: -1.08	chi chi p=0: chi 34 < rho < 1	.2(1) = .2(1) = .2(1) = .000	0.494 0.487 0.467	(0.482) (0.485) (0.494)		

Model 14:

initial: log like rescale: log like Iteration 0: log like Iteration 1: log like Iteration 2: log like Iteration 3: log like Iteration 4: log like	lihood = -43.7169 lihood = -43.7169 lihood = -43.7169 lihood = -43.7169 lihood = -43.1316 lihood = -43.0916 lihood = -43.0915 lihood = -43.0915	72 72 72 74 41 15 15		
Weights matrix:Weighted	Type: Imported	(non-binary)	Row-standa:	rdized: Yes
Spatial lag model	1515	Num Var Squ	ber of obs iance ratio ared corr.	= 42 = 0.530 = 0.536
Log likelihood = -43.09		S1g	ma :	= 0.6/
z_local-endemics	Coef. Std. Err.	z P>	z [95% Co	onf. Interval]
z_local-endemics z_non-endemics .73 z_lgm-ice .04 z_relief-index .35 z_reliefarea-index .33 constant01	22644 .1483698 18089 .1322291 72904 .1579305 43348 .1672579 18978 .1045367	4.94 0.0 0.32 0.7 2.26 0.0 2.00 0.0 -0.11 0.9	00 .4414 52 21735 24 .04775 46 .00651 09 21678	65 1.023064 54 .3009732 23 .6668286 53 .6621544 59 .1929903
rho .14	44879 .1482268	0.97 0.3	3014603	14 .4350072
Wald test of rho=0: Likelihood ratio test o Lagrange multiplier tes Acceptable range for rh	f rho=0: c t of rho=0: c o: -1.084 < rho <	hi2(1) = 0.9 hi2(1) = 0.9 hi2(1) = 0.9 hi2(1) = 0.9	50 (0.330) 27 (0.336) 01 (0.343)	
Model 15: initial: log like rescale: log like rescale eq: log like Iteration 0: log like Iteration 1: log like Iteration 3: log like Iteration 4: log like	lihood = -46.2649 lihood = -46.2649 lihood = -46.2649 lihood = -46.2649 lihood = -44.8360 lihood = -43.7046 lihood = -43.6983 lihood = -43.6983	01 01 01 24 17 83 82		
Weights matrix:Weighted	Type: Imported	(non-binary)	Row-standa:	rdized: Yes
Spatial lag model Log likelihood = -43.69	8382	Num Var Squ Sig	ber of obs iance ratio ared corr. ma	= 42 = 0.503 = 0.536 = 0.67
z_local-endemics	Coef. Std. Err.	z P>	z [95% Co	onf. Interval]
z_local-endemics z_non-endemics .28 z_tgm-ice30 z_reliefarea-index .3 z_shape~index28 constant02	44976 .1301398 02377 .1233949 37283 .1266381 20979 .1237904 62528 .1045396	2.19 0.0 -2.43 0.0 2.66 0.0 -2.28 0.0 -0.25 0.8	29 .029423 1554208 08 .08907 23524723 0223114	82 .539567 720583882 68 .5854892 270394731 67 .1786411
Wald test of rho=0: Likelihood ratio test o Lagrange multiplier tes Acceptable range for rh	f rho=0: c t of rho=0: c o: -1.084 < rho <	hi2(1) = 5.3 hi2(1) = 4.8 hi2(1) = 4.6 1.000	94 (0.020) 09 (0.028) 19 (0.032)	

Model 16: initial: log likelihood = -44.802 rescale: log likelihood = -44.802 rescale eq: log likelihood = -44.802 Iteration 0: log likelihood = -44.802 Iteration 1: log likelihood = -43.688 Iteration 2: log likelihood = -43.490 Iteration 4: log likelihood = -43.490	936 936 936 358 372 144 144			
Weights matrix:Weighted Type: Importe	d (non-bina)	ry)	Row-standardiz	ed: Yes
Spatial lag model Log likelihood = -43.490144		Number Varian Square Sigma	of obs = ce ratio = d corr. = =	42 0.517 0.531 0.68
z_local-endemics Coef. Std. Err	Z	P> z	[95% Conf.	Interval]
z_local-endemics z_non-endemics .488075 .175869 z_tgm-ice1385273 .1274995 z_relief-index .2544349 .1354118 z_distance-index .3687102 .1563869 constant0173134 .105007	2.78 -1.09 1.88 2.36 -0.16	0.006 0.277 0.060 0.018 0.869	.1433781 3884217 0109673 .0621975 2231234	.8327719 .1113671 .5198372 .6752229 .1884966
rho .210252 .1350248	1.56	0.119	0543917	.4748957
Wald test of rho=0: Likelihood ratio test of rho=0: Lagrange multiplier test of rho=0: Acceptable range for rho: -1.084 < rho	chi2(1) = chi2(1) = chi2(1) = < 1.000	2.425 2.302 2.567	(0.119) (0.129) (0.109)	
Model 17: initial: log likelihood = -44.777 rescale: log likelihood = -44.777 rescale eq: log likelihood = -44.777 Iteration 0: log likelihood = -44.777 Iteration 1: log likelihood = -43.665 Iteration 2: log likelihood = -43.467 Iteration 4: log likelihood = -43.467	157 157 157 157 638 443 217 217			
Weights matrix:Weighted Type: Importe	d (non-bina)	ry)	Row-standardiz	ed: Yes
Spatial lag model Log likelihood = -43.467217		Number Varian Square Sigma	of obs = ce ratio = d corr. = =	42 0.518 0.531 0.68
z_local-endemics Coef. Std. Err	. z	P> z	[95% Conf.	Interval]
z_local-endemics z_non-endemics .468557 .1800895 z_sgm-ice1435638 .1296033 z_relief-index .2628581 .1364028 z_distance-index .3603189 .1585443 constant0172598 .104953	2.60 -1.11 1.93 2.27 -0.16	0.009 0.268 0.054 0.023 0.869	.1155881 3975816 0044864 .0495778 2229639	.821526 .110454 .5302026 .6710601 .1884443
rho .2096011 .1347907	1.56	0.120	0545838	.4737861
Wald test of rho=0: Likelihood ratio test of rho=0: Lagrange multiplier test of rho=0: Acceptable range for rho: -1.084 < rho	chi2(1) = chi2(1) = chi2(1) = < 1.000	2.418 2.296 2.561	(0.120) (0.130) (0.110)	

Model 18:							
initial: log	likelihood	= -46.42719	3				
rescale: log	likelihood	= -46.427193	3				
rescale eq: log	likelihood	= -46.427193	3				
Iteration U: log	[likelihood	= -46.42/19.	3				
Iteration I: log	[likelihood	= -44.9514/8	3				
Iteration 2: log	Ilkelinood	= -43.90695	9				
Iteration 3: 10g	likelihood	-43.90096	0 C				
iteration 4. 10g	IIKeIIII00u	43.90090	0				
Weights matrix:Wei	ghted Type	: Imported	(non-bina	.ry) R	low-stand	ardize	ed: Yes
Spatial lag model				Number Varianc Squared	of obs e ratio corr.	= = =	42 0.498 0.531
Log likelihood = -	43.900966			Sigma		=	0.68
z_local-endemics	Coef.	Std. Err.	Z	P> z	[95%	Conf.	Interval]
z local-endemics							
z non-endemics	.2125747	.1315437	1.62	0.106	0452	461	.4703956
z [_] lgm-ice	3014157	.1288345	-2.34	0.019	5539	268	0489047
z_relief-index	.3824598	.1282754	2.98	0.003	.1310	447	.6338749
z_shape-index	2900235	.125525	-2.31	0.021	5360	479	043999
constant	0262321	.1050519	-0.25	0.803	23	213	.1796657
rho	.3185588	.1383737	2.30	0.021	.0473	513	.5897663
Likelihood ratio t Lagrange multiplie Acceptable range f	est of rho=0 r test of rh or rho: -1.0	: ch: o=0: ch: 84 < rho < 1	i2(1) = i2(1) = i2(1) = 1.000	4.729 (4.749 (0.021) 0.030) 0.029)		
Model 19: initial: log rescale: log rescale eq: log Iteration 0: log Iteration 1: log Iteration 2: log Iteration 3: log Iteration 4: log	<pre>likelihood likelihood likelihood likelihood likelihood likelihood likelihood likelihood likelihood</pre>	= -45.75948 = -45.75948 = -45.75948 = -45.75948 = -44.31988 = -43.752392 = -43.746822 = -43.74682	3 3 3 3 5 2 2 1 6				
Weights matrix:Wei	ghted Type	: Imported	(non-bina	.ry) R	low-stand	ardize	ed: Yes
Spatial lag model				Number Varianc Squared	of obs e ratio corr.	= = =	42 0.507 0.530
Log likelihood = -	43.746816			Siama		=	0.68
				o ± gina			
z_local-endemics	Coef.	Std. Err.	Z	P> z	[95%	Conf.	Interval]
<pre>z_local-endemics z local-endemics</pre>	Coef.	Std. Err.	Z	P> z	[95%	Conf.	Interval]
<pre>z_local-endemics z_local-endemics z non-endemics</pre>	Coef.	Std. Err.	z 2.36	P> z 0.018	[95% 0776	 Conf. 	Interval] .8292873
<pre>z_local-endemics z_local-endemics z_non-endemics z_sgm-ice</pre>	Coef. .453464 2654303	Std. Err. .1917501 .1578631	z 2.36 -1.68	P> z 0.018 0.093	[95% 0776 5748	 Conf. 408 362	Interval] .8292873 .0439756
<pre>z_local-endemics z_local-endemics z_non-endemics z_sgm-ice z_vegetation-index</pre>	Coef. .453464 2654303 .3702664	Std. Err. .1917501 .1578631 .2089242	z 2.36 -1.68 1.77	P> z 0.018 0.093 0.076	.0776 .5748 .0392	Conf. 408 362 176	Interval] .8292873 .0439756 .7797504
<pre>z_local-endemics z_local-endemics z_non-endemics z_sgm-ice z_vegetation-index z_distance-index</pre>	Coef. .453464 2654303 .3702664 .5424081	Std. Err. .1917501 .1578631 .2089242 .1524078	z 2.36 -1.68 1.77 3.56	P> z 0.018 0.093 0.076 0.000	[95% 0776 5748 0392 .2436	Conf. 408 362 176 943	Interval] .8292873 .0439756 .7797504 .8411218
<pre>z_local-endemics z_local-endemics z_sgm-ice z_vegetation-index z_distance-index constant</pre>	Coef. .453464 2654303 .3702664 .5424081 0220485	Std. Err. .1917501 .1578631 .2089242 .1524078 .105155	z 2.36 -1.68 1.77 3.56 -0.21	P> z 0.018 0.093 0.076 0.000 0.834	[95% .0776 5748 0392 .2436 2281	Conf. 408 362 176 943 484	Interval] .8292873 .0439756 .7797504 .8411218 .1840515
<pre>z_local-endemics z_local-endemics z_non-endemics z_sgm-ice z_vegetation-index c_distance-index constant</pre>	Coef. .453464 2654303 .3702664 .5424081 0220485 .2677541	Std. Err. .1917501 .1578631 .2089242 .1524078 .105155 .1334932	z 2.36 -1.68 1.77 3.56 -0.21 2.01	P> z 0.018 0.093 0.076 0.000 0.834 0.045	[95% .0776 5748 0392 .2436 2281 .0061	Conf. 408 362 176 943 484 	Interval] .8292873 .0439756 .7797504 .8411218 .1840515 .5293959
<pre>z_local-endemics z_local-endemics z_non-endemics z_sgm-ice z_vegetation-index constant</pre>	Coef. .453464 2654303 .3702664 .5424081 0220485 .2677541	Std. Err. .1917501 .1578631 .2089242 .1524078 .105155 .1334932	z 2.36 -1.68 1.77 3.56 -0.21 2.01	P> z 0.018 0.093 0.076 0.000 0.834 0.045	[95% .0776 5748 0392 .2436 2281 .0061	Conf. 408 362 176 943 484 122	Interval] .8292873 .0439756 .7797504 .8411218 .1840515 .5293959
<pre>z_local-endemics z_local-endemics z_non-endemics z_sgm-ice z_vegetation-index constant</pre>	Coef. .453464 2654303 .3702664 .5424081 0220485 .2677541 : est of rho=0	Std. Err. .1917501 .1578631 .2089242 .1524078 .105155 .1334932 ch: : ch:	z 2.36 -1.68 1.77 3.56 -0.21 2.01 i2(1) = i2(1) =	P> z 0.018 0.093 0.076 0.000 0.834 0.045 4.023 (3.702 ([95% .0776 5748 0392 .2436 2281 2281 .0061 .0061 0.045) 0.054)	Conf. 408 362 176 943 484 	Interval] .8292873 .0439756 .7797504 .8411218 .1840515 .5293959
<pre>z_local-endemics z_local-endemics z_non-endemics z_sgm-ice z_vegetation-index constant</pre>	Coef. .453464 2654303 .3702664 .5424081 0220485 .2677541 .2677541 . cest of rho=0 er test of rh	Std. Err. .1917501 .1578631 .2089242 .1524078 .105155 .1334932 ch: ch: ch: o=0: ch:	z 2.36 -1.68 1.77 3.56 -0.21 2.01 i2(1) = i2(1) = i2(1) =	P> z 0.018 0.093 0.076 0.000 0.834 0.045 4.023 (3.702 (3.925 ([95% .0776 .5748 .0392 .2436 .2281 .0061 .0061 .0045) 0.045) 0.054) 0.048)	Conf. 408 362 176 943 484 	Interval] .8292873 .0439756 .7797504 .8411218 .1840515 .5293959

Model 20: initial: log 1: rescale: log 1: rescale eq: log 1: Iteration 0: log 1: Iteration 1: log 1: Iteration 2: log 1: Iteration 3: log 1: Iteration 4: log 1:	ikelihood = ikelihood = ikelihood = ikelihood = ikelihood = ikelihood = ikelihood =	= -45.464261 = -45.464261 = -45.464261 = -45.464261 = -44.194125 = -43.901079 = -43.900258 = -43.900258					
Weights matrix:Weight	ted Type:	Imported (non-binar	ry) F	Row-stand	ardize	ed: Yes
Spatial lag model Log likelihood = -43	.900258			Number Varianc Squared Sigma	of obs e ratio l corr.	= = = =	42 0.506 0.524 0.68
z local-endemics	Coef	Std Err		 P> 7	 ۱۹5۶]		Intervall
z_local-endemics z_non-endemics z_lgm-ice - z_relief-index z_distance-index constant -	.4755626 .0829572 .2633822 .3802299 .0194306	.194704 .1391499 .1425011 .1658592 .1058404	2.44 -0.60 1.85 2.29 -0.18	0.015 0.551 0.065 0.022 0.854	.0939 355 0159 .0551 2268	498 686 148 518 739	.8571754 .1897716 .5426791 .7053079 .1880128
rho	.2359625	.1364427	1.73	0.084	0314	602	.5033852
Wald test of rho=0: Likelihood ratio test Lagrange multiplier Acceptable range for Model 21: initial: log li rescale: log li rescale eq: log li	t of rho=0: test of rho rho: -1.08 ikelihood = ikelihood = ikelihood =	chi ==0: chi 34 < rho < 1 = -47.082774 = -47.082774 = -47.082774	2(1) = 2(1) = 2(1) = .000	2.991 (2.804 (3.122 (0.084) 0.094) 0.077)		
Iteration 0: log 1: Iteration 1: log 1: Iteration 2: log 1: Iteration 3: log 1: Iteration 4: log 1:	ikelihood = ikelihood = ikelihood = ikelihood = ikelihood =	= -47.082774 = -45.614094 = -44.756245 = -44.749858 = -44.749857					
Weights matrix:Weight	ted Type:	Imported (non-binar	ry) F	low-stand	ardize	ed: Yes
Spatial lag model Log likelihood = -44	.749857			Number Varianc Squared Sigma	of obs e ratio l corr.	= = = =	42 0.480 0.509 0.69
z local-endemics	Coef.	Std. Err.	 Z	 P> z	[95%]	 Conf.	Interval]
z_local-endemics z_non-endemics z_lgm-ice - z_vegetation-index z_distance-index constant	l .5028562 .1561186 .2950468 .5528489 024261	.2193283 .1785868 .2299171 .1559838 .1074057	2.29 -0.87 1.28 3.54 -0.23	0.022 0.382 0.199 0.000 0.821	.0729 5061 1555 .2471 2347	806 424 825 262 723	.9327318 .1939051 .745676 .8585716 .1862502
rho	.2946233	.1345171	2.19	0.029	.0309	746	.5582721
Wald test of rho=0: Likelihood ratio test Lagrange multiplier Acceptable range for	t of rho=0: test of rhc rho: -1.08	chi chi chi chi chi chi chi chi chi chi	2(1) = 2(1) = 2(1) = .000	4.797 (4.342 (4.568 ((0.029) (0.037) (0.033)		

Model 22: initial: log rescale: log rescale eq: log Iteration 0: log Iteration 1: log Iteration 2: log Iteration 3: log Iteration 4: log Iteration 5: log	likelihood = likelihood = likelihood = likelihood = likelihood = likelihood = likelihood = likelihood =	= -49.89364 = -49.89364 = -49.89364 = -49.89364 = -49.113243 = -46.581041 = -46.548976 = -46.548894 = -46.548894				
weights matrix:weight	gnied Type:	: imported (non-pina.	гу) ко	w-standardiz	ed: ies
Spatial lag model Log likelihood = -4	46.548894			Number o Variance Squared Sigma	f obs = ratio = corr. = =	42 0.421 0.478 0.72
z_local-endemics	Coef.	Std. Err.	 Z	 P> z	 [95% Conf.	Interval]
<pre>z_local-endemics z_non-endemics z_sgm-ice z_vegetation-index z_shape-index constant</pre>	.3209782 4088039 .173491 3224773 0313954	.1946083 .1686503 .2132246 .1313208 .1109665	1.65 -2.42 0.81 -2.46 -0.28	0.099 0.015 0.416 0.014 0.777	060447 7393524 2444216 5798614 2488857	.7024033 0782555 .5914036 0650932 .1860949
rho	.3812625	.1393716	2.74	0.006	.1080991	.6544258
Wald test of rho=0 Likelihood ratio te Lagrange multiplie: Acceptable range fo	: est of rho=0: r test of rho or rho: -1.08	chi chi b=0: chi 34 < rho < 1	2(1) = 2(1) = 2(1) = .000	7.483 (0 6.366 (0 5.861 (0	.006) .012) .015)	
<pre>Model 23: initial: log rescale: log rescale eq: log Iteration 0: log Iteration 1: log Iteration 2: log Iteration 3: log Iteration 4: log Iteration 5: log</pre>	likelihood = likelihood = likelihood = likelihood = likelihood = likelihood = likelihood = likelihood =	= -49.858332 = -49.858332 = -49.858332 = -49.858332 = -48.863403 = -46.59592 = -46.572467 = -46.572397 = -46.572397				
Spatial lag model	46 530003			Number o Variance Squared	f obs = ratio = corr. =	42 0.421 0.477
Log likelinood = -	46.572397			Sigma 	=	0.72
z_local-endemics	Coei.	Std. Err.	Z 	P> z 	[95% Conf.	Interval]
<pre>z_local-endemics z_non-endemics z_tgm-ice z_vegetation-index c_shape-index constant</pre>	.3190674 4244666 .2128291 3111205 0311639	.1953743 .1759719 .2243651 .13061 .1110739	1.63 -2.41 0.95 -2.38 -0.28	0.102 0.016 0.343 0.017 0.779	0638592 7693653 2269184 5671113 2488648	.701994 079568 .6525766 0551297 .1865369
rho	.3784515	.1398218	2.71	0.007	.1044058	.6524972
Wald test of rho=0 Likelihood ratio te Lagrange multiplie: Acceptable range fo	: est of rho=0: r test of rho or rho: -1.08	chi chi chi chi chi chi chi chi chi chi	2(1) = 2(1) = 2(1) = .000	7.326 (0 6.248 (0 5.534 (0	.007) .012) .019)	

Model 24:

<pre>initial: rescale: rescale eq: Iteration 0: Iteration 1: Iteration 2: Iteration 3: Iteration 4: Iteration 5:</pre>	<pre>log likelihood log likelihood log likelihood log likelihood log likelihood log likelihood log likelihood log likelihood log likelihood</pre>	$ = -51.34724 \\ = -51.34724 \\ = -51.34724 \\ = -51.34724 \\ = -51.34724 \\ = -50.64308 \\ = -47.88156 \\ = -47.84070 \\ = -47.84063 \\$	17 17 17 17 34 54 94 37 37				
Weights matrix:	Weighted Typ	e: Imported	(non-bina	ry)	Row-stand	ardiz	ed: Yes
Spatial lag mod Log likelihood	el = -47.840637			Number Varian Square Sigma	of obs ce ratio d corr.	= = =	42 0.381 0.448 0.74
z_local-endemic	s Coef.	Std. Err.	Z	P> z	[95%	Conf.	Interval]
z_local-endemic z_non-endemics z_lgm-ice z_vegetation-in z_shape-index constant	s .3120584 3394094 dex .1400254 312073 0327338	.2224154 .1932041 .2389448 .1359562 .114149	1.40 -1.76 0.59 -2.30 -0.29	0.161 0.079 0.558 0.022 0.774	1238 7180 3282 5785 2564	677 825 979 424 618	.7479845 .0392637 .6083486 0456037 .1909941
rh	.3975161	.1408181	2.82	0.005	.1215	177	.6735145
Wald test of rh Likelihood rati Lagrange multip Acceptable rang	o=0: o test of rho= lier test of r e for rho: -1.	ch 0: ch ho=0: ch 084 < rho <	hi2(1) = hi2(1) = hi2(1) = 1.000	7.969 6.690 6.125	(0.005) (0.010) (0.013)		

Tab. A24: Geographically weighted regression (dependent variable: European endemics; Stata output)

Model 1:						
initial:	log likelihood	= -25.46445	59			
rescale:	log likelihood	= -25.46445	59			
rescale eq:	log likelihood	= -25.46445	59			
Iteration 0:	log likelihood	= -25.46445	59			
Iteration 1:	log likelihood	= -24.71780)3			
Iteration 2:	log likelihood	= -24.64030)3			
Iteration 3:	log likelihood	= -24.64020)6			
Iteration 4:	log likelihood	= -24.64020)6			
Weights matrix	:Weighted Typ	e: Imported	(non-bin	ary)	Row-standardi	zed: Yes
Spatial lag mo	del			Number	c of obs =	42
1				Variar	nce ratio =	0.805
				Square	ed corr. =	0.807
Log likelihood	= -24.640206			Sigma	=	0.43
z_european-end	emics Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
z european-end	 emics					
z non-endemics	.3843273	.1129717	3.40	0.001	.1629069	.6057477
z_tgm-ice	1366122	.0924953	-1.48	0.140	3178997	.0446753
z_relief-index	.4607367	.0884011	5.21	0.000	.2874737	.6339998
z_distance-ind	ex1594633	.1097469	-1.45	0.146	3745633	.0556367
constant	0422875	.0760888	-0.56	0.578	1914187	.1068438
rho	.14619	.1252756	1.17	0.243	0993455	.3917256
Wald test of r	 ho=0:	ch	 ni2(1) =	1.362	(0.243)	
Likelihood rat	io test of rho=	0: ch	ni2(1) =	1.325	(0.250)	
Lagrange multi	plier test of r	ho=0: ch	ni2(1) =	1.112	(0.292)	
Acceptable ran	ge for rho: -1.	084 < rho <	1.000			

Model 2: initial: log likelihood = -26.095343 rescale: log likelihood = -26.095343 rescale eq: log likelihood = -26.095343 Iteration 0: log likelihood = -26.095343 Iteration 1: log likelihood = -25.126255 Iteration 2: log likelihood = -24.977102 Iteration 3: log likelihood = -24.977 Iteration 4: log likelihood = -24.977				
Weights matrix:Weighted Type: Imported (non-bina	iry)	Row-standard	zed: Yes
Spatial lag model		Number Varian Square	of obs = ce ratio = d corr. =	42 0.801 0.805
Log likelihood = -24.977		Sigma	=	0.44
z_european-endemics Coef. Std. Err.	Z	P> z	[95% Conf.	Interval]
<pre>z_european-endemics z_non-endemics .3732826 .1163003 z_sgm-ice1124417 .0919892 z_relief-index .4617391 .0899014 z_distance-index1480504 .1117567 constant0497831 .0760495</pre>	3.21 -1.22 5.14 -1.32 -0.65	0.001 0.222 0.000 0.185 0.513	.1453381 2927372 .2855356 3670894 1988373	.6012271 .0678538 .6379427 .0709887 .099271
rho .1721028 .1220716	1.41	0.159	0671532	.4113588
Wald test of rho=0: chi Likelihood ratio test of rho=0: chi Lagrange multiplier test of rho=0: chi Acceptable range for rho: -1.084 < rho < 1 Model 3: initial: log likelihood = -27.447007 rescale: log likelihood = -27.447007 rescale eq: log likelihood = -27.447007 Iteration 0: log likelihood = -27.447007	2(1) = 2(1) = 2(1) = .000	1.988 1.913 1.667	(0.159) (0.167) (0.197)	
Iteration 1: log likelihood = -26.08051 Iteration 2: log likelihood = -25.192681 Iteration 3: log likelihood = -25.186378 Iteration 4: log likelihood = -25.186377				
Weights matrix:Weighted Type: Imported (non-bina	iry)	Row-standardi	zed: Yes
Spatial lag model Log likelihood = -25.186377		Number Varian Square Sigma	of obs = ce ratio = d corr. = =	42 0.797 0.805 0.44
z european-endemics Coef. Std. Err.	Z	 P> z	[95% Conf.	Interval]
z_european-endemics .4962028 .092272 z_tgm-ice 0837894 .0807001 z_relief-index .4003995 .0810555 z_shape-index 0803048 .0801745 constant 0728913 .075484	5.38 -1.04 4.94 -1.00 -0.97	0.000 0.299 0.000 0.317 0.334	.3153531 2419588 .2415336 2374439 2208371	.6770525 .0743799 .5592654 .0768344 .0750545
rho .2519888 .1180661	2.13	0.033	.0205835	.4833941
Wald test of rho=0: chi Likelihood ratio test of rho=0: chi Lagrange multiplier test of rho=0: chi Acceptable range for rho: -1.084 < rho < 1	2 (1) = 2 (1) = 2 (1) = .000	4.555 4.198 3.526	(0.033) (0.040) (0.060)	

Model 4: initial: log likelihood = rescale: log likelihood = rescale eq: log likelihood = Iteration 0: log likelihood = Iteration 2: log likelihood = Iteration 3: log likelihood = Iteration 4: log likelihood =	= -26.114816 = -26.114816 = -26.114816 = -26.114816 = -25.171093 = -25.03301 = -25.032924 = -25.032924				
Weights matrix: Weighted Type:	Imported (n	on-bina:	ry) 1	Row-standard	lized: Yes
Spatial lag model			Number Variano Square o	of obs = ce ratio = d corr. =	42 0.801 0.804
					0.44
Coef.	Std. Err.	Z	P> z	[95% Con	f. Interval]
z_european-endemics z_non-endemics .4503213 z_TGM-ice0964691 z_relief-index .4178652 z_coastline-index0967804 constant0491455	.0957037 .0834482 .0815021 .0847272 .0762535	4.71 -1.16 5.13 -1.14 -0.64	0.000 0.248 0.000 0.253 0.519	.2627456 2600245 .258124 2628426 1985995	6 .6378971 0.0670863 0.5776063 0.692818 0.1003086
rho .1698984	.1229431	1.38	0.167	0710657	.4108625
Wald test of rho=0: Likelihood ratio test of rho=0: Lagrange multiplier test of rho Acceptable range for rho: -1.08	chi2 chi2 chi2 chi2 chi2 chi2 chi2 chi2	2(1) = 2(1) = 2(1) = 000	1.910 1.840 1.551	(0.167) (0.175) (0.213)	
Model 5: initial: log likelihood = rescale: log likelihood = rescale eq: log likelihood = Iteration 0: log likelihood = Iteration 1: log likelihood = Iteration 3: log likelihood = Iteration 4: log likelihood = Iteration 5: log likelihood =	-27.986333 -27.986333 -27.986333 -27.986333 -26.774029 -25.386832 -25.378399 -25.378395 -25.378395				
Weights matrix:Weighted Type:	Imported (n	on-bina:	ry) 1	Row-standard	lized: Yes
Spatial lag model Log likelihood = -25.378395			Number Variano Squareo Sigma	of obs = ce ratio = d corr. = =	42 0.794 0.804 0.44
z european-endemics Coef. S	 td. Err.		 P> z	 [95% Conf	. Intervall
					;
<pre>z_european-endemics z_non-endemics .4838146 z_sgm-ice0664082 z_relief-index .4036201 z_shape-index0789986 constant0773694</pre>	.0905681 .0798543 .0812101 .0811619 .0753326	5.34 -0.83 4.97 -0.97 -1.03	0.000 0.406 0.000 0.330 0.304	.3063044 2229198 .2444512 238073 2250185	.6613248 .0901033 .5627889 .0800758 .0702798
rho .2674697	.1153961	2.32	0.020	.0412975	.4936418
Wald test of rho=0: Likelihood ratio test of rho=0: Lagrange multiplier test of rho Acceptable range for rho: -1.08	chi2 chi2 chi2 chi2 chi2 chi2 chi2 chi2	(1) = (1) = (1) = (0) =	5.372 4.892 4.252	(0.020) (0.027) (0.039)	

Model 6: initial: log likelihood = rescale: log likelihood = Iteration 0: log likelihood = Iteration 1: log likelihood = Iteration 3: log likelihood = Iteration 4: log likelihood =	-26.381016 -26.381016 -26.381016 -25.393077 -25.236513 -25.236403 -25.236403			
Weights matrix: Weighted Type:	Imported (non-b	inary) 1	Row-standardiz	ed: Yes
Spatial lag model		Number Variano Square o Sigma	of obs = ce ratio = d corr. = =	42 0.798 0.803 0.44
Coef. S	td.Err.z	 P> z	[95% Conf.	Intervall
2_european-endemics z_non-endemics .4596272 z_TGM-ice0924935 . z_relief-index .4197245 . z_isolation-index0786358 constant0512062 .	.095029 4.8 0842103 -1.1 0824103 5.0 .083325 -0.9 0766309 -0.6	4 0.000 0 0.272 9 0.000 4 0.345 7 0.504	.2733739 2575426 .2582033 2419498 2014	.6458806 .0725557 .5812457 .0846783 .0989876
rho .1770225 .	1237701 1.4	3 0.153	0655624	.4196074
Wald test of rho=0: Likelihood ratio test of rho=0: Lagrange multiplier test of rho= Acceptable range for rho: -1.084	chi2(1) chi2(1) 0: chi2(1) < rho < 1.000	= 2.046 = 1.966 = 1.671	(0.153) (0.161) (0.196)	
Model 7: initial: log likelihood = rescale: log likelihood = rescale eq: log likelihood = Iteration 0: log likelihood = Iteration 1: log likelihood = Iteration 3: log likelihood = Iteration 4: log likelihood =	-26.755384 -26.755384 -26.755384 -26.755384 -25.590516 -25.316621 -25.315949 -25.315949			
Weights matrix: Weighted Type:	Imported (non-b	inary) 1	Row-standardiz	ed: Yes
Spatial lag model Log likelihood = -25.315949		Number Variano Square o Sigma	of obs = ce ratio = d corr. = =	42 0.797 0.802 0.44
Coef. S	td. Err. z	P> z	[95% Conf.	Interval]
z_european-endemics z_non-endemics .439342 . z_SGM-ice0710187 . z_relief-index .4202459 . z_coastline-index0870125 . constant0564598 .	0954945 4.6 0811695 -0.8 0819805 5.1 0843644 -1.0 0760579 -0.7	0 0.000 7 0.382 3 0.000 3 0.302 4 0.458	.2521763 2301081 .2595671 2523638 2055305	.6265078 .0880707 .5809247 .0783387 .0926108
rho .1951845	.119104 1.6	4 0.101	0382551	.4286241
Wald test of rho=0: Likelihood ratio test of rho=0: Lagrange multiplier test of rho= Acceptable range for rho: -1.084	chi2(1) chi2(1) 0: chi2(1) < rho < 1.000	= 2.686 = 2.555 = 2.235	(0.101) (0.110) (0.135)	

Model 8: initial: rescale:	<pre>log likelihood = log likelihood =</pre>	-28.893929)				
rescale eq:	log likelihood =	-28.893929)				
Iteration 0:	<pre>log likelihood =</pre>	-28.893929)				
Iteration 1:	log likelihood =	-28.403368	}				
Iteration 3:	log likelihood =	-25.717995	5				
Iteration 4:	log likelihood =	-25.717923	3				
Iteration 5:	log likelihood =	-25.717923	3				
Weights matrix:	Weighted Type:	Imported ((non-bina	ary)	Row-standa	rdized	: Yes
Spatial lag mod	del			Number Varian Square	of obs ce ratio d corr.	= = =	42 0.790 0.802
Log likelihood	= -25.717923			Sigma		=	0.44
z_european-ende	emics Coef. St	td. Err.	Z	P> z	[95% Co	nf. In	terval]
z_european-ende	emics	0000071	5 0 6	0 000	00550	50	647000
z_non-endemics z_lom-ice	.4/13989	0896971	5.26 -0.11	0.000	.29559 - 16730	18	.64/202
z relief-index	.4058912	.0818872	4.96	0.000	.24539	53	.5663871
z_shape-index	0635871	.0822698	-0.77	0.440	22483	29	.0976587
constant	0856531	.0754621	-1.14	0.256	23355	61	.06225
rho	.2961067	.1138557	2.60	0.009	.07295	36	.5192598
Wald test of rh Likelihood rat Lagrange multip Acceptable rang	no=0: to test of rho=0: plier test of rho ge for rho: -1.084	chi chi =0: chi 4 < rho < 1	2(1) = 2(1) = 2(1) = .000	6.764 6.028 5.274	(0.009) (0.014) (0.022)		
Model 0.							
initial:	log likelihood =	-26.995218	3				
rescale:	log likelihood =	-26.995218	3				
rescale eq:	<pre>log likelihood =</pre>	-26.995218	}				
Iteration U: Iteration 1:	log likelihood =	-25.79911	5				
Iteration 2:	log likelihood =	-25.496167	7				
Iteration 3: Iteration 4:	<pre>log likelihood = log likelihood =</pre>	-25.49524 -25.49524	1 1				
Weights matrix:	Weighted Type:	Imported (non-bina	ary)	Row-standa	rdized	: Yes
Spatial lag moo	del			Number Varian	of obs ce ratio	=	42 0.795 0.801
Log likelihood	= -25.49524			Sigma	u corr.	=	0.44
	Coef.	Std. Err.	Z	P> z	 [95%	Conf.	Interval]
z_european-ende	emics						
z_non-endemics	.4486747	.09466	4.74	0.000	.2631	445	.6342049
z_SGM-ice	0678713	.081975	-0.83	0.408	2285	394	.0927968
z isolation-ind	lex0694852	.0830264	-0.84	0.403	232	214	.0932436
constant	0582568	.0763988	-0.76	0.446	2079	957	.091482
rho	.2013968	.1199179	1.68	0.093	033	638	.4364316
Wald test of rh	no=0:	chi	_2(1) =	2.821	(0.093)		
Likelihood rat	lo test of rho=0:	chi	2(1) =	2.676	(0.102)		
Acceptable range	ge for rho: -1.084	=u: chi 4 < rho < 1	(1) =	2.355	(U.125)		

Model 10:

initial: log likelihood = -27.863 rescale: log likelihood = -27.863 Iteration 0: log likelihood = -27.863 Iteration 1: log likelihood = -27.863 Iteration 2: log likelihood = -26.514 Iteration 3: log likelihood = -25.700 Iteration 4: log likelihood = -25.694	828 828 828 828 114 762 265 264			
Weights matrix: Weighted Type: Importe	d (non-binar	y) Row-	standardize	d: Yes
Spatial lag model]	Number of o Variance ra Squared co	obs = atio = rr. =	42 0.792 0.800
Log 11ke11nood = -25.694264		51gma 	=	0.44
Coef. Std. Err	Z	₽> z 	[95% Coni. 	Interval]
z_european-endemics z_non-endemics .4361261 .0965069 z_LGM-ice0073204 .0806728 z_relief-index .4187555 .0831268 z_coastline-index0670707 .0838907 constant070095 .0760445	4.52 -0.09 5.04 -0.80 -0.92	0.000 0.928 - 0.000 0.424 - 0.357 -	.246976 .1654362 .2558299 .2314935 .2191395	.6252762 .1507953 .5816811 .0973521 .0789494
rho .2423219 .1163645	2.08	0.037	.0142517	.4703922
<pre>Wald test of rho=0: Likelihood ratio test of rho=0: Lagrange multiplier test of rho=0: Acceptable range for rho: -1.084 < rho Model 11: initial: log likelihood = -27.37 rescale: log likelihood = -27.37 rescale eq: log likelihood = -27.37 Iteration 0: log likelihood = -27.37 Iteration 1: log likelihood = -27.628 Iteration 3: log likelihood = -25.628 Iteration 4: log likelihood = -25.625 Weights matrix:Weighted Type: Imported</pre>	chi2(1) = chi2(1) = chi2(1) = < 1.000 497 497 497 615 011 149 147	4.337 (0.0 4.016 (0.0 3.546 (0.0	37) 45) 60) standardize	d: Yes
Spatial lag model		Number of	obs =	42
Log likelihood = -25.625147		Variance ra Squared co: Sigma	rr. =	0.793 0.800 0.44
z_european-endemics Coef. Std. Err.	z Pi	> z [95% Conf. I	nterval]
z_european-endemics z_non-endemics .386286 .1261828 z_lgm-ice0427241 .0979652 z_relief-index .4512613 .0953085 z_distance-index1049916 .1191271 constant0652032 .0768269 rho .2254104 .1225059	3.06 -0.44 4.73 -0.88 -0.85 1.84	0.002 0.663 - 0.000 0.378 - 0.396 -	.1389723 .2347325 .2644601 .3384764 .2157812 .0146967	.6335998 .1492842 .6380626 .1284933 .0853749
Wald test of rho=0: Likelihood ratio test of rho=0: Lagrange multiplier test of rho=0: Acceptable range for rho: -1.084 < rho	chi2(1) =	3.386 (0.0) 3.176 (0.0) 2.785 (0.0)	66) 75) 95)	

Model 12:

<pre>initial: rescale: rescale eq: Iteration 0: Iteration 1: Iteration 2: Iteration 3: Iteration 4:</pre>	<pre>log likelihood log likelihood log likelihood log likelihood log likelihood log likelihood log likelihood</pre>	= -28.098231 = -28.098231 = -28.098231 = -28.098231 = -26.733726 = -25.843311 = -25.837061 = -25.83706				
Weights matrix	: Weighted Type	: Imported (non-bina	iry)	Row-standardi	zed: Yes
Spatial lag mod	del			Number Varian Square	of obs = ce ratio = d corr. =	42 0.790 0.799
Log likelihood	= -25.83706			Sigma	=	0.44
	Coef.	Std. Err.	Z	P> z	[95% Conf	. Interval]
z_european-ende z_non-endemics z_LGM-ice z_relief-index z_isolation-ind constant	emics .4456609 0035025 .41855 dex0487505 0720729	.0954888 .0810763 .0840504 .0821545 .0762715	4.67 -0.04 4.98 -0.59 -0.94	0.000 0.966 0.000 0.553 0.345	.2585064 1624091 .2538142 2097703 2215623	.6328154 .155404 .5832857 .1122693 .0774166
rho	.2491593	.1167789	2.13	0.033	.0202769	.4780417
Wald test of rh Likelihood rat: Lagrange multip Acceptable rand Model 13: initial: rescale: rescale eq: Iteration 0: Iteration 1: Iteration 2: Iteration 3: Iteration 4:	ho=0: io test of rho=0 plier test of rh ge for rho: -1.0 log likelihood log likelihood log likelihood log likelihood log likelihood log likelihood log likelihood	chi 0: chi 10=0: chi 084 < rho < 1 = -36.396649 = -36.396649 = -36.396649 = -32.853054 = -32.648214 = -32.647551 = -32.647551	2(1) = 2(1) = 2(1) = .000	4.552 4.199 3.737	(0.033) (0.040) (0.053)	
Weights matrix	:Weighted Type	: Imported (non-bina	ıry)	Row-standardi	zed: Yes
Spatial lag moo Log likelihood	del = -32.647551			Number Varian Square Sigma	of obs = ce ratio = d corr. = =	42 0.703 0.729 0.51
z_european-ende	emics Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
z_european-ende z_non-endemics z_lgm-ice z_reliefarea-in z_shape-index constant	emics .7765663 .1220026 ndex .2437016 1233404 1059748	.1015411 .1029552 .0985448 .0976727 .0874349	7.65 1.19 2.47 -1.26 -1.21	0.000 0.236 0.013 0.207 0.225	.5775495 0797858 .0505574 3147755 2773441	- .9755831 .3237911 .4368458 .0680947 .0653945
rho	.3663606	.1263572	2.90	0.004	.118705	.6140162
Wald test of rh Likelihood rat Lagrange multip Acceptable rang	ho=0: io test of rho=0 plier test of rh ge for rho: -1.0	chi 0: chi no=0: chi 084 < rho < 1	2(1) = 2(1) = 2(1) = .000	8.407 7.175 5.682	(0.004) (0.007) (0.017)	

Model 14: initial: log likelihood = -36.379551 rescale: log likelihood = -36.379551 rescale eq: log likelihood = -36.379551 Iteration 0: log likelihood = -36.379551 Iteration 1: log likelihood = -35.278263 Iteration 2: log likelihood = -33.361587 Iteration 3: log likelihood = -33.345624 Iteration 4: log likelihood = -33.345596 Iteration 5: log likelihood = -33.345596	
Weights matrix:Weighted Type: Imported (non-bi	nary) Row-standardized: Yes
Spatial lag model	Number of obs = 42 Variance ratio = 0.695 Squared corr. = 0.718
Log likelihood = -33.345596	Sigma = 0.53
z_european-endemics Coef. Std. Err. z	P> z [95% Conf. Interval]
z_european-endemics z_non-endemics .7782739 .1168015 6.66 z_lgm-ice .1608581 .1092481 1.47 z_reliefarea-index .1985357 .1123521 1.77 z_distance-index .0540581 .1382008 0.39 constant0979311 .0896142 -1.09	0.000.54934721.0072010.1410532643.37498050.0770216704.41874180.6962168106.32492680.2742735716.0777095
rho .338553 .1322426 2.56	0.010 .0793623 .5977438
<pre>Wald test of rho=0: chi2(1) = Likelihood ratio test of rho=0: chi2(1) = Lagrange multiplier test of rho=0: chi2(1) = Acceptable range for rho: -1.084 < rho < 1.000</pre> Model 15: initial: log likelihood = -35.640505 rescale: log likelihood = -35.640505 rescale eq: log likelihood = -35.640505 Iteration 0: log likelihood = -35.640505 Iteration 1: log likelihood = -34.172373 Iteration 2: log likelihood = -33.268989 Iteration 3: log likelihood = -33.262716 Iteration 4: log likelihood = -33.262716	6.554 (0.010) 5.744 (0.017) 4.756 (0.029)
Weights matrix:Weighted Type: Imported (non-bi	nary) Row-standardized: Yes
Spatial lag model Log likelihood = -33.262716	Number of obs = 42 Variance ratio = 0.699 Squared corr. = 0.716 Sigma = 0.53
z_european-endemics Coef. Std. Err. z	P> z [95% Conf. Interval]
<pre>z_european-endemics z_non-endemics .7665194 .1036573 7.39 z_tgm-ice0385355 .1047069 -0.37 z_reliefarea-index .1818674 .0999517 1.82 z_shape-index1497577 .0987395 -1.52 constant0869604 .0901984 -0.96 </pre>	0.000 .5633548 .9696839 0.7132437571 .1666862 0.0690140343 .377769 0.1293432837 .0437682 0.3352637461 .0898253 0.027 .0348013 .566453 4.913 (0.027) 4.432 (0.035) 3.363 (0.067)

Model 16:						
initial: rescale:	log likelihood	= -36.08657 = -36.08657	/ 7			
rescale eq:	log likelihood	= -36.08657	7			
Iteration 0:	log likelihood	= -36.08657	7			
Iteration 1:	log likelihood	= -34.778536	5			
Iteration 2: Iteration 3:	log likelihood	= -33.338595 = -33.32961)			
Iteration 4:	log likelihood	= -33.329605	5			
Iteration 5:	log likelihood	= -33.329605	5			
Weights matrix	:Weighted Type	: Imported (non-bin	ary)	Row-standardi	zed: Yes
Spatial lag mod	del			Number	of obs =	42
				Varian	ce ratio =	0.696
Iog likelihood				Square	d corr. =	0.716
	33.329603					
z_european-ende	emics Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
z_european-end	emics					
z_non-endemics	.7628494	.1030715	7.40	0.000	.5608329	.9648659
z_sgm=ice z reliefarea-iu	0046666 ndex .1945117	.1031772	-0.05	0.964	0004723	.3894956
z shape-index	1459972	.0993019	-1.47	0.141	3406254	.048631
constant	0920881	.089698	-1.03	0.305	267893	.0837169
rho	.3183536	.1317771	2.42	0.016	.0600753	.5766319
Wald test of r	 ho=0:	chi	2(1) =	5.836	(0.016)	
Likelihood rat:	io test of rho=0): chi	2(1) =	5.190	(0.023)	
Lagrange multip	plier test of rh	no=0: chi	2(1) =	4.101	(0.043)	
Acceptable rand	ge for rho: -1.0)84 < rho < 1	.000			
Model 17:						
initial:	log likelihood	= -36.137681	-			
rescale:	log likelihood	= -36.13/681	-			
Iteration 0:	log likelihood	= -36.137681	-			
Iteration 1:	log likelihood	= -34.760059)			
Iteration 2:	log likelihood	= -34.372907	7			
Iteration 3:	log likelihood	= -34.370996	5			
Iteration 4:	log likelihood	= -34.370996)			
Weights matrix	:Weighted Type	e: Imported (non-bin	ary)	Row-standardi	zed: Yes
Spatial lag mod	del			Number	of obs =	42
				Varian	ce ratio =	0.685
Log likelihood	= -34.370996			Square Sigma	d corr. = =	0.699
z_european-ende	emics Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
z european-ende	emics					
z_non-endemics	.7320554	.1170645	6.25	0.000	.5026131	.9614976
z_sgm-ice	.0173213	.1111516	0.16	0.876	2005318	.2351744
z_reliefarea-in	ndex .1658335	.1152554	1.44	0.150	060063	.39173
<pre>2_distance-inde constant</pre>	ex00/2414 075382	.142618 .0929879	-0.05 -0.81	0.960 0.418	∠४७/७/4 2576349	.2/2284/ .106871
rho	.2605999	.1399832	1.86	0.063	0137621	.5349619
Wald test of r						
Likelihood rat	ho=0:	chi	.2(1) =	3.466	(0.063)	
	ho=0: io test of rho=0	chi chi	2(1) = 2(1) =	3.466 3.210	(0.063) (0.073)	
Lagrange multip	ho=0: io test of rho=0 plier test of rh	chi chi no=0: chi	2(1) = 2(1) = 2(1) = 000	3.466 3.210 2.588	(0.063) (0.073) (0.108)	

Model 18: initial: log rescale: log rescale eq: log Iteration 0: log Iteration 1: log Iteration 2: log Iteration 3: log Iteration 4: log Iteration 5: log	likelihood likelihood likelihood likelihood likelihood likelihood likelihood	= -36.696684 = -36.696684 = -36.696684 = -35.158086 = -34.577447 = -34.571732 = -34.571732	non-bin	ary) I	Row-standardi	zed. Yes
	giicea iype	· imported (IIOII DIII	, , , , , , , , , , , , , , , , , , ,		200. 100
Spatial lag model	24 571722			Number Variand Squared	of obs = ce ratio = d corr. =	42 0.679 0.699
Log likelinood = -	34.5/1/32			Sigma 	=	0.54
z_european-endemic	s Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
<pre>z_european-endemic z_non-endemics z_tgm-ice z_vegetation-index z_distance-index constant</pre>	s .5911717 1441251 .2182851 .1259985 0890682	.1618968 .1326086 .1834397 .132175 .0939796	3.65 -1.09 1.19 0.95 -0.95	0.000 0.277 0.234 0.340 0.343	.2738598 4040333 1412501 1330596 2732649	.9084836 .115783 .5778204 .3850567 .0951284
rho	.3079134	.1475619	2.09	0.037	.0186974	.5971294
Wald test of rho=0 Likelihood ratio t Lagrange multiplie Acceptable range f Model 19: initial: log rescale: log rescale eq: log Iteration 0: log Iteration 1: log Iteration 2: log Iteration 3: log Iteration 4: log	: est of rho=0 r test of rh or rho: -1.0 likelihood likelihood likelihood likelihood likelihood likelihood likelihood likelihood	chi : chi 0=0: chi 84 < rho < 1 = -37.976108 = -37.976108 = -37.976108 = -37.976108 = -34.872787 = -34.858408 = -34.858408	2(1) = 2(1) = 2(1) = .000	4.354 3.926 2.623	(0.037) (0.048) (0.105)	
Weights matrix:Wei	ghted Type	: Imported (non-bina	ary) I	Row-standardi	zed: Yes
Spatial lag model				Number Variano Square o	of obs = ce ratio = d corr. =	42 0.669 0.699
Log likelihood = -	34.858408			Sigma	=	0.54
z_european-endemic	s Coef.	Std. Err.	Z	₽> z	[95% Conf.	Interval]
<pre>z_european-endemic z_non-endemics z_lgm-ice z_vegetation-index z_distance-index constant</pre>	s .7544485 .1071083 .0180651 .1728877 1071364	.1827098 .1370009 .1907411 .1320333 .0931135	4.13 0.78 0.09 1.31 -1.15	0.000 0.434 0.925 0.190 0.250	.3963438 1614086 3557807 0858928 2896355	1.112553 .3756251 .3919108 .4316681 .0753626
rho	.3703764	.1411969	2.62	0.009	.0936356	.6471171
Wald test of rho=0 Likelihood ratio t Lagrange multiplie Acceptable range f	: est of rho=0 r test of rh or rho: -1.0	chi : chi o=0: chi 84 < rho < 1	2(1) = 2(1) = 2(1) = 2(1) = .000	6.881 5.912 3.958	(0.009) (0.015) (0.047)	

Model 20:

initial: 1	og likelihood =	= -36.546901					
rescale eq. 1	og likelihood =	36.546901 = -36.546901					
Iteration 0: 1	og likelihood =	= -36.546901					
Iteration 1: 1	og likelihood =	-35.059768					
Iteration 2: 1	.og likelihood =	-34.446822					
Iteration 3: 1	og likelihood =	-34.440111					
Iteration 4: 1	og likelihood =	-34.440105					
Iteration 5: 1	og likelihood =	-34.440105					
Weights matrix:W	eighted Type:	Imported (non-bina	ury)	Row-stand	ardiz	ed: Yes
Spatial lag mode	-24 440105			Number Varian Square	of obs ce ratio d corr .	= = =	42 0.682 0.699
z_european-endem	ics Coef.	Std. Err.	Z	P> z	[95% 	Conf.	Interval]
z_european-endem	ics						
z_non-endemics	.5942645	.1619382	3.67	0.000	.2768	715	.9116576
z_tgm-ice	193334	.1321486	-1.46	0.143	4523	405	.0656725
z_vegetation-ind	lex .1555841	.1/13151	0.91	0.364	1801	8/3	.4913554
z_snape-index	10/23/9	.0988851	-1.08	0.278	3010	492 561	.0865/34
	.0034423	.092000			.2054		
rho	.2884651	.1395739	2.07	0.039	.0149	052	.5620249
Wald test of rho Likelihood ratio Lagrange multipl Acceptable range	=0: test of rho=0: ier test of rho for rho: -1.08	chi chi chi 0=0: chi 04 < rho < 1	2(1) = 2(1) = 2(1) = .000	4.271 3.890 2.819	(0.039) (0.049) (0.093)		
Model 21: initial: 1 rescale: 1 rescale eq: 1 Iteration 0: 1 Iteration 1: 1 Iteration 2: 1 Iteration 3: 1 Iteration 4: 1	og likelihood = og likelihood =	= -35.73036 = -35.73036 = -35.73036 = -34.557851 = -34.354826 = -34.354583 = -34.354583					
Weights matrix:W	eighted Type:	Imported (non-bina	ury)	Row-stand	ardiz	ed: Yes
Spatial lag mode	24.254502			Number Varian Square	of obs ce ratio d corr.	= = =	42 0.687 0.697
Log likelihood =	-34.354583			Sigma			0.54
z_european-endem	ics Coef. S	Std. Err.	Z	P> z	[95% C	onf. 	Interval]
<pre>z_european-endem z_non-endemics z_tgm-ice z_reliefarea-ind z_distance-index constant</pre>	.7269408 0270763 ex .1570187 0256322 0672304	.1159534 .1135001 .1155911 .142658 .0937361	6.27 -0.24 1.36 -0.18 -0.72	0.000 0.811 0.174 0.857 0.473	.4996 2495 0695 3052 2509	764 324 356 368 499	.9542052 .1953797 .3835731 .2539724 .1164891
rho	.2324196	.1447161	1.61	0.108	0512	 187	.5160578
Wald test of rho Likelihood ratio Lagrange multipl Acceptable range	=0: test of rho=0: ier test of rho for rho: -1.08	chi chi chi chi chi chi chi chi chi	2(1) = 2(1) = 2(1) = .000	2.579 2.428 1.860	(0.108) (0.119) (0.173)		

Model 22: initial: log likelihood = -37.460023 rescale: log likelihood = -37.460023 rescale eq: log likelihood = -37.460023 Iteration 0: log likelihood = -37.460023 Iteration 1: log likelihood = -35.913493 Iteration 2: log likelihood = -35.013875 Iteration 3: log likelihood = -35.007913 Iteration 4: log likelihood = -35.007912					
Weights matrix:Weighted Type: Imported (no	on-binar	y) F	low-stand	ardize	d: Yes
Spatial lag model Log likelihood = -35.007912		Number Varianc Squared Sigma	of obs e ratio l corr.	= = =	42 0.670 0.694 0.55
z european-endemics Coef. Std. Err.	 7. P		 [95% C	onf. T	ntervall
z_european-endemics z_non-endemics .6267623 .1651343 z_sgm-ice0698752 .1266171 - z_vegetation-index .1564236 .1780277 z_distance-index .1363395 .1338696 constant0959797 .0943541 -	3.80 -0.55 0.88 1.02 -1.02	0.000 0.581 0.380 0.308 0.309	.3031 3180 1925 12 2809	051 401 043 604 103	.9504196 .1782897 .5053514 .398719 .0889509
rho .3318069 .1459789	2.27	0.023	.0456	935	.6179202
Wald test of rho=0: chi2(Likelihood ratio test of rho=0: chi2(Lagrange multiplier test of rho=0: chi2(Acceptable range for rho: -1.084 < rho < 1.0	(1) = (1) = (1) = 000	5.166 (4.581 (3.088 (0.023) 0.032) 0.079)		
Model 23: initial: log likelihood = -37.360987 rescale: log likelihood = -37.360987 rescale eq: log likelihood = -37.360987 Iteration 0: log likelihood = -37.360987 Iteration 1: log likelihood = -35.867986 Iteration 2: log likelihood = -35.000403 Iteration 3: log likelihood = -34.994115 Iteration 4: log likelihood = -34.994114					
Weights matrix:Weighted Type: Imported (no	on-binar	y) F	low-stand	ardize	d: Yes
Spatial lag model Log likelihood = -34.994114		Number Varianc Squared Sigma	of obs e ratio l corr .	= = = =	42 0.672 0.692 0.55
z_european-endemics Coef. Std. Err.	Z	P> z	[95%	Conf.	Interval]
z_european-endemics z_non-endemics .6207667 .1651149 z_sgm-ice1273488 .1271278 - z_vegetation-index .0931157 .1663291 z_shape-index1039061 .1009589 - constant088909 .0936235 -	3.76 -1.00 0.56 -1.03 -0.95	0.000 0.316 0.576 0.303 0.342	.2971 3765 2328 3017 2724	474 147 834 819 076	.944386 .1218172 .4191148 .0939698 .0945897
rho .3073631 .1387948	2.21	0.027	.0353	304	.5793959
Wald test of rho=0: chi2(Likelihood ratio test of rho=0: chi2(Lagrange multiplier test of rho=0: chi2(Acceptable range for rho: -1.084 < rho < 1.0	(1) = (1) = (1) = (1) = (0)	4.904 (4.410 (3.223 (0.027) 0.036) 0.073)		

Model 24:											
initial:	log i	likelihood	= -38.01	6101							
rescale:	log i	likelihood	= -38.01	6101							
rescale eq: log likelihood = -38.016101											
Iteration 0:	eration 0: log likelihood = -38.016101										
Iteration 1:	tion 1: log likelihood = -36.535968										
Iteration 2:	teration 2: log likelihood = -35.449329										
Iteration 3:	log i	likelihood	= -35.44	3255							
Iteration 4:	log i	likelihood	= -35.44	3255							
Weights matrix:	Weigł	nted Type	: Import	ed (r	non-bina	ry) Ro	w-stand	dardiz	ed: Yes		
Spatial lag mode	əl					Number o	of obs	=	42		
						Variance	e ratio	=	0.664		
						Squared	corr.	=	0.687		
Log likelihood :	= -35	5.443255				Sigma		=	0.55		
z_european-ender	nics	Coef.	Std. Er	r.	Z	P> z	[95%	Conf.	Interval]		
z european-ender	nics										
z_non-endemics		.7242999	.18501	6	3.91	0.000	.3610	6751	1.086925		
z [_] lgm-ice		.0443383	.142546	4	0.31	0.756	2350	0476	.3237241		
z vegetation-in	dex	0522633	.18498	15	-0.28	0.778	414	48203	.3102938		
z_shape-index	-	0719824	.103230	2	-0.70	0.486	2743	3099	.1303451		
constant		093167	.094270	6	-0.99	0.323	27	7934	.0916		
rho		2220025	13837/	3	2.33	0.020	.0508	 3749	.5932922		
		. 3220033	.1303/4		2.00	0.020					
Wald test of rho	 >=0:			 chi2	2(1) =	5.418 (0).020)				
Wald test of rh	 o=0: o tes	 st of rho=0	:	chi2 chi2	2(1) = 2(1) =	5.418 (0 4.822 (0).020)).028)				
Wald test of rh Likelihood ratio	o=0: o tes lier	st of rho=0 test of rh	.130374 	chi2 chi2 chi2	2(1) = 2(1) =	5.418 (0 4.822 (0 3.430 (0).020)).028)).064)				

Profiles of all 42 study regions

Albania (Al)

Most endemic-rich plant families (European endemics): Asteraceae (122), Caryophyllacaeae (69), Fabaceae (52), Scrophulariaceae (48), Brassicaceae (46), Apiaceae (40), Campanulaceae (33), Poaceae (31), Rosaceae (25)

	total	without habitat designation		total	without habitat designation
Local endemics	22	9	European endemics	725	214
species groups	22			0	
species	632			21	
subspecies	71			1	
		absolutely confined to			absolutely confined to
freshwater habitats	0	0	freshwater habitats	15	5
bogs, mires, fens	0	0	bogs, mires, fens	6	2
coastal and saline habitats	0	0	coastal and saline habitats	8	6
ruderal habitats, cropland	0	0	ruderal habitats, cropland	51	9
grassland	3	2	grassland	212	62
rock and scree habitats	11	10	rock and scree habitats	302	166
shrub- and heathland	0	0	shrub- and heathland	128	16
forest	0	0	forest	100	25

Austria (Au)

Area:	84,128 km ²	
Borderline:	1,890 km	
Coastline:	0 km	
Perimeter:	1,890 km	
Elevation min:	115 m	
Elevation max:	3,798 m	
Soil index:	10	
Vegetation index:	8	
SGM ice:	49 %	A A A A A A A A A A A A A A A A A A A
LGM ice:	41 %	
TGM ice:	50 %	
Total species (N):	2,950	3401
Bykov's Index:	-7.06	

Most endemic-rich plant families (European endemics): Asteraceae (184); Rosaceae (69); Poaceae (63); Brassicaceae (57); Caryophyllaceae (43); Scrophulariaceae (42); Ranunculaceae (39); Fabaceae (34); Apiaceae (28); Campanulaceae (28)

	total	without habitat designation		total	without habitat designation
Local endemics	25	1	European endemics	858	114
species groups	0			62	
species	21			693	
subspecies	4			103	
		absolutely confined			absolutely confined
freshwater habitats	4	0	freshwater habitats	82	10
bogs, mires, fens	0	0	bogs, mires, fens	25	3
coastal and saline habitats	0	0	coastal and saline habitats	11	4
ruderal habitats, cropland	0	0	ruderal habitats, cropland	40	12
grassland	20	5	grassland	438	101
rock and scree habitats	14	3	rock and scree habitats	359	117
shrub- and heathland	6	0	shrub- and heathland	210	16
forest	6	0	forest	201	36

Azores Archipelago (Az)

Area:	2,569 km ²	
Borderline:	0 km	
Coastline:	610 km	
Perimeter:	610 km	
Elevation min:	0 m	
Elevation max:	2,351 m	i i i i i i i i i i i i i i i i i i i
Soil index:	1	
Vegetation index:	4	
SGM ice:	0 %	and the state of t
LGM ice:	0 %	
TGM ice:	0 %	
Total species (N):	843	3001
Bykov's Index:	3.29	

Most endemic-rich plant families (European endemics): Poaceae (8); Asteraceae (7);Scrophulariaceae (5); Aspleniaceae (4); Caryophyllaceae (4); Ericaceae (4); Apiaceae (3); Cyperaceae (3); Fabaceae (3); Hypericaceae (3)

	total	without habitat designation		total	without habitat designation
Local endemics	46	2	European endemics	87	2
species groups	0			0	
species	44			83	
subspecies	2			4	
		absolutely confined			absolutely confined
freshwater habitats	4	2	freshwater habitats	6	2
bogs, mires, fens	2	0	bogs, mires, fens	5	1
coastal and saline habitats	12	2	coastal and saline habitats	22	6
ruderal habitats, cropland	3	0	ruderal habitats, cropland	9	2
grassland	7	1	grassland	16	1
rock and scree habitats	23	5	rock and scree habitats	41	7
shrub- and heathland	15	0	shrub- and heathland	29	0
forest	18	3	forest	39	8

Belgium with Luxembourg (Be)

Most endemic-rich plant families (European endemics):

Poaceae (23); Asteraceae (20); Scrophulariaceae (14); Brassicaceae (12)Ranunculaceae (12); Rosaceae (11); Cyperaceae (10); Apiaceae(9); Boraginaceae (6); Campanulaceae (6)

	total	without habitat designation		total	without habitat designation
Local endemics	1	0	European endemics	198	14
species groups	0			4	
species	1			159	
subspecies	0			36	
		absolutely confined			absolutely confined
freshwater habitats	0	0	freshwater habitats	22	7
bogs, mires, fens	0	0	bogs, mires, fens	18	3
coastal and saline habitats	0	0	coastal and saline habitats	26	15
ruderal habitats, cropland	1	0	ruderal habitats, cropland	31	8
grassland	0	0	grassland	89	25
rock and scree habitats	1	0	rock and scree habitats	36	4
shrub- and heathland	0	0	shrub- and heathland	57	3
forest	0	0	forest	65	14

Balearic Islands (BI)

Area:	5,100 km ²			
Borderline:	0 km			- and the second
Coastline:	550 km			A sime
Perimeter:	550 km			and the second second
Elevation min:	0 m	2003		
Elevation max:	1,445 m			sand
Soil index:	3			Eg
Vegetation index:	3			
SGM ice:	0 %		and the state	
LGM ice:	0 %	1		
TGM ice:	0 %			
Total species (N):	1,516	: f		
Bykov's Index:	1.69			

Most endemic-rich plant families (European endemics): Lamiaceae (12); Scrophulariaceae (12); Asteraceae (11); Fabaceae (10); Plumbaginaceae (10); Apiaceae (8); Poaceae (6); Ranunculaceae (6); Boraginaceae (5); Brassicaceae (5)

	total	without habitat designation		total	without habitat designation
Local endemics	55	8	European endemics	140	27
species groups		0		1	
species		45		111	
subspecies		10		27	
		absolutely confined			absolutely confined
freshwater habitats	0	0	freshwater habitats	3	2
bogs, mires, fens	1	1	bogs, mires, fens	1	1
coastal and saline habitats	13	7	coastal and saline habitats	32	21
ruderal habitats, cropland	2	0	ruderal habitats, cropland	18	8
grassland	3	0	grassland	15	2
rock and scree habitats	35	23	rock and scree habitats	56	35
shrub- and heathland	8	1	shrub- and heathland	26	3
forest	5	1	forest	12	2

Britain (Br)

Area:	230,709 km ²		
Borderline:	0 km		the second se
Coastline:	8,605 km		and the second s
Perimeter:	8,605 km		
Elevation min:	0 m	2003	
Elevation max:	1,344 m		i i si formand
Soil index:	9		
Vegetation index:	7		
SGM ice:	66 %		A CARLES CONTRACTOR
LGM ice:	57 %	·	
TGM ice:	82 %		
Total species (N):	1,400	: f	
Bykov's Index:	-4.88		

Most endemic-rich plant families (European endemics): Asteraceae (40), Scrophulariaceae (28), Poaceae (21), Rosaceae (15), Brassicaceae (15), Orchidaceae (11), Apiaceae (11), Ranunculaceae (10), Fabaceae (9), Caryophyllaceae (9)

	total	without habitat designation		total	without habitat designation
Local endemics	25	3	European endemics	291	38
species groups	0			25	
species	17			213	
subspecies	8			53	
		absolutely confined			absolutely confined
freshwater habitats	1	0	freshwater habitats	29	7
bogs, mires, fens	1	0	bogs, mires, fens	26	5
coastal and saline habitats	9	7	coastal and saline habitats	62	36
ruderal habitats, cropland	3	3	ruderal habitats, cropland	36	12
grassland	6	2	grassland	107	21
rock and scree habitats	5	3	rock and scree habitats	55	10
shrub- and heathland	3	2	shrub- and heathland	69	5
forest	0	0	forest	75	19

Bulgaria (Bu)

Area:	111,024 km ²		
Borderline:	1,561 km		
Coastline:	285 km		and the second s
Perimeter:	1,846 km		
Elevation min:	0 m	2003	and the second s
Elevation max:	2,925 m		i i i i i i i i i i i i i i i i i i i
Soil index:	8		
Vegetation index:	8		
SGM ice:	0 %		A CARLES CONTRACTOR
LGM ice:	0 %		
TGM ice:	0 %		
Total species (N):	3,580	: 10 B	
Bykov's Index:	-4.33		

Most endemic-rich plant families (European endemics): Asteraceae (125); Caryophyllaceae (55); Scrophulariaceae (52); Fabaceae (45); Poaceae (41); Brassicaceae (38); Apiaceae (36); Rosaceae (34); Campanulaceae (31); Ranunculaceae (20)

	total	without habitat designation		total	
Local endemics	56	13	European endemics	707	199
species groups	0			17	
species	43			586	
subspecies	13			105	
		absolutely confined			absolutely confined
freshwater habitats	1	0	freshwater habitats	27	5
bogs, mires, fens	2	0	bogs, mires, fens	9	2
coastal and saline habitats	2	2	coastal and saline habitats	12	8
ruderal habitats, cropland	5	1	ruderal habitats, cropland	43	8
grassland	25	2	grassland	269	61
rock and scree habitats	29	14	rock and scree habitats	272	111
shrub- and heathland	5	0	shrub- and heathland	129	9
forest	4	1	forest	122	32

Canary Islands (Ca)

Area:	7,556 km ²		
Borderline:	0 km		
Coastline:	990 km		
Perimeter:	990 km		
Elevation min:	0 m	2003	
Elevation max:	3,718 m		
Soil index:	5		
Vegetation index:	6		
SGM ice:	0 %		A A A A A A A A A A A A A A A A A A A
LGM ice:	0 %	1	
TGM ice:	0 %	5	· "~ ~
Total species (N):	2,000	24.8	
Bykov's Index:	10.68		

Most endemic-rich plant families (European endemics): Asteraceae (134); Crassulaceae (66); Lamiaceae (55); Fabaceae (52); Brassicaceae (30); Boraginaceae (25); Caryophyllaceae (23); Apiaceae (17); Plumbaginaceae (16); Liliaceae (14)

	total	without habitat designation		total	without habitat designation
Local endemics	540	51	European endemics	606	55
species groups	0			0	
species	519			581	
subspecies	21			25	
		absolutely confined			absolutely confined
freshwater habitats	1	1	freshwater habitats	4	2
bogs, mires, fens	0	0	bogs, mires, fens	0	0
coastal and saline habitats	44	17	coastal and saline habitats	53	20
ruderal habitats, cropland	22	6	ruderal habitats, cropland	29	7
grassland	0	0	grassland	3	0
rock and scree habitats	385	162	rock and scree habitats	415	167
shrub- and heathland	237	20	shrub- and heathland	265	21
forest	96	37	forest	134	50

Corsica (Co)

Area:	8,780 km ²	
Borderline:	0 km	
Coastline:	532 km	
Perimeter:	532 km	
Elevation min:	0 m	
Elevation max:	2,707 m	
Soil index:	4	
Vegetation index:	5	
SGM ice:	0 %	
LGM ice:	11 %	
TGM ice:	11 %	
Total species (N):	2,500	3001
Bykov's Index:	-1.76	

Most endemic-rich plant families (European endemics): Asteraceae (41); Ranunculaceae (19); Poaceae (16); Brassicaceae (15); Caryophyllaceae (15); Lamiaceae (14); Apiaceae (11); Scrophulariaceae (11); Liliaceae (10); Boraginaceae (9)

	total	without habitat designation		total	without habitat designation
Local endemics	37	6	European endemics	271	52
species groups	0			15	
species	31			214	
subspecies	6			42	
		absolutely confined			absolutely confined
freshwater habitats	5	1	freshwater habitats	24	6
bogs, mires, fens	1	0	bogs, mires, fens	7	0
coastal and saline habitats	2	2	coastal and saline habitats	29	16
ruderal habitats, cropland	1	0	ruderal habitats, cropland	23	7
grassland	10	1	grassland	65	14
rock and scree habitats	21	13	rock and scree habitats	110	51
shrub- and heathland	5	1	shrub- and heathland	57	8
forest	1	0	forest	46	13

Crete (Cr)

Area:	8,508 km ²	
Borderline:	0 km	
Coastline:	813 km	
Perimeter:	813 km	
Elevation min:	0 m	
Elevation max:	2,456 m	in the second second
Soil index:	5	
Vegetation index:	5	
SGM ice:	0 %	A A A A A A A A A A A A A A A A A A A
LGM ice:	0 %	
TGM ice:	0 %	
Total species (N):	1,877	100
Bykov's Index:	3.08	

Most endemic-rich plant families (European endemics): Asteraceae (46); Caryophyllaceae (26); Brassicaceae (21); Lamiaceae (21); Liliaceae (18); Fabaceae (15); Campanulaceae (13); Rubiaceae (11); Apiaceae (7); Boraginaceae (7)

	total	without habitat designation		total	without habitat designation
Local endemics	152	17	European endemics	248	28
species groups	0			2	
species	133			220	
subspecies	19			26	
		absolutely confined			absolutely confined
freshwater habitats	8	0	freshwater habitats	9	0
bogs, mires, fens	2	0	bogs, mires, fens	2	0
coastal and saline habitats	11	4	coastal and saline habitats	21	7
ruderal habitats, cropland	5	1	ruderal habitats, cropland	35	8
grassland	5	1	grassland	15	3
rock and scree habitats	114	70	rock and scree habitats	170	97
shrub- and heathland	45	5	shrub- and heathland	73	8
forest	19	1	forest	27	1

Cyprus (Cy)

Area:	9,138 km ²	
Borderline:	0 km	
Coastline:	587 km	
Perimeter:	587 km	
Elevation min:	0 m	
Elevation max:	1,951 m	
Soil index:	5	
Vegetation index:	5	
SGM ice:	0 %	and the state of t
LGM ice:	0 %	
TGM ice:	0 %	
Total species (N):	2,000	3.40 1
Bykov's Index:	2.00	

Most endemic-rich plant families (European endemics): Lamiaceae (16); Asteraceae (15); Liliaceae (11); Caryophyllaceae (10); Brassicaceae (8); Crassulaceae (6); Fabaceae (6); Boraginaceae (4); Iridaceae (4); Apiaceae (3)

	total	without habitat designation		total	without habitat designation
Local endemics	108	4	European endemics	112	5
species groups	0			0	
species	94			97	
subspecies	14			15	
		absolutely confined			absolutely confined
freshwater habitats	12	1	freshwater habitats	12	3
bogs, mires, fens	0	0	bogs, mires, fens	0	0
coastal and saline habitats	6	2	coastal and saline habitats	7	3
ruderal habitats, cropland	28	2	ruderal habitats, cropland	29	6
grassland	7	0	grassland	8	0
rock and scree habitats	59	13	rock and scree habitats	61	30
shrub- and heathland	43	3	shrub- and heathland	43	8
forest	26	0	forest	26	3

Czech Republic & Slovakia (Cz)

Area:	127,692 km ²			
Borderline:	2,358 km			and states to
Coastline:	0 km			and a line way
Perimeter:	2,358 km		and the second sec	and a start of the
Elevation min:	49 m	Same S		
Elevation max:	2,655 m			sand
Soil index:	11			- Eng
Vegetation index:	7			Con
SGM ice:	0 %		A AMAR A A A A A A A A A A A A A A A A A	~~~~
LGM ice:	0 %	* ~**		
TGM ice:	3 %	•		
Total species (N):	3,300	2.00 0 D		
Bykov's Index:	-34.28			

Most endemic-rich plant families (European endemics): Asteraceae (127); Rosaceae (44); Poaceae (40); Brassicaceae (33); Scrophulariaceae (27); Caryophyllaceae (26); Ranunculaceae (26); Fabaceae (25); Apiaceae (15); Rubiaceae (15)

	total	without habitat designation		total	without habitat designation
Local endemics	6	3	European endemics	556	83
species groups	0			40	
species	5			439	
subspecies	1			77	
		absolutely confined			absolutely confined
freshwater habitats	0	0	freshwater habitats	51	4
bogs, mires, fens	0	0	bogs, mires, fens	20	5
coastal and saline habitats	0	0	coastal and saline habitats	16	3
ruderal habitats, cropland	0	0	ruderal habitats, cropland	45	12
grassland	1	1	grassland	294	67
rock and scree habitats	2	2	rock and scree habitats	167	37
shrub- and heathland	0	0	shrub- and heathland	151	6
forest	0	0	forest	171	29

Denmark (Da)

Area:	42,714 km ²			
Borderline:	56 km			- and single the
Coastline:	3,614 km			a distance
Perimeter:	3,670 km			Deres St
Elevation min:	-7 m	Sum?	the second se	2.50
Elevation max:	173 m			-sra-3
Soil index:	7			- A A A A A A A A A A A A A A A A A A A
Vegetation index:	5		and the second s	s for
SGM ice:	100 %		and the state	
LGM ice:	75 %	* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
TGM ice:	100 %	5		
Total species (N):	1.450	2000 d		
Bykov's Index:	-35.04			

Most endemic-rich plant families (European endemics): Asteraceae (19); Poaceae (13); Scrophulariaceae (12); Rosaceae (10); Ranunculaceae (9); Brassicaceae (8); Orchidaceae (7); Fabaceae (5); Rubiaceae (5); Cyperaceae (5)

	total	without habitat designation		total	without habitat designation
Local endemics	1	0	European endemics	145	6
species groups	0			8	
species	1			104	
subspecies	0			33	
		absolutely confined			absolutely confined
freshwater habitats	0	0	freshwater habitats	19	6
bogs, mires, fens	0	0	bogs, mires, fens	14	2
coastal and saline habitats	1	1	coastal and saline habitats	33	17
ruderal habitats, cropland	0	0	ruderal habitats, cropland	23	5
grassland	0	0	grassland	64	11
rock and scree habitats	0	0	rock and scree habitats	20	2
shrub- and heathland	0	0	shrub- and heathland	42	1
forest	0	0	forest	53	12

Faero (Fa)

Area:	1,484 km ²			
Borderline:	0 km		the states -	- and in the second
Coastline:	427 km			A same
Perimeter:	427 km			
Elevation min:	0 m	- Errors		Strand S
Elevation max:	882 m			marand
Soil index:	1			
Vegetation index:	1			- Jan Con
SGM ice:	100 %			E
LGM ice:	100 %	· ••*		
TGM ice:	100 %			
Total species (N):	262	2.00 8		
Bykov's Index:	-1.81			

Most endemic-rich plant families (European endemics): Asteraceae (6); Scrophulariaceae (6); Poaceae (5); Rosaceae (5); Callitrichaceae (3); Cyperaceae (3); Orchidaceae (3); Boraginaceae (2); Liliaceae (2); Onagraceae (2); Rubiaceae (2); Saxifragaceae (2)

	total	without habitat designation		total	without habitat designation
Local endemics	1	1	European endemics	47	9
species groups	0			4	
species	1			31	
subspecies	0			12	
		absolutely confined			absolutely confined
freshwater habitats	0	0	freshwater habitats	7	3
bogs, mires, fens	0	0	bogs, mires, fens	6	2
coastal and saline habitats	0	0	coastal and saline habitats	9	4
ruderal habitats, cropland	0	0	ruderal habitats, cropland	4	2
grassland	0	0	grassland	18	1
rock and scree habitats	0	0	rock and scree habitats	7	0
shrub- and heathland	0	0	shrub- and heathland	9	1
forest	0	0	forest	6	2

Finland (Fe)

Area:	335,313 km ²	
Borderline:	2,339 km	
Coastline:	2,470 km	
Perimeter:	4,809 km	
Elevation min:	0 m	
Elevation max:	1,328 m	in the second
Soil index:	5	
Vegetation index:	10	
SGM ice:	100 %	A A A A A A A A A A A A A A A A A A A
LGM ice:	100 %	
TGM ice:	100 %	
Total species (N):	1.100	John A
Bykov's Index:	-114.65	

Most endemic-rich plant families (European endemics): Asteraceae (17); Scrophulariaceae (11); Poaceae (11); Rosaceae (11); Cyperaceae (8); Caryophyllaceae (6); Orchidaceae (5); Ranunculaceae (4); Primulaceae (3); Fabaceae (3)

	total	without habitat designation		total	without habitat designation
Local endemics	0	0	European endemics	114	12
species groups	0			10	
species	0			76	
subspecies	0			28	
		absolutely confined			absolutely confined
freshwater habitats	0	0	freshwater habitats	10	2
bogs, mires, fens	0	0	bogs, mires, fens	13	2
coastal and saline habitats	0	0	coastal and saline habitats	22	12
ruderal habitats, cropland	0	0	ruderal habitats, cropland	17	3
grassland	0	0	grassland	60	5
rock and scree habitats	0	0	rock and scree habitats	18	2
shrub- and heathland	0	0	shrub- and heathland	30	1
forest	0	0	forest	37	4

France (Ga)

Area:	539,527 km ²		
Borderline:	2,137 km		
Coastline:	3,318 km		
Perimeter:	5,455 km		
Elevation min:	-2 m	300	
Elevation max:	4,807 m		in the second
Soil index:	10		
Vegetation index:	10		
SGM ice:	7 %		
LGM ice:	5 %	1	
TGM ice:	9 %	19	
Total species (N):	4,500	2008	
Bykov's Index:	-5.96		

Most endemic-rich plant families (European endemics): Asteraceae (271); Poaceae (105); Brassicaceae (86); Rosaceae (79); Fabaceae (67); Scrophulariaceae (65); Caryophyllaceae (62); Apiaceae (54); Ranunculaceae (53); Campanulaceae (41)

	total	without habitat designation		total	without habitat designation
Local endemics	93	28	European endemics	1,384	259
species groups	2			103	
species	75			1,110	
subspecies	16			171	
		absolutely confined			absolutely confined
freshwater habitats	4	3	freshwater habitats	107	28
bogs, mires, fens	1	0	bogs, mires, fens	37	5
coastal and saline habitats	7	5	coastal and saline habitats	81	50
ruderal habitats, cropland	5	3	ruderal habitats, cropland	95	36
grassland	13	7	grassland	508	149
rock and scree habitats	40	31	rock and scree habitats	542	251
shrub- and heathland	8	2	shrub- and heathland	269	33
forest	5	0	forest	220	42

Germany (Ge)

Area:	357,251 km ²		
Borderline:	2,761 km		
Coastline:	1,944 km		
Perimeter:	4,705 km		
Elevation min:	-4 m	2mm	A Barris Starting
Elevation max:	2,963 m		i i fi fi fi finand
Soil index:	11		
Vegetation index:	9		
SGM ice:	50 %		A Charles and the second secon
LGM ice:	18 %		
TGM ice:	53 %		
Total species (N):	3,350	2.00 8	
Bykov's Index:	-39.72		

Most endemic-rich plant families (European endemics): Asteraceae (127); Rosaceae (59); Poaceae (55); Brassicaceae (30); Ranunculaceae (30); Scrophulariaceae (29); Cyperaceae (22); Caryophyllaceae (20); Fabaceae (20); Apiaceae (18)

	total	without habitat designation		total	without habitat designation
Local endemics	8	0	European endemics	645	60
species groups	0			47	
species	4			505	
subspecies	4			93	
		absolutely confined			absolutely confined
freshwater habitats	4	3	freshwater habitats	78	15
bogs, mires, fens	1	0	bogs, mires, fens	35	4
coastal and saline habitats	1	1	coastal and saline habitats	38	21
ruderal habitats, cropland	0	0	ruderal habitats, cropland	49	13
grassland	2	2	grassland	322	78
rock and scree habitats	1	0	rock and scree habitats	224	67
shrub- and heathland	0	0	shrub- and heathland	153	8
forest	1	0	forest	171	35

Greece (Gr)

Area:	121,564 km ²		
Borderline:	941 km		
Coastline:	5,997 km		⊳
Perimeter:	6,938 km		
Elevation min:	0 m		
Elevation max:	2,919 m		
Soil index:	6,938		
Vegetation index:	10		
SGM ice:	0 %	A A A A A A A A A A A A A A A A A A A	
LGM ice:	0 %		
TGM ice:	0 %		
Total species (N):	5,000	3 de h	
Bykov's Index:	1.18		-

Most endemic-rich plant families (European endemics): Asteraceae (186); Caryophyllaceae (112); Brassicaceae (77); Scrophulariaceae (71); Lamiaceae (60); Poaceae (58); Fabaceae (56); Campanulaceae (54); Liliaceae (48); Apiaceae (42)

	total	without habitat designation		total	without habitat designation
Local endemics	5	1	European endemics	321	63
species groups	0			9	
species	4			257	
subspecies	1			55	
		absolutely confined			absolutely confined
freshwater habitats	0	0	freshwater habitats	14	1
bogs, mires, fens	0	0	bogs, mires, fens	10	3
coastal and saline habitats	0	0	coastal and saline habitats	11	7
ruderal habitats, cropland	0	0	ruderal habitats, cropland	38	10
grassland	2	0	grassland	145	33
rock and scree habitats	2	1	rock and scree habitats	70	13
shrub- and heathland	0	0	shrub- and heathland	88	3
forest	2	1	forest	117	26

Ireland (Hb)

Area:	83,924 km ²		
Borderline:	0 km		the second se
Coastline:	2,816 km		A Start Start
Perimeter:	2,816 km	-	
Elevation min:	0 m		and the second s
Elevation max:	1,041 m		
Soil index:	10		
Vegetation index:	8	-	
SGM ice:	99 %		
LGM ice:	78 %	[· }	
TGM ice:	100 %		
Total species (N):	1,000	2.008	
Bykov's Index:	-62.17		

Most endemic-rich plant families (European endemics): Scrophulariaceae (16) Asteraceae (15); Poaceae (10); Orchidaceae (8); Rosaceae (7); Brassicaceae (6); Ranunculaceae (6); Cyperaceae (5); Ericaceae (5); Saxifragaceae (5)

	total	without habitat designation		total	without habitat designation
Local endemics	0	0	European endemics	141	21
species groups	0			10	
species	0			95	
subspecies	0			36	
		absolutely confined			absolutely confined
freshwater habitats	0	0	freshwater habitats	21	7
bogs, mires, fens	0	0	bogs, mires, fens	21	4
coastal and saline habitats	0	0	coastal and saline habitats	34	21
ruderal habitats, cropland	0	0	ruderal habitats, cropland	13	4
grassland	0	0	grassland	45	5
rock and scree habitats	0	0	rock and scree habitats	23	2
shrub- and heathland	0	0	shrub- and heathland	34	2
forest	0	0	forest	28	5

Switzerland (He)

Area:	41,493 km ²		
Borderline:	1,394 km		
Coastline:	0 km		
Perimeter:	1,394 km		
Elevation min:	194 m	2003	A Contraction of the second se
Elevation max:	4,634 m		in the second
Soil index:	10		
Vegetation index:	8		
SGM ice:	99 %		A Charles
LGM ice:	80 %	·	
TGM ice:	99 %		
Total species (N):	2,471	2008	
Bykov's Index:	-13.13		

Most endemic-rich plant families (European endemics): Asteraceae (173); Rosaceae (73); Poaceae (47); Brassicaceae (40); Scrophulariaceae (39); Caryophyllaceae (31); Ranunculaceae (31); Fabaceae (27); Apiaceae (24); Primulaceae (19)

	total	without habitat designation		total	without habitat designation
Local endemics	8	5	European endemics	741	114
species groups	0			74	
species	7			589	
subspecies	1			78	
		absolutely confined			absolutely confined
freshwater habitats	0	0	freshwater habitats	72	11
bogs, mires, fens	0	0	bogs, mires, fens	23	2
coastal and saline habitats	0	0	coastal and saline habitats	8	1
ruderal habitats, cropland	0	0	ruderal habitats, cropland	45	9
grassland	1	0	grassland	360	99
rock and scree habitats	2	2	rock and scree habitats	295	101
shrub- and heathland	1	0	shrub- and heathland	166	16
forest	0	0	forest	159	

The Netherlands (Ho)

Area:	35,549 km ²	
Borderline:	762 km	
Coastline:	1,449 km	
Perimeter:	2,211 km	
Elevation min:	-7 m	
Elevation max:	322 m	i i i i i i i i i i i i i i i i i i i
Soil index:	7	
Vegetation index:	5	
SGM ice:	59 %	A A A A A A A A A A A A A A A A A A A
LGM ice:	0 %	
TGM ice:	59 %	
Total species (N):	1,221	Sola I
Bykov's Index:	-55.1	

Most endemic-rich plant families (European endemics): Asteraceae (17); Poaceae (13); Ranunculaceae (10); Scrophulariaceae (10); Brassicaceae (8); Cyperaceae (8); Rosaceae (8); Liliaceae (6); Boraginaceae (5); Lamiaceae (5)

	total	without habitat designation		total	without habitat designation
Local endemics	0	0	European endemics	148	9
species groups	0			4	
species	0			111	
subspecies	0			33	
		absolutely confined			absolutely confined
freshwater habitats	0	0	freshwater habitats	16	5
bogs, mires, fens	0	0	bogs, mires, fens	14	2
coastal and saline habitats	0	0	coastal and saline habitats	30	19
ruderal habitats, cropland	0	0	ruderal habitats, cropland	27	7
grassland	0	0	grassland	62	13
rock and scree habitats	0	0	rock and scree habitats	20	2
shrub- and heathland	0	0	shrub- and heathland	41	1
forest	0	0	forest	49	11

Spain mainland (Hs)			
Area:	494,053 km ²		
Borderline:	1,529 km		
Coastline:	2,726 km		· · · · · · · · · · · · · · · · · · ·
Perimeter:	4,055 km		
Elevation min:	0 m		and the second of the second o
Elevation max:	3,478 m		in the second
Soil index:	12		
Vegetation index:	10		
SGM ice:	0 %		A ANTIC A SECTION
LGM ice:	2 %		
TGM ice:	2 %		
Total species (N):	5,000	2.00 8	
Bykov's Index:	-1.08		

Most endemic-rich plant families (European endemics): Asteraceae (262); Scrophulariaceae (132); Brassicaceae (121); Fagaceae (109); Caryophyllaceae (96); Poaceae (86); Lamiaceae (82); Apiaceae (55); Plumbaginaceae (49), Ranunculaceae (49)

	total	without habitat designation		total	without habitat designation
Local endemics	555	151	European endemics	1,581	336
species groups	7			49	
species	467			1317	
subspecies	81			215	
		absolutely confined			absolutely confined
freshwater habitats	12	6	freshwater habitats	103	28
bogs, mires, fens	3	1	bogs, mires, fens	35	6
coastal and saline habitats	45	23	coastal and saline habitats	132	76
ruderal habitats, cropland	47	21	ruderal habitats, cropland	155	55
grassland	67	17	grassland	388	89
rock and scree habitats	253	185	rock and scree habitats	630	343
shrub- and heathland	94	34	shrub- and heathland	352	71
forest	22	7	forest	182	32

Hungary (Hu)

Area:	93,002 km ²	
Borderline:	1,559 km	
Coastline:	0 km	
Perimeter:	1,559 km	
Elevation min:	78 m	
Elevation max:	1,014 m	i i i i i i i i i i i i i i i i i i i
Soil index:	13	
Vegetation index:	8	
SGM ice:	0 %	and the state of t
LGM ice:	0 %	
TGM ice:	0 %	
Total species (N):	2,411	3001
Bykov's Index:	-25.96	

Most endemic-rich plant families (European endemics): Asteraceae (64); Fabaceae (24); Brassicaceae (20); Rosaceae (20); Poaceae (18); Caryophyllaceae (17); Liliaceae (13); Ranunculaceae (13); Scrophulariaceae (12); Apiaceae (11)

	total	without habitat designation		total	without habitat designation
Local endemics	5	1	European endemics	321	63
species groups	0			9	
species	4			257	
subspecies	1			55	
		absolutely confined			absolutely confined
freshwater habitats	0	0	freshwater habitats	14	1
bogs, mires, fens	0	0	bogs, mires, fens	10	3
coastal and saline habitats	0	0	coastal and saline habitats	11	7
ruderal habitats, cropland	0	0	ruderal habitats, cropland	38	10
grassland	2	0	grassland	145	33
rock and scree habitats	2	1	rock and scree habitats	70	13
shrub- and heathland	0	0	shrub- and heathland	88	3
forest	2	1	forest	117	26

Iceland (Is)

Area:	102,962 km ²	
Borderline:	0 km	
Coastline:	3,637 km	
Perimeter:	3,637 km	
Elevation min:	0 m	
Elevation max:	2,119 m	i i i i i i i i i i i i i i i i i i i
Soil index:	7	
Vegetation index:	6	
SGM ice:	100 %	A A A A A A A A A A A A A A A A A A A
LGM ice:	100 %	
TGM ice:	100 %	
Total species (N):	377	John K.
Bykov's Index:	-5.06	

Most endemic-rich plant families (European endemics): Asteraceae (13); Poaceae (8); Scrophulariaceae (5); Rosaceae (4); Caryophyllaceae (3); Cyperaceae (3); Onagraceae (3); Saxifragaceae (3); Boraginaceae (2)

	total	without habitat designation		total	without habitat designation
Local endemics	4	2	European endemics	56	12
species groups	0			12	
species	1			29	
subspecies	3			15	
		absolutely confined			absolutely confined
freshwater habitats	1	1	freshwater habitats	8	4
bogs, mires, fens	1	0	bogs, mires, fens	4	1
coastal and saline habitats	0	0	coastal and saline habitats	9	4
ruderal habitats, cropland	0	0	ruderal habitats, cropland	6	2
grassland	1	0	grassland	22	1
rock and scree habitats	0	0	rock and scree habitats	12	2
shrub- and heathland	0	0	shrub- and heathland	11	0
forest	1	0	forest	9	4

Italy mainland (It)

Area:	250,631 km ²	
Borderline:	1,421 km	
Coastline:	3,261 km	
Perimeter:	4,682 km	
Elevation min:	0 m	
Elevation max:	4,748 m	
Soil index:	11	
Vegetation index:	10	
SGM ice:	20 %	A A A A A A A A A A A A A A A A A A A
LGM ice:	15 %	
TGM ice:	21 %	
Total species (N):	5,200	3.401
Bykov's Index:	-2.84	

Most endemic-rich plant families (European endemics): Asteraceae (295); Brassicaceae (91); Scrophulariaceae (87); Poaceae (86); Caryophyllaceae (84); Fabaceae (67); Rosaceae (66); Apiaceae (64); Campanulaceae (56); Ranunculaceae (54)

	total	without habitat designation		total	without habitat designation
Local endemics	170	54	European endemics	1,473	302
species groups	0			81	
species	145			1205	
subspecies	25			187	
		absolutely confined			absolutely confined
freshwater habitats	3	2	freshwater habitats	82	16
bogs, mires, fens	2	0	bogs, mires, fens	30	4
coastal and saline habitats	6	6	coastal and saline habitats	42	23
ruderal habitats, cropland	4	1	ruderal habitats, cropland	94	31
grassland	32	7	grassland	543	153
rock and scree habitats	83	63	rock and scree habitats	636	313
shrub- and heathland	12	2	shrub- and heathland	253	31
forest	9	5	forest	233	57

Former Yugoslavia (Ju)

Area:	255,252 km ²			
Borderline:	2,271 km			
Coastline:	2,019 km			A strong
Perimeter:	4,29 km		and the second se	
Elevation min:	0 m	2. mg		Store - S
Elevation max:	2,864 m			
Soil index:	12			Eg
Vegetation index:	10			J. Com
SGM ice:	1 %			
LGM ice:	1 %			
TGM ice:	1 %			
Total species (N):	4,100	2.00 0		
Bykov's Index:	-2.43			

Most endemic-rich plant families (European endemics): Asteraceae (274); Caryophyllaceae (119); Poaceae (98) Scrophulariaceae (88); Fabaceae (87); Brassicaceae (85); Apiaceae (70); Campanulaceae (65); Rosaceae (62); Ranunculaceae (49)

	total	without habitat designation		total	without habitat designation
Local endemics	158	61	European endemics	1479	397
species groups	4			58	
species	135			1244	
subspecies	19			177	
		absolutely confined			absolutely confined
freshwater habitats	0	0	freshwater habitats	58	9
bogs, mires, fens	0	0	bogs, mires, fens	24	5
coastal and saline habitats	9	8	coastal and saline habitats	35	22
ruderal habitats, cropland	7	1	ruderal habitats, cropland	87	18
grassland	23	11	grassland	519	154
rock and scree habitats	69	58	rock and scree habitats	573	293
shrub- and heathland	3	1	shrub- and heathland	246	24
forest	5	4	forest	232	59

Portugal (Lu)

Area:	88,573 km ²	
Borderline:	985 km	
Coastline:	941 km	
Perimeter:	1,926 km	
Elevation min:	0 m	
Elevation max:	1,991 m	i i i i i i i i i i i i i i i i i i i
Soil index:	9	
Vegetation index:	6	
SGM ice:	0 %	A A A A A A A A A A A A A A A A A A A
LGM ice:	0 %	
TGM ice:	0 %	
Total species (N):	3,000	2001
Bykov's Index:	-2.57	

Most endemic-rich plant families (European endemics): Asteraceae (66); Scrophulariaceae (44);Poaceae (33); Fabaceae (3 Brassicaceae (24); Apiaceae (22); Plumbaginaceae (21); Liliaceae (19) (33); Fabaceae (31); Caryophyllaceae (30); Lamiaceae (25);

	total	without habitat designation		total	without habitat designation
Local endemics	73	17	European endemics	489	102
species groups	0			5	
species	63			415	
subspecies	10			69	
		absolutely confined			absolutely confined
freshwater habitats	3	0	freshwater habitats	48	16
bogs, mires, fens	0	0	bogs, mires, fens	17	3
coastal and saline habitats	13	10	coastal and saline habitats	67	38
ruderal habitats, cropland	9	6	ruderal habitats, cropland	75	31
grassland	9	3	grassland	96	18
rock and scree habitats	15	8	rock and scree habitats	120	42
shrub- and heathland	19	11	shrub- and heathland	148	33
forest	6	2	forest	74	11

Madeira (Ma)

Area:	774 km ²	
Borderline:	0 km	
Coastline:	124 km	
Perimeter:	124 km	
Elevation min:	0 m	
Elevation max:	1,862 m	
Soil index:	1	
Vegetation index:	5	
SGM ice:	0 %	A A A A A A A A A A A A A A A A A A A
LGM ice:	0 %	
TGM ice:	0 %	
Total species (N):	1,204	3401
Bykov's Index:	1.036	

Most endemic-rich plant families (European endemics): Asteraceae (29); Fabaceae (14); Brassicaceae (11); Lamiaceae (11); Crassulaceae (9); Poaceae (9); Rosaceae (9); Apiaceae (7); Scrophulariaceae (7); Liliaceae (6)

	total	without habitat designation		total	without habitat designation
Local endemics	134	7	European endemics	207	9
species groups	0			0	
species	123			193	
subspecies	11			14	
		absolutely confined			absolutely confined
freshwater habitats	12	0	freshwater habitats	16	0
bogs, mires, fens	1	0	bogs, mires, fens	2	0
coastal and saline habitats	33	13	coastal and saline habitats	45	17
ruderal habitats, cropland	10	3	ruderal habitats, cropland	18	4
grassland	4	0	grassland	9	0
rock and scree habitats	83	35	rock and scree habitats	118	40
shrub- and heathland	21	2	shrub- and heathland	52	3
forest	41	14	forest	85	29

Norway (No)

Area:	320,915 km ²	
Borderline:	2,42 km	
Coastline:	15,852 km	
Perimeter:	18,272 km	
Elevation min:	0 m	
Elevation max:	2,469 m	in the second second
Soil index:	7	
Vegetation index:	9	
SGM ice:	100 %	A Charles and the second
LGM ice:	100 %	
TGM ice:	100 %	
Total species (N):	1,700	Sec. 1
Bykov's Index:	-58.1	

Most endemic-rich plant families (European endemics): Asteraceae (36); Rosaceae (17); Scrophulariaceae (15); Poaceae (11); Cyperaceae (9); Orchidaceae (9); Brassicaceae (6); Papaveraceae (5); Ranunculaceae (5); Saxifragaceae (5)

	total	without habitat designation		total	without habitat designation
Local endemics	2	1	European endemics	181	23
species groups	0			25	
species	2			118	
subspecies	0			38	
		absolutely confined			absolutely confined
freshwater habitats	0	0	freshwater habitats	23	3
bogs, mires, fens	0	0	bogs, mires, fens	20	4
coastal and saline habitats	0	0	coastal and saline habitats	27	15
ruderal habitats, cropland	0	0	ruderal habitats, cropland	24	5
grassland	1	1	grassland	77	10
rock and scree habitats	0	0	rock and scree habitats	38	8
shrub- and heathland	0	0	shrub- and heathland	49	2
forest	0	0	forest	51	10

Poland (Po)				
Area:	311,695 km ²			
Borderline:	2,270 km		the second se	
Coastline:	638 km		· · · · ·	and the second
Perimeter:	2,908 km			5-5-
Elevation min:	-2 m	and a second	A Const	8
Elevation max:	2,499 m		i i for the second	7
Soil index:	10			2
Vegetation index:	7			3
SGM ice:	81 %		and the state of t	
LGM ice:	38 %	* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
TGM ice:	95 %	• •		
Total species (N):	2,374	2000 at		
Bykov's Index:	-6.002			

Most endemic-rich plant families (European endemics): Asteraceae (75); Rosaceae (38); Poaceae (34); Scrophulariaceae (28); Brassicaceae (23); Ranunculaceae (20); Caryophyllaceae (19); Fabaceae (15); Cyperaceae (13); Apiaceae (12)

	total	without habitat designation		total	without habitat designation
Local endemics	3	2	European endemics	412	40
species groups	0			20	
species	3			327	
subspecies	0			65	
		absolutely confined			absolutely confined
freshwater habitats	0	0	freshwater habitats	42	5
bogs, mires, fens	0	0	bogs, mires, fens	18	2
coastal and saline habitats	0	0	coastal and saline habitats	18	7
ruderal habitats, cropland	0	0	ruderal habitats, cropland	39	11
grassland	0	0	grassland	222	46
rock and scree habitats	1	1	rock and scree habitats	134	31
shrub- and heathland	0	0	shrub- and heathland	111	3
forest	0	0	forest	133	26
Romania (Rm)

Area:	237,396 km ²			
Borderline:	2,231 km			
Coastline:	362 km			a share
Perimeter:	2,593 km			To tomate a
Elevation min:	0 m	Errow &		tor and
Elevation max:	2,544 m			in and
Soil index:	12			
Vegetation index:	10			in the second se
SGM ice:	0 %		and the set	SE~~~
LGM ice:	1 %	*		
TGM ice:	1 %	5		
Total species (N):	3,400	: K		
Bykov's Index:	-677			

Most endemic-rich plant families (European endemics): Asteraceae (148); Caryophyllaceae (51); Poaceae (51); Fabaceae (41); Scrophulariaceae (39); Brassicaceae (38); Rosaceae (30); Apiaceae (28); Campanulaceae (27); Ranunculaceae (26)

	total	without habitat designation		total	without habitat designation
Local endemics	45	22	European endemics	700	164
species groups	0			30	
species	38			557	
subspecies	7			113	
		absolutely confined			absolutely confined
freshwater habitats	0	0	freshwater habitats	40	6
bogs, mires, fens	0	0	bogs, mires, fens	17	3
coastal and saline habitats	1	1	coastal and saline habitats	17	8
ruderal habitats, cropland	1	0	ruderal habitats, cropland	47	9
grassland	9	5	grassland	311	72
rock and scree habitats	15	11	rock and scree habitats	235	75
shrub- and heathland	0	0	shrub- and heathland	146	6
forest	3	1	forest	170	34

Russia Baltic division (Rs (B))

Most endemic-rich plant families (European endemics):

Asteraceae (14); Rosaceae (12); Scrophulariaceae (10); Cyperaceae (9); Poaceae (9); Ranunculaceae (7); Brassicaceae (6); Caryophyllaceae (6); Fabaceae (5); Liliaceae (4)

	total	without habitat designation		total	without habitat designation
Local endemics	1	0	European endemics	118	9
species groups	0			5	
species	0			92	
subspecies	1			21	
		absolutely confined			absolutely confined
freshwater habitats	1	0	freshwater habitats	12	2
bogs, mires, fens	0	0	bogs, mires, fens	11	2
coastal and saline habitats	0	0	coastal and saline habitats	20	10
ruderal habitats, cropland	0	0	ruderal habitats, cropland	21	5
grassland	1	0	grassland	59	6
rock and scree habitats	1	0	rock and scree habitats	18	1
shrub- and heathland	0	0	shrub- and heathland	32	1
forest	0	0	forest	43	10

Russia Central division (Rs (C))

Area:	1,625,765 km ²		
Borderline:	8,705 km		
Coastline:	1,330 km		
Perimeter:	10,035 km	2mm	
Elevation min:	0 m		
Elevation max:	1,750 m		
Soil index:	11		
Vegetation index:	12		
SGM ice:	46 %	·	
LGM ice:	17 %	м. -	A MILLING
TGM ice:	76 %	·- / .	
Total species (N):	3,000		
Bykov's Index:	-4.025		

Most endemic-rich plant families (European endemics): Asteraceae (33); Rosaceae (17); Caryophyllaceae (13); Poaceae (13); Scrophulariaceae (12); Ranunculaceae (10); Fabaceae (9); Brassicaceae (7); Cyperaceae (7); Rubiaceae (7)

	total	without habitat designation		total	without habitat designation
Local endemics	13	9	European endemics	190	37
species groups	0			3	
species	11			160	
subspecies	2			27	
		absolutely confined			absolutely confined
freshwater habitats	1	0	freshwater habitats	14	1
bogs, mires, fens	0	0	bogs, mires, fens	8	1
coastal and saline habitats	0	0	coastal and saline habitats	10	5
ruderal habitats, cropland	0	0	ruderal habitats, cropland	32	6
grassland	1	0	grassland	83	12
rock and scree habitats	0	0	rock and scree habitats	39	7
shrub- and heathland	2	0	shrub- and heathland	59	4
forest	2	2	forest	69	11

Russia Southeastern division (Rs (E))

Area:	953,366 km ²		· · · · · · · · · · · · · · · · · · ·
Borderline:	2,575 km		
Coastline:	5,079 km		
Perimeter:	7,654 km	and and a	A Company
Elevation min:	0 m	3.	the second of the second se
Elevation max:	1,640 m		
Soil index:	11		
Vegetation index:	13		The providence of the second s
SGM ice:	0 %		A CONTRACTOR
LGM ice:	0 %		
TGM ice:	6 %		
Total species (N):	4,000	:00	
Bykov's Index:	-4.104		

Most endemic-rich plant families (European endemics): Asteraceae (20); Caryophyllaceae (14); Fabaceae (12); Brassicaceae (10); Poaceae (10); Scrophulariaceae (7); Ranunculaceae (6); Apiaceae (5); Rosaceae (4); Liliaceae (3)

	total	without habitat designation		total	without habitat designation
Local endemics	14	8	European endemics	113	40
species groups	0			1	
species	13			95	
subspecies	1			17	
		absolutely confined			absolutely confined
freshwater habitats	1	1	freshwater habitats	9	3
bogs, mires, fens	0	0	bogs, mires, fens	1	0
coastal and saline habitats	0	0	coastal and saline habitats	3	1
ruderal habitats, cropland	0	0	ruderal habitats, cropland	18	6
grassland	4	3	grassland	39	9
rock and scree habitats	2	1	rock and scree habitats	24	6
shrub- and heathland	0	0	shrub- and heathland	21	1
forest	0	0	forest	22	3

Russia Crimean division (Rs (K))

Most endemic-rich plant families (European endemics):

Asteraceae (18); Rosaceae (14); Caryophyllaceae (13); Fabaceae (11); Poaceae (10); Apiaceae (8); Brassicaceae (8); Liliaceae (7); Lamiaceae (6); Rubiaceae (5)

	total	without habitat designation		total	without habitat designation
Local endemics	64	17	European endemics	131	42
species groups	0			0	
species	48			104	
subspecies	16			27	
		absolutely confined			absolutely confined
freshwater habitats	0	0	freshwater habitats	2	1
bogs, mires, fens	0	0	bogs, mires, fens	0	0
coastal and saline habitats	5	4	coastal and saline habitats	8	6
ruderal habitats, cropland	4	0	ruderal habitats, cropland	15	3
grassland	15	4	grassland	34	6
rock and scree habitats	28	18	rock and scree habitats	49	25
shrub- and heathland	5	2	shrub- and heathland	20	2
forest	11	3	forest	23	5

Russia Northern division (Rs (N))

Area:	1,463,824 km ²		
Borderline:	4,605 km		
Coastline:	16,836 km		
Perimeter:	21,441 km		
Elevation min:	0 m		
Elevation max:	1,894 m		A ALTO A
Soil index:	10		
Vegetation index:	11		S ANT AND
SGM ice:	97 %		
LGM ice:	40 %		A A
TGM ice:	100 %		
Total species (N):	2,000	:	
Bykov's Index:	-7.224		

Most endemic-rich plant families (European endemics): Rosaceae (14); Asteraceae (12); Scrophulariaceae (9); Poaceae (7); Cyperaceae (6); Caryophyllaceae (4); Fabaceae (4); Orchidaceae (4); Onagraceae (3); Brassicaceae (2)

	total	without habitat designation		total	without habitat designation
Local endemics	34	12	European endemics	456	100
species groups	0			16	
species	18			362	
subspecies	16			78	
		absolutely confined			absolutely confined
freshwater habitats	6	3	freshwater habitats	40	10
bogs, mires, fens	0	0	bogs, mires, fens	12	1
coastal and saline habitats	7	7	coastal and saline habitats	18	15
ruderal habitats, cropland	0	0	ruderal habitats, cropland	30	7
grassland	5	1	grassland	213	44
rock and scree habitats	7	6	rock and scree habitats	122	24
shrub- and heathland	1	0	shrub- and heathland	111	5
forest	2	0	forest	133	25

Russia Southwestern division (Rs (W))

Area:	605,414	$\rm km^2$
Borderline:	3,675	km
Coastline:	1,527	km
Perimeter:	5,202	km
Elevation min:	0	m
Elevation max:	2,061	m
Soil index:	11	
Vegetation	10	
index:		
SGM ice:	24	%
LGM ice:	0	%
TGM ice:	24	%
Total species	5,000	
(N):		
Bykov's	-1.856	
Index:		

Most endemic-rich plant families (European endemics): Asteraceae (105); Caryophyllaceae (34); Poaceae (34); Scrophulariaceae (28); Fabaceae (26); Ranunculaceae (22); Rosaceae (19); Liliaceae (17); Rubiaceae (17); Brassicaceae (14)

	total	without habitat designation		total	without habitat designation
Local endemics	34	12	European endemics	456	100
species groups	0			16	
species	18			362	
subspecies	16			78	
		absolutely confined			absolutely confined
freshwater habitats	6	3	freshwater habitats	40	10
bogs, mires, fens	0	0	bogs, mires, fens	12	1
coastal and saline habitats	7	7	coastal and saline habitats	18	15
ruderal habitats, cropland	0	0	ruderal habitats, cropland	30	7
grassland	5	1	grassland	213	44
rock and scree habitats	7	6	rock and scree habitats	122	24
shrub- and heathland	1	0	shrub- and heathland	111	5
forest	2	0	forest	133	25

Sardinia

Area:	24,099 km ²		
Borderline:	0 km		
Coastline:	838 km		
Perimeter:	838 km	and the second	A Contraction
Elevation min:	0 m	The second second	
Elevation max:	1,834 m		A A A A A A A A A A A A A A A A A A A
Soil index:	7		
Vegetation index:	5		The for the former
SGM ice:	0 %		A CARE AND A CARE
LGM ice:	0 %		
TGM ice:	0 %		
Total species (N):	2,100	:	
Bykov's Index:	-283		

Most endemic-rich plant families (European endemics): Asteraceae (30); Ranunculaceae (13); Caryophyllaceae (11); Lamiaceae (11); Plumbaginaceae (10); Apiaceae (9); Fabaceae (9); Poaceae (9); Scrophulariaceae (8); Brassicaceae (7)

	total	without habitat designation		total	without habitat designation
Local endemics	28	6	European endemics	200	42
species groups	0			5	
species	25			164	
subspecies	3			31	
		absolutely confined			absolutely confined
freshwater habitats	0	0	freshwater habitats	14	5
bogs, mires, fens	1	1	bogs, mires, fens	3	1
coastal and saline habitats	5	5	coastal and saline habitats	33	21
ruderal habitats, cropland	1	0	ruderal habitats, cropland	25	10
grassland	1	0	grassland	30	7
rock and scree habitats	15	13	rock and scree habitats	76	42
shrub- and heathland	2	1	shrub- and heathland	37	6
forest	0	0	forest	23	5

Svalbard (Sb)

Area:	62,912 km ²		
Borderline:	0 km		
Coastline:	5,414 km		-
Perimeter:	5,414 km	AD WINNE	
Elevation min:	0 ^m		
Elevation max:	2,277 m		
Soil index:	1	S De la	the second secon
Vegetation index:	3		the second se
SGM ice:	100 %	. 77	
LGM ice:	100 %	The second second	
TGM ice:	100 %		
Total species (N):	200	· • • • • •	
Bykov's Index:	-372		

Most endemic-rich plant families (European endemics):

- - - - - -

	total	without habitat designation		total	without habitat designation
Local endemics	2	0	European endemics	7	1
species groups	0			0	
species	2			7	
subspecies	0			0	
		absolutely confined			absolutely confined
freshwater habitats	0	0	freshwater habitats	0	0
bogs, mires, fens	1	1	bogs, mires, fens	1	1
coastal and saline habitats	1	1	coastal and saline habitats	1	1
ruderal habitats, cropland	0	0	ruderal habitats, cropland	1	1
grassland	0	0	grassland	2	1
rock and scree habitats	0	0	rock and scree habitats	1	0
shrub- and heathland	0	0	shrub- and heathland	0	0
forest	0	0	forest	1	1

Sicily

Area:	25,726 km ²		
Borderline:	0 km		
Coastline:	920 km		
Perimeter:	920 km		The second
Elevation min:	0 m	and the second s	
Elevation max:	3,323 m		
Soil index:	7		
Vegetation index:	5		S ART AND
SGM ice:	0 %		A States and a state of the sta
LGM ice:	0 %		
TGM ice:	0 %		
Total species (N):	2,500		
Bykov's Index:	-167		

Most endemic-rich plant families (European endemics): Asteraceae (41); Brassicaceae (19); Fabaceae (15); Apiaceae (13); Lamiaceae (13); Caryophyllaceae (12); Plumbaginaceae (12); Boraginaceae (9); Poaceae (9); Ranunculaceae (8)

	total	without habitat designation		total	without habitat designation
Local endemics	59	18	European endemics	233	64
species groups	0			1	
species	45			178	
subspecies	14			54	
		absolutely confined			absolutely confined
freshwater habitats	1	0	freshwater habitats	11	4
bogs, mires, fens	0	0	bogs, mires, fens	2	0
coastal and saline habitats	12	10	coastal and saline habitats	34	25
ruderal habitats, cropland	3	3	ruderal habitats, cropland	26	11
grassland	6	3	grassland	33	17
rock and scree habitats	20	19	rock and scree habitats	71	48
shrub- and heathland	0	0	shrub- and heathland	24	6
forest	3	2	forest	33	11

Sweden (Su)

Area:	446,070 km ²		
Borderline:	2,052 km		
Coastline:	4,867 km		
Perimeter:	6,919 km		A Contraction
Elevation min:	-2 m		
Elevation max:	2,111 m		
Soil index:	6		
Vegetation index:	10		T ATT A
SGM ice:	100 %		
LGM ice:	100 %	· · ·	
TGM ice:	100 %		
Total species (N):	1,720	1.40 \$	
Bykov's Index:	-3.324		

Most endemic-rich plant families (European endemics): Asteraceae (30); Rosaceae (18); Scrophulariaceae (14); Ranunculaceae (13); Poaceae (12); Brassicaceae (9) Cyperaceae (9); Caryophyllaceae (8); Orchidaceae (7); Fabaceae (6)

	total	without habitat designation		total	without habitat designation
Local endemics	5	1	European endemics	194	22
species groups	0			18	
species	3			136	
subspecies	2			40	
		absolutely confined			absolutely confined
freshwater habitats	0	0	freshwater habitats	26	6
bogs, mires, fens	0	0	bogs, mires, fens	18	4
coastal and saline habitats	0	0	coastal and saline habitats	31	17
ruderal habitats, cropland	0	0	ruderal habitats, cropland	22	3
grassland	3	0	grassland	86	10
rock and scree habitats	4	1	rock and scree habitats	44	10
shrub- and heathland	0	0	shrub- and heathland	52	1
forest	0	0	forest	61	11

European Turkey (Tu)

Area:	23,877 km ²		
Borderline:	331 km		
Coastline:	748 km		-
Perimeter:	1,079 km	and the second	A Company
Elevation min:	0 m		
Elevation max:	1,000 m		A A A A A A A A A A A A A A A A A A A
Soil index:	4		
Vegetation index:	5		T ATTONICE
SGM ice:	0 %		
LGM ice:	0 %		
TGM ice:	0 %		
Total species (N):	2,500	1.40 2	
Bykov's Index:	-1.945		

Most endemic-rich plant families (European endemics): Asteraceae (13); Fabaceae (9); Scrophulariaceae (9); Liliaceae (7); Caryophyllaceae (6); Brassicaceae (5); Lamiaceae (4); Apiaceae (3); Campanulaceae (3); Poaceae (3)

	total	without habitat designation		total	without habitat designation
Local endemics	4	2	European endemics	85	22
species groups	0			1	
species	4			70	
subspecies	0			14	
		absolutely confined			absolutely confined
freshwater habitats	0	0	freshwater habitats	4	1
bogs, mires, fens	0	0	bogs, mires, fens	1	0
coastal and saline habitats	0	0	coastal and saline habitats	5	3
ruderal habitats, cropland	0	0	ruderal habitats, cropland	14	3
grassland	0	0	grassland	29	5
rock and scree habitats	2	2	rock and scree habitats	25	9
shrub- and heathland	0	0	shrub- and heathland	17	2
forest	0	0	forest	21	5